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Abstract
Objectives  Despite rising rates of multimorbidity, 
existing risk assessment tools are mostly limited 
to a single outcome of interest. This study tests 
the feasibility of producing multiple disease risk 
estimates with at least 70% discrimination (area 
under the receiver operating curve, AUROC) within 
the time and information constraints of the existing 
primary care health check framework.
Design  Observational prospective cohort study
Setting  UK Biobank.
Participants  228 240 adults from the UK population.
Interventions  None.
Main outcome measures  Myocardial infarction, 
atrial fibrillation, heart failure, stroke, all-cause 
dementia, chronic kidney disease, fatty liver disease, 
alcoholic liver disease, liver cirrhosis and liver 
failure.
Results  Using a set of predictors easily gathered 
at the standard primary care health check (such 
as the National Health Service Health Check), we 
demonstrate that it is feasible to simultaneously 
produce risk estimates for multiple disease outcomes 
with AUROC of 70% or greater. These predictors can 
be entered once into a single form and produce risk 
scores for stroke (AUROC 0.727, 95% CI 0.713 to 
0.740), all-cause dementia (0.823, 95% CI 0.810 to 
0.836), myocardial infarction (0.785, 95% CI 0.775 
to 0.795), atrial fibrillation (0.777, 95% CI 0.768 to 
0.785), heart failure (0.828, 95% CI 0.818 to 0.838), 
chronic kidney disease (0.774, 95% CI 0.765 to 
0.783), fatty liver disease (0.766, 95% CI 0.753 to 
0.779), alcoholic liver disease (0.864, 95% CI 0.835 
to 0.894), liver cirrhosis (0.763, 95% CI 0.734 to 
0.793) and liver failure (0.746, 95% CI 0.695 to 
0.796).
Conclusions  Easily collected diagnostics can be 
used to assess 10-year risk across multiple disease 
outcomes, without the need for specialist computing or 
invasive biomarkers. Such an approach could increase 
the utility of existing data and place multiorgan 
risk information at the fingertips of primary care 
providers, thus creating opportunities for longer-
term multimorbidity prevention. Additional work is 
needed to validate whether these findings would hold 
in a larger, more representative cohort outside the UK 
Biobank.

WHAT IS ALREADY KNOWN ON THIS 
TOPIC

	⇒ Primary care health checks (like 
the National Health Service Health 
Check) present a crucial opportunity 
to assess underlying cardiovascular 
risk and to intervene to prevent or 
delay longer-term cardiovascular 
disease. Widely validated risk tools 
such as QRISK3 enable cardiovascular 
risk to be calculated easily at that 
appointment and inform targeted 
decision-making. There are validated 
risk scores to profile risk for other 
diseases, but there is not enough time 
during the health check to gather the 
various risk score inputs and handle 
separate calculator tools.

WHAT THIS STUDY ADDS

	⇒ In this study, we show that 
information already being collected 
as part of the primary care health 
check could feasibly be combined into 
a single calculator providing 10-year 
risk estimates for multiple diseases 
across related organ systems of heart, 
brain, liver and kidney. Moreover, 
much of the essential information can 
be acquired remotely.

HOW THIS STUDY MIGHT AFFECT 
RESEARCH, PRACTICE OR POLICY

	⇒ When patients attend their health 
check, they could potentially 
receive risk scores for multiple 
disease outcomes in addition to 
cardiovascular risk. Having earlier 
access to multiorgan information 
has the potential to enable earlier 
intervention for risk factors, more 
targeted use of resources and more 
effective multimorbidity prevention.
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Introduction
Multimorbidity presents an urgent and increasing health chal-
lenge for ageing populations,1 with implications for health equity, 
disability and healthcare costs.2 3 Experts warn that effective 
handling of multimorbidity will require a multisystem approach4 
prioritising proactive, rather than reactive, care,5 6 with primary 
care taking a leading role in chronic disease prevention.7–9

Assessment of atherosclerotic cardiovascular disease (CVD) risk 
is central to primary care and is now quick and easy due to widely 
available risk calculator tools such QRISK310 and Framingham 
Risk Score.11 In the UK, primary care risk assessment has been 
codified in the form of the National Health Service (NHS) Health 
Check.12 13 At the health check, a number of clinical parameters 
are collected, CVD risk is assessed and the general practitioner 
directs personalised interventions that influence the long-term 
health trajectory of the patient. Despite urgent calls for more 
preventative attention to other diseases,14 15 there are currently no 
existing methods for multidisease risk prediction in primary care.

The primary targets of the NHS Health Check are heart disease, 
diabetes, stroke, dementia, kidney and liver disease, as laid out in 
the official guidance,12 website16 and patient information.17 These 
conditions are known to share underlying mechanisms18–20 and to 
co-occur in multimorbidity clusters.21–23

The objective of this study is to examine the feasibility of 
expanding the primary care health check to include risk assess-
ment across multiple diseases. We focus on the 10 most commonly 
occurring serious conditions across the heart, brain, kidney and 
liver, namely, myocardial infarction, atrial fibrillation, heart 
failure, stroke, all-cause dementia, chronic kidney disease, fatty 
liver disease, alcoholic liver disease, liver cirrhosis and liver 
failure. Having access to a wider panel of risk information could 

lead to earlier disease detection, more targeted interventions and 
more effective prevention of longer-term multimorbidity.

However, there are several important challenges to consider. 
First, although risk scores have previously been developed for 
each additional condition (eg, dementia) there is simply not 
enough time within a 10–15 min consultation to gather all the 
required inputs and to calculate each risk score separately.24 A 
preferred solution would involve a single pool of inputs, and a 
single data entry page, from which multiple risk estimates could 
be calculated simultaneously.

Second, individual risk scores differ by the people they exclude, 
depending on the cohort in which they were developed.25 This 
leads to shifting sets of calculators (and required inputs) in the 
hands of the physician depending on the existing comorbidities 
of the patient. Instead, future solutions would include a person’s 
medical history and existing diagnoses, and adjust risk estimates 
accordingly.26 27

Third, not all health measures are equally accessible. NHS 
England is actively exploring ways that remote healthcare solu-
tions can be used effectively to ease health service usage and make 
primary care services more accessible to all.28–30 These objectives 
call us to reflect on the information that is easily obtained and 
consider whether simple metrics can be potentially powerfully 
combined.

In this study, we use the UK Biobank data resource to emulate 
the information available within the primary care setting. Our 
objective is to explore the feasibility of multidisease risk esti-
mation with easily collected diagnostics (figure  1), setting the 
minimum acceptable performance of 0.70 area under the receiver 
operating curve (AUROC) across all outcomes (as per Fagerland 
and, Hosmer, p17731). We begin by evaluating a range of published 

Figure 1  What can existing information tell us about multiorgan disease risk? In the context of increasing multimorbidity, we examine the feasibility of 
extending the existing primary care health check framework to include risk assessment for multiple diseases within the heart-brain-liver-kidney cluster. 
We evaluate a range of existing risk scores and consider whether and how they could be blended, and whether information already being collected could 
be effectively reused. If successful, this expansion could lead to earlier disease detection, more effective prevention and better resource allocation for 
multimorbidity prevention. *The diabetes screening component of the NHS Health Check protocol is not part of this analysis and would exist unchanged 
in both versions. CVD, cardiovascular disease; NICE, National Institute for Health and Care Excellence; NHS, National Health Service.
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risk scores and assessing their performance in the UK Biobank 
cohort. We review the component inputs for each of those risk 
indices and identify scores that can be applied fully remotely (ie, 
without direct in-person contact) and those with a standard set of 
in-person inputs. Finally, we reuse the standard set of inputs to 
develop new risk scores compare their performance with existing 
risk scores.

Methods
Setting and study population
UK Biobank is a large prospective cohort study with participants 
drawn from the general population.32 UK residents aged 40–69 
years old who are registered with a general practitioner, as iden-
tified from NHS registers, were invited to participate. Baseline 
data collection took place between 2006 and 2010, where regis-
tration date was used as the index date for the study. Follow-up 
events were ascertained via linked health records with latest 
censor date of 31 October 2022. Comprehensive details regarding 
linked primary care and hospital records are provided in official 
UK Biobank resources.33 34 To focus on 10-year risk estimation 
for all outcomes, follow-up was truncated at 10 years following 
baseline, giving a median follow-up time of 10 years (IQR=10–10). 
The clinical and demographic parameters collected in UK Biobank 
mimic those available in primary care and permit population-
based modelling of multiorgan risk from baseline features.

