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ABSTRACT
Objective ANCA- associated vasculitis (AAV) is a relapsing- 
remitting disease, resulting in incremental tissue injury. The 
gold- standard relapse definition (Birmingham Vasculitis 
Activity Score, BVAS>0) is often missing or inaccurate in 
registry settings, leading to errors in ascertainment of this key 
outcome. We sought to create a computable phenotype (CP) 
to automate retrospective identification of relapse using real- 
world data in the research setting.
Methods We studied 536 patients with AAV and >6 months 
follow- up recruited to the Rare Kidney Disease registry (a 
national longitudinal, multicentre cohort study). We followed 
five steps: (1) independent encounter adjudication using 
primary medical records to assign the ground truth, (2) 
selection of data elements (DEs), (3) CP development using 
multilevel regression modelling, (4) internal validation and 
(5) development of additional models to handle missingness. 
Cut- points were determined by maximising the F1- score. We 
developed a web application for CP implementation, which 
outputs an individualised probability of relapse.
Results Development and validation datasets comprised 
1209 and 377 encounters, respectively. After classifying 
encounters with diagnostic histopathology as relapse, we 
identified five key DEs; DE1: change in ANCA level, DE2: 
suggestive blood/urine tests, DE3: suggestive imaging, DE4: 
immunosuppression status, DE5: immunosuppression change. 
F1- score, sensitivity and specificity were 0.85 (95% CI 0.77 
to 0.92), 0.89 (95% CI 0.80 to 0.99) and 0.96 (95% CI 0.93 to 
0.99), respectively. Where DE5 was missing, DE2 plus either 
DE1/DE3 were required to match the accuracy of BVAS.
Conclusions This CP accurately quantifies the individualised 
probability of relapse in AAV retrospectively, using objective, 
readily accessible registry data. This framework could be 
leveraged for other outcomes and relapsing diseases.

INTRODUCTION
ANCA- associated vasculitis (AAV) is a 
relapsing- remitting autoimmune disease, 
resulting in incremental tissue injury. With 

the availability of highly effective agents to 
induce remission, maintenance of remission 
has emerged as a key research focus. The 
risk of relapse without prolonged continuous 
immunosuppression (IS) has remained rela-
tively unchanged.1 2 Relapses result in cumu-
lative disease- related and treatment- related 
damage,3 4 including a ninefold increased risk 
of end- stage kidney disease (ESKD) following 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Relapse in clinical trials is defined using the 
Birmingham Vasculitis Activity Score>0. However, 
this metric is often missing or incorrectly scored in 
real- world data, resulting in inaccurate ascertain-
ment of this key outcome.

 ⇒ ‘Computable phenotypes’ (electronic algorithms) are 
used in electronic health records to automate the 
identification of patient subgroups and outcomes.

WHAT THIS STUDY ADDS
 ⇒ This is the first study to demonstrate the feasibility 
of a pragmatic data- driven algorithm to accurately 
automate the identification of relapse, in real- world 
data.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Our algorithm could be used by researchers to uni-
formly label relapse events in their registry, hence 
ensuring more accurate outcome ascertainment.

 ⇒ Therefore, this study has the potential to increase 
the sample size of observational studies exploring 
relapse, which is a critical enabler for rare disease 
research.

 ⇒ This framework could serve as an exemplar for oth-
er relapsing- remitting diseases and for automating 
the identification of other key outcomes or cohorts 
in registry data.
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renal relapse.5 However, maintenance IS to reduce 
relapse risk is expensive and not without risk of toxicity.6 
Therefore, there is a pressing need for effective predic-
tion models enabling personalised therapy, balancing 
extended use of immunosuppressive (IS) medications 
against relapse prevention. To build such models, we 
must first be able to label the relapse outcome accurately 
and uniformly.

The internationally adopted definition of relapse of 
AAV in clinical trials uses the Birmingham Vasculitis 
Activity Score (BVAS), with a rise in BVAS after attaining 
remission indicating relapse.7 However, in rea- world 
data, this metric is often missing or incorrectly scored; 
for example, relapse mimics and chronic damage may 
be scored as active vasculitis, resulting in false positives. 
Real- time BVAS scoring is challenging, as the clinical 
assessment may not be interpreted in the context of 
other factors such as trends in objective laboratory data 
and medications. Relapse can only truly be determined 
retrospectively. Indeed, in the clinical trial setting, BVAS 
assessment is often validated post hoc by an adjudication 
committee, considering the totality of clinical evidence 
available and with knowledge of subsequent events. These 
limitations of the gold- standard definition (BVAS>0) are 
acknowledged by the vasculitis community, resulting in 
non- standardised amendments, potentially hindering 
comparisons between studies.8 Increasingly, to maximise 
specificity, the requirement for ‘escalation in IS therapy’ 
in response to new/worsening active vasculitis is a funda-
mental component of the modified definition.9–12

Currently, in the Irish national registry, the probability 
of relapse for each patient encounter is determined by an 
expert adjudication committee. This was implemented to 
(a) increase sample size where BVAS was missing and (b) 
maximise the accuracy of our analyses, where BVAS was 
recorded incorrectly. This process is time- intensive and 
labour- intensive so we sought to automate this process 
and make the expert consensus process more transparent 
and accessible to other researchers.

