
Speeding up the Detection of Adsorbate Lateral Interactions in
Graph-Theoretical Kinetic Monte Carlo Simulations
Raz L. Benson, Sai Sharath Yadavalli, and Michail Stamatakis*

Cite This: J. Phys. Chem. A 2023, 127, 10307−10319 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Kinetic Monte Carlo (KMC) has become an
indispensable tool in heterogeneous catalyst discovery, but realistic
simulations remain computationally demanding on account of the
need to capture complex and long-range lateral interactions
between adsorbates. The Zacros software package (https://
zacros.org) adopts a graph-theoretical cluster expansion (CE)
framework that allows such interactions to be computed with a
high degree of generality and fidelity. This involves solving a series
of subgraph isomorphism problems in order to identify relevant
interaction patterns in the lattice. In an effort to reduce the
computational burden, we have adapted two well-known subgraph
isomorphism algorithms, namely, VF2 and RI, for use in KMC
simulations and implemented them in Zacros. To benchmark their performance, we simulate a previously established model of
catalytic NO oxidation, treating the O* lateral interactions with a series of progressively larger CEs. For CEs with long-range
interactions, VF2 and RI are found to provide impressive speedups relative to simpler algorithms. RI performs best, giving speedups
reaching more than 150× when combined with OpenMP parallelization. We also simulate a recently developed methane cracking
model, showing that RI offers significant improvements in performance at high surface coverages.

■ INTRODUCTION
Kinetic modeling techniques play a pivotal role in the mission
to engineer new, more sustainable materials for heterogeneous
catalysis.1−6 They complement experimental studies by
facilitating a detailed understanding of surface reaction
mechanisms and accurate predictions of the catalyst activity
and selectivity. The “gold standard” of modern kinetic
modeling is kinetic Monte Carlo (KMC), a stochastic
simulation method that treats elementary chemical processes
as discrete events.7−16

Formally, an ensemble of KMC trajectories constitutes a
numerical solution to the Markovian master equation for the
system, which expresses its time evolution in terms of the rates
of transitions between a discrete set of memoryless “states”.8 In
the “on-lattice” variations of KMC used to study catalytic
surfaces, each state typically corresponds to one configuration
of adsorbates on the two-dimensional lattice.9 The memory-
lessness arises from the assumption that enough time passes
between successive events for the current and past
configurations to decorrelate. The transitions are the
elementary processes, which include adsorptions, desorptions,
diffusional hops, and single-step chemical reactions, with rate
constants typically estimated using transition state theory
(TST).10 It is important to recognize that the microscopic
TST parameters, which may be determined using density
functional theory (DFT) calculations, serve as input to the
KMC simulation.

A number of different exact algorithms for KMC are known,
some of them under multiple names, but they give statistically
equivalent results.17 Figure 1, taken from ref 15, depicts the
general structure common to all KMC algorithms. We will
focus in particular on the first-reaction method (FRM),
developed originally by Gillespie for well-mixed systems8 and
then formulated for on-lattice chemistry by Jansen and co-
workers.17−19 In the FRM, one identifies every possible lattice
process that could occur given the current state of the system
and places it in a priority queue based on a provisional
occurrence time. This occurrence time is sampled from an
exponential distribution with the rate parameter being equal to
the appropriate rate constant, which may depend on the local
configuration. The process of highest priority (earliest
occurrence time) is executed, and the state is updated
accordingly. This change of state will affect which processes
can take place in future and may change their rate constants, so
the occurrence times and process queue are also updated as
necessary.8,17−19
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One of the key practical advantages of on-lattice KMC over
less expensive microkinetic modeling20 is its ability to capture
the effects of spatially correlated adlayers in a formally exact
way. Spatial correlations may arise even in ideal or near-ideal
adlayers, for instance, if the diffusion of one or more adsorbates
is slow relative to the reaction.21,22 More commonly, however,
correlations are attributed to lateral interactions between
adsorbates.23−30 In KMC, one is at liberty to define the
microscopic rate parameters as functions of the adlayer
structure, a popular approach to which is to use Brønsted−
Evans−Polanyi (BEP) relations that correlate the activation
and reaction energies of an elementary event.31−33 Thus, lateral
interactions may be incorporated explicitly, and doing so has
been shown to have a strong effect on predictions of catalytic
activity.25,33−36

Carrying out high-fidelity (i.e., ab initio) calculations of the
microscopic rate parameters (e.g., activation energies) for
every relevant configuration of adsorbates on the lattice would
be prohibitively time-consuming. One can, however, fit
mathematical models of lateral interactions to well-selected
ab initio data. A popular approach is to represent the total
energy of the lattice and its adsorbates using a so-called cluster
expansion (CE), in which each term associates a particular
geometric pattern or “cluster” of adsorbates with an effective
interaction energy. The problem of computing the adlayer
energy is thus reduced to the identification of these patterns on
the surface.33,37−39 In principle, the CE can represent any
adlayer energy exactly, but, in practice, it must be truncated to
a manageable number of terms.40

Subject to the memorylessness (Markov) property described
above, the KMC method is applicable to surface chemistries of
almost arbitrary complexity, involving not just lateral
interactions but also multiple binding site types and multi-
dentate adsorbate species. In practice, achieving an efficient
implementation that can boast such a high degree of generality
presents a significant technical challenge. To this end,
Stamatakis and Vlachos10 formulated a graph-theoretical
KMC framework in which the lattice and elementary steps
are represented as connected graphs. The elementary steps are

then mapped to feasible lattice processes by solving subgraph
isomorphism problems, where the elementary step and lattice
graphs adopt the roles of the “query” and “data” graph,
respectively.41 Nielsen et al.33 extended the formalism to
incorporate the CE framework for adsorbate lateral inter-
actions. Each cluster or “figure” appearing in the CE
Hamiltonian has a graph representation and is mapped to
lattice sites involved in lateral interactions by solving a
subgraph isomorphism problem, analogous to the means of
identifying possible lattice processes.33 GT-KMC with the
FRM is implemented in our Fortran 2003 software package,
Zacros.16,33,41−45