From the overall UK Biobank cohort (n=502 386), 1298 partic-
ipants were removed due to self-withdrawal or loss to follow-up, 
and 271 386 participants did not have primary care data available. 
There were 229 702 remaining participants who were confirmed to 
be present in both the main dataset and the primary care dataset. 
From these, a further 1462 participants were excluded due to 
missing values for height, weight, waist or hip circumference, 
leaving a final sample of 228 240 participants (see online supple-
mental figure 1A and online supplemental methods SM2).

NHS Health Check and easily collected diagnostics
The NHS Health Check is a preventative primary care initiative 
(https://www.healthcheck.nhs.uk/)12 that forms the situational 
anchor for our study. Briefly, healthy people aged between 40 
and 74 years are invited to visit their primary care team, where 
an inexpensive set of diagnostics are collected and 10-year risk of 
CVD is calculated using the widely validated QRISK3 calculator10 
(https://qrisk.org/three/) or similar tool (figure 1).

Simple self-reported measures such as age, sex, family history, 
lifestyle factors, current medications and medical history are 
features that can be reported verbally and can be collected fully 
remotely (ie, without in-person contact). Physical measures such 
as height, weight, waist and hip circumference are easily measured 
without specialised technology. These are categorised as ‘remote 
features’ and are shown in the first two columns of online supple-
mental table 1. The term ‘remote’ is used to convey that remote 
collection of these parameters is possible, whether by phone or via 
an online form. Remote features can also be collected in person as 
part of the primary care visit.

Best practice guidelines12 specify a minimum set of parameters 
to be collected as part of the standard NHS Health Check protocol, 
consistent with the use of QRISK3. These include a number of 
remote features, with the addition of blood pressure measure-
ment and blood tests for total and high-density lipoprotein (HDL) 
cholesterol. In this study, we include all remote features plus 
the required NHS Health Check parameters (blood pressure and 
cholesterol) under the category of ‘standard features’.

Finally, there are various blood/biochemistry tests that are 
widely available but are not part of the existing first-line health 
check protocol. These measures were identified based on their 
inclusion in existing research or risk scores (see ‘Existing risk 
scores’below) and have been included as an additional analysis 
to evaluate their potential incremental utility. These are shown 
in the fourth column of online supplemental table 1, and the full 
set of features including additional blood tests are referred to as 
‘extended features’.

Ascertainment of outcomes
Diagnoses and dates for the 10 disease outcomes (itemised above) 
were collated across multiple UK Biobank sources including self-
report, linked hospital and primary care records and deaths, using 
published code lists where available.35–37 Incident outcomes were 
defined by first occurrence of disease after baseline recruitment. 
Participants with a record of the same disease at baseline were 
excluded from modelling for that disease, and follow-up was 
censored at either death or the study end date. In addition to the 
defined outcomes, a wide selection of other potentially relevant 
diagnoses was collected using the same multisource approach (see 
online supplemental table 1). A full listing of UK Biobank codes 
for outcomes ascertainment is provided in online supplemental 
table 2.

Existing risk scores
We calculated QRISK3 for all study participants, along with 21 
other published risk scores targeting disease risk across heart, 
brain, liver and kidney (see figure  2). These risk scores were 
selected based on a literature search for the most frequently used 
metrics for each outcome, the availability of published equations 
and the availability of online calculators for quality checking. 
Detailed information for all published indices is provided in 
online supplemental table 3. For incident stroke risk we consid-
ered QStroke38 and CHA2DS2-VASc,39 a score comprising conges-
tive heart failure, hypertension, age, diabetes, prior stroke or 
transient ischaemic attack, vascular disease and sex. For all-cause 
dementia, we included three dementia risk scores; one developed 
using the CAIDE study (Cardiovascular Risk Factors, Aging and 
Dementia),40 the Lifestyle for Brain Health score (LIBRA)41 and the 
recently developed UK Biobank Dementia Risk Score (UKB-DRS).37 
For myocardial infarction and heart failure, we considered Fram-
ingham Risk Score (with and without blood lipids),11 the Pooled 
Cohort Equations to Prevent Heart Failure (PCP-HF risk score 42) 
and QRISK3.10 For atrial fibrillation, we applied the Cohorts for 
Heart and Aging Research in Genomic Epidemiology model for 
atrial fibrillation (CHARGE-AF43). Chronic kidney disease risk 
(stage 3+) was predicted by two versions of QKidney44 and a 
Kidney Risk Score developed by Nelson and colleagues.45 For fatty 
liver disease, we considered the Fatty Liver Index46 and the Dallas 
Steatosis Index.47 Three diabetes risk scores (two versions of QDia-
betes48 and Cambridge Diabetes Score49) were included as possibly 
useful predictors. AUDIT-C50 (the Alcohol Use Disorders Identifi-
cation Test) is a questionnaire designed to assess risk for alcoholic 
liver disease, however, only the first AUDIT question was available 
in the UK Biobank with a high degree of data completeness. Lastly, 
liver fibrosis was represented by three candidate scores; the Fibro-
sis-4 Index (FIB-451), the nonalcoholic fatty liver disease (NAFLD) 
fibrosis score52 and APRI (the aspartate aminotransferase/platelet 
ratio53). All published risk scores have been separately validated in 
their own studies. To assess their general utility, all risk scores were 
applied to the whole sample and to 10-year follow-up regardless 
of restrictions present in each respective derivation cohort.
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Existing risk scores inherit their type from their inputs
At the high level, examination of score inputs (figure 2) shows 
significant overlap in feature topics, however, the finer level 
detail (online supplemental table 3) reveals significant variability 
in input requirements. Moreover, the inputs to each risk score 
differ by accessibility, in other words, risk score inputs are often 
a mixture of remote and standard features, with occasional addi-
tional blood tests. Extending the health information framework 
described above, we categorise any risk score that is comprised 
only of inputs that can be collected remotely as a remote risk 
score. UKB-DRS37 (dementia) and Framingham risk score (using 
body mass index, BMI)11 are examples of this. With the most 
restricted set of inputs, we would expect these models to be the 
least powerful and have the lowest predictive performance. Risk 
scores that include remote and standard features are considered 
standard risk scores (eg, QRISK,10 QStroke38), while risk scores that 
require additional blood tests fall into the category of extended 
risk scores (eg, Nelson Kidney Risk Score,45 Fatty Liver Index46). 
We would expect risk models with access to the extended set of 
inputs (standard inputs plus additional biochemistry) to have the 
highest predictive performance. These categories are relevant 
to the process of building and comparing risk scores, such that 
performance comparisons are between models of the same type.

Ascertainment of other features
Age at baseline, self-reported sex, systolic blood pressure, pulse 
rate and anthropomorphic measurements were taken at base-
line, along with a touchscreen questionnaire collecting infor-
mation about ethnicity, education, family history, smoking, 
alcohol use and physical activity. Townsend Deprivation Index 
at baseline was assigned based on participant postcode. Ethnic 
groups and smoking categories were recoded to match QRISK3 
specifications. Education was coded as binary—‘Do you have 
any postsecondary/college/university qualifications?’ Phys-
ical activity was dichotomised to greater than or equal to 600 
summed metabolic equivalent task minutes per week,54 approx-
imately equivalent to 20 min exercise per day.55 Family history 
was drawn from self-reported illnesses of mother, father and 
siblings, where age of illness was not specified. Descriptive 
statistics and source information for study features are provided 
in online supplemental table 4. Blood sampling was carried out 
as part of the baseline assessment, providing measures of total 
cholesterol, HDL cholesterol and additional biochemistry (online 
supplemental table 5). Missingness among remote features was 
very small (<1%) while missingness among blood test varia-
bles ranged between 3% and 14%. Covariate missingness was 
handled with multiple imputation, with details provided in 

Figure 2  Risk scores across heart, brain, liver and kidney disease and their overlapping constituents. Coloured dots indicate measures that are 
included in the published risk scores shown on the right-hand side. Outcomes that are targeted by each risk score are shown on the left-hand side. 
Risk scores that can be implemented fully remotely are shown with an asterisk (*), in other words, risk scores that can be calculated without in-person 
contact. Physical measures include height, weight, waist circumference, hip circumference and resting heart rate. See online supplemental table 3 for 
a detailed listing of risk scores and their inputs. ALT, alanine aminotransferase; AST, aspartate aminotransferase; CAIDE, dementia risk score from the 
Cardiovascular Risk Factors, Aging and Dementia study; CHA2DS2-VASc, a score comprising congestive heart failure, hypertension, age, diabetes, prior 
stroke or transient ischaemic attack, vascular disease and sex; CHARGE-AF, Cohorts for Heart and Aging Research in Genomic Epidemiology model for 
atrial fibrillation; LIBRA, Lifestyle for Brain Health score; UKB-DRS, UK Biobank Dementia Risk Score.
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online supplemental methods SM3 and online supplemental 
table 6.

