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Abstract
Backgrounds  Takotsubo syndrome (TTS) is an intriguing clinical entity characterized by transient myocardial dysfunction. 
The precise pathophysiological mechanism of TTS is still unknown, but recent evidence suggests a central role of systemic 
inflammation associated with adrenergic discharge. Although initially considered benign, TTS has shown several potential 
short-term and long-term complications and adverse outcomes. To improve understanding and management, advanced cardio-
vascular magnetic resonance (CMR) techniques, such as feature tracking (FT) and parametric mapping, have gained attention.
Purpose of Review  The purpose of this review is to summarize the current literature on the clinical applications of CMR-FT 
and mapping in TTS. Additionally, the most significant and recent findings will be discussed.
Recent Findings  FT-CMR enables the parametric quantification of myocardial deformation, allowing a comprehensive 
evaluation of left ventricular, right ventricular, and atrial function. It provides an accurate definition of areas of myocardial 
dysfunction and potentially serves as a superior prognostic tool compared to ejection fraction. Tissue mapping techniques 
enable precise and comprehensive tissue characterization by quantifying areas of oedema, and myocardial fibrosis.
Summary  FT-CMR and mapping techniques serve as valuable prognostic tools both in the acute and chronic phases of TTS. 
They can detect subtle alterations and pan-cardiac involvement, while also providing important insights into the complex 
underlying mechanisms of the syndrome.
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Introduction

Takotsubo syndrome (TTS) is a cardiac disorder characterized 
by transient myocardial dysfunction that mimics acute 
myocardial infarction [1]. Despite initially considered a benign 

condition [2, 3], growing evidence suggests that the prognosis 
of TTS is not always favourable, with potential complications 
such as heart failure, cardiogenic shock, and death [4–9]. 
In fact, some studies have reported that TTS carries a 
similar or even higher risk of adverse outcomes compared 
to acute coronary syndrome [4, 10–13]. Importantly, this 
unfavourable prognosis extends beyond the acute phase 
[14–16]. This highlights the need for better understanding of 
the pathophysiology of TTS and the development of more 
effective management strategies.

The diagnosis of TTS is based on clinical, 
electrocardiographic, and echocardiographic findings. 
However, the role of cardiovascular magnetic resonance 
(CMR) imaging in the diagnosis and management of TTS 
has been increasingly recognized in recent years [17]. 
CMR is considered the gold standard for the evaluation 
of myocardial structure and function. In the context 
of TTS, it is recommended to perform CMR during 
the acute phase whenever possible. This allows for a 
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comprehensive assessment of the disease providing useful 
clinical information for patient management [18]. New 
CMR techniques are continuously emerging and finding 
applications in many clinical settings, thanks to advances in 
related software and hardware techniques. Two techniques 
that have garnered considerable interest in recent years are 
CMR feature-tracking (CMR-FT) for myocardial strain 
analysis and parametric T1 and T2 mapping for myocardial 
tissue characterization.

In the present review, we will summarize and discuss the 
most recent findings regarding CMR-FT and mapping in 
TTS. Additionally, we will explore their significance and 
potential clinical applications.

Cardiovascular Magnetic Resonance Feature 
Tracking

Myocardial strain, also known as myocardial deformation 
imaging, is a technological advancement that has been 
developed to objectively quantify regional myocardial func-
tion beyond ejection fraction [19, 20].

It is a dimensionless index of the length change between 
two given points, reflecting the degree of myocardial 
deformation. The formula to calculate strain (ε) is 
(L − L0)/L0, where L0 is the baseline length (usually end-
diastole), and L is the instantaneous length at the time 
of measurement (usually at end-systole). The amount of 
deformation is expressed in percentages. Negative strain 
means shortening, thinning, and contraction, while positive 
strain means lengthening, thickening, and relaxation. 
Myocardial mechanics can be investigated in all directions 
of myocardial movement: longitudinal shortening, 
circumferential shortening, and radial thickening. Initially, 
echocardiography was utilized to evaluate myocardial 
deformation. However, over time, several CMR techniques 
have been introduced as alternative approaches. These 
include myocardial tagging, displacement encoding, and 
strain encoded imaging. Each technique has its limitations, 
such as the need for additional acquisitions, low signal-
to-noise ratio, lack of standardization, and demanding 
post-processing requirements [21–23]. FT-CMR is a 
novel technique that uses a block-matching approach 
to identify anatomic features in CMR images along the 
myocardial boundaries and track them along the cardiac 
cycle by searching for the most comparable image pattern 
in the successive image [24, 25]. In many previous studies, 
FT-CMR has demonstrated excellent reproducibility and 
good correlation with tagging [26–28]. Compared to CMR 
tagging, CMR-FT is easier to perform without the need 
for dedicated acquisition and complex post-processing, as 
it can be applied to standard CMR cine Steady State Free 
Precession (SSFP) sequences, and it is highly reproducible 

