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Abstract

For a binary matrix X, the Boolean rank br(X) is the smallest integer for

which X can be factorised into the Boolean matrix product of two binary

matrices A and B with inner dimension br(X). The isolation number

i(X) of X is the maximum number of 1s no two of which are in a same

row, column or a 2× 2 submatrix of all 1s.

In Part I. of this thesis, we continue Anna Lubiw’s study [77] of firm

matrices. X is said to be firm if i(X) = br(X) and this equality holds for

all its submatrices. We show that the stronger concept of superfirmness of

X is equivalent to having no odd holes in the rectangle cover graph of X,

the graph in which br(X) and i(X) translate to the clique cover number

and the independence number, respectively. A binary matrix is minimally

non-firm if it is not firm but all of its proper submatrices are. We introduce

a matrix operation that leads to generalised binary matrices and, under

some conditions, preserves firmness and superfirmness. Then we use this

matrix operation to derive several infinite families of minimally non-firm

matrices. To the best of our knowledge, minimally non-firm matrices have

not been studied before and our constructions provide the first infinite

families of them.

In Part II. of this thesis, we explore rank-k binary matrix factorisation

(k-BMF). In k-BMF, we are given an m×n binary matrix X with possibly

missing entries and need to find two binary matrices A and B of dimen-

sion m × k and k × n respectively, which minimise the distance between

X and the Boolean matrix product of A and B in the squared Frobenius

norm. We present a compact and two exponential size integer programs

(IPs) for k-BMF and show that the compact IP has a weak LP relaxation,

while the exponential size IPs have a stronger equivalent LP relaxation.

We introduce a new objective function, which differs from the traditional

squared Frobenius objective in attributing a weight to zero entries of the



input matrix that is proportional to the number of times a zero is erro-

neously covered in a rank-k factorisation. For one of the exponential size

IPs we describe a computational approach based on column generation.

Experimental results on synthetic and real word datasets suggest that our

integer programming approach is competitive against available methods

for k-BMF and provides accurate low-error factorisations.
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Chapter 1

Introduction

This thesis is about two problems related to factorising binary matrices under Boolean

arithmetic. Boolean arithmetic on binary numbers {0, 1} interprets 1s as ’True’ and 0s

as ’False’ and uses logical disjunction (∨) as Boolean addition and logical conjunction

(∧) as Boolean multiplication. Boolean multiplication on binary numbers a, b ∈ {0, 1}
coincides with standard multiplication, hence we can simply write a b in place of a∧b.
Boolean addition however, is different from standard addition as it obeys the law

1 ∨ 1 = 1, which is usually called Boolean non-linearity.

Boolean arithmetic can be extended to binary matrices. The Boolean matrix

product of two binary matrices A ∈ {0, 1}m×k and B ∈ {0, 1}k×n, denoted by A ◦B,

is equal to the binary matrix X ∈ {0, 1}m×n whose entries are given by

xi,j =
k∨
`=1

(ai,` b`,j).

The Boolean rank [55, Definition 1.4.2] of a binary matrix X is the smallest integer

br(X) for which there exist binary matrices A and B with inner dimension br(X)

such that X = A ◦B. For instance, the matrix below (empty entries corresponding

to 0s) has an exact binary matrix factorisation under Boolean arithmetic with inner

dimension 2 as shown below, hence its Boolean rank is at most 2,1 1
1 1 1

1 1

 =

1
1 1

1

 ◦ [1 1
1 1

]
.

The two problems that we explore in this thesis are both related to the concept

of Boolean rank. In Part I, we study some problems related to exact binary matrix

factorisation. More specifically, we study binary matrices for which some special

relation holds between the Boolean rank and its weak dual, the isolation number. An
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isolated set of a binary matrix is a subset of its 1s no two of which are in a same row,

column or a 2× 2 submatrix of all 1s. The isolation number i(X) of a binary matrix

X is the cardinality of a maximum isolated set. For instance, the below matrix has

isolation number 2 and several maximum isolated sets, two of which are indicated, 1 1
1 1 1

1 1

 ,
1 1

1 1 1
1 1

 .
It can be shown that the isolation number is always less than or equal to the Boolean

rank for all binary matrices. A binary matrix X is said to be firm [77] if i(X) = br(X)

and i(X′) = br(X′) also holds for all submatrices X′ of X. In Part I, we explore firm

matrices and try to study them through minimal counterexamples. We define a

binary matrix X to be minimally non-firm if X has i(X) < br(X) but for all proper

submatrices X′ of X we have i(X′) = br(X′). Our main contribution in Part I. is to

list several infinite families of minimally non-firm matrices.

In Part II, we look at a problem called rank-k binary matrix factorisation (k-

BMF). In this problem we are given an input binary matrix X and a small positive

integer k and need to compute a binary matrix Z of Boolean rank at most k which

best approximates the input matrix X. We approach this problem through integer

programming. We give and analyse three integer programming formulations for k-

BMF. Then we present a computational approach based on column generation and

explore its applicability on artificial and real world datasets.

In the remainder of this chapter, we give an in depth introduction to the Boolean

rank, isolation number and all the concepts that are useful for exact and rank-k binary

matrix factorisation. In particular, we explore both problems in a graph theory setting

and give a detailed account on their complexity status. At the beginning of both parts

of thesis, we will state our detailed contributions and the layout for the part.

1.1 Boolean rank and rectangles

Let X ∈ {0, 1}m×n. The Boolean rank of X is the smallest integer br(X) for which

there exist matrices A ∈ {0, 1}m×br(X) and B ∈ {0, 1}br(X)×n such that X = A ◦ B

[55, Definition 1.4.2]. A rank-1 binary matrix is of the form ab> for some non-zero

binary vectors a, b and is often referred to as a rectangle matrix [21, pg 178]. The

definition of Boolean rank implies that X can be decomposed as the Boolean sum of

2



br(X) rank-1 binary matrices,

X =

br(X)∨
`=1

a`b
>
` ,

where a` are columns of A and b>` are rows of B. For example, the Boolean rank-2

matrix below is the Boolean sum of two rectangle matrices,1 1
1 1 1

1 1

 =

1 1
1 1

 ∨
 1 1

1 1

 . (1.1.1)

From the definition, a few immediate properties of the Boolean rank follow. Let

In be the n × n identity matrix. Taking A = Im and B = X or A = X and B = In

shows that br(X) ≤ min{m,n}. In addition, the Boolean rank is invariant under

transposition, permutation of rows and columns, and appending duplicate rows or

columns to X. The invariance under row and column duplication holds because if

a row of X is duplicated, it suffices to duplicate the corresponding row of A in any

factorisation of X. Due to this, we may consider only matrices that have no row and

no column duplicates. Furthermore, for any Y ∈ {0, 1}n×t, we have br(X ◦ Y) ≤
min{br(X), br(Y)} as, for instance A ◦ (B ◦Y) is a valid factorisation of X ◦Y.

For some positive integer m let [m] := {1, 2, . . . ,m}. We define the support of the

1s and 0s of a binary matrix X ∈ {0, 1}m×n by

supp1(X) = {(i, j) ∈ [m]× [n] : xi,j = 1},
supp0(X) = {(i, j) ∈ [m]× [n] : xi,j = 0}.

Let I ⊆ [m] and J ⊆ [n] be a subset of row and column indices of X, respectively. A

submatrix of X identified by I × J is obtained by deleting the rows not in I and the

columns not in J . If I ( [m] or J ( [n] then I × J is a proper submatrix of X. A

submatrix of X identified by I × J is called a rectangle if I × J ⊆ supp1(X). In this

case, we may simply say that I × J is a rectangle of X. Observe, that if I × J is a

rectangle of X, then the rank-1 binary matrix ab> with ai = bj = 1 for i ∈ I, j ∈ J
satisfies ab> ≤ X, where ≤ is always understood entry-wise for matrices. I × J is

called a maximal rectangle of X if it is not contained in any other rectangle of X.

Let R(X) denote all the rectangles of X and let Rmax(X) denote the set of maximal

rectangles of X.

In terms of rectangles, one may give an equivalent combinatorial definition of the

Boolean rank: The Boolean rank of a binary matrix X is the minimum number of

rectangles needed to cover the 1s of X. This is the reason that in the literature the

Boolean rank is often also referred to as the rectangle cover number. In fact, one

3



need only to consider maximal rectangles, hence it can be assumed that a minimum

rectangle cover of X consists only of maximal rectangles. For instance, our toy matrix

in Equation (1.1.1) may be covered by two maximal rectangles {1, 2} × {1, 2} and

{2, 3} × {2, 3} that correspond to the rectangle matrices given earlier.

A related problem to computing the Boolean rank, is to find the largest rectangle

of X. In the maximum rectangle problem a rectangle of X with the maximum number

of 1s is sought. Let mr(X) denote the number of 1s in a maximum rectangle of X.

As any rectangle of X has size at most mr(X), we need at least | supp1(X)|/mr(X)

rectangles to cover all 1s of X. Therefore, the following simple bound holds on br(X):⌈
| supp1(X)|
mr(X)

⌉
≤ br(X). (1.1.2)

1.1.1 Boolean row and column rank

Considering the Boolean rank of binary matrices, it is natural to define similar con-

cepts to some basic real linear algebra in the Boolean setting. We give an introduction

to Boolean linear algebra as it is defined in the book of Kim [55].

A Boolean subspace of {0, 1}n is a subset of {0, 1}n containing the zero vector

and closed under Boolean addition (∨). The Boolean span of k binary vectors W =

{w1, . . . ,wk} ⊆ {0, 1}n is the set of all binary vectors that can be expressed as the

Boolean sum of vectors in W using binary coefficients,

span(W ) = {a ∈ {0, 1}n : a =
k∨
`=1

α`w`, α` ∈ {0, 1}}.

We say b ∈ {0, 1}n is Boolean dependent on W if b ∈ span(W ) and Boolean inde-

pendent from W if b 6∈ span(W ). The set of k vectors W is said to be a Boolean

independent set if for all ` ∈ [k] w` ∈ W is Boolean independent from W \ {w`},
i.e. none of the vectors w` can be expressed as the Boolean sum of the other vectors

in W . A subset B of a Boolean subspace S is called a Boolean basis of S if B is a

Boolean independent set and span(B) = S. If S is a Boolean subspace, then there

exists a unique subset B of S which is the basis of S [55, Theorem 1.1.1]. We denote

this unique basis of S by basis(S).

Similarly to real matrices we may define row and column spaces of binary matrices

under the Boolean arithmetic setting. The Boolean row space (or Boolean column

space) of X ∈ {0, 1}m×n is defined as the Boolean span of the row (column) vectors

of X,
BRS(X) = span({Xi,: : i ∈ [m]}) ⊆ {0, 1}n

BCS(X) = span({X:,j : j ∈ [n]}) ⊆ {0, 1}m,

4



where Xi,: and X:,j denote the i-th row and the j-th column of X, respectively. It

can be proved [55, Theorem 1.2.3] that the Boolean row and column space have the

same cardinality for all binary matrices,

|BRS(X)| = |BCS(X)|.

The Boolean row and column ranks of X are defined to be the cardinality of the

unique Boolean basis of BRS(X) and BCS(X), respectively [55, Definition 1.2.15].

Equivalently, the Boolean row (column) rank of X is the maximum number of rows

(columns) of X that form a Boolean independent set. The Boolean column and

row rank are not necessarily equal as shown in [55]. Let X be the binary matrix in

Equation (1.1.3) below. X has full Boolean column rank of 4, but it only has Boolean

row rank 3 as its second row is the Boolean sum of the first and third rows.
1 1
1 1 1
1 1

1 1 1

 (1.1.3)

Furthermore, the Boolean row and column ranks usually differ from the Boolean

rank that we have seen earlier, which is also called Boolean factor rank. Let X be the

binary matrix in Equation (1.1.4) below. X has Boolean row and column rank equal

to 4 while the Boolean factor rank of it is 3.
1 1
1 1 1

1 1 1
1 1

 (1.1.4)

In fact, an equivalent definition of the Boolean factor rank can be given as the least

integer br(X) such that BCS(X) (or equivalently, BRS(X)) is contained in a space

spanned by br(X) vectors [55, pg. 38].

If a binary matrix X ∈ {0, 1}m×n has Boolean row rank r then each row of X can

be written as the Boolean sum of r rows of X. Therefore we have, X = A ◦B, where

B is r× n binary matrix that contains the r rows that form the Boolean basis of the

Boolean row space of X and A is the m× r matrix which contains the coefficients of

expressing each row of X as the Boolean sum of rows of B. This form shows that for

any binary matrix the Boolean factor rank is less than or equal to the Boolean row

rank and the Boolean column rank [55, Theorem 1.4.1],

br(X) ≤ min {|basis(BRS(X))|, |basis(BCS(X))|} . (1.1.5)

5



A lower bound on br(X) presented in [94, Theorem 8.2] may also be obtained

using Boolean row and column spaces. Let X = A ◦B be an optimal factorisation of

X ∈ {0, 1}m×n with inner dimension of br(X). Any vector y in the Boolean column

space of X, y ∈ BCS(X) can be written as y = X◦v for some v ∈ {0, 1}n. Using the

optimal factorisation of X, we can then write y = A◦w where B◦v = w ∈ {0, 1}br(X).

Since this holds for any y ∈ BCS(X), and there are at most 2br(X) many choices for

the binary vector w, we have |BCS(X)| ≤ 2br(X). Therefore, we have the following

lower bound on the Boolean factor rank,

dlog |BCS(X)|e ≤ br(X), (1.1.6)

where log denotes the base 2 logarithm.

This technique can also be used to prove another lower bound for matrices that

have no repeated columns. So let X not have any repeated columns, and let X = A◦B
be an optimal factorisation. For each j ∈ [n], the j-th column of X may be written

as X:,j = X ◦ ej = (A ◦ B) ◦ ej = A ◦ B:,j, where ej is the j-th standard unit

column vector of appropriate dimension. This shows that B cannot have any repeated

columns either. As there are 2br(X) possibilities for a column of B, we have n ≤ 2br(X).

This reasoning clearly also holds for matrices that have no repeated rows. Hence if

X has no repeated rows nor repeated columns then,

max{dlogme, dlog ne} ≤ br(X). (1.1.7)

This lower bound can be further strengthened for a smaller class of matrices in

which rows are pairwise incomparable. Let X be called a row-clutter matrix if for

any distinct i, ` ∈ [m] we have Xi,: 6≤ X`,:. The name comes from the definition of

clutters. A clutter is a family of subsets F on a finite ground set such that for any

two distinct sets F,G ∈ F we have F ( G. Sperner’s lemma shows that a clutter

on an n element ground set can have size at most
(

n
bn/2c

)
. Hence if X ∈ {0, 1}m×n

is a row-clutter matrix, then m ≤
(

n
bn/2c

)
. Furthermore, in any optimal factorisation

X = A ◦ B, A must be a row clutter matrix as well as Xi,: = Ai,: ◦ B. Therefore,

m ≤
(

br(X)
bbrX/2c

)
and we obtain the following lower bound on row clutter matrices which

was first proved by Caen et al. [28],

s(m) := min

{
p : m ≤

(
p

bp/2c

)}
≤ br(X). (1.1.8)
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1.1.2 Relation to other matrix ranks

A related concept to the Boolean rank is the integer rank or the rectangle partition

number. The integer rank of a binary matrix X ∈ {0, 1}m×n is the smallest integer r

for which there exist matrices A ∈ {0, 1}m×r and B ∈ {0, 1}r×n such that X = AB,

using ordinary matrix multiplication. In terms of rectangles, the integer rank is equal

to the minimum number of disjoint rectangles needed to cover the 1s of X. It is easy

to see that the Boolean rank is always less than or equal to the integer rank.

Much theoretical interest in the Boolean rank is driven by the fact that it provides

a lower bound on the nonnegative rank. The nonnegative rank of a nonnegative

matrix Y ∈ Rm×n
+ is the smallest integer t for which there exist nonnegative matrices

W ∈ Rm×t
+ and H ∈ Rt×n

+ for which Y = WH, under standard matrix multiplication.

It can be readily checked that if X is the binary matrix which has a 1 in the position

of every nonzero entry of a nonnegative matrix Y and 0 otherwise, then the Boolean

rank of X is a lower bound on the nonnegative rank of Y.

This property makes the Boolean rank and any lower bound on it a powerful tool

in the field of linear extension complexity of polytopes [106]. In extension complexity,

the relationship between facets and vertices of a polytope is encoded in a slack matrix

which is non-negative, and the nonnegative rank of the slack matrix equals the min-

imum size of an extended formulation of the polytope. Further applications of the

Boolean rank can be found in the field of communication complexity. In that context,

the ceiling of the base 2 logarithm of the Boolean rank of the binary communication

matrix of a function f : {0, 1}n × {0, 1}n → {0, 1} equals the non-deterministic com-

munication complexity of the function [107].

Interestingly, the Boolean rank does not have a clear relationship to the standard

real rank as one can find examples in which the Boolean rank is strictly less or strictly

greater than the real rank. For instance, the matrix on the left hand side below has

Boolean rank 2 and real rank 3 while the matrix on the right hand side has real rank

3 and Boolean rank 4,1 1
1 1 1

1 1

 ,


1 1
1 1

1 1
1 1

 .

1.2 Isolation number

A frequently useful lower bound on br(X) is defined in 1983 by Gregory et al. [44].

An isolated set of X is a set S ⊆ supp1(X) such that for all distinct (i1, j1), (i2, j2)
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in S we have

(1) i1 6= i2 and j1 6= j2, and

(2) (i1, j2) ∈ supp0(X) or (i2, j1) ∈ supp0(X) or both.

The cardinality of a maximum isolated set in X is called the isolation number of X

and denoted by i(X) [44]. In the field of communication complexity, i(X) is often

referred to as the fooling set bound [66].

If X has isolation number i(X), then there are i(X) 1s of X that cannot be

contained in a common rectangle, hence at least i(X) rectangles are needed to cover

the 1s of X. Therefore, the isolation number provides a lower bound on the Boolean

rank. In many cases however, the inequality between the Boolean rank and isolation

number may be strict.

Example 1.2.1. The most well known example where the isolation number and the

Boolean rank are not equal is the complement of the identity matrix. This matrix

is defined as In := Jn − In, where Jn is the n × n matrix of all 1s and In is the

identity matrix. Since In is a row-clutter matrix (and also column-clutter) we have

s(n) ≤ br(In), where s(n) is defined in Equation (1.1.8). In [28] (where the row-

clutter matrix bound is proved), a feasible factorisation of inner dimension s(n) is

given for In, hence we have

br(In) = s(n) = min

{
p : n ≤

(
p

bp/2c

)}
∼ log(n).

Observing that for (i, j) ∈ supp1(In) to belong to an isolated set of size k, the number

of 0s in row i together with the number of 0s in column j has to be at least k − 1.

Any 1 of In has exactly one 0 in its row and one 0 in its column, therefore it can

belong to an isolated set of size at most 3. Thus we have i(In) ≤ 3 (which seems to be

a folklore result for which we could not find a clear earliest reference). For n = 1, 2

we have i(I1) = 0 and i(I2) = 2. On the other hand, for n ≥ 3, it is easy to find an

isolated set of size 3, hence we have

i(In) = 3 for all n ≥ 3.

The above example gives an idea for a simple upper bound on the isolation number

based on the number of the 0s of the matrix. For each (i, j) ∈ supp1(X), we have

that any isolated S containing (i, j) satisfies,

(i, j) ∈ S =⇒ |S| ≤ | supp0(Xi,:)|+ | supp0(X:,j)|+ 1. (1.2.1)
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A similar global bound may be provided on i(X). If S is an isolated set of X, then

by definition for any two distinct elements (i1, j1), (i2, j2) ∈ S we have at least one of

(i1, j2) or (i2, j1) in supp0(X). Therefore, for X to have an isolated set of size t it has

to have at least
(
t
2

)
zeros and we have

i(X) ≤ max

{
p :

(
p

2

)
≤ | supp0(X)|

}
. (1.2.2)

A weak dual problem of the maximal rectangle problem may be considered in

terms of isolated sets that we mention for the sake of completeness. This problem

asks to cover the 1s of X with a minimum number of isolated sets. We are not aware

of any results on this problem.

1.3 Generalised binary matrices

A generalised binary matrix is a matrix X over {0, 1, ?} [77]. The ? entries are

considered to be unknown, missing or ’no care’ elements. The importance of the new

entry type ? is that these entries may be used to form rectangles but need not be

covered in a feasible factorisation of X.

Let supp1(X) contain the indices of 1s of X just as in the case of standard binary

matrices ({0, 1}-matrices), supp0(X) the indices of 0s and supp?(X) the indices of ?s,

supp?(X) := {(i, j) : xi,j =?}.

Let Ω(X) denote the set of indices of all known entries of X,

Ω(X) = supp0(X) ∪ supp1(X).

A rectangle of a generalised binary matrix X is a submatrix I × J which satisfies

I × J ⊆ (supp1(X) ∪ supp?(X)). Thus a rectangle of X may be any submatrix that

does not contain 0s. An isolated set S of X is a subset of supp1(X), no two of which

can be contained in a common rectangle. Similarly to standard binary matrices, we

denote the isolation number, the cardinality of a maximum isolated set by i(X) and

the Boolean rank, the minimum number of rectangles needed to cover supp1(X) by

br(X).

Now let X be a standard binary matrix. For a non-empty set P ⊂ supp1(X),

let XP denote the generalised binary matrix obtained from X by replacing the 1s in

P by ?s, so supp1(XP ) = supp1(X) \ P and supp?(X
P ) = P . Since ?s need not be

covered and cannot be members of an isolated set, for any P ⊂ supp1(X) we have

br(XP ) ≤ br(X), i(XP ) ≤ i(X). (1.3.1)
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A maximum rectangle of a generalised binary matrix is one that contains the

maximum number of 1s. Let mr(XP ) denote the number of 1s in a maximum rectangle

of XP . The maximum-rectangle Boolean rank bound given in Equation (1.1.2) may

be straightforwardly extended to generalised binary matrices to get⌈
| supp1(XP )|
mr(XP )

⌉
≤ br(XP ). (1.3.2)

1.4 Rank-k binary matrix factorisation

In the second part of this thesis, we will consider the rank-k binary matrix factori-

sation (k-BMF) problem: we are given an m× n generalised binary matrix X and a

small positive integer k and need to find two binary matrices A and B of dimension

m×k and k×n, respectively, which minimise the distance between X and the Boolean

product of A and B in the squared Frobenius distance. Rank-k binary matrix fac-

torisation was first defined in [84] by Miettinen et al. The motivation behind the

definition of k-BMF was to devise a method that is able to extract k hidden features

from datasets which can be represented by generalised binary matrices. In many data

science applications, data is contained in a generalised binary matrix where the ?’s

denote missing entries while 1’s and 0’s encode the answers to yes-or-no questions.

In these applications, the data matrix X is usually large and may contain erroneous

entries as well. So rather then finding the Boolean rank of X, it is more useful to

approximate X with a binary matrix of fixed small Boolean rank k which then can

give some insight into what the underlying patterns in the data are and also provide

a completion of missing entries of X. This is done in an analogous way to how sin-

gular value decomposition and nonnegative matrix factorisation can be used to find

hidden features in real and nonnegative datasets. In Section 1.4 of Part II. we give

a detailed account on the practical motivation behind k-BMF and several problems

and previous work related to k-BMF.

Formally, in k-BMF we are given an input matrix X ∈ {0, 1, ?}m×n and an input

integer k ∈ Z++ := {1, 2, . . . } such that k � min{m,n}, and need to find two binary

matrices A ∈ {0, 1}m×k, B ∈ {0, 1}k×n, so that we minimise the squared Frobenius

distance between X and A ◦B. Therefore, we aim to solve

ζ(X, k) = min{‖PΩ(X−A ◦B)‖2
F : A ∈ {0, 1}m×k,B ∈ {0, 1}k×n},

where PΩ is the projection onto the space of known entries, so the error is evaluated

only over the known entries of X, (i, j) ∈ Ω(X); and ‖Y‖F denotes the Frobenius
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norm defined by
√∑

i

∑
j y

2
i,j. Hence, we have

‖PΩ(X−A ◦B)‖2
F =

∑
(i,j)∈Ω(X)

(xi,j − (A ◦B)i,j)
2 .

Let Z = A ◦ B for some A ∈ {0, 1}m×k and B ∈ {0, 1}k×n. Then by the fixed

inner dimension k of A ◦B, we have br(Z) ≤ k and we call Z a rank-k factorisation

or completion of X. Since X is a generalised binary matrix and Z is a standard

binary matrix, the factorisation error in the squared Frobenius norm is over binary

entries which coincides with the error in entry-wise `1-norm. Hence, we can expand

‖PΩ(X− Z)‖2
F to get the following linear expression,

‖PΩ(X− Z)‖2
F =

∑
(i,j)∈Ω(X)

|xi,j − zi,j| =
∑

(i,j)∈supp1(X)

(1− zi,j) +
∑

(i,j)∈supp0(X)

zi,j.

This form may further be simplified by bringing out the constant term in the objective,

‖PΩ(X− Z)‖2
F = | supp1(X)| −

∑
(i,j)∈supp1(X)

zi,j +
∑

(i,j)∈supp0(X)

zi,j. (1.4.1)

So the rank-k factorisation error ζ(X, k) is just the number of 1s of X not covered,

plus the number of 0s of X erroneously covered by an optimal rank-k factorisation Z

of X.

As Z is of Boolean rank at most k, it can be written as the Boolean sum of k rank-

1 binary matrices, Z =
∨k
`=1 a`b

>
` . Note however, that these rank-1 binary matrices

do not necessarily correspond to rectangles of X, as Z is allowed to cover 0 entries of

X. For instance, the optimal rank-1 binary matrix factorisation of the matrix,

X =

1 1
1 1 1

1 1

 ,
is given by the 3× 3 all 1s matrix J3 and incurs an error ζ(X, 1) = 2 by covering the

two 0s of X. On the other hand, the largest rectangle of X is of size 2× 2, and using

that as a rank-1 factorisation incurs an error of size 3 as 3 1s are not covered. This

shows, that one needs to consider all rank-1 binary matrices of the input matrix’s

dimension as candidates to be included in an optimal rank-k factorisation, and it

does not suffice to only consider maximal rectangles of X.

Rank-1 binary matrix factorisation (1-BMF) is closely related to the maximum

rectangle problem. In fact, it can be seen as a weighted version of it. In 1-BMF, the
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optimal solution is of Boolean rank 1, so we may write Z = ab> and

ζ(X, 1) = min
a∈{0,1}m,b∈{0,1}n

‖PΩ(X− ab>)‖2
F

= | supp1(X)| − max
a∈{0,1}m,
b∈{0,1}n

 ∑
(i,j)∈supp1(X)

aibj −
∑

(i,j)∈supp0(X)

aibj

 . (1.4.2)

This form shows that in 1-BMF we are looking for a submatrix of X which picks up

the most number of 1s of X and the least number of 0s of X. We may define a weight

matrix W ∈ {0,±1}m×n for X, which has entries given by

Wi,j =


+1 (i, j) ∈ supp1(X),

−1 (i, j) ∈ supp0(X),

0 (i, j) ∈ supp?(X).

(1.4.3)

Then 1-BMF is exactly the problem of computing a largest total weight submatrix

of W and setting ai = 1 and bj = 1 for those rows and columns which index such a

maximum weight submatrix.

1.5 The bipartite graph setting

All the problems that we have discussed so far in the matrix setting can be equivalently

stated as graph problems. Let us review some graph terminology. Let G = (V,E) be

a finite undirected graph with vertex set V and edge set E that contains no parallel

edges or loops. G is said to be complete if every pair of vertices is adjacent. We

use Kn to denote the complete graph on n vertices. A clique K ⊆ V is a complete

subgraph of G. A clique is maximal if it is not contained in any other clique of G. A

clique of G is maximum if it has a maximum number of vertices. The cardinality of

a maximum clique of G is denoted by ω(G). The clique cover number of G, denoted

by θ(G), is the minimum number of cliques needed to cover the vertices of G. θ(G)

is also called the clique partition number as removing overlaps between cliques in a

clique cover gives a clique partition of the vertices of equal cardinality.

An independent (or stable) set S ⊆ V is a set of pairwise non-adjacent vertices of

G. A maximal independent set is not contained in any other independent set of G

and a maximum one has the a maximum number of vertices. The independence or

stability number of G, denoted α(G), is the cardinality of a maximum independent

set of G. The chromatic number of G, denoted χ(G) is the minimum number of

independent sets needed to partition (or equivalently, cover) the vertices of G. Since
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a clique and an independent set may intersect at at most one vertex, α(G) ≤ θ(G)

and ω(G) ≤ χ(G). Let G be the graph complement of graph G, where two vertices

are adjacent in G if and only if they are not adjacent in G. It is easy to see that

complements of independent sets are cliques and thus we have α(G) = ω(G) and

θ(G) = χ(G).

A bipartite graph is one whose vertex set can be partitioned into two disjoint

independent sets. Let B(X) be the bipartite graph associated with X ∈ {0, 1}m×n

which has a vertex for each row i ∈ [m] of X on one side of the bipartition, a vertex

for each column j ∈ [n] of X on the other side and an edge (i, j) between vertex i

and vertex j if and only if xi,j = 1,

B(X) = ([m], [n], supp1(X)).

We call B(X) the bipartite representation of X or X in the bipartite setting and X

is called the biadjacency matrix of B(X). A complete bipartite graph is where every

vertex on one side of the bipartition is adjacent to every vertex on the other side of the

bipartition. The complete bipartite graph with m+n vertices is denoted by Km,n. A

biclique is a complete bipartite subgraph. The minimum number of bicliques needed

to cover the edge set of a bipartite graph is called the biclique cover number. Observe

that rectangles of X and bicliques of B(X) are in direct correspondence, as a rectangle

indexed by I × J satisfies I × J ⊆ supp1(X) and simply corresponds to the biclique

of B(X) with vertex set I ∪ J and edge set I × J . Therefore, br(X) is exactly the

biclique cover number of B(X). Similarly, the minimum rectangle partition number

or the integer rank of a binary matrix X is equal to the minimum number of disjoint

bicliques needed to cover the edge set of B(X). Furthermore, a maximum rectangle

of X is then just a biclique of B(X) with a maximum number of edges, called a

maximum edge biclique.

A matching in a graph is a set of edges that are pairwise non-adjacent, that is

they do not share a common vertex. A cycle is said be an alternating cycle with

respect to a matching if every second edge of the cycle belongs to the matching. We

denote a cycle on n vertices by Cn. A matching in which no two edges are contained

in an alternating cycle of length four is called an alternating C4-free matching.

Let S ⊆ supp1(X) be an isolated set of X. Any two distinct elements (i1, j1), (i2, j2)

in S satisfy i1 6= i2 and j1 6= j2, which shows that S is a matching in B(X).

Furthermore, the second condition of isolated sets states (i1, j2) ∈ supp0(X) or

(i2, j1) ∈ supp0(X), hence (i1, j1) and (i2, j2) are not contained in an alternating

four-cycle in B(X). Therefore, alternating C4-free matchings in B(X) are exactly
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the isolated sets in X and i(X) is equal to the cardinality of a maximum alternating

C4-free matching in B(X).

Example 1.5.1. Let X be the binary matrix shown in Display (1.5.1) below. The

bipartite representation B(X) is shown in Figure 1.1a. In the middle of Display (1.5.1)

we highlight a maximal rectangle indexed by {1, 2} × {1, 3}, whose biclique equivalent

in B(X) is highlighted in Figure 1.1b. On the right side of Display (1.5.1), we highlight

a maximum isolated set of X and in Figure 1.1c the corresponding maximum C4-free

matching of B(X) is highlighted.

X =

1 1 1
1 1 1
1 1 1

 ,
 1 1 1

1 1 1
1 1 1

 ,
1 1 1

1 1 1

1 1 1

 . (1.5.1)

1

2

3

1

2

3

4

(a) B(X)

1

2

3

1

2

3

4

(b) A maximal biclique

1

2

3

1

2

3

4

(c) A maximum alternating
C4-free matching

Figure 1.1: Bipartite representation of a binary matrix

While we will not use the following perspective in the rest of the thesis, for com-

pleteness we mention that B(X) can be defined for generalised binary matrices as

follows. If X is a generalised binary matrix, then let B(X) be a generalisation of

bipartite graphs in which the adjacency between some vertices is undecided. We may

visualise these generalised graphs as graphs with a new type of ’undecided’ edges.

These undecided edges then are used to represent entries (i, j) ∈ supp?(X). The edge

set of a biclique of a generalised graph is then a subset of the standard and undecided

edges, while the equivalent of an isolated set is a subset of the standard edges that

cannot be covered by a common biclique. Such generalised graphs are sometimes

called trigraphs [18].
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k-BMF. We may also define rank-k binary matrix factorisation in the bipartite

setting on a different bipartite graph. In this case, it is more useful to associate X ∈
{0, 1, ?}m×n with an edge weighted complete bipartite graph (Km,n,W) with weight

matrix W ∈ {0,±1}m×n as defined in Equation (1.4.3), so that each edge (i, j) ofKm,n

has weight Wi,j. An optimal rank-k factorisation of X corresponds to a maximum

weight covering of (Km,n,W) using at most k bicliques and ζ(X, k) equals the weight

of the maximum weight covering subtracted from | supp1(X)| according to Equation

(1.4.1). Note that in the bipartite setting, 1-BMF is simply the weighted version of the

maximum edge biclique problem called the maximum weight edge biclique problem, in

which one needs to compute a maximum weight edge biclique of the weighted graph

(Km,n,W).

Example 1.5.2. Let X be the binary matrix as shown below, and let W be its weight

matrix,

X =

1 1 1
1 1 1

1 1

 , W =

 1 1 1 −1
−1 1 1 1
−1 −1 1 1

 .
The weighted graph (K3,4,W) is shown in Figure 1.2a where dashed edges have weight

−1 and solid edges have weight +1. The optimal rank-1 factorisation ab> of X is

ab> =

 1 1 1
1 1 1
1 1 1

 ,
and the corresponding maximum weight edge biclique is highlighted in red in Figure

1.2b. The optimal factorisation error, which equals the number of 1s of X not covered,

and the number of 0s of X erroneously covered, can also be written using Equation

(1.4.2), as the weight of the maximum weight edge biclique of (K3,4,W) subtracted

from | supp1(X)|,

ζ(X, 1) = 3 = | supp1(X)| − a>Wb = 8− (7− 2).
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(a) The weighted graph (K3,4,W)

1

2

3

1

2

3

4

(b) Maximum weight biclique of (K3,4,W)

Figure 1.2: The bipartite representation of k-BMF

1.6 Complexity

Many complexity results related to the computation of the Boolean rank, isolation

number and k-BMF of binary matrices appear in the literature in the bipartite graph

setting.

Minimum biclique cover and Boolean rank. The minimum Biclique Cover

problem on bipartite graphs (problem BC) is first analysed by Orlin in 1977, and is

proved to be NP-hard [91, Theorem 8.1] by reducing the minimum Clique Partition

problem (CP) to it. BC is also listed in [38] as Problem GT18. BC remains NP-hard

on chordal bipartite graphs [88, Theorem 6]. Furthermore, the closely related problem

of partitioning the edge set of a bipartite graph into a minimum number of bicliques

is NP-hard as well [53].

In 1990, Simon [102, Corollary 5.2] shows by presenting a continuous reduction

between CP and BC that the two problems are approximation equivalent. Minimum

Clique Partition is equivalent to minimum Graph Colouring (GC) as θ(G) = χ(G),

so the same approximation hardness results hold for these two problems. There have

been many inapproximability results proved for GC since the 90s. In 2007, Zuckerman

[109, Theorem 1.2] showed that for all ε > 0, approximating the chromatic number

of any graph G = (V,E) within a factor O(|V |1−ε) is NP-hard. Building on this

approximation hardness of GC and improving the reduction between BC and CP,

several authors prove hardness results for BC. Gruber et al. [48] show by combining

the continuous reduction of Simon with the O(|V |1−ε) inapproximability of GC that

for all ε > 0 it is NP-hard to approximate BC within a factor O(|V | 15−ε). In the same

work, Gruber et al. [48] also give an improved reduction between CP and BC, which

then shows that the biclique cover number of any bipartite graph G = (V,E) cannot
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be approximated within O(|V | 13−ε) and O(|E| 15−ε) for any ε > 0. Finally, in 2015

Chalermsook et al. [15] proves that the biclique cover number of any bipartite graph

G = (V,E) is NP-hard to approximate within a factor O(|V |1−ε) and O(|E| 12−ε)
for any ε > 0. Furthermore, Chalermsook et al. [15, Theorem 2.] shows that

these hardness results are nearly optimal by presenting a factor O( |V1|√
log |V1|

) and a

factor O( |E|(log log |E|)2

log3 |E| )-approximation algorithms for the biclique cover problem for

any bipartite graph G = (V1, V2, E) with |V1| ≤ |V2| (the second of which relies on the

best known approximation algorithm for GC by Halldórsson [51]). In 2016, Chandran

et al. [16, Theorem 21] give an improved very simple approximation algorithm for BC

with ratio |V1|
log |V1| . We present this in matrix form. Let X ∈ {0, 1}m×n and 2 ≤ m ≤ n.

Assume that X has no repeated rows so the bound given in Equation (1.1.7) holds

for X and we have,

logm ≤ br(X).

Taking the rows of X gives a feasible factorisation of size m. Then the ratio between

the cardinality of this feasible factorisation and an optimal factorisation is

m

br(X)
≤ m

logm
.

Since clearly row and column duplicates can be eliminated and replaced into the

factorisation in polynomial time, the above algorithm is a factor m
logm

-approximation

for BC.

BC has also been analysed from a parameterised complexity perspective. It is

shown that deciding whether the biclique cover number of a bipartite graph G =

(V,E) is less than or equal to k is fixed parameter tractable in k [34] and can be

solved in time O(f(k) + |V |3) where f(k) = 2k2k−1+3k [90, Theorem 4]. On the other

hand, Chandran et al. [16, Corollary 7] show that there is no parameterised algorithm

for BC with running time 22o(k)
(mn)O(1) 1 unless the Exponential Time Hypothesis

(ETH) is false (ETH is the hypothesis that 3-SAT cannot be solved in time 2o(n).)

Maximum alternating C4-free matching and isolation number. Let us turn

to the complexity of the maximum isolated set which in the bipartite setting is the Al-

ternating C4-free Matching problem on bipartite graphs (AC4M). AC4M is first exam-

ined by Pulleyblank [95] in 1982 as a special case of alternating cycle-free matchings,

1f(x) ∈ o(g(x)) means that for every ε > 0, there exists a constant x0 such that |f(x)| < εg(x)
holds for all x > x0. While f(x) ∈ O(g(x)) means that there exist constants k > 0 and x0 such that
|f(x)| < kg(x) holds for all x > x0. For instance, x2 ∈ O(x2) but x2 6∈ o(x2) and x2 ∈ o(x3).
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and is shown to be NP-hard by reducing 3D-matching to it. (The 3D-matching prob-

lem asks to find a maximum cardinality subset M of a hypergraph T ⊂ [m]× [n]× [p]

in which any distinct (i1, j1, t1), (i2, j2, t2) ∈ M satisfies i1 6= i2, j1 6= j2 and t1 6= t2.)

AC4M remains NP-hard on chordal bipartite graphs [87, Section 6]. Unfortunately,

we are not aware of any works on further hardness results or approximation algorithms

for AC4M.