Statistical analysis
Statistical analysis was with R V.4.1.2 and RStudio V.2022.02.0. 
We randomly stratified the data to create a training set (70%, 
159 768 participants) and an internal validation set (30%, 68 
472 participants) following the Strengthening the Reporting of 
Observational studies in Epidemiology (STROBE) checklist (online 
supplemental table 7). Standard checks confirmed that the char-
acteristics of the training and validation cohorts were not signif-
icantly different.

Pairwise modelling of cross-disease associations
Prior to full-scale modelling, we sought to describe the asso-
ciations between diseases. We examined the association of 
prevalent conditions with the risk of incident conditions 
using Cox proportional hazards regression, adjusting by age, 
sex, postsecondary education, ethnicity, smoking, physical 
activity, alcohol intake frequency, BMI, Townsend Deprivation 
Index, family history (of heart disease, stroke and dementia), 
any cancer diagnosis, hypertension, high cholesterol and 
diabetes. Proportionality was checked with visualisation of 
residuals across all models. This analysis was performed using 
the whole cohort (n=228 240). Due to the large number of 
tests in this section, all coefficient tests were adjusted for 
multiple testing via the Benjamini-Hochberg method56 with a 
false discovery rate of 5%.

Evaluation of existing risk scores
From the initial set of 22 published risk indices described 
above, we identified the best-performing score for each 
outcome across the 10 years of follow-up in the whole sample. 
Importantly, we evaluated all risk-score-outcome combina-
tions, checking for potential predictive utility of each index 
beyond its original derivation cohort and intended outcome. 
We identified the risk score with highest discriminative 
performance, as measured by AUROC. AUROC was selected 
as the primary criterion for risk score performance because 
it does not depend on a specific prediction threshold and is 
more effective than simple accuracy in situations where rare 
events are being predicted.

New models for heart, brain, liver and kidney disease
Then, new models were developed for each of the 10 outcomes 
in the training set, and their performance for 10-year predic-
tion was assessed in the internal validation set (online supple-
mental figure 1B). Model fitting was carried out (1) using 
remote features, (2) using standard features and (3) using the 
extended set of features. Crucially, at each level, we restricted 
all models (across the 10 related outcomes) to draw from the 
same pool of predictors. Feature selection was conducted 
using a stability selection approach,57 combining lasso Cox 
regression with bootstrapping to systematically identify the 
predictors that show consistent importance, thereby simpli-
fying the final model and mitigating the risk of overfitting 
(see online supplemental methods SM4).

For each outcome, the final set of predictors was placed into 
a single survival model, with coefficients and prediction thresh-
olds calculated using the training set, and predictions scored for 
discriminative accuracy in the validation set. Across all models, 
prediction performance was assessed with multiple metrics 

including AUROC, sensitivity, specificity, Somer’s Dxy and Brier 
score. Differences in performance metrics were further boot-
strapped with 1000 bootstrapped samples to derive uncertainty 
estimates. To calculate sensitivity and specificity, the prediction 
thresholds were set to maximise balanced accuracy, given by 
(sensitivity+specificity)/2.58 Comparative performance was further 
evaluated with calibration plots to visually assess the alignment 
of predicted probabilities with actual outcomes, and reclassifica-
tion statistics (integrated discrimination improvement (IDI) and 
continuous net reclassification improvement (cNRI)) to quantify 
any incremental improvements between existing and new models 
(online supplemental methods SM5 and SM6).

Patient and public involvement
Patients and/or the public were not involved in the design, 
conduct, reporting or dissemination plans of this research.

Results
Participant characteristics
Overall, the study sample (n=228 240) was 45.3% male and 54.7% 
female, with an average age of 56.5 years at baseline (SD 8.1 
years, table 1). Prevalence of hypertension, high cholesterol and 
diabetes at baseline was 32.6%, 20.8% and 5.5%, respectively. 
The most common incident event was atrial fibrillation (n=9997; 
4.4%), and liver failure was the least common (n=340 events; 
0.1%). Training and internal validation sets were similar across 
baseline variables and outcomes.

Associations between existing disease and future disease risk
Pairwise Cox analysis between heart-brain-liver-kidney outcomes 
and existing disease diagnoses revealed multiple cross-organ 
associations (figure  3, online supplemental table 8). All major 
heart diseases were significantly associated with increased risk 
of stroke, liver failure and the development of chronic kidney 
disease. All non-infective liver diseases at baseline were associ-
ated with increased risk of heart disease within 10 years, with an 
88% increased risk of heart failure in participants with cirrhosis 
(HR 1.88, 95% CI 1.31 to 2.71, p=7.05×10−4), and a 39% increased 
risk of myocardial infarction in participants with fatty liver 
disease at baseline (1.39, 95% CI 1.08 to 1.80, p=0.012). Partic-
ipants with alcoholic liver disease at baseline had a 4.5-fold risk 
for all-cause dementia (4.49, 95% CI 3.10 to 6.49, p=1.46×10−15) 
while rheumatoid arthritis at baseline conferred a 61% increased 
risk (1.61, 95% CI 1.30 to 1.99, p=1.50×10−5). Diagnosis of kidney 
or systemic inflammatory disease at baseline was associated with 
increased 10-year risk for disease across heart, brain and liver. 
Depression diagnosis at baseline had significant associations with 
disease across all four organs while serious mental illness (bipolar/
schizophrenia/other psychosis) was associated with increased 
risk of alcoholic liver disease (HR 1.73, 95% CI 1.04 to 2.85, 
p=0.033), chronic kidney disease (HR 1.74, 95% CI 1.49 to 2.02, 
p=6.78×10−13) and all-cause dementia (HR 3.17, 95% CI 2.58 to 
3.90, p=9.66×10−28).

Best existing risk scores
Details of the three best-performing existing risk scores of each 
type (by highest sample AUROC) for each level of accessibility are 
shown in online supplemental table 9. From here, the one risk 
score with the highest AUROC was applied as the comparator in 
the validation sample, shown by dark blue bars in figure 4 with 
additional details in online supplemental table 10. At least one 
existing risk score surpassed the minimum adequate AUROC (0.70) 
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Table 1  Sample characteristics

Characteristic Whole sample (n=228 240) Training set (n=159 768) Internal validation set (n=68 472)

Age (years) 56.5 (±8.1) 56.5 (±8.1) 56.5 (±8.1)

Sex: female 124 891 (54.7%) 87 563 (54.8%) 37 328 (54.5%)

Sex: male 103 349 (45.3%) 72 205 (45.2%) 31 144 (45.5%)

Townsend Deprivation Index −1.34 (±3.03) −1.34 (±3.03) −1.35 (±3.03)

Postsecondary education

 � No 91 042 (39.9%) 63 739 (39.9%) 27 303 (39.9%)

 � Yes 135 207 (59.2%) 94 625 (59.2%) 40 582 (59.3%)

 � (Missing) 1991 (0.9%) 1404 (0.9%) 587 (0.9%)

White ethnicity 217 863 (95.5%) 152 469 (95.4%) 65 394 (95.5%)

All other ethnicity groups 10 377 (4.5%) 7299 (4.6%) 3078 (4.5%)

Current smoker 23 934 (10.5%) 16 716 (10.5%) 7218 (10.5%)

Physically active (METS≥600) 169 005 (74.0%) 118 544 (74.2%) 50 461 (73.7%)

Alcohol intake less than once per week 70 489 (30.9%) 49 341 (30.9%) 21 148 (30.9%)

Alcohol intake once a week or more 157 751 (69.1%) 110 427 (69.1%) 47 324 (69.1%)

Self-reported health

 � Excellent 36 350 (15.9%) 25 469 (15.9%) 10 881 (15.9%)

 � Good 131 466 (57.6%) 91 985 (57.6%) 39 481 (57.7%)

 � Fair 48 542 (21.3%) 33 949 (21.2%) 14 593 (21.3%)