[29, 30]. Thus, FT-CMR potentially has an important 
role in TTS because acute myocardial dysfunction is 
a prominent feature of the condition and the extent of 
dysfunction is one of the major prognostic factors in the 
short and long term [7]. Moreover involvement can extend 
beyond the distinctly akinetic areas of the left ventricle 
(LV) [31], affecting both the right ventricle (RV) [32] and 
left atrium (LA) [33].

Left Ventricle Strain

Assessing LV dysfunction in patients with TTS is crucial 
for accurate diagnosis and management. Hypokinesia, 
akinesia, or dyskinesia of the apical, midventricular, and 
basal segments are common patterns of LV dysfunction 
observed in TTS patients. While the apical ballooning 
pattern is the most recognizable and frequently observed, 
atypical patterns such as focal TTS can be more 
challenging to identify and diagnose using standard 
cardiovascular imaging methods [4, 34]. By detecting 
subtle abnormalities and accurately quantifying the extent 
of myocardial dysfunction, CMR-FT provides a more 
comprehensive and detailed evaluation of ventricular 
performance. During the acute phase of TTS, segmental 
analyses of peak circumferential and peak longitudinal 
strain provide objective assessments of regional LV 
contraction abnormalities, enabling discrimination of 
different ballooning patterns [35•]. Furthermore, FT-CMR 
evaluation of LV rotational mechanics reveals transient 
dyssynchrony, particularly pronounced in the subset of TTS 
patients with stressful triggers, comorbidities, and higher 
mortality risk [36•].

The extent of myocardial dysfunction has a well-
established role in short- and long-term prognoses for 
TTS patients [37, 38]. Notably, typical apical ballooning 
is associated with more pronounced alterations of global 
circumferential and longitudinal strain and is linked to 
more severe LV dysfunction and increased mortality [35•, 
38]. Stiermaier and colleagues have shown that strain 
values, including global circumferential, longitudinal, 
and radial strain, are significantly lower in TTS patients 
than in healthy subjects or in those with non-ST-segment 
elevation myocardial infarction (NSTEMI), but similar to 
those with ST-segment elevation myocardial infarction 
(STEMI) [35•]. In clinical practice, measurement of 
ejection fraction (EF) is the most popular method for 
assessing ventricular performance. However, in TTS, 
EF is often only moderately reduced since regional 
hypercontraction balances pronounced wall motion 
abnormalities. As a result, EF may not adequately reflect 
the extent of LV systolic dysfunction. Deformation 
indices, such as CMR-FT-derived strain, may provide 
superior prognostic markers in TTS. In this regard, LV 
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longitudinal strain has emerged as a superior clinical 
outcome marker when compared to EF in a group of TTS 
patients. Specifically, observed long-term mortality rates 
were significantly higher in patients with FT-derived 
global longitudinal strain values greater than about -11% 
[39•]. Moreover, while myocardial dysfunction in TTS 
was previously believed to be entirely reversible, recent 
studies have shown that patients may experience long-term 
echocardiographic wall motion abnormalities, despite 
apparent recovery of EF [40••].

Right Ventricle Strain

Right ventricular (RV) involvement has been observed in a 
significant number of TTS patients and has been associated 
with worse outcomes, including prolonged hospitalization 
and increased short- and long-term adverse events [32, 
41–43]. Typically, RV wall motion abnormalities are 
concentrated in the apical segments, while mid and basal 
RV contraction remains preserved or hyperkinetic [44•].

The visualization and assessment of the extent of 
regional abnormalities in the RV are challenging with 
echocardiography due to its complex geometry. Similar 
to the left ventricle, hypercontractile segments may 
partially compensate for dysfunctional segments, resulting 
in a less sensitive detection of the extent of RV systolic 
dysfunction through EF measurements. FT-CMR evaluation 
of longitudinal RV strain has been shown to outperform 
subjective visual assessment of RV involvement [44•]. 
Additionally, it has demonstrated a correlation between LVEF 
and long-term risk stratification, enabling more accurate 
identification of high-risk individuals [32, 44•, 45]. Patients 
with biventricular involvement may be particularly prone to 
a severe clinical course with heart failure and/or cardiogenic 
shock due to the higher degree of LV dysfunction, which 
is further compromised by reduced LV preload resulting 
from RV dysfunction. However, further studies are needed 
to determine if these hemodynamic alterations can impact 
long-term prognosis.