There are several classes of binary matrices for which the isolation number and

Boolean rank can be solved in polynomial time. Interestingly, all these matrix classes

for which polynomial time algorithms are known are firm matrices. These classes are

matrices with the consecutive 1s property [50], linear matrices, biadjacency matrices

of distance hereditary bipartite graphs [77], and biadjacency matrices of domino-free

bipartite graphs [2]. We detail these classes more in depth in Section 3.3.

Maximum edge biclique and maximum rectangle. Since bicliques of bipartite

graphs are in direct correspondence with rectangles of binary matrices, the maximum

edge biclique problem on bipartite graphs is equivalent to the maximum rectangle

problem of binary matrices. The decision version of the Maximum Edge Biclique

problem (MEB) with input bipartite graph G = ([m], [n], E), m ≤ n and positive

integer k, asks if G contains a biclique with at least k edges. This problem is proved

to be NP-complete in 2003 by Peeters [93] by reducing the maximum clique problem

to it. For chordal bipartite graphs MEB is polynomial time solvable [41].

There are several inapproximability results for MEB but all of them are condi-

tional on some special complexity assumptions that are stronger than the standard

assumption P 6=NP, see for instance [32, Theorem 3],[1, Theorem 1.4]. The latest of

these results proves that MEB is hard to approximate within O(m1−ε) for any ε > 0

given that special complexity assumptions hold [81].

Maximum weight edge biclique. Several weighted versions of MEB are analysed

too. Let us denote the Maximum Weight Edge Biclique problem (MWEB) with

edge weights from a set Q by Q-MWEB. Note that if the input bipartite graph

G = ([m], [n], E) for Q-MWEB is not a complete bipartite graph then we can create

an equivalent instance {−M} ∪ Q-MWEB on Km,n where edges in E have their

original weight and edges (i, j) 6∈ E have weight −M , where M is some constant that

is larger than the total weight of all positively weighted edges in E. In addition, if the

input graph for Q-MWEB is Km,n then Q must contain both negative and positive

numbers, as otherwise the problem is trivial.
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Dawande et al. [27] looked at {0, 1}-MWEB on general bipartite graphs in 1996

and proved it to be NP-hard. Their reduction only holds if 0 weights are present so

this early result did not imply the hardness of the cardinality version MEB (which is

just {1}-MWEB on general bipartite graphs and is proved to be NP-hard by Peeters

[93] later in 2003 as mentioned above). Some inapproximability results for {0, 1}-
MWEB on general bipartite graphs are also shown based on the relation of {0, 1}-
MWEB to the minimum Biclique Cover problem. Simon [102, Section 6.] argues

that if {0, 1}-MWEB could be solved exactly then it could be used in a master-slave

algorithm to give anO(ln(|E|)) approximation of BC on a bipartite graph G with edge

set E. Chalermsook [15, Corollary 2.] shows that combining this approach with the

inapproximability results of BC, {0, 1}-MWEB on a bipartite graph G = ([m], [n], E),

is hard to approximate within O(m1−ε) and O(|E| 12−ε) for all ε > 0 unless P=NP.

{−M, 1}-MWEB on Km,n for any sufficiently large M is NP-hard as it can encode

MEB. Tan [103, Lemma 4, Theorem 1.] shows that {−1, 0, 1}-MWEB on Km,n is

NP-hard and for every ε > 0, it cannot be approximated within O((m+n)1−ε) unless

P=NP. Gillis et al. [39, Corollary 4] prove that the even more restricted {−1, 1}-
MWEB is NP-hard as well.

1-BMF. Recall that in the previous sections, we argued that rank-1 binary ma-

trix factorisation on a generalised binary matrix X ∈ {0, 1, ?}m×n is equivalent to a

Maximum Weight Edge Biclique problem on Km,n with edge weights Wi,j ∈ {0,±1}
as defined in Equation (1.4.3). Therefore, as {−1, 0, 1}-MWEB on Km,n is NP-hard,

rank-1 BMF of binary matrices with missing entries is NP-hard too. Furthermore,

by Gillis et al.’s result [39, Corollary 4], rank-1 BMF of standard binary matrices is

NP-hard as well. On the other hand, there is a simple 2-approximation algorithm

[101] for 1-BMF that we show in Section 8.3.1.

k-BMF. The hardness of 1-BMF implies that k-BMF is NP-hard too by restriction.

In addition, one can also see the NP-hardness of k-BMF as k-BMF is harder than

computing the Boolean rank as by solving logarithmically many k-BMF problems one

could compute the Boolean rank, but not the other way round. Furthermore, as BC

is fixed parameter tractable in k, deciding whether the Boolean rank is less than or

equal to k can be solved in polynomial time for any fixed k; while k-BMF is NP-hard

already for k = 1.

Regarding approximation algorithms for k-BMF, [85] observed the following ar-

gument. If there is an α-approximation algorithm for k-BMF of an m× n matrix X
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then it produces a feasible rank-k factorisation A′ ◦B′ which satisfies

‖X−A′ ◦B′‖2
F ≤ α · min

A∈{0,1}m×k,B∈{0,1}k×n
‖X−A ◦B‖2

F .

Thus any approximation algorithm for k-BMF must be able to distinguish between

minA,B ‖X − A ◦ B‖2
F = 0 and minA,B ‖X − A ◦ B‖2

F > 0. The parameterised

complexity results on BC [16] tell us that this is not plausible in time 22o(k)
(mn)O(1)

unless ETH is false.
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Part I

Exact Binary Matrix Factorisation
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Chapter 2

Introduction

In this part of the thesis, we look at the Boolean rank and isolation number from a

combinatorial perspective as a covering and packing problem pair. For any binary

matrix X, an isolated set S and a rectangle I×J can intersect at at most one element

|S ∩ (I × J)| ≤ 1, which also shows that i(X) ≤ br(X). We are interested in matrices

where the weak duality between br(X) and i(X) becomes strong and this also holds

for their submatrices. A binary matrix X is said to be firm if i(X) = br(X) and

i(X′) = br(X′) holds for all submatrices X′ of X. The concept of firmness along with

many results that motivate and form the basis of our work are introduced in a 1990

paper [77] of Anna Lubiw. A key tool that Lubiw introduces and we make extensive

use of, is to look at the problem through the rectangle cover graph of X. The rectangle

cover graph G(X) of a binary matrix X (called the 1’s graph in Lubiw’s words), has

a vertex (i, j) for each 1 at (i, j) ∈ supp1(X) and an edge between two vertices if and

only if the corresponding 1s in X can be covered by a common rectangle. Isolated sets

of X then correspond to independent sets of G(X), and maximal rectangles of X to

maximal cliques of G(X) [77]. By this, i(X) and br(X) translate to the independence

and clique cover number of G(X), respectively, and one can explore the parallels

between firmness of X and perfection of G(X): A binary matrix X is said to be

superfirm if G(X) is a perfect graph [77]. It turns out that perfection of the rectangle

cover graph is a stronger requirement than firmness and superfirm matrices form a

strict subset of firm matrices.

To get a better understanding of firmness and superfirmness, one might try to list

the minimal violators of these properties. The investigation of minimal violators is

a common approach in combinatorics and has been applied to the study of perfect

graphs via minimally imperfect graphs or ideal matrices via minimally non-ideal ma-

trices [79, 105]. Motivated by this, we start the explicit study of firm and superfirm

matrices through forbidden submatrices. Forbidding a submatrix X means that we
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look at the class of matrices which cannot have X as a submatrix in any row or

column order. We say that a binary matrix X is minimally non-firm if X is not firm

but all of its proper submatrices are. Analogously, a binary matrix X is said to be

minimally non-superfirm if X is not superfirm but all of its proper submatrices are.

With these definitions, we can then say that a binary matrix is firm if and only if it

does not have any minimally non-firm submatrix, and it is superfirm if and only if it

does not have any minimally non-superfirm submatrix.

The holy grail of this direction would be to be able to characterise firm matrices by

a complete set of minimally non-firm matrices and superfirm matrices by a complete

set of minimally non-superfirm matrices. We are very far from this. But to the best

of our knowledge, minimally non-firm and minimally non-superfirm matrices have not

been explicitly studied before and we present the first infinite classes of minimally

non-firm matrices.

Our contribution and Organisation of Part I. Let us give a detailed summary

of our contributions and the organisation of Part I.

In the remaining sections of this chapter, we walk through the history of firm

matrices which originates in the study of rectilinear polygons. Then we present some

problems related to firmness of binary matrices.

In Chapter 3, first we give an in depth summary of Lubiw’s work [77]. In par-

ticular, we go through the definition of rectangle cover graphs, superfirmness and

firmness in detail and illustrate these concepts through examples. Then we continue

Lubiw’s approach in exploring the parallels between perfect graphs and firm matrices.

In Section 3.3, we give an in-depth review of the techniques used to prove the so far

known classes of firm matrices.

In Chapter 4, we explore how minimally imperfect subgraphs can appear in rect-

angle cover graphs. We prove that odd antiholes cannot appear in rectangle cover

graphs without odd holes being present. This shows that the property of superfirm-

ness is equal to not having any odd holes in the rectangle cover graph and forbidding

odd antiholes is unnecessary. Then we characterise the submatrices which are nec-

essary and sufficient for the appearance of 5-holes in rectangle cover graphs. Along

these lines, we also prove that P5-free rectangle cover graphs are perfect and present

several minimally non-superfirm matrices.

In the second part of Chapter 4, we define simplicial 1s and a procedure for

their removal which leads to generalised binary matrices. Then, as one of our main
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contributions, we introduce a matrix operation called ’stretching’. We show that

under some conditions stretching preserves firmness and superfirmness.

In Chapter 5, we use the stretching operation to derive a theorem which gives a

general recipe on how to create minimally non-firm matrices from matrices that have

odd holes in their rectangle cover graphs and satisfy certain conditions. Then we

apply this theorem to obtain several infinite families of minimally non-firm matrices.

While there are many open questions and holes left on the way, we hope that our work

may motivate someone else in the future to pick up the study of minimally non-firm

matrices.

Finally, in Chapter 6 we conclude and state several open questions.

2.1 Rectilinear polygons

The study of firm matrices originates in the study of rectilinear polygons or sometimes

called polymonios. A rectilinear polygon is a polygon in the plane with horizontal and

vertical sides which has a single continuous boundary, i.e. no holes are allowed. See

Figure 2.1a for an example. A rectangle [77] of a rectilinear polygon has horizontal

and vertical sides and it is continuous, so that it is fully contained inside the polygon.

To distinguish from the rectangles of binary matrices, we will refer to rectangles of

rectilinear polygons as continuous rectangles. Note that a continuous rectangle of a

rectilinear polygon P needs to correspond to a connected region in P , while rectangles

of binary matrices need not be defined by contiguous sets of row and column indices.

A maximal continuous rectangle is one that is not contained in another continuous

rectangle. Two maximal continuous rectangles are indicated in Figure 2.1b. An

antirectangle [77] of a rectilinear polygon P is a set of points in P no two of which can

be covered by a common continuous rectangle. An antirectangle of cardinality four

indicated by letters ’a,b,c,d’ is shown in Figure 2.1c. Observe that an antirectangle

can have elements on a straight line (’a’ and ’b’), and this is because only continuous

rectangles are considered for rectilinear polygons.

Chvátal once conjectured that for all rectilinear polygons P the cardinality of a

maximum antirectangle and the minimum number of continuous rectangles needed to

cover P is equal (mentioned in [14] in 1981). This conjecture however turned out to

be false by Chung providing a counterexample that is shown on the left side of Figure

2.2 (first presented in [14]). Observe that Chung’s polygon has five points (which

are indicated by letters ’a,b,c,d,e’ on the right side of Figure 2.2) each of which can

only be covered by one unique maximal continuous rectangle (shaded in the figure).
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(a) A rectilinear polygon (b) Two maximal continuous
rectangles

a

b

c

d

(c) A maximum antirectangle

Figure 2.1: The rectangle cover problem on rectilinear polygons

Thus these continuous rectangles can be assumed to belong to a minimum cover. The

region that is left uncovered has five points (indicated by red vertices) which form a

cycle of length 5 in the graph where points are adjacent if they can be covered by a

common continuous rectangle. Hence these 5 points need at least three continuous

rectangles to be covered. On the other hand, the uncovered region contains only

antirectangles of size two. Therefore Chung’s polygon has a maximum antirectangle

of size 7, but its minimum cover is of size 8.

a

b
c

d
e

Figure 2.2: Chung’s polygon

The discovery of Chung’s polygon motivated the adjustment of Chvátal’s conjec-

ture. A rectilinear polygon P is said to be x-convex (y-convex ) if every horizontal

(vertical) line segment joining two points inside P is contained inside the polygon.

For instance the polygon in Figure 2.1a is x-convex but not y-convex, and Chung’s

polygon is neither x- nor y-convex. In 1981, Chaiken et al. [14] proved that Chvátal’s

conjecture when restricted to rectilinear polygons that are both x- and y-convex (x, y-

convex ) is true. Observe that this also gives the first class of firm matrices as a binary

matrix that has a 1 for every square unit of an x, y-convex rectilinear polygon has

only continuous maximal rectangles (so every maximal submatrix of all 1s has the

row and column index set as a range of integers).
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Later on, this minimax result is extended to a more challenging superset of x, y-

convex rectilinear polygons. In 1984 Győri [50] proves a deep result which shows

that Chvátal’s conjecture holds when restricted to rectilinear polygons that are only

y-convex (or equivalently, only x-convex). In fact, the result that Győri proves is a

more general theorem which shows that for interval matrices the Boolean rank and

the isolation number are equal. A binary matrix is an interval matrix if its columns

can be arranged so that the 1s in every row appear consecutively. These matrices are

sometimes also called matrices with the consecutive 1’s property. As any submatrix

of an interval matrix is also interval, Győri’s theorem implies that interval matrices

are firm. Interestingly, there are some interval matrices which are not superfirm, so

their rectangle cover graph is not perfect. This shows that interval matrices are not

a subclass of superfirm matrices. We thoroughly explain this with examples in the

next chapter. Following Győri’s theorem, a polynomial time algorithm is presented

for the factorisation of interval matrices by Franzblau et al. [37] which we will detail

in Section 3.3.4.

Rectilinear polygon covering motivated the discovery of the first classes of firm

matrices, but it was not until Lubiw’s seminal paper [77], where a transformation of

rectilinear polygons into binary matrices is given, showing that rectilinear polygon

covering is just a special case of our problem on binary matrices. In turn, Lubiw

mentions that her idea for this transformation is inspired by the transformation that

Frank suggested to Győri and Győri used in [50] to prove his theorem.

Next we illustrate Lubiw’s transformation of rectilinear polygons into binary ma-

trices on Chung’s polygon. A horizontal (vertical) swath of a rectilinear polygon P

is a maximum horizontal-length (vertical-length) continuous rectangle whose verti-

cal (horizontal) borders are the borders of P . The horizontal and vertical swaths of

Chung’s polygon are indicated in Figure 2.3. The swath matrix of a rectilinear poly-

2
4

1
3

5
6

9 7
8

(a) Horizontal swaths

2
4

3

1

5
6

9

7
8

(b) Vertical swaths

Figure 2.3: Swaths of Chung’s polygon
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gon P is a binary matrix which has a row for each horizontal swath of P , a column

for each vertical swath of P and a 1 in a position if and only if the corresponding

horizontal and verticals swaths of P intersect. The swath matrix of Chung’s polygon

is below,
1 2 3 4 5 6 7 8 9



1 1 1 1

2 1 1

3 1 1

4 1 1 1

5 1 1 1 1 1

6 1 1 1 1 1

7 1 1 1

8 1 1

9 1

. (2.1.1)

Lubiw proves that if P is a rectilinear polygon and X is its swath matrix then maximal

continuous rectangles of P correspond exactly to the maximal rectangles of X [77,

Proposition 2.1] and antirectangles of P correspond exactly to the isolated sets of X.

For instance, the maximal continuous rectangle of Chung’s polygon that is shaded

and contains point a in the right side of Figure 2.2 is intersecting horizontal swaths

2 and 4 and vertical swaths 3 and 5, and the corresponding maximal rectangle of the

swath matrix in Display 2.1.1 is indexed by rows 2, 4 and columns 3, 5. Similarly,

if A is a set of points that forms an antirectangle in a rectilinear polygon P , then

every point in A is at the intersection of a distinct horizontal and vertical swath of

P , which give the indices of the corresponding 1s in the swath matrix of P that form

the corresponding isolated set.

Since one may assume that an optimal cover of P uses only maximal continuous

rectangles and an optimal cover of X also uses only maximal rectangles, the rectilinear

polygon cover problem is just a special case of the rectangle cover problem on binary

matrices. As an example one can verify that the swath matrix of Chung’s polygon

(given in Equation (2.1.1)) has Boolean rank 8 and isolation number 7, hence it is a

non-firm matrix. In fact, dropping the first and last rows and columns of this matrix
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we get a minimally non-firm matrix as shown below,

2 3 4 5 6 7 8



2 1 1

3 1 1

4 1 1 1

5 1 1 1 1

6 1 1 1 1

7 1 1 1

8 1 1

. (2.1.2)

A y-convex rectilinear polygon P has an interval swath matrix X and this is why

firmness of interval matrices implies Chvátal’s conjecture on y-convex matrices. To

see this, observe that since P is y-convex, for each vertical line segment there is exactly

one vertical swath of P , so we may assume that vertical swaths of P are numbered

in increasing order from left to right. The 1s in each row of X correspond to the

intersection of a horizontal swath with some consecutively numbered vertical swaths,

therefore for each row i if xi,j1 = 1 and xi,j2 = 1 then xi,j = 1 for all j1 < j < j2. So

X is an interval matrix.

Of course, not all swaths matrices are interval, but Lubiw shows that they are

totally balanced [77, Theorem 2.2]. For n ≥ 3, the n×n cycle matrix Cn ∈ {0, 1}n×n

contains exactly two 1s in every row and in every column and no proper submatrix

of Cn has this property. We adopt the following ordering of Cn as below,

Cn =


1 1

1 1
. . . . . .

1 1
1 1

 .
A binary matrix is said to be totally balanced if it has no Cn submatrix for any n ≥ 3

[41, Chapter 12.4]. In 1988, it is proved that covering rectilinear polygons by a min-

imum number of continuous rectangles is NP-hard [24]. By Lubiw’s transformation,

this in turn implies that covering totally balanced matrices by a minimum number of

rectangles is also NP-hard.

2.2 Firmness

The explicit study of firm matrices comes from the 1990 seminal paper of Lubiw [77]

in which she also proves that rectilinear polygon covering is just a special case of our

28



problem. In this same paper, she defines firmness, rectangle cover graphs and proves

three classes of matrices to be superfirm. The first class is the class of matrices which

have no J2 submatrix (2× 2 submatrix of all 1s). J2-free matrices are usually called

linear matrices [22]. Linear matrices will be further discussed in Section 3.3.1.

Lubiw introduces a superfirmness preserving operation which we call Lubiw-sum

or L-sum for short, and mentions that this operation comes from the more general

method of split decomposition on bipartite graphs which is due to Cunningham [25].

Briefly, in the setting of binary matrices, the L-sum takes two binary matrices as

input and creates a new binary matrix in which the input matrices are joined on

a common rectangle which is created from a specified row and column of the input

matrices. Using the polynomial time algorithm of Cunningham to compute a split

decomposition, Lubiw shows that the Boolean rank and isolation number can be

computed in polynomial time for any matrix that can be obtained as a series of

L-sums starting from matrices for which there is a polynomial time algorithm to

compute the Boolean rank and isolation number.

The second class of matrices proved by Lubiw to be superfirm is the class of

matrices that can be obtained via a sequence of L-sum operations starting on binary

row and column vectors. Then Lubiw extends this class to show that a third class of

matrices, matrices that can be obtained via a sequence of L-sum operations starting

on linear matrices, is also superfirm. In addition, Lubiw also proves a forbidden

submatrix characterisation for this class of matrices. The L-sum operation and these

two classes of superfirm matrices will be discussed more in detail in Section 3.3.2.

In addition, Lubiw presents two non-firm matrices in [77, Figure 1.1.] to illustrate

that the Boolean rank does not always equal the isolation number. Both of these

matrices turn out to be minimally non-firm, although Lubiw does not mention this.

One of these matrices comes from the swath matrix of Chung’s polygon that we show

in Equation (2.1.2). Several other results are treated in [77], by which Lubiw lays

down the foundations for forbidden submatrix characterisation of firm and superfirm

matrices. We make an immense use of the techniques Lubiw developed.

D3-free binary matrices are the latest and largest class of matrices proved to be

firm by Amilhastre et al. in 1998 [2]. Their proof is given in the bipartite setting

and shows that for domino-free bipartite graphs a minimum biclique cover can be

computed in polynomial time. The domino graph is a cycle on six vertices with

exactly one chord as shown in Figure 2.4. Let us denote the domino graph by B(D3)
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1

2

3

1

2

3

Figure 2.4: The domino graph, B(D3)

through its biadjacency matrix, which is given by

D3 =

1 1
1 1 1

1 1

 . (2.2.1)

In matrix terms, Amilhastre et al. show that a minimum rectangle cover of D3-free

matrices can be computed in polynomial time. Interestingly, the isolation number of

D3-free matrices is not explored by Amilhastre et al. However, their results with a

slight extension implies that D3-free matrices are firm. In fact, one can find D3-free

matrices that are not superfirm. Hence, D3-free matrices give the second class of

firm but not necessarily superfirm matrices, the first one being interval matrices. In

Section 3.3.3 we will detail the methods of Amilhastre et al. and the firmness of

D3-free matrices.

2.2.1 Firmness in later works

While Lubiw’s 1990 paper seems to be the earliest to introduce the concept of firm

matrices, several other later works reintroduce the definition of firm matrices under

new names and seem to be unaware of the work of Lubiw.

Muller is one of these authors investigating concepts related to firmness in two

papers [87, 88]. In [87], Muller proves that the maximum alternating C4-free matching

problem remains NP-hard when restricted to chordal bipartite graphs [87, Sect. 4].

A bipartite graph is said to be chordal bipartite if every cycle of length at least

6 has a chord [41, Chapter 12.4]. Recall that Cn is the n × n cycle matrix for

n ≥ 3 and a matrix is totally balanced if it does not have any Cn submatrices. In

the bipartite setting, Cn are the biadjacency matrices of chordless cycles of length

2n. Hence, the bipartite representation of totally balanced matrices are exactly the

chordal bipartite graphs. Consequently, in the binary matrix setting Muller’s result

shows that computing a maximum isolated set of totally balanced matrices is NP-

hard.
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In [87], Muller also defines rectangle cover graphs under the name dependence

graphs and investigates how chordless cycles can appear in them. In [88], Muller

then looks at minimum biclique covers and redefines firmness in the bipartite setting

under the name of edge-perfection and superfirmness under the name d -perfection

without being aware of Lubiw’s previous results. Muller also gives a new proof that

the minimum biclique cover problem is NP-hard on chordal bipartite graphs[88, Sect.

8].

Another author, Phelps, who also seems to be unaware of Lubiw’s work, treats

firmness under the name factor perfection and superfirmness under the name graph-

ical factor perfection in his 1996 PhD thesis [94]. While this thesis contains several

interesting results (we adopted the name rectangle cover graph for G(X) from this

thesis), one of the main results of Phelps is flawed, which incorrectly states that

totally balanced matrices are firm.

Finally in 2003, Dawande [26] investigates superfirmness in the bipartite setting

under the name cross perfection from a polyhedral perspective. He defines a bipartite

graph G = ([n], [m], E) to be cross-perfect if for every cost function c ∈ {0, 1}|E|,

max{c>y : Ky ≤ 1,y ∈ {0, 1}|E|} = min{1>q : K>q ≥ c, q ∈ {0, 1}p},

where G has p maximal bicliques and K is a binary matrix with a row for each

maximal biclique of G, column for each edge (i, j) ∈ E and KB,(i,j) = 1 if edge (i, j)

is in biclique B. Dawande proves that {y ≥ 0 : Ky ≤ 1} is an integral polytope if

and only if G is cross-perfect by using the concept of a modified line graph (which

is another redefinition of rectangle cover graphs) and derives that cross-perfection is

exactly this modified line graph being perfect. Therefore, cross-perfection is precisely

superfirmness.

2.3 Related problems

2.3.1 Weakly firm matrices

A binary matrix is called weakly firm if its Boolean rank equals its isolation number

but this equality may not hold for some submatrices of it. Similarly, to the case of

weakly perfect graphs (graph G is weakly perfect if α(G) = θ(G) but this equality

may not hold for some induced subgraphs of G), the problem of characterising weakly

firm matrices in terms of forbidden submatrices is ill defined. We show this by an

example that is inspired by an observation in [41, pg 261]. Let X be an arbitrary
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m × n binary matrix and let X′ be an m × (m + n) matrix which consists of two

blocks: X and an identity matrix Im,

X′ =
[
Im X

]
.

X′ has m rows, so it can be covered by m rectangles and the 1s of block Im form an

isolated set of size m, hence X′ is weakly firm. This construction shows that starting

from an arbitrary binary matrix X, we can always construct a weakly firm matrix

which has X as its submatrix, hence we cannot expect to get a characterisation of

weakly firm matrices in terms of forbidden submatrices.

2.3.2 Maximum rectangle and minimum cover by isolated
sets.

Two problems related to the minimum rectangle cover and maximum isolated set

problems on binary matrices are the problems of finding a maximum rectangle and

covering the 1s of the binary matrix by a minimum number of isolated sets. These

problems are easily seen to be weak duals of each other and one might wonder if for

firm matrices the cardinality of the maximum rectangle equals the size of minimum

cover by isolated sets. It turns out that this is not the case.

A first counterexample in which the minimum number of isolated sets needed to

cover the 1s is strictly larger than its maximum rectangle is presented by Boucher

in [11] in the setting of an x, y-convex rectilinear polygon originally. We present a

simplified version of Boucher’s counterexample in matrix form here1. By duplicating

rows and columns of a matrix, the Boolean rank and isolation number do not change.

On the other hand, by duplicating rows and columns the maximum rectangle and the

minimum cover by isolated sets evidently grow but they do not necessarily grow by

the same amount and this is what can be exploited to build a counterexample.

Let D4 be the 4× 4 row-column interval (having the consecutive 1s property for

both the rows and columns) matrix given below, where empty entries correspond to

0s,

D4 =


1 1

1 1 1
1 1 1 1

1 1

 . (2.3.1)

Duplicating each row and column of D4 the number of times the integer row and

columns weights as assigned on the left hand side in Display (2.3.2) below, we get a

1We thank Prof Colin McDiarmid for suggesting the simplest weight setting that we use to
demonstrate Boucher’s example in matrix form.

32



matrix which is still row-column interval and has three maximum rectangles of size 36

which correspond to the rectangles {3, 4}× {3, 4}, {3}× {1, 2, 3, 4}, {1, 2, 3, 4}× {3}
in the original matrix D4,

2 1 4 2


2 1 1

1 1 1 1

4 1 1 1 1

2 1 1

−→


2 8

2 1 4
8 4 16 8

8 4

 . (2.3.2)

Covering by isolated sets can be seen as colouring the 1s in which every isolated set

is a unique colour. Each 1 of D4 is duplicated into a rectangle of the size shown on

the right hand size of Display (2.3.2) above, so we may refer to these rectangles by

the index of the 1 they were duplicated from (e.g. the rectangle in the right bottom

corner is of size 4 and is referred to by index (4, 4)).

Let A,B,C and D be a set of distinct 36 = 8 + 8 + 4 + 16 colours. Without loss

of generality, we can colour (3, 4) with 8 colours in set A, (4, 3) with other 8 colours

in set B, (4, 4) with 4 colours in set C and (3, 3) with 16 colours in set D. Then we

have so far used 36 colours. As row 3 is also a maximum rectangle of size 36, and the

uncoloured rectangles at (3, 1) and (3, 2) cannot get colours A and D, colour them

with colours B and C (use a subset B′ of size 4 to colour (3, 2)). Similarly, column 3

is a maximum rectangle of size 36, so we can colour its remaining entries with colours

A and C. So far we have the colouring,
2 C ∪ A \ A′

2 1 A′

C ∪B \B′ B′ D A
B C

 .
At this point however, entry (2, 2) is uncoloured and it is in a common rectangle with

all the colours we have used so far, so 36 isolated sets do not suffice to cover all the

1s of the matrix.

On the other hand, by Chaiken et al.’s theorem [14] row-column interval matrices

are firm, so D4 is firm and row-column duplication preserves firmness so the matrix

obtained after row-column duplication is firm too.

Therefore, Boucher’s example shows an important difference between the two

related problem pairs: row and column duplication preserves firmness, but it does

not preserve equality between the maximum rectangle and the minimum cover by

isolated sets.
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2.3.3 Maximum rectangle in totally balanced matrices

The matrix that we considered above is row-column interval, so clearly totally bal-

anced. It is interesting to see that yet there is a polynomial time algorithm to compute

the maximum rectangle of totally balanced matrices. This algorithm is heavily de-

pendent on the polynomial time algorithm testing for totally balancedness. Let Γ be

the 2× 2 binary matrix,

Γ :=

[
1 1
1 0

]
.

A binary matrix X has a Γ-free ordering if its rows and columns can be permuted so

that it has no Γ-submatrix where the order of the rows and columns of Γ is the same

as in the ordering of X. The following theorem leads to an efficient polynomial time

recognition algorithm of totally balanced matrices.

Theorem 2.3.1. [3, 76] A binary matrix X is totally balanced if and only if it has a

Γ-free ordering.

Lubiw gives an algorithm in [76] which computes a doubly-lexical ordering of a

binary matrix in polynomial time and shows that a doubly-lexical ordering is Γ-free

if the matrix is totally balanced.

Most of the results around computing the maximum rectangle in binary matrices

are presented in the bipartite setting as the Maximum Edge Biclique problem. So

let us go back to the bipartite setting and let G = (V1, V2, E) be a bipartite graph.

An edge (x, y) ∈ E of a bipartite graph G is said to be bisimplicial if the graph

induced by vertices x and y and their neighbours is a biclique [42][41, pg. 256]. Let

σ = {e1, e2, . . . , e|E|} be an ordering of the edges of G. σ is said to be a perfect edge-

without-vertex erasing order (pewve) of G if for each i, ei is a bisimplicial edge in the

graph obtained by deleting edges {e1, . . . , ei−1} [41, pg. 298]. How does a pewve order

of G relate to the maximum edge biclique of G? It follows from the definition that a

bisimplicial edge can be only contained in exactly one maximal biclique. Therefore,

if a pewve order is available for a bipartite graph G, going through and deleting the

edges as in the pewve order and recording the maximal biclique corresponding to

each edge, we obtain a list of size |E| containing all maximal bicliques of G [56].

Afterwards, by counting the number of edges in each maximal biclique in this list of

size |E|, it is straightforward to extract a maximum edge biclique [88, Section 6.2].

It is proved that a bipartite graph has a perfect edge-without-vertex erasing or-

der if and only if it is chordal bipartite [41, Theorem 13.17]. Therefore for chordal

bipartite graphs one can compute the maximum edge biclique from a pewve order
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and the pewve order may be computed using their totally balanced biadjacency ma-

trix as follows. Let X ∈ {0, 1}m×n be a totally balanced matrix in a Γ-free ordering

and without loss of generality assume that it has no 0 rows and columns. Let σ

be an ordering of supp1(X) in which the 1s are listed from top row to bottom and

within each row from left to right. So for instance, matrix J2 would have the order

σ = {(1, 1), (1, 2), (2, 1), (2, 2)}. Then σ is a pewve order, as for each (i, j) ∈ supp1(X)

the 1s that are in column j below (i, j), (so (`, j) ∈ supp1(X) for any ` > i) and the

1s that are in row i to the right of (i, j) (so (i, k) ∈ supp1(X) for any k > j) are in a

J2 submatrix as X is Γ-free. In the bipartite setting B(X), this shows that edge (i, j)

is bisimplicial in the subgraph in which edges that come before (i, j) in σ are deleted.

2.3.4 Step number and jump number

The jump and step number of a partially ordered set (poset) are usually defined in

the context of extending the poset into a total order. Here we give a simple equivalent

graph theoretic definition. Given a directed acyclic graph ~G, the jump number jn(~G)

of ~G is the minimum number of arcs (directed edges) to be added to ~G so that it

contains a directed Hamiltonian path (a directed path that visits each vertex exactly

once) without creating any directed cycles in ~G. Then the Hamiltonian path that

is created consists of original arcs of ~G which are called steps and the arcs that are

added in which are called jumps. The maximum number of steps in a Hamiltonian

path so created is called the step number sn(~G) of ~G. We have the following relation

between the step and jump number of ~G,

sn(~G) + jn(~G) = |V (~G)| − 1.

Let G = (V1, V2, E) be a bipartite graph. Let ~E be an orientation of the edge set

of G so that each arc is directed from V1 to V2 and define ~G = (V1, V2, ~E) which is

clearly a directed acyclic graph. Chaty and Chein [17] show that the cardinality of a

maximum alternating cycle-free matching of a bipartite graph G is equal to the step

number of ~G. In chordal bipartite graphs, alternating cycle-free matchings are just

alternating C4-free matchings. Therefore, the isolation number of a totally balanced

matrix X is equal to the step number of the above described simple orientation of

B(X).
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Chapter 3

Theory of Firmness

In this chapter, we present a detailed review of the literature on the theory of firmness,

which we believe cannot be found in any textbook or paper. We carefully go through

the definitions of firmness, superfirmness and rectangle cover graphs and illustrate

them with examples. We also present some basic matrix operations that preserve

the Boolean rank and isolation number. Then we explore the parallels between poly-

nomial time algorithms for perfect graphs and firm matrices. Finally, we explore in

great depth all so far known classes of firm and superfirm matrices.

3.1 Preliminaries

Let X be an m× n binary matrix. Following [77] we define the rectangle cover graph

of X, G(X), whose vertex set corresponds to the 1s of X and two vertices are adjacent

in G(X) if the corresponding 1s in X belong to a common rectangle:

V (G) = supp1(X),

E(G) = {[(i1, j1), (i2, j2)] : (i1, j1), (i1, j2), (i2, j1), (i2, j2) ∈ supp1(X)}.

The line graph of a graph G with edge set E is defined to be the graph with vertex

set E, where two vertices e, f ∈ E are adjacent if e and f share a vertex in G. The

rectangle cover graph G(X) may be thought of as a modified line graph of the bipartite

representation B(X) of X, in which vertices are also adjacent if the corresponding

edges are contained in an induced C4 subgraph. We adopt the convention that G(X)

is drawn so that its vertices are in the same position where the corresponding 1s are

in X. As 1s of X and vertices of G(X) are in direct correspondence, we may simply

refer to the vertices of G(X) as 1s of X or vice-versa.
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Example 3.1.1. Let D4 be the matrix below,

D4 =


1 1
1 1 1 1

1 1 1
1 1

 . (3.1.1)

(We have already seen this matrix in Equation (2.3.1) in a different row and column

order, however in the rest of the thesis, we will always use the ordering as given in

Equation (3.1.1) above).

The rectangle cover graph G(D4) drawn according to our drawing convention is

shown in Figure 3.1.

1,1 1,2

2,1 2,2 2,3 2,4

3,2 3,3 3,4

4,2 4,3

Figure 3.1: The rectangle cover graph G(D4)

By our drawing convention, we can see that a rectangle cover graph can have

three types of edges: (1) a vertical edge is between two vertices in the same column,

(2) a horizontal edge is between two vertices in the same row, (3) a diagonal edge is

between two vertices that are not in the same row nor in the same column.

Lubiw observed in [77], that working with G(X) gives us the advantage of translat-

ing the rectangle cover problem on X into a clique cover problem and the maximum

isolated set problem into a maximum independent set problem. It is easy to see that

two vertices of G(X) are not adjacent if and only if the corresponding 1s of X cannot

be covered by a common rectangle.

Lemma 3.1.2. S ⊆ supp1(X) is an independent set of G(X) if and only if it is an

isolated set of X.

This equivalence between isolated sets of X and independent sets of G(X) shows

that we may obtain a maximum isolated set of X by computing a maximum inde-

pendent set of G(X). A similar result may be stated about maximal rectangles of X.
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Lemma 3.1.3. [77, Claim 6.1.] K is a maximal clique of G(X) if and only if it is a

maximal rectangle of X.

Proof. If I × J is a maximal rectangle of X, then I × J = K is clearly a clique of

G(X). Suppose K is not maximal, so there exist (`, k) ∈ supp1(X) \ K such that

(i, j) ∪ K is another clique. As (`, k) is then adjacent to every (i, j) ∈ K, we have

x`k = x`j = xik = xij = 1 for all (i, j) ∈ K. But then (I ∪ {`})× (J ∪ {k}) is a larger

rectangle of X, a contradiction. Hence, K is maximal.

Conversely, let K be a maximal clique of G(X). Let I = {i : (i, j) ∈ K} and

J = {j : (i, j) ∈ K}. We need to show that I × J ⊂ supp1(X). Let i1 ∈ I and

j2 ∈ J be arbitrary. Since i1 ∈ I, there is some j1 for which (i1, j1) ∈ supp1(X).

If j1 = j2, then (i1, j2) ∈ supp1(X). Otherwise for j2 there is some i2 ∈ I such

that (i2, j2) ∈ supp1(X). Similarly, if i2 = i1 then (i1, j2) ∈ supp1(X). Otherwise,

(i1, j1), (i2, j2) ∈ K are adjacent vertices in G(X) with i1 6= i2 and j1 6= j2, which

shows that (i1, j2), (i2, j1) ∈ supp1(X). Therefore, K = I × J is a rectangle. And

I × J is a maximal rectangle, as any larger rectangle that would contain I × J would

imply the existence of a clique containing K.

The above lemma shows that there is an equivalence between maximal cliques of

G(X) and maximal rectangles of X, hence we may obtain a minimum rectangle cover

of X by computing a minimum clique cover of G(X) that uses maximal cliques. It is

important to note that Lemma 3.1.3 is only about maximal cliques of G(X). While

it is easy to see that any rectangle of X is a clique of X, not every clique of G(X)

corresponds to a rectangle.

Example 3.1.4. The rectangle cover graph of J2 is K4. The subgraph of G(J2)

induced by any three vertices is K3 which does not correspond to any rectangle of J2.

A non-maximal clique of G(X) may not correspond to a rectangle of X, because

not every subgraph of G(X) corresponds to a submatrix of X. One can also see that

deleting a vertex of G(X) retains all edges of G(X) that are not adjacent to the deleted

vertex, while the deceivingly similar action of replacing a 1 by a 0 in X can remove

edges from G(X) that are not necessarily adjacent to the vertex that corresponds to

the deleted 1.

Example 3.1.4 (Continued). Deleting vertex (1, 1) from G(J2) we get K3, while

replacing the 1 at (1, 1) by a 0 in J2 we get X′ = [ 0 1
1 1 ], and G(X′) is just a path on

three nodes, as edge [(2, 1), (1, 2)] disappears by setting (1, 1) to 0.
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On the other hand, one can see that any submatrix of X formed by taking rows

I and column J corresponds to a induced subgraph of G(X) obtained by deleting all

vertices (i, j) for which i 6∈ I or j 6∈ J . We summarise these observations below.

Observation 3.1.5. If X′ is a submatrix of X, then G(X′) is a induced subgraph of

G(X). But not every induced subgraph of G(X) corresponds to a submatrix of X.