 � Poor 10 634 (4.7%) 7475 (4.7%) 3159 (4.6%)

 � (Missing) 1248 (0.5%) 890 (0.6%) 358 (0.5%)

Physical measurements

 � Body mass index (BMI kg/m2) 26.8(24.2, 30.0) 26.8(24.2, 30.0) 26.8(24.2, 30.0)

 � Obesity (BMI≥30 kg/m2) 57 469 (25.2%) 40 375 (25.3%) 17 094 (25.0%)

 � Waist circumference (cm) 90.3 (±13.5) 90.4 (±13.5) 90.3 (±13.5)

 � Resting heart rate (bpm) 69.4 (±11.3) 69.4 (±11.3) 69.4 (±11.2)

 � Systolic blood pressure (mm Hg) 138.2 (±18.7) 138.2 (±18.6) 138.2 (±18.7)

 � Total/HDL cholesterol ratio 4.14 (±1.13) 4.14 (±1.13) 4.14 (±1.13)

Risk factors

 � Hypertension 74 503 (32.6%) 52 240 (32.7%) 22 263 (32.5%)

 � High cholesterol 47 471 (20.8%) 33 315 (20.9%) 14 156 (20.7%)

 � Diabetes 12 543 (5.5%) 8917 (5.6%) 3626 (5.3%)

 � Chronic obstructive pulmonary disease 5288 (2.3%) 3706 (2.3%) 1582 (2.3%)

 � Any cancer 21 896 (9.6%) 15 307 (9.6%) 6589 (9.6%)

Existing conditions at baseline

 � Stroke 4284 (1.9%) 2994 (1.9%) 1290 (1.9%)

 � Alzheimer’s disease/dementia 346 (0.2%) 246 (0.2%) 100 (0.1%)

 � Myocardial infarction 6664 (2.9%) 4719 (3.0%) 1945 (2.8%)

 � Atrial fibrillation 4232 (1.9%) 2964 (1.9%) 1268 (1.9%)

 � Heart failure 1677 (0.7%) 1194 (0.7%) 483 (0.7%)

 � Chronic kidney disease 5610 (2.5%) 3886 (2.4%) 1724 (2.5%)

 � Fatty liver disease 1063 (0.5%) 718 (0.4%) 345 (0.5%)

 � Alcoholic liver disease 434 (0.2%) 298 (0.2%) 136 (0.2%)

 � Liver cirrhosis 498 (0.2%) 326 (0.2%) 172 (0.3%)

 � Liver failure 255 (0.1%) 170 (0.1%) 85 (0.1%)

Diagnoses after baseline

 � Stroke 3953 (1.7%) 2728 (1.7%) 1225 (1.8%)

 � Dementia 2720 (1.2%) 1911 (1.2%) 809 (1.2%)

 � Myocardial infarction 5953 (2.6%) 4122 (2.6%) 1831 (2.7%)

 � Atrial fibrillation 9997 (4.4%) 6977 (4.4%) 3020 (4.4%)

 � Heart failure 4988 (2.2%) 3500 (2.2%) 1488 (2.2%)

 � Chronic kidney disease (stages 3, 4 and 5) 8698 (3.8%) 6116 (3.8%) 2582 (3.8%)

 � Fatty liver disease 3585 (1.6%) 2534 (1.6%) 1051 (1.5%)

 � Alcoholic liver disease 561 (0.2%) 402 (0.3%) 159 (0.2%)

 � Liver cirrhosis 951 (0.4%) 685 (0.4%) 266 (0.4%)

 � Liver failure 340 (0.1%) 236 (0.1%) 104 (0.2%)

 � Follow-up time (years, median, IQR) 10 (10–10) 10 (10–10) 10 (10–10)

Entries are either counts (percentages), mean (SD) or median (25th percentile, 75th percentile).

BMI, body mass index; HDL, high-density lipoprotein; METS, metabolic equivalent task, summed per week.
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for all outcomes except liver failure, with CHARGE-AF providing 
the best performance for atrial fibrillation across all levels 
(AUROC 0.759, 95% CI 0.751 to 0.767)), and UKB-DRS performing 
best for all-cause dementia (0.807, 95% CI 0.793 to 0.820)). 
Please note, that where a lower-level (remote or standard) model 
performs better than all more complex (extended) models for the 
same outcome, it will be retained as the best model at that level. 
Within the remote models, QKidney 5 had the highest AUROC 
for stroke (0.701 (95% CI 0.687 to 0.715)) and a surprisingly high 
remote model AUROC for heart failure (0.798 (95% CI 0.787 to 
0.809)). Within standard models, we found several expected risk-
score-outcome pairings, namely QStroke for stroke (0.727 (95% 
CI 0.714 to 0.741)), QRISK3 for myocardial infarction (0.757 (95% 

CI 0.747 to 0.767)) and QKidney three for chronic kidney disease 
(0.760 (95% CI 0.751 to 0.769)). Unexpectedly, QStroke also had 
the highest AUROC for 10-year heart failure (0.806 (95% CI 0.795 
to 0.817)).

Multiorgan risk prediction
The prediction performance of the newly developed risk scores 
is presented as green bars in figure  4 with additional details 
in online supplemental table 10. In general, the new risk score 
models performed as well or better than existing risk scores for 
all outcomes, with all new models achieving AUROC above 0.70. 
Using standard health check predictors, newly developed models 
performed significantly better than existing risk scores for some 

Figure 3  HRs for incident heart-brain-liver-kidney outcomes by existing disease diagnoses at baseline. Each entry shows the HR for incident outcomes 
(shown along the top) associated with the presence of existing risk factors, diagnoses and medication at baseline (shown down the right-hand side) in 
the whole cohort (n=228,240), using Cox-proportional hazards regression. For example, pre-existing hypertension increases the 10-year risk of stroke 
by 46%. Models are adjusted by age, sex, postsecondary education, ethnicity, smoking, physical activity, alcohol intake frequency, body mass index, 
Townsend Deprivation Index, family history (of heart disease, stroke and dementia), any cancer diagnosis, hypertension, high cholesterol and diabetes. 
HR significance was adjusted for multiple testing with a false discovery rate of 5%, where non-significant results are shown as empty white cells. Each 
result is from a different model. See online supplemental table 8 for detailed results. AF, atrial fibrillation; ALD, alcoholic liver disease; CKD, chronic 
kidney disease (stages 3, 4 or 5); CIRR, cirrhosis; DEM, all-cause dementia; DVT, deep vein thrombosis; FLD, fatty liver disease; HF, heart failure; LF, liver 
failure; MI, myocardial infarction; PE, pulmonary embolism.

https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
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outcomes, with higher AUROC for myocardial infarction of 0.785 
with 95% CI (0.775 to 0.795)), atrial fibrillation (0.777 (95% CI 
0.768 to 0.785)), heart failure (0.828 (95% CI 0.818 to 0.838)), 
fatty liver disease (0.766 (95% CI 0.753 to 0.779)), alcoholic liver 
disease (0.864 (95% CI 0.835 to 0.894)) and liver cirrhosis (0.763 
(95% CI 0.734 to 0.793)). Newly developed risk models had similar 
performance to existing scores for stroke (0.727 (95% CI 0.713 
to 0.740)), dementia (0.823 (95% CI 0.810 to 0.836)) and chronic 
kidney disease (0.774 (95% CI 0.765 to 0.783)).

Importantly, for all outcomes studied, newly developed models 
using only remote features were able to achieve similar discrimi-
native accuracy (AUROC) to their respective standard models.

When the set of additional biochemistry was added to the pool 
of potential predictors (in the extended models), there was very 
little incremental increase in predictive performance for heart and 
brain outcomes. In contrast, extended model features produced 
significantly better predictions for chronic kidney disease (AUROC 
0.875, 95% CI 0.868 to 0.881), fatty liver (0.809, 95% CI 0.797 to 
0.822), alcoholic liver (0.922, 95% CI 0.899 to 0.944) and cirrhosis 
(0.862, 95% CI 0.837 to 0.888). This improvement is substantial 
compared with existing risk scores and standard model estimates, 
suggesting that an approach with more blood biomarkers might 
be better at picking up these abnormalities. As expected, calibra-
tion statistics (online supplemental figure 3) and reclassification 
indices (online supplemental table 11) showed better calibration 
and significantly improved reclassification in the newly devel-
oped risk scores compared with existing risk scores, for example, 
standard myocardial infarction IDI=0.014, 95% CI (0.011 to 0.017) 
and cNRI=0.633, 95% CI (0.588 to 0.677). In nearly all compari-
sons, newly developed models had lower Brier scores (less average 
squared error) and higher Somers’ Dxy (better rank correla-
tion) than existing models. While there were some instances of 
improved sensitivity in the newer models (stroke, myocardial 
infarction, chronic kidney disease, alcoholic liver and cirrhosis), 
overall, the improvements in discrimination were mainly driven 

by better specificity (fewer false positives, online supplemental 
table 10).