Zacros has been used successfully to simulate a range of
catalytic systems.46−60 Still, while accounting for lateral
interactions is possible, it is often extremely time-consuming,
especially when the interactions are long-range. Long-range
interactions are characterized by the contribution of large
clusters to the CE; the cost of solving a subgraph isomorphism
problem increases sharply with the number of vertices in the
“query graph”, which in this case represents the cluster. Several
approaches may be adopted to reduce the computational
burden without further approximation, arguably the most
straightforward of which is shared-memory parallel processing.
Nielsen et al. introduced parallelization in Zacros with
OpenMP, which was shown to offer considerable speedups
depending on the CE employed.33 Applied to a model of
catalytic NO oxidation on Pt(111), with a particularly
challenging CE encompassing up to eighth nearest-neighbor
pairwise interactions between adsorbed oxygen atoms (12
figures in total),32,61 the parallelization was found to be almost
perfectly efficient. The benefit was less pronounced when only
shorter-range lateral interactions were considered.33 In any
case, the speedup will always be limited by the number of
threads available as well as the number of clusters that need to
be detected. More recently, Ravipati et al. implemented a
caching scheme to reduce the number of repetitive pattern
detections that need to take place. This works by caching the
number of lattice instances of each interaction pattern
involving the products of each lattice process, then updating
this number efficiently (by detecting only the necessary
patterns) when a reaction happens in that lattice process’s
neighborhood. Utilizing this scheme in combination with
parallel processing was shown to accelerate KMC execution by
a factor of up to 20×, using the same 12-figure CE NO
oxidation model mentioned above.42

A conceptually different approach to evaluating the CE
Hamiltonian was proposed by Hess,39 in which a look-up table
is utilized to specify the interaction energy of a given set of
lattice sites as a function of their occupancies. To accelerate the
calculations, Hess also developed the supercluster contraction
scheme, whereby the number of terms in the CE Hamiltonian
is effectively reduced by grouping them together. This requires
only inexpensive postprocessing of the original CE and does
not introduce any further approximations.39 The scheme was
introduced in tandem with two other algorithmic improve-
ments, namely, the use of subtraction schemes for updating
kinetic parameters and the supersite approach to optimize the
selection of the next lattice process. It is important to note,
however, that the latter two approaches are applicable
specifically to “direct method”-KMC,8 also known as the
variable step-size method,19 whereas Zacros implements the
first-reaction method as described above. Nonetheless, the
supercluster approach shows promise as a standalone

Figure 1. General structure of a KMC algorithm presented as a
flowchart. Reproduced with permission from ref 15. Copyright 2022,
Authors.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c05581
J. Phys. Chem. A 2023, 127, 10307−10319

10308

https://pubs.acs.org/doi/10.1021/acs.jpca.3c05581?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05581?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05581?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05581?fig=fig1&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c05581?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


acceleration scheme, and further work will be required to
determine whether it can be adapted and automated for
compatibility with the graph-theoretical CE formalism of
Nielsen et al.33 Other promising recent advancements include
the RMC-MKM approach of Kumar and Chatterjee,62 which
employs reverse Monte Carlo (RMC) to enhance microkinetic
modeling (MKM) with a short-range order parameter that can
capture spatial correlations between adsorbates.
Within the context of GT-KMC, another avenue worth

exploring is the optimization of the pattern detection
algorithms themselves. In Zacros 3.01, which is the most
recent release, a simple depth-first search (DFS) strategy is
used to solve the relevant subgraph isomorphism problems,
incorporating rudimentary techniques to reduce the search
space based on ideas introduced by Ullmann.63 However,
subgraph isomorphism is of central importance in a diverse
range of fields, including, for instance, cheminformatics,64

electronic engineering,65 and cybersecurity.66 This has driven
the development of a large number of alternative algorithms.
Notable examples from recent decades include the VF
algorithm67 and its variants (VF2,68 VF2++,69 VF3,70 and
VF3-Light71), the RI algorithm,72 McGregor’s algorithm,73 and
focus search.74

Which algorithm performs best depends on the properties of
the graphs under consideration, such as their sizes, their
densities, and whether they are planar. Preliminary inves-
tigations using a hexagonal lattice have identified the VF2 and
RI algorithms as good candidates for detecting lateral
interactions in GT-KMC.75 Routines based on these
algorithms have now been implemented in Zacros as part of
this work, alongside the default “refined DFS” (rDFS) solver.
For consistency with refs 33 and 42, we assess the performance
using the same series of NO oxidation models studied therein.
Quite remarkably, for the 12-figure CE, we obtain acceleration
factors exceeding 125× by using VF2 or RI in tandem with
shared-memory parallel processing. In stark contrast, neither
VF2 nor RI offer any benefit (and in fact slow the KMC
execution down) when only first nearest-neighbor interactions
are considered. We also simulate a more complex system,
namely, a model of methane cracking on Ni(111) developed
by Yadavalli et al., which involves a 62-figure cluster
expansion.76 It is shown that RI offers significant speedups
when the surface coverage is high such that there are many
lateral interaction patterns to detect.
The rest of the paper is organized as follows. Methods

contains an overview of the GT-KMC and CE methodology,
followed by a discussion of the subgraph isomorphism
algorithms under consideration and their implementation in
Zacros. Results & Discussion details our performance bench-
marks, and finally, Conclusions summarizes our findings and
their significance.

■ METHODS
Theory. Here, we provide an overview of the graph-

theoretical KMC (GT-KMC) framework and cluster expansion
(CE) formalism for treating adsorbate lateral interactions. For
a more detailed discussion, the reader is referred to refs 33, 41,
42.

Lattice and Its Coverage. Consider a lattice comprising N
possible adsorption sites spanning N site types. The
foundation of GT-KMC is a connected, undirected graph,

=( , ), which represents this lattice. Each vertex

={ }i N1, . . . , represents a unique site, while each edge
×i j( , ) ( ) represents a neighboring relation

between two sites. The physical nature of site i is specified
by a three-element vector (formally, a tuple) ×si

2, where
={ }N1, . . . , . The elements of si denote the site type and

the x- and y-coordinates, respectively. The lattice sites can be
d e s c r i b e d c o l l e c t i v e l y b y t h e ×N 3 a r r a y

= { } = { }= =ss s s,. . . , ( )N i j j i
N

1 , 1
3

1.
To be able to describe the state (coverage) of the system,

suppose that there are +N 1 different possible surface species
(adsorbates). One of these is a vacancy (representing the
absence of any adsorbate), and this is given an index of 0. The
denticity of species = { }n 00 , where ={ }N1, . . . , ,
is given by dn ∈ {1, ..., dmax}, where dmax is the maximum
denticity of all the species (note that d0 = 1). The state of site i
is thus fully described by a three-element vector,

× × { }d1, . . . ,i 0 max , where ={ }N1, . . . , and N
is the total number of distinct entities (adsorbates and
vacancies) occupying the lattice sites. The elements of σi
specify the entity label, the species, and the subunit thereof
adsorbed on site i, respectively. The state of the entire surface
i s a c c o r d i n g l y d e s c r i b e d b y t h e ×N 3 a r r a y

= { } = { }= =,. . . , ( )N i j j i
N

1 , 1
3

1. One can easily show that
=N d1/i i ,2

. Note that any observable property of the
system must be invariant under permutations of the entity
labels, which are entirely arbitrary.

