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Ostracod crustaceans originated at least 500 Ma ago. Their tiny bivalved
shells represent the most species-abundant fossil arthropods, and ostracods
are omnipresent in a wide array of freshwater and marine environments
today and in the past. Derima paparme gen. et sp. nov. from the
Herefordshire Silurian Lagerstätte (~430 Ma) in the Welsh Borderland, UK,
is one of only a handful of exceptionally preserved ostracods (with soft
parts as well as the shell) known from the Palaeozoic. A male specimen
provides the first evidence of the appendages of Binodicopina, a major
group of Palaeozoic ostracods comprising some 135 Ordovician to Permian
genera. The appendage morphology of D. paparme, but not its shell,
indicates that binodicopes belong to Podocopa. The discovery that the
soft-part morphology of binodicopes allies them with podocopes affirms
that using the shell alone is an unreliable basis for classifying certain fossil
ostracods, and knowledge of soft-part morphology is critical for the task.
Current assignment of many fossil ostracods to higher taxa, and therefore
the evolutionary history of the group, may require reconsideration.

1. Introduction
Ostracod crustaceans are ubiquitous and profuse today, and their shells
represent the most species-abundant arthropods in the fossil record. The
group originated at least 500 Ma ago [1–4] and colonized all kinds of
freshwater and marine environments [5,6]. Most ostracods, both living and
fossil, are benthic/nektobenthic. Pelagic species (exclusively Myodocopa)
originated with an ecological shift in the Silurian [7,8]. Fossil ostracods that
preserve appendages are extremely rare [9]. There are only nine such species
from the Palaeozoic (six Myodocopa, three Podocopa; some 20 specimens
in total), five of which (all myodocopes) are from the Herefordshire Konser-
vat-Lagerstätte (~430 Ma) in the Welsh Borderland, UK [10]. This Lagerstätte
has furnished unrivalled testimony of the palaeobiology and phylogenetic
affinities of a wide range of Silurian invertebrates, including many arthro-
pod groups [11]. Here, we report a new exceptionally preserved species
of ostracod from the Herefordshire fauna. Its shell morphology supports
assignment to Binodicopina, a major group of Palaeozoic ostracods. Its
preserved soft parts are the first known from a binodicope; they ally the
species to the Podocopa and critically test the conventional shell-based
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taxonomy of ostracods and hence our understanding of the evolutionary history of the group.

2. Material and methods
Fossils of the Herefordshire Lagerstätte are preserved as calcitic in-fills in calcareous nodules within a volcaniclastic layer
[12]. A virtual reconstruction of the single known specimen of the new ostracod was generated by serially grinding and
photographing at 20 µm intervals [13], then removing extraneous material digitally and resolving fossil-matrix ambiguities
using SPIERS software [14]. A final, colour-coded model was studied using interactive visualization, stereo-pairs, dissection
and animation. The exact boundary between the body and limbs, as shown in the colour-coded illustrations, involves some
interpretation.

3. Systematic palaeontology
The specimen (Oxford University Museum of Natural History, OUMNH PAL-C.36094: holotype) is classified as Euarthropoda,
Crustacea, class Ostracoda, order Beyrichicopida [15], suborder Binodicopina [16], family Bolliidae [17], Derima paparme gen. et
sp. nov., named for Carolyn Lewis (OUMNH), in recognition of her fundamental role in reconstructing many animals of the
Herefordshire Lagerstätte: Greek, deris, battle + ellogimos, famous, from the Norman name Lowis, Lodovicus, after the latinized
Ludovicus of the Germanic Hlūtwīg (‘famed battle’), which gave rise to the surname Lewis; palaios, ancient + parme, a shield used
by foot-soldiers, alluding to the squat shell. Gender, feminine. Wenlock Series, Herefordshire, England.

3.1. Diagnosis
Bolliid with a squat-shaped postplete carapace with a broad lateroadmarginal bend and very wide admarginal surface between
cardinal corners. Dorsally there is an anterior node and a weaker posterior lobal structure. There are seven limb pairs and a
presumed furca bearing two well-developed lamellae.

3.2. Description
The small size of the specimen relative to slice dimensions constrains the amount of detail that can be discerned. Carapace
squat-shaped, postplete in lateral view (figure 1a). Maximum length (1.7 mm) between cardinal corners; maximum height (1.5
mm) just behind mid-length; maximum carapace width (ca 1.4 mm) above mid-height. Valves of the specimen gape at about 20°
(figure 1c,f). The valve outline in lateral view is almost straight and vertical posteriorly (figure 1a), evenly and strongly curved
ventrally, and forward sloping anteriorly ending in a small blunt forward projection at the anterior cardinal corner. A broad
lateroadmarginal bend parallels a wide, shallow perilobal depression between the cardinal corners (figure 1a,c,f,h). The adjacent
lateral valve area is gently tumid overall with the greatest inflation just above mid-height. An acuminate anterodorsal node
anterior to a more weakly developed, slightly larger posterodorsal lobal structure occurs near (and extends slightly above?) the
incompletely preserved dorsal valve margin (figure 1a,f,h). The admarginal surface of the valve is very wide between cardinal
corners (figure 1c,f,h).