A similar approach of creating ‘computable pheno-
types’ (CPs) to automate identification of patient 
subgroups and outcomes, using a combination of data 
elements (DEs) (eg, billing, diagnostic or procedural 
codes, medications, laboratory tests), has been employed 
in electronic health records (EHRs) and claims data.13 14 
This has been guided by the National Institutes of Health 
(NIH) Collaboratory14 in the context of pragmatic 
trials. The syntax defining these CPs supports program-
matic medical phenotyping, without the need for expert 
human involvement, thereby operationalising disease 
concepts. This reliable, reproducible and valid process 
supports replicable queries of observational data across 
multiple sites.14 A set of CPs were developed for purposes 
of case- finding in AAV through EHRs; however, they do 
not include assessment of outcomes or disease state.15 We 
aimed to apply this paradigm to automate outcome ascer-
tainment in a rare disease registry.

We present the development, interval validation 
and evaluation of a pragmatic data- driven algorithm 
to automate retrospective identification of relapse in 
AAV. Reproducible, reliable ascertainment of relapse 
in observational data, using objective readily available 
data, is critical to facilitating large- scale real- world anal-
ysis. Importantly, our algorithm does not predict future 
relapse, but rather defines the characteristics of a discrete 
event, and hence classifies relapse.

PATIENTS AND METHODS
Study participants
Rare kidney disease registry
The rare kidney disease registry and biobank, established 
in 2012, is a national, longitudinal, multicentre, cohort 
study.16 Although patients are recruited from renal, rheu-
matology and immunology centres, the registry is neph-
rology focused. Central storage of anonymised registry 
data is hosted on a secure password- protected web- based 
software platform, REDCap,17 18 hosted at Trinity College 
Dublin.

Longitudinal cohort
Patients were included if they were diagnosed with defi-
nite AAV16 at least 6 months beforehand and classified 
using the European Medicines Agency algorithm.19 
Patients with secondary vasculitis and/or antiglomerular 
basement membrane disease were excluded.19 Partic-
ipants were required to have at least one adjudicated 
encounter by 14 November 2022 (online supplemental 
figure 1). Only encounters >6 months from diagnosis 
were included to exclude possible primary treatment fail-
ures, as distinct from relapse.20

Data description
Data used for model development16 ares detailed in step 
2 (below), and further described in online supplemental 
methods.

Steps in building the CP for relapse
Step 1: independent expert adjudication of encounters to assign 
the reference probability of relapse (ground truth)
The primary outcome was relapse, defined as the return 
of symptoms and/or signs of active vasculitis, supported 
by linked laboratory, radiological or histopathological 
evidence, the therapeutic decision at the time of the 
encounter and the clinical response to same. Encounters 
were adjudicated by a committee of expert clinicians in 
advance of the study (described further in online supple-
mental methods), using the patient’s entire medical 
records, to determine the reference ‘ground truth’—a 
process endorsed by the NIH.14 Where this was recorded, 
we evaluated the performance of the gold standard 
relapse definition (BVAS>0) against this ground truth 
‘adjudicated probability of relapse’.

Step 2: selection of DEs and corresponding value sets
The optimal approach to model development employs a 
small a priori set of candidate items21 (discussed further 
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in online supplemental methods). Therefore, a small 
number of DEs were selected using expert domain knowl-
edge (elicited in a semiformalised approach, further 
discussed in online supplemental methods) and relevant 
literature, with a consideration for likely real- world data 
availability. All data were obtained during routine clin-
ical care, using locally available laboratory and radiolog-
ical testing methods. A cross- tabulation was performed 
between all variables and the squared scaled generalised 
variance- inflation factors (GVIFs)22 were calculated to 
assess for multicollinearity.

Step 3: development of a CP with an embedded logistic multilevel 
model
We considered that diagnostic histopathology demon-
strating active vasculitis, in a patient previously in 
remission, equates to biopsy- proven relapse. It is the 
most objective gold- standard evidence available, but 
few patients undergo invasive biopsy. This logic was 
applied as the initial step in the algorithm (figure 1). For 
encounters without diagnostic histopathology, the five 
categorical DEs identified in step 2 were used as covar-
iates to develop a logistic multilevel model (lme4 pack-
age(V.1.1–31), glmer function).23 This model was chosen 
(over a traditional cox proportional hazards model) as 
our aim was to define the characteristics of a discrete 
relapse event, agnostic to when it occurred, rather than 
model the probability of relapse over time (ie, it is a clas-
sification rather than a temporal prediction problem). 
Complete- case analysis was used as data were missing 

not- at- random. We used the ‘Transparent Reporting of a 
multivariable prediction model for Individual Prognosis 
Or Diagnosis’ (TRIPOD) statement24 to guide the devel-
opment and internal validation of our model. The cohort 
was randomly split into development (80%) and valida-
tion (20%) sets at the patient level, with a similar propor-
tion of relapses in both. A random effect was included 
to account for repeated encounters per patient and the 
varying relapse occurrence between individuals.25 The 
a priori risk of overfitting was deemed minimal given 
the small number of independent variables selected in 
advance. ORs and 95% CIs were computed. A p<0.05 was 
considered statistically significant. All statistical analyses 
were performed by using R V.4.2.1.

