
Supplementary Information 
 
Collection and quality control for cis pQTL. We gathered summary statistics from publicly available protein 
GWAS’1–4(See Supplementary Table 1 and Supplementary Table 1). We subsequently extracted all independent 
cis-pQTL [clumping at r2 < 0.01], defined as independent SNPs associated with a protein concentration in blood 
lying within 1 megabase of a protein’s cognate gene with at least p < 5x10-08. Further, given our strong a priori 
hypothesis to observe SNP associations with circulating protein concentrations at or adjacent to its cognate 
gene, we have re-processed previously published protein GWAS on the OpenGWAS platform to identify 
additional cis pQTL significant at p < 5x10-05. Specifically, for each protein GWAS where full summary statistics 
were available5, we extracted a genomic region 1 megabase up and downstream of a protein’s cognate gene. 
Where no cis-pQTL was present at p < 5x10-08, we extracted all cis-pQTL present at p < 5x10-05. All variants 
identified were then clumped at r2 < 0.01 using 1000 genomes CEU population to select independent cis-pQTL. 
We additionally excluded SNPs based on weak instrument strength at Fstat < 10 [β2/σ2].  
 

Supplementary Table 1. Details on studies reporting cis pQTL included in cancer risk analyses 

Author Publication Year Platform Sample Size Population Notes 

Zheng et al.1 2020 Olink/Somalogic/xMAP Various European Study 
aggregating 
previous 
protein GWAS 

Folkersen et 
al.3 

2020 Olink 21,756 European  

Ferkingstad 
et al.2 

2021 Somalogic 35,559 European  

Pietzner et 
al.4 

2021 Somalogic 10,708 European  

 
 
Cancer GWAS summary statistics. Nine cancer outcomes and their subtypes (where applicable/available) were 
considered in this study, including cancer of the bladder, breast, endometrium, head and neck, lung, ovary, 
pancreas, kidney, and malignant non-melanoma. Bladder. GWAS summary statistics were obtained for bladder 
cancer risk [ICD-10: C67; 8,988 cases and 11,978 controls] from a study of participants with European ancestry6. 
Breast. GWAS Summary statistics for breast cancer risk overall [ICD-10: C50; 133,384 cases and 113,789 controls] 
and stratified by molecular subtypes [luminal B-like, luminal A-like, luminal /HER2-negative-like, HER2-enriched-
like, and triple negative]7 and by oestrogen receptor status [ER-positive: 69,501 cases and 105,974 controls; ER-
negative: 21,468 cases and 105,974 controls]8. All analyses were in participants of European ancestry. 
Endometrium. Endometrial cancer [ICD-10: C54.1] risk GWAS summary statistics from the Endometrial Cancer 
Association Consortium from 121,885 participants of European ancestry [12,906 cases and 108,979 controls]9. 
Head and Neck. GWAS summary statistics for head and neck cancer [6,034 cases and 6,585 controls] based on 
ICD-10 codes: oral cavity [2,641 cases] (C02.0–C02.9, C03.0–C03.9, C04.0–C04.9 and C05.0–C06.9) and 
oropharynx [2,990 cases] (C01.9, C02.4 and C09.0–C10.9). This study population comprised participants from 
Europe (45.3%), North America (43.9%) and South America (10.8%)10. Lung. GWAS summary statistics for lung 
cancer [ICD-10: C34] risk overall were extracted from a recent large-scale lung cancer meta-analysis between a 
large case-control GWAS for lung cancer [29,266 cases and 56,450 controls] and a GWAS of family history of lung 
cancer in the UK Biobank [48,843 proxy cases and 195,387 controls]11. Total effective sample size was 41,477 
cases and 105,297 controls. Summary statistics for histological subtype were taken from INTEGRAL-ILCCO 
(adenocarcinoma: 11,273 cases, 55,483 controls; squamous cell carcinoma: 7,426, 55,627; small cell carcinoma: 
2,664, 21,444) and by smoking status (never: 2,355, 7,504; ever: 23,223, 16,964)12. All analyses were in 
participants of European ancestry. Ovary. GWAS summary statistics were obtained for invasive epithelial ovarian 
cancer [ICD-10: C56; 25,509 cases and 40,941 controls] among European ancestry participants in the Ovarian 
Cancer Association Consortium (OCAC)13. Data were also extracted for histological subtypes: high-grade serous 
carcinoma [13,037 cases], endometrioid carcinoma [2,810 cases], invasive mucinous ovarian cancer [1,417 
cases], and clear cell carcinoma [1,366 cases], and high/low grade serous carcinoma [14,049 cases]. All subtype 
GWAS had 40,941 controls. Pancreas. GWAS data from pancreatic cancer cases of European ancestry [ICD-10: 
C25; 7,638 cases and 7,364 controls] were obtained from the PanScan (12 studies) and PanC4 (10 studies) 
consortia14 through the National Center for Biotechnology Information database of Genotypes and Phenotypes 