Seven pairs of limbs and a furca are evident, projecting beyond the carapace (figure 1a,c,f,h). Limb pairs 1–3 project forwards;
pairs 4–7 and the furca are flexed gently overall towards the posterior. Possible evidence of podomere boundaries is only clearly
discernible in the first appendage (figure 1m). Only a single ramus is evident in each appendage. A copulatory appendage is
present. Internal organs are not preserved. Eyes are not evident.

Only the right appendage of the first antenna (antennule: figure 1a–d,h,i,m) is preserved. It originates close to the sagittal
plane, projects anterolaterally as a long, evenly narrow ramus and is geniculate (podomere boundary?) at a point one-fifth of its
length from the distal end. The second antenna (antenna: figure 1a–d,g–i,n) projects forward from a broadly elongate triangular
structure (presumed basipod) and is wider but similar in length to the first. The morphology of the mandible (figure 1a–d,h,i,o)
is difficult to discern. It is preserved as a broad-based structure from which projects an apparently single ramus slightly offset
to the right of the sagittal line. The ramus is weakly curved and slenderly tapered to a point distally. A weak depression in the
limb base to the left of the sagittal line may represent the site of a missing (left) appendage. Alternatively, the broad basal area
and the ramus may represent the left and right appendages preserved fused together; or the broad basal area may represent
fused left and right appendages together with only one (the right) ramus preserved. It is not possible to determine whether the
ramus represents an exopod or endopod (this is also the case for the ramus of limbs 2, 4–7).

Limbs 4–7 are approximately equal in size. The limb base of the first maxilla (maxillula: figure 1a–e,h,i,l,p) is a broad
triangular structure presumably representing a basipod and possibly a proximal endite. Distally it bears a short, gently tapered
ramus. The edges of the opposing basipods touch sagitally at the presumed site of the atrium oris, but finer morphological
details cannot be discerned. The second maxilla (fifth limb: figure 1a–d,h,i,q) arises immediately behind the first. Its broad limb
bases meet sagitally; each bears a short, stout, tapered ramus. The sixth limb (figure 1a–i,r) is similar to the fourth, comprising
a broad limb base (presumed basipod), the inner edges of which pair meet sagitally, and a short, slender, tapered ramus that
terminates at a point. The seventh limb (figure 1a–i,s) has a smaller limb base, the inner edges of which do not meet sagitally,
and a stout, pointed ramus. The furca is well developed (figure 1a–d,f–i,t). The base is preserved partly enveloped by the sixth
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Figure 1. (a–i,l–t) Derima paparme (OUMNH PAL-C.36094): ‘virtual’ reconstructions (a–i: stereo-pairs). (a,b) Right lateral views; valves omitted in (b). (c–e) Ventral
views; valves omitted in (d), valves and sixth and seventh pairs of limbs omitted in (e). (f,g) Posterior views; valves omitted in (g). (h,i) Anterior left lateral oblique
views; valves omitted in (i). (j,k) Bollia bicollina [18] (type species of Bollia, the type genus of the Bolliidae), Buildwas Formation, Wenlock Series, Shropshire, UK: (j) left
valve lateral view (Natural History Museum, London, OS 6638); (k) carapace, ventral view, anterior to the left (OS 6637). (l) Specimen in rock, viewed from anterior.
(m–t) Appendages: (m,o–s) posterior left oblique views; (n,t) posterior views; (m) right first antenna; (n) second antenna pair; (o) mandible; (p) first maxilla pair;
(q) second maxilla pair; (r) sixth limb pair; (s) seventh limb pair; (t) furca. All scale bars are 1.0 mm. Abbreviations: a1, first antenna; a2, second antenna; a2ba, limb
base of the second antenna; a2r, ramus of the second antenna; a6, sixth limb; a6ba, limb base of the sixth limb; a6r, ramus of the sixth limb; a7, seventh limb; a7ba,
limb base of the seventh limb; a7r, ramus of the seventh limb; as, admarginal surface; ca, copulatory appendage; fl, furcal lamellae; fu, furca; lb, lateroadmarginal
bend; lv, left valve; ma, mandible; maba, limb base of mandible; mar, ramus of mandible; mx1, first maxilla; mx1ba, limb base of the first maxilla; mx1r, ramus of the
first maxilla; mx2, second maxilla; mx2ba, limb base of the second maxilla; mx2r, ramus of the second maxilla; no, node; rv, right valve; pb?, podomere boundary?
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and seventh limb pairs (figure 1b–d,h,i). It bears a pair of long, prominent furcal lamellae that taper posteriorly. Furcal claws are
not evident though this may represent a taphonomic loss. A well-developed digitate feature projects forward from the furca to
between the fifth and sixth limb pairs (figure 1c–e,h,i). Its size, shape and position identify it as a copulatory appendage, and the
specimen is interpreted as a male. There is no evidence that the copulatory appendage represents hemipenes, but this may be a
preservational factor.