Step 4: internal validation
Model discrimination was assessed with the following 
metrics: F1- score (the harmonic mean of recall (equiv-
alent to sensitivity) and precision (equivalent to positive 
predictive value (PPV)), whereby F1- Score=2×(preci-
sion×recall)/(precision+recall)),26 sensitivity, specificity, 
PPV, negative predictive value (NPV), accuracy and 
area under the receiver operating characteristic (ROC) 
curve27 (AUC, whereby 1.0 represents ideal discrimina-
tion and 0.5 indicates discrimination that is no better 
than chance). The optimal cut- point was determined by 
maximising the F1- Score (R package: cutpointr V.1.1.2), 
as appropriate in an imbalanced dataset,26 where it can 
be viewed akin to classification accuracy. This was also 
chosen based on the proposed use case of determining 

Figure 1 Proposed algorithm to define the computable phenotype for relapse. To identify the appropriate model for the 
corresponding data elements available refer to online supplemental table 3. The F1- score of models 23–31 was <0.70 (the 
point estimate of the F1- score of the BVAS>0 relapse definition), and therefore, they were deemed not applicable. BVAS, 
Birmingham Vasculitis Activity Score.
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the true relapse rate in the cohort, where balancing 
sensitivity (correctly identifying relapse when it exists) 
with precision (minimising false positives) is important.28 
The multilevel logistic regression analysis was reiterated 
fifty times using stratified random- split resampling29 to 
ensure stability and reproducibility of the model14 and 
to control for potential sample- specific overfitting, hence 
minimising type- 1 error. In each resampling trial, the 
model was constructed using a randomly chosen portion 
of 80% of the data (development set) and the predictive 
accuracy was tested in the remaining 20% (validation set) 
by calculating the performance metrics listed above. The 
mean and 95% CI of the sampling distribution of each 
performance metric were computed across the fifty iter-
ations. Calibration was assessed by comparing the esti-
mated probabilities of the outcome and the observed 
outcome’s proportion.27 We performed prespecified 
subgroup analysis stratified by kidney involvement.

Step 5: model development when variables are missing
Steps 3 and 4 were repeated for each of the remaining 
thirty combinations of five DEs to determine if and when 
a stable model could be developed in the case of one 
or more missing DEs. We then developed an R shiny 
web application (https://jennifer-scott.shinyapps.io/ 
Relapse_identification/) for use by researchers wishing to 
apply the CP to their data. This application automatically 
applies one of the 31 possible models, based on available 
data, to generate an individualised probability of relapse 
and the corresponding binary label (determined by the 
individually determined optimal cut- point) for each 
observation. The overall classification accuracy of each 
model was ranked by maximal F1- score. The 95% CI of 
the F1- scores was used to compare the F1- score between 
models. Models were considered suitable if the 95% CI 
of the F1- score crossed 0.7 (the F1- score point estimate 
when the ‘BVAS>0’ classification was used as the relapse 
label). ‘Not applicable’ is returned by the web applica-
tion for observations where the corresponding model did 
not meet this criterion. A second internal validation was 
performed using this web application on the incomplete 
cases (ie, those excluded from complete- case analysis).

Patient and public involvement
Patient and public involvement is detailed in online 
supplemental methods.

RESULTS
Participant characteristics
536 patients met the inclusion criteria (online supple-
mental figure 1), with 3387 adjudicated encounters over 
a median follow- up of 72 months (table 1 details their 
characteristics). 58% were male, predominantly (99%) 
White, with a median age of 60 years at diagnosis. 40% 
experienced at least one relapse and 13% died during 
follow- up.

Relapse defined by BVAS >0: a real-world evaluation
Of the adjudicated encounters, BVAS was available 
for 1066 (31% completion rate in our registry). This is 
consistent with the degree of missingness across six addi-
tional European vasculitis registries, in the FAIRVASC 
consortium30 (online supplemental figure 2A). When 
comparing the adjudicated probability of relapse (ground 
truth), the F1- Score of the BVAS entries was 0.70 (online 
supplemental figure 2B). Online supplemental figure 2C 
illustrates the degree of false positives and negatives.

Selection of DEs and corresponding value sets for the 
proposed model
Table 2 details the chosen DEs with their corresponding 
categorical drop- down options (value sets). Value sets 
were explored and merged to eliminate levels with small 
counts that precluded model convergence. There was no 
collinearity between variables, with all GVIFs centring 
around 1. The frequency and combination of these DEs 
and value sets are represented graphically in online 
supplemental figure 3.