Elementary Steps. While s does not change, σ evolves as the
simulation progresses. This occurs via a chemical reaction
mechanism consisting of several possible elementary steps,
each of which can be represented by a graph. The graph
representing elementary step α is denoted by = ( , ),
where the vertices Ξα = {1,···,NΞα} correspond to the sites
involved and the edges Ψα ⊆ (Ξα × Ξα) describe their
connectivity on the lattice. It is important to highlight that the
vertices of do not correspond to any particular set of lattice
sites but rather comprise a generic site pattern, instances of
which may occur in several locations on the lattice. Unlike for
lattice sites, no positional data needs to be specified for the
sites of an elementary step, so the nature of site i of step α can
be fully captured by the scalar variable = { }0i, 0 . The
case of ξα,i = 0 arises when the site concerned can be of any
type. If necessary, geometric constraints can be defined by
specifying the angles between sets of three vertices

=i j kangle( ; , , ) ijk (1)

where i, j, k ∈ Ξα, and 0 ≤ ϑijkα < 2π. The initial and final
coverage patterns of step α are fixed properties of ,
represented by arrays × × { }d, 1, . . . ,i i,

ini
,

fin
0 max

with i ∈ Ξα.
To be able to model the kinetics of the system, one needs to

know the propensity of each elementary step. We assume that
the kinetic rate constant for step α can be fitted to the
Arrhenius equation

=
‡i

k
jjjjj

y
{
zzzzzk T A T

E
k T

( , , ) ( ) exp
( , )

B (2)

where Aα(T) is the pre-exponential factor, Eα
‡(σ,σ′) is the

activation energy, kB is the Boltzmann constant, T is
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temperature, and σ and σ′ describe the lattice state before and
after the reaction, respectively. In practice, Aα is usually
parameterized using TST.2,77,78 The activation energy is fitted
to a BEP relationship31

=

+ [ ]

‡

‡

E E

E E E

( , ) max(0, ( , ),

( , ) ),,0 ,0 (3)

where ΔEα(σ, σ′) is the reaction energy and ωα is the
proximity factor. The quantities ΔEα,0 and Eα,0

‡ represent the
reaction and activation energies in the absence of any
spectators (adsorbates not directly involved in the elementary
step). The reverse of step α is denoted by α̅ and its activation
is given by

=‡ ‡E E E( , ) ( , ) ( , ) (4)

which stems from the principle of microscopic reversibility.
Adsorbate Lateral Interactions. In principle, one could

calculate ΔEα(σ, σ′) on the fly using ab initio methods, but this
would be prohibitively time-consuming. Instead, ab initio (or
other) data collected before the simulation can be used to
parameterize a Hamiltonian for the adsorbate layer, ( ),
which captures the physical and chemical interactions of the
adsorbates with the lattice and with each other. Thus,

= +E E( , ) ( ) ( ) gas (5)

where ΔEα
gas is the change in energy of all gas species involved

in step α.
If there is only one monodentate adsorbed species and one

site type, the state vector can be expressed in the simplified
form = { },. . . ,i N , where σi is equal to 1 if site i is
occupied or 0 if it is unoccupied. Then a suitable functional
form for the Hamiltonian is the lattice-gas expansion79−81

= + +
!

+
!

+

H h J

J

( )
1
2

1
3

. . . ,

i
i

i j
ij i j

i j k
ijk i j k

0
,

, , (6)

where H0, h, Jij, Jijk, ... are parameters to be fitted. Specifically,
H0 may be interpreted as the energy of the empty lattice, h as
an adsorption energy, and Jij and Jijk as two- and three-body
effective interaction energies. In practice, the lattice-gas
expansion is truncated to a finite number of terms. To recast
eq 6 in a graph-theoretical form, we recognize that each
product σiσj... evaluating to 1 represents a particular pattern of
adsorbates interacting on the lattice, while the coefficient Jij...
gives the associated effective interaction energy. Given the two-
dimensional translational symmetry of the lattice, the value of
Jij... must depend only on the geometry of the pattern and not
on its absolute position. We can therefore divide the
summation into contributions from F distinct pattern geo-
metries or “clusters”, also referred to as figures. Each such
cluster can be represented by a connected graph

= ( , ), with γ ∈ {1, ..., F}. The associated coverage
pattern is described by the scalars χγ,i ∈ Φγ which take values of
0 or 1, with i ∈ Φγ. The Hamiltonian can then be expressed as

= ·
=

( )
ECI

GM
NCE ( )

F

1 (7)

where ECIγ is the effective cluster interaction for figure γ, GMγ
is the graph multiplicity (essentially a symmetry number), and
NCEγ is the number of instances of figure γ on the lattice (each
of which must have the correct coverage pattern specified by
χγ). Note that each ECI equates, in general, to a linear
combination of the parameters H0, hi, Jij, Jijk, ... of eq 6.

The advantage of eq 7 is that it immediately generalizes to
more complex surfaces, involving N site types and N
adsorbate species of arbitrary denticity. The site type of vertex i
of cluster γ is specified by i, . A three-element vector χγ,i ∈
[ × × { }] { }d1, . . . , &0 max describes the associated
coverage pattern, where & = (&, &, &) denotes a state that is
unspecified. This is often the case for intermediate sites in
long-range interaction patterns, which can be vacant or
occupied by any species; the corresponding graph vertices
are dubbed “nonspecific”.42 Geometric constraints can be
defined where necessary by specifying the angles between sets
of three vertices

=i j kangle( ; , , ) ijk (8)

where i, j, k ∈ Φγ and 0 ≤ ϕijk
γ < 2π.