The heart-brain-liver-kidney risk model coefficients
The large number of coefficients for multioutcome models are 
provided as beta coefficients in online supplemental spreadsheet 
1, and as HRs in online supplemental spreedsheet 2, with a visual 
overview in online supplemental tables 4−6.

Discussion
In this proof-of-concept analysis with 228 240 UK Biobank partic-
ipants, we demonstrated that easily collected diagnostics can be 
used to assess risk across multiple disease outcomes. We have 
shown how this can be done without specialist computing or 
invasive biomarkers.

Pairwise modelling showed a complex pattern of cross-system 
associations, building on prior efforts to understand multimor-
bidity in the heart-brain-liver-kidney cluster.23 We confirmed that 
disease risk across all four organs was significantly associated 
with well-known risk factors such as hypertension, diabetes and 
high cholesterol; as well as other factors that have not yet been 
incorporated into standard risk paradigms beyond QRISK3, such 
as mental illness, systemic inflammation, sleep quality, arterial 
health and medication use.59 60

Recent studies have shown significant improvements in 
cardiovascular risk prediction using large data sets and machine 
learning methods.60–63 However, these studies still only target one 
organ (the heart), and when compared with conventional statis-
tical models, deep learning or other ‘black box’ methods are not as 
readily explainable or easily translatable to clinical use.64 Several 
studies have tackled multidisease prediction. Bayati et al65 use 
multitask learning and group dimensionality reduction to identify 
a reduced pool of health check features to predict heart-brain-
liver-kidney outcomes across 2 years follow-up. Most similar to 
the current work, Mahajan et al66 used electronic health records 

Figure 4  Performance of multiorgan risk scores in the validation set. Comparison of area under the receiver operating curve (AUROC, also known as 
concordance or C-statistic) for 10-year risk prediction across 10 outcomes. Horizontal bars show the 95% CI for validation set AUROC with uncertainty 
estimated from 1000 bootstrapped samples. Predictions from existing risk scores are shown in dark blue, while newly developed risk scores are shown 
in green. Remote models contain health metrics that can be answered verbally or self-measured easily by the patient. Standard models contain all 
remote metrics plus blood pressure and serum cholesterol tests. Extended models contain further blood tests. See online supplemental table 10 for 
detailed results. BMI, body mass index; UKB-DRS, UK Biobank Dementia Risk Score; APRI, the ratio of aspartate aminotransferase (AST) to platelet 
count.

https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
https://dx.doi.org/10.1136/bmjebm-2023-112518
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to derive multiple organ-specific risk scores, with a high degree of 
discrimination (AUROC>0.80 across heart, brain, lung, kidney and 
digestive disease). However, this study predicted hospital readmis-
sion using previous admissions for the same disease, whereas our 
models predict risk of new-onset disease.

The current study has several important limitations. We recog-
nise the importance of thoroughly evaluating existing risk instru-
ments before moving forward with new risk score development. 
We have begun this process, but there is more work to be done. On 
the other hand, by restricting the pool of input variables, new risk 
score development may well be required to meet this constraint, 
particularly where remote risk scores of adequate quality do not 
yet exist.

We acknowledge that the internal validation performance of 
our scores (developed within UK Biobank) is not directly compa-
rable with external validation performance of published risk scores 
developed outside UK Biobank. Furthermore, each published risk 
score has a range of validation values across published work. For 
example, the validation AUROC provided by the original QRISK3 
paper10 was 0.88 for women and 0.86 for men. Since then other 
external validation performance has varied in a numerical range 
consistent with the current work, with values of 0.707 for women 
and 0.681 for men reported for the 45–64 age group in the Clinical 
Practice Research Datalink,67 and values of 0.722 for women and 
0.697 for men in a recent validation in UK Biobank.68

It may seem unconventional to apply existing risk score 
instruments outside their intended cohort (eg, including people 
with comorbidities) and outside their intended outcome (eg, using 
QRISK3 to predict myocardial infarction rather than combined 
CVD). Our study is not the first to explore this approach25 69 and to 
provide essential evidence for whether existing scores hold unre-
alised potential in additional contexts.

Although large compared with some, we caution that this study 
is small compared with larger risk score development projects, and 
we have not provided an external validation cohort. Furthermore, 
UK Biobank participants are subject to self-selection bias, and as 
such, they are known to be healthier and less ethnically diverse 
than the UK population.70 Therefore, any final models with this 
approach will require further recalibration and validation in large 
nationally representative cohorts. We acknowledge that there are 
some variables that are not well measured in the UK Biobank. 
Where these come up in multidisease risk equations, these are 
likely to be more accurately captured in a primary care-specific 
database.

In conclusion, this analysis demonstrates the feasibility of 
using standard health check predictors to produce multidis-
ease risk estimates of reasonable quality. Such an approach has 
the potential to ease pressure on primary care, allowing physi-
cians more time to focus on interpretation and follow-up71 thus 
providing new opportunities for multimorbidity prevention.

Author affiliations
1Division of Cardiovascular Medicine, Radcliffe Department of Medicine, 
University of Oxford, and Oxford University Hospitals NHS Foundation 
Trust, Oxford, UK
2William Harvey Research Institute, Queen Mary University of London, 
London, UK
3Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, 
London, UK
4Heart and Vascular Center, Semmelweis University, Budapest, Hungary
5Department of Experimental Psychology, University of Oxford, Oxford, UK
6Big Data Institute, Li Ka Shing Centre for Health Information and 
Discovery, Nuffield Department of Population Health, University of Oxford, 
Oxford, UK

7Perspectum Ltd, Oxford, UK
8Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of 
Oxford, Oxford, UK
9Nuffield Department of Clinical Neuroscience, University of Oxford, 
Oxford, UK
10Health Data Research UK, London, UK
11Alan Turing Institute, London, UK

Contributors  The study was conceived by TEN, SN, SEP and 
CM. CM and TEN formulated the statistical analysis plan. CM led 
and performed the analysis and led in writing of the manuscript. 
ZR-E and LS contributed to drafting of the manuscript. All 
coauthors including MV, BR, AT, AR-F and MH provided 
critical review of the work. All authors read and approved the 
final manuscript. TEN and SN provided overall supervision 
for the work. TEN and SN are the guarantors of the work. 
The corresponding author attests that all listed authors meet 
authorship criteria and that no others meeting the criteria have 
been omitted.

Funding  CM and SN are supported by the Oxford National 
Institute for Health and Care Research (NIHR) Biomedical 
Research Centre (IS-BRC-1215-20008) and the Oxford BHF 
Centre of Research Excellence. BR acknowledges support 
from the BHF Oxford CRE (RE/18/3/34214). LS has received 
funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 825903 
(euCanSHare project). ZR-E recognises the NIHR Integrated 
Academic Training programme which supports her Academic 
Clinical Lectureship post and BHF Clinical Research Training 
Fellowship (FS/17/81/33318). This work acknowledges the 
support of the National Institute for Health and Care Research 
Barts Biomedical Research Centre (NIHR203330); a delivery 
partnership of Barts Health NHS Trust, Queen Mary University of 
London, St George’s University Hospitals NHS Foundation Trust 
and St George’s University of London. This work was supported 
by Health Data Research UK, an initiative funded by UK Research 
and Innovation, Department of Health and Social Care (England) 
and the devolved administrations Wellcome Trust, NIHR Oxford 
Biomedical Centre and leading medical research charities. 
AT is supported by a Wellcome Trust (https://wellcome.org/) 
fellowship (216462/Z/19/Z). MH is supported by the Wellcome 
Trust (206330/Z/17/Z) and NIHR Oxford Biomedical Research 
Centre (IS-BRC-1215-20008). TEN is supported by the Li Ka 
Shing Centre for Health Information and Discovery, an NIH grant 
(https://www.nih.gov/, TN: R01EB026859), the NIHR Oxford 
Biomedical Research Centre (BRC-1215-20014), and a Wellcome 
Trust award (TN: 100309/Z/12/Z). This work includes data 
provided by patients and collected by the NHS and NHS Digital 
as part of their care and support. The research was supported by 
the Wellcome Trust Core Award Grant Number 203141/Z/16/Z 
with funding from the NIHR Oxford BRC. This research used 
data assets made available by National Safe Haven as part of the 
Data and Connectivity National Core Study, led by Health Data 
Research UK in partnership with the Office for National Statistics 
and funded by UK Research and Innovation (MC_PC_20058).