Lastly, we mention that it would be an interesting research direction to understand

whether for a general input graph G one could test efficiently if G is a rectangle cover

graph. Sadly, we do not know if this is possible or not.

3.1.1 Graph perfection

In this section, we give a brief introduction into perfect graphs and some operations

that preserve graph perfection. Recall that α(G), ω(G), χ(G) and θ(G) denote the

independence, clique, chromatic and the clique cover number of a graph G. Further-

more, recall that α(G) ≤ θ(G), ω(G) ≤ χ(G) and α(G) = ω(G), θ(G) = χ(G). G is

said to be perfect if α(G′) = θ(G′) holds for all induced subgraphs G′ of G, including

G. This is not a standard definition, as one usually describes perfection using ω(G)

and χ(G). However, by the weak perfect graph theorem that we state below, our

definition is correct too. Let us illustrate this by stating some important theorems

about perfect graphs. To replicate a vertex v of a graph is to introduce a new vertex

v′, connect it to v and then connect it to all the neighbours of v. In 1972, Lovász

proved that vertex replication preserves perfection.

Lemma 3.1.6 (Replication Lemma [72]). If G is a graph obtained by replicating a

vertex of a perfect graph, then G is perfect. In particular, vertex replication preserves

perfection.

Using the Replication Lemma, Lovász proved that graph complementation also

preserves perfection. This theorem is one of the most important results in graph

theory and is often referred to as the Weak Perfect Graph Theorem.

Theorem 3.1.7 (Weak Pefect Graph Theorem [72]). A graph is perfect if and only

if its complement is perfect.

Furthermore, Lovász later proved a characterisation of perfect graphs which im-

plies the weak perfect graph theorem and will be used in Section 3.2 to illustrate a

polynomial time algorithm to compute a minimum clique cover of perfect graphs.
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Theorem 3.1.8 (Lovász’ Characterisation of Perfection [71]). A graph G is perfect

if and only if ω(H) · α(H) ≥ |V (H)| for every induced subgraph H of G.

It had been an open question for a long time to characterise perfect graphs in terms

of forbidden subgraphs. A graph G is said to be minimally imperfect if α(G′) = θ(G′)

holds for all induced proper subgraphs G′ of G, but not for G. We say that a graph

G has or contains a graph H if G has an induced subgraph which is isomorphic

to H. If G does not have a graph H as an induced subgraph then we say that G

is H-free. It is clear that perfect graphs are exactly the ones that do not contain

any minimally imperfect graphs. Therefore, the real difficulty is to fully characterise

minimally imperfect graphs.

A chord of a cycle is an edge that connects two non-consecutive vertices of the

cycle. A hole is a chordless cycle of at least four vertices. An antihole is the comple-

ment of a hole. An odd (anti)hole is an (anti)hole with an odd number of vertices.

One can verify that odd holes and odd antiholes are minimally imperfect. It was not

until 2006, when Chudnovsky et al. proved a deep result in which they show that

odd holes and odd antiholes are the only minimally imperfect graphs. This result is

often referred to as the Strong Perfect Graph Theorem.

Theorem 3.1.9 (Strong Perfect Graph Theorem [19]). A graph is perfect if and only

if it has no odd hole and no odd antihole.

We will make extensive use of this powerful theorem in the rest of the thesis, often

in the context when we want to show that a rectangle cover graph is perfect if it does

not have any odd holes and odd antiholes.

Let us present one more operation that preserves perfection which will be used

in Section 3.3.2 to illustrate that Lubiw’s L-sum preserves superfirmness. Let G1 =

(V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅, which both contain

a clique of size k > 0, say K1 and K2. The clique-sum of G1 and G2 is a graph

G = (V,E) formed by identifying vertices of K1 with vertices of K2 via a bijection

f : K1 → K2 and then gluing together G1 and G2 at their cliques K1 and K2 to form

a single shared clique. So that the vertices of G are given by

V = V1 ∪ (V2 \ K2),

and the edge set of G is given by

E = E1 ∪ (E2 \ E(K2)) ∪ {(i, j) : i ∈ K1, j ∈ V2 \ K2 and (f(i), j) ∈ E2}).

Berge shows that clique sum preserves perfection.

40



Lemma 3.1.10 (Clique-sum Lemma [9]). If G is a graph obtained by the clique

sum of two perfect graphs, then G is perfect. In particular, the clique-sum operation

preserves perfection.

3.1.2 Superfirmness

Recall that X is said to be firm if i(X′) = br(X′) for all submatrices X′ of X, including

X. Following [77], let X be called superfirm if G(X) is perfect. How do firmness and

superfirmness relate to each other? By Observation 3.1.5, every submatrix of X

corresponds to an induced subgraph of G(X), so if X is superfirm then X is firm. On

the other hand, since not every induced subgraph of G(X) corresponds to a submatrix

of X, if X is firm, it does not necessarily need to be superfirm as the inequality

α(H) = θ(H) needs only hold for induced subgraphs H of G(X) which correspond to

a submatrix of X. Indeed, the following example of Lubiw shows that superfirmness

is a strictly stronger requirement than firmness and superfirm matrices are a strict

subset of firm matrices.

Example 3.1.1 (Continued). The rectangle cover graph G(D4) contains a 5-hole as

indicated in Figure 3.2, hence G(D4) is not perfect, and D4 is not superfirm. On the

other hand, D4 is a row-column interval matrix, hence it is firm by Chaiken et al’s

theorem [14].

1,1 1,2

2,1 2,2 2,3 2,4

3,2 3,3 3,4

4,2 4,3

Figure 3.2: A 5-hole in the rectangle cover graph of firm matrix D4

In Example 3.1.4 we have seen that replacing a 1 of X by a 0 can remove edges

from G(X) that are not necessarily adjacent to the vertex that corresponds to the

deleted 1. To overcome this and to be able to represent any subgraph of G(X) in

some sort of matrix form, let us turn our attention to generalised binary matrices.

Recall from Section 1.3, that a matrix over {0, 1, ?} is called a generalised binary

matrix. For a generalised binary matrix Y, a submatrix I × J is a rectangle if

I × J ⊆ supp1(Y) ∪ supp?(Y), while S ⊆ supp1(Y) is an isolated set if no two
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elements of it can be covered by a common rectangle. Hence, ?’s can be used to form

rectangles, cannot belong to an isolated set and are allowed but need not be covered

in a rectangle covering.

Further recall, that for a standard binary matrix X, for any P ⊂ supp1(X), XP

is the generalised binary matrix obtained by setting entries (i, j) ∈ P to ?’s. Let us

define the rectangle cover graph of the generalised binary matrix XP as the induced

subgraph of G(X) obtained by deleting vertices in P .

Example 3.1.1 (Continued). Let P = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 4), (4, 3)} ⊂
supp1(D4). The generalised binary matrix DP

4 and its rectangle cover graph G(DP
4 )

are shown in Figure 3.3. Observe that the induced subgraph G(DP
4 ) of G(D4) which

is just a 5-hole, does not correspond to any submatrix of D4, hence using generalised

binary matrices is the only way to ’assign’ a matrix to it.

DP
4 =


? 1
1 ? ? 1

? 1 ?
1 ?

 G(DP
4 ) =

1,2

2,1 2,4

3,3

4,2

Figure 3.3: Matrix D4 and its rectangle cover graph G(D4)

Therefore, using generalised binary matrices we are able to represent every induced

subgraph of rectangle cover graphs in matrix form. Furthermore, as Lubiw already

observed in [77], superfirmness of a standard binary matrix X is equivalent to the

property that for every P ⊂ supp1(X) we have i(XP ) = br(XP ).

Firmness can also be defined for generalised binary matrices. A generalised binary

matrix Y is said to be firm if i(Y′) = br(Y′) holds for any submatrix Y′ of Y,

including Y. Firmness of a generalised binary matrix should not be confused with

the superfirmness of the standard binary matrix X for which we can write Y = XP

for some P ⊂ supp1(X) as superfirmness of X is a stronger requirement than the

firmness of Y.

3.1.3 Basic matrix operations

Recall that the Boolean column space BCS(X) of a binary matrix X is the set

containing the zero vector and all vectors that can be obtained as the Boolean sum
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of columns of X. For any v ∈ BCS(X) we say that the matrix [X,v] in which vector

v is appended to X is created by a Boolean column space extension. Phelps [94]

proves that Boolean column (or row) space extension preserves the Boolean rank and

isolation number.

Lemma 3.1.11. [94, Theorem 3.5] If X′ is obtained by a Boolean column space

extension of X then br(X′) = br(X) and i(X′) = i(X).

We were interested if this result could be strengthened to show that Boolean

space extensions preserve firmness. Unfortunately the answer is no as the below

counterexample shows that we may obtain the non-firm submatrix I4 starting from a

firm matrix.

Example 3.1.12. Let X be the matrix shown below and let the vector v be the

Boolean sum of the first three columns of X. Append v to X to obtain matrix X′

as shown below. One can verify that X is a firm matrix while the submatrix indexed

by {1, 2, 3, 4} × {4, 5, 6, 7} of X′ is matrix I4 which is a non-firm matrix.

X =


1 1 1

1 1 1
1 1 1

1 1 1

 , v =


1
1
1
0

 =
3∨
j=1

X:,j, X′ =


1 1 1 1

1 1 1 1
1 1 1 1

1 1 1


Nonetheless, a version of the Boolean space extension restricted to the all 1s row

and column can be shown to preserve firmness. We say the matrix [1,X] is obtained

by extending X with an all 1s column.

Lemma 3.1.13. Extending a firm matrix X with an all 1s row or column preserves

firmness.

Proof. Let X be a firm matrix and let Y = [1,X]. Let Y′ = [1,X′] be any submatrix

of Y which includes some entries from the all 1s column, and X′ be the corresponding

submatrix of X. Then as X is firm, i(X′) = br(X′). In addition, since X′ is submatrix

of Y′, we have br(X′) ≤ br(Y′) and i(X′) ≤ i(Y′).

If X′ has no row of all 0s then the rectangles in a minimum rectangle cover of X′ can

be extended to cover all the 1s in column 1, so br(Y′) = br(X′) and i(Y′) = br(Y′).

If X′ has a row of all 0s, then the 1 in that row from column 1 is isolated from all

other 1s of X′, hence i(X′) + 1 ≤ i(Y′). Adding one more rectangle to a minimum

cover of X′ to cover that 1, we get a feasible cover of Y′, so br(Y′) ≤ br(X′) + 1 and

i(Y′) = br(Y′).
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Could it be that the all 1s row extension also preserves superfirmness? The below

example shows that it does not.

Example 3.1.14. Let H3 := [1,C3] be obtained by extending the 3× 3 cycle matrix

with 1. C3 is a superfirm matrix as G(C3) is a 6-hole. By Lemma 3.1.13, H3 is firm.

On the other hand, Figure 3.4 shows that H3 is not superfirm as G(H3) contains three

5-holes.

1,1 1,2 1,3

2,1 2,3 2,4

3,1 3,2 3,4

1,1 1,2 1,3

2,1 2,3 2,4

3,1 3,2 3,4

1,1 1,2 1,3

2,1 2,3 2,4

3,1 3,2 3,4

Figure 3.4: The three 5-holes in G(H3)

Therefore, extending with an all 1s row or column preserves firmness but does not

preserve superfirmness.

Let us now turn our attention to some classical matrix operations. Perhaps, the

simplest operation that may be applied to two binary matrices X1 and X2 is the direct

sum operation, which forms a block diagonal matrix
[
X1

X2

]
. As the diagonal blocks

share no common rectangles, one can easily see the direct sum operation preserves

superfirmness and firmness.

The second natural operation to question is the Boolean matrix product. However,

the below example shows that the Boolean matrix product cannot preserve firmness

nor superfirmness because the non-firm matrix I4 can be factorised as,
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 =


1 1
1 1

1 1
1 1

 ◦


1 1
1 1

1 1
1 1

 ,
where the factor matrices are just permutations of the superfirm matrix C4.

The last simple matrix operation that we consider is the Kronecker product. Caen

et al. [29],[86, pg. 48] prove that the following inequalities govern the Boolean rank

and isolation number of the Kronecker product X⊗Y,

max
{
i(X)br(Y), br(X)i(Y)

}
≤ br(X⊗Y) ≤ br(X)br(Y),

i(X)i(Y) ≤ i(X⊗Y) ≤ min
{
i(X)br(Y), br(X)i(Y)

}
.
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This shows that for any weakly firm matrices X and Y, their Kronecker product is

also weakly firm. However, it turns out that Kronecker product does not preserve

firmness a the Kronecker product of two firm matrices below results in a matrix that

has I4 as a submatrix,

[
1 1
1 0

]
⊗


1 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 =



1 1 1 1 1 1 1 1

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0

1 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0

1 1 1 0 0 0 0 0


.

Similarly, the Kronecker product of superfirm matrices Γ and D3 results in a

matrix whose rectangle cover graph contains several 5-holes, the non-superfirm H3

submatrix which contains three 5-holes as shown in Figure 3.4 is highlighted,

[
1 1
1 0

]
⊗

1 1 0
1 1 1
0 1 1

 =



1 1 0 1 1 0
1 1 1 1 1 1

0 1 1 0 1 1

1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 0 0 0


.

Therefore, the Kronecker product does not preserve superfirmness either.

3.2 Algorithms for perfect graphs

In this section, we detail Grötschel et al.’s [46] polynomial time algorithm to compute

a maximum independent set and minimum clique cover of perfect graphs. The Lovász

ϑ(G) number [73] is a real number that is sandwiched between the clique cover and

the independence number for every graph, so for any graph G = (V,E)

α(G) ≤ ϑ(G) ≤ θ(G).

For any ε > 0, ϑ(G) can be computed to within ε precision by solving a semidefinite

program in time polynomial in |V (G)| and log 1
ε

[45]. Let us denote the value of ϑ(G)

computed to ε precision by ϑε(G), so we have ϑε(G) ∈ [ϑ(G) − ε, ϑ(G) + ε]. If G

is weakly perfect, then we can compute α(G) = θ(G) in polynomial time. This is
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because, for weakly perfect graphs ϑ(G) is an integer number and it suffices to solve

the semidefinite program with precision ε < 1
2

and then can get α(G) = θ(G) by

rounding ϑε(G) to the nearest integer. Let us denote ϑε(G) rounded to the nearest

integer by bϑε(G)e.
In addition, Grötschel et al. [46] show that if G is perfect, not only the numbers

α(G), θ(G) can be computed, but a maximum independent set and minimum clique

partition too. We illustrate this following [67, Chapter 4]. Algorithm 1 shows how a

maximum independent set can be computed for a perfect graph. The idea is to remove

a vertex at each iteration to get a subgraph Gi of G, compute α(Gi) by computing

ϑε(Gi) with precision ε < 1
2
, rounding it to the nearest integer bϑε(Gi)e and check

whether the removal of the vertex decreases α(G). If the vertex’s removal decreases

α, then that vertex must be included in a maximum independent set and so it is left

in the graph, otherwise the vertex is permanently removed. After at most |V (G)|
iterations, the subgraph Gn that remains is an independent set of size α(G).

Algorithm 1: MaxIndependentSet(G, ε)

Input: G = (V,E), ε ∈ (0, 1
2
).

Set G0 := G, compute ϑ0 := bϑε(G0)e and order nodes v1, . . . , vn.
for i ∈ [n] do

Compute ϑi := bϑε(Gi−1 \ vi)e.
if ϑi = ϑ0 then

Set Gi = Gi−1 \ vi.
else

Set Gi = Gi−1.
Output: Gn.

To compute a minimum clique partition of a perfect graph G, somewhat more work

needs to be done. The method presented in Algorithm 2 is based on the observation

that for a perfect graph G it suffices to find a clique K of G that intersects all

maximum independent sets of G and then we can recursively partition G \ K into

cliques. Such a clique exists because any clique K that is a member of a minimum

clique partition of G satisfies θ(G \K) = θ(G)− 1 = α(G)− 1.

A clique intersecting all maximum independent sets of G can be found iteratively.

Keep a list L = {S1, . . . } of maximum independent sets of G that have already

been computed and at each step compute a clique K that intersects all sets in L.

If α(G \ K) = bϑε(G \ K)e < bϑε(G)e = α(G), then K intersects all maximum

independent sets of G, otherwise a maximum independent set of G \K of size α(G)

is added to the list L and the process is iterated.
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Algorithm 2: MinCliquePartition(G, ε)

Input: G = (V,E), ε ∈ (0, 1
2
).

Compute S1 := MaxIndependentSet(G, ε) and set L := {S1}, C := {}.
Call CP(G,L, C).
Output: C.

Algorithm CP(G,L, C):
Compute a clique K that intersects all independent sets in L.
if bϑε(G \K)e = bϑε(G)e then

Update L := L ∪ {MaxIndependentSet(G \K)}
Call CP(G,L, C).

else
Update C := C ∪ {K}

if V (G \K) 6= ∅ then
Call CP(G \K, {S \K : S ∈ L}, C).

In order for this algorithm to work, one needs to be able to compute a cliqueK that

intersects all independent sets in list L = {S1, . . . , St}. For this let H be a subgraph

of G induced by ∪ti=1Si in which each vertex is replicated as many times as it appears

among Si’s. Then by the Vertex Replication Lemma 3.1.6 H is perfect, so ω(H) =

χ(H). We have χ(H) ≤ t, because each vertex that has been replicated k times for

some k ≤ t, belongs to k independent sets Si and can be coloured accordingly. In

addition, we have |V (H)| = tα(H) and α(H) = α(G). By Lovász’ Characterisation

of Perfection 3.1.8, H satisfies |V (H)| = tα(G) ≤ ω(H)α(G). So t ≤ ω(H) and a

maximum clique of H intersects all Si. Translating this clique back to G, by collapsing

any vertex replication that has been made, we get a clique which may not have size

t, but still intersects all Si. Therefore, by computing MaxIndependentSet(H, ε) to

get a maximum clique of H and undoing vertex replication, we obtain the clique

intersecting all independent sets in L.

To see that this algorithm runs in polynomial time, observe that at each iteration

we either add a new maximum independent set to L or remove a clique from G

which reduces bϑε(G)e by exactly one. Next we argue that |L| ≤ |V (G)|. Let L
contain t independent sets S1, . . . , St at some iteration and let us define an affine

space corresponding to these t independent sets as

Lt = {x ∈ R|V | :
∑
i∈S

xi = 1 for all S ∈ {S1, . . . , St}}.

Then the indicator vector xK ∈ {0, 1}|V | (xi = 1 ⇐⇒ i ∈ K ) of a clique K that

intersects all S1, . . . , St must satisfy xK ∈ Lt. If this clique K does not intersect a
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maximum independent set St+1, then
∑

i∈St+1
xKi = 0 and xK ∈ Lt \ Lt+1, where

Lt+1 = Lt ∩ {x ∈ R|V | :
∑

i∈St+1
xi = 1}. Hence the dimension of the affine space

decreases by at least one at each iteration when a new maximum independent set is

added to L and thus |L| ≤ |V (G)| and the total number of iterations is bounded by

|V (G)|.

3.2.1 Algorithms for firm and superfirm matrices?

Let us turn our attention back to matrices and let X ∈ {0, 1}m×n. By the properties

of rectangle cover graphs, we know that br(X) = θ(G(X)) and i(X) = α(G(X)). G(X)

may be built in O(m2n2) time, so if we can compute a maximum independent set of

G(X) in polynomial time, we obtain a maximum isolated set of X in polynomial time.

Similarly, if we can compute a minimum clique partition/cover of G(X), then each

clique in the cover can be extended into a maximal clique in O(mn) time and hence

we obtain a minimum rectangle cover of X. When extending a clique to a maximal

clique, different maximal cliques may be obtained based on the order the vertices are

considered. However, any extension gives an optimal rectangle cover, perhaps just

with a different overlap between the rectangles. Therefore, as one expects the main

difficulty of computing a minimum rectangle cover and maximum isolated set is the

computation of minimum clique covers and maximum independent sets.

If X is superfirm, G(X) is perfect and a minimum rectangle cover and a maximum

isolated set can be computed in polynomial time using Algorithm 1 and 2. The

question remains whether these algorithms could somehow be altered to work for firm

matrices as well. By computing ϑ(G(X)) with accuracy ε < 1
2
, we can obtain numbers

br(X) and i(X) for any weakly firm matrix (recall that weakly firmness is defined by

br(X) = i(X)). For firm matrices that are not superfirm, we have θ(H) = α(H)

for only those subgraphs H that correspond to a submatrix. Therefore, G(X) is

a weakly perfect graph with some additional properties that do not immediately

show whether the algorithms for perfect graphs can be successfully adapted. As the

following example shows Algorithm 1 and 2 may fail for weakly perfect graphs.

Example 3.2.1. Let G = ([8], {(1, 2), E(C7)}) be a graph which contains a 7-hole

and exactly one other vertex (vertex 1) which is adjacent to only one vertex of the

7-hole (vertex 2). Then α(G) = θ(G) = 4. We run MaxIndependentSet(G, ε) on

G, and examine vertices in label number order. After removing vertex 1 we compute

ϑ(C7) = 7 cos(π/n)
1+cos(π/n)

= 3.317 . . . with some precision ε < 1
2
. If ε = 0.4 then ϑ0.4(C7) ∈

[2.917, 3.717], so we may get bϑ0.4(C7)e equal to 3 or 4. If bϑ0.4(C7)e = 4 then the
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algorithm fails to detect that we removed a vertex which needs to be part of a maximum

independent set.

Let G be the graph in Figure 3.5 which is weakly perfect. G has 3 maximum

independent sets of size 3 given by {1, 6, 8}, {2, 5, 8}, {3, 5, 7} and also a minimum

clique cover of size 3 formed by the maximal cliques {1, 4, 5}, {2, 6, 7}, {3, 4, 8}. We

call MinCliquePartition(G, ε) on G. Suppose we are lucky and successfully compute

all maximum independent sets in L. Then we find the maximal clique K = {1, 2, 3}
intersects all of them. After removing K, we get G\K = C5, and the algorithm fails as

there is no clique of C5 that intersects all of its maximum independent sets. Therefore,

for weakly perfect graphs, even if a clique intersects all maximum independent sets, it

cannot be assumed to be contained in a minimum clique cover.

6

5

7

2

4

1
8

3

Figure 3.5: A weakly perfect graph for which Algorithm 2 can fail

So for weakly perfect graphs and weakly firm matrices Algorithm 1 and 2 do not

work. However, using the submatrix hereditary property of firm matrices we suspect

that one may be able to give a polynomial time algorithm to compute the maximum

isolated set and minimum rectangle cover of a firm matrix as we can assume that we

have a polynomial time oracle to compute br(X′) = i(X′) for every submatrix X′ of

a firm matrix X.

We also know that a full Boolean rank square submatrix of a firm matrix X ∈
{0, 1}m×n may be extracted as follows (a full Boolean rank submatrix of X means a

submatrix Y of X of dimension br(X)× br(X) and of Boolean rank br(Y) = br(X)).

For each row i ∈ [m] of X, we can check whether dropping row i decreases i(X) by

computing the isolation number of the corresponding firm submatrix. Let X \ Xi,:

denote the matrix obtained from X by deleting row i. If i(X \Xi,:) = i(X), then row

i can be permanently dropped. Otherwise, if i(X \Xi,:) < i(X) then row i contains a

1 that must be included in a maximum isolated set of X and the row is not deleted.

Continuing this way, we obtain a matrix which has exactly i(X)-many rows. Then

repeating this procedure on the columns of the output matrix, we can check for every
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column as well, whether deleting them decreases the isolation number. After this, we

obtain a submatrix Y of X which is of dimension i(X)× i(X) and has i(Y) = i(X).

Therefore, each row and column of Y contains exactly one element from a maximum

isolated set of X.

At this point however, we are not sure how to extract a maximum isolated set from

Y. One may try to loop through all (i, j) ∈ supp1(Y), and compute i(Y \Yi,: \Y:,j),

however we do not see a way to enforce that the 1s selected are not in a common

rectangle.

Furthermore, since Y is of dimension br(X) × br(X) with br(Y) = br(X), an

optimal factorisation for it can be obtained by just taking its rows or columns. Then

we may add back all the columns that were deleted from X to obtain a matrix Z

of dimension i(X) × n and an optimal factorisation for it is given by its rows. But

from this point onwards, we do not know how to extend the factorisation when we

keep adding the deleted rows of X back. We know, that none of those deleted rows

can increase the Boolean rank, but we could not come up with a way to extend the

factorisation for new rows. Therefore, we state the following conjecture.

Conjecture 3.2.2. For every firm matrix, a minimum rectangle cover and a maxi-

mum isolated set can be computed in polynomial time.

3.3 Known firm matrices

In this section, we give a list of matrices that are proved to be firm so far. For all the

firm matrix classes that are known so far there is also a polynomial time algorithm to

compute a minimum rectangle cover and a maximum isolated set, which also fuels our

belief that it should be possible to compute a minimum rectangle cover and maximum

isolated set in polynomial time for every firm matrix.

3.3.1 Linear matrices

The simplest class of firm matrices is one in which no 2× 2 rectangles are allowed. A

binary matrix which has no J2 submatrix is said to be linear [22].

Theorem 3.3.1. [77, Lemma 5.2] Linear binary matrices are superfirm.

Proof. Let X be a linear binary matrix. The bipartite representation B(X) of X,

then has no subgraph isomorphic to K2,2, hence the rectangle cover graph G(X) of X

is just the line graph of B(X). Since line graphs of bipartite graphs are perfect [41],

G(X) is a perfect graph and therefore X is superfirm.
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By superfirmness we may use the general polynomial time algorithm for perfect

graphs that is mentioned in the previous section to compute a minimum rectangle

cover and maximum isolated set of a linear matrix X. However, a simpler way is

to observe that since the bipartite representation B(X) has no K2,2 subgraphs, all of

B(X)’s bicliques are stars and any matching of B(X) is K2,2-free. Hence, the isolation

number of X is equal to the cardinality of a maximum matching in the bipartite

representation B(X). Similarly, a minimum biclique cover of B(X) can be constructed

by computing a minimum vertex cover to get a set of vertices W ⊂ V (B(X)) and

then take the bicliques formed of the stars having a vertex in W along with all

their neighbours. Since a minimum vertex cover and maximum matching can be

computed in bipartite graphs in polynomial time [99, Chapter 16], for linear matrices

the minimum rectangle cover and maximum isolated set are computable in polynomial

time.

3.3.2 L-decomposable matrices

In this section we present two classes of superfirm matrices. Let us start first by

describing an operation which is introduced and analysed by Lubiw in [77] in the

context of binary matrices using their bipartite representation. In turn, Lubiw men-

tions that this operation comes from the more general method of split decomposition

on graphs which is due to Cunningham and Edmonds [25].

L-sum. Let G = (I, J, E) be a connected bipartite graph and let {VA, VB} be a

partition of the vertex set I ∪ J with |VA|, |VB| ≥ 2. The cut determined by VA is

the set of edges δ(VA) = {(u, v) ∈ E : u ∈ VA, v 6∈ VA}. We say that the partition

{VA, VB} is a split if δ(VA) = {(i, j) : i ∈ I1
B, j ∈ J1

A} holds for some J1
A ⊆ VA ∩ J and

I1
B ⊆ VB ∩ I, i.e. the edges of the cut determined by VA form a biclique. The split

decomposition of G at split {VA, VB} is to delete edges δ(VA) to obtain two bipartite

graphs GA = (VA, EA) and GB = (VB, EB) and then add a new vertex iA (jB) to GA

(GB) and connect it to all the vertices in J1
A (I1

B). The reverse of a split decomposition

is the split-sum of two bipartite graphs. If GA = (VA, EA) and GB = (VB, EB) are

two bipartite graphs with iA ∈ VA and jB ∈ VB, then the split sum of GA and GB is

a bipartite graph G = (V,E) with V = (VA ∪ VB) \ {iA, jB} and

E = {(u, v) ∈ EA ∪ EB : u, v 6∈ {iA, jB}} ∪ {(i, j) : (iA, j) ∈ EA, (i, jB) ∈ EB}.

Now we give the equivalent definition in terms of binary matrices. Let A and B

be mA×nA and mB×nB binary matrices respectively. Let IA∪{iA} (where iA 6∈ IA)
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and JA denote the row and column index sets of A and let row iA be a nonzero row of

A. Similarly, let IB and JB ∪{jB} (where jB 6∈ JB) denote the row and column index

sets of B and let column jB be a nonzero column of B. Let J0
A = {j ∈ JA : aiA,j = 0}

and J1
A = {j ∈ JA : aiA,j = 1} be a partition of JA according to 0s and 1s in row iA

of A. Let I0
B and I1

B be an analogously defined partition of IB based on the 0s and

1s in column jB of B. Therefore, A and B have the form,

A =

J0
A J1

A[ ]
IA A0 A1

iA 0> 1>
, B =

jB JB[ ]
I1
B 1 B1

I0
B 0 B0

.

The Lubiw-sum operator or L-sum for short (simply called ’composition’ when intro-

duced in [77]), takes A and B as inputs and returns a binary matrix L(iA,jB)(A,B) ∈
{0, 1}(mA+mB−1)×(nA+nB−1) which satisfies

L(iA,jB)(A,B)ij =


aij i ∈ IA, j ∈ JA,
bij i ∈ IB, j ∈ JB,
1 i ∈ I1

B, j ∈ J1
A,

0 otherwise.

Visually, A and B are joined on a rectangle which is created from row iA of A and

column jB of B,

L(iA,jB)(A,B) =

J0
A J1

A JB IA A0 A1

I1
B J B1

I0
B B0

. (3.3.1)

When the selected nonzero row iA of A and the nonzero column jB of B is clear

from the context or arbitrary, we adopt the simpler notation L(iA,jB)(A,B) = A�B.

Lubiw [77, Lemma 3.2, Lemma 3.3] shows that the Boolean rank and isolation number

of a matrix obtained by the L-sum operation satisfies the following lemmas, whose

proofs we present in matrix form instead of their original proof in the bipartite setting.

Lemma 3.3.2. [77, Lemma 3.2] The Boolean rank of A�B satisfies

br(A�B) = min

{
br(A) + br(

[
B1

B0

]
), br(

[
A0 A1

]
) + br(B)

}
.

Proof. (≤) Any minimum rectangle cover of A can be expanded to a minimum rect-

angle cover of
[
A0 A1

J

]
, hence a feasible rectangle cover of A�B can be formed from
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the union of a minimum rectangle cover of A and of
[
B1
B0

]
. Similarly, a feasible rect-

angle cover of A�B can be formed from the union of a minimum rectangle cover of

B and of [ A0 A1 ].

(≥) Let R be the set of rectangles in a minimum rectangle cover of A � B.

Observe that 1s in A0 and A1 cannot be contained in a common rectangle with

1s in B0 and B1. Let RA be the set of rectangles that cover a 1 from [ A0 A1 ]

and let RB = R \ RA. Any rectangle in RA can be transformed into a rectangle

of A by compressing its rows corresponding to J into a single row. Similarly, any

rectangle in RB can be compressed into a rectangle of B. Let R′A be the rectangles

of A obtained by compressing rectangles in RA and let R′B be the rectangles of B

compressed from rectangles in RB. Then either (1.) R′A is a proper cover of A or

(2.) R′B is a proper cover of B, or both. In (1.) we have |RA| = |R′A| ≥ br(A)

and |RB| = |R′B| ≥ br(
[
B1
B0

]
). While in (2.) we have |RB| = |R′B| ≥ br(B) and

|RA| = |R′A| ≥ br([ A0 A1 ].

Lemma 3.3.3. [77, Lemma 3.3] The isolation number of A�B satisfies

i(A�B) = max

{
i(A) + i(B)− 1, i(

[
A0 A1

]
) + i(

[
B1

B0

]
)

}
.

Proof. (≥) Since 1s in A0 and A1 cannot be contained in a common rectangle with

1s in B0 and B1, the union of a maximum isolated set of [ A0 A1 ] and a maximum

isolated set of
[
B1
B0

]
is an isolated set of A�B, hence i(A�B) ≥ i([ A0 A1 ])+ i(

[
B1
B0

]
).

Let SA be a maximum isolated of A, and SB of B.

(1.) If SA contains a 1 from the last row of A with column index c, and SB contains

a 1 from the first column of B with row index r, then delete these two 1s and add

(A�B)r,c to obtain an isolated set for A�B of size i(A) + i(B)− 1.

(2.) If SA (SB) contains a 1 from the last row of A (first column of B) and SB (SA)

does not contain a 1 from the first column of B (last row of A), then remove that

one from SA (SB) to obtain an isolated set for A�B of size i(A) + i(B)− 1.

(≤) Let S be a maximum isolated set of A�B.

(1.) If S does not contain any 1s from block J then it can be split into two isolated

sets, one of which is feasible for [ A0 A1 ] and the other for
[
B1
B0

]
, so i(A � B) ≤

i([ A0 A1 ]) + i(
[
B1
B0

]
).

(2.) Otherwise S contains a 1 from block J. In this case S\supp1(
[
B1
B0

]
) corresponds to

a feasible isolated set of A and S\supp1([ A0 A1 ]) corresponds to a feasible isolated set

of B and they both contain the corresponding 1 in block J, so |S| ≤ i(A)+i(B)−1.

Using these lemmas, Lubiw proves that L-sum preserves firmness.
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Theorem 3.3.4. [77, Theorem 3.1] If A and B are firm then so is A � B. In

particular, the L-sum operation preserves firmness.

Proof. It suffices to show that i(A � B) = br(A � B) as any proper submatrix of

A�B is either a submatrix of A, or B or of the form A′ �B′, where A′ and B′ are

submatrices of A and B respectively.

(1.) If i(A) > i([ A0 A1 ]) and i(B) > i(
[
B1
B0

]
), then i([ A0 A1 ]) = i(A) − 1 and

i(
[
B1
B0

]
) = i(B)− 1, and by Lemma 3.3.3 we have i(A�B) = i(A) + i(B)− 1. Thus

by Lemma 3.3.2 and firmness of A and B we have

br(A�B) = min
{
br(A) + (br(B)− 1), (br(A)− 1) + br(B)

}
= i(A) + i(B)− 1 = i(A�B).

(2.) If i(A) = i([ A0 A1 ]), then br(A) = br([ A0 A1 ]) holds as well by firmness. By

Lemmas 3.3.2 and 3.3.3 we then have

br(A�B) = min
{
br(A) + br(

[
B1
B0

]
), br(A) + br(B)

}
= br(A) + br(

[
B1
B0

]
),

i(A�B) = max
{
i(A) + i(B)− 1, i(A) + i(

[
B1
B0

]
)
}

= i(A) + i(
[
B1
B0

]
),

as br(
[
B1
B0

]
) ≤ br(B) and i(B) − 1 ≤ i(

[
B1
B0

]
) always hold. Therefore, br(A � B) =

i(A�B).

(3.) If i(B) = i(
[
B1
B0

]
) then the same reasoning holds as in (2.).

Lubiw goes one step further and proves that the L-sum operation also preserves

superfirmness by showing that the L-sum of A and B can be seen as vertex replications

and a clique sum applied to G(A) and G(B).

Theorem 3.3.5. [77, Theorem 6.2] If A and B are superfirm then so is A�B. In

particular, the L-sum operation preserves superfirmness.

Proof. Let A � B = L(iA,jB)(A,B) for some row iA of A and column jB of B. By

our assumption the rectangle cover graphs G(A) and G(B) are perfect. By definition,

the 1s of row iA of A form a clique of size |J1
A| in G(A) and the 1s of column jB

form a clique of size |I1
B| in G(B). Observe, that G(

[
A0 A1

J

]
) contains a clique of size

|I1
B| · |J1

A| which is obtained by replicating each vertex corresponding to a 1 in row iA

|I1
B| times. Similarly, G(

[
J B1

B0

]
) contains a clique of size |I1

B| · |J1
A| which is obtained

by replicating each vertex corresponding to a 1 in column jB |J1
A| times. Finally,

observe that G(A�B) is the clique sum of G(
[
A0 A1

J

]
) and G(

[
J B1

B0

]
) on the clique

of size |I1
B| · |J1

A| that is obtained by vertex replication in both graphs. Therefore, by

the Clique-sum 3.1.10 and Replication Lemmas 3.1.6, G(A�B) is perfect.

54



Recall that to duplicate a row or column of a matrix is to add a new row or

column to the matrix that is the copy of another row or column. We have already

observed that the Boolean rank and isolation number are invariant under row and

column duplication. Row and column duplication is a simple instance of the L-sum

operation. For instance, to duplicate a row of X k times we take the L-sum of X with

the all 1s column vector of size k. Since L-sum preserves firmness and superfirmness,

row-column duplication preserves firmness and superfirmness.

Corollary 3.3.6. [77] Let X be a binary matrix and let X′ be obtained by duplicating

some rows and/or columns of X. If X is superfirm, then so is X′; and if X is

firm, then so is X′. In particular, row and column duplication preserves firmness and

superfirmness.

A chordal graph is in which every cycle of four or more vertices has a chord. The

proof of Theorem 3.3.5 may be further strengthened to show that the L-sum operation

preserves chordality.

Corollary 3.3.7. If G(A) and G(B) are chordal graphs then so is G(A � B). In

particular, the L-sum operation preserves chordality of the rectangle cover graph.

Proof. By the proof of Theorem 3.3.5 it is sufficient to argue that vertex replication

and the clique sum operation preserve chordality. Let G be a chordal graph and let

G′ be the graph obtained by replicating vertex v of G by new vertex v′. Since G and

G′ \ {v} are both chordal, any cycle C in G′ that is not an induced subgraph of G

and G′ \{v}, must contain both v and v′. But then as v and v′ are adjacent and have

the same neighbours, if |C| ≥ 4 then a chord appears, hence G′ is chordal too. Next,

let G be the clique sum of two chordal graphs G1 and G2 on clique K. It is then

easy to see that any cycle C that is not an induced subgraph of G1 and G2 would

need to contain two vertices from K, which shows that C has a chord. Therefore, G

is chordal.

The L-sum operation may be extended to generalised binary matrices in a natural

way. Let A, IA, iA, J
0
A, J

1
A and B, I1

B, I
0
B, JB, jB be defined as previously and require

that row iA of A and column jB of B have entries that are 1s as before. If row iA

and column jB have some ?’s, then we can introduce two new blocks into A and B,

A =

J0
A J?

A J1
A[ ]

IA A0 A? A1

iA 0> ?> 1>
, B =

jB JB I1
B 1 B1

I?
B ? B?

I0
B 0 B0

.
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Then the L-sum of A and B is defined as

L(iA,jB)(A,B) =

J0
A J?

A J1
A JB


IA A0 A? A1

I1
B ? J B1

I?
B ? ? B?

I0
B B0

.

One can double check that the proofs of Lemmas 3.3.2, 3.3.3 and Theorems 3.3.4,

3.3.5 hold for L-sums of generalised binary matrices as well. Therefore, L-sum pre-

serves firmness of generalised binary matrices as well.

L-decomposable matrices. Reversing the L-sum operation is equivalent to de-

termining whether a matrix X arises from smaller matrices by the L-sum operation.

If X = A � B for some matrices A,B then we say that X is L-decomposable. By

Theorems 3.3.4 if X is a matrix that is L-decomposable to matrices that are firm,

then X is firm.