Atrial Strain

Although the most obvious manifestations in TTS 
are seen in the LV, atrial involvement has also been 
described [33]. FT-CMR allows for the evaluation of 
both left and right atrial performance by quantifying the 
atrial reservoir, conduit, and booster functions based on 
absolute strain values and corresponding strain rates [46]. 
Reservoir function refers to the collection of pulmonary 
venous return in the atrium during ventricular systole, 
while conduit function represents the early diastolic 
blood passage during ventricular filling. Booster pump 

function is responsible for the late diastolic augmentation 
of ventricular filling. During the acute phase of TTS, 
both LA reservoir function and LA conduit function are 
significantly impaired and tend to recover completely at 
follow-up [47•, 48]. In contrast, LA booster pump function 
is normal or even increased within the acute phase [47•]. 
It is likely that LA reservoir function and conduit function 
are reduced due to increased LV filling pressures resulting 
from LV diastolic dysfunction. Increased LA contractility, 
along with prolonged myocardial relaxation, may be a 
compensatory response to decreased LV diastolic filling, 
and helps maintain adequate antegrade flow. A recent 
invasive hemodynamic study has indeed demonstrated 
severe diastolic dysfunction of the left ventricle in 
patients with TTS compared to a control group without 
cardiovascular diseases. Specifically, the invasive 
assessment of pressure–volume loops revealed prolonged 
myocardial active relaxation (an energy-dependent 
process) and normal ventricular compliance (passive 
ventricular filling) [49]. Further studies are needed to 
better understand the intricate hemodynamic alterations 
responsible for diastolic dysfunction in TTS.

A recent study investigating LA strain using FT-CMR 
demonstrated that impaired LA function during the acute 
phase was associated with long-term mortality, independent 
of traditional cardiovascular risk factors and LVEF [47•].

Table 1 summarizes recent findings on FT-CMR and 
provides an interpretation of its clinical utility.

In summary, FT-CMR has emerged as a promising tool 
for the assessment of TTS patients, providing an accurate 
and comprehensive evaluation of myocardial function. 
Specifically, FT-CMR allows for the detection of global 
myocardium involvement, even beyond areas of visually 
assessed abnormal wall motion. This has important clinical 
implications for the diagnosis, management, and long-term 
risk stratification of TTS patients. While further studies 
are needed to fully establish the role of FT-CMR in TTS, 
the current evidence suggests that it has great potential 
in improving our understanding and management of this 
complex syndrome.

Parametric Mapping

Accurate non-invasive tissue characterization is crucial for 
the diagnosis and management of TTS as it enables dif-
ferentiation from other conditions. Moreover, it provides 
valuable insights into the underlying mechanisms of TTS.

In recent years, advanced techniques have been continu-
ously developing to enhance the assessment and quantifi-
cation of myocardial tissue properties. One of these tech-
niques is mapping, which entails the acquisition of a series 
of images using various contrast weightings or imaging 
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parameters, such as T1, T2, or T2* relaxation times. By 
analysing the signal intensity values in these images, 
parametric maps can be generated, which provide both 
qualitative (Fig. 1) and quantitative (Fig. 2) information 
about tissue characteristics, such as myocardial fibrosis or 
oedema. The signal intensity primarily depends on extra-
cellular water content (T2 mapping), as well as fibrosis and 
infiltration of fat or amyloid (native T1 and ECV).

Pathophysiology

Although the precise underlying mechanisms of TTS 
remains incompletely elucidated, recent studies using 
advanced imaging techniques have indicated a notable 
involvement of inf lammation in its pathogenesis. 
Catecholaminergic surge during stress has been linked to 
the activation of pro-inflammatory cytokines, suggesting 
a possible connection between systemic inflammation 
and TTS [50]. Inflammatory conditions like infections or 
surgeries can further contribute to systemic inflammation 
and its association with TTS [51]. Catecholamines affect 
systemic inf lammation through adrenoreceptors on 
inflammatory cells, influencing blood and lymph flow 
as well as the distribution of pro-inflammatory cells [52, 
53]. Mechanistically, factors such as endotoxins and 
catecholaminergic discharge can trigger nitrosative stress, 
leading to increased myocardial vascular permeability, 
plasma leakage, and infiltration of pro-inflammatory 
cells, can result in myocardial oedema [54–56]. Of note, 
oedema remains a relatively non-specific marker of 
myocardial involvement that characterizes cardiac injury 
in the course of several diseases, including myocardial 
infarction [57], myocarditis [58], and cardiomyopathies 
[59–61]. However, oedema and associated inflammatory 
features may vary according to the underlying disease, 
potentially marking differences in the pathogenic processes; 
in example, neutrophils surge, proportional to the extent 
of the myocardial oedema, characterizes the acute phase 
of myocardial infarction [62], whereas lymphocytes 
or eosinophils infiltrates are more common in acute 
myocarditis [63].