(dbGaP; Study Accession: phs000206.v3.p2 and phs000648.v1.p1; project reference #9314). Kidney. We 
obtained GWAS summary statistics for renal cell carcinoma [ICD-10: C64] in European ancestry [10, 784 cases 
and 20, 406 controls]15. Malignant non-melanoma. GWAS summary statistics for malignant non-melanoma skin 
cancer in European ancestry participants from the UK Biobank [ICD-10: C43; 23,694 cases and 372,016 controls] 
from the OpenGWAS public database16. 

 
MR and colocalization analyses. Cis-pQTL were harmonised with GWAS summary statistics for each cancer 
outcome by matching on rsID where directly available, and by selecting a proxy SNP at r2

max where r2 > 0.8 in 
1000 Genomes Project CEU (European-heritage) population with the index cis-pQTL where necessary. 
Harmonised SNPs were oriented to the protein-increasing allele. Primary risk estimates were odds ratios 
estimated using per-cis-pQTL Wald Ratios [βoutcome/βprotein]. All MR associations with pWald < 0.05 were 
subsequently evaluated for confounding by linkage disequilibrium (LD). Specifically, colocalization was assessed 
for 150kb window centred on the index cis-pQTL using two approaches: conventional colocalization17,18, which 
tests for the presence of a single shared genetic signal and conditional iterative colocalization18; both methods 
estimate the posterior probability [PP4] of a shared causal variant using Bayes factors, however, only the 
conditional iterative method allows for the possibility of multiple independent (but partially correlated) causal 
variants in proximity19. LD matrices for conditional iterative analyses were calculated using the 1000 Genomes 
Project CEU reference population. Colocalization priors were p1=1E-3, p2=1E-4, p12=1E-5, which approximately 
equates to an 80% prior belief that there is only a signal in the protein GWAS and a 0.001% prior belief in favour 
of colocalization. The greatest PP4 from these two colocalization methods [PP4max] was used and we considered 
PP4max > 0.7 as indicating cis-pQTL MR associations were unlikely to have be confounded by LD. Cis-pQTL with 
Bonferroni significant associations (i.e., pWald < 0.05/NProteins where NProteins is the number of unique proteins 
analysed for a given cancer outcome) that also had evidence of colocalization (i.e., PP4max > 0.7) were considered 
noteworthy and subjected to further follow-up analyses. Where multiple independent [r2 < 0.01] cis-pQTL, 
proxying the same protein, had noteworthy associations with the same cancer outcome they were combined 
using the inverse-variance weighted approach20. 
 
Replication of candidate aetiological proteins for cancer risk. Where data were available, we conducted a 
replication of noteworthy cis pQTL MR associations (i.e. PP4max > 0.7 & Bonferroni pWald) using external cancer 
GWAS data from either a meta-analysis of FinnGen r921 and the UK Biobank22, or from FinnGen alone depending 
on the endpoint (see Table 1 for case counts). We additionally calculated a cis-pQTL MR Wald ratio using a 
combined cancer GWAS estimate for the cis-pQTL from a fixed effect meta-analysis of initial and replication 
cancer GWAS summary statistics. We considered directionally concordant risk estimates and cis-pQTL MR Wald 
ratio p < 0.05 in independent replication data to indicate replication. No sample overlap was present between 
samples used to generate protein associations and used to conduct replication analyses apart from lung cancer 
overall summary statistics. Lung cancer overall GWAS is a meta-analysis between data from the INTEGRAL-ILCCO 
consortium and a GWAS of family history for lung cancer in the UK Biobank, which excluded lung cancer cases. 
Therefore, modest overlap exists among controls used in Finngen+UK Biobank lung cancer GWAS. 
 