By way of illustration, let us consider the energy changes that
might occur when a CO molecule desorbs from a square
lattice. In our simplified model, the cluster expansion contains
just two terms, depicted graphically in Figure 2a. The first

involves a 2-site cluster and corresponds to a first nearest-
neighbor (1NN) lateral interaction. Both sites are occupied by
monodentate CO*; hence, the coverage pattern can be
described as

= { }(1,1,1), (2,1,1)1 (9)

The second term involves a right-angled, 3-site cluster and
corresponds to a second nearest-neighbor (2NN) interaction.
While the terminal sites are each occupied by CO*, the state of
the central site is unspecified. Hence,

= { }(1,1,1), (&,&, &), (2,1,1)2 (10)

and the geometric constraint is given by

Figure 2. (a) Graphical representation of the 1NN and 2NN lateral
interaction patterns contributing to a simplified cluster expansion
Hamiltonian for CO on a square lattice. (b) Schematic representation
of a CO desorption event with the 1NN and 2NN interactions
highlighted in orange and blue, respectively. The desorption event
eliminates both 1NN interactions, while the 2NN interaction (in
which the central site is nonspecific) remains intact.
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=angle( ;1,2,3) /22 (11)

Figure 2b depicts the initial and final lattice states for a
particular CO desorption event involving two spectators. The
relevant 1NN and 2NN interaction patterns are colored orange
and blue, respectively. As illustrated, the desorption event
eliminates two 1NN interactions; the GT-KMC algorithm
must correspondingly remove these from the list of valid
pattern instances (see ref 42). On the other hand, the 2NN
interaction remains intact because the intermediate site thereof
is nonspecific. In fact, two such “L”-shaped patterns are present
on the lattice. However, they correspond physically to the
same effective interaction, and only one will be included in the
list of valid pattern instances (for nonspecific sites, our
algorithms seek only one valid mapping to avoid unnecessary
proliferation of interaction pattern instances).42

Subgraph Isomorphism Problems. A key component of the
GT-KMC simulation is compiling the list of potential lattice
processes, given the state of the adsorbate layer at a particular
time. To achieve this, one needs to identify all chemically
sound mappings from the sites of each elementary step to the
sites of the lattice. In the language of graph theory, this means
finding all unique subgraphs of the lattice graph , that are
isomorphic to each elementary step graph .41 In this
“subgraph isomorphism problem”, takes the role of the “data
graph”, while takes the role of the “query graph”.82

For systems with adsorbate lateral interactions, another key
component of the simulation is calculating the lattice state-
dependent activation energies using eqs 3 and 4. To do so
requires evaluation of the cluster expansion (CE) of eq 7. For
each cluster γ, one must count the number of NCEγ of
corresponding lateral interactions on the lattice. Similar to
detecting lattice processes, this amounts to solving a subgraph
isomorphism problem, except that the query graph is now
instead of .33 Specifically, we search for each injective
function : that meets the following criteria (in which
we drop the index γ for brevity):
Crit. 1:
For every edge connecting two sites i and j of the cluster

graph, there is an edge connecting the corresponding sites
i j( ), ( ) in the lattice graph

i j i j( , ) , ( ( ), ( )) (12)

Crit. 2:

(a) The type of each site i in the cluster graph is compatible
with that of its corresponding site i( ) in the lattice
graph

{ }i s, ,0i i( ),1 (13)

(b)The coverage pattern of the cluster graph is
compatible with that of its corresponding lattice
subgraph

{ }i , ( ( ), , ), &i i i i( ) ,1 ,2 ,3 (14)

where

{ } { }d d: 1, . . . , 1/ 1, . . . , 1/
i i

i ,2 i,2
(15)

maps the entities involved in the interaction to those present
on the lattice.

(c)Whenever specified, the angles between three vertices
of the cluster graph are the same as the angles between
the corresponding lattice graph vertices

=i j k i j kangle( ; ( ), ( ), ( )) angle( ; , , ) (16)

Taken together, Crit. 2(a−c) can be summarized by the
requirement that the vertices of are compatible with those of
the corresponding lattice subgraph. It is possible to introduce
additional criteria under this heading, such as specifying the
absolute orientation of the subgraph with respect to a lattice
vector.

Note that the lattice process detection problem is defined by
analogous criteria, but we focus on lateral interactions as these
are more relevant to accelerating KMC simulations (see
below). Note also that in practice, one does not need to
identify all possible cluster mappings “from scratch” for every
new lattice state. After each event occurs, it is only necessary to
calculate activation energies for any newly feasible lattice
processes, i.e., those in which the product species participate,
as well as any processes already queued that are in the
neighborhood of that which just took place. Full algorithmic
details of the kinetic constant update steps are described in refs
33 and 42. The key point is that only patterns that involve the
relevant product species and any neighboring adsorbates need
to be detected to calculate a particular activation energy.
Algorithms. Basic Depth-First Search Algorithms. The

subgraph isomorphism problem is well-studied.63,67−75,82−84 In
the general case, it is NP-complete, with the time taken to
solve it scaling exponentially with the size of the query graph.85

For specific cases, however, efficient solutions can be obtained
via carefully constructed rules and procedures for reducing the
search space.

Consider a brute-force matching approach in which one
loops over the vertices of the query graph (query vertices) and
pairs them, in turn, with each of the vertices of the data graph
(data vertices). When every query vertex is paired, this
constitutes a trial mapping : , where we have
adopted the notation of energetic clusters but dropped the
index γ for brevity. If meets both (sets of) criteria detailed
above, namely, every query edge has a corresponding data edge
and any vertex/edge compatibility rules are obeyed, then it
describes a subgraph isomorphism = ; otherwise, it is
discarded. This procedure is guaranteed to find all subgraph
isomorphisms and can be visualized as the traversal of the
search tree shown in Figure 3. Each node of the tree labeled i, j
indicates the pairing of query vertex i ∈ Φ with data vertex
j , where, in this case, NΦ = 2 and =N 3. In general, the tree
will contain N N branches; thus, the time taken to complete
the pattern matching grows exponentially with the size of the