A standard binary matrix X is L-decomposable if and only if the bipartite repre-

sentation B(X) is split decomposable. In [25], Cunningham and Edmonds show that

in polynomial time, every connected graph can be uniquely split decomposed into a

minimum number of components, where each component is a prime graph (a graph

that cannot be further split decomposed), a star or a clique. Stars and cliques are

not prime graphs, as stars can be split decomposed into smaller stars, while cliques

can be split decomposed into smaller cliques. However, to get a minimum number

of components in a split decomposition, one should not split decompose stars and

cliques.

A class of binary matrices is called hereditary if it is closed under taking submatri-

ces. Lubiw [77, Section 4] uses Cunningham’s split decomposition algorithm to show

that there is a polynomial time algorithm to compute a minimum rectangle cover and

a maximum isolated set for any class of binary matrices that is a hereditary class and

for which there exists a polynomial time algorithm to compute a minimum rectangle

cover and a maximum isolated set on the prime components that arise in its split

decomposition.

A graph G is distance hereditary if every cycle of length 5 or more has at least

two crossing chords, where two chords (a, c) and (b, d) are crossing if the four vertices

a, b, c, d lie in this order on the cycle. A graph is distance hereditary if and only if

its split decomposition consists of only stars and cliques [52, 40]. Distance hereditary
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graphs have a forbidden subgraph characterisation, which says that a graph G is

distance hereditary if and only if it is domino, gem and house-free and does not have

any holes of length 5 or more [4], [12, Theorem 10.1.1]. A gem is a cycle of length 5

with two non-crossing chords and a house is a cycle of length 5 with only one chord.

It follows that a graph is bipartite distance hereditary if and only if it is domino-free

and chordal bipartite. Furthermore, the result of [52] on the split decomposition of

distance hereditary graphs implies that a bipartite graph is distance hereditary if and

only if its split decomposition consists of only stars.

Recall that the domino graph’s biadjacency matrix is D3. In the binary matrix

setting, bipartite distance hereditary graphs are the bipartite representation of to-

tally balanced matrices that have no D3 submatrix. As stars are just the bipartite

representations of row and column binary vectors, we get the following theorem.

Theorem 3.3.8 (Corollary of [4] and [52]). X ∈ {0, 1}m×n can be L-decomposed into

row and column vectors if and only if X has no D3 and no Ck submatrices for any

k ≥ 3.

The rectangle cover graph of row and column vectors are just cliques. By Theorem

3.3.5 the L-sum operation preserves superfirmness therefore D3-free totally balanced

matrices are another class of superfirm matrices. One can even say a stronger ar-

gument by using the result that L-sum preserves chordality of the rectangle cover

graph.

Theorem 3.3.9. Let X ∈ {0, 1}m×n. G(X) is chordal if and only if X has no D3

and no Ck submatrices for any k ≥ 3.

Proof. It is clear that the rectangle cover graphs of D3 and Ck (k ≥ 3) are not chordal

as G(Ck) is a 2k-hole and G(D3) contains a 4-hole as shown in Figure 3.6 below.

Now let X be a binary matrix with no D3 and no Ck (k ≥ 3) submatrix. Then X

is L-decomposable into row and column vectors by Theorem 3.3.8 and equivalently X

may be built up from binary row and column vectors by the L-sum operation. Since

the rectangle cover graphs of row and column vectors are just cliques, and the L-sum

operation preserves chordality by Corollary 3.3.7, G(X) is chordal.

As linear matrices are another class of superfirm matrices, Lubiw had the very

interesting idea to analyse the closure under the L-sum operation of linear matrices

in terms of forbidden submatrices. We say a binary matrix is L-decomposable into

linear matrices if it is linear or can be obtained by a series of L-sums applied to
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1,1 1,2

2,1 2,2 2,3

3,2 3,3

Figure 3.6: G(D3) with its 4-hole highlighted

linear matrices [77, pg.108]. Observe that these matrices then are superfirm, as L-

sum preserves superfirmness and linear matrices are superfirm. For n ≥ 4, let Mn be

the n× n matrix,

Mn :=



1 1
1 1

. . . . . .

1 1
1 1 1

1 1


. (3.3.2)

The rectangle cover graph of Mn contains an odd hole of size 2n−1, G(Mn) with the

2n− 1-hole highlighted can be seen in Figure 3.7 for n = 4, 5.

1,1 1,2

2,2 2,3

3,1 3,3 3,4

4,3 4,4

(a) G(M4)

1,1 1,2

2,2 2,3

3,3 3,4

4,1 4,4 4,5

5,4 5,5

(b) G(M5)

Figure 3.7: The rectangle cover graph of M4 and M5 with their odd hole highlighted

The following theorem of Lubiw, provides a forbidden submatrix characterisation

of matrices that are L-decomposable into linear matrices.

Theorem 3.3.10. [77, Lemma 5.3] X ∈ {0, 1}m×n is L-decomposable into linear

matrices if and only if it does not have D3 and Mk submatrices for any k ≥ 4.

Lubiw notes that strongly balanced matrices are L-decomposable into linear pieces.

A binary matrix X is said to be balanced if it has no Cn submatrix for any odd n ≥ 3,

and it is said to be strongly balanced if it is balanced and any matrix obtained from
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it by changing a single 1 to a 0 is also balanced. Matrices Mn for even n are not

balanced, and for odd n they are balanced but not strongly balanced. In addition,

D3 is also not strongly balanced. Hence, strongly balanced matrices cannot have a

D3 or Mn submatrix and they are L-decomposable to linear pieces.

Furthermore, note that as Mk is not superfirm for any k ≥ 4 and clearly has no

D3 submatrix, the following statement is true for D3-free matrices.

Corollary 3.3.11. Let X ∈ {0, 1}m×n have no D3 submatrix. Then X is superfirm

if and only if it has no Mk submatrix for any k ≥ 4.

The above corollary implies that D3-free superfirm matrices are exactly the matri-

ces that can be L-decomposed into linear pieces. Clearly D3 is superfirm itself, hence

there is more work to do to get a complete characterisation of superfirm matrices in

terms of forbidden submatrices.

3.3.3 D3-free matrices

Forbidding D3 leads to some beautiful results most of which come from a 1998 paper

by Amilhastre et al. [2]. In their paper, it is proved that the Boolean rank of D3-

free binary matrices can be computed in polynomial time. It is also shown that the

Boolean rank of D3-free matrices equals the minimum number of rectangles needed

to partition the 1s of the matrix, the rectangle partition number. Interestingly, the

isolation number of D3-free matrices is not mentioned to be equal to the Boolean

rank. Their constructions however, along with a brief complementary result that

we prove in this section, allow us to deduce that the isolation number of D3-free

matrices equals the Boolean rank, and by this D3-free matrices form another class of

firm matrices. Recall that matrices Mn have no D3 submatrix but contain an odd

hole in their rectangle cover graph as shown in Figure 3.7. Hence D3-free matrices

give a class of firm matrices that is not a subset of superfirm matrices.

Let us briefly describe the main ideas in [2]. Recall from Section 1.1.1 that a

binary matrix is a row-clutter matrix if its rows are element-wise incomparable. We

say that a matrix is a row-column-clutter matrix if it is row-clutter and column-

clutter. The main results of [2] can be divided into two parts. In the first part, it

is proved that any D3-free binary matrix X that is not a row-column-clutter matrix

can be reduced in polynomial time into a row-column-clutter matrix X′ that is also

D3-free and the Boolean rank of X equals the Boolean rank of X′. We will show that

this reduction also preserves the isolation number of X. In the second part, given

a D3-free row-column-clutter matrix X a graph H(X) is defined whose vertex set is
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an extended set of maximal rectangles of X. Then it is shown that C is a minimum

rectangle cover of X if and only if it is a minimum vertex-cut of H(X).

Reduction procedure. Let us first illustrate the procedure by which a D3-free

matrix X can be reduced to a row-column-clutter matrix. For a row ` of X, let

succ(`) contain the indices of all the rows different from row ` that are element-wise

greater than or equal to row `,

succ(`) := {i 6= ` : X`,: ≤ Xi,:}.

For a column k, define succ(k) analogously. Observe that if row ` is a row that is

strictly maximal among the other rows with respect to element-wise ≤, so succ(`) = ∅,
then row ` forms a maximal rectangle.

For a non-zero row ` of X with succ(`) 6= ∅, by reducing X on ` [2, Definition 4.2]

we obtain another matrix X′ whose rows satisfy

X′i,: =

{
Xi,: −X`,: if i 6= ` and X`,: ≤ Xi,:,

Xi,: otherwise.

If after a row reduction X′ has some 0 rows, we delete those rows. Reduction on a

column k is defined analogously, with possible 0 columns deleted. Amilhastre et al.

prove that if X is a D3-free binary matrix, then

• the matrix obtained by reducing X on a row is D3-free too [2, Property 4.3],

• the Boolean rank of the matrix X′ obtained by reducing X on a row equals the

Boolean rank of X and a minimum rectangle cover of X′ can be extended back

to give a minimum rectangle cover of X [2, Property 4.2].

In addition, Amilhastre et al. prove that performing a row reduction does not create

new column reductions [2, Property 4.4]. Hence one can first do all row reductions

and then do all column reductions. They show that for a matrix X ∈ {0, 1}m×n

with | supp1(X)| = q, one can obtain a matrix that cannot be further row-reduced

in O(mq) time [2, Lemma 4.2]. Therefore, a matrix that cannot be further row nor

column reduced can be obtained in O((m + n)q) time. Since a matrix that cannot

be further reduced has succ(i) = succ(j) = ∅ for all rows i and columns j, it is

a row-column-clutter matrix. Therefore, if there is a polynomial time algorithm to

compute a minimum rectangle cover of row-column-clutter D3-free matrices, then

there is also a polynomial time algorithm to compute a minimum rectangle cover of

arbitrary D3-free binary matrices.
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Does the reduction operation preserve isolation number of a D3-free binary ma-

trix? While this question is not treated in [2], in the next theorem we show that this

is indeed the case.

Theorem 3.3.12. If X is a D3-free binary matrix, then the isolation number of the

matrix obtained by reducing X on a row equals the isolation number of X.

Proof. Let row ` be a non-zero row of X with succ(`) 6= ∅ and let X′ be obtained by

reducing X on row `.

We show first that i(X′) ≤ i(X). Let S ′ ⊆ supp1(X′) be a maximum isolated set

of X′. Then S ′ is also a subset of supp1(X). Suppose that (i1, j1), (i2, j2) ∈ S ′ are not

isolated in X, so (i1, j2), (i2, j1) ∈ supp1(X). Then the 0 that makes them isolated

in X′ is created by the reduction on row ` and we must have either i1 ∈ succ(`) or

i2 ∈ succ(`) but not both (having both i1, i2 ∈ succ(`) would mean (`, j1), (`, j2) ∈
supp1(X) and none of (i1, j1), (i2, j2) could be 1s in X′). Without loss of generality

assume that i2 ∈ succ(`) and i1 6∈ succ(`). Then (i2, j1) was turned into a 0 by

the reduction on row ` so (`, j1) ∈ supp1(X). Similarly, (i2, j2) stayed a 1 after the

reduction on row ` so (`, j2) ∈ supp0(X). As i1 6∈ succ(`) and ` 6∈ succ(i1) there exists

a k for which (i1, k) ∈ supp0(X) and (`, k) ∈ supp1(X). But then as i2 ∈ succ(`),

we also have (i2, k) ∈ supp1(X). The submatrix of X formed by rows {i1, i2, `} and

columns {j2, j1, k} then forms a D3 submatrix, a contradiction,

j2 j1 k i1 1 1 0
i2 1 1 1

` 0 1 1

.

Therefore, S ′ must be a feasible isolated set of X, and |S ′| ≤ i(X).

Next, we show that i(X) ≤ i(X′). Let S be a maximum isolated set of X. By

reducing on a row, new 1s are never created hence if all 1s in S remain 1s in X′ then

they are isolated and we are fine. So suppose that some 1s from S are turned to 0s by

the reduction on row `. Suppose there exist two distinct such 1s (i1, j1), (i2, j2) ∈ S.

Then their rows i1, i2 are in succ(`) and (`, j1) ∈ supp1(X) and (`, j2) ∈ supp1(X).

But then by i1, i2 ∈ succ(`), we also have (i1, j2), (i2, j1) ∈ supp1(X) which contradicts

their isolation, so there is at most one element from S that may be turned to a 0 in

X′. Let (i, j) ∈ S be this unique element. Then again we have i ∈ succ(`), so (`, j) ∈
supp1(X). Let S ′ = (S \ {(i, j)}) ∪ {(`, j)} which is now a subset of supp1(X′). We

argue that S ′ is still isolated in X. Suppose it is not and there is (i1, j1) ∈ S \ {(i, j)}
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which is in a common rectangle in X with (`, j). Then (i1, j), (`, j1) ∈ supp1(X). But

then since i ∈ succ(`), (i, j1) ∈ supp1(X) which shows that (i, j) and (i1, j1) are not

isolated, a contradiction. Therefore, S ′ is another maximum isolated set of X and it

is also a feasible isolated set of X′, so |S| ≤ i(X′).

By this complementary result, similarly to a minimum rectangle cover, if there is a

polynomial time algorithm to compute a maximum isolated set of row-column-clutter

D3-free matrices, there is also a polynomial time algorithm to compute a maximum

isolated set of arbitrary D3-free binary matrices.

Row-column-clutter D3-free matrices. What kind of overlap is possible between

the rectangles of D3-free matrices? In general, for any binary matrix, if I1 × J1 and

I2 × J2 are two distinct maximal rectangles, then we can have I1 ⊂ I2 if and only if

J2 ⊂ J1 [2, Property 3.1], as otherwise there is a contradiction to the maximality of

one of the rectangles. The following theorem shows how forbidding D3 submatrices

influences the intersection maximal rectangles can have.

Theorem 3.3.13. [2, Theorem 3.1] A binary matrix X is D3-free if and only if for

any distinct maximal rectangles I1 × J1, I2 × J2 such that (I1 × J1) ∩ (I2 × J2) 6= ∅,
one of the statements is true: (i) I1 ⊂ I2 and J2 ⊂ J1, (ii) I2 ⊂ I1 and J1 ⊂ J2.

Recall that Rmax(X) denotes the set of maximal rectangles of X. For an m × n
matrix X, let > = ∅ × [n] and ⊥ = [m] × ∅ be two dummy maximal rectangles and

define the set of extended maximal rectangles as R∗max(X) := Rmax(X) ∪ {>,⊥}.
Let H(X) be a simple undirected graph1 on vertex set R∗max(X) where two maximal

rectangles I1 × J1, I2 × J2 ∈ R∗max are adjacent if

(i) I1 ⊆ I2 and J2 ⊆ J1,

(ii) and there is no other rectangle I × J ∈ R∗max such that I1 ⊆ I ⊆ I2 and

J2 ⊆ J ⊆ J1.

Furthermore, for all (i, j) ∈ supp1(X) we define the subset of maximal rectangles that

cover (i, j),

R(i,j)(X) := {I × J ∈ Rmax(X) : (i, j) ∈ I × J}.

Let us quickly review some graph terminology before we state the main theorem

of Amilhastre et al. Let G = (V,E) be a graph with s, t ∈ V being two non-adjacent

1In the original setting of [2], H is defined to be the graph whose natural drawing is the Hasse
diagram of the partially ordered set on R∗

max under relation (i), but we prefer to directly go to the
graph definitions for the sake of succinctness.
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vertices of G. An s, t-path in G is a path which connects s and t. An s, t-vertex-cut

of G is a subset of V \ {s, t} whose removal disconnects s and t. Amilhastre et al.

prove the following about H(X).

Theorem 3.3.14. [2, Theorem and Corollary 5.1] Let X be a row-column-clutter

D3-free binary matrix. Then the following two statements hold.

(1) P ⊆ R∗max(X) is an >,⊥-path in H(X) if and only if P = R(i,j)(X) ∪ {>,⊥}
for some (i, j) ∈ supp1(X).

(2) C ⊆ Rmax(X) is a feasible rectangle cover of X if and only if C is a >,⊥-vertex-

cut of H(X).

Therefore, a minimum rectangle cover of a row-column clutter D3-free matrix is

equivalent to a minimum >,⊥-vertex-cut of H(X). Amilhastre et al. [2] argue that

computing a minimum >,⊥-vertex-cut can be done in polynomial time by network

flow techniques. However, for us their theorem shows an even more interesting result

than just the polynomial computability of a minimum rectangle cover.

Observe that S is an isolated set of X if and only if for any distinct (i1, j1), (i2, j2) ∈
S we have R(i1,j1)(X) ∩ R(i2,j2)(X) = ∅. Therefore, S ⊆ supp1(X) is an isolated set

of X if and only if the >,⊥-paths R(i,j)(X) ∪ {>,⊥} corresponding to (i, j) ∈ S are

pairwise internally vertex disjoint in H(X).

Menger’s theorem states that for any graph G the size of a minimum s, t-vertex-

cut of G is equal to the maximum number of pairwise internally vertex-disjoint s, t-

paths in G. Therefore, Menger’s theorem implies that the maximum number of

pairwise internally vertex disjoint >,⊥-paths of H(X) is equal to the cardinality of a

minimum >,⊥-vertex-cut of H(X). As pairwise internally vertex disjoint >,⊥-paths

of H(X) are in direct correspondence with isolated sets of X and >,⊥-vertex-cuts

of H(X) with rectangle covers of X, for any row-column clutter D3-free matrix we

have i(X) = br(X). In addition, as any D3-free matrix can be reduced to a row-

column clutter D3-free matrix and the reduction preserves i(X) and br(X), we have

i(X) = br(X) for any D3-free matrix. Furthermore, since any submatrix of a D3-free

matrix is also D3-free we arrive at the main theorem of this section.

Theorem 3.3.15. If a binary matrix has no D3 submatrix then it is firm.

We mention that Amilhastre et al’s construction along with Menger’s theorem,

in addition to providing a polynomial time algorithm to compute a minimum rect-

angle cover of D3-free matrices, also provides a polynomial time algorithm to find a

maximum isolated set of D3-free matrices.
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Could there be a proof which circumvents the use of graph H(X)? We suspect

this to be the case, and conjecture that it should be possible to show that every

row-column-clutter D3-free matrix has full isolation number.

Conjecture 3.3.16. If X ∈ {0, 1}m×n is a D3-free matrix that is row-column-clutter,

then i(X) = min{m,n}.

This conjecture together with Amilhastre et al’s reduction procedure would imply

firmness of D3-free matrices. However, note that row-column-clutter D3-free matrices

are not superfirm, because while Mn is not row-column-clutter, the below D3-free

matrix with two M3 submatrices is,
1 1
1 1

1 1 1
1 1 1

1 1
1 1

 .

3.3.4 Interval matrices

Recall that a binary matrix is an interval matrix if there is an ordering of its columns

making the 1s in each row consecutive. Interval matrices form a strict subset of totally

balanced matrices and can be recognised in polynomial time [41, Chapter 8.3]. There

is also a forbidden submatrix characterisation of interval matrices [104]. A powerful

theorem of Győri [50] shows that interval matrices are firm.

The original proof of Győri’s Theorem is non-algorithmic and remarkably difficult

and long. There appeared several simplifications of it over the years, one of which

is an algorithmic version by Franzblau et al. [37], that also provides a polynomial

time algorithm to compute a minimum rectangle cover and maximum isolated set for

interval matrices. Another reproof uses the concept of bisupermodularity [99, 60.3d]

and another one uses partially ordered sets [36].

Győri’s Theorem is also special because interval matrices are firm matrices that are

not necessarily superfirm. Recall that D4 is a row-column interval matrix which has

a 5-hole in its rectangle cover graph as shown in Figure 3.2, hence it is not superfirm.

Actually, Győri proves an even stronger statement than the firmness of interval

matrices. He proves that for any interval matrix the cardinality of a maximum isolated

sequence [78] is equal to the cardinality of a minimum rectangle cover. An isolated

sequence of X is an isolated set S ⊆ supp1(X) which satisfies the extra property that
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it can be ordered as (i1, j1), (i2, j2), . . . , (i|S|, j|S|) such that the submatrix of X indexed

and ordered by {i1, i2, . . . , i|S|} × {j1, j2, . . . , j|S|} is an upper triangular matrix,

j1 j2 j|S|


i1 1 ∗ ∗ . . . ∗
i2 1 ∗ . . .

...
. . . . . .

...

1 ∗
i|S| 1

.

On a side note we mention that Lubiw later on shows that a matrix X is totally

balanced if and only if every isolated set of X is an isolated sequence [78, Theorem

5.1]. This result also shows that for totally balanced matrices we have i(X) less

than or equal to the real rank of X as the triangular submatrix corresponding to the

isolated sequence has full real rank.

We will illustrate the firmness of interval matrices via highlights from the algorith-

mic proof of Franzblau et al. [37]. The key element of their algorithm is a reduction

procedure on an interval matrix X which replaces X by another interval matrix that

has one less row but the same cardinality of maximum isolated sequence and the same

cardinality of minimum rectangle cover as X.

Let us introduce some new notation specific to the interval structure of the ma-

trices considered. Let [k, `] := {k, k + 1, . . . , ` − 1, `} for positive integers k ≤ ` be

called a unit interval with left endpoint k and right endpoint `. For a positive integer

n, let I(n) denote the set of all unit intervals that are a subset of [n],

I(n) = {[k, `] : 1 ≤ k ≤ ` ≤ n}.

Given an interval matrix X ∈ {0, 1}m×n, for each row i ∈ [m] of X we can associate

a unit interval in I(n),

Xi,: =
∑̀
j=k

e>j ∈ {0, 1}1×n ⇐⇒ Xi = [k, `] ∈ I(n),

where ej is the j-th standard unit vector. By slight abuse of notation let X =

{X1, . . . , Xm} ⊆ I(n), the ”unit interval form” of X.

If X is an interval matrix, we may assume that in any feasible factorisation A ◦B

of X, B is an interval matrix, since each row of X satisfies Xi,: = Ai,:◦B. Hence every

feasible factorisation of X may be associated with a set of unit intervals B ⊂ I(n),
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such that every unit interval in X can be expressed as the union of some unit intervals

in B. We call B a generating set of X. Note that X itself is a generating set (but

most likely not of minimum cardinality) corresponding to the factorisation Im ◦X.

An isolated sequence S of X can also be seen as a set of |S| unit intervals

{J1, . . . , J|S|} ⊆ X, such that each Jt contains an element j ∈ Jt so that j is not

an element of J1, . . . , Jt−1. We say in this case that the set of |S| unit intervals

J1, . . . , J|S| is an isolated sequence.

A subset XI := {Xi ∈ X : i ∈ I} of X is called dependent [37] if ∪i∈IXi is a unit

interval [k, `] ∈ I(n) and every j ∈ [k, `] is contained in at least two members of XI .

Franzblau et al. prove the following.

Lemma 3.3.17. [37, Lemma 3.3] S ⊂ I(n) is an isolated sequence if and only if S

has no dependent subset.

A unit interval [k, `] ∈ I(n) is dependent in X ⊂ I(n) if {Xi ∈ X : Xi ⊆ [k, `]}
is a dependent subset of X. Furthermore a unit interval [k, `] that is dependent in

X is said to be minimally dependent in X if no proper subinterval [k′, `′] ( [k, `] is

dependent in X.

A unit interval in T ⊆ I(n) is called maximal in T if it is not contained in any

other unit interval of T .

The core of Franzblau et al.’s algorithm is a reduction procedure which reduces

X on a dependent unit interval [`, k] in X. Let J1, J2, . . . , Jt be the set of maximal

unit intervals in the dependent subset {Xi ∈ X : Xi ⊆ [k, `]} corresponding to the

dependent interval [`, k], ordered by left endpoint (and by also right endpoint then).

Then a reduction step on X using [k, `] outputs X ′,

X ′ =

{
X \ {J1} if t = 1,

X ∪ {J1 ∩ J2, J2 ∩ J3, . . . , Jt−1 ∩ Jt} \ {J1, J2, . . . , Jt} if t > 1.

Since [`, k] is dependent in X, every j ∈ [`, k] is covered by at least two unit intervals

of X, so X ′ is still a generating set for X but with size |X ′| = |X| − 1.

Let S be the set of unit intervals that is obtained by a sequence of reduction steps

from X such that no more reduction step can be applied to S. Then by Lemma 3.3.17

S has no dependent subset and it must be an isolated sequence. Through a series

of technical lemmas, Franzblau at al. further show that if the reduction at every

step is done on a minimally dependent unit interval then the isolated sequence S,

that is obtained at the end of algorithm and is not necessarily a subset of X, can be

translated back into an isolated sequence that is a subset of X and is of the same size
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[37, Theorem 4.6]. Therefore for any set of unit intervals X, their algorithm obtains

an isolated sequence of X of size |S| and a generating set of X of size |S|, proving

Győri’s theorem.

Theorem 3.3.18 (Győri’s Theorem [50]). Interval matrices are firm.
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Chapter 4

Minimally imperfect subgraphs of
rectangle cover graphs and the
stretching operation

In this chapter, we investigate how odd holes and odd antiholes can appear in the

rectangle cover graph of binary matrices. Our aim is to make a small step towards

the characterisation of necessary submatrices that lead to the appearance of imperfect

subgraphs in rectangle cover graphs.

First, we show that rectangle cover graphs can only contain odd antiholes if they

also contain odd holes and hence forbidding odd antiholes for the perfection of rect-

angle cover graphs is unnecessary. Then, we fully characterise the submatrices that

lead to the appearance of 5-holes and show that P5-free rectangle cover graphs are

perfect.

Afterwards, we define simplicial 1s and an operation to remove them. We also

introduce an operation called stretching and analyse several versions of it with respect

to the preservation of firmness and superfirmness.

In the final section of this chapter, we look at minimally non-superfirm matrices.

A binary matrix is called minimally non-superfirm (mnsf) if it is not superfirm but

all of its proper submatrices are. We prove several matrix families to be mnsf and we

analyse their rectangle cover graphs. We then show that every mnsf matrix that is

totally balanced is firm and we conjecture that every mnsf matrix is firm.

4.1 Odd antiholes in rectangle cover graphs

Let X be a binary matrix and let G(X) be its rectangle cover graph. For a subgraph

H of G(X) induced by some vertex set V (H) ⊆ supp1(X), let us look at the submatrix
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of X indexed by I × J , where I = {i : (i, j) ∈ V (H)} and J = {j : (i, j) ∈ V (H)}.
A key idea from Lubiw in [77] is to observe that by duplicating rows and columns

of the submatrix indexed by I × J , we can obtain a |V (H)| × |V (H)| matrix X′

whose rectangle cover graph has a subgraph H ′ such that no two vertices of H ′ are

in the same row or column, and H ′ is isomorphic to H. Recall that rectangle cover

graphs according to our drawing convention can have three types of edges: horizontal,

vertical and diagonal. By duplicating rows and columns of submatrix I × J , we can

’transform’ every horizontal and vertical edge of H into a diagonal edge as shown

in Figure 4.1. Therefore, all the edges between vertices of H ′ are diagonal edges in

G(X′).

1,1 1,2

2,1

=⇒

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2

Figure 4.1: A path on three vertices with a horizontal and a vertical edge is trans-
formed into a 3 × 3 submatrix by row-column duplication which has the path with
two diagonal edges

Let us first present a theorem of Lubiw from [77] which inspires the proof of many

of our results. Recall that C3 is the 3× 3 cycle matrix.

Theorem 4.1.1 ([77, Theorem 6.3]). If a binary matrix has no C3 submatrix then

its rectangle cover graph has no odd antihole of size 7 or more.

Proof. Suppose that X has no C3 submatrix but its rectangle cover graph G(X) has

an antihole A with |V (A)| = n ≥ 7 and odd. Consider the submatrix of X indexed

by {i : (i, j) ∈ V (A)} × {j : (i, j) ∈ V (A)}. By duplicating rows and columns of this

submatrix, we may assume to have an n × n matrix Y whose rectangle cover graph

contains A and that no two of the vertices of A are in the same row or column. Note

that row and column duplication cannot introduce C3 submatrices. Permute Y so
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the vertices of A appear in order on the main diagonal. Then Y must be of the form,

Y =



1 ∗ 1 1 . . . 1 ∗
∗ 1 ∗ 1 1 1
1 ∗ 1 ∗ 1 1
1 1 ∗ 1 1 1
...

. . .
...

1 1 1 1 1 ∗
∗ 1 1 1 . . . ∗ 1


. (4.1.1)

Each 1 on the diagonal is in a common rectangle with all the other 1s on the diagonal

that are not directly below or above it (yn,n is considered directly above y1,1). To

ensure that 1s on the diagonal that are directly below or above each other are not

contained in a common rectangle, at least one of yi,i+1, yi+1,i for i ∈ [n] needs to be

a 0, where addition of the indices is modulo n.

Without loss of generality assume that y1,2 = 0. Now suppose that y2,3 = 0. If

y6,5 = 0, then the submatrix formed by rows 1, 2, 6 and columns 2, 3, 5 is C3. If

y5,6 = 0, then the submatrix formed by rows 1, 2, 5 and columns 2, 3, 6 is C3. Hence

y2,3 6= 0 and it must be y3,2 = 0. In general, this shows that yi,i+1 and yi+1,i+2 cannot

be both 0, and the zeros must zig-zag as shown below,

Y =



1 0 1 1 . . . 1 ∗
1 1 1 1 1 1
1 0 1 0 1 1
1 1 1 1 1 1
...

. . .
...

1 1 1 1 1 ∗
∗ 1 1 1 . . . ∗ 1


.

But then since n is odd, this is impossible and for some i we have yi,i+1 = yi+1,i+2 = 0

and so C3 appears.

This shows that totally balanced matrices cannot have odd antiholes of size 7

or more in their rectangle cover graph. By a simple observation we can slightly

strengthen Lubiw’s Theorem.

Lemma 4.1.2. Let X be a binary matrix. If G(X) contains an odd antihole of size

7 or more, then X has at least one of the following 4× 4 submatrices,[
C3 1
1> 0

]
,

[
C3 1
1> 1

]
. (4.1.2)
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Proof. The proof builds on the proof of Theorem 4.1.1, so let Y be as in Equation

(4.1.1) and without loss of generality assume that the two consecutive zeros of the

submatrix C3 that Y has by Theorem 4.1.1 are y1,2 = y2,3 = 0,

Y =



1 0 1 1 1 1

∗ 1 0 1 1 1
1 ∗ 1 ∗ 1 1
1 1 ∗ 1 ∗ 1

1 1 1 ∗ 1 *

1 1 1 1 * 1
. . .


.

We must have y6,5 + y5,6 ≤ 1. If y6,5 + y5,6 = 0 then the submatrix formed by

{1, 2, 5, 6} × {2, 3, 5, 6} is the left matrix in Equation (4.1.2). While if y6,5 + y5,6 = 1

the same submatrix is the right matrix in Equation (4.1.2).

The first matrix in Equation (4.1.2) is just I4, which is shown to be a non-firm

matrix with i(I4) = 3 < br(I4) = 4 in Example 1.2.1. While the second matrix in

Equation (4.1.2) is firm, both matrices contain the proper submatrices H3 = [1,C3]

and H>3 . H3 is a non-superfirm matrix, as it has three 5-holes in its rectangle cover

graph as shown in Figure 3.4. Therefore, a matrix can only have an odd antihole of

size 7 or larger in its rectangle cover graph if it also has a proper submatrix whose

rectangle cover graph contains 5-holes. Thus together with the fact that a 5-antihole

is just a 5-hole, Lemma 4.1.2 implies the following interesting result.

Theorem 4.1.3. A binary matrix is superfirm if and only if it has no odd holes in

its rectangle cover graph.

This theorem shows that to characterise superfirm matrices in terms of forbidden

submatrices, we need only focus on the characterisation of matrices that have odd

holes in the rectangle cover graph and every minimally non-superfirm matrix is not

superfirm because of an odd hole.

Example 4.1.4. The smallest matrix that we have found so far with a 7-antihole in

its rectangle cover graph is shown in Figure 4.2. Observe that it contains
[
C3 1
1> 1

]
as a

proper submatrix, hence its rectangle cover graph has at least six 5-holes. In addition,

it contains M3 as a proper submatrix as well, so it also has a 7-hole.
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1 1 1 1 1
1 1 1
1 1 1
1 1 1 1
1 1 1

 =

1 1> 1
1 C3 e3

1 e>3 1


1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3

3,1 3,2 3,4

4,1 4,3 4,4 4,5

5,1 5,4 5,5

Figure 4.2: A matrix with a 7-antihole in its rectangle cover graph

4.2 Holes and paths in rectangle cover graphs

In this section, we investigate how holes can appear in rectangle cover graphs. The-

orem 3.3.9 tells us that a rectangle cover graph is chordal if and only if it has no

D3 and no Cn submatrices for any n ≥ 3. Therefore, for a binary matrix to have a

hole in its rectangle cover graph it must have a D3 or Cn submatrix. In addition,

Theorem 3.3.10 tells us that a D3-free binary matrix is superfirm if and only if it has

no Mn submatrix for any n ≥ 4. Therefore, if a D3-free matrix has some odd holes

in its rectangle cover graph it must have an Mn submatrix. We summarise some

observations about holes in rectangle cover graphs and matrices that contain them.

Observation 4.2.1. Let C be a hole in a rectangle cover graph of a binary matrix

and let X be the submatrix indexed by {i : (i, j) ∈ C} × {j : (i, j) ∈ C}.

1. X has a D3 or Cn submatrix for some n ≥ 3 by Theorem 3.3.8.

2. If C is an odd-hole then X has a D3 or Mn submatrix for some n ≥ 4 by

Theorem 3.3.10.

3. If C is an odd-hole, X has at least one 2 × 2 rectangle otherwise it is linear

(much weaker condition than 2. but worth remembering).

4. From each rectangle of X (which includes rows and columns), C contains at

most two vertices otherwise a chord appears.

5. X has at least two 1s in each row and column, as otherwise if column j only

has a single 1 at (i, j), (i, j) ∈ C and the two neighbours of (i, j) in C are also

from row i, which contradicts observation 4.
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6. If |C| = 2k or |C| = 2k − 1, then X is of dimension at least k × k by 4.

7. If |C| = 2k then | supp1(X)| ≥ 2k, while if |C| = 2k−1 then | supp1(X)| ≥ 2k+1

by 3. and 4.

8. C cannot have two consecutive vertical edges as otherwise C contains three

vertices from a column contradicting 4. The same holds for horizontal edges.

9. If C only has vertical and horizontal edges, then these must alternate by 8. and

hence C is an even cycle. Thus, if C is an odd hole it has a diagonal edge.

10. If C has nv vertical edges, nh horizontal edges and nd diagonal edges, then X

is of dimension (nv + nd)× (nh + nd).

These observations imply that matrices with at most six 1s, or only two rows, or

only two columns cannot have an odd hole in their rectangle cover graph. Therefore,

any matrix with at most six 1s or of dimension 2× n or m× 2 is superfirm.

The observations also show that the dimension and number of 1s of Mn are the

minimum possible for a matrix with a 2n− 1-hole in the rectangle cover graph.

In the next sections, we use these observations to investigate which matrices cause

the appearance of 4- and 5-holes, and paths on 4 and 5 vertices.

4.2.1 4-holes

We have seen in Section 3.3.3 that forbidding D3 matrices leads to a firm class of

matrices. Furthermore, in Figure 3.6 we show that the rectangle cover graph of D3

contains a 4-hole. It turns out that D3 is the only submatrix responsible for the

appearance of 4-holes in rectangle cover graphs as the next lemma shows.

Lemma 4.2.2. The rectangle cover graph of a binary matrix X contains a 4-hole if

and only if X has a D3 submatrix.

Proof. G(D3) clearly contains a 4-hole as shown in Figure 3.6.

For the other direction, suppose that X has no submatrix D3 but G(X) has a

4-hole. Consider the submatrix indexed by the rows and columns of the 4-hole and

duplicate and permute its rows and columns if needed to get a 4× 4 matrix Y whose

rectangle cover graph contains a 4-hole and the vertices of it appear on the main
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diagonal consecutively. Note that row and column duplication cannot introduce D3

submatrices. Then Y must be of the form,

Y =


1 1 ∗ 1
1 1 1 ∗
∗ 1 1 1
1 ∗ 1 1

 .
Inequalities y1,3 + y3,1 ≤ 1 and y2,4 + y4,2 ≤ 1 must hold otherwise a chord appears

between the vertices of the 4-hole. While inequalities y1,3 +y3,1 ≥ 1 and y2,4 +y4,2 ≥ 1

must hold otherwise a D3 submatrix appears.

Without loss of generality let y1,3 = 1. Then if y2,4 = 1, submatrix {2, 3, 4} ×
{1, 2, 3} is D3. While, if y2,4 = 0, submatrix {1, 3, 4} × {1, 2, 4} is D3.

1 1 1 1

1 1 1 1

0 1 1 1

1 0 1 1

 or


1 1 1 1

1 1 1 0

0 1 1 1
1 1 1 1

 .
Therefore, D3 appears in any case, a contradiction.

4.2.2 5-holes

From Theorem 3.3.10 we know that D3-free matrices can have 7-holes and larger in

their rectangle cover graph through matrices Mn. Can D3-free matrices also have

5-holes? An almost identical proof to that of Lemma 4.2.2 with a few more cases to

write out shows that 5-holes cannot appear without a D3 submatrix. We however

omit the proof of this, because it will be implied by the theorem that we state and

prove soon further below.

Let K5 be the 5× 5 matrix below. The rectangle cover graph of K5 then contains

a 5-hole as shown in Figure 4.3.

K5 =


1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

 .
The following theorem tells us which are the necessary and sufficient submatrices for

a binary matrix to have a 5-hole in its rectangle cover graph.

Theorem 4.2.3. The rectangle cover graph of a binary matrix contains a 5-hole if

and only if the matrix has at least one of D4, H3, H>3 , K5 as a submatrix.
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1,1 1,2 1,5

2,1 2,2 2,3

3,2 3,3 3,4

4,3 4,4 4,5

5,1 5,4 5,5

Figure 4.3: G(K5) and its 5-hole highlighted

Proof. Recall that as shown in Figures 3.2, 3.4, 4.3, all of D4, H3 and K5 have a

5-hole in their rectangle cover graph.

For the reverse, suppose that X has a 5-hole in its rectangle cover graph G(X)

but it has none of the submatrices D4, H3, H>3 and K5. Consider the submatrix

indexed by the rows and columns of the 5-hole and duplicate and permute its rows

and columns if needed to get a 5× 5 matrix Y whose rectangle cover graph contains

a 5-hole whose vertices appear on the main diagonal consecutively. Note that none

of the submatrices concerned can be created through row column duplication. Then

Y is of the form,

Y =


1 1 ∗ ∗ 1
1 1 1 ∗ ∗
∗ 1 1 1 ∗
∗ ∗ 1 1 1
1 ∗ ∗ 1 1

 ,
where yi,j + yj,i ≤ 1 for (i, j) ∈ {(1, 3), (1, 4), (2, 4), (2, 5), (3, 5)} to ensure that the

5-hole is chordless.

If all ∗’s are set to 0, then Y = K5, hence at least one of them is a 1. Without loss

of generality, y1,3 = 1. If y1,4 = y3,5 = y5,3 = 0, then submatrix {1, 3, 4, 5} × {3, 4, 5}
is H>3 as highlighted below on the left. Hence at least one of them is equal to 1. We

go into case enumeration from here.
1 1 1 * 1
1 1 1 ∗ ∗
0 1 1 1 *

∗ ∗ 1 1 1

1 ∗ * 1 1

→ (a)


1 1 1 1 1

1 1 1 0 *
0 1 1 1 ∗
0 ∗ 1 1 1

1 ∗ * 1 1

 , (b)


1 1 1 * 1
1 1 1 ∗ ∗
0 1 1 1 1

* ∗ 1 1 1

1 ∗ 0 1 1
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(a) Let y1,4 = 1. If y2,5 = y5,3 = 0, then H>3 appears, hence at least one of y2,5, y5,3

is equal to 1.