MR and colocalization PHEWAS analyses. We conducted additional analyses to provide greater context to the 
specificity of a noteworthy protein association with cancer risk using PHEWAS MR and colocalization analyses as 
well as consulting several public databases. We performed these steps to collate information on potential 
harmful or additional beneficial consequences of altering identified protein concentrations in human 
populations. Firstly, we assessed the association of each protein with all available traits on the OpenGWAS 
platform23 where cis-pQTL p < cancer-specific Bonferroni threshold established above using MR and 
colocalization as described above. Only traits with full information needed for analyses were included, such as 
sample size and case proportion. Expression traits were not included. All protein-trait associations identified 
with PP4 > 0.7 in PHEWAS MR and colocalization analyses were subsequently collectively analysed using 
HyprColoc24 to assess the posterior probability that a cis-pQTL window had a shared causal signal across the 
protein of interest, traits identified in OpenGWAS, and the cancer outcome of interest. Results with HyprColoc 
PP4 > 0.7 are reported. Secondly, we conducted a search of several relevant databases with information on 
probability of loss of function intolerance (pLI), exome-sequencing studies, rare-variant association studies, and 
Mendelian genetics not likely to overlap with OpenGWAS traits, including Online Catalog of Human Genes and 
Genetic Disorders (OMIM)25, Genebass26, and the AstraZeneca PheWAS Portal27. For Genebass, we report 
potential loss of function (pLOF) variation associations with traits where SKAT-O p < recommended threshold of 
2.5x10-6, while for results in the AstraZeneca PheWAS Portal we consider gene-trait associations that pass the 



recommended threshold of p < 2.1x10-9. For OMIM database, we considered reports presented for allelic 
variants. 
 
Methods for the target classification, drug analysis, and clinical trial analysis. UniProt and NIH Pharos 
Consortium databases were used to obtain information about cancer risk proteins. Information on drugs and 
associated targets was obtained using the most recent release of the DrugBank and NIH Pharos Consortium. In 
DrugBank, drugs were mapped to their main identifiers (international non-proprietary name if available). Drug-
Target interactions were considered as is, and we included interactions with pharmacological action "yes" and 
"unknown" and excluded agents with pharmacological action "no". Drug-Target mapping was performed 
through gene names and did not distinguish protein isoforms encoded by the same gene. Approval of drugs was 
checked using information from U.S. Food and Drug Administration (FDA) via provided Drugs@FDA search 
portal. Mapping to the pharos consortium was performed through a target gene name. Ligand lists were 
downloaded for every investigated target. We grouped ligands based on their names, and clinical trial mapping 
was performed for agents that had a drug-like name or a code identifier (but not SID or CHEMBL id). Clinical 
status of the drug was checked based on its appearance in the ClinicalTrials.gov. Drugs were considered clinical 
if they were detected in ClinicalTrials.gov but did not reach FDA approval. Information on associated trials was 
collected both overall and for a specific target-disease pairs. Clinical trials were characterized based on their 
associated phases. These phases were classified in the order starting from the earliest phase. The following 
classification was considered: Not Applicable, Early Phase 1, Phase 1, Phase 1|Phase 2, Phase 2, Phase 2|Phase 
3, Phase 3, Phase 4. Some of the trials contained two phases simultaneously, and thus both phases were 
included. Trials were grouped based on their activity status. All statuses including: Active, not recruiting, 
Enrolling by invitation, Not yet recruiting, Recruiting were considered as Active, whereas all other statuses were 
labeled as Not active. Targets were also labeled based on their development activity status. A target was 
considered Active if there was any related trial with active status during the data analysis. If the last completed 
study was earlier than three years before the data analysis, the target development was considered Inactive. 
Otherwise, it was classified as Probably active.  
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