Figure 3. Illustration of the brute-force search tree for subgraph
isomorphisms where the query graph contains 2 vertices and the data
graph contains 3 vertices. Each node i, j corresponds to a trial
mapping of query vertex i to data vertex j.
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query graph, as noted above. Furthermore, the order in which
the nodes are traversed is important. For large data graphs, a
breadth-first search (BFS), in which all nodes at a given depth
(level) are explored before moving onto the next level, would
suffer large memory requirements. A DFS strategy is, therefore,
more pragmatic, whereby each branch is explored to its end
before backtracking and moving onto the next branch.
While the brute-force DFS strategy, denoted henceforth by

bfDFS, circumvents large memory requirements, traversing the
entire search tree is still impractical for all but the smallest data
graphs. Established subgraph isomorphism algorithms aim to
drastically reduce the size of the search space without
introducing too much computational overhead. A straightfor-
ward refinement to bfDFS is to preemptively reject mappings
in which the same data vertex is paired with more than one
query vertex. The first, fifth, and ninth branches of the tree in
Figure 3 would then be effectively discarded or “pruned”. In
addition to this, one can check the feasibility of each partial
trial mapping each time a new query−data vertex pair is
introduced, rather than waiting until every query vertex is
paired. If a partial (trial) mapping violates any of the subgraph
isomorphism criteria, then it is abandoned, thus pruning the
prevailing branch of the search tree.
Both of these “pruning rules” are exploited in the default

pattern matching routines of Zacros 3.01, used for detecting
both lattice processes and lateral interactions. A further
refinement exploits the fact that only the patterns involving
newly adsorbed product species must be detected following
each event. Each trial mapping therefore starts with at least one
query−data vertex pair already “locked in” at the root of the
search tree. Following ref 42, we can say that the
corresponding adsorbate is “fixed” on the pattern, with the
number of “fixed” vertex pairs equal to the denticity of that
adsorbate. Clearly, it is pointless to try to map lattice sites
beyond a “local neighborhood”, the size of which depends on
that of the pattern under consideration. More precisely, this
“local neighborhood” can be found by computing the length l
of the longest path that connects a fixed query vertex with a
nonfixed one and finding all the data vertices that exist within l
edges of the corresponding “fixed” data vertices (the latter
being those mapped to the “fixed” query vertices). This way,
one obtains the set loc that essentially contains the (nonfixed)
data vertices within l edges of the adsorbate. One can rule out
matching any data vertices not in loc, and include only
elements of loc in the trial mappings, leading to a potentially
drastic reduction in the size of the search tree. We refer to our
“refined” DFS algorithm as rDFS, rather than “Ullmann’s
algorithm” as in ref 41, so as to avoid confusion with the bit-
matrix manipulations described in Ullmann’s original paper.63

However, the pruning rules involved in rDFS are inspired by
those described therein.

More Advanced Depth-First Search Algorithms: VF2 and
RI. While the rDFS algorithm has been used successfully to
solve subgraph isomorphism problems in a range of GT-KMC
simulations, the computational burden can be significant when
the query graphs are large. This is relevant mostly for the
detection of lateral interactions as this is usually the simulation
bottleneck. To reduce the search space more aggressively,
algorithms such as VF2 and RI start with a strategic choice of
the order in which the query vertices will be matched, unlike
rDFS in which the order is arbitrary. VF2 adopts a simple,
dynamic ordering strategy, whereby one always searches for

matches of the query vertex that has the highest degree
(number of neighbors) among the neighbors of those
previously matched.68 This way, query vertices with more
stringent connectivity requirements are generally matched
earlier. In contrast, RI adopts a static ordering strategy in
which the sequence μ of query vertices is determined and
stored before any matching takes place. This ordering strategy
follows a similar principle as that of the VF2 algorithm but
specifically tries to favor query vertices that are “more
connected” to those already matched.72 This is achieved by
assigning a lexicographic score to each query vertex i ∉ μ(i ∈
Φ) based on the cardinality of three different sets; the highest
scoring vertex is then appended to μ. This process is iterated
until μ includes all the query vertices. For a given query vertex i
∉ μ the three sets in order of priority are as follows:

1. Svis is the set of vertices in μ that are neighbors of vertex
i.

2. Sneig is the set of vertices in μ that are neighbors of at
least one query vertex outside μ that is a neighbor of
vertex i.

3. Sunv is the set of vertices that are neither in μ nor
neighbors of vertices in μ but are neighbors of vertex i.

The ordering strategies just described provide any benefit
only if they are combined with sensible choices for the domain
of each query vertex i, denoted by domain(i). This is the set of
data vertices to which one attempts to map query vertex i; in
the case of rDFS, as we have seen, it includes (rather crudely)
all of the unmatched vertices within l edges of the fixed
adsorbates. In VF2, domain(i) includes just the unmatched
neighbors of the previously matched data vertices.68 RI is
stricter still, with domain(i) comprising just the unmatched
neighbors of a single data vertex that has previously been
matched with a neighbor of i. More precisely, while computing
the ordered sequence of query vertices μ, we also determine
the “parent” pt(i) of each vertex i ∈ μ, where pt(i) is defined as
the first (i.e., lowest-index) member of μ that is a neighbor of i.
Then, domain(i) consists of the unmatched neighbors of

i(pt( )).72

Finally, while all of the isomorphism algorithms search for
matches meeting the same criteria, the order and manner in
which these criteria are checked can affect the execution speed.
In rDFS and VF2, for each new trial pairing of i with i( ), one
first checks whether the connectivity satisfies Crit. 1, i.e.,
whether there exists a data edge i j( ( ), ( )) for each
neighbor j of query vertex i. If so, Crit. 2 is checked by
comparing the site types and coverages of query vertex i and
data vertex i( ), as well as any relevant geometric constraints.
A different approach is taken in RI to account for the more
aggressive connectivity-based pruning rules imposed by this
algorithm. Thus, based on the assumption that relatively few
trial mappings will fail to satisfy Crit. 1, Crit. 2 is checked first.
Furthermore, Crit. 1 is only checked rigorously if is first
found to satisfy the weaker requirement that data vertex i( )
has at least as many neighbors as query vertex i.
Implementation in Zacros. Pattern Detection Routines.