(b) Let y3,5 = 1. If y1,4 = y4,1 = 0, then H3 appears, hence exactly one of them is

equal to 1.

(c) If y5,3 = 1 then Y with a permutation of rows {3, 4, 5, 1, 2} and columns

{3, 4, 5, 1, 2} is just the transpose of case (a), hence needs no separate treat-

ment.

In case (b), we have (b1) y4,1 = 1 or (b2) y1,4 = 1. In case (b1), H3 is present.

(b)→ (b1)


1 1 1 0 1
1 1 1 ∗ ∗
0 1 1 1 1
1 ∗ 1 1 1

1 ∗ 0 1 1

 , (b2)


1 1 1 1 1

1 1 1 ∗ ∗
0 1 1 1 1
0 ∗ 1 1 1

1 ∗ 0 1 1

→


1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
1 0 0 1 1

 ,

In case (b2), submatrix {1, 2, 3, 5} × {1, 3, 4} or {1, 2, 3, 5} × {1, 3, 5} is H>3 unless

y2,4 = y2,5 = 1. But then submatrix {2, 3, 4, 5} × {1, 2, 3, 4} is D4.

In case (a), we have (a1) y5,3 = 1 or (a2) y2,5 = 1.

(a)→ (a1)


1 1 1 1 1

1 1 1 * ∗
0 1 1 1 0
0 ∗ 1 1 1

1 * 1 1 1

→ (a1.i)


1 1 1 1 1
1 1 1 1 ∗
0 1 1 1 0
0 0 1 1 1
1 ∗ 1 1 1

 , (a1.ii)


1 1 1 1 1
1 1 1 ∗ 0
0 1 1 1 0
0 ∗ 1 1 1
1 1 1 1 1

 ,

In (a1), if y2,4 = y5,2 = 0 then H>3 appears, so we must have either (a1.i) y2,4 = 1 or

(a1.ii) y5,2 = 1. In (a1.i), since y2,5 + y5,2 ≤ 1, submatrix {2, 3, 4, 5} × {1, 2, 3, 5} is

D4. Similarly in (a.1.ii), since y2,4 +y4,2 ≤ 1, submatrix {2, 3, 4, 5}×{1, 2, 4, 5} is D4.

In case (a2), if y4,2 = 1 then H>3 appears, so we must have y4,2 = 0. But then since

y3,5 + y5,3 ≤ 1, D4 appears in the submatrix formed by rows {1, 3, 4, 5} and columns

{1, 2, 3, 4} or {1, 2, 4, 5}.

(a2)


1 1 1 1 1

1 1 1 * 1
0 1 1 1 ∗
0 * 1 1 1

1 0 ∗ 1 1

→


1 1 1 1 1
1 1 1 ∗ 1
0 1 1 1 ∗
0 0 1 1 1
1 0 ∗ 1 1

 ,

Therefore, in all cases at least one of H3,H
>
3 ,D4 or K5 appears as a submatrix.
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Observe that all necessary submatrices of this theorem contain a D3 submatrix,

hence 5-holes can only appear along with 4-holes in rectangle cover graphs. By this

we learn that the firm class of D3-free matrices cannot have 5-holes in their rectangle

cover graphs.

By our observations at the beginning of the section, the above theorem also shows

that the smallest non-superfirm matrix is H3 of dimension 3 × 4 and its transpose.

In addition, note that while K5 is necessary to be included in the above theorem,

it contains several M4 as proper submatrices (for instance submatrix {1, 2, 3, 4} ×
{1, 3, 4, 5} is M4). Since M4 is not superfirm, K5 cannot be minimally non-superfirm.

4.2.3 Induced paths

Let Pn denote the path graph on n vertices. Graphs which do not contain P4 as an

induced subgraph are called cographs. Observe that the complement of P4 is P4 itself.

Since any odd-hole and odd-antihole contains P4 as an induced subgraph, cographs

form an important subset of perfect graphs. The following theorem shows which

matrices have cograph rectangle cover graphs.

Theorem 4.2.4. The rectangle cover graph of a binary matrix X contains P4 as an

induced subgraph if and only if X has at least one of the following submatrices,

[
v1 v2 0
0 v3 v4

]
,

v1 0
v2 v3

0 v4

 ,
v1 v2 1

0 1 v3

0 0 v4

 , (4.2.1)

where vi = 1 for all i ∈ [4] and indicate the vertices of the induced P4 subgraph in the

matrices’ rectangle cover graph.

Proof. Let us refer to the three matrices considered by X1,X
>
1 ,X2 from left to right.

Clearly all three matrices have an induced P4 in their rectangle cover graph.

For the reverse, we proceed by the exact same proof method as for the previous

theorems in this section. So suppose the rectangle cover graph of a matrix has an

induced P4 but no X1,X
>
1 ,X2 submatrices and consider its submatrix that contains

P4 and by permutations and row-column duplications assume that this submatrix Y

is 4× 4 and the vertices of P4 are on the main diagonal consecutively,
1 1 ∗ ∗
1 1 1 ∗
∗ 1 1 1
∗ ∗ 1 1

 .
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As before, the considered submatrices cannot be introduced by row column dupli-

cation. So that P4 has no chord and X1 and X>1 do not appear, we must have

y1,3 + y3,1 = 1, y1,4 + y4,1 = 1 and y2,4 + y4,2 = 1. Without loss of generality, let

y1,3 = 0 and y3,1 = 1. Then we must also have y4,1 = y4,2 = 1 so that X1 does not

appear. But then submatrix {2, 3, 4} × {2, 3, 4} is X2.

Therefore, binary matrices that do not have any of the above three submatrices

are superfirm. Is this a new class of superfirm matrices? In general, cographs are not

chordal because, for instance a 4-hole does not have an induced P4. However, among

rectangle cover graphs, by forbidding the three matrices of Theorem 4.2.4 we also

forbid D3 and Cn for all n ≥ 3. Since D3-Cn-free matrices have chordal rectangle

cover graphs by Theorem 3.3.9, cograph rectangle cover graphs are chordal.

What can we say about induced P5’s in rectangle cover graphs? The enumeration

gets messier, so the following is the last of our ’enumeration-type’ results.

Theorem 4.2.5. The rectangle cover graph of a binary matrix X has an induced P5

subgraph if and only if X has one of the submatrices,

v1 v2 0
0 v3 v4

∗ 0 v5

 ,
v1 v2 1 ∗

0 1 v3 0
0 0 v4 v5

 ,

v1 0 0
v2 1 0
1 v3 v4

∗ 0 v5

 ,

v1 v2 1 1
0 1 v3 1
0 0 1 v4

0 0 0 v5

 , (4.2.2)

where entries marked with ∗ can be either 0 or 1 and vi = 1 for all i denoting the

vertices of P5. (Note that the leftmost and rightmost matrices can be permuted to be

symmetric, hence with ∗ ∈ {0, 1} we specify 7 matrices in total.)

Proof. Let us refer to the matrices considered by X1,X2,X
>
2 ,X3 from left to right.

Clearly all have an induced P5 in their rectangle cover graph as indicated.

For the reverse, we proceed by the exact same proof method as for the previous

theorems in this section, so we suppose that 5×5 Y has an induced P5 in its rectangle

cover graph with the vertices of P5 on the main diagonal, and Y has none of the

considered submatrices, 
1 1 ∗ ∗ ∗
1 1 1 ∗ ∗
∗ 1 1 1 ∗
∗ ∗ 1 1 1
∗ ∗ ∗ 1 1

 .
So that the diagonal 1s form P5, we must have at most one of the two ∗’s symmetric

about the diagonal equal to 1. Observe that if y1,3 + y3,1 = 0, then if any of y2,4, y4,2
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is 0 then X1 appears. Hence y1,3 + y3,1 = 1. Similarly, if y3,5 + y5,4 = 0, then if any

of y2,4, y4,2 is 0 then X1 appears. Hence y3,5 + y5,3 = 1. So we have two cases: (a)

y1,3 = y3,5 = 1 and (b) y1,3 = y5,3 = 1 as the other two cases are symmetric.

(a)


1 1 1 ∗ ∗
1 1 1 ∗ ∗
0 1 1 1 1
∗ ∗ 1 1 1
∗ ∗ 0 1 1

 (b)


1 1 1 ∗ ∗
1 1 1 ∗ ∗
0 1 1 1 0
∗ ∗ 1 1 1
∗ ∗ 1 1 1


In case (a), if y2,4 = 0, then {2, 3, 5} × {1, 3, 4} is X1, so y4,2 = 1. But then again

if y2,5 = 0 then {2, 3, 4} × {1, 2, 5} is X1, or if y1,4 = 0 then {1, 2, 4} × {2, 3, 4} is X1,

so we must have y1,4 = y2,5 = 1. Now if y5,1 = 0, then {1, 2, 3, 4} × {1, 2, 3, 4} is X3

so y5,1 = 1. But then {1, 3, 5} × {1, 3, 5} is X1.

In case (b), if y2,3 + y3,2 = 0 then {2, 3, 4} × {2, 4, 5} is X1, so we must have

y2,3 + y3,2 = 1 and without loss of generality let y2,3 = 1. But then if y1,4 = 0,

{1, 3, 4} × {1, 2, 4} is X1, so y1,4 = 1. But then {2, 3, 4} × {1, 2, 3, 5} is X2.

Therefore, in any case one of the matrices appears and they are necessary for the

appearance of an induced P5 in rectangle cover graphs.

Note that P5-free graphs cannot contain holes of size greater than 5. The comple-

ment of P5 is the house graph, which is a 5-cycle with exactly one chord. This helps

to see that odd antiholes and the 5-hole are P5-free, hence in general P5-free graphs

are not perfect. However, by forbidding the leftmost matrix in Theorem 4.2.5 we also

forbid matrix C3 and then by Theorem 4.1.1 P5-free rectangle cover graphs cannot

contain an odd antihole of size 7 or more. In addition, H3, H>3 and K5 all have a C3

submatrix hence these are also forbidden by the leftmost matrix in Theorem 4.2.5.

Furthermore, D4 has the centre matrices in Theorem 4.2.5 as submatrices, hence D4

is also forbidden when forbidding P5. Therefore, by the submatrix characterisation

of 5-holes in Theorem 4.2.3, forbidding P5 forbids all submatrices that are necessary

for the appearance of 5-holes, odd-antiholes and odd-holes of size 7 or larger. This

together with the Strong Perfect Graph Theorem leads to the following result.

Theorem 4.2.6. If a rectangle cover graph is P5-free then it is perfect.

4.3 Simplicial 1s and stretching

In this section, we introduce simplicial 1s and a removal operation for them that

decreases both the Boolean rank and the isolation number by exactly 1. Then we
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introduce an operation related to simplicial 1s, which we call ’stretching’. The stretch-

ing operation will be a crucial part of almost all the results that we prove in the rest

of Part I of this thesis.

Simplicial 1s. Let X be a generalised binary matrix. We say (`, k) ∈ supp1(X) is

a simplicial 1 of X if I × J with I = {i : xi,k ∈ {1, ?}} and J = {j : x`,j ∈ {1, ?}}
satisfies I × J ⊆ supp1(X) ∪ supp?(X), that is I × J is a rectangle of X. Note that

I × J is a maximal rectangle and the only maximal rectangle of X that covers the

simplicial 1 at (`, k), because if any other rectangle I ′ × J ′ covers (`, k) then it has

I ′ ⊆ I and J ′ ⊆ J , and so it can only be maximal if it is equal to I × J . To remove

the simplicial 1 at (`, k) of X we delete row ` and column k and set all remaining

entries that are in I × J to ?s.

Lemma 4.3.1. If X ′ is obtained by removing a simplicial 1 of a generalised binary

matrix X , then i(X ) = i(X ′) + 1 and br(X ) = br(X ′) + 1.

Proof. Let (`, k) be the simplicial 1 and I×J its unique maximal rectangle. If S ′ is a

maximum isolated set and R′ is a minimum rectangle cover of X′, then S ′∪{(`, k)} is

a feasible isolated set and R′ ∪ (I × J) is a feasible rectangle cover of X. Conversely,

if S is a maximum isolated set of X, then we must have S ∩ (I × J) = {(i∗, j∗)} for

some (i∗, j∗) ∈ I × J , as otherwise S ∪ {(`, k)} would be a larger isolated set of X.

So S \ {(i∗, j∗)} is a feasible isolated set of X′. As (`, k) is a simplicial 1, and I × J
is the only maximal rectangle in X that covers (`, k), we may assume that I × J is

used in a minimum cover R of X. Then R \ {I × J} is a feasible rectangle cover of

X′.

The above lemma naturally holds when removing a simplicial 1 of a standard bi-

nary matrix. It is in some way a method to transition from standard binary matrices

to generalised binary matrices. In case, after removing a simplicial 1 we get a gener-

alised binary matrix which has a row or column of all ?s, it is useful to observe the

following.

Observation 4.3.2. If X is a generalised binary matrix with a row that does not

have any 1s and Y is obtained from X by deleting this row, then i(X) = i(Y) and

br(X) = br(Y).

Our definition of simplicial 1s for a standard binary matrix X is identical to the

definition of bisimplicial edges of [41] in the bipartite setting B(X). The key difference

is how we remove a simplicial 1 and transition into generalised binary matrices.
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A simplicial vertex of a graph is one whose neighbours form a clique. Also observe

that if (`, k) is a simplicial 1 of a generalised binary matrix then it is also a simplicial

vertex of G(X). On the other hand, the converse does not necessarily hold. For

instance (`, k) of matrix X,

X =

k j t ` 1 ? 1

i ? 0 1

0 1 ?

,

is a simplicial vertex of G(X) as it has two neighbours (`, t) and (i, t) and they

form a triangle, but (`, k) is not a simplicial 1 of X because {`, i} × {k, j, t} 6⊆
supp1(X) ∪ supp?(X).

Stretching. In Section 3.1, we showed that not every induced subgraph of G(X)

corresponds to a submatrix of X, but by turning 1s to ?s we can consider arbitrary

induced subgraphs of G(X) in matrix form. The idea behind the next matrix operation

is to expose induced subgraphs of rectangle cover graphs without explicitly setting

matrix entries to ?s. This operation will be one of the key ingredients used in Chapter

5 to construct minimally non-firm matrices.

Let X ∈ {0, 1}m×n. By stretching (`, k) ∈ supp1(X) we get the (m+ 1)× (n+ 1)

binary matrix S(`,k)(X) which satisfies

S(`,k)(X)i,j = xi,j i ∈ [m], j ∈ [n],

S(`,k)(X)i,j = 1 (i, j) ∈ {(`, n+ 1), (m+ 1, k), (m+ 1, n+ 1)},
S(`,k)(X)i,j = 0 otherwise.

For instance, if (m,n) ∈ supp1(X) then by stretching (m,n) we obtain

S(m,n)(X) =


x1,1 . . . x1,n 0

...
. . .

...
...

xm−1,n 0
xm,1 . . . xm,n−1 1 1

0 . . . 0 1 1

 .

Stretching (`, k) adds in a simplicial 1 at position (m+1, n+1) whose unique maximal

rectangle covers only (`, k) from supp1(X). By Lemma 4.3.1, removing the simplicial

1 at (m+ 1, n+ 1), we get

i(S(`,k)(X)) = i(X(`,k)) + 1,

br(S(`,k)(X)) = br(X(`,k)) + 1,
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where X(`,k) is a shorter notation for the generalised binary matrix XP with P =

{(`, k)}.
For a non-empty set Q ⊆ supp1(X), the matrix obtained by stretching each 1 in Q

is denoted by SQ(X). We adopt the convention to stretch 1s in Q in non-decreasing

order of row and then column index, so SQ(X) may be written in block form as

SQ(X) =

[
X U
L I|Q|

]
(4.3.1)

where U is an m × |Q| matrix with |Q| 1s exactly one in each column that have

non-decreasing row index from left to right, L is an |Q|×n matrix with |Q| 1s exactly

one in each row and It is the t × t identity matrix. If we wish to then stretch a 1

of matrix SQ(X) that is created by stretching Q, we denote that by iterating the

stretching operator: S(`,k)(SQ(X)).

Let us see how stretching affects firmness and superfirmness.

Lemma 4.3.3. If X is superfirm, then S(`,k)(X) is firm.

Proof. As X is superfirm, G(X) is a perfect graph. The subgraph H of G(X) that we

obtain by deleting vertex (`, k) satisfies α(H) = θ(H). Since entry (m + 1, n + 1) of

S(`,k)(X) is a simplicial 1, removing it we have i(S(`,k)(X)) = α(H) + 1 = θ(H) + 1 =

br(S(`,k)(X)).

It is easy to see that any proper submatrix X′ of S(`,k)(X) that is not fully con-

tained in X has a 1 from row m+1 or column n+1 and one of those 1s is a simplicial

1. Therefore, after removing that simplicial 1 we get i(X′) = α(H) + 1 = θ(H) + 1 =

br(X′) for some perfect subgraph H of G(X).

We say S(`,k)(X) is obtained by simplicial stretching if (`, k) is a simplicial 1 of X.

Lemma 4.3.4. If X is superfirm and (`, k) ∈ supp1(X) is a simplicial 1, then

S(`,k)(X) is superfirm. In particular, simplicial stretching preserves superfirmness.

Proof. Let X have a simplicial 1 at position (`, k) and let X′ = S(`,k)(X). By as-

sumption G(X) is perfect and (`, k) is a simplicial vertex of G(X). Let K denote the

unique maximal clique of (`, k) in G(X). Suppose that G(X′) is not perfect and let

H be a minimally imperfect induced subgraph of G(X′). Note that H contains at

least one vertex from W = {(`, n+ 1), (m+ 1, k), (m+ 1, n+ 1)} as otherwise H is a

subgraph of G(X). If V (H) ⊂ K ∪W , then the complement of H, H is a bipartite

graph with bipartition V1 = V (H) ∩K and V2 = V (H) ∩W , hence H is perfect by

the Weak Perfect Graph Theorem as bipartite graphs are perfect. So H must have at
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least one vertex from V (G(X)) \ (K ∪W ). But then K ∩ V (H) is a clique cutset of

H which by the Clique Sum Lemma 3.1.10 contradicts the minimally imperfectness

of H.

The above lemma is tight in two ways. First, both simplicial and non-simplicial

stretching do not preserve firmness and this property of stretching is the one that

will be explored in the next chapter to create minimally non-firm matrices. Second,

non-simplicial stretching also does not preserve superfirmness as the next example

shows.

Example 4.3.5 (Stretching destroys superfirmness I.). Observe that matrix Mn (de-

fined in Equation (3.3.2)) is obtained by stretching the non-simplicial 1 at position

(n − 1, n − 1) of the superfirm matrix Cn−1 whose rectangle cover graph is just a

2(n− 1)-hole, so for all n ≥ 4,

Mn = S(n−1,n−1)(Cn−1).

As we have seen in Figure 3.7 for n = 4, 5, Mn contains a 2n − 1-hole. Hence

non-simplicial stretching can destroy superfirmness.

Example 4.3.6 (Stretching destroys superfirmness II.). Let X be the 4× 4 interval

matrix whose rectangle cover graph is shown on the left hand side of Figure 4.4.

Observe that G(X) has a 6-hole which is highlighted. Stretching the non-simplicial 1

at (3, 2) we create a 7-hole as shown on the right hand side of Figure 4.4.

1,1 1,2

2,1 2,2 2,3 2,4

3,2 3,3

4,3 4,4

1,1 1,2

2,1 2,2 2,3 2,4

3,2 3,3 3,5

4,3 4,4

5,2 5,5

Figure 4.4: Creating a 7-hole by stretching (3, 2)

Now let us illustrate a general recipe for how one can destroy superfirmness by

non-simplicial stretching. Let X have an even hole C in G(X) with (`, j), (`, k), (i, k) ∈
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supp1(X) being three vertices of C. Then we must have (i, j) ∈ supp0(X) and

submatrix {i, `} × {j, k} of X is the matrix shown below on the left hand side,

j k[ ]
i 0 1

` 1 1

S(`,k)
==⇒

j k n+1 i 0 1 0

` 1 1 1

m+1 0 1 1

. (4.3.2)

By stretching the non-simplicial 1 of X at (`, k) we can replace vertex (`, k) of the

even hole C by two new vertices (m + 1, k) and (`, n + 1) to form an odd hole with

vertices as shown in Figure 4.5.

i,k

l,j l,k

=⇒

i,k

l,j l,k l,n+1

m+1,k m+1,n+1

Figure 4.5: Stretching a non-simplicial 1 can destroy superfirmness

Then (C \ {(`, k)}) ∪ {(m + 1, k), (`, n + 1)} is indeed an odd hole as row ` and

column k already had two vertices of C, so the new vertices (m+1, k),(`, n+1) do not

form any chord. Naturally, this kind of stretching could also be applied to a matrix

which has an odd-hole and three such vertices of the odd hole to obtain a new even

hole.

2-simplicial neighbour stretching. While as argued, non-simplicial stretching

does not preserve superfirmness, if we make some more restrictive assumptions on the

1 being stretched, we can show that another kind of stretching preserves superfirmness

and firmness.

Definition 4.3.7. We say (i, k) ∈ supp1(X) (or (`, j) ∈ supp1(X)) is a 2-simplicial

neighbour if

• there is only one other non-zero in column k (or row `) at position (`, k),

• and (`, k) is a simplicial 1.
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For instance, the shaded 1s of D4 below are all 2-simplicial neighbours,

D4 =


1 1
1 1 1 1

1 1 1
1 1

 .

Lemma 4.3.8. If X is a firm matrix and (i, k) is a 2-simplicial neighbour, then the

generalised binary matrix X(i,k) is also firm.

Proof. Let (`, k) be the simplicial 1 of X which makes (i, k) a 2-simplicial neighbour.

Any submatrix of X(i,k) that does not contain either of row i or row ` or column k

is firm, because it is either a firm submatrix of X or a firm submatrix of X appended

with a column that only contains 0s and a ?.

Let Y be an arbitrary submatrix of X indexed by I × J with i, ` ∈ I and k ∈ J .

Let Y(i,k) be the submatrix of X(i,k) indexed by I ×J . Then we have i(Y(i,k)) ≤ i(Y)

and br(Y(i,k)) ≤ br(Y). Since (`, k) is a simplicial 1 of Y, we may assume that it is

the member of a maximum isolated set S of Y. Then S is also a feasible isolated set

for Y(i,k), so i(Y) = i(Y(i,k)). Then i(Y) = i(Y(i,k)) ≤ br(Y(i,k)) ≤ br(Y), and as Y

is firm, we have i(Y(i,k)) = br(Y(i,k)).

We say S(i,k)(X) is obtained by 2-simplicial neighbour stretching if (i, k) is a 2-

simplicial neighbour. For instance, stretching applied to (2, 4) of D4 is an example of

2-simplicial neighbour stretching,

S(2,4)(D4) =


1 1
1 1 1 1 1

1 1 1
1 1

1 1

 .
In the next theorem, we show that 2-simplicial neighbour stretching preserves

firmnesses and superfirmness, and that it can also be used to extend holes of rectangle

cover graphs while maintaining their parity.

Theorem 4.3.9. Let X ∈ {0, 1}m×n have a simplicial 1 at position (`, k), a 2-

simplicial neighbour at (i, k), and let all other entries in column k be 0s.

(1.) If X is superfirm, then so is S(i,k)(X). In particular, 2-simplicial neighbour

stretching preserves superfirmness.
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(2.) If C is a hole in G(X) and (i, j), (i, k), (`, t) are three vertices of C for some

t, j ∈ [n] then

C ′ = (C \ {(i, k)}) ∪ {(i, n+ 1), (m+ 1, k), (`, k)}

is a hole of size |C|+ 2 in G(S(i,k)(X)).

(3.) If X is firm, then S(i,k)(X) is also firm with i(S(i,k)(X)) = br(S(i,k)(X)) =

br(X) + 1. In particular, 2-simplicial neighbour stretching preserves firmness.

(4.) Let X have no repeated rows and no repeated columns and at least two 1s in

each row and column.

If X has p simplicial 1s, then so has S(i,k)(X). In particular, 2-simplicial neigh-

bour stretching preserves the number of simplicial 1s of such matrices X.

Proof. Let the unique maximal rectangle of the simplicial 1 at (`, k) be given by

{i, `} × ({k} ∪ T ) for some T = {t1, . . . , t|T |}, |T | ≥ 1.

(1.) Let X be superfirm, and suppose that S(i,k)(X) is not superfirm. Then by

Theorem 4.1.3 the rectangle cover graph of S(i,k)(X) contains an odd hole C ′ and C ′

is not in G(X).

The first two vertices that must be in C ′: Since simplicial 1s cannot be vertices of

a hole, we must have (i, n+ 1) and (m+ 1, k) in C ′.

The third vertex that must be in C ′: The only neighbours of (i, n+ 1) in G(X) are

in row i, while the only neighbours of (m+ 1, k) are in column k. As (i, k) is adjacent

to both (i, n + 1) and (m + 1, k), (i, k) 6∈ C ′. Column k only has two 1s as (i, k) is

2-simplicial neighbour, so we must have (`, k) ∈ C ′ as this is the only adjacent vertex

to (m+ 1, k) that is not adjacent to (i, n+ 1).

The fourth vertex that must be in C ′: As (i, n + 1) is only adjacent to vertices

in row i, and (`, k) is adjacent to all vertices in the rectangle {i, `} × ({k} ∪ T ) and

|C ′| ≥ 5, we must have (i, j) ∈ C ′ for some column index j not in {k} ∪ T .

So far we know four vertices that are in C ′, these are (i, j), (i, n + 1), (m + 1, k)

and (`, k). If |C ′| = 5 then there is a vertex that is adjacent to both (i, j) and

(`, k) and not adjacent to (i, n+ 1), (m+ 1, k). Looking at the below submatrix and

remembering that (`, k) is simplicial in X, we conclude that such a vertex does not

exist and |C ′| > 5,
j t1 ... t|T | k n+1 i • 1 . . . 1 1 •

` 1 . . . 1 •
m+1 • 1

.
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The fifth vertex that must be in C ′: As (`, k) is a simplicial 1 in X, C ′ must

have another vertex from row `, say (`, t) with t ∈ T . Therefore, the 5 vertices

(i, j), (i, n+ 1), (m+ 1, k), (`, k), (`, t) form a path and are all in C ′ and |C ′| > 5. See

this path on the left hand side of Figure 4.6.

=⇒

Figure 4.6: Decreasing the hole while keeping its parity

Consider C = (C ′ \ {(i, n + 1), (m + 1, k), (`, k)}) ∪ {(i, k)}. Since (i, k) is 2-

simplicial neighbour, it is only adjacent to (i, j) and (`, t) in C, hence C is an odd

hole of size |C ′| − 2 in G(X). This contradicts the superfirmness of X, so S(i,k)(X) is

superfirm.

(2.) To prove this part is essentially the backward argument of the previous part’s

proof. Let C be a hole in G(X) and (i, j), (i, k), (`, t) ∈ C for some t, j ∈ [n]. As

(`, k) is a simplicial 1 and (i, k) is a 2-simplicial neighbour, we must have t ∈ T and

j 6∈ T , and the vertices (i, j), (i, k), (`, t) must form a subgraph as shown on the right

hand side of Figure 4.6. Consider C ′ = (C \ {(i, k)}) ∪ {(i, n+ 1), (m+ 1, k), (`, k)}.
Vertex (i, n+ 1) is adjacent to only the vertices in row i from X, (`, k) is a simplicial

vertex of G(X), (m + 1, k) is adjacent to only the vertices in column k from X, and

thus there is no chord between any of the vertices of C ′. Therefore, C ′ is a hole of

size |C|+ 2 in G(S(i,k)(X)).

(3.) Let Y be an arbitrary submatrix of S(i,k)(X) indexed by I × J . If m+ 1 ∈ I
and n+ 1 ∈ J , then (m+ 1, n+ 1) is a simplicial 1 of Y and we have i(X′) + 1 = i(Y)

and br(X′)+1 = br(Y) for some submatrix X′ of the generalised binary matrix X(i,k).

By Lemma 4.3.8 X(i,k) is firm, so X′ is firm and br(Y) = i(Y).

If m + 1 6∈ I, then Y is either just a submatrix of X or (i, n + 1) is a simplicial

1 of Y and i(Y) = i(X′) + 1 and br(Y) = br(X′) + 1 for a firm submatrix X′ of X.

The same holds if n+ 1 6∈ J , so in any case i(Y) = br(Y).

(4.) Let X have no repeated rows and no repeated columns and at least two 1s

in each row and column. Let X have p simplicial 1s. Observe that (`, k) is not a
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simplicial 1 in S(i,k)(X), but (m+ 1, n+ 1) is.

We argue that no other simplicial 1s of X are affected by the stretching. Since

(i, n+ 1), (m+ 1, n+ 1), (m+ 1, k) are only adjacent to 1s in row i and column k, any

simplicial 1 of X that is not in row i or column k remains a simplicial 1 in S(i,k)(X).

Since X has no repeated rows and column, only (`, k) is a simplicial 1 in X from

rectangle {(i, `)}× ({k}∪T ). Any other 1 in row i that is not in {(i, `)}× ({k}∪T ),

say (i, j), cannot be simplicial because column j has at least two 1s, say another one

at row i1, and then {i1, i} × {j, k} is a submatrix [ 1 0
1 1 ], hence (i, j) is not simplicial.

Therefore, S(i,k)(X) has exactly p− 1 + 1 simplicial 1s.

Let us see some examples why 2-simplicial neighbour stretching is interesting.

Example 4.3.10 (Extending holes and preserving parity). Recall that G(D3) has a

4-hole. The 1 at (2, 3) of D3 is a 2-simplicial neighbour as (3, 3) is a simplicial 1.

S(2,3)(D3) then contains a 6-hole as shown in Figure 4.7 and is superfirm by Theorem

4.3.9.

1,1 1,2

2,1 2,2 2,3

3,2 3,3

=⇒

1,1 1,2

2,1 2,2 2,3 2,4

3,2 3,3

4,3 4,4

Figure 4.7: Creating a 6-hole from a 4-hole by stretching (2, 3)

Recall that G(D4) contains a 5-hole. The 1 at (2, 4) of D4 is a 2-simplicial neigh-

bour as (3, 4) is a simplicial 1 with a maximal rectangle of size 2 × 3. Stretching

(2, 4) we obtain the matrix shown on the right hand side of Figure 4.8. Observe that

2-simplicial neighbour stretching created a 7-hole and also preserved firmness.
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1,1 1,2

2,1 2,2 2,3 2,4

3,2 3,3 3,4

4,2 4,3

=⇒

1,1 1,2

2,1 2,2 2,3 2,4 2,5

3,2 3,3 3,4

4,2 4,3

5,4 5,5

Figure 4.8: Creating a 7-hole from a 5-hole by stretching (2, 4)

Finally, one can show that stretching preserves one more property which is totally

balancedness.

Lemma 4.3.11. If X is totally balanced then so is SQ(X) for any Q ⊆ supp1(X).

In particular, stretching preserves totally balancedness.

Proof. Let X be a totally balanced matrix and let us assume that X is in a Γ-free

ordering. Let (`, k) ∈ supp1(X). Consider an ordering of S(`,k)(X) in which the new

row and column added by stretching are in the first row and column, so the three

new 1s have positions (1, 1), (1, k), (`, 1). Then this ordering is a Γ-free ordering of

S(`,k)(X), hence S(`,k)(X) is totally balanced by Theorem 2.3.1.

4.4 Minimally non-superfirm matrices

Let us start our study of minimally non-superfirm matrices. Recall that a minimally

non-superfirm (mnsf) matrix is not superfirm but all of its proper submatrices are.

By Theorem 4.1.3 every non-superfirm matrix has an odd-hole and every mnsf matrix

is mnsf due to the presence of an odd hole in the rectangle cover graph. Therefore,

many results from Section 4.2 apply to this section. In particular, by Observation

4.2.1 we have the following simple but useful result.

Lemma 4.4.1. A minimally non-superfirm matrix has at least two 1s in each row

and column.

Proof. Let X be minimally non-superfirm. Since X is not superfirm, by Theorem

4.1.3 G(X) contains an odd hole, and by minimality the odd hole has a vertex from

each row and column of X. Then Observation 4.2.1 5. applied to X and its odd hole

tells us that X must have at least two 1s in each row and column. (Another way
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could be to see this is to observe that any single 1 in a row or column is simplicial

and cannot be a vertex of a hole.)

By Observation 4.2.1 we also know that the smallest dimension of an mnsf matrix

containing a 2n− 1-hole is n× n. The n× n matrices Mn (n ≥ 4),

Mn = S(n−1,n−1)(Cn−1) =



1 1
1 1

. . . . . .

1 1
1 1 1

1 1


,

that were first introduced by Lubiw [77] and observed not to be superfirm as G(Mn)

contains a 2n− 1-hole as shown in Figure 3.7 for n = 4, 5. Furthermore, it is easy to

see that any proper submatrix of Mn is superfirm since if the submatrix has at least

three rows or at least three columns then it is either Cn−1 or has less than two 1s in

a row or column. Therefore, Mn (n ≥ 4) is a class of mnsf matrices. In addition,

since Mn is obtained by stretching the superfirm matrix Cn−1, by Lemma 4.3.3, Mn

is firm.

Lemma 4.4.2. Mn is minimally non-superfirm and firm for all n ≥ 4.

Recall that H3 is the 3×4 matrix whose appearance or its transpose’s appearance

is necessary for any odd antiholes of size 7 or more in rectangle cover graphs. Let us

define for each n ≥ 3,

Hn :=
[
1 Cn

]
=


1 1 1
1 1 1
...

. . . . . .

1 1 1
1 1 1

 .

Similarly to H3, matrices Hn are not superfirm as their rectangle cover graph contains

several odd holes, one of which is shown in Figure 4.9 for n = 4, 5. Next we show

that Hn is mnsf and firm for all n ≥ 3.

Lemma 4.4.3. Hn is minimally non-superfirm and firm for n ≥ 3.

Proof. Hn is obtained by extending the superfirm matrix Cn by an all 1s column,

hence it is firm by Lemma 3.1.13. G(Hn) cannot have any odd-antiholes of size 7 or
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1,1 1,2 1,3

2,1 2,3 2,4

3,1 3,4 3,5

4,1 4,2 4,5

(a) G(H4)

1,1 1,2 1,3

2,1 2,3 2,4

3,1 3,4 3,5

4,1 4,5 4,6

5,1 5,2 5,6

(b) G(H5)

Figure 4.9: The rectangle cover graph of H4 and H5 with one of their odd holes
highlighted

more as it does not have any of the two 4 × 4 matrices from Lemma 4.1.2. On the

other hand, G(Hn) contains n 2n− 1-holes given by

Ci = supp1(Hn) \
(
{(`, 1) : ` 6= i} ∪ {(i, i+ 1), (i, i+ 2)}

)
for i ∈ [n− 1],

Ci = supp1(Hn) \
(
{(`, 1) : ` 6= i} ∪ {(i, i+ 1), (i, 2)}

)
for i = n.

Any other hole in G(Hn) is either contained in the submatrix Cn and hence it is

the 2n-hole, or contains at most two vertices from column 1. Note that if (`, 1) is

a vertex of a hole then the hole cannot have another vertex from row `. If a hole

contains a single vertex from column 1 then it is one of the n 2n − 1-holes. If the

hole has two vertices from column 1, then it must contain an even number of vertices

from submatrix Cn, so it is an even hole. Therefore, the n 2n− 1-holes are the only

odd holes in G(Hn) which all have a vertex from each row and column of Hn and

thus no proper submatrix can contain them. Hence, every proper submatrix of Hn is

superfirm and Hn is mnsf.

Recall the interval matrix D4 from Equation (3.1.1).

Lemma 4.4.4. D4 is minimally non-superfirm and firm with i(D4) = br(D4) = 3.

Proof. D4 has three simplicial 1s at (1, 1), (3, 4) and (4, 3), and these form an isolated

set of size 3. On the other hand, the three unique maximal rectangles corresponding

to these three simplicial 1s form a feasible rectangle cover for D4. Hence we have

i(D4) = br(D4) = 3.

G(D4) contains the 5-hole shown in Figure 3.2 which has a vertex from each row

and column. Since D4 is 4×4 is cannot contain an odd-hole of size 7 or more, and by
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Lemma 4.1.2 it clearly cannot have an odd antihole of size 7 or more. Furthermore,

by Theorem 4.2.3 no proper submatrix of it can contain any 5-holes and thus every

proper submatrix of D4 is superfirm.

In computational experiments, we enumerated several interval matrices. On every

example we considered, we observed that if an interval matrix has an odd hole in its

rectangle cover graph then it also contains a D4 submatrix. Hence we conjecture

that D4 is the only minimally non-superfirm interval matrix. While we cannot prove

this result, a simple lemma that is useful to know about odd holes in rectangle cover

graphs is proved in Appendix A.1.

Let T5 be the matrix obtained by stretching two 1s of D3,

S{(2,3),(3,2)}(D3)) =


1 1
1 1 1 1

1 1 1
1 1

1 1

 .
T5 has a 7-hole in its rectangle cover graph as shown on the right hand side of Figure

4.4. Observe that T5 can be permuted to be symmetric and from now on we will only

use this symmetric ordering for T5,

T5 =


1 1
1 1 1 1

1 1 1
1 1

1 1

 .
Lemma 4.4.5. T5 is totally balanced, minimally non-superfirm and firm with i(T5) =

br(T5) = 4.

Proof. Since stretching preserves totally balancedness T5 is totally balanced and can-

not have any odd antiholes of size 7 or more by Lemma 4.1.2.

Note that T5 does not have a D4 submatrix and D4 is the only totally balanced

matrix responsible for the appearance of 5-holes, so G(T5) does not have any 5-

holes. Any potential non-superfirm proper submatrix of T5 thus contains a 7-hole

and must be of dimension at least 4× 4, the minimum dimension needed for a 7-hole.

Since three rows and three columns of T5 contain exactly two 1s, the only proper

submatrices that need to be checked for superfirmness are {1, 2, 3, 4}×{1, 2, 3, 5} and

{2, 3, 4, 5} × {2, 3, 4, 5}, the rest of the 4 × 4 matrices with at least two 1s in each

row and column are permutations of these. These two matrices can be seen to be
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superfirm as one of them is S(2,3)(D3) and (2, 3) of D3 is 2-simplicial neighbour, and

the other is just S(3,3)(D3) which is easily seen to be superfirm. Therefore T5 is mnsf.

Furthermore, T5 is firm because {(1, 1), (3, 3), (4, 5), (5, 4)} is an isolated set of size

4 and the four rectangles {1, 2}×{1, 2},{2, 3}×{2, 3}, {3, 5}×{2, 4}, {2, 4}×{3, 5}
cover it.

Let Wn for n ≥ 5, be the matrices defined below,

W5 =


1 1
1 1 1 1

1 1 1 1
1 1 1
1 1

 , Wn =



1 1

1
. . .

. . . 1
1 1 1 1

1 1 1 1
1 1 1
1 1


.

The rectangle cover graph of Wn contains a 2n− 3-hole as shown in Figure 4.10 for

n = 5. Next we show that these matrices are also mnsf and firm.