Disclaimer  The views expressed are those of the author(s) and 
not necessarily those of the NHS, the NIHR or the Department of 
Health.

Competing interests  SEP provides consultancy to 
Cardiovascular Imaging, Calgary, Alberta, Canada. BR consulted 
for Axcella Therapeutics. AR-F is an employee and shareholder 
in Perspectum, Oxford, UK. SN is a founder, shareholder and 

https://wellcome.org/
https://www.nih.gov/


BMJ Evidence-Based Medicine Month 2024 | volume 0 | number 0 | 10

Original research

former board member of Perspectum. TEN provides consultancy 
to Perspectum, Oxford, UK. All other authors declare no conflicts 
of interest. The corresponding author attests that all listed 
authors meet authorship criteria and that no others meeting the 
criteria have been omitted.

Patient and public involvement  Patients and/or the public 
were not involved in the design, or conduct, or reporting, or 
dissemination plans of this research.

Patient consent for publication  Not applicable.

Ethics approval  This study involves human participants and this 
study complies with the Declaration of Helsinki; the work was 
covered by the ethical approval for UK Biobank studies from the 
National Health Service (NHS) National Research Ethics Service 
on 17 June 2011 (Ref 11/NW/0382) and extended on 18 June 
2021 (Ref 21/NW/0157) with written informed consent obtained 
from all participants. Participants gave informed consent to 
participate in the study before taking part.

Provenance and peer review  Not commissioned; externally peer 
reviewed.

Data availability statement  Data may be obtained from a 
third party and are not publicly available. This analysis was 
produced under UK Biobank Access Application 59867. The data 
in this study are owned by the UK Biobank (www. ​ukbiobank.​
ac.​uk) and legal constraints do not permit public sharing of 
the data. The UK Biobank, however, is open to all bona fide 
researchers anywhere in the world. Thus, the data used in this 
communication can be easily and directly accessed by applying 
through the UK Biobank Access Management System (​www.​
ukbiobank.​ac.​uk/ register-apply). Results from this study will 
be returned to UK Biobank according to their published returns 
policy.

Supplemental material  This content has been supplied by 
the author(s). It has not been vetted by BMJ Publishing Group 
Limited (BMJ) and may not have been peer-reviewed. Any 
opinions or recommendations discussed are solely those of 
the author(s) and are not endorsed by BMJ. BMJ disclaims all 
liability and responsibility arising from any reliance placed 
on the content. Where the content includes any translated 
material, BMJ does not warrant the accuracy and reliability of 
the translations (including but not limited to local regulations, 
clinical guidelines, terminology, drug names and drug dosages), 
and is not responsible for any error and/or omissions arising 
from translation and adaptation or otherwise.

Open access  This is an open access article distributed in 
accordance with the Creative Commons Attribution 4.0 Unported 
(CC BY 4.0) license, which permits others to copy, redistribute, 
remix, transform and build upon this work for any purpose, 
provided the original work is properly cited, a link to the 
licence is given, and indication of whether changes were made. 
See: https://creativecommons.org/licenses/by/4.0/.

ORCID iD
Celeste McCracken http://orcid.org/0000-0003-1285-2393

References
	 1	 Vetrano DL, Calderón-Larrañaga A, Marengoni A, et al. An International 

perspective on chronic Multimorbidity: approaching the elephant in the 
room. The Journals of Gerontology 2018;73:1350–6. 

	 2	 Canoy D, Tran J, Zottoli M, et al. Association between Cardiometabolic 
disease Multimorbidity and all-cause mortality in 2 million women and 
men registered in UK general practices. BMC Med 2021;19:258. 

	 3	 Soley-Bori M, Ashworth M, Bisquera A, et al. Impact of Multimorbidity on 
Healthcare costs and utilisation: A systematic review of the UK literature. 
Br J Gen Pract 2021;71:e39–46. 

	 4	 Barnett K, Mercer SW, Norbury M, et al. Epidemiology of Multimorbidity 
and implications for health care, research, and medical education: a cross-
sectional study. The Lancet 2012;380:37–43. 

	 5	 World Health Organization. Multimorbidity: Technical Series on Safer 
Primary Care, 2016. Available: https://iris.who.int/bitstream/handle/10665/​
252275/9789241511650-eng.pdf [Accessed 28 Nov 2023].

	 6	 Head A, Fleming K, Kypridemos C, et al. Multimorbidity: the case for 
prevention. J Epidemiol Community Health 2021;75:242–4. 

	 7	 Lawrence W, Watson D, Barker H, et al. Meeting the UK government’s 
prevention agenda: primary care practitioners can be trained in skills to 
prevent disease and support self-management. Perspect Public Health 
2022;142:158–66. 

	 8	 Pearson-Stuttard J, Ezzati M, Gregg EW. Multimorbidity—a defining 
challenge for health systems. Lancet Public Health 2019;4:e599–600. 

	 9	 Bierman AS. Preventing and managing Multimorbidity by integrating 
behavioral health and primary care. Health Psychol 2019;38:851–4. 

	10	 Hippisley-Cox J, Coupland C, Brindle P. Development and validation of 
Qrisk3 risk prediction Algorithms to estimate future risk of cardiovascular 
disease: prospective cohort study. BMJ 2017;357:j2099. 

	11	 D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk 
profile for use in primary care. Circulation 2008;117:743–53. 

	12	 Hylton K, Thompson K, Kearney M, et al. Public Health England; NHS 
Health Check Best practice guidance: For commissioners and providers, 
2019. Available: https://www.healthcheck.nhs.uk/seecmsfile/?id=1480 
[Accessed 2 Jan 2024].

	13	 NHS. The NHS Long Term Plan, 2020. Available: https://www.​
longtermplan.nhs.uk/wp-content/uploads/2019/08/nhs-long-term-plan-​
version-1.2.pdf [Accessed 2 Nov 2023].

	14	 Karlsen TH, Sheron N, Zelber-Sagi S, et al. The EASL–lancet liver 
Commission: protecting the next generation of Europeans against 
liver disease complications and premature mortality. The Lancet 
2022;399:61–116. 

	15	 Shlipak MG, Tummalapalli SL, Boulware LE, et al. The case for early 
identification and intervention of chronic kidney disease: conclusions 
from a kidney disease: improving global outcomes (KDIGO) controversies 
conference. Kidney Int 2021;99:34–47. 

	16	 NHS England. NHS Health Check. ​NHS.​uk, 2023. Available: https://www.​
nhs.uk/conditions/nhs-health-check/ [Accessed 2 Feb 2024].

	17	 Public Health England. NHS health check information leaflet. 2015. 
Available: https://www.healthcheck.nhs.uk/seecmsfile/?id=401 [Accessed 2 
Feb 2024].

	18	 El Hadi H, Di Vincenzo A, Vettor R, et al. Relationship between heart 
disease and liver disease: A two-way street. Cells 2020;9:567. 

	19	 McCracken C, Raisi-Estabragh Z, Veldsman M, et al. Multi-organ imaging 
demonstrates the heart-brain-liver axis in UK Biobank participants. Nat 
Commun 2022;13:7839. 

	20	 Siriwardhana C, Lim E, Davis J, et al. Progression of diabetes, ischemic 
heart disease, and chronic kidney disease in a three chronic conditions 
Multistate model. BMC Public Health 2018;18:752. 

	21	 Prados-Torres A, Calderón-Larrañaga A, Hancco-Saavedra J, et al. 
Multimorbidity patterns: a systematic review. J Clin Epidemiol 
2014;67:254–66. 

	22	 Soley-Bori M, Bisquera A, Ashworth M, et al. Identifying Multimorbidity 
clusters with the highest primary care use: 15 years of evidence from a 
multi-ethnic metropolitan population. Br J Gen Pract 2022;72:e190–8. 

	23	 Bisquera A, Gulliford M, Dodhia H, et al. Identifying longitudinal clusters 
of Multimorbidity in an urban setting: A population-based cross-sectional 
study. Lancet Reg Health Eur 2021;3:100047. 