Derivation of five-variable model performance
1586 complete encounters across 416 unique patients 
were used for model building: 1209 encounters in the 
development set and 377 in the validation set. The preva-
lence of relapse was 17% in both. The OR (95% CI) of each 
DE using the complete five- variable model is reported 
in table 3, along with the performance metrics when 
applied to the validation set. The model’s high discrim-
inative ability is visible on the precision- recall (figure 2) 
and ROC curves (AUC 0.98 (0.92–0.99), online supple-
mental figure 4). ‘Calibration- in- the- large’ was satisfied, 
whereby the observed rate of relapse (0.1724) was not 
statistically different to the average of all predicted prob-
abilities (0.1707). Online supplemental figure 5 shows 
the calibration plot: the model is well calibrated at the 
extremes (close to 0/1), but there are insufficient data to 
assess calibration in between, which is akin to ‘possible’ 
cases in real- life clinical practice. Online supplemental 
figure 6 illustrates the performance of the model against 
the ground truth. The increased uncertainty regarding 
the diagnosis of minor relapses (eg, mild ear, nose and 
throat (ENT) or musculoskeletal symptoms) in clinical 
practice is reflected in the model (online supplemental 
figure 7). In subgroup analysis, the performance metrics 
stratified by kidney involvement are reported in online 
supplemental table 2. While the metrics are higher for 
those with kidney involvement, the F1- score is higher 
than 0.7 (the point estimate of the BVAS- derived defini-
tion) in both groups.

Model performance when DEs are missing
The models ranked according to F1- score are displayed 
in figure 3 and additional performance metrics (mean, 
95% CI) are reported in online supplemental table 3. 
Models 1–16 include ‘IS response’(DE5) and are virtu-
ally identical in their classification accuracy. These 
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models do not overlap the F1- score point estimate of the 
BVAS- derived definition (0.7), suggesting that models 
1–16 have a superior classification accuracy in identifying 
relapse. The specificity of these models was very high 

(>0.95, approximately 10% higher than that of BVAS). 
The sensitivity was also high, ranging from 0.88 to 0.90, 
although lower than that of BVAS (0.97). Despite a similar 
prevalence of relapse in both samples, the PPV was much 

Table 1 Baseline patient characteristics in study cohort overall and stratified by complete case analysis, split into train and 
test sets

Variable
Overall* (complete and 
Incomplete cases) Total complete cases Train Test

n 536 416 334 82

Age at diagnosis (years, median (IQR)) 60.0 (49.0–69.0) 59.0 (48.0–69.0) 61.0 (48.3–69.0) 56.0 (48.0–63.5)

Male (N (%)) 310 (57.8) 236 (56.7) 191 (57.2) 45 (54.9)

Race (N (%))

  White 529 (98.7) 410 (98.6) 329 (98.5) 81 (98.8)

  Asian 7 (1.3) 6 (1.4) 5 (1.5) 1 (1.2)

AAV Phenotype (N (%))

  Granulomatosis with polyangiitis (GPA) 261 (48.7) 205 (49.3) 168 (50.3) 37 (45.1)

  Microscopic polyangiitis 249 (46.5) 189 (45.4) 148 (44.3) 41 (50.0)

  Eosinophilic GPA (EGPA) 26 (4.9) 22 (5.3) 18 (5.4) 4 (4.9)

ANCA serotype (N (%))

  Proteinase- 3 (PR3) 276 (51.5) 220 (52.9) 175 (52.4) 45 (54.9)

  Myeloperoxidase (MPO) 243 (45.3) 182 (43.8) 149 (44.6) 33 (40.2)

  MPO and PR3 3 (0.6) 3 (0.7) 1 (0.3) 2 (2.4)

  ELISA negative 13 (2.4) 10 (2.4) 8 (2.4) 2 (2.4)

  No ELISA performed 1 (0.2) 1 (0.2) 1 (0.3) 0 (0.0)

Organ involvement (N (%))

  Kidney 450 (84.0) 347 (83.4) 283 (84.7) 64 (78.0)

  Lung 277 (51.7) 218 (52.4) 180 (53.9) 38 (46.3)

  Musculoskeletal 209 (39.0) 163 (39.2) 130 (38.9) 33 (40.2)

  Ear, nose and throat 238 (44.4) 185 (44.5) 148 (44.3) 37 (45.1)

  Mucocutaneous 128 (23.9) 106 (25.5) 85 (25.4) 21 (25.6)

  Neurologic 75 (14.0) 56 (13.5) 42 (12.6) 14 (17.1)

  Gastrointestinal 29 (5.4) 23 (5.5) 16 (4.8) 7 (8.5)

  Cardiovascular 13 (2.4) 10 (2.4) 8 (2.4) 2 (2.4)

Induction treatment (N (%))

  Cyclophosphamide 332 (61.9) 255 (61.3) 207 (62.0) 48 (58.5)

  Rituximab 103 (19.2) 82 (19.7) 64 (19.2) 18 (22.0)

  Cyclophosphamide and rituximab 31 (5.8) 27 (6.5) 25 (7.5) 2 (2.4)

  Other 70 (13.1) 52 (12.5) 38 (11.4) 14 (17.1)

Status (N (%))

  Alive 462 (86.2) 365 (87.7) 293 (87.7) 72 (87.8)

  Dead 72 (13.4) 49 (11.8) 40 (12.0) 9 (11.0)