In this context, a significant clinical study has provided 
compelling evidence for the presence and features of 
local myocardial inflammation in TTS patients. This 
study utilized multiparametric CMR with ultra-small 
superparamagnetic particles of iron oxide (USPIO) to 
detect and characterize myocardial inflammation. The 
USPIO enhancement was higher in patients with TTS 
compared to a matched control group in both ballooning 
and not-ballooning LV myocardial segments. This increased 
enhancement indicated a significant infiltration of activated 
and phagocytic M1 type macrophages within the myocardial 
tissue of all TTS patients. Furthermore, patients with acute Ta
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TTS showed changes in peripheral monocyte subsets and 
increased systemic levels of pro-inflammatory cytokines, 
providing further support for the involvement of systemic 
inflammation and its correlation with the inflammatory 
response within the myocardium [64••].

Recent studies have also investigated the role of epicar-
dial fat in TTS. Epicardial fat is metabolically active vis-
ceral fat, and a recent CMR study has shown a correlation 
between the volume of epicardial fat and CMR markers of 
myocardial inflammation and subclinical contractile dys-
function in TTS patients [65].

CMR techniques have also been used to investigate 
alterations in myocardial metabolism and calcium handling 
in TTS. Acute impairment in energetic status [64••] 
and abnormal myocardial calcium handling [66] have 

been observed and can persist for at least three months, 
suggesting their involvement in the pathophysiology of 
the disease.

Overall, the integration of imaging techniques has pro-
vided valuable insights into the pathophysiology of TTS, 
highlighting the role of inflammation, metabolic abnormali-
ties, and altered calcium handling.

Clinical and Prognostic Implications

The typical CMR appearance of TTS is characterized by 
widespread myocardial oedema without significant replace-
ment fibrosis observed in late gadolinium enhancement 
(LGE) imaging [31, 67]. However, recent studies have indi-
cated that LGE may be present in some TTS patients [68, 

Fig. 1   Native T1 (panel A) and 
T2 (panel B) mapping images 
from 4-chamber long-axis 
view. An increase in signal 
intensity of native T1 as well as 
T2 mapping in mid-apical left 
ventricular segments is evident 
from visual inspection of the 
color-coded map

Fig. 2   Quantitative analyses of T2 mapping data in a patient with 
TTS. A progressive increase in T2 mapping values is observed 
from basal to apical segments. Of note, subtle myocardial edema is 

detected at basal segments too as indicated by border-line increase 
in T2 mapping value (50.5 ms, normal value for the scanner and 
sequence used is up to 50 ms)
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69]. When LGE is detected, it is typically of low intensity, 
less than 5 standard deviations, suggesting minimal myo-
cardial injury or necrosis [31]. In other cases, incidental 
findings from chronic and unrelated co-pathologies can be 
considered too [70].

More recently, studies using T1 and T2 mapping 
tools in TTS were published. In the acute phase of TTS, 
a significant increase in native T1, T2, and ECV has 
been observed [40••, 71, 72]. Non-contrast T1 and T2 
mapping have demonstrated high diagnostic accuracy 
in identifying acute myocardial injury in patients with 
mid-apical TTS without the need of gadolinium contrast 
[73]. It is important to highlight that there is a direct 
correlation between T2, native T1, and ECV [73]. The 
reason behind this direct correlation could be explained by 
the significant impact of extracellular myocardial oedema 
on the interstitial space during the acute phase [74, 75•]. 
Specifically, extensive and widespread oedema not only 
affects T2 but also T1 mapping-derived measurements, 
including native T1 and ECV [76]. Hence, the rise of ECV 
in the acute phase of TTS is expression two simultaneous 
processes: extensive oedema and remodelling of the 
extracellular matrix. Moreover, increased myocardial 
water content and extracellular volume are observed not 
only in regions with abnormal wall motion but also, to 
a lesser extent, in areas with normal kinesis compared 
to controls [75•]. This finding suggests that myocardial 
involvement extends beyond regions with wall motion 
abnormalities, including the RV. The added clinical value 
of tissue mapping in this scenario has been highlighted 
by a recent prospective study of a cohort of patients with 
myocardial infarction with non-obstructive coronary 
arteries (MINOCA) who underwent early CMR imaging 
with T1 and ECV: compared to patients with MINOCA 
imaged using CMR without mapping techniques, a higher 
rate of TTS diagnosis was obtained [67].