1,1 1,2

2,1 2,3 2,4 2,5

3,2 3,3 3,4 3,5

4,2 4,3 4,4

5,2 5,3

Figure 4.10: The rectangle cover graph of W5 with its 7-hole highlighted

Lemma 4.4.6. Wn is minimally non-superfirm and firm for all n ≥ 5.

Proof. For n odd or even let Sn be

S2k+1 ={(1, 2), (3, 4), . . . , (n− 4), (n− 3)} ∪ {(2, 1), (4, 3), . . . , (n− 3, n− 4)},
S2k = {(1, 1)}∪{(2, 3), (4, 5), . . . , (n− 4), (n− 3)} ∪ {(3, 2), (5, 4), . . . , (n− 3, n− 4)}.

Then S = Sn ∪ {(n, n − 2), (n − 1, n − 1), (n − 2, n)} gives an isolated set of size n,

hence i(Wn) = br(Wn) = n for all n ≥ 5.

Suppose that Wn is not mnsf and has a proper submatrix Y indexed by I × J
which is mnsf. Then by Lemma 4.4.1 Y has at least two 1s in each row and column. If
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matrix dimension i br |C| nd(C) nv(C) nh(C)
D4 4× 4 3 3 5 3 1 1
T5 5× 5 4 4 7 3 2 2
Mn, n ≥ 4 n× n n n 2n− 1 1 n− 1 n− 1
Hn, n ≥ 3 n× (n+ 1) n n 2n− 1 2 n− 2 n− 1
Wn, n ≥ 5 n× n n n 2n− 3 3 n− 3 n− 3

Table 4.1: A list of characteristics of so far known mnsf matrices

I ⊆ [n−3, n] or J ⊆ [n−3, n] then it is easy to see that Y is superfirm. Therefore, Y

must have at least one row or column with an index in [n−4]. Any row or column with

index in [n−4] has exactly two 1s, so I and J must contain the indices of both of those

1s. Therefore [n− 3] ⊂ I and [n− 3] ⊂ J . Submatrix [n− 2]× [n− 2] is Cn−2 which

is superfirm, so we must have |I ∩{n−2, n−1, n}| = 2 and |J ∩{n−2, n−1, n}| = 2

or Y is either just Cn−2 or Cn−2 with repeated rows or columns. Hence, Y must be

as shown below,

Y =



1 1

1
. . .

. . . 1
1 1 1

1 1 1
1 1


.

However, then Y is easily seen to be superfirm as it only contains 2n− 4-holes.

Table 4.1 gives a summary of the mnsf matrices that we considered in this section.

C denotes the odd hole that is in the mnsf matrix and nd(C), nv(C), nh(C) denote

the number of diagonal, vertical and horizontal edges of C, respectively.

Observe that all mnsf matrices in Table 4.1 have dimension m × n satisfying

|m − n| ≤ 1 and the square mnsf matrices can all be permuted to a symmetric

matrix form. In addition, all mnsf matrices are firm. We are curious whether these

observations hold for all mnsf matrices.

Lemma 4.4.7. If a minimally non-superfirm matrix has an all 1s row or column, or

a simplicial 1 then it is firm.

Proof. Let X be mnsf. If X has an all 1s row, then X is obtained by appending a

superfirm matrix with an all 1s row and hence firm by Lemma 3.1.13.

If X has a simplicial 1 at (`, k), then by removing that simplicial 1, we delete row

` and column k and turn the 1’s that are in (`, l)’s maximal rectangle into ?’s. Let

these 1’s be indexed by set K. Then the matrix we obtain is YK , where Y a proper
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submatrix of X and thus superfirm. By Lemma 4.3.1, we have i(X) = i(YK) + 1 =

br(YK) + 1 = br(X), thus X is firm.

Recall that every totally balanced matrix has at least one simplicial 1 which can

be found by computing a Γ-free ordering of X. Therefore we obtain the following

corollary of Lemma 4.4.7.

Corollary 4.4.8. Every totally balanced minimally non-superfirm matrix is firm.

We suspect that not only totally balanced mnsf matrices are firm but every mnsf

matrix. We however cannot prove this so we state this as a conjecture.

Conjecture 4.4.9. Every minimally non-superfirm matrix is firm and is of dimen-

sion m× n with |m− n| ≤ 1.
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Chapter 5

Minimally non-firm matrices

A binary matrix is said to be minimally non-firm (mnf) if it is not firm but all of its

proper submatrices are. In this chapter, we first explore a few general properties of

mnf matrices and then construct several infinite families of them. We will show that

for every minimally non-superfirm matrix considered in the previous chapter there is

at least one mnf matrix containing it. We will use the stretching operation’s firmness

preserving and firmness destroying properties to construct the mnf matrices.

To the best of our knowledge, mnf binary matrices have not been explicitly studied

before. However, there are a few mnf matrices that are mentioned in the works of

Lubiw [77] and Caen et al. [28] with only observing their non-firmness and not

their minimally non-firmness. The first matrix that was showed to be non-firm is

I4 = J4 − I4, the complement identity matrix of size 4. Recall that in Example 1.2.1

it is showed that i(I4) = 3 < br(I4) = 4. The second well known non-firm matrix

is the totally balanced swath matrix of Chung’s polygon which is given in Equation

(2.1.1) and the minimally non-firm matrix obtained from it by removing some rows

and columns that is given in Equation (2.1.2). The mnf matrix from Chung’s polygon

was first presented by Lubiw [77, Fig 1.1] and observed to be non-firm but she did

not mention it to be minimally non-firm. She did present another mnf matrix in [77,

Fig 1.1], but again just to emphasise that the Boolean rank is not always equal to

the isolation number. These two mnf matrices that Lubiw presented, inspired most

of the work in this chapter. Both of these mnf matrices can be obtained by a series

of stretchings from the mnsf matrix D4, and while trying to prove and understand

why they are mnf, we came up with a generalisation idea to show other matrices to

be mnf.
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5.1 Preliminaries

Let us start by immediately extending the definition of minimally non-firmness to gen-

eralised binary matrices. Recall from the introduction that a matrix X over {0, 1, ?}
is a generalised binary matrix and ?’s can be used to form rectangles, cannot be in

isolated sets and need not be covered in a rectangle covering. A generalised binary

matrix X is mnf if i(X) < br(X) and i(X′) = br(X′) for all proper submatrices X′ of

X.

Given a generalised binary matrix X, if X′ is obtained from X by deleting a single

row or column then we clearly have

i(X)− 1 ≤ i(X′) ≤ i(X) and br(X)− 1 ≤ br(X′) ≤ br(X), (5.1.1)

as a single row or column is a rectangle and may contain only one element from an

isolated set. Now if X is mnf and X′ is obtained from X by dropping a single row or

column, then X′ is firm and satisfies Equation (5.1.1), so it must have

br(X)− 1 ≤ i(X′) = br(X′) ≤ i(X) < br(X).

Therefore, we have the following two observations which apply to both standard

binary and generalised binary mnf matrices.

Observation 5.1.1. If X ∈ {0, 1, ?}m×n is mnf and X′ is obtained from X by remov-

ing a single row or column then i(X′) = i(X) and br(X′) = br(X)− 1.

Observation 5.1.2. If X ∈ {0, 1, ?}m×n is mnf then i(X) = br(X)− 1.

Recall that if a 1 is the single non-zero entry in a row or column of a generalised

binary matrix X then it is a simplicial 1. By Lemma 4.3.1, the simplicial 1 can

be removed to obtain a proper submatrix X′ of X which satisfies i(X′) + 1 = i(X)

and br(X′) + 1 = br(X). Clearly a 0 row or column, or a row or column which only

contains ?’s can be dropped without changing the isolation number and Boolean rank,

hence we get the next lemma about mnf matrices.

Lemma 5.1.3. If X ∈ {0, 1, ?}m×n is mnf, then every row and column of X contains

at least two non-zero entries, and at least one of these non-zero entries is a 1.

If X is a minimally non-firm standard or generalised binary matrix then it must

be impossible to decompose it into any of its proper submatrices via any firmness

preserving operation. Recall that in Section 3.3.2 we present Lubiw’s L-sum operation
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that preserves firmness and also superfirmness. Since any matrix that can be L-

decomposed is decomposed into the L-sum of two of its proper submatrices, minimally

non-firm matrices cannot be L-decomposed. The reasoning holds for the direct sum

operation which preserves firmness, as clearly an mnf matrix cannot have a block

diagonal structure.

We have also seen some operations related to Boolean linear algebra that preserve

the isolation number and Boolean rank, so let us recall some Boolean linear algebra

definitions from Section 1.1.1. For a binary matrix X, BRS(X) and BCS(X) are

the Boolean row and column spaces which contain all binary vectors that can be

expressed as the Boolean sum of rows and columns of X using binary coefficients,

respectively. The Boolean row (or column) rank of X is the cardinality of the set of

rows (or columns) of X that form a maximum Boolean independent set in BRS(X)

(or BCS(X)), where a set of binary vectors is Boolean independent if no vector of

the set can be expressed as the Boolean sum of some other vectors in the set.

Lemma 3.1.11 says that whenever a binary matrix X is appended by a row vector

from BRS(X) then the isolation number and Boolean rank remain the same. This

implies that if X has a row which is the Boolean sum of some other rows, then

dropping that row does not change the isolation number nor the Boolean rank. By

Observation 5.1.1, if X is mnf, then dropping any row or column of X must reduce

its Boolean rank. Therefore, an mnf matrix cannot have a row or column that is the

Boolean sum of some other rows or columns. This argument shows that the rows and

columns of any standard binary mnf matrix must form a Boolean independent set

and we have just proved the following lemma.

Lemma 5.1.4. If X ∈ {0, 1}m×n is minimally non-firm then X has Boolean row rank

m and Boolean column rank n.

We are interested in understanding what are the possible dimensions for mnf

matrices. First, we thought that they may all need to be square matrices and then

found some minimally non-firm matrices with dimension (n− 1)× n. Now we think

that the following conjecture holds.

Conjecture 5.1.5. If X ∈ {0, 1}m×n is minimally non-firm, then |m− n| ≤ 1.

Our attempts to prove the above so far have been unsuccessful. We suspect

that this dimension conjecture is intimately related to the same dimension conjecture

about minimally non-superfirm matrices that is stated in Conjecture 4.4.9.
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5.2 The smallest minimally non-firm matrices

What is the dimension of the smallest minimally non-firm standard binary matrix?

Any matrix with only two rows or two columns is superfirm, and any matrix that has

only three rows or three columns can only have a 5-hole in it if it contains H3 or its

transpose as a submatrix by Theorem 4.2.3. Since H3 is firm, we get the following

corollary of Theorem 4.2.3.

Corollary 5.2.1. A binary matrix with only three rows or only three columns is firm.

Using corollary 5.2.1 we can prove the minimally non-firmness of the identity

complement matrix of size 4× 4. As shown in Example 1.2.1, i(I4) = 3 < br(I4) = 4

and all proper submatrices of I4 have only three rows or three columns hence I4 is

mnf.

Is there any other mnf matrix of dimension 4× 4? Let I
′
4 be obtained by turning

an arbitrary 1 of I4 to a 0,

I
′
4 =


0 1 1 0
1 0 1 1
1 1 0 1
1 1 1 0

 .
In the next lemma, we show that I

′
4 is also minimally non-firm.

Lemma 5.2.2. I
′
4 is minimally non-firm.

Proof. For a matrix to have an isolated set of cardinality k, it needs to have at least(
k
2

)
0s by Equation (1.2.2). Since I

′
4 only has five 0s, i(I

′
4) ≤ 3. On the other hand,

I
′
4 contains a submatrix C3 so i(I

′
4) = 3. To see that br(I

′
4) = 4, observe that the

generalised binary matrix,

I
′P
4 =


0 1 1 0
? 0 1 1
? 1 0 1
1 ? ? 0

 ,
has 7 1s and largest rectangle of size 2. Hence d7

2
e ≤ br(I

′P
4 ) ≤ br(I

′
4) by Equation

(1.3.2). Furthermore, any proper submatrix of I
′
4 has only three rows or three columns,

hence by Corollary 5.2.1 it is firm and I
′
4 is mnf.

Is there another minimally non-firm standard binary matrix of dimension 4 × 4

different from I4 and I
′
4? We show in the next lemma that there is no such matrix.

Lemma 5.2.3. I4 and I
′
4 are the only minimally non-firm binary matrices of dimen-

sion 4× 4.
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Proof. Let X ∈ {0, 1}4×4 be mnf that is not I4 and I
′
4. Then X cannot have duplicated

rows or columns or an all 1s row or column because then it is obtained form a smaller

matrix by a firmness preserving operation and hence firm. With dimension 4 × 4,

G(X) can contain a 5- or a 7-hole.

(a) If it contains a 5-hole it must have a H3 or H>3 submatrix by Theorem 4.2.3 (as

K5 is too large, and D4 is 4 × 4 but firm). So let X contain H3 (or H>3 , which is a

symmetric case) as the submatrix formed by rows {2, 3, 4}. Then only the first row

of X is not determined yet. As column 1 so far has only 1s, we must have x11 = 0.

Then if x12 = x13 = x14 = 1, X = I4, and if two of these entries are 1s then X = I
′
4.

Hence the first row of X is a singleton or a zero row and X is firm.

(b) If G(X) contains a 7-hole then it has at least 9 1s, at least two 1s in each row

and column. Then three rows and three columns contain exactly 2 vertices of C7 and

exactly one row and one column contain only one vertex of C7, and C7 must have 3

vertical, 3 horizontal and 1 diagonal edges which shows that M4 ≤ X. If X has a

tenth 1 then a chord appears in C7, therefore we must have X = M4 which is a firm

matrix.

Therefore, I4 and I
′
4 are the only minimally non-firm 4× 4 matrices.

5.3 Minimally non-firm matrices from generalised

binary matrices

In this section, we prove a theorem which will be used in the rest of the chapter to

create minimally non-firm binary matrices by stretching a carefully selected subset of

1s of some matrices that have odd holes in their rectangle cover graphs.

By Theorem 4.1.3, any matrix is superfirm if it has no odd holes in its rectangle

cover graph, so for a matrix to be mnf, its rectangle cover graph must contain an odd

hole. Recall that for some non-empty set P ⊂ supp1(X), XP denotes the generalised

binary matrix that is obtained from X by replacing the 1s at P by ?s. Let X be

a standard binary matrix with an odd hole C in G(X) of size |C| = 2k + 1 and let

Q = supp1(X) \ C. By stretching the 1s at Q of X, we obtain SQ(X) which has

|Q| simplicial 1s that are created by the stretchings. Removing these |Q| simplicial

1s from SQ(X) and applying Lemma 4.3.1, we ’expose’ the odd hole in the rectangle

cover graph of X:

i(SQ(X))− |Q| = i(XQ) = k < k + 1 = br(XQ) = br(SQ(X))− |Q|.
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Therefore, SQ(X) is a non-firm matrix. This selection of Q ⊂ supp1(X) however,

does not guarantee that SQ(X) is minimally non-firm. By adding extra conditions

on Q, minimality can be enforced.

Theorem 5.3.1. Let X ∈ {0, 1}m×n. If XQ is a minimally non-firm generalised

binary matrix for some non-empty Q ⊂ supp1(X) and XP is firm for all P ( Q, then

SQ(X) ∈ {0, 1}(m+|Q|)×(n+|Q|) is minimally non-firm.

Proof. SQ(X) may be written as a block matrix with four blocks X,L,U and I|Q| as

in Equation (4.3.1),

SQ(X) =

[
X U
L I|Q|

]
,

where U is m × |Q| and has exactly one 1 in each column, and L is |Q| × n with

exactly one 1 in each row. By construction all 1s in block I|Q| are simplicial, hence

removing them we obtain the mnf generalised binary matrix XQ. By Lemma 4.3.1

then i(SQ(X)) = i(XQ) + |Q| < br(XQ) + |Q| = br(SQ(X)).

Suppose that not all proper submatrices of SQ(X) are firm and let Y be a smallest

non-firm proper submatrix of SQ(X) indexed by I × J . Then Y is mnf. Note that

the four block matrices of SQ(X) are all firm: (1) X is firm as it is just X∅. (2)

I|Q| is clearly firm. (3) U has exactly one 1 per column, so it can be obtained from

an identity matrix by duplicating columns and adding zero rows, and thus firm. (4)

Similarly, as L has exactly one 1 per row, it is firm. Hence Y cannot be fully contained

in any of the four blocks. As Y is a mnf standard binary matrix it has at least two

1s in each row and column by Lemma 5.1.3. Since block [ L I|Q| ] has exactly two 1s

in each row, if Y has a row from this block, then Y must also contain the columns

of both 1s in this row. Similarly, if Y contains a column from block
[

U
I|Q|

]
, it must

contain the rows of both 1s in this column. Therefore, the rows in I from block

[ L I|Q| ] and the columns in J from block
[

U
I|Q|

]
come in pairs and may be identified

with their 1 in block I|Q|. Let P be the subset of Q whose stretching created the

1s in block I|Q| which are in Y. Removing all |P | simplicial 1s present in Y from

block I|Q| we obtain a generalised binary matrix which is fully contained in block X

and is just a submatrix Z of XP . By Lemma 4.3.1, Z satisfies i(Z) + |P | = i(Y)

and br(Z) + |P | = br(Y). If P = Q, then I × J contains all the rows and columns

from block I|Q| so Z must be a proper submatrix of XQ, hence firm. If P 6= Q, then

Z is a submatrix of the firm matrix XP . In both cases i(Z) = br(Z) which implies

i(Y) = br(Y), a contradiction.
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This theorem provides a general ’recipe’ on how to create mnf standard binary

matrices from matrices that have some odd-holes in their rectangle cover graph and

have a subset Q of 1s that satisfy all the conditions. Of course, the difficulty is to

choose Q carefully and in the following sections we will show how to choose it for

some classes of matrices.

Note that not all mnf standard binary matrices are obtained via stretching, for

instance I4 and I
′
4 do not have any simplicial 1s so are not created by stretching.

On the other hand, if an mnf standard binary matrix has some simplicial 1s then

removing those simplicial 1s gives an mnf generalised binary matrix. This observation

gives a partial reverse of Theorem 5.3.1. We would be interested if a complete reverse

of Theorem 5.3.1 is also true.

Conjecture 5.3.2. If a minimally non-firm matrix has some simplicial 1s, then it is

created by stretching.

To prove this conjecture we would need to show that the unique maximal rectangle

of at least one simplicial 1 in such mnf matrices is of size 2 × 2. This is because by

stretching we can only create simplicial 1s whose unique maximal rectangles are of

size 2× 2.

5.4 Mnf matrices from mnsf matrices

In this section, we create a minimally non-firm matrix from each minimally non-

superfirm matrix introduced in the previous chapter. We do this by identifying a

subset Q of the 1s of the mnsf matrix and then show that Q satisfies the conditions

of Theorem 5.3.1.

Let us start by a general theorem that we can then apply to mnsf matrices

D4,T5,Hn,Mn to obtain mnf matrices from them.

Theorem 5.4.1. Let X be a minimally non-superfirm binary matrix with br(X) = k

for some k ≥ 3. If supp1(X) can be partitioned into three sets C, K and Q, such that

• C induces a 2k − 1 hole in G(X),

• Q is the set of all vertices that are adjacent in G(X) to exactly two vertices of

C and those two vertices of C are consecutive,

• K is a clique in G(X) and each (i, j) ∈ K is adjacent to at least three vertices

of C which are consecutive vertices of C,
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then SQ(X) is a minimally non-firm binary matrix.

Proof. We show that the conditions of Theorem 5.3.1 hold for such X and Q.

As br(X) = k, every matrix obtained from X by setting some 1s to ?s can be

covered by at most k rectangles. On the other hand, for all P ⊆ Q the rectangle

cover graph of XP contains the 2k− 1-hole C, so we have br(XP ) = k for all P ⊆ Q.

A maximum independent set of C shows that i(XP ) ≥ k − 1 for all P ⊆ Q. For

P ( Q, let (i, j) ∈ Q\P . By requirement, (i, j) is adjacent to exactly two consecutive

vertices of C. Let S be a maximum independent set of C that does not contain the

two vertices that (i, j) is adjacent to. Then S ∪ {(i, j)} is a feasible isolated set of

size k. Therefore, for all P ( Q we have i(XP ) = k.

For XQ we have all the entries in Q set to ?s. Hence any isolated set of XQ is

a subset of C ∪K. Since K is a clique and each vertex in it is adjacent to at least

three consecutive vertices of the 2k − 1-hole C, any isolated set S ⊂ C ∪K satisfies

|S| ≤ k − 1. Therefore, i(XQ) = k − 1.

For all P ⊆ Q, if Y is a proper submatrix of XP , then Y is superfirm because X

is mnsf.

Therefore, we have shown that XQ is an mnf generalised binary matrix, and XP

is firm for all P ( Q, hence X and Q satisfy the conditions of Theorem 5.3.1 and

SQ(X) is an mnf binary matrix.

Let us now use this theorem to show that we can obtain a minimally non-firm

matrix from the firm mnsf matrices D4,T5,Mn (n ≥ 4) and Hn (n ≥ 3).

First we present two totally balanced square mnf matrices, one from D4 and one

from T5. Let us partition supp1(D4) into three sets QD4 , KD4 , CD4 and supp1(T5)

into QT5 , KT5 , CT5 given by

QD4 = {(1, 1), (3, 4), (4, 3)}, QT5 = {(1, 1), (4, 5), (5, 4)},
KD4 = {(2, 2), (2, 3), (3, 2)}, KT5 = {(2, 2), (2, 3), (3, 2)},
CD4 = supp1(D4) \ (KD4 ∪QD4), CT5 = supp1(T5) \ (KT5 ∪QT5).

To visualise these partitions, we indicate entries in C by red dots, entries in Q by ?s

and entries in K by standard 1s,

D
QD4
4 =


? •
• 1 1 •

1 • ?
• ?

 , T
QT5
5 =


? •
• 1 1 •

1 • •
• ?

• ?

 .
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One can then see that CD4 is exactly the 5-hole that is shown in Figure 3.2 and CT5

is the 7-hole that is highlighted in Figure 4.4. Furthermore, br(D4) = 3 by Lemma

4.4.4 and br(T5) = 4 by Lemma 4.4.5 and it is easy to verify that KD4 , QD4 , KT5 , QT5

satisfy the conditions of Theorem 5.4.1. Therefore, we obtain the following result.

Theorem 5.4.2. SQD4 (D4) ∈ {0, 1}7×7 and SQT5 (T5) ∈ {0, 1}8×8 are minimally

non-firm.

So how do these mnf matrices look like? Using the convention on the ordering of

stretching (stretch entries in Q from left to right and then top to bottom), SQD4 (D4)

looks like,

SQD4 (D4) =



1 1 1
1 1 1 1

1 1 1 1
1 1 1

1 1
1 1

1 1


,

and SQT5 (T5) looks like

SQT5 (T5) =



1 1 1
1 1 1 1

1 1 1
1 1 1

1 1 1
1 1

1 1
1 1


.

Observe that both mnf matrices, can be ordered to become symmetric by exchanging

their last row with the penultimate one. SQD4 (D4) is exactly the matrix that is

presented in Equation (2.1.2) which is obtained from the swath matrix of Chung’s

polygon and is also shown in [77, Fig 1.1]. Furthermore, since stretching preserves

totally balancedness by Lemma 4.3.11 and D4 is interval and T5 is totally balanced,

both SQD4 (D4) and SQT5 (T5) are totally balanced.

Let us now present two infinite families of mnf matrices, one obtained from Mn

(n ≥ 4) and one from Hn (n ≥ 3). Let us partition supp1(Mn) into the three sets

QMn , KMn , CMn and supp1(Hn) into QHn , KHn , CHn given by

QMn = {n, n}, QHn = {(n, 2), (n, n+ 1)},
KMn = {(n− 1, n− 1)}, KHn = {(`, 1) : ` ∈ [n− 1]},
CMn = supp1(Mn) \ (KMn ∪QMn), CHn = supp1(Hn) \ (KHn ∪QHn).
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We can again visualise these partitions by indicating entries in C by red dots, entries

in Q by ?s and entries in K by standard 1s,

MQMn
n =



• •
• •

. . . . . .

• •
• 1 •

• ?


, HQHn

n =


1 • •
1 • •
...

. . . . . .

1 • •
• ? ?

 .

Then CMn is exactly the 2n − 1-hole in G(Mn) that is shown in Figure 3.7 for

n = 4, 5 and CHn is the 2n − 1-hole in G(Hn) that is highlighted in Figure 4.9 for

n = 4, 5. Furthermore, br(Mn) = n by Lemma 4.4.2 and br(Hn) = n by Lemma 4.4.3

and it is easy to verify that their partitions satisfy the conditions of Theorem 5.4.1.

Therefore, we obtain the following results.

Theorem 5.4.3. For n ≥ 4, S(n,n)(Mn) ∈ {0, 1}(n+1)×(n+1) is minimally non-firm.

Theorem 5.4.4. For n ≥ 3, S{(n,2),(n,n+1)}(Hn) ∈ {0, 1}(n+2)×(n+3) is minimally non-

firm.

To the best of our knowledge, these mnf matrices have not appeared anywhere in

the literature before and they are the first infinite family of matrices to be proved

mnf. So how do they look like? S(n,n)(Mn) looks like

S(n,n)(Mn) =



1 1
1 1

. . . . . .

1 1
1 1 1

1 1 1
1 1


,

and SQHn (Hn) has the form,

S{(n,2),(n,n+1)}(Hn) =



1 1 1
1 1 1
...

. . . . . .

1 1 1
1 1 1 1 1

1 1
1 1


.
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It is possible to permute S(n,n)(Mn) into a symmetric form. On the other hand,

SQHn (Hn) is of dimension (n+ 2)× (n+ 3), the first non-square infinite family of mnf

matrices. Clearly, the transpose of SQHn (Hn) is also mnf.

Observe that QD4 , QT5 and QMn consist of the simplicial 1s of D4,T5 and Mn,

respectively. If an mnsf matrix X has some simplicial 1, then each simplicial 1 must

always be adjacent to exactly two consecutive vertices of the odd hole in G(X). On

the other hand, none of the two 1s in QHn are simplicial as Hn has no simplicial 1s.

There is one more mnsf family in the previous chapter from which we have not

yet constructed an mnf family: Wn for n ≥ 5. This mnsf family is slightly different

from the others considered and no such partition of supp1(Wn) exists which would

satisfy the conditions of Theorem 5.4.1. Furthermore, G(Wn) contains a 2n− 3-hole

but it has full Boolean rank and isolation number i(Wn) = br(Wn) = n by Lemma

4.4.6, in contrast to all previous mnsf matrices which have rank equal to the clique

cover number of their odd holes. The proof however, that we present to get an mnf

family from Wn is very similar to that of Theorem 5.4.1. Let us partition supp1(Wn)

into three sets QWn , FWn and CWn given by

QWn = {(n− 2, n), (n− 1, n− 1), (n, n− 2)},
FWn = {(n− 3, n− 2), (n− 3, n− 1), (n− 2, n− 3), (n− 2, n− 2), (n− 1, n− 3)},
CWn = supp1(Wn) \ (QWn ∪ FWn).

We can visualise this partition similarly as before, indicating the entries in CWn by

red dots, QWn by ?s and entries in FWn by standard 1s,

WQWn
n =

1 2 n−3 n−2 n−1 n



1 • •
2 • . . .

. . . •
n−3 • 1 1 •
n−2 1 1 • ?
n−1 1 • ?

n • ?

.

Then we can see that CWn contains the vertices of the 2n − 3-hole of Wn which is

shown in Figure 4.10 for n = 5. Furthermore, observe that every entry in QWn is

adjacent to exactly two consecutive vertices of CWn . In addition, every entry in FWn

is also adjacent to at exactly four consecutive vertices of CWn , but FWn is not a clique.

Lemma 5.4.5. For n ≥ 5, SQWn (Wn) ∈ {0, 1}(n+3)×(n+3) is minimally non-firm.
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Proof. By Lemma 4.4.6 Wn is a firm mnsf matrix with i(Wn) = br(Wn) = n. In this

proof, we show that i(WQWn
n ) = n − 2 and br(WQWn

n ) = i(WP
n ) = br(WP

n ) = n − 1

for all ∅ 6= P ( QWn . And then by Theorem 5.3.1 SQWn (Wn) is minimally non-firm.

For all P ⊆ QWn , G(WP
n ) has the 2n − 3-hole CWn . Hence, for all P ⊆ QWn we

have br(WP
n ) ≥ n − 1 . On the other hand, let us specify three maximal rectangles

of Wn,
R1 = {n− 2, n− 1, n} × {n− 3, n− 2},
R2 = {n− 3, n− 2, n− 1} × {n− 2, n− 1},
R3 = {n− 3, n− 2} × {n− 2, n− 1, n}.

If we can cover WP
n with n − 1 rectangles for P ⊆ QWn with |P | = 1, then we can

also cover WP
n with n− 1 rectangles for all ∅ 6= P ⊆ QWn . The bottom submatrix of

WP
n for the two non-symmetric cases of P ⊆ QWn with |P | = 1 is shown below,

n−3 n−2 n−1 n


∗ 1

n−3 1 1 1 1
n−2 1 1 1 ?
n−1 1 1 1

n 1 1

,

n−3 n−2 n−1 n


∗ 1

n−3 1 1 1 1
n−2 1 1 1 1
n−1 1 1 ?

n 1 1

.

One can see that W(n−2,n)
n can be covered by n−3 row rectangles for rows 1, . . . , n−3

plus rectangles R1 and R2; and W(n−1,n−1)
n can be covered by n − 3 row rectangles

for rows 1, . . . , n − 3 plus rectangles R1 and R3. Therefore, for all ∅ 6= P ⊆ QWn we

have br(WP
n ) = n− 1.

Each (i, j) ∈ QWn is adjacent to exactly two consecutive vertices of CWn and not

adjacent to the other 2n− 5 vertices of the hole. For P ( QWn , let (`, k) ∈ QWn \ P .

Then taking a maximum independent set of the 2n−3 hole CWn which does not contain

the two vertices that (`, k) is adjacent to, and adding in (`, k) gives an isolated set of

size n− 1. Hence, for all ∅ 6= P ( QWn we have i(WP
n ) = n− 1.

Any maximum independent set of CW−n gives an isolated set of size n − 2 for

WQWn
n . Suppose that Sn is an isolated set of size n− 1 for WQWn

n . Then Sn contains

a 1 from each row except for exactly one row, and a 1 from each column except for
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exactly one column. The bottom submatrix of WQWn
n is

n−3 n−2 n−1 n


∗ 1

n−3 1 1 1 1
n−2 1 1 1 ?
n−1 1 1 ?

n 1 ?

.

Row n and column n both only have a single 1. (a) If (n − 3, n) ∈ Sn, then column

n − 1 cannot have any 1s in Sn, so every column apart from n − 1 must have an

element in Sn. Similarly, from column n− 2, Sn then can only contain (n− 1, n− 2),

so this must be in Sn. But then Sn cannot contain any 1s from row n− 2 and n, so

|Sn| < n − 1. (b) If (n, n − 3) ∈ Sn, the argument is symmetric hence |Sn| < n − 1.

So we have neither (n− 3, n) nor (n, n− 3) in Sn. Then Sn must have a 1 from every

row and column with index in [n− 1]. Columns n− 2 and n− 1 form a rectangle and

also rows n− 2 and n− 1 form a rectangle, so Sn cannot contain a 1 from both and

|Sn| < n− 1. Hence i(WQWn
n ) = n− 2.

If Y is a proper submatrix of WP
n for any P ⊆ QWn , then Y is superfirm because

Wn is mnsf. Therefore all conditions of Theorem 5.3.1 are satisfied and SQWn (Wn)

is minimally non-firm.

Let us show SQWn (Wn) with our standard stretching ordering,

SQWn (Wn) =



1 1

1
. . .

. . . 1
1 1 1 1

1 1 1 1 1
1 1 1 1
1 1 1

1 1
1 1

1 1


.

If the last three rows are permuted, it can be brought to symmetric form.

We think that the proof of Wn could be generalised to mnsf matrices X similar

in structure to Wn which have a partition of supp1(X) into three sets Q, F and

C where C is an odd-hole of the mnsf matrix, Q has vertices adjacent to exactly

two consecutive vertices of C, F contains vertices that are adjacent to at least four
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consecutive vertices of C and F can be covered by two cliques. Sadly, we do not know

of any more mnsf matrices similar to Wn on which we could test this idea.

For all mnsf matrices in this section, Q is defined to be the subset Q ⊂ supp1(X)

which contains entries that are adjacent to exactly two consecutive vertices of an odd

hole of mnsf X. Furthermore, in all cases we had br(XQ) = k and i(XQ) = k − 1 if

the odd hole of X is of size 2k − 1.

We suspect that these observations hold for any mnsf matrix and one can obtain

an mnf matrix from every mnsf matrix by stretching the subset of 1s which contains

entries that are adjacent to exactly two consecutive vertices of an odd hole of X. Of

course, for this suspicion to have a chance to be true, the conjecture that every mnsf

matrix is firm should be proved first. Furthermore, it should also be shown that an

mnsf matrix cannot have two odd holes of different sizes.

Conjecture 5.4.6. If X ∈ {0, 1}m×n is mnsf and has several odd holes, then every

odd hole is of the same size. If Q ⊂ supp1(X) contains every vertex that is adjacent

to exactly two consecutive vertices of an odd hole in G(X), then SQ(X) is minimally

non-firm.

5.5 Mnf matrices by 2-simplicial neighbour stretch-

ing

In this section, we present further infinite families of minimally non-firm matrices and

show that the base matrix from which one can obtain a minimally non-firm matrix via

Theorem 5.3.1 does not need to be minimally non-superfirm, but can contain several

nested odd holes. Recall Definition 4.3.7 that (`, k) is a 2-simplicial neighbour of an

m× n matrix X if

(a) row ` contains exactly two nonzero entries (`, k) and (`, j) for some j ∈ [n], and

(`, j) is a simplicial 1 of X, or

(b) column k contains exactly two nonzero entries (`, k) and (i, k) for some i ∈ [m],

and (i, k) is a simplicial 1 of X.

Theorem 4.3.9 shows that 2-simplicial neighbour stretching preserves superfirmness,

firmness and increases the size of certain odd holes. We will apply repeated 2-

simplicial neighbour stretchings to mnsf matrices to get matrices which contain several

nested odd holes.
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Recall that whenever we stretch a 1 at (`, k) of an m × n matrix X, we create a

simplicial 1 at (m+ 1, n+ 1) which has a maximal rectangle of size 2× 2 indexed by

{`,m+1}×{k, n+1} and thus both (`, n+1) and (m+1, k) are 2-simplicial neighbours

in S(`,k)(X). Thus 2-simplicial neighbour stretching can be applied repeatedly. Let

S(`2,k2) ◦S(`1,k1)(X) be a shorthand notation for S(`2,k2)(S(`1,k1)(X)). We say that

S(`s,ks) ◦S(`s−1,ks−1) ◦ · · · ◦S(`1,k1)(X)

is a chain of 2-simplicial neighbour stretchings if (`1, k1) is 2-simplicial neighbour in

X and for all i ≥ 2

either `i = `i−1, ki 6= ki−1, or `i 6= `i−1, ki = ki−1.

For instance, S(`7,k7) ◦ · · · ◦S(`2,k2) ◦S(`1,k1)(J2) is a chain of 2-simplicial neighbour

stretchings,
k1,
k2

k3 k4
k5,
k6

k7



`1 1 1 1
1 1

`2,`3,`4,`5 1 1 1 1 1 1
1 1

1 1
1 1

`6,`7 1 1 1 1
1 1

1 1

. (5.5.1)

Observe that the chain ’can change direction’ at the i-th stretching if

if `i−1 = `i−2, ki−1 6= ki−2 and `i 6= `i−1, ki = ki−1,

or `i−1 6= `i−2, ki−1 = ki−2 and `i = `i−1, ki 6= ki−1.

For instance, in Equation (5.5.1) the direction is changed at the 3rd, 6th and 7th

stretchings.

Chains of 2-simplicial neighbour stretchings are useful because they can be used

to obtain matrices with arbitrarily large odd holes. For instance, applying three

2-simplicial neighbour stretchings to mnsf matrix M4 we get the matrix

S(5,6) ◦S(5,4) ◦S(3,4)(M4) =



1 1
1 1

1 1 1 1
1 1

1 1 1 1
1 1

1 1


,
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which has a 7+2 ·3 = 13-hole that is obtained by adding two vertices to the 7-hole of

M4 at each stretching. We show the rectangle cover graph of this matrix in Figure 5.1

and highlight its 13-hole. Note that this matrix contains several nested odd-holes, the

7-hole of M4, a 9-hole and an 11-hole too. Also observe that as shown by Theorem

4.3.9, S(5,6) ◦S(5,4) ◦S(3,4)(M4) is firm and has exactly one simplicial 1 at (7, 7).

1,1 1,2

2,2 2,3

3,1 3,3 3,4 3,5

4,3 4,4

5,4 5,5 5,6 5,7

6,4 6,6

7,6 7,7

Figure 5.1: The 13-hole in the rectangle cover graph of S(5,6) ◦S(5,4) ◦S(3,4)(M4)

In the rest of this section we show that stretching the simplicial 1s of a matrix

obtained from any of the mnsf matrices Mn, D4 and T5 via a series of 2-simplicial

neighbour stretchings gives a minimally non-firm binary matrix. For this we will

need to argue that proper submatrices of such matrices are firm. In the previous

section this step was easily done as the base matrix was mnsf and that implied any

proper submatrix to be superfirm. Here in this section however, to prove that proper

submatrices are firm requires more work as the base matrix contains several nested

odd-holes.

Recall from Section 3.3.2, that a matrix X can be L-decomposed if its rows and

columns can be partitioned into the block form,

X =

J0
A J1

A JB IA A0 A1

I1
B J B1

I0
B B0

.
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Then X is the L-sum of two submatrices A, B of X,

X = L(iA,jB)(A,B) =

J0
A J1

A[ ]
IA A0 A1

iA 0> 1>
�

jB JB[ ]
I1
B 1 B1

I0
B 0 B0

.

In the next lemma, we show that some specific proper submatrices of a matrix

that is obtained by a chain of 2-simplicial neighbour stretchings can always be written

as the L-sum or direct sum of two smaller matrices. This lemma will be used in the

theorems that follow, to show that such proper submatrices then cannot be mnf. We

only consider square matrices here for simplicity, because stretching a square matrix

results in a square matrix, which has a simplicial 1 at the bottom diagonal entry due

to our stretching ordering convention.

Lemma 5.5.1. Let X ∈ {0, 1}n×n be obtained from an m ×m binary matrix via a

chain of n −m > 1 2-simplicial neighbour stretchings. Then (n, n) ∈ supp1(X) is a

simplicial 1 created by the last stretching. If Y is a proper submatrix of X or X(n,n)

indexed by I × J such that

• [m] ⊂ I, [m] ⊂ J and n ∈ I, n ∈ J , and

• Y has at least two non-zeroes in each row and column,

then Y is the direct sum or L-sum of two of its proper submatrices, one containing

submatrix [m]× [m] and the other containing entry (n, n).

Proof. Since Y is a proper submatrix of X or X(n,n) we must have (p, p) 6∈ I × J for

some m < p < n. Observe that for each m < p < n, exactly one of row p or column

p has exactly two 1s. If row p has exactly two 1s, then (p, p) 6∈ I × J implies p 6∈ I,

else if column p has exactly two 1s, then p 6∈ J . Let (`, k) be the 1 whose stretching

created (p, p).