  Lost to follow- up 2 (0.4) 2 (0.5) 1 (0.3) 1 (1.2)

End- stage kidney disease (N (%)) 96 (17.9) 62 (14.9) 46 (13.8) 16 (19.5)

Ever relapsed during follow- up (N (%)) 213 (39.7) 183 (44.0) 143 (42.8)† 40 (48.8)†

Follow- up period (months, median (IQR)) 72.5 (39.9–139.0) 75.4 (42.1–144.8) 71.5 (41.3–144.3) 81.6 (50.5–147.5)

Number (N), IQR, ELISA.
*536 patients (3387 encounters, comprising complete and incomplete cases) were included in the overall study: 416 had ≥1 complete adjudicated 
encounters (1586 encounters), which underwent an 80/20% split into train (n=334, 1209 encounters) and test (n=82, 377 encounters) sets for model 
building, respectively. There were no significant differences between the characteristics of the train and test sets. The remaining 1801 encounters 
with ≥1 missing fields were used as a second internal validation test set (see online supplemental figure 1).
†Due to repeated encounters per individual, the prevalence of relapse was 17% in the train and test sets.
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higher in models 1–16 (0.80–0.82) vs BVAS (0.55). In 
practice, this would equate to substantially fewer false 
positives while the NPV was unchanged (suggesting the 
false negative rate would be similar to BVAS). Models 
17–22 (missing DE5, with at least DE2+DE1/3) performed 
similarly to BVAS, while models 23–31 (without at least 
DE2+DE1/3) had an inferior performance.

Applying the web interface we developed, we performed 
a second internal validation study using the 1801 incom-
plete encounters (initially excluded because of missing 
DEs, online supplemental figure 1). The performance 
metrics remained high (online supplemental figure 8).

DISCUSSION
We have developed and validated a reproducible digital 
algorithm (a CP) to accurately identify relapse retrospec-
tively using objective registry data. The discrimination 
and calibration of this CP is as good as the current gold 
standard BVAS>0 relapse definition, even when some DEs 
are missing. Implementation of this CP using our web 
application will enable reliable ascertainment of relapse 
in observational data, when BVAS is missing or inaccu-
rate. This, in turn, will facilitate large- scale real- world 
analysis, including the accurate reporting of relapse rates 
and the development of relapse prediction models.

Table 2 New data elements (DEs) with their corresponding value set (ie, categorical drop- down options) applied to the 
registry to uniformly summarise patient encounters, with regards to relapse probability

DE key DE Value set (categorical values)

DE1 Change in ANCA level
 ► DE1 was established using serial direct ELISA or indirect 
immunofluorescence (IF, if ELISA data missing) results:

 ► The delta value (%) of the ANCA titre (anti- MPO or anti- PR3) was 
calculated between the encounter of interest and the preceding value, 
which was on average 3 months prior (maximal 12 months).
 – Delta=(encounter of interest value–preceding value)/preceding 

value×100 (400%=4 fold rise)
 ► If ELISA results were missing, IF results were used to infer the delta value:

 – negative->positive=‘<4- fold rise’
 – negative->negative=‘no rise’
 – positive->positive=‘no rise’
 – positive->negative=‘no rise’

 ► 4- fold rise
 ► <4 fold rise
 ► No rise

DE2 Suggestive bloods/urine
 ► A composite of at least one suggestive blood(s) and/or urine biomarker 
result(s) including the occurrence of at least one of the following:
 – 20% rise in creatinine level,
 – new haematuria (>10 red blood cells per high power field and/or >3+ 

blood on dipstick),
 – new proteinuria (>3+ protein on dipstick),
 – C reactive protein above upper limit of normal
 – or 20% rise in urine soluble CD163 (usCD163, normalised to urine 

creatinine) to a value >400 ng/mmol (Euroimmun assay).

 ► Suggestive of relapse
 ► Not suggestive

DE3 Suggestive imaging
 ► Suggestive imaging incorporated all modalities and was considered 
‘suggestive of relapse’ if the radiologist reported a finding consistent 
with active vasculitis. Findings included, but were not limited to, new or 
worsening destructive nasal disease, pulmonary nodules or cavitating 
lesions.

 ► ‘Not suggestive’ was selected if imaging was performed but it did not show 
signs of active vasculitis.

 ► Suggestive of relapse
 ► Not suggestive
 ► No imaging performed

DE4 Immunosuppression (IS) status
 ► DE4 summarises the IS therapy at the time of the encounter.
 ► ‘Currently on IS’ describes the ‘IS status’ of a patient on prednisolone 
>10 mg and/or an additional IS agent (eg, azathioprine) at the time of the 
encounter.

 ► Currently on IS
 ► Discontinued within 6 months
 ► Discontinued >6 months

DE5 IS medication in response to the encounter (IS response)
 ► The change in IS by the physician, in response to their clinical assessment, 
was dichotomised into ‘IS increased’ or not in DE5.

 ► An increase was defined as:
 – a clinically meaningful escalation in the dose of the same agent, as 

determined by the treating physician (as distinct from dose optimisation/
titration when an agent is commenced). An increase in prednisolone 
dose to >20 mg was considered clinically significant.