	24	 Iacobucci G. Scrap 10 minute consultations, RCGP URGES. BMJ 
2019;365:l2270. 

	25	 Badawy MAEMD, Naing L, Johar S, et al. Evaluation of cardiovascular 
diseases risk calculators for Cvds prevention and management: Scoping 
review. BMC Public Health 2022;22:1742. 

	26	 Poppe KK, Doughty RN, Wells S, et al. Developing and validating a 
cardiovascular risk score for patients in the community with prior 
cardiovascular disease. Heart 2017;103:891–2. 

https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-1285-2393
http://dx.doi.org/10.1093/gerona/glx178
http://dx.doi.org/10.1186/s12916-021-02126-x
http://dx.doi.org/10.3399/bjgp20X713897
http://dx.doi.org/10.1016/S0140-6736(12)60240-2
https://iris.who.int/bitstream/handle/10665/252275/9789241511650-eng.pdf
https://iris.who.int/bitstream/handle/10665/252275/9789241511650-eng.pdf
http://dx.doi.org/10.1136/jech-2020-214301
http://dx.doi.org/10.1177/1757913920977030
http://dx.doi.org/10.1016/S2468-2667(19)30222-1
http://dx.doi.org/10.1037/hea0000787
http://dx.doi.org/10.1136/bmj.j2099
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.699579
https://www.healthcheck.nhs.uk/seecmsfile/?id=1480
https://www.longtermplan.nhs.uk/wp-content/uploads/2019/08/nhs-long-term-plan-version-1.2.pdf
https://www.longtermplan.nhs.uk/wp-content/uploads/2019/08/nhs-long-term-plan-version-1.2.pdf
https://www.longtermplan.nhs.uk/wp-content/uploads/2019/08/nhs-long-term-plan-version-1.2.pdf
http://dx.doi.org/10.1016/S0140-6736(21)01701-3
http://dx.doi.org/10.1016/j.kint.2020.10.012
https://www.nhs.uk/conditions/nhs-health-check/
https://www.nhs.uk/conditions/nhs-health-check/
https://www.healthcheck.nhs.uk/seecmsfile/?id=401
http://dx.doi.org/10.3390/cells9030567
http://dx.doi.org/10.1038/s41467-022-35321-2
http://dx.doi.org/10.1038/s41467-022-35321-2
http://dx.doi.org/10.1186/s12889-018-5688-y
http://dx.doi.org/10.1016/j.jclinepi.2013.09.021
http://dx.doi.org/10.3399/BJGP.2021.0325
http://dx.doi.org/10.1016/j.lanepe.2021.100047
http://dx.doi.org/10.1136/bmj.l2270
http://dx.doi.org/10.1186/s12889-022-13944-w
http://dx.doi.org/10.1136/heartjnl-2016-310668


BMJ Evidence-Based Medicine Month 2024 | volume 0 | number 0 | 11

Original research

	27	 Alonso-Morán E, Nuño-Solinis R, Onder G, et al. Multimorbidity in risk 
stratification tools to predict negative outcomes in adult population. Eur J 
Intern Med 2015;26:182–9. 

	28	 NHS England. Improving access for all: reducing inequalities in access to 
general practice services, 2018. Available: https://www.england.nhs.uk/​
publication/improving-access-for-all-reducing-inequalities-in-access-to-​
general-practice-services/ [Accessed 27 Nov 2023].

	29	 Verma P, Kerrison R. Patients’ and physicians’ experiences with 
remote consultations in primary care during the COVID-19 
pandemic: a multi-method rapid review of the literature. BJGP Open 
2022;6:BJGPO.2021.0192. 

	30	 Ladds E, Khan M, Moore L, et al. The impact of remote care approaches on 
continuity in primary care: a mixed-studies systematic review. Br J Gen 
Pract 2023;73:e374–83. 

	31	 Fagerland MW, Hosmer DW. A goodness-of-fit test for the proportional 
odds regression model. Stat Med 2013;32:2235–49. 

	32	 Sudlow C, Gallacher J, Allen N, et al. UK Biobank: an open access resource 
for identifying the causes of a wide range of complex diseases of middle 
and old age. PLOS Med 2015;12:e1001779. 

	33	 UK Biobank. Primary Care Linked Data (Version 1.0), 2019. Available: 
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/primary_care_data.​
pdf [Accessed 30 Nov 2023].

	34	 UK Biobank. Hospital Inpatient Data (Version 4.0), 2023. Available: https://​
biobank.ndph.ox.ac.uk/showcase/showcase/docs/HospitalEpisodeStatistics.​
pdf [Accessed 3 Feb 2024].

	35	 UK Biobank. Code lists for health outcomes, 2020. Available: https://​
biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=594 [Accessed 23 Mar 2022].

	36	 Hayward KL, Johnson AL, Horsfall LU, et al. Detecting non-alcoholic fatty 
liver disease and risk factors in health databases: accuracy and limitations 
of the ICD-10-AM. BMJ Open Gastroenterol 2021;8:e000572. 

	37	 Anatürk M, Patel R, Ebmeier KP, et al. Development and validation of a 
dementia risk score in the UK Biobank and Whitehall II cohorts. BMJ Ment 
Health 2023;26:e300719. 

	38	 Hippisley-Cox J, Coupland C, Brindle P. Derivation and validation of 
Qstroke score for predicting risk of ischaemic stroke in primary care and 
comparison with other risk scores: a prospective open cohort study. BMJ 
2013;346:f2573. 

	39	 Ntaios G, Lip GYH, Makaritsis K, et al. Chads2, Cha2Ds2-Vasc, and 
long-term stroke outcome in patients without atrial fibrillation. Neurology 
2013;80:1009–17. 

	40	 Kivipelto M, Ngandu T, Laatikainen T, et al. Risk score for the prediction 
of dementia risk in 20 years among middle aged people: a longitudinal, 
population-based study. Lancet Neurol 2006;5:735–41. 

	41	 Schiepers OJG, Köhler S, Deckers K, et al. Lifestyle for brain health 
(LIBRA): a new model for dementia prevention. Int J Geriatr Psychiatry 
2018;33:167–75. 

	42	 Khan SS, Ning H, Shah SJ, et al. 10-year risk equations for incident heart 
failure in the general population. J Am Coll Cardiol 2019;73:2388–97. 

	43	 Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts 
incidence of atrial fibrillation in a racially and geographically 
diverse population: the CHARGE-AF consortium. J Am Heart Assoc 
2013;2:e000102. 

	44	 Hippisley-Cox J, Coupland C. Predicting the risk of chronic kidney disease 
in men and women in England and Wales: prospective derivation and 
external validation of the Qkidney®scores. BMC Fam Pract 2010;11:49. 

	45	 Nelson RG, Grams ME, Ballew SH, et al. Development of risk prediction 
equations for incident chronic kidney disease. JAMA 2019;322:2104–14. 

	46	 Bedogni G, Bellentani S, Miglioli L, et al. The fatty liver index: A simple 
and accurate Predictor of hepatic steatosis in the general population. BMC 
Gastroenterol 2006;6:33. 

	47	 McHenry S, Park Y, Browning JD, et al. Dallas steatosis index identifies 
patients with Nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 
2020;18:2073–80. 

	48	 Hippisley-Cox J, Coupland C. Development and validation of 
Qdiabetes-2018 risk prediction algorithm to estimate future risk of type 2 
diabetes: cohort study. BMJ 2017;359:j5019. 

	49	 Griffin SJ, Little PS, Hales CN, et al. Diabetes risk score: towards earlier 
detection or type 2 diabetes in general practice. Diabetes Metab Res Rev 
2000;16:164–71. 

	50	 Bush K, Kivlahan DR, McDonell MB. The AUDIT alcohol consumption 
questions (AUDIT-C): an effective brief screening test for problem drinking

	51	 Vallet-Pichard A, Mallet V, Nalpas B, et al. FIB-4: an inexpensive and 
accurate marker of fibrosis in HCV infection. comparison with liver biopsy 
and Fibrotest. Hepatology 2007;46:32–6. 

	52	 Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: A 
noninvasive system that identifies liver fibrosis in patients with NAFLD. 
Hepatology 2007;45:846–54. 

	53	 De Matteis C, Cariello M, Graziano G, et al. AST to platelet ratio index 
(APRI) is an easy-to-use Predictor score for cardiovascular risk in 
metabolic subjects. Sci Rep 2021;11:14834. 