The original (“legacy”) implementation of rDFS included in
Zacros 3.01 remains the default option for detecting both
lattice processes (above a certain level of complexity; see
below) and lateral interactions. We refer to that implementa-
tion as rDFS-lgy. An alternative “modern” implementation,
rDFS-mdn, of the same algorithm is also included as a method
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of a stand-alone subgraph isomorphism class. While rDFS-lgy
and rDFS-mdn are algorithmically equivalent, the former does
not employ recursion; instead, it carries out an explicit loop
over trial mappings of the nonfixed query vertices to members
of loc. One may view this as iterating through partial
permutations of loc. Each permutation is built up one site at a
time such that invalid (“unfeasible”) partial mappings can be
immediately rejected.
In contrast, rDFS-mdn is implemented as a recursive

subroutine (Scheme S1 in the Supporting Information). The
recursion is expected to carry some computational overhead,
but the code structure lends itself to the development of more
advanced algorithms more naturally than that of rDFS-lgy.
Specifically, the “matching” part of the algorithm, in which the
next query vertex and its domain are determined, is
implemented as a separate method (Scheme S2), as is the
“feasibility” check, which determines whether a given (partial)
trial mapping satisfies Crit. 1 and 2 (Scheme S3). In fact, Crit.
2 is assessed by calling an external feasibility or “compatibility”
function (Scheme S4), which is not part of the subgraph
isomorphism module but rather of that handling the lattice
state. Note that all the pseudocode presented in Schemes S1−
S10, while written with lateral interactions in mind, is equally
applicable to lattice process detection by substituting the
relevant variables , , , etc.
Our VF2 implementation (Scheme S5) calls a unique

matching function (Scheme S6) but the same feasibility
function as rDFS-mdn. In contrast, our RI implementation
(Scheme S7) calls both a unique matching function (Scheme
S8) and a unique feasibility function (Scheme S9), which
enables Crit. 2 to be checked before Crit. 1, as explained in the
section Algorithms. Furthermore, the query vertices must be
ordered in a preprocessing step, which is carried out by means
of calling the RI_Order procedure (Scheme S10).
While lateral interactions are always detected using either

rDFS-lgy or one of the recursive subgraph isomorphism
procedures, these approaches are applied only to lattice
processes when the mechanism (i.e., set of all elementary
steps) exceeds a certain level of complexity. Specifically, when
the mechanism involves only up to two-site steps and
monodentate species, it is faster to follow a simpler approach.
For each entity, the code identifies the species and loops over
the elementary steps in which it can participate. In the case of a
one-site step, provided the site type is correct, the
corresponding lattice process is added to the queue. For a
two-site step, a second loop is required to cycle over the
neighbors of the first site.

Parallelization. Refs 33 and 42 detail how shared-memory
(OpenMP) parallelization has already been used to accelerate
GT-KMC simulations with Zacros. The most costly part of the
simulation is the update of rate constants (and, in turn, future
event times) following the execution of each event since this is
where the detection of lateral interactions takes place.
OpenMP parallelization was therefore implemented over the
loop that cycles through the scheduled events within the
neighborhood of the most recent lattice process. Thus, the new
rate constants are calculated in parallel and stored in thread-
private arrays.
We have extended the parallelization to work for simulations

utilizing the new subgraph isomorphism class for lateral
interaction detection. To achieve this, a thread-private instance
of this class must be created for each thread. We also create

thread-private instances of the class that handles the data
required for the external feasibility check.

■ RESULTS AND DISCUSSION
NO Oxidation on Pt(111). Our first set of benchmarks is

performed on the NO oxidation model established by
Schneider and co-workers32,61 and adapted within the KMC
framework by Nielsen et al.33 This model considers atomic
oxygen on Pt(111) as the only adsorbate in the system,
denoted as O*, and assumes that adsorbed oxygen and gaseous
NO are in quasi-equilibrium with gaseous NO2; thus, the
dissociation of gaseous O2 is the rate-limiting step. Under-
pinning this model is a hierarchy of CEs for O* developed by
Schmidt et al.,61 who used DFT calculations to fit progressively
larger CEs, capturing longer ranges of lateral interactions.
Schmidt et al. thus found that a 12-figure CE, including up to
eighth nearest-neighbor pairwise interactions and two triplets
(three-body interactions), is sufficient to predict formation
energies and ground states accurately.61 Wu et al.32 then
employed this model in a study that combined equilibrium
MC with a microscopic rate-averaging scheme to predict the
apparent rate of catalytic NO oxidation on Pt(111).

Based on the CEs of Schmidt et al.61 and the kinetic
parameters calculated by Wu et al.,32 Nielsen et al.33 built a
corresponding set of GT-KMC models for the same NO
oxidation reaction. Specifically, they benchmarked an earlier
version of Zacros in which the detection of lateral interactions
was already parallelized but limited to what we now call rDFS-
lgy. They found that the execution was more than 4 orders of
magnitude slower when using the most complex energetic
model (12-figure) compared to the simplest (3-figure),
illustrating the need to reduce the computational expense of
computing long-range lateral interactions. Parallelizing the rate
constant updates using OpenMP was shown to be highly
effective for the 12-figure model, with execution speed scaling
almost linearly. In contrast, parallelization with the 3-figure
model was found to yield only modest speedups, plateauing at
around 2× as the number of threads approaches 16. This was
explained by the increasing time required to synchronize the
threads when collecting the updated rate constants, which
eventually becomes the simulation bottleneck when the
number of rate constants affected by each event is small (i.e.,
the lateral interactions are short-range).

We have employed the same NO/Pt(111) reaction model
and set of CEs to assess the improvements in performance
yielded by our “modern” pattern detection routines. As
described in ref 33, NO oxidation proceeds via the following
reversible elementary steps

+ * + *H IooNO(g) O NO (g)
k

k
2

red

oxi

(17a)

+ * * + *H IooO (g) 2 O O
k

k
2

des

ads

(17b)

* + * * + *H IooO O
k

k

diff

diff

(17c)

These constitute NO oxidation, O2 dissociative adsorption,
and O* diffusion, respectively. Details of the graph
representations and kinetic parameters can be found in ref
33. The energetic models and corresponding graph patterns
are also described in detail in ref 33, but to guide our
discussion, in Figure 4, we provide a qualitative illustration of
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the figures included in each CE. The 3-figure expansion
includes only point (1-body) terms and the first nearest-
neighbor (1NN) effective O* − O* interaction, while the 5-,
8-, and 12-figure expansions cover up to 3NN, 5NN, and 8NN
terms, respectively. The 8- and 12-figure expansions also
include some triplet terms.
Our simulations employed a lattice size of 42 × 42 (1764

sites), with the temperature fixed at 480 K, total pressure at 1
bar, and the molar fractions of the reactive gas species at yOd2