 – a switch from a typical maintenance agent (or regimen) to a typical 
induction agent (eg, azathioprine switched to cyclophosphamide or an 
induction rituximab regimen).

 ► Increased
 ► Not increased

https://dx.doi.org/10.1136/rmdopen-2023-003962
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In recent years, the traditional relapse definition 
of BVAS>0 has sometimes been modified to include 
the requirement for ‘an escalation in IS therapy’.9–12 
However, this expanded definition is still unhelpful when 
BVAS is missing (69% in our registry, despite focused 
data entry). We took the view that an increase in IS (in 
a patient with prior remission) is akin to the physician’s 
actionable response to increased vasculitis activity—in 
essence, a more specific BVAS proxy—negating the need 
for a unique DE to represent disease activity. Occasional 
patients had increased disease activity without an ‘IS esca-
lation’, or the converse. We attempted to include ‘clinical 

response to an escalation in IS’ (ie, did signs/symptoms 
reduce in response to treatment?), but this registry field 
was often missing. Ultimately, in settings where BVAS may 
be incorrect or incomplete, an increase in IS (DE5) is a 
simple and objective identifiable action.

The gain in classification accuracy by combining addi-
tional medication, biomarker, imaging and biopsy DEs to 
this augmented BVAS definition (>0 with IS escalation) 
has not been tested. All of these DEs, and crucially their 
trajectories, factor into the expert’s decision- making 
process during adjudication of encounters. The IS status 
(DE4) of the patient at the time of the encounter was 
selected as those off maintenance therapy are at higher 
relapse risk.31 We further interrogated whether the dura-
tion off IS influenced the adjudicated relapse probability 
by creating a three- level value set: currently on, recently 
ceased (within 6 months) or discontinued IS for >6 
months, but no clear signal was observed.

The remaining three DEs (DE1–3) summarise the objec-
tive evidence used by clinicians in determining whether a 
relapse occurred, with the aim of increasing the sensitivity 
and specificity of the CP. Radiology (DE3) is often useful 
in patients with ENT and respiratory involvement and 
may be the only objective evidence available in non- renal 
patients. Imaging is typically only performed when there 
is suspicion of active disease, and hence it is unsurprising 
that this DE is strongly predictive of relapse. We view this 

Table 3 Multilevel logistic regression model to identify the 
relative importance of exploratory variables in retrospective 
identification of relapse

OR (95% CI)

No rise in ANCA level (Ref.) –

<4 fold rise in ANCA level 3.57 (1.34 to 9.50)

4- fold rise in ANCA level 2.56 (0.96 to 6.83)

Bloods/urine not suggestive 
(ref.)

–

Suggestive bloods/urine 5.59 (2.37 to 13.16)

No imaging (ref.) –

Imaging is not suggestive 2.38 (0.54 to 10.54)

Suggestive imaging 30.20 (6.84 to 133.31)

Currently on IS (ref.) –

D/C of IS within 6 months 
prior

1.01 (0.27 to 3.78)

D/C of IS >6 months prior 1.87 (0.81 to 4.34)

IS not increased (ref.) –

IS increased 388.25 (102.68 to 1468.00)

Optimal cut- point (max F1- 
score)

0.4789

F1- score 0.8489

Sensitivity 0.9077

Specificity 0.9519

Positive predictive value 0.7973

Negative predictive value 0.9802

Accuracy 0.9443

Area under ROC curve 0.9763

Prevalence of relapse 0.1724

Complete data, N=train 1209/test 377 (where N refers to the 
number of encounters). The Odds Ratios (ORs) (95% CI) are 
reported. The OR refers to the probability of the encounter being 
adjudicated as a relapse (relative to remission). The bold values 
highlight the variables that are significant in the model.
The performance metrics reported above are based on a singular 
train/test split (the corresponding cross- tabulation is reported 
in online supplemental table 1). The average metrics and 
95% CI over 50 random- split resampling are reported in online 
supplemental table 3.
D/C, discontinuation; IS, immunosuppression; ROC, receiver 
operating characteristic curve.

Figure 2 The precision- recall curve (PRC) of the complete 
five- variable model. The PRC is determined by plotting recall 
(sensitivity/true positive rate) against precision (positive 
predictive value). In the case of ‘rare’ events, such as 
relapse, a PRC is more appropriate than a receiver operating 
characteristic curve which can overestimate performance. 
A ‘perfect’ model is depicted by a PRC in the upper- right, 
passing the (1,1) coordinate. The optimal cut- point of 
0.48 was determined by harmonising precision and recall, 
denoted by the maximal F1- score of 0.85.