Quantification of oedema using parametric techniques 
holds potential prognostic value, as its presence and extent 
have been associated with both electrocardiographic 
abnormalities and potential complications in TTS [75•, 
77, 78]. Higher T2 values within the initial days follow-
ing the acute event have been found in TTS patients with 
delayed recovery [72] and are inversely correlated with LV 
systolic function [75•]. Additionally, a larger difference in 
T2 values between the apex and base of the LV, indicative 
of higher oedema dispersion and gradient, is associated 
with more pronounced T-wave inversion and a longer QTc 
interval, potentially explaining the electrical instability 
observed in TTS patients [75•]. However, it is important 
to note that data regarding mortality in relation to CMR 
mapping findings in TTS are still limited due to the small 
sample sizes of current studies.

During the recovery phase, mapping techniques 
can detect persistent abnormalities despite complete 
normalization of systolic function. T2 mapping values 
tend to normalize over the follow-up period, although 
they may remain slightly elevated for approximately 
3–5 months after the acute phase [79, 80]. On the other 
hand, T1 values may remain elevated for a longer period. 
In recovered TTS patients, native T1 in the LV has been 
found to be persistently elevated compared to a matched 
control group, even more than 1 year after the acute event. 
This observation is accompanied by impaired cardiac 
deformation (despite preserved LVEF), higher levels of 
natriuretic peptides, and persistent cardiac limitations 
observed during exercise testing at cardiopulmonary stress 
tests [40••]. Despite the well-known technical limitations 
in performing tissue mapping in thin free wall of the RV, it 
was also demonstrated a persistent increase in ECV values 
in the RV of patients with previous TTS [80]. These findings 
suggest the presence of subtle long-term non-transitory 
abnormalities that may partly explain the persistence of 
symptoms and unfavourable prognosis of TTS patients 
[40••]. Moreover, magnetic resonance imaging with ultra-
small superparamagnetic iron oxide particles (USPIO) 
has shown signs of macrophage inflammatory infiltrate 
in the acute phase: though these changes regressed at a 5 
months follow-up, signs of systemic inflammation persisted 
[64••]. Altogether, this supports the notion that persistent 
myocardial inflammation can be present even after the 
complete recovery of systolic function. According to this 
hypothesis, the long-term increase of certain biomarkers 
associated with inflammation, including BNP, has been 
demonstrated [50, 81, 82]. However, it cannot be excluded 
that such abnormalities were pre-existent the TTS attack, 
especially when considering the large comorbid burden 
that characterizes these patients [83].

The evaluation of interstitial fibrosis or ongoing inflam-
matory processes using mapping techniques appears poten-
tially useful for prognostic stratification and guiding therapy, 
however, studies supporting these findings as well as clinical 
trials in this context are still limited.

Table 2 summarizes mapping techniques for TTS tissue 
characterization. Each technique is described along with its 
specific features. Additionally, the table includes the most 
significant findings and their clinical significance in different 
phases of the disease.

Conclusions

FT-CMR and mapping techniques have emerged as 
valuable tools for evaluating TTS, a complex clinical 
condition that extends beyond a benign and transient 
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LV systolic dysfunction. These imaging techniques 
allow for the detection of subtle abnormalities, such as 
pan-cardiac involvement or mild alterations in regional 
systolic function, despite complete normalization of LVEF. 
Moreover, they provide insights into long-term myocardial 
abnormalities, including interstitial fibrosis or ongoing 
inflammation, potentially guiding therapeutic strategies 
during follow-up. However, there are certain limitations 
to consider, including variability in image acquisition and 
analysis, limited sample sizes, and technical challenges 
that impact the accuracy and clinical applicability of these 
modalities. Future directions involve standardization 
and multicentre collaborations to establish protocols and 
cut-off values, integration of novel imaging techniques 
[84], longitudinal studies for prognostic evaluation, 
and therapeutic monitoring for personalized medicine. 
By addressing these limitations and exploring these 
perspectives, the clinical utility of mapping and FT-CMR 
in TTS can be enhanced, leading to improved diagnosis, 
characterization, and patient management.
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