(a) Let row p have exactly two 1s, so p 6∈ I. If ` 6∈ I then Y is the direct sum of

two of its non-empty proper submatrices indexed by I1 × J1 and I2 × J2 with

I1 = {i ∈ I : i < p}, J1 = {j ∈ J : j < p},
I2 = {i ∈ I : i > p}, J2 = {j ∈ J : j ≥ p}.

On the other hand, if ` ∈ I, let T = {t : (`, t) ∈ supp1(Y), p < t}. Then I × J can be

partitioned as,

I0
B = {i ∈ I : i < p} \ {`}, JB = {j ∈ J : j < p},
I1
B = {`}, J1

A = {p} ∪ T,
IA = {i ∈ I : i > p}, J0

A = {j ∈ J : j > p} \ T.
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For instance, the matrix below is a possible submatrix of X and if p 6∈ I, it can be

L-decomposed on the rectangle that is shaded by grey,

k p T T



1 1 1
1 1

` 1 1 1 1 1 1

1 1
p �A1 �A1

1 1
1 1 1 1
1 1

1 1

.

The partitioning satisfies the conditions of L-decomposition, hence Y is the L-sum of

two of its proper submatrices indexed by

(IA ∪ {`})× (J0
A ∪ J1

A) and ({`} ∪ I0
B)× ({p} ∪ JB).

Case (b) is symmetric. Let column p have only two 1s. If k 6∈ J , then Y is the

direct sum of two of its proper submatrices indexed by I1 × J1 and I2 × J2 with

I1 = {i ∈ I : i < p}, J1 = {j ∈ J : j < p},
I2 = {i ∈ I : i ≥ p}, J2 = {j ∈ J : j > p}.

If k ∈ J let T = {t : (t, k) ∈ supp1(Y), p < t}. But then the below partitioning

L-decomposes Y,

IA = {i ∈ I : i < p}, J0
A = {j ∈ J : j < p} \ {k},

I1
B = {p} ∪ T, J1

A = {k},
I0
B = {i ∈ I : i > p} \ T, JB = {j ∈ J : j > p}.

For instance, the L-decomposition may look like this,

k p



1 1 1 1
1 1

1 1
1 1 1

` 1 1 �A1

p 1 �A1 1
T 1 1 1 1
T 1 1

1 1

.
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Hence Y is the L-sum of two of its proper submatrices indexed by

(IA ∪ {p})× (J0
A ∪ {k}) and (I1

B ∪ I0
B)× ({k} ∪ JB).

Therefore, in all cases Y is the direct- or L-sum of two of its proper submatrices.

5.5.1 Further infinite families from Mn

We are ready to show that several further infinite families of mnf matrices can be

obtained from the mnsf matrices Mn.

Theorem 5.5.2. Let m ≥ 4 and n > m. If X ∈ {0, 1}n×n is obtained by a series of

2-simplicial neighbour stretchings from Mm, then S(n,n)(X) is a minimally non-firm

binary matrix.

Proof. Mn is firm and 2-simplicial neighbour stretchings preserve firmness by The-

orem 4.3.9 so X is a firm matrix. We will show that X(n,n) is a minimally non-firm

generalised binary matrix and then by Theorem 5.3.1 S(n,n)(X) is mnf.

First, note that since Mm satisfies the conditions of Part (4.) of Theorem 4.3.9,

2-simplicial neighbour stretching preserves the number of simplicial 1s of Mm and

thus X has exactly one simplicial 1 at (n, n).

X(n,n) has dimension n×n and G(X(n,n)) has a 2n−1 hole by Part (2.) of Theorem

4.3.9, so br(X(n,n)) = n.

A maximum independent set of the 2n− 1 hole gives i(X(n,n)) ≥ n− 1. Suppose

S is an isolated set of X(n,n) of size n. Then S contains exactly one 1 from each row

and column of X(n,n). Let (`, k) be the 1 whose stretching created the 1 at (n, n) of

X. In X(n,n), row n only has a single 1 at (n, k), so (n, k) ∈ S, while column n, also

only has a single 1 at (`, n), so (`, n) ∈ S. But this shows that S is not an isolated set

as (n, k) and (`, n) are in a common rectangle indexed by {`, n} × {k, n}. Therefore,

i(X(n,n)) = n− 1.

Suppose that X(n,n) has a proper submatrix that is not firm. Let Y be the

smallest such submatrix of X(n,n) indexed by I × J , so Y is minimally non-firm.

Since 2-simplicial neighbour stretching preserves firmness, Y cannot be a submatrix

of X, so we must have n ∈ I and n ∈ J .

Recall that Mm is mnsf, so every proper submatrix of it is superfirm. Since, 2-

simplicial neighbour stretching preserves superfirmness, if any of the first m rows or

columns is missing in Y, then Y is obtained by setting a 1 to a ? of a proper submatrix

of the superfirm matrix that is obtained by repeated 2-simplicial neighbour stretchings

of a proper submatrix of Mn. So we must have [m] ⊆ I and [m] ⊆ J .
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Therefore we have [m] ∪ {n} ⊂ I and [m] ∪ {n} ⊂ J . If n = m + 1, then Y is

not a proper submatrix of X(n,n), so we must have n > m + 1. But then by Lemma

5.5.1 Y is the direct or L-sum of two smaller submatrices of X(n,n) indexed by I1×J1

and I2 × J2 with [m] × [m] ⊂ I1 × J1 and (n, n) ∈ I2 × J2. Since both direct sum

and L-sum preserve firmness, no mnf matrix can be written as the direct or L-sum of

any of its proper submatrices. Therefore, in any case Y is not mnf but firm and thus

X(n,n) is an mnf generalised binary matrix and S(n,n)(X) is an mnf standard binary

matrix.

So how many new mnf matrices can we get by the above theorem? Mm has two

2-simplicial neighbours at (m−1,m) and (m,m−1), but Mm can be made symmetric,

so S(m−1,m)(Mm) and S(m,m−1)(Mm) are permutations of each other. S(m−1,m)(Mm)

however, is not symmetric and also has two 2-simplicial neighbours. So we can get

two different matrices by 2-simplicial neighbour stretching from S(m−1,m)(Mm). This

remains true for any further stretchings, and at each new stretching we can choose

between two 1s to stretch. For instance, the number of mnf matrices that can be

obtained by Theorem 5.4.3 and 5.5.2 from mnsf matrices Mm of dimension

• 5× 5, is only one S(4,4)(M4),

• 6× 6, is 1 + 1: S(5,5)(M5) and S(5,5) ◦S(3,4)(M4),

• 7 × 7, is 1 + 1 + 2: S(6,6)(M6), S(6,6) ◦S(5,6)(M5), S(6,6) ◦S(3,5) ◦S(3,4)(M4) and

S(6,6) ◦S(5,4) ◦S(3,4)(M4).

In general, for n ≥ 6 the number of n × n mnf matrices that can be obtained from

mnsf matrices Mm is 1 +
∑n−6

k=0 2k.

5.5.2 Infinite families of mnf matrices from D4 and T5

Let us now apply 2-simplicial neighbour stretchings to create more mnf matrices from

D4,

D4 =


1 1
1 1 1 1

1 1 1
1 1

 .
D4 has three simplicial 1s at (1, 1), (3, 4), (4, 3) and it has four 2-simplicial neighbours

at (1, 2), (2, 1), (2, 4), (4, 2). Hence we may apply repeated 2-simplicial neighbour

stretching to D4 to get matrices that have some nested odd holes. Observe that any

matrix that is obtained by a series of 2-simplicial neighbour stretching from D4 has
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one, two or three chains of 2-simplicial neighbour stretchings which all come from

different ’angles’ and only the core matrix D4 links them together. For instance, the

rectangle cover graph of

S(9,2) ◦S(4,2)(S(7,4) ◦S(2,4)(S(1,5) ◦S(1,2)(D4)))

consists of three chains of two 2-simplicial neighbour stretchings, one originating from

(1, 2), one from (2, 4) and the third from (4, 2). In Figure 5.2 we show the rectangle

cover graph of this matrix with rows and columns rearranged in a way to emphasise

that each chain is independent from the other. We also highlight the 5+2·6 = 17-hole

in the graph which is the result of extending the 5-hole of D4 by 2 vertices at each

stretching.

1,1 1,21,51,6

2,1 2,2 2,3 2,4 2,7

3,2 3,3 3,4

4,2 4,3 4,9

5,25,5

6,56,6

7,4 7,7 7,8

8,4 8,8

9,2 9,9 9,10

10,2 10,10

Figure 5.2: The rearranged rectangle cover graph of a matrix obtained from D4 by
six 2-simplicial neighbour stretchings, which can be divided into three chains, each
consisting of two stretchings

In the next theorem we show that stretching the three simplicial 1s of any matrix

obtained from D4 by 2-simplicial neighbour stretchings gives an mnf matrix.

Theorem 5.5.3. Let X ∈ {0, 1}n×n be obtained by a series of 2-simplicial neighbour

stretchings from D4 and let Q contain the indices of simplicial 1s of X. Then SQ(X)

is a minimally non-firm binary matrix.
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Proof. We will show that XP is firm for all P ( Q and XQ is mnf. Then Theorem

5.3.1 will imply that SQ(X) is mnf.

Recall from Theorem 4.3.9 that simplicial neighbour stretching preserves firmness

and the number of simplicial 1s if applied to a matrix without repeated rows and

columns and with at least two 1s in each row and column. Since D4 is firm and

satisfies these conditions, X is firm and has exactly three simplicial 1s, so |Q| = 3.

I. Since br(D4) = 3 and each 2-simplicial neighbour stretching increases the

Boolean rank, the number of rows and the number of columns by exactly one,

br(XP ) ≤ br(X) = 3 + n − 4 = n − 1 for all P ⊆ Q. On the other hand, the

5-hole satisfies the conditions of part (2.) of Theorem 4.3.9 so G(XP ) contains a

2n− 3-hole for all P ⊆ Q, and br(XP ) = n− 1.

II. Observe that all three simplicial 1s in Q are adjacent to exactly two vertices of

the 2n− 3-hole of G(X). For all P ( Q, let (i, j) ∈ Q \ P . Then taking a maximum

independent set of the 2n− 3-hole which does not contain the two vertices that (i, j)

is adjacent to, and adding in (i, j) gives an isolated set of size n−1 for all XP , P ( Q.

III. For XQ, all entries in Q are ?’s so we only have i(XQ) ≥ n − 2 by any

maximum independent set of the 2n − 3-hole. Suppose XQ has an isolated set S of

size n−1. Then S does not contain a 1 from exactly one row and exactly one column

of XQ.

Recall that the simplicial 1 at (1, 1) of D4 has a 2× 2 maximal rectangle, the one

at (3, 4) has a 2 × 3 maximal rectangle and the one at (4, 3) has a 3 × 2 maximal

rectangle. By stretching we always create a simplicial 1 that has a 2 × 2 maximal

rectangle and is on the diagonal of X. Therefore, Q contains three simplicial 1s of X,

• one of which has a 2× 2 maximal rectangle and is on the diagonal, let this be

(i1, i1) and its maximal rectangle {`1, i1} × {k1, i1};

• another one which has a maximal rectangle with exactly two columns, let this

be (i2, j2) and its rectangle be (I2 ∪ {i2})× {k2, j2} with |I2| ∈ {1, 2};

• and another one which has a maximal rectangle with exactly two rows, let this

be (i3, j3) and its rectangle be {`3, i3} × (J3 ∪ {j3}) with |J3| ∈ {1, 2}.

Then in XQ, rows i1 and i2 have exactly one 1 at (i1, k1) and (i2, k2), respectively;

and columns i1 and j3 also have exactly one 1 at (`1, i1) and (`3, j3), respectively.

If S∩{(i1, k1), (`1, i1)} = ∅, then S is an isolated set of the (n−1)×(n−1) matrix

X′P
′
obtained by dropping row i1 and column i1 from XQ and with P ′ = Q\{(i1, i1)}.
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But then X′ is obtained by n − 5 2-simplicial neighbour stretchings from D4 and

i(X′P
′
) = n− 2 by Part II. Therefore, we must have |S ∩ {(i1, k1), (`1, i1)}| = 1.

Since the cases (i1, k1) ∈ S and (`1, i1) ∈ S are symmetric, let (`1, i1) ∈ S. Next

we explain why then S must contain the entries indicated by red dots,

k1 i1 k2 j2 j3



`1 1 •
i1 �A1 ?

1 �A1
1 �A1

i2 • ?
`3 1 1 •
i3 �A1 �A1 ?

.

If (`1, i1) ∈ S, then (i1, k1) 6∈ S, and S does not contain any 1s from row i1, so it must

contain a 1 from every other row of XQ. In particular, S must contain (i2, k2), the

only 1 in row i2. Then however, S cannot contain any 1s from column j2, because

all the 1s there are in a common rectangle with (i2, k2) (as (i2, j2) is a simplicial 1

in X). So S must contain a 1 from every other column of XQ, in particular it must

contain (`3, j3), the only 1 in column j3. If `1 = `3 then S cannot be an isolated set,

so assume that `1 6= `3. However, at this point S can also not contain any 1s from

row i3, as all those 1s are in a common rectangle with (`3, j3). Hence, S is not an

isolated set as it contains n− 1 entries from n− 2 rows. Therefore, no isolated set of

size n− 1 can exist for XQ and br(XQ) = n− 2.

IV. Let n be the smallest dimension for which XP ∈ {0, 1, ?}n×n for some P ⊆ Q

has a non-firm proper submatrix. Let Y be a smallest non-firm proper submatrix of

XP indexed by I × J . Then Y is mnf.

If [4]× [4] 6⊂ I × J , then Y is equal to a

• a standard binary matrix Z that is obtained by a series of 2-simplicial neighbour

stretchings applied to a proper submatrix of D4,

• or a proper submatrix of Z,

• or a generalised binary matrix obtained from Z or one of its proper submatrices.

Since D4 is mnsf, any proper submatrix of it is superfirm. Furthermore, 2-simplicial

neighbour stretching preserves superfirmness so any of the above options leads to a

superfirm matrix. Therefore, we must have [4]× [4] ⊂ I × J .

If Q 6⊂ I × J then Y is either equal to
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• a matrix X′P
′ ∈ {0, 1, ?}k×k for some k < n, where X′ is obtained by k − 4

2-simplicial neighbour stretchings from D4 and P ′ ( Q, where P ′ is a subset of

simplicial 1s of X′;

• or a proper submatrix of X′P
′
.

In the first case, X′P
′

with P ′ ( Q has i(X′P
′
) = br(X′P

′
) by part II., while in

the second case the proper submatrix is firm by the minimality assumption on n.

Therefore, we must have Q ⊂ I × J and [4] × [4] ⊂ I × J . Note that X is built up

using possibly three different chains of 2-simplicial neighbour stretchings. In Y at

least one of those chains must have a missing row or column, and thus by Lemma

5.5.1 Y can be decomposed into the direct- or L-sum of two of its proper submatrices.

Since no mnf matrix can have such decomposition, Y must be firm and thus XP is

firm for all P ( Q and XQ is mnf.

This theorem shows that we can obtain an infinite number of minimally non-firm

matrices which all contain the mnsf matrix D4. In addition, since stretching preserves

totally balancedness and D4 is an interval matrix, all these mnf matrices are totally

balanced. One of the matrices that Theorem 5.5.3 proves to be mnf is the second one

of the two matrices that Lubiw mentions in [77, Fig 1.1] to be not firm,

S{(1,1),(4,3),(5,5)}S(2,4)(D4) =



1 1 1
1 1 1 1 1

1 1 1
1 1 1

1 1 1
1 1

1 1
1 1


.

This example of Lubiw was also an inspiration to us to define stretching and to use

it to extend the size of odd-holes of mnsf matrices.

So how many matrices exactly does Theorem 5.5.3 prove to be mnf? To under-

stand this, for each dimension let us count how many matrices can be obtained from

D4 by a series of 2-simplicial neighbour stretchings. Then all these matrices have

three simplicial 1s which need to be stretched to get an mnf matrix, which increases

the dimension by 3.

Since D4 is symmetric, with one 2-simplicial neighbour stretching we can get 2

different 5 × 5 matrices which are S(1,2)(D4) and S(2,4)(D4). With two 2-simplicial

119



neighbour stretchings from D4, we can get 4 matrices with one chain of length 2,

S(1,5) ◦S(1,2)(D4), S(5,2) ◦S(1,2)(D4),

S(2,5) ◦S(2,4)(D4), S(5,4) ◦S(2,4)(D4);

and 3 matrices with two chains of length 1,

S{(1,2),(2,4)}(D4), S{(1,2),(4,2)}(D4), S{(2,4),(4,2)}(D4)>,

the last of which can be arranged to be a symmetric matrix. Hence there are 7

different 6× 6 matrices obtained from D4 by 2-simplicial neighbour stretchings.

Applying three 2-simplicial neighbour stretchings can have one single chain of

length 3 which we denote by 1 ◦1 ◦1, or two chains: one of length one and the other

of length two denoted by 1 ◦2, or three chains of length one. This leads to a total of

8 + (4 + 4 + 2) + 1 = 19 different 7 × 7 matrices from D4. This counting takes into

consideration that there are

• 2 choices of 2-simplicial neighbours to be stretched to get a chain of length three

1 ◦1 ◦1 from a matrix with a single chain of length two 1 ◦1,

• 4 choices of 2-simplicial neighbours to get two chains, one of length 2 the other

of length 1, 1 ◦2 from a non-symmetric matrix with two chains of length 1, and

2 non-equivalent choices for a symmetric matrix with two chains of length 1,

• one choice to stretch three 2-simplicial neighbours of D3 to get a matrix with

three chains of length 1.

With this type of counting, we get that applying a series of 4 2-simplicial neighbour

stretchings to D4 leads to 52 different 8× 8 matrices,

2 · [8 + (4 + 4 + 2)]︸ ︷︷ ︸
1◦[1◦1◦1, 1◦2]

+ 6︸︷︷︸
1◦3

+ 4 + 4 + (1 + 1>)︸ ︷︷ ︸
2◦2

= 52

applying 5 2-simplicial neighbour stretchings to D4 leads to 134 different 9 × 9 ma-

trices,
2 · [2 · 18 + 6]︸ ︷︷ ︸

1◦[1◦1◦1◦1, 1◦1◦2, 1◦3]

+ 4 · (4 + 4 + 1) + 2︸ ︷︷ ︸
1◦2◦2

+ 12︸︷︷︸
2◦3

= 134

applying 6 leads to 338 different 10× 10 matrices

2 · [2 · 42 + 38]︸ ︷︷ ︸
1◦[1◦1◦1◦1◦1,1◦1◦1◦2,1◦1◦3,1◦2◦2]

+ 4 · 12︸ ︷︷ ︸
1◦2◦3

+ 4(4 + 4 + 1) + 1 + 1>︸ ︷︷ ︸
2◦2◦2

+ 8︸︷︷︸
3◦3

= 338
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and applying 7 leads to 830 different 11× 11 matrices.

2 · [244 + 48]︸ ︷︷ ︸
1◦[1◦1◦1◦1◦1◦1,1◦1◦1◦1◦2,1◦1◦1◦3,1◦1◦2◦2,1◦2◦3]

+ 4 · 37 + 2︸ ︷︷ ︸
1◦2◦2◦2

+ 6 · 8︸︷︷︸
1◦3◦3

+ 4 · 12︸ ︷︷ ︸
2◦2◦3

= 830

This counting shows that there is an infinite zoo of minimally non-firm matrices all

containing the single mnsf matrix D4!

The mnsf matrix T5,

T5 =


1 1
1 1 1 1

1 1 1
1 1

1 1

 ,
has a very similar structure to D4 if not even simpler. It has three simplicial 1s

at (1, 1), (4, 5), (5, 4) and six 2-simplicial neighbours at (1, 2), (2, 1), (2, 5), (3, 4), (4, 3)

and (5, 2). Any matrix that is obtained from T5 by a series of 2-simplicial neighbour

stretchings consists of at most three chains of stretchings. A proof that is structurally

identical to the proof of Theorem 5.5.3 shows that stretching the simplicial 1s of any

matrix that is obtained from T5 by a series of 2-simplicial neighbour stretching gives

an mnf matrix. Therefore, we get another infinite class of totally balanced mnf

matrices, all originating from T5.

Theorem 5.5.4. Let X ∈ {0, 1}n×n be obtained by a series of 2-simplicial neighbour

stretchings from T5 and let Q contain the indices of simplicial 1s of X. Then SQ(X)

is a minimally non-firm binary matrix.

Finally let us note, that since one may create a non-firm matrix from every mnsf

matrix X by stretching all 1s of X that do not belong to an odd hole of X, and every

non-firm matrix must contain an mnf matrix, each mnsf matrix can be used to derive

at least one mnf matrix. The theorems in this section show that from a single mnsf

matrix one may also be able to derive an infinite family of mnf matrices. Therefore,

there are much more mnf matrices than mnsf ones.

5.6 Further mnf matrices

In this section, we present some mnf matrices that we discovered computationally

and cannot be obtained by Theorem 5.3.1 because they have no simplicial 1s.
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Let Θn be the n×n matrix obtained from the n×n mnf matrix S(n−1,n−1)(Mn−1)

by turning the 0 at (n, 1) into a 1,

Θn =



1 1
1 1

. . . . . .

1 1
1 1 1

1 1 1
1 1 1


Observe that Θn contains two mnsf matrices, one is Mn−1 and the other is H3 in

submatrix {n− 2, n− 1, n} × {1, n− 1, n− 2, n}.

Theorem 5.6.1. Θn is mnf for all n ≥ 5.

Proof. We present a direct proof. To see that Θn is full-rank, observe that the

generalised binary matrix ΘQ
n ,

ΘQ
n =



1 1
1 1

. . . . . .

1 1
1 ? 1

1 ? 1
? ? 1


has largest rectangle of size 2 and 2n − 1-many 1s, hence by the bound in Equation

(1.3.2), we have

d2n− 1

2
e ≤ br(ΘQ

n ) ≤ br(Θn) ≤ n.

Θn contains Mn−1, so i(Θn) ≥ n−1. Suppose S is an isolated set of size n of Θn.

Then as column n only has two 1s, we must have (a) (n, n) ∈ S or (b) (n− 1, n) ∈ S,

(a)



1 1
1 1

. . . . . .

1 1
1 1 1

1 ? ?
? ? •


, (b)



1 1
1 1

. . . . . .

1 1
1 1 1

? ? •
1 ? ?


.

In both cases, S then must contain n − 1 isolated 1s from M
(n−1,n−1)
n−1 which is im-

possible as M
(n−1,n−1)
n−1 is mnf with i(M

(n−1,n−1)
n−1 ) = n− 2 as shown in Theorem 5.4.3.

Therefore, i(Θn) = n− 1.
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Suppose that Θn is not mnf, and has a smallest proper submatrix Y indexed by

I×J that is not firm. Then Y is mnf and we must have n ∈ I and 1 ∈ J , as otherwise

Y is a proper submatrix of the mnf matrix S(n−1,n−1)(Mn−1).

1 2 n−3 n−2 n−1 n



1 1 1
2 1 1

. . . . . .

n−3 1 1
n−2 1 1 1
n−1 1 1 1

n 1 1 1

(5.6.1)

If I ∩ [n − 3] = ∅ then Y is a submatrix of H3 and firm. So I ∩ [n − 3] 6= ∅. Note

that rows 1, . . . , n− 3 have only two 1s and columns 2, . . . , n− 3 also only have two

1s, so i ∈ [n − 3] ∩ I implies i, i + 1 ∈ J and j ∈ [2, n − 3] ∩ J implies j − 1, j ∈ I.

Thus I ∩ [n− 3] 6= ∅ can only happen if [n− 3] ⊂ I and [n− 2] ⊂ J . So at this point

we know that [n− 3] ∪ {n} ⊆ I and [n− 2] ⊆ J .

Let us look at rows n− 2, n− 1. (a) If n− 2 6∈ I, then Y is a submatrix of Cn−1,

perhaps with a repeated column, hence superfirm. (b) If n − 1 6∈ I, then n 6∈ J (as

otherwise column n has a single 1), and thus Y is a submatrix of firm Mn−1. So we

must have n− 2, n− 1 ∈ I.

(a)

1 2 n−3 n−2 n−1 n



1 1 1
2 1 1

. . . . . .

n−3 1 1
n−1 1 1 1

n 1 1 1

, (b)

1 2 n−3 n−2 n−1 n



1 1 1
2 1 1

. . . . . .

n−3 1 1
n−2 1 1 1

n 1 1 1

.

At this point every row of Θn is in I, so we must have at least one column in [n]

missing so that Y is a proper submatrix of Θn. (c) If n− 1 6∈ J , then Y is linear and

superfirm. (d) If n 6∈ J then Y is of dimension n× (n− 1) and contains Mn−1 hence
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it has i(Y) = br(Y) = n− 1.

(c)

1 2 n−3 n−2 n



1 1 1
2 1 1

. . . . . .

n−3 1 1
n−2 1 1
n−1 1 1

n 1 1

, (d)

1 2 n−3 n−2 n−1



1 1 1
2 1 1

. . . . . .

n−3 1 1
n−2 1 1 1
n−1 1 1

n 1 1

.

Therefore, in any case Y is not mnf, and Θn is mnf.

The proof of the above theorem is not very elegant and it would be interesting to

know whether a general method exists to turn 0s of known mnf matrices into 1s and

obtain further mnf matrices. We tested some cases computationally and discovered

a few further mnf matrices. The proof of their mnf-ness is completely enumerational,

so we do not present it.

By our computational results, there are no mnf matrices of size 4×5 and there are

exactly four 5×5 mnf matrices which are S(4,4)(M4), Θ5 and the below two matrices,

[H>4 , e3 + e4] =


1 1

1 1
1 1 1

1 1 1
1 1 1 1

 , Υ5 =


1 1

1 1
1 1 1

1 1 1
1 1 1 1

 .

Observe that [H>4 , e3 +e4] is similar in structure to matrix I
′
4 which can be written as

I
′
4 = [H>3 , e2 +e3]. Similarly, from computational tests, we think that we may obtain

more mnf matrices from mnf matrices S(n,n)(Mn). For instance, apart from Θ6, the

following three 6×6 matrices can obtained from S(5,5)(M5) by turning some 0s to 1s,
1 1

1 1
1 1

1 1 1
1 1 1

1 1 1 1

 ,


1 1
1 1

1 1
1 1 1

1 1 1
1 1 1 1

 ,


1 1
1 1

1 1
1 1 1

1 1 1
1 1 1 1 1

 .
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Chapter 6

Conclusion and open questions

In the first part of this thesis we looked at firm matrices, which were introduced by

Anna Lubiw in her 1990 paper [77].

In the Introduction 2, we gave a detailed account of the history of firm matrices,

rectilinear polygon covering and some important problems related to firm matrices.

In Chapter 3, we presented the work of Lubiw in detail. In particular, we defined

rectangle cover graphs, superfirmness and generalised binary matrices. Then we ex-

plored the polynomial time algorithm to compute a maximum independent set and

minimum clique cover of perfect graphs. Unfortunately, we could not adapt it into

an algorithm to compute a minimum rectangle cover and a maximum isolated set of

firm matrices. Whether this can be done is one of our open questions. Furthermore,

in Section 3.3, we provided proof highlights of the most important classes of known

firm matrices and some firmness preserving operations. We suspect that D3-free row-

column clutter matrices have full isolation number and this could give a simpler proof

of firmness of D3-free matrices.

In Chapter 4, we explored how minimally imperfect subgraphs can appear in

rectangle cover graphs. We proved that in rectangle cover graphs, odd antiholes

cannot appear without odd holes. By this we showed that superfirmness is equivalent

to the requirement of not having any odd holes in the rectangle cover graph and

forbidding odd antiholes is unnecessary. Then we characterised the necessary and

sufficient submatrices for 5-holes to appear in the rectangle cover graph. Furthermore,

we showed that P5-free rectangle cover graphs are perfect. In Section 4.3, we defined

simplicial 1s and the stretching operation. We proved that 2-simplicial neighbour

stretching preserves firmness and superfirmness and used it to show how one can

create matrices with nested holes in their rectangle cover graph. Finally, in Section 4.4

we studied minimally non-superfirm matrices. We presented one interval matrix D4,

one totally balanced matrix T5, one non-square infinite family Hn, and two further
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infinite families Mn and Wn of minimally non-superfirm matrices. We conjecture

that D4 is the only interval minimally non-superfirm matrix and that every minimally

non-superfirm matrix X ∈ {0, 1}m×n is firm and has dimension |m− n| ≤ 1.

In Chapter 5, first we defined minimally non-firm matrices and explored some basic

properties of them and their smallest examples. We suspect that the dimension of

every minimally non-firm matrix X ∈ {0, 1}m×n also satisfies |m−n| ≤ 1. Afterwards,

in Section 5.3 we proved a general theorem which can be used to create minimally

non-firm matrices by stretching a carefully selected subset of 1s of matrices that have

an odd hole in their rectangle cover graph. We would be curious to understand if every

minimally non-firm matrix that has a simplicial 1 arises via this theorem. Then we

applied this theorem to obtain a minimally non-firm matrix from every matrix that

was proved to be minimally non-superfirm in the previous chapter. After that we

used 2-simplicial neighbour stretching to obtain further infinite families of minimally

non-firm matrices from Mn, D4 and T5. In the future, we would be interested to

further generalise the method of proving matrices to be minimally non-firm.

We state one further research avenue that may be interesting to explore. By

Lubiw’s results it is known that D3- and Cn-free matrices have chordal rectangle

cover graphs. A graph G = (V,E) is chordal if and only if it has a perfect elimination

ordering, where a perfect elimination ordering is an ordering {v1, v2, . . . , vn} of V such

that each vertex vi is a simplicial vertex in the subgraph of G which is obtained by

deleting vertices v1, . . . , vi−1 [41]. Such ordering is useful because it leads to simple

polynomial time algorithms for chordal graphs to compute a maximum independent

set and minimum clique cover. It would be interesting to explore if there is a larger

class of matrices than D3- and Cn-free matrices for which a minimum rectangle cover

and a maximum isolated set could be computed by having some sort of ordering

of their simplicial 1s and their maximal rectangles. For instance, while G(D3) is

not chordal, D3 can be factorised by first removing the simplicial 1 at (1, 1) and

then removing any of its other simplicial 1. Similarly, the minimally non-superfirm

matrices D4 and T5 can be factorised in such way. Of course, an algorithm based

on simplicial 1 elimination would only make sense if we require it to work for all

submatrices of the matrix. Hence any such matrix class which could be factorised in

this way must be a subset of totally balanced matrices.
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Part II

Approximate Binary Matrix
Factorisation
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Chapter 7

Introduction

In the second part of this thesis we look at rank-k binary matrix factorisation (k-

BMF). In k-BMF, we are given an input matrix X ∈ {0, 1, ?}m×n and an input positive

integer k � min{m,n} and need to compute two binary matrices A ∈ {0, 1}m×k and

B ∈ {0, 1}k×n whose Boolean matrix product Z := A ◦ B is closest to X in the

squared Frobenius norm. Therefore, we aim to solve the minimisation problem

ζ(X, k) = min{‖PΩ(X−A ◦B)‖2
F : A ∈ {0, 1}m×k,B ∈ {0, 1}k×n},

where PΩ is the projection onto the known entries Ω(X) = supp0(X) ∪ supp1(X) of

X and ‖ · ‖F is the Frobenius norm.

In the next chapters, we present a comprehensive study on integer programming

methods for k-BMF. We examine three integer programs in detail: a compact for-

mulation as introduced briefly in our previous short work [61], the exponential for-

mulation of [74] and a novel exponential formulation. We prove several results about

the strength of LP-relaxations of the three formulations and their relative comparison

that cannot be found in [61] nor in [74].

Our compact IP uses McCormick envelopes [82] to linearise the quadratic terms

coming from the matrix product, leading to polynomially many variables and con-

straints. We prove that for k > 2 the LP relaxation of the compact IP has several

fractional vertices with objective value 0, hence provides a weak dual bound. In

addition, we argue that our compact IP suffers from permutation symmetry.

Our novel exponential formulation overcomes several of these limitations and of

other previous approaches. In particular, it does not suffer from permutation sym-

metry and it does not rely on heuristically guided pattern mining. Moreover, it has

a stronger LP relaxation than the compact IP. On the other hand, this formulation

has an exponential number of variables which we tackle using a column generation
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approach that effectively searches over this exponential space without explicit enu-

meration, unlike the complete enumeration used for the exponential size model of

[74].

In addition, we introduce a new objective function for k-BMF under which the

problem becomes computationally easier and we explore the relationship between this

new objective function and the original squared Frobenius distance.

Finally, we demonstrate that our proposed solution method is able to prove opti-

mality for smaller datasets, while for larger datasets it provides solutions with better

accuracy than the state-of-the-art heuristic methods.

The rest of Part II. is organised as follows. In the rest of this chapter, first, we

detail some problems related to k-BMF, then we describe a data science example

which motivates the study of k-BMF under Boolean arithmetic. We also give a

detailed account of previous works related to k-BMF.

In Chapter 8, we give an integer program for 1-BMF and analyse its LP-relaxation.

Then we explore an approximation algorithm and some heuristic methods for it.

In Chapter 9, we detail the three IP formulations for k-BMF and prove several

results about their LP-relaxations. In addition, we introduce a new objective function

and explore its relation to the original squared Frobenius objective.

In the first part of Chapter 10, we detail a framework based on the large scale

optimisation technique of column generation for the solution of our exponential for-

mulation. Then, in the second part of the chapter, we demonstrate the practical

applicability of our approach on several artificial and real world datasets.

Finally, we state some future research directions and conclude in Chapter 11.

7.1 Related problems

While rank-k binary matrix factorisation relies on the definition of Boolean rank,

exact binary matrix factorisation (exact-BMF), in which we aim to compute a fac-

torisation with minimum inner dimension, and k-BMF, where the factorisation sought

has fixed inner dimension k, behave quite differently. In exact-BMF it suffices to con-

sider the maximal rectangles of the input matrix X to obtain a minimum covering

of supp1(X). In k-BMF, all rank-1 binary matrices are a potential candidate to be

included in an optimal factorisation as entries from supp0(X) can also be covered.

Hence, we cannot restrict our attention to rectangles of X. Due to this difference,

most concepts from the first part of this thesis, that intimately relate to the rectan-

gle structure of X become not so useful. For instance, there is no clear weak dual
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problem of k-BMF in the way how the isolation number provides a lower bound on

the size of an exact factorisation and there is no clear translation of k-BMF to a clas-

sical graph problem like the translation of exact-BMF to the minimum clique cover

problem through the rectangle cover graph.

The Boolean rank however, can be used to obtain a simple bound on k-BMF

as follows. For all k such that br(X) ≤ k, X has an exact factorisation with inner

dimension br(X), so we have ζ(X, k) = 0. On the other hand, for k < br(X), the

rank-k factorisation error ζ(X, k) is non-zero and decreases strictly with increasing k

as the next lemma shows.

Lemma 7.1.1. For all X ∈ {0, 1, ?}m×n and k < br(X), we have ζ(X, k + 1) <

ζ(X, k).

Proof. Let X ∈ {0, 1, ?}m×n and k < br(X) . Let I1×J1, . . . , Ik×Jk correspond to the

rectangles used in an optimal rank-k factorisation of X which has error ζ(X, k) > 0

as k < br(X).

If there is any 1 of X that is not covered in this optimal rank-k factorisation of

X, then covering that 1 with a new rectangle gives a rank-(k + 1) factorisation with

error ζ(X, k)− 1.

If all 1s of X are covered by I1 × J1, . . . , Ik × Jk, then since ζ(X, k) > 0, there

is at least one 0 of X erroneously covered, say in column j. Let J ′` = J` \ {j} for

` ∈ [k]. Then I1 × J ′1, . . . , Ik × J ′k plus the rectangle of column j give a rank-(k + 1)

factorisation of X with error at most ζ(X, k)− 1.

Therefore, in both cases we have ζ(X, k + 1) ≤ ζ(X, k)− 1.

By this strict decrease property we may obtain the following simple bound on the

rank-k factorisation error in terms of the Boolean rank,

br(X)− k ≤ ζ(X, k).

A problem closely related to k-BMF in which 0s of X are not allowed to be covered

is called rank-k tiling [65]. In rank-k tiling, it suffices to consider maximal rectangles

of X and the objective is to pick k maximal rectangles of X which cover the maximum

number of 1s of X,

tiling(X, k) = min{‖PΩ(X− Z)‖2
F : Z ∈ {0, 1}m×n, br(Z) ≤ k,Z ≤ X},

where Z ≤ X is understood element-wise and only evaluated over the known entries

of X. From this definition it is clear that an optimal rank-k factorisation always has a
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factorisation error which is less than or equal to the factorisation error of an optimal

k-tiling,

ζ(X, k) ≤ tiling(X, k).

One can also define different variants of k-BMF depending on the underlying

arithmetic used when computing the product of binary matrices. For inputs X and

k, rank-k binary matrix factorisation under standard arithmetic seeks to find two

binary matrices A and B so that the standard matrix product of A and B (simply

denoted by AB) has integer rank at most k and is closest to X in the squared

Frobenius norm. Recall from Section 1.1.2, that the integer rank, which is also called

the rectangle partition number, is the minimum number of disjoint rectangles needed

to cover the 1s of a matrix. Hence, in k-BMF under standard arithmetic, every entry

of the input matrix may be covered by at most one rank-1 binary matrix. Rank-k

BMF under standard arithmetic then can be written as the minimisation problem,

ζZ(X, k) = min{‖PΩ(X−AB)‖2
F : A ∈ {0, 1}m×k,B ∈ {0, 1}k×n}.

Since a rank-k factorisation using standard arithmetic is always a feasible factorisation

under Boolean arithmetic, for all X and k we have

ζ(X, k) ≤ ζZ(X, k).

We mention that in some cases, rank-k BMF under modulo 2 arithmetic [65] is

also considered. This arithmetic however does not have a clear relationship to k-BMF

under Boolean arithmetic.

7.2 Motivation

Our motivation for rank-k binary matrix factorisation comes from data science appli-

cations. Let X be an m× n data matrix whose n columns correspond to n features,

attributes or observed variables and rows to m data points or observations. Data ma-

trices in practice tend to be very high dimensional and they contain data on a large

number of features (columns) in comparison to the number of observations (rows).

Low-rank real matrix approximation is an essential tool for dimensionality reduction

which helps understand the data better by exposing hidden features. Rank-k real

matrix approximation expresses each observation Xi,: as the linear combination of k

hidden features B`,: ∈ R1×n (` ∈ [k]),

Xi,: ≈ ai,1B1,: + ai,2B2,: + · · ·+ ai,kBk,: =
k∑
`=1

ai,`B`,:,
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where ai,` are the real coefficients in the linear combination. In matrix form, rank-

k real matrix approximation can be written as X ≈ AB where the rows of the

right factor matrix B correspond to the k hidden features and the left factor matrix

A contains the coefficients how each observation can be best expressed as a linear

combination of the hidden features.

Classical methods for low-rank matrix approximation are not guaranteed to pre-

serve non-negativity of the input matrix X, that is the factor matrices A and B

can have negative entries even if all the entries of the input matrix X are non-

negative. Non-negative Matrix Factorisation (NMF) addresses this issue, by adding

non-negativity constraints on the factor matrices A and B.