https://dx.doi.org/10.1136/rmdopen-2023-003962
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akin to a weighting on the physician’s assessment. DE 2 is 
a composite of at least one suggestive biomarker result(s) 
from a list of five key items. A composite was chosen to 
reflect real- world practice, where not all investigations 
are performed at each encounter. The definition of 
‘new haematuria’ was in line with the BVAS criteria7 and 
the same cut- off for ‘new proteinuria’ was chosen for 
consistency. Although considered a non- specific marker 
of inflammation, when used in combination with other 
DEs, a C reactive protein value above the normal range 
provides additional objective evidence of immune acti-
vation.32 A ‘20% rise in usCD163 with a titre >400 ng/
mmol’ was chosen based on prior work by our group.33 
While we acknowledge usCD163 is not in widespread use 
currently, it is not required for DE2, although it provides 
additional information if available. It is possible, however, 
that the relative weight of DE2, and potentially the algo-
rithm performance overall, may differ when one or more 
of the composite items (eg, usCD163) is not measured. 
Furthermore, automating the completion of these DEs 
removes the physician’s interpretation that ‘significant 
findings are attributable to active vasculitis’, resulting in 
a possibility of incorrect scoring (eg, haematuria due to 
menstruation). However, one isolated incorrect DE will 
not raise the outputted probability enough to give a false 
positive. The addition of these diagnostic tests to our 
proposed algorithm is in keeping with methods described 
in the EHR context, such as the addition of haemoglobin 
A1c or brain natriuretic peptide to diabetes14 or heart 
failure34 definitions, respectively.

The diagnostic and prognostic value of serial ANCA 
testing for relapse is controversial, with heterogeneity 
of multiple study variables,35 36 requiring pragmatic 
decisions in our study design. We chose a ‘fourfold rise 
in ANCA level’ a priori, as the summary metric, based 
on the largest systematic review at the time of design, 
demonstrating its association with an almost threefold 
rise in subsequent relapse.37 A fourfold rise in our assay 
also equates to a positive result at the time of potential 
relapse. Surprisingly, there was minimal difference in the 
effect between a ‘<4 fold rise in ANCA’ and a ‘>4 fold rise 
in ANCA’, suggesting an alternative metric to summarise 
the change in ANCA level may be more appropriate. In 
clinical practice, as in our study, the sampling interval 
(between ANCA measurements) varies. Our 12- month 
interval limit may be too broad; modelling the slope of 
the rise,36 reappearance of ANCA or negative- positive 
switch may be better. Identifying the ‘optimal’ summary 
metric for the ANCA trajectory is a current focus of 
our research group. We will explore exchanging the 
‘fourfold rise’ with this identified parameter in future 
iterations of the CP, which may alter the magnitude of 
effect of this DE. It is also important to highlight that 
84% of our cohort had renal involvement. The superior 
performance of the complete model in this subgroup is 
likely due to the higher predictive value of ANCA rise 
in those with renal involvement,11 and the presence of 
other useful renal biomarkers. External validation is 
required to assess the generalisability of our algorithm 
to non- renal cohorts. The optimal model(s) may differ 

Figure 3 The mean of the F1- score and 95% CI for the 31 rank ordered models, to demonstrate the overall classification 
accuracy of the computable phenotype for relapse. Dotted line denotes F1- score for definition of relapse being BVAS>0 (0.70). 
Black dots (models 1–16) represent models with a classification accuracy superior to BVAS. The grey dots (models 17–22) 
denote models with similar performance to BVAS, and the white dots (models 23–31) represent models that are inferior to 
BVAS when comparing the F1- score as a marker of overall classification accuracy. The full performance metrics for each model 
rank are reported in online supplemental table 3. BVAS, Birmingham Vasculitis Activity Score; IS, immunosuppressive.
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for patients with non- renal disease in terms of relative 
weighting of DEs and indeed the specific DEs included.

CPs should leverage data that are routinely collected. 
All DEs and value sets are identical in the EUVAS model 
registry,38 which has been adopted by multiple countries. 
Most DEs are available in the encounter- based registries 
of the FAIRVASC initiative30 (online supplemental table 
4). This initiative aims to link registries, to facilitate large- 
scale vasculitis research.

Missing data and variation in DEs across registries is a 
fundamental challenge in wide- scale implementation of 
CPs. Therefore, we explored the performance of all poten-
tial combinations of the five selected DEs. We propose 
that all models1–22 with an F1- score similar or superior 
to that of the F1- score point estimate for BVAS>0 (0.70) 
should be considered a reasonable alternative. While ‘IS 
response’(DE5) alone performs very well, the addition 
of other DEs increases specificity. Models 17–22, which 
include ‘suggestive bloods/urine’(DE2) with at least 
either ‘ANCA level’(DE1) or ‘suggestive imaging’(DE3), 
demonstrate the value of the other DEs in accurately 
assigning an ‘adjudicated probability of relapse’ in the 
absence of ‘IS response’. Our second internal validation 
is a proof of concept of our web application to program-
matically apply the CP without requiring coding skills. The 
performance remains strong in this previously unseen 
cohort of incomplete encounters, further demonstrating 
the possibility of accurately assigning a relapse label even 
when the degree of missingness across DEs varies. When 
our CP is applied to other cohorts, the relative impor-
tance of the DEs may vary and we, therefore, encourage 
collection of all variables pending further validation. 
Once externally validated, we recommend adoption of 
the agreed standardised DEs across all vasculitis regis-
tries to support a consistent relapse algorithm regardless 
of location.39 This standardisation goal is supported by 
the National Institutes of Health (NIH) Common Data 
Element initiatives40 and the Value Set Authority Centre41 
of the National Library of Medicine. Outcome Measures 
in Rheumatology supports the development of Core 
Outcome Sets, including data- driven outcome measures, 
for use in clinical research and is therefore a potential 
vehicle for widespread adoption of our proposed CP, 
once validated.