4. Discussion
Based on shell morphology, D. paparme is assigned to the Bolliidae within Binodicopina. Binodicopes comprise some 135
Ordovician to Permian genera (David Siveter 2023, unpublished data). Representatives are common in the Ordovician and
Silurian (e.g. [19–22]). As exemplified by Bollia bicollina (figure 1j,k), the type species of the type genus, bolliids display a
relatively simple valve morphology bearing 1–3 dorsal nodes which in some cases are connected by a ridge or ridges; a
rounded lateroadmarginal bend ([19]: ‘pseudovelum’); and a wide, simple admarginal surface. Details of the lobal structures
and lateroadmarginal bend of D. paparme together distinguish the shell from all other bolliids. It lacks a well-defined lateral
lobal connection as present, for example, in Bollia and Ullehmannia [23]. The presence of a lateroadmarginal bend distinguishes
it from genera such as the binodal Klimphores [24], and its lateroadmarginal bend is much narrower and more strongly curved
than in, for example, the three-lobed Bullaeferum [25]. The lobal structures of D. paparme are much weaker and shorter than in
some other binodicopes such as Kimsella [26].

All three major groups (subclasses) of ostracod—Myodocopa, Podocopa and Palaeocopa—occur in the Palaeozoic. Myodo-
copa and Podocopa have been resolved as clades based on soft-part morphological and molecular analyses [1,2,27]. Palaeocopes
are known from the Palaeozoic and, extremely rarely (e.g. [28]), from the Triassic. They are represented by tens of thousands
of described species based on their shells alone; their appendages are unknown [29]. Based on shell characteristics, the
Binodicopina have been included within Palaeocopa (e.g. [20,30–32]), but others place binodicopes and palaeocopes as separate
suborders within order Beyrichicopida ranked alongside Podocopa (e.g. [19,21,22,33,34]).

Given the well-developed copulatory appendage, the morphology of the D. paparme specimen indicates a mature individual
rather than a pre-adult stage. Aspects of its appendage morphology, the first known evidence of the limbs of binodicopes,
are incompatible with an assignment to the Myodocopa. Most obviously, the seventh appendage is unlike that in myodocopid
myodocopes in being ‘leg-like’ rather than vermiform and is unlike that of halocyprid myodocopes in being well developed
rather than reduced or absent (see [35] for illustrations of podocope and myodocope soft parts). In addition, the basipod of
the second antenna is not a large, rounded/almond-shaped structure, and there are no large epipods on the fifth or sixth
limb as is characteristic of myodocopids and some halocyprids [35]. Other soft-part characters that distinguish podocopes
from myodocopes, such as having the anus behind the furca and lacking a bellonci sensory organ on the head [35], are not
evident/detectable in D. paparme. The absence of a second ramus in the limbs of the D. paparme specimen may reflect partial or
complete reduction (in many ostracods it is represented by a seta(e)) and/or it may not be preserved or technically recoverable
in such a small specimen.

In contrast, the number, position and general morphology of the appendages of D. paparme, especially the well-developed
leg-like seventh limb, support an assignment of the species and, ipso facto, the Bolliidae and Binodicopina to Podocopa.
Classifications that place Binodicopina within Palaeocopa (see above) would potentially implicate thousands of additional
(palaeocope) genera as podocopes.

The shell and appendage morphology of D. paparme show no specialization for a pelagic lifestyle. In contrast to pelagic
myodocopes [7,8], it lacks a rostrum and rostral incisure and an array of ‘natatory’ setae and a large basipod on the second
antenna. It was, like all podocopes, probably benthic/nektobenthic.

The discovery that their appendage morphology places binodicopes with podocopes confirms the critical role that soft
parts play in determining the affinities of especially Palaeozoic ostracods. Current high-level ostracod classifications and the
placement of many hundreds (possibly thousands) of fossil ostracod species in higher taxa may be suspect. The shape and
lobal/lateroadmarginal morphology of the carapace of D. paparme echo some aspects of palaeocope valves but is unlike that
of any known living or fossil podocope including the extant puncioids which are atypical in having eight limb pairs. The
only known Palaeozoic podocopes with preserved appendages—the Devonian Cytherellina submagma [36], the Carboniferous
Palaeocypris edwardsii [37] and Podocopida indet [9]—have the simple bean-like shell shape characteristic of podocopes. The
five other Palaeozoic ostracod species with preserved appendages are definitively myodocope, but their shell morphology
shows high diversity, from the typical myodocope-like Nasunaris flata [38] to the more palaeocope-like Pauline avibella [39].
The binodicope D. paparme adds another major ostracod group to the evidence demonstrating the importance of exceptional
preservation to interpretations of the evolutionary history of the Ostracoda.
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