	54	 The IPAQ group. Guidelines for Data Processing and Analysis of the 
International Physical Activity Questionnaire (IPAQ) – Short and Long 
Forms, 2005. Available: https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/ipaq_​
analysis.pdf [Accessed 21 Oct 2021].

	55	 NHS England. Physical activity guidelines for adults aged 19 to 64. ​nhs.​uk, 
2022. Available: https://www.nhs.uk/live-well/exercise/exercise-guidelines/​
physical-activity-guidelines-for-adults-aged-19-to-64/ [Accessed 1 Feb 
2024].

	56	 Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical 
and powerful approach to multiple testing. Journal of the Royal Statistical 
Society Series B 1995;57:289–300. 

	57	 Meinshausen N, Bühlmann P. Stability selection. Journal of the Royal 
Statistical Society Series B 2010;72:417–73. 

	58	 Thölke P, Mantilla-Ramos Y-J, Abdelhedi H, et al. Class imbalance should 
not throw you off balance: choosing the right classifiers and performance 
Metrics for brain decoding with imbalanced data. Neuroimage 2023;277. 

	59	 Correll CU, Solmi M, Veronese N, et al. Prevalence, incidence and mortality 
from cardiovascular disease in patients with pooled and specific severe 
mental illness: a large-scale meta-analysis of 3,211,768 patients and 
113,383,368 controls. World Psychiatry 2017;16:163–80. 

	60	 Dolezalova N, Reed AB, Despotovic A, et al. Development of an accessible 
10-year Digital cardiovascular (Dicava) risk assessment: a UK Biobank 
study. Eur Heart J Digit Health 2021;2:528–38. 

	61	 Alaa AM, Bolton T, Di Angelantonio E, et al. Cardiovascular disease risk 
prediction using automated machine learning: A prospective study of 
423,604 UK Biobank participants. PLOS ONE 2019;14:e0213653. 

	62	 Alsayegh F, Alkhamis MA, Ali F, et al. Anemia or other Comorbidities? 
using machine learning to reveal deeper insights into the drivers of 
acute coronary syndromes in hospital admitted patients. PLOS ONE 
2022;17:e0262997. 

	63	 Steinfeldt J, Buergel T, Loock L, et al. Neural network-based integration 
of Polygenic and clinical information: development and validation of a 
prediction model for 10-year risk of major adverse cardiac events in the 
UK Biobank cohort. Lancet Digit Health 2022;4:e84–94. 

	64	 Tu JV. Advantages and disadvantages of using artificial neural networks 
versus logistic regression for predicting medical outcomes. J Clin Epidemiol 
1996;49:1225–31. 

	65	 Bayati M, Bhaskar S, Montanari A. A low-cost method for multiple disease 
prediction. AMIA Annu Symp Proc 2015;2015:329–38.

	66	 Mahajan A, Deonarine A, Bernal A, et al. Developing the total health 
profile, a Generalizable unified set of Multimorbidity risk scores derived 
from machine learning for broad patient populations: retrospective cohort 
study. J Med Internet Res 2021;23:e32900. 

	67	 Livingstone S, Morales DR, Donnan PT, et al. Effect of competing 
mortality risks on predictive performance of the Qrisk3 cardiovascular 
risk prediction tool in older people and those with Comorbidity: external 
validation population cohort study. Lancet Healthy Longev 2021;2:e352–61. 

	68	 Parsons RE, Liu X, Collister JA, et al. Independent external validation of 
the Qrisk3 cardiovascular disease risk prediction model using UK Biobank. 
Heart 2023;109:1690–7. 

	69	 Zhu W-G, Xiong Q-M, Hong K. Meta-analysis of Chads2 versus Cha2Ds2-
Vasc for predicting stroke and thromboembolism in atrial fibrillation 
patients independent of anticoagulation. Tex Heart Inst J 2015;42:6–15. 

	70	 Huang JY. Representativeness is not representative: addressing major 
inferential threats in the UK Biobank and other big data repositories. 
Epidemiology 2021;32:189–93. 

	71	 Atkins L, Stefanidou C, Chadborn T, et al. Influences on NHS health check 
Behaviours: a systematic review. BMC Public Health 2020;20:1359. 

http://dx.doi.org/10.1016/j.ejim.2015.02.010
http://dx.doi.org/10.1016/j.ejim.2015.02.010
https://www.england.nhs.uk/publication/improving-access-for-all-reducing-inequalities-in-access-to-general-practice-services/
https://www.england.nhs.uk/publication/improving-access-for-all-reducing-inequalities-in-access-to-general-practice-services/
https://www.england.nhs.uk/publication/improving-access-for-all-reducing-inequalities-in-access-to-general-practice-services/
http://dx.doi.org/10.3399/BJGPO.2021.0192
http://dx.doi.org/10.3399/BJGP.2022.0398
http://dx.doi.org/10.3399/BJGP.2022.0398
http://dx.doi.org/10.1002/sim.5645
http://dx.doi.org/10.1371/journal.pmed.1001779
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/primary_care_data.pdf
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/primary_care_data.pdf
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/HospitalEpisodeStatistics.pdf
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/HospitalEpisodeStatistics.pdf
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/HospitalEpisodeStatistics.pdf
https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=594
https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=594
http://dx.doi.org/10.1136/bmjgast-2020-000572
http://dx.doi.org/10.1136/bmjment-2023-300719
http://dx.doi.org/10.1136/bmjment-2023-300719
http://dx.doi.org/10.1136/bmj.f2573
http://dx.doi.org/10.1212/WNL.0b013e318287281b
http://dx.doi.org/10.1016/S1474-4422(06)70537-3
http://dx.doi.org/10.1002/gps.4700
http://dx.doi.org/10.1016/j.jacc.2019.02.057
http://dx.doi.org/10.1161/JAHA.112.000102
http://dx.doi.org/10.1186/1471-2296-11-49
http://dx.doi.org/10.1001/jama.2019.17379
http://dx.doi.org/10.1186/1471-230X-6-33
http://dx.doi.org/10.1186/1471-230X-6-33
http://dx.doi.org/10.1016/j.cgh.2020.01.020
http://dx.doi.org/10.1136/bmj.j5019
http://dx.doi.org/10.1002/1520-7560(200005/06)16:3<164::aid-dmrr103>3.0.co;2-r
http://dx.doi.org/10.1002/hep.21669
http://dx.doi.org/10.1002/hep.21496
http://dx.doi.org/10.1038/s41598-021-94277-3
https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/ipaq_analysis.pdf
https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/ipaq_analysis.pdf
https://www.nhs.uk/live-well/exercise/exercise-guidelines/physical-activity-guidelines-for-adults-aged-19-to-64/
https://www.nhs.uk/live-well/exercise/exercise-guidelines/physical-activity-guidelines-for-adults-aged-19-to-64/
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1016/j.neuroimage.2023.120253
http://dx.doi.org/10.1002/wps.20420
http://dx.doi.org/10.1093/ehjdh/ztab057
http://dx.doi.org/10.1371/journal.pone.0213653
http://dx.doi.org/10.1371/journal.pone.0262997
http://dx.doi.org/10.1016/S2589-7500(21)00249-1
http://dx.doi.org/10.1016/s0895-4356(96)00002-9
https://pubmed.ncbi.nlm.nih.gov/26958164
http://dx.doi.org/10.2196/32900
http://dx.doi.org/10.1016/S2666-7568(21)00088-X
http://dx.doi.org/10.1136/heartjnl-2022-321231
http://dx.doi.org/10.14503/THIJ-14-4353
http://dx.doi.org/10.1097/EDE.0000000000001317
http://dx.doi.org/10.1186/s12889-020-09365-2

	Feasibility of multiorgan risk prediction with routinely collected diagnostics: a prospective cohort study in the UK Biobank
	Abstract
	Introduction﻿﻿
	Methods
	Setting and study population
	NHS Health Check and easily collected diagnostics
	Ascertainment of outcomes
	Existing risk scores
	Existing risk scores inherit their type from their inputs
	Ascertainment of other features
	Statistical analysis
	Pairwise modelling of cross-disease associations
	Evaluation of existing risk scores
	New models for heart, brain, liver and kidney disease

	Patient and public involvement

	Results
	Participant characteristics
	Associations between existing disease and future disease risk
	Best existing risk scores
	Multiorgan risk prediction
	The heart-brain-liver-kidney risk model coefficients

	Discussion
	References