There is no consensus on the optimal performance 
metric on which to assess a model’s performance. There-
fore, we report multiple discrimination metrics, as well 
as calibration, in keeping with guidelines.24 Similarly, the 
best cut- point on which to dichotomise the outcome is 
use- case dependent.42 43 We used the maximal F1- score (a 
harmonic mean of precision and recall) to determine the 
cut- point in our imbalanced dataset (relapse: no relapse 
occurs approximately 1:4).26 In our case, maximising 
both recall, otherwise known as sensitivity (to identify 
relapse cases when they exist, ie, minimising false nega-
tives) and precision, otherwise known as PPV (minimising 
false positive cases) are equally important. In alternative 
scenarios, different trade- offs may be more appropriate. 

For example, in pharmacoepidemiological research, a 
relapsing cohort on which to test a new medication may 
be required and, therefore, specificity is prioritised to 
reduce the potential impact of misclassification on risk 
estimates.43 In our registry, we observed a high number of 
false positives when using the BVAS>0 definition to iden-
tify relapse, denoted by the low PPV (0.55). In practice, 
this equates to approximately 50% of cases being labelled 
as relapse when they were actually in remission. The 
number of false positives reduced substantially using our 
algorithm (PPV 0.80), with little effect of the NPV (ie, 
the number of false negatives, or ‘missed’ relapses). So, 
while false positives are still greater than false negatives 
when using our algorithm, they are substantially reduced 
when compared with the gold- standard BVAS definition. 
As expected, encounters incorrectly labelled as relapses 
by our algorithm tended to be borderline or minor cases, 
where there was also a degree of clinical uncertainty.

Many limitations related to the requirement for prag-
matic study design decisions have already been discussed, 
including the inclusion of non- standard biomarkers and 
the assumptions made in creating DE5: IS response. 
Furthermore, the level of data supporting key definitions 
and the choice of DEs ranged greatly, with some based 
on expert opinion, elicited in a structured fashion. The 
results may have differed if another set of experts were 
involved and/or an alternative elicitation process was 
used. Nonetheless, these data are still valid for the method 
and choices made. Our genetically homogeneous Irish 
cohort is derived from a universal health system and most 
had renal involvement. The upper estimate for prevalent 
patients is approximately 1300.44 45 This registry- based 
study, therefore, equates to about 40% case ascertain-
ment, which may introduce selection bias. However, the 
baseline characteristics of included patients are similar 
to international renal cohorts, suggesting the CP will be 
generalisable to this group. Validation, and potentially 
recalibration, of the CP in other populations (eg, non- 
renal cohorts) is paramount before universal adoption. 
It is plausible that changes in treatment over time, for 
example, the spread of rituximab use, may affect the CP 
performance.

Missingness, often ‘not- at- random’, is ubiquitous in 
observational research and there is no standardised 
methodology for handling this problem.14 Complete- 
case analysis, as used here, is the most common practice 
in longitudinal research.46 In our study, missingness was 
most problematic in ‘ANCA level’, particularly in those 
adjudicated as ‘no relapse’. ESKD was over- represented 
in these excluded incomplete cases in whom ANCA 
testing is performed less frequently. These patients are 
also less likely to attend specialist vasculitis clinics so the 
frequency of these encounters, requiring adjudication, is 
limited.

Crucially, the development, validation and deployment 
of a CP is not a one- off process. It is dynamic, with itera-
tions necessary as new data (eg, biomarkers) and/or the 
way in which this data is measured or collected arises.47 
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CP performance also deteriorates over time due to 
natural shifts in epidemiology and the evolution of treat-
ment and care pathways.14 A ‘living’ CP would create a 
paradigm akin to an audit cycle for data quality, to ensure 
adequate predictive performance is maintained. Embed-
ding of the CP within a knowledge graph, a semantic 
web- based model for representing interconnected data,48 
would enhance interoperability across sites, where under-
lying schemas differ.49

This CP for identifying relapse retrospectively demon-
strates strong performance using objective, readily acces-
sible registry data. Our electronic algorithm can be used 
by researchers to calculate the individualised probability 
of relapse, hence ensuring more accurate outcome ascer-
tainment in real- world research in AAV, where BVAS may 
be incomplete or inaccurate. In addition to our web appli-
cation, the algorithm could be directly imbedded into a 
registry, potentially using a knowledge graph approach, 
thereby enabling flexible selection of the optimal model, 
depending on data availability. The tolerance for what is 
deemed an ‘acceptable’ model and the trade- off between 
performance metrics can be fine- tuned, depending on 
the proposed use. This framework could serve as an 
exemplar for other relapsing- remitting diseases and for 
automating the identification of other key outcomes or 
cohorts in registry data.
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