=
0.1, yNO = 4.139938 × 10−9, and yNOd2

= 1.522998 × 10−9.
Starting from a steady-state adlayer structure, we ran a series of
simulations using each combination of CE and pattern
detection algorithm, with the rate constant updates parallelized
over different numbers of threads. Each simulation was
terminated after 1 h of clock time had elapsed. All simulations
were carried out on type D nodes of the computational cluster
Myriad@UCL, each containing 36 cores and 192 GB of RAM.
We obtained two sets of results to compare the GNU and Intel
Fortran compilers. Our performance metric is the acceleration
factor, defined as the rate of event execution relative to that for
a single-threaded run using rDFS-lgy for lateral interaction
detection. Note that distinct from a “serial” run, a “single-
threaded” run employs the OpenMP-enabled Zacros executable
with the environment variable OMP_NUM_THREADS set to
1. It is also worth highlighting that the reaction mechanism
involves only one- and two-site patterns and monodentate
adsorbates, so lattice process detection is always carried out
using the simpler method for elementary event detection
described in Implementation in Zacros. This is not a
simulation bottleneck.
The GNU and Intel acceleration factors are plotted with

respect to the number of threads (processors) in Figures 5 and
6, respectively. For the 3-figure CE, as discovered by Nielsen et
al.33 and noted above, parallelization provides only modest
speedups relative to single-threaded runs. The maximum
acceleration factor is greater for the GNU-compiled version of
Zacros than for the Intel-compiled version, although,
interestingly, this maximum is reached at 16 threads, beyond

which the event execution starts to slow down. Using any of
the “modern” pattern detection routines also slows down the
simulation. The latter is indicative of computational overheads
involved in recursion and in initializing and manipulating the
data structures needed to represent each mapping . The
comparable performances of rDFS-mdn, VF2, and RI suggest
that the “aggressive” approaches to search space reduction
adopted in VF2 and RI are, in this case, excessive. This point is
explored further below.

For the 5-figure CE, VF2 and RI display similar performance
to rDFS-lgy. With the GNU version, rDFS-mdn is considerably
slower and parallelizes less efficiently. In the Supporting
Information, we show that this effect is somewhat lattice size-
dependent as for large lattices, data duplication among threads
becomes a bottleneck. Interestingly, with Intel-compiled
Zacros, rDFS-mdn performs almost as well as the other
algorithms. Overall, our results suggest that VF2 and RI offer
some algorithmic advantage in terms of reducing the search
space, but this is only just able to compensate for the overhead
of recursion.

In stark contrast, simulations run with the 8- and 12-figure
CEs can be sped up drastically by using either VF2 or RI to
detect lateral interactions. Taking the Intel results as an

Figure 4. Energetic interaction patterns included in Schmidt et al.’s
hierarchy of cluster expansions (CEs) for O* on Pt(111).61 The
underlying lattice is omitted for simplicity; for more detail, see Figure
2 of ref 33. We use blue filled circles to represent lattice sites occupied
by O* and white filled circles to represent “nonspecific sites” (i.e.,
sites with an “unspecified” state), which may participate in the pattern
regardless of their occupancy (see the section Adsorbate Lateral
Interactions).

Figure 5. Plots of acceleration factors as a function of the number of
threads for GT-KMC simulations of NO oxidation on Pt(111). The
acceleration factor is defined with respect to a single-threaded run
using rDFS-lgy to detect lateral interactions. These results were
obtained using Zacros compiled with GNU Fortran.

Figure 6. As in Figure 5 but obtained using Zacros compiled with
Intel Fortran.
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example, single-threaded runs with VF2 progress around 7 and
18 times faster than those using rDFS-lgy for the 8- and 12-
figure CEs, respectively. The RI algorithm proves to be
marginally faster still, with acceleration factors of roughly 9 and
24. Combining RI with parallelization over 32 processors, the
acceleration factors reach 42 (8-figure) and 154 (12-figure).
They are even more impressive with GNU Fortran
compilation, reaching 53 (8-figure) and 180 (12-figure).
It is pertinent to ask why the VF2 and RI algorithms provide

such large speedups relative to rDFS with the larger CEs but
none at all with the smallest CE. To address this question, we
examined the effectiveness of the search space reduction
performed by each algorithm, keeping in mind that the pruning
rules are based solely on connectivity and thus do nothing to
eliminate partial matches violating Crit. 2 (compatibility).
Accordingly, we define the “partial match success rate”
(PMSR) to be the fraction of attempted partial matches
found to satisfy Crit. 1. The ideal scenario, in which the search
tree contains the smallest possible number of branches, is
represented by a PMSR of 1.00, i.e., when every partial match
attempted has acceptable connectivity.
Table 1 gives the PMSRs of lateral interaction detection for

a series of 1 h, single-threaded simulations of NO oxidation on

Pt(111). All three algorithms display “ideal” behavior for the 3-
figure CE; hence, as Figures 5 and 6 revealed, there is no
advantage to the intricate ordering strategies and pruning rules
of VF2 or RI relative to the simplistic approach of rDFS.
Additionally, larger figures are added to the CE and the PMSR
of rDFS drops drastically, with only 5% of attempted partial
matches satisfying Crit. 1 in the 12-figure case. In contrast, the
PMSR of VF2 drops much more gradually, reaching a
minimum of 0.46, which is consistent with Figures 5 and 6
and indicates that the search space reduction is fairly effective,
even for large query graphs. Remarkably, the PMSR of RI
remains at 1.00 up to and including the 8-figure CE, dropping
only slightly to 0.89 for the 12-figure CE. RI is therefore almost
as efficient as any algorithm can be for detecting lateral
interactions in NO/Pt(111), insofar as one is concerned with
minimizing the size of the search tree.
In practice, Table 1 only tells part of the story. For the 12-

figure expansion, while RI is almost twice as effective as VF2 at
eliminating partial matches that violate Crit. 1, the two
algorithms yield similar KMC execution speeds. This is
because much of the execution time is spent on checking
whether Crit. 2 is satisfied, which involves comparing the site
types, occupancies, and geometric properties of cluster and
lattice vertices. As explained in More Advanced Depth-First
Search Algorithms: VF2 and RI, RI performs this time-
consuming step before checking Crit. 1, whereas rDFS and
VF2 check Crit. 1 first. Therefore, since ∼90% of partial
matches in RI satisfy Crit. 1 (see Table 1), we know that VF2
needs to check Crit. 2 ∼90% as many times as RI. Profiling
with Arm MAP86 revealed that for a single-threaded Zacros

run, ∼60% of the total time is spent on checking Crit. 2 when
RI is used to detect lateral interactions. In contrast, when VF2
is used, checking Crit. 2 accounts for ∼40% of the total time.
Methane Cracking on Ni(111). As a more realistic

demonstration of the improvement in performance yielded by
our modern pattern detection routines, we used Zacros to carry
out KMC simulations of methane cracking on Ni(111). The
reaction model was developed by Yadavalli et al.,76 with a
complex mechanism involving 2 site types, 5 adsorbate species,
and 10 reversible elementary steps. These include all of the C−
H activation steps leading from CH4 up to C + 4H, such that
the kinetics of dehydrogenation are captured in detail, whereas
the formation of coke is captured at the level of
thermodynamics only. A 62-figure CE is used to capture the
effective cluster interactions between adsorbed CHx species (x
= 0, ..., 3) and covalently bonded C and CH species. This
comprises pairwise interaction parameters up to the 3NN level,
as well as several higher-level clusters, with the largest figure in
the CE containing 5 sites. For full details of the mechanism
and energetics model, the reader is referred to ref 76.

We set out to compare the performance of rDFS-lgy with
that of RI, in both cases parallelizing the rate constant updates
over 32 processors. Simulations were initialized with an empty
lattice, a temperature of 1000 K and a pressure of 10.01 bar.
To shed light on how surface coverage affects the execution
speed, we stopped and restarted each simulation at KMC time
intervals of 0.2 ms, up to a final KMC time of 5 ms. Thus, as a
dynamic performance metric, we could estimate the rate of
clock time advancement with respect to KMC time

=S
t

clock

KMC (18)

where τclock and tKMC denote the clock time and KMC time,
respectively. Note that better performance (i.e., faster KMC
execution) is characterized by a smaller value of S. As for the
NO oxidation system, all methane cracking simulations were
carried out on type D nodes of the computational cluster
Myriad@UCL. The compiler used was GNU Fortran.

In Figure 7, we plot S as a function of tKMC for the methane
cracking model with two different lattice sizes, 10 × 10 and 20
× 20. The results for each lattice size have been averaged over

Table 1. Partial Match Success Rates

size of CE PMSR

rDFS VF2 RI

3 1.00 1.00 1.00
5 0.30 0.68 1.00
8 0.08 0.61 1.00
12 0.05 0.46 0.89

Figure 7. Results of GT-KMC performance benchmarks of the
methane cracking model introduced in ref 76. We plot S against tKMC,
where S is the clock time advanced per unit of KMC time (see eq 18)
and tKMC is the KMC time. These results were obtained using Zacros
compiled with GNU Fortran.
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5 repetitions of the simulation (all using identical pseudoran-
dom number streams). Notwithstanding some fluctuation, it is
clear that S generally decreases as the simulation progresses,
meaning that the KMC time advances more quickly. This is
because when the lattice is mostly empty, the process queue
contains a large number of adsorption events, each of which
increments the KMC time by a relatively small amount. In
contrast, as the system approaches steady-state behavior, the
surface becomes “poisoned” by carbonaceous species, resulting
in slower dynamics and, correspondingly, large interarrival
times.
Turning our attention to the method of detecting lateral

interactions, rDFS-lgy and RI show similar performance in the
early stages of the simulation. This is easy to explain: on a
surface with low coverage, the adlayer is almost ideal; thus,
there are few interaction patterns to detect. As the CH/C
species accumulate on the surface (comprising mostly ring-
based structures), long-range interactions between them start
to emerge; thus, the fraction of computational time dedicated
to solving subgraph isomorphism problems increases. Accord-
ingly, we see that the speedup offered by RI becomes more
significant, exceeding 2× at tKMC = 5 ms. Thus, the long time
scales involved in the surface poisoning process have become
more readily accessible, simplifying the elucidation of the
“terminal” state of coking.76

■ CONCLUSIONS
In the graph-theoretical kinetic Monte Carlo (GT-KMC)
framework, which is implemented in the Zacros software
package, adsorbate lateral interactions are described by using
the cluster expansion (CE) formalism. There, the formation
energy of the adlayer configuration is expanded as a series of
effective “cluster” interaction energies. To accurately compute
the activation energies of elementary lattice processes, one
then has to identify mappings between the clusters/figures of
the CE and patterns of sites on the lattice. This amounts to
solving a series of subgraph isomorphism problems and is
analogous to the way the lattice processes are themselves
identified.33,41

When the lateral interactions span long distances, the
associated pattern detection becomes computationally highly
demanding. Previous work to reduce this demand has focused
on developing schemes for efficient parallel processing33 and
caching,42 with fairly promising results. Here, we have built on
this work by directly addressing the algorithms used to identify
subgraph isomorphisms. The original choice of algorithm for
Zacros, termed rDFS, adopts a fairly crude approach to
reducing the size of the search space that is not always
effective. We implemented two more sophisticated algorithms,
namely, VF2 and RI, alongside rDFS in a “family” of recursive
procedures. The last of these procedures is termed rDFS-mdn
for the sake of distinguishability from the “legacy”
implementation rDFS-lgy of the same algorithm, which
remains in the code as well.
We benchmarked the performance of our “modern” pattern

detection routines on a hierarchy of models of catalytic NO
oxidation on Pt(111), developed in refs 32, 33, 61. These
models treat the interactions between adsorbed oxygen atoms
with varying levels of accuracy. The simplest of the models
includes just 3 figures in the CE Hamiltonian, incorporating
only up to first nearest-neighbor (1NN) pairwise interactions,
while the most complex model includes 12 figures,
incorporating up to 8NN pairwise interactions alongside

some three-body terms. We found that VF2 and RI provide
large improvements in performance with the more complex
energetic models, yielding acceleration factors up to ∼180
(compared to single-thread runs) when combined with shared-
memory parallel processing. On the other hand, rDFS-lgy is
the best option when one only needs to detect short-range
patterns, for which a simple search-space reduction strategy is
adequate.

As a more realistic test, we compared the performance of RI
to that of rDFS-lgy for computing lateral interactions in
simulations of methane cracking on Ni(111).76 At low surface
coverage, when the number of adsorbate molecules interacting
is small, the difference in performance was found to be small as
well. However, as the lattice approached a poisoned state, the
simulation using RI progressed more than twice as fast.

We conclude that KMC simulations of catalytic surface
phenomena may be considerably accelerated by using
sophisticated subgraph isomorphism algorithms for the
detection of lateral interactions. Further, the acceleration is
most significant when the adlayer contains a large number of
long-range patterns. We expect that our implementation of
VF2 and RI in Zacros will advance catalyst discovery by
enabling simulations involving complex energetic models that
were previously considered intractable.
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