Many practical datasets however, contain categorical features that can only be

represented by binary data matrices. In this case, it is natural to require that factor

matrices A and B to be binary as well. This leads to the problem of rank-k binary

matrix factorisation under Boolean arithmetic. For X ∈ {0, 1}m×n, each data point

Xi,: is expressed as the Boolean combination of k hidden binary features B`,: ∈ R1×n

(` ∈ [k]),

Xi,: ≈ ai,1B1,: ∨ ai,2B2,: ∨ · · · ∨ ai,kBk,: =
k∨
`=1

ai,`B`,:,

where ai,` are the binary coefficients in the Boolean combination.

Let us illustrate the interpretability of k-BMF under Boolean arithmetic against

k-BMF under standard arithmetic and real and non-negative rank-k factorisation.

Consider the data matrix X (inspired by [84]),

X =

1 1 0
1 1 1
0 1 1


where rows correspond to three patients and columns to three symptoms, xij = 1 in-

dicating patient i presents symptom j. The optimal 2-BMF under Boolean arithmetic

is given by

X = A ◦B =

1 0
1 1
0 1

 ◦ [1 1 0
0 1 1

]
.

This factorisation describes X exactly using 2 derived features where the rows of B

specify how the original features relate to the 2 derived features, and the rows of A

give the derived features of each patient. In other words, factor matrix B reveals

that there are 2 underlying diseases that cause the observed symptoms: Disease α is
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causing symptoms 1 and 2, and disease β is causing symptoms 2 and 3. Matrix A

reveals that patient 1 has disease α, patient 3 has β and patient 2 has both.

Using Boolean arithmetic allows each data point (rows of X) to be expressed as

the union of k possibly overlapping derived features. On the contrary if standard

arithmetic is used, overlaps are not possible and each data point is the union of k

disjoint derived features. Hence, in general one needs larger values of k to achieve

accurate factorisations using standard arithmetic. For instance, the below rank-2

factorisation is one of the four optimal solutions with error 1 to 2-BMF under standard

arithmetic,

X ≈

1 0
1 1
0 1

[1 1 0
0 0 1

]
.

In this factorisation of X, each symptom is caused by exactly one underlying disease,

while in real life it is natural to assume that observed symptoms e.g. fever, can

be caused by several underlying diseases. The transpose of this factorisation gives

another optimal 2-BMF under standard arithmetic, and there are two more optimal

factorisations.

X could also be treated as a real or nonnegative matrix. The best rank-2 real

matrix approximation of X is given by

X ≈

1.21 0.71
1.21 0.00
1.21 −0.71

[0.00 0.71 0.50
0.71 0.00 −0.71

]
,

while the best rank-2 nonnegative matrix factorisation of X is given by

X ≈

1.36 0.09
1.05 1.02
0.13 1.34

[0.80 0.58 0.01
0.00 0.57 0.81

]
.

As neither of these rank-2 approximations are binary, it is harder to find a clear

interpretation of them. The rank-2 NMF of X suggests that symptom 2 presents

with lower intensity in both α and β, which is an erroneous conclusion caused by

patient 2 that could not have been deduced from data X which only records presence

or absence of symptoms.

As our toy example shows, k-BMF provides interpretable hidden features in some

healthcare applications. In addition, BMF derived features of data have also been

shown to be interpretable in biclustering gene expression datasets [108], role based

access control [74, 75] and market basket data clustering [68].
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7.3 Background and previous work

Due to the hardness results of computing any binary matrix factorisation, the majority

of methods developed for BMF rely on heuristics. The earliest heuristic in the context

of BMF is called Proximus from 2003 by Koyuturk et al. [63]. Proximus aims to

factorise a binary matrix under standard arithmetic by recursively partitioning the

matrix into submatrices and heuristically computing a rank-1 BMF at each step. To

compute a 1-BMF at each step, Koyuturk et al. use an alternating iterative heuristic

from a random start which relies on the observation that if a ∈ {0, 1}m is fixed then

b ∈ {0, 1}n which minimises ‖X− ab>‖2
F can be computed in O(mn) time.

While Proximus is not a heuristic for exact-BMF nor rank-k BMF, because the

factorisation that it outputs can cover 0’s of the input matrix and it is not of fixed

rank-k, it fuelled research on computing efficient and accurate methods for 1-BMF.

Shen et al. [100] proposes an integer program (IP) for 1-BMF and several relaxations

of it, one of which leads to a 2-approximation, while Shi et al. [101] provides a

rounding based 2-approximation which we will detail in Section 8.3.1. Beckerleg et

al. [8] extends the Proximus framework to work on binary matrices with missing

entries and uses the formulation of [100] to compute 1-BMF at each partitioning step

of Proximus.

The problem of rank-k binary matrix factorisation under Boolean arithmetic was

first defined by Miettinen at al. in 2006 [83]. Miettinen et al. noted that k-BMF

is NP-hard and initialised the hunt for effective heuristic algorithms for k-BMF by

describing a heuristic called ASSO. ASSO is based on an association-rule mining

approach. It takes X ∈ {0, 1}m×n, the rank k, and a small parameter τ ∈ (0, 1) as

inputs. As a first step, it builds an ’association’ matrix B̃ ∈ {0, 1}n×n with entries

defined as

b̃t,j =

{
1 if X>:,tX:,j/X

>
:,tX:,t ≥ τ,

0 otherwise.

The next step of ASSO is to choose k rows of B that will form matrix B ∈ {0, 1}k×n in

the rank-k factorisation A ◦B. ASSO greedily selects the candidate rows one-by-one

from B̃ to be added to B by computing how much error each candidate would reduce.

ASSO thus consists of three main steps:

(i) Build the association matrix B̃.

(ii) For each row j ∈ [n] of B̃, compute f(j) = ‖X −
[
A a(j)

]
◦
[
B

B̃j,:

]
‖2
F , where

a(j) is set to minimise f(j).
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(iii) Let ` = arg minj f(j). Add row ` of B̃ to B, and the corresponding column a(`)

to A. If B has less than k rows go to (ii), otherwise stop.

Step (i) can be done in O(mn2) time. In step (ii), B is appended by row B̃j,:, and A

is fixed except for one column which is a(j). To get the optimal column a(j) ∈ {0, 1}m

which minimises f(j), we can consider each row of X separately and optimise

f(j, i) = min
a

(j)
i ∈{0,1}

‖Xi,: − (Ai,: ◦B ∨ a(j)
i · B̃j,:)‖2

F

for each row i ∈ [m] of X and then get f(j) =
∑m

i=1 f(i, j). Thus f(i, j) can be

computed in O(kn) time and f(j) in O(kmn) time. However, if the matrix product

of the already fixed parts of A and B is precomputed in at most O(kmn) time, then

each f(j) can be computed in O(mn), thus step (ii) takes time O(kmn + mn2). As

step (ii) is executed at most k times, the total cost of ASSO is O(kmn2).

In addition to ASSO, Miettienen at al. [84] also observes that if B ∈ {0, 1}k×n

is fixed, one can find the optimal A ∈ {0, 1}m×k that minimises ‖X − A ◦ B‖2
F by

solving
min

Ai,:∈{0,1}k
‖Xi,: −Ai,: ◦B‖2

F

for each row i ∈ [m] of X separately. This shows that for fixed B, the optimal A can

be computed in O(2kkmn) time (the time analysis we report here is as in Barahona

et al. [5] as Miettien et al. inaccurately report O(2kmn) by perhaps forgetting to

count the cost of matrix product). Barahona et al. in 2019 [5] further improves the

ASSO algorithm by embedding it in several alternating style heuristic. We call this

improved version of ASSO as ASSO++. However, sadly, none of the variations of

ASSO are currently implemented to handle missing entries in the input matrix.

Another approach based on an alternating style heuristic is explored by Zhang et

al. in 2007 [108]. They formulate k-BMF under standard arithmetic as a non-linear

unconstrained formulation with penalty terms in the objective for non-binary entries,

min
a,b

m∑
i=1

n∑
j=1

(xi,j −
k∑
`=1

ai,`b`,j)
2 + λ

m∑
i=1

k∑
`=1

(a2
i,` − ai,`)2 + λ

n∑
j=1

k∑
`=1

(b2
`,j − b`,j)2,

where λ > 0. Then they minimise this objective function in an alternating style via

gradient descent, keeping B fixed and solving for A and vice-versa and increasing

the penalty term λ until a sufficient tolerance is reached to round the variables to

binary. This algorithm has been implemented in a public matrix factorisation li-

brary called ’PyMF - Python Matrix Factorization Module’ [99]. Sadly however, the

implementation does not support missing entries in the input matrix.
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There have also been some integer programming formulations for BMF. Lu et al.

[74] presented a series of integer programs for k-BMF and exact-BMF under Boolean

arithmetic in 2008. These IPs have exponentially many variables and constraints

and require an explicit enumeration of the 2n possible binary row vectors for factor

matrix B. To tackle the exponential explosion of rows considered, a heuristic row

generation using association rule mining and subset enumeration is developed [75].

This exponential size IP for k-BMF will be presented in detail in Section 9.3.

Another exponential size integer program for exact-BMF under Boolean arith-

metic is presented in [33]. To solve this exponential size IP the authors use either a

precomputed enumeration of maximal rectangles or a branch and price method.
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Chapter 8

Rank-1 binary matrix factorisation

In this chapter, we spend some time analysing rank-1 binary matrix factorisation.

This investigation is useful for most of the approaches that we present for the rank-k

case as they will have a component that can be lead back to the rank-1 case.

While 1-BMF seems to be the simplest case, it turns out that it is much more

challenging then expected as it is NP-hard as argued in Section 1.6. Recall that for

a given generalised binary matrix X ∈ {0, 1, ?}m×n 1-BMF is formulated as

ζ(X, 1) = min
a∈{0,1}m,b∈{0,1}n

‖PΩ(X− ab>)‖2
F .

In addition, recall the weight matrix W from Equation (1.4.3), which has components

Wi,j = 2xi,j − 1 for (i, j) ∈ Ω(X) and Wi,j = 0 otherwise. Using the weight matrix,

and expanding the objective function as in Equation (1.4.2), 1-BMF can also be

formulated as a quadratic program with binary variables,

ζ(X, 1) = | supp1(X)| − max
a∈{0,1}m,b∈{0,1}n

a>Wb.

This formulation is called a bipartite binary quadratic program [54] because the vari-

ables can be divided into two parts a and b so that quadratic terms only appear

between these two parts.

Some simple bounds are immediate from this formulation. For instance, setting a

and b to the all 1s or all 0s vectors, we get that ζ(X, 1) ≤ min{| supp1(X)|, | supp0(X)|}.
Furthermore, if a and b are set to the row and column indicator vectors of a maximum

rectangle of X, then we get ζ(X, 1) ≤ | supp1(X)|−mr(X), where mr(X) denotes the

cardinality of a maximum rectangle of X.

8.1 An integer linear program for 1-BMF

A popular way to tackle quadratic programs that encode NP-hard combinatorial op-

timisation problems is to formulate them as integer linear programs and then exploit
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the use of state-of-the-art integer linear program solvers like CPLEX [23]. In this

section, we formulate rank-1 BMF as an Integer linear Program (abbreviated sim-

ply as IP). So far we only presented a quadratic formulation, which involves the

quadratic terms aibj for binary variables ai, bj. Here, we use McCormick envelopes

[82] to express the nonlinear relationship y = ab in terms of linear constraints only.

The McCormick envelopes for a, b ∈ R are four linear inequalities given by

MC(a, b) = {y ∈ R : a+ b−y ≤ 1,

−a +y ≤ 0,

− b+y ≤ 0,

−y ≤ 0}.

Observe that if a, b ∈ {0, 1}, then there is only one point in MC(a, b) which is equal

to the product of a and b, so y ∈ MC(a, b) if and only if y = ab. Therefore we may

use McCormick envelopes to obtain an exact integer linear program for 1-BMF as

below,

(CIP1) ζCIP(X, 1) = min
a,b,y

∑
(i,j)∈supp1(X)

(1− yi,j) +
∑

(i,j)∈supp0(X)

yi,j

s.t. yi,j ∈MC(ai, bj) i ∈ [m], j ∈ [n],

ai, bj ∈ {0, 1} i ∈ [m], j ∈ [n].

Observe that this formulation only has O(mn) many constraints and variables, hence

we denote it by CIP1 which indicates that this is a Compact IP for k = 1 (where

”compact” means that the formulation has polynomially many variables and con-

straints in terms of m,n and k). In the next chapter, a compact formulation also

using McCormick envelopes will be presented for rank-k BMF. Some variations of

CIP1 have appeared in [101] and [100] and in our short NeurIPS workshop paper [61].

By the McCormick envelopes and the binary constraints on ai, bj, for each (i, j) ∈
[m]× [n] we have yi,j = aibj. Hence, setting a to have components ai, and b to have

components bj and matrix Y to have components yi,j, ab
> is equal to Y. Therefore,

an optimal solution Y of CIP1 is a rank-1 completion of X that minimises the original

objective ‖PΩ(X−Y)‖2
F .

While CIP1 has only O(mn) many variables and constraints, some of them are

redundant and can be eliminated without impacting any optimal solution. The first

simple modification is to eliminate redundant constraints and variables corresponding

to missing entries of X. For any (i, j) 6∈ Ω(X) variables yi,j do not appear in the

objective function, hence it is sufficient to define yi,j for only (i, j) ∈ Ω(X) and then

only enforce constraints yi,j ∈ MC(ai, bj) for (i, j) ∈ Ω(X). Variables ai and bj, can
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still be used to build the rank-1 completion ab> of X, which then has each entry for

(i, j) ∈ Ω(X) equal to the corresponding variable yi,j and also has a binary value for

each missing entry of X at (i, j) 6∈ Ω(X).

In addition, we may further reduce the number of constraints based on the optimal

value of the variables that appear in the objective function. The following elimination

steps were already observed in [61]. Whenever (i, j) ∈ supp1(X), we are maximising

variable yi,j, hence in an optimal solution yi,j will always take the value at its upper

bound and consequently the lower bounding constraints on yi,j for (i, j) ∈ supp1(X)

may be deleted without changing the optimum. Similarly, for (i, j) ∈ supp0(X),

variables yi,j are being minimised hence the upper bounding constraints for all yi,j

with (i, j) ∈ supp0(X) may be eliminated. After these eliminations, variables ai and

bj, can still be used to build the optimal rank-1 completion ab> of X.

Applying all these changes, we obtain a reduced but equivalent version of CIP1

with half as many constraints as the original one,

ζCIP(X, 1) = min
a,b,y

∑
(i,j)∈supp1(X)

(1− yi,j) +
∑

(i,j)∈supp0(X)

yi,j

s.t. yi,j ≤ ai (i, j) ∈ supp1(X),

yi,j ≤ bj (i, j) ∈ supp1(X),

ai + bj − 1 ≤ yi,j (i, j) ∈ supp0(X),

yi,j ≥ 0 (i, j) ∈ supp0(X),

ai, bj ∈ {0, 1} i ∈ [m], j ∈ [n].

8.2 Computational investigation of IP

Formulation CIP1 can be solved via a general purpose IP solver like CPLEX [23]. In

this section, we briefly explore solving the reduced version of CIP1 via CPLEX on a

small test set of matrices. In the next sections of this chapter, we will then aim to

explain our experimental observations.

Our testing set consists of nine binary matrices which we divide into three groups

depending on the dimensions and Boolean rank of the matrices. We call a matrix

X ∈ {0, 1}m×n small if m ∈ {20, 35, 50}, n = 20 and br(X) ≤ 5, medium if m ∈
{50, 75, 100}, n = 50 and br(X) ≤ 20, and large if m ∈ {100, 125, 150}, n = 70

and br(X) ≤ 50. This grouping results in three test classes, each containing three

matrices.

In Table 8.1, we present statistics of solving CIP1 on these test matrices using

CPLEX with a time budget of 3600 seconds and otherwise default settings. For each
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test class, we report the solution time in seconds (Time), the number of cutting

planes used by CPLEX (#Cuts) and the percentage of these cutting planes that are

so called (0, 1
2
)-cuts or Chvátal-Gomory cuts (CG)1. We also report the number of

nodes processed (#N.P.) in the branch and bound tree and the number of nodes

remaining to be processed (#N.R.). In addition, we report the objective value of the

best primal solution (ζCIP1) and percentage of optimality gap between the best dual

and primal bounds (GapCIP1
). Data shown in Table 8.1 corresponds to the arithmetic

mean of the values for the three instances in each test class.

Size GapCIP1
ζCIP1 #Cuts (0,1

2
) CG #N.P. #N.R. Time

small 0.0 166 36 99.07 0.93 0 0 0.02
medium 0.0 1170 1524 99.67 0.33 174 0 12.47
large 3.9 2989 7111 99.89 0.11 177 55 3600.09

Table 8.1: Solving CIP1 via CPLEX

From Table 8.1, we observe that CPLEX uses a large number of cutting planes,

of which more than 99% are (0, 1
2
)-cuts. Furthermore, for small matrices, CIP1 is

solved to optimality by solely using cutting plane methods and primal heuristics. For

medium and large matrices, CPLEX uses thousands of (0, 1
2
)-cuts and generates a

small branch and bound tree of about 200 nodes. We note, that while the gap for

large matrices is only about 4%, for all large instances CPLEX runs out of the time

budget of 3600 seconds.

Let us further investigate the behaviour of CPLEX on CIP1. Let CLP1 denote the

LP relaxation of CIP1 in which the binary constraints ai, bj ∈ {0, 1} are relaxed to

ai, bj ∈ [0, 1]. In Table 8.2, we report the objective value of the LP relaxation of CIP1

(ζCLP1) and the optimality gap between the LP relaxation and the first primal feasible

solution found by CPLEX (GapCLP1
). In addition, we report statistics at the root

node just before going into branching. Column ζCLP1+Cuts shows the objective value

at the root node which is obtained by adding cutting planes to the LP relaxation,

while column GapCLP1+Cuts gives the optimality gap at the root node.

The results in Table 8.2 suggest that the LP relaxation provides a good dual bound

and achieves a 50% optimality gap reduction in average. Furthermore, we can see

that adding cutting planes (of which more than 99% is (0, 1
2
)-cuts as observed from

Table 8.1) to the LP relaxation is extremely effective with either solving the problem

to optimality (for small matrices) or reducing the optimality gap to 2% or 6% (for

1(0, 12 )-cuts are a special version of Chvátal-Gomory cuts. The percentages that we report for
Chvátal-Gomory cuts in this section, correspond to Chvátal-Gomory cuts that are not (0, 12 )-cuts.
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Size ζCLP1 GapCLP1
ζCLP1+Cuts GapCLP1+Cuts

small 165 52.72 166 0.00
medium 1009 50.00 1141 1.85
large 2132 50.00 2817 6.06

Table 8.2: LP Relaxation and Root Node Bounds for CIP1 via CPLEX

medium and large matrices). In the next sections, we try to explain the effectiveness

of (0, 1
2
)-cuts and the 50% optimality gap reduction by the LP relaxation.

8.2.1 LP relaxation

In order to analyse CIP1’s LP-relaxation, let us first focus on the LP relaxation of

the McCormick envelopes. In 1989, Padberg defined the Boolean Quadric Polytope

(QP) [92] over a non-empty connected graph G = (V,E) as the convex hull of the

McCormick envelopes,

QPG = conv{
[
x
y

]
∈ {0, 1}|V |+|E| : yi,j ∈MC(xi, xj) for (i, j) ∈ E}.

Is is easy to see that the feasible region of CIP1 with constraints yi,j ∈ MC(ai, bj)

defined for all (i, j) ∈ [m] × [n] is QPKm,n while if these constraints are only over

(i, j) ∈ Ω(X), then the feasible region of CIP1 is QPGΩ with GΩ := ([m], [n],Ω(X)).

Hence, any knowledge of the LP-relaxation of QPG is directly relevant for CLP1.

The LP relaxation of QPG is obtained by relaxing the integrality constraints,

QPG
LP = conv{

[
x
y

]
∈ [0, 1]|V |+|E| : yi,j ∈MC(xi, xj) for (i, j) ∈ E}.

Padberg proves that QPG
LP is half-integral [92, Theorem 7], that is QPG

LP only has

vertices with components in {0, 1
2
, 1}. In his proof, he shows that every non-singular

square submatrix of the constraint matrix of QPG
LP can be reduced to a block diagonal

form, with matrices on the diagonal that are an extension of unbalanced cycle matrices

with entries from {0,±1} and have determinant ±2. Since the right hand side vector

of the McCormick envelopes is a {0, 1}-vector, this shows that every vertex of QPG
LP

is half-integral.

Padberg also introduces some valid inequalities for QPG
LP which cut off the frac-

tional half-integral vertices [92]. Let us sum up inequality xi + xj − yi,j ≤ 1 with

inequality −yi,j ≤ 0; and inequality −xi + yi,j ≤ 0 with −xj + yi,j ≤ 0 to obtain two

valid inequalities for QPG,

xi + xj − 2yi,j ≤ 1,

−xi − xj + 2yi,j ≤ 0.

(4ij)

(5ij)
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Let C be a chordless cycle of graph G = (V,E) over which QPG is defined and let EA

be a subset of odd cardinality of E(C) and EB = E(C) \ EA. Furthermore, let the

inner vertices of EA and EB be defined as

VA = {j : (i, j), (j, k) ∈ EA, i 6= k},
VB = {j : (i, j), (j, k) ∈ EB, i 6= k}.

Summing inequalities 4ij over (i, j) ∈ EA and 5ij over (i, j) ∈ EB and then dividing

by 2 we get the following inequality∑
i∈VA

xi −
∑
i∈VB

xi +
∑

(i,j)∈EB

yi,j −
∑

(i,j)∈EA

yi,j ≤
|EA|

2
.

This inequality is valid for both QPG and QPG
LP as it is the sum of the four McCormick

envelope inequalities with some positive multipliers. Observe that for any feasible

point in QPG the left hand side of this inequality evaluates to an integer number,

while the right hand side is fractional as |EA| was chosen to be odd. Therefore, we

may round down the right hand side, without eliminating any feasible points from

QPG and get the valid inequality,∑
i∈VA

xi −
∑
i∈VB

xi +
∑

(i,j)∈EB

yi,j −
∑

(i,j)∈EA

yi,j ≤
⌊
|EA|

2

⌋
. (8.2.1)

An inequality of this form is called an odd-cycle inequality for QPG [92]. One can check

that an odd-cycle inequality corresponding to cycle C, odd edge subset EA ⊂ E(C)

and EB = E(C) \ EA, cuts off the half-integral fractional vertex of QPG
LP which has

components

xi =
1

2
i ∈ C, yi,j =

1

2
(i, j) ∈ EB, yi,j = 0 (i, j) ∈ EA.

While it is also possible to apply the above derivation of odd-cycle inequalities

for cycles of G that have some chords, Padberg shows that an odd-cycle inequality

is facet defining for QPG if and only if the cycle over which it is defined is chordless

[92, Theorem 9]. Furthermore, Padberg proves that adding all facet defining odd-

cycle inequalities to QPG
LP is a complete polyhedral description of QPG if and only

if G itself is a chordless cycle [92, Theorem 9]. The separation problem for odd-

cycle inequalities is defined as: given a fractional vertex x of QPG
LP, find an odd-cycle

inequality that is violated by x or assert that no such odd-cycle inequality exists. The

separation problem for odd-cycle inequalities can be solved in polynomial time via

an algorithm due to Barahona et al. [6] using the relationship between the Boolean

quadric polytope and the cut polytope [30].
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Observe that the odd cycle inequalities were obtained by first taking a non-

negative combination of the four McCormick inequalities so that integer variables

had only integer coefficients on the left hand side, and then taking the floor func-

tion of the fractional right hand side. In general, any inequality obtained via such

reasoning is called a Chvátal-Gomory (CG) inequality or cut [89, pg. 210]. Further-

more if the non-negative combination uses only 0 and 1
2

as coefficients then CG-cuts

are called (0, 1
2
)-cuts or inequalities [13]. Observe that in the derivation of the odd

cycle inequalities we only used (0, 1
2
)-coefficients, hence odd-cycle inequalities are an

example of (0, 1
2
)-cuts. In [10, Theorem 2 and 3] it is proved that all non-dominated

CG-cuts for QPG are odd-cycle inequalities (where a non-dominated CG-cut vaguely

means that it cannot be obtained as the sum of some other CG-cuts). Since odd-

cycle inequalities defined over chordless cycles of G are facet defining, this shows that

adding (0, 1
2
)-cuts to QPG

LP can lead to a strong relaxation of QPG.

CLP1. Let us now turn to look at the feasible region of CLP1, the LP relaxation

of CIP1. This may be QP
Km,n
LP or QPGΩ

LP depending on whether our input matrix

X has some missing entries and constraints yi,j ∈ MC(ai, bj) are declared for all

(i, j) ∈ [m] × [n] or just for (i, j) ∈ Ω(X). Since, in both of these cases the graph is

a bipartite graph, these polytopes are an example of the bipartite Boolean quadric

polytope BQPG where G is a bipartite graph G = ([m], [n], E). For BQPG, variables

xi can be divided into the two groups ai, bj and we can write

BQPG = conv{

ab
y

 ∈ {0, 1}m+n+|E| : yi,j ∈MC(ai, bj) for (i, j) ∈ E}.

All of Padberg’s results of QPG immediately apply to BQPG. Hence, CLP1 has

half-integral vertices and for each chordless cycle of Km,n or GΩ = ([m], [n],Ω(X)),

several odd-cycle inequalities can be derived which are facet defining for the feasible

region of CIP1. Since non-dominated (0, 1
2
)-cuts over BQPG correspond to odd-cycle

inequalities, we get an explanation to some degree of why CPLEX is using (0, 1
2
)-cuts

so successfully at the root node when solving CIP1.

So how do the odd-cycle inequalities for BQPKm,n look like? The only chordless

cycles of Km,n are of size 4, so any facet defining odd-cycle inequality for BQPKm,n

must use a cycle of Km,n with vertices C = {i1, j1, i2, j2}. Let the odd edge subset

EA ⊂ E(C) have |EA| = 1. Then we get the following four odd-cycle inequalities for
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C and EA,

− ai2 − bj2−yi1,j1 + yi1,j2 +yi2,j1 + yi2,j2≤ 0 EA = {yi1,j1},
− ai2−bj1 +yi1,j1 − yi1,j2+yi2,j1 + yi2,j2≤ 0 EA = {yi1,j2},

−ai1 − bj2+yi1,j1 + yi1,j2−yi2,j1 + yi2,j2≤ 0 EA = {yi2,j1},
−ai1 −bj1 +yi1,j1 + yi1,j2 +yi2,j1 − yi2,j2≤ 0 EA = {yi2,j2}.

If |EA| = 3, then the four odd-cycle inequalities for C and EA are given by

+ ai2 + bj2+yi1,j1 − yi1,j2−yi2,j1 − yi2,j2≤ 1 EB = {yi1,j1},
+ ai2+bj1 −yi1,j1 + yi1,j2−yi2,j1 − yi2,j2≤ 1 EB = {yi1,j2},

+ai1 + bj2−yi1,j1 − yi1,j2+yi2,j1 − yi2,j2≤ 1 EB = {yi2,j1},
+ai1 +bj1 −yi1,j1 − yi1,j2−yi2,j1 + yi2,j2≤ 1 EB = {yi2,j2}.

This shows that one may produce 8 odd-cycle inequalities for every 4-cycle of Km,n, of

which there are
(
m
2

)(
n
2

)
many. Furthermore, if X has missing entries then there may

be more chordless cycles of GΩ to produce more odd-cycle inequalities according to

Equation (8.2.1). However, note that for GΩ to have a chordless cycle larger than 4,

X must have a square submatrix in which every row and column only has two known

entries and all the other entries must be ?s, which is a highly unlikely situation.

In any case, for every 2 × 2 submatrix of X which only contains 0s and 1s, 8

odd-cycle inequalities can be added to CLP1 to strengthen the formulation. Pad-

berg’s results also tell us that adding all odd-cycle inequalities to CIP1 gives a perfect

formulation of 1-BMF if and only if X has only two known entries in every row and

column.

Even if adding all odd-cycles inequalities to CLP1 does not result in an integral

feasible region in almost all cases, one may wonder for what matrices X we can

get an objective function that is minimised at an integral vertex of CLP1. Sadly, a

submatrix characterisation to such input matrices X cannot exist as the following

example shows.

Example 8.2.1. Let P be an arbitrary p× q binary matrix. Let X be defined as

X =

[
Js,s Js,q
Jp,s P

]
,

where Jp,s is the all 1s matrix of dimension p×s. Choosing s so that s > 2| supp0(P)|,
ensures that the optimal rank-1 factorisation to X is J(s+p),(s+q) with error | supp0(P)|.
This can be seen as setting ai ∈ {0, 1

2
} for any row i or bj ∈ {0, 1

2
} for any column j

incurs an error greater than | supp0(P)|.
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8.3 Approximation algorithms

Recall that in Section 1.6, we have argued that 1-BMF on X ∈ {0, 1, ?}m×n is equiva-

lent to the maximum weight edge biclique problem on the weighted graph (Km,n,W)

with weight matrix W ∈ {0,±1}m×n defined in Equation (1.4.3) and by this 1-BMF

is NP-hard [103, 39]. This equivalence is because we can write

ζ(X, 1) = | supp1(X)| − max
a∈{0,1}m,b∈{0,1}n

a>Wb.

While the optimal solutions of maximum weight edge biclique problem on (Km,n,W)

and 1-BMF of X have an exact correspondence, their suboptimal solutions do not

and from an approximation perspective the two problems behave differently.

For instance, the same happens in the case of the maximum independent set and

minimum vertex cover problems as pointed out in [38, pg. 133]. S ⊆ V is a maximum

independent set of a graph G = (V,E) if and only if V \S is a minimum vertex cover of

G. So α(G) = |V |−τ(G), where τ(G) is the cardinality of a minimum vertex cover of

G. While the minimum vertex cover problem has a polynomial time 2-approximation

[38, pg. 134], the maximum independent set problem cannot be approximated in poly-

nomial time to any constant factor unless P=NP (more specifically, approximating

the maximum independent set within a factor O(|V |1−ε) is NP-hard[109]).

This reasoning shows that while {0,±1}-Maximum Weight Edge Biclique problem

cannot be approximated in polynomial time within O((m + n)1−ε) for any ε > 0

unless P=NP [103, Lemma 4, Theorem 1.], it is possible to have a polynomial time

2-approximation for 1-BMF, which we present in the next section.

8.3.1 2-approximation

In this section we present a polynomial time 2-approximation algorithm for 1-BMF

as derived in [101, Theorem 3]. Let us assume that for a given X ∈ {0, 1, ?}m×n, we

have an optimal half-integral LP-relaxation solution [a, b,y] to CLP1. Then let us

define some index sets based on the entries of a and b,

V
1
2
a = {i ∈ [m] : ai =

1

2
}, V 1

a = {i ∈ [m] : ai = 1},

V
1
2
b = {j ∈ [n] : bj =

1

2
}, V 1

b = {j ∈ [n] : bj = 1}.

Observe that if ai = 0 or bj = 0 then MC(ai, bj) = {0}, if ai = bj = 1
2
, then

MC(ai, bj) = [0, 1
2
] and if ai = 1 then MC(ai, bj) = {bj} (or if bj = 1 then
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MC(ai, bj) = {ai}). Therefore, based on the values of ai and bj and the objec-

tive function, we can easily determine the value of yi,j. So let us define some subsets

of Ω(X) as

E(V
1
2 ) = {(i, j) ∈ Ω(X) : i ∈ V

1
2
a , j ∈ V

1
2
b },

E(V 1) = {(i, j) ∈ Ω(X) : i ∈ V 1
a , j ∈ V 1

b },

E(V
1
2 : V 1) = {(i, j) ∈ Ω(X) : i ∈ V

1
2
a , j ∈ V 1

b or i ∈ V 1
a , j ∈ V

1
2
b }.

Using these index sets we may express the objective value of CLP1 at its optimal

solution [a, b,y] as follows,

ζCLP(X, 1) = | supp1(X)|

− | supp1(X) ∩ E(V 1)| − 1

2
| supp1(X) ∩

[
E(V

1
2 ) ∪ E(V

1
2 : V 1)

]
|

+ | supp0(X) ∩ E(V 1)|+ 1

2
| supp0(X) ∩ E(V

1
2 : V 1)|

Now let [a′, b′,y′] be the integer point that we obtain by rounding each half component

in the optimal solution of CLP1 to 0. Then the objective function of this integer

feasible solution has value

ζ ′(X) =| supp1(X)| − | supp1(X) ∩ E(V 1)|+ | supp0(X) ∩ E(V 1)|.

Comparing ζ ′(X) to two times the optimal objective value of CLP1, we get

2ζCLP(X, 1)− ζ ′(X) ≥ | supp1(X)|

− | supp1(X) ∩ E(V 1)| − | supp1(X) ∩
[
E(V

1
2 ) ∪ E(V

1
2 : V 1)

]
|

≥ 0.

Therefore, this simple rounding gives a 2-approximation for 1-BMF,

ζCIP(X, 1) ≤ ζ ′(X) ≤ 2 · ζCLP(X, 1) ≤ 2 · ζCIP(X, 1).

Furthermore, CLP1 is a compact size linear program, so its optimal solution can be

obtained in polynomial time [47], so this LP-based algorithm is a polynomial time

2-approximation for 1-BMF.

The derivation of this 2-approximation, also explains why we see a 50% reduction

in the optimality gap when CPLEX solves the LP-relaxation of CIP1.

Let us understand how useful this 2-approximation is for 1-BMF. Observe that for

all matrices X the following half-integral point is always a feasible solution to CLP1,

ai = bj =
1

2
(i, j) ∈ [m]× [n],

yi,j =
1

2
(i, j) ∈ supp1(X),

yi,j = 0 (i, j) ∈ supp0(X).

(8.3.1)

(8.3.2)

(8.3.3)
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We call this half integral point, the ’fully-half ’ point. The objective value of CLP1

at this fully-half point is equal to 1
2
| supp1(X)|. Therefore, ζCLP(X, 1) ≤ 1

2
| supp1(X)|

for all matrices X.

Observe that if this fully-half point is an optimal solution of CLP1 then the simple

rounding technique gives the trivial solution of all 0s, which is still a 2-approximation

to 1-BMF but completely useless.

In practice, sadly we observe that it is very common that the fully-half point is

an optimal solution of CLP1 and thus the 2-approximation is useless. But this is

just an experimental observation and we would be curious to understand the exact

conditions under which the fully-half point is an optimal solution to CLP1. For

instance, if X ∈ {0, 1, ?}m×n is very dense, so that it satisfies

2 | supp0(X)| < | supp1(X)|,

then ab> = Jm,n gives an error ζCIP(X, 1) = | supp0(X)| which is less than 1
2
| supp1(X)|,

so the fully-half point cannot be the optimal solution of CLP1.

The following proposition gives a characterisation when the fully-half point is

optimal for CLP1.

Proposition 8.3.1. For X ∈ {0, 1, ?}m×n, the fully-half point is an optimal solution

of CLP1 if and only if there exists weights γi,j ∈ [0, 1] for (i, j) ∈ supp0(X) and

πi,j ∈ [0, 1] for (i, j) ∈ supp1(X) which satisfy the system of equations,∑
j:(i,j)∈supp1(X)

πi,j +
∑

j:(i,j)∈supp0(X)

γi,j = | supp1(Xi,:)| ∀ i ∈ [m],

∑
i:(i,j)∈supp1(X)

πi,j −
∑

i:(i,j)∈supp0(X)

γi,j = 0 ∀ j ∈ [n].

(8.3.4)

(8.3.5)

Proof. We show that the fully half point and a feasible solution to the dual of CLP1 is

an optimal primal dual pair if and only if the dual variables satisfy Equations (8.3.4)

and (8.3.5).

So let us look at the dual of the LP relaxation of the reduced version of CIP1.

Assigning dual variables

• µi,j ≥ 0 to constraints ai − yi,j ≥ 0 for (i, j) ∈ supp1(X),

• πi,j ≥ 0 to constraints bj − yi,j ≥ 0 for (i, j) ∈ supp1(X),

• γi,j ≥ 0 to constraints −ai − bj + yi,j ≥ −1 for (i, j) ∈ supp0(X),

• αi ≥ 0 to constraints −ai ≥ −1 for i ∈ [m], and
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• βj ≥ 0 to constraints −bj ≥ −1 for j ∈ [n].

we get the following dual program,

max
α,β,γ,µ,π

| supp1(X)| −
∑
i∈[m]

αi −
∑
j∈[n]

βj −
∑

(i,j)∈supp0(X)

γi,j

s.t.
∑

j:(i,j)∈supp1(X)

µi,j −
∑

j:(i,j)∈supp0(X)

γi,j ≤ αi i ∈ [m]→ (ai)∑
i:(i,j)∈supp1(X)

πi,j −
∑

i:(i,j)∈supp0(X)

γi,j ≤ βj j ∈ [n]→ (bj)

µi,j + πi,j ≥ 1 (i, j) ∈ supp1(X)→ (yi,j)

γi,j ≤ 1 (i, j) ∈ supp0(X)→ (yi,j)

αi, βj, γi,j, µi,j, πi,j ≥ 0.

The fully-half point of CLP1 and a corresponding dual solution are an optimal primal-

dual solution pair if and only if they satisfy the complementary slackness conditions.

If the complementary slackness conditions hold then

• since ai = bj = 1
2
< 1 we must have αi = βj = 0 for all i ∈ [m] and j ∈ [n], and

• since ai = bj > 0 and yi,j > 0 for all (i, j) ∈ supp1(X), the first three sets of

dual constraints must hold with equality, so we can write µi,j = 1− πi,j.

Making these simplifications in the constraint set of the dual, we see that there exists

a dual solution which satisfies complementary slackness with respect to the fully half

point if and only if there exist weights in [0, 1] that satisfy Equations (8.3.4) and

(8.3.5).

Using the above proposition, for a small class of ’regular’ matrices we are able to

show that the fully half point is always an optimal solution of CLP1.

Lemma 8.3.2. Let X ∈ {0, 1, ?}m×n for some δ ≥ 1 satisfy

| supp0(Xi,:)| = δ| supp1(Xi,:)| i ∈ [m]

| supp0(X:,j)| = δ| supp1(X:,j)| j ∈ [n].

Then the ’fully-half ’ point is an optimal solution of CLP1.

Proof. If X satisfies the regularity requirement, then by setting πi,j = 1
2

and γi,j = 1
2δ

we satisfy the system of equations given in Proposition 8.3.1, and the dual solution

πi,j =
1

2
(i, j) ∈ supp1(X), µi,j =

1

2
(i, j) ∈ supp1(X),

γi,j =
1

2δ
(i, j) ∈ supp0(X), αi = βj = 0 (i, j) ∈ [m]× [n],

forms an optimal primal dual pair with the fully half point and has objective value

| supp1(X)| − 0− 1
2δ
| supp0(X)| = 1

2
| supp1(X)|.
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8.3.2 Greedy algorithm

In this section, we present a greedy algorithm for general bipartite binary quadratic

programming (BBQP), which has the form

(BBQP) max
a∈{0,1}m,b∈{0,1}n

a>Hb.

for some H ∈ Rm×n. BBQP can encode the maximum edge biclique problem and the

maximum weight edge biclique problem with any weights, hence we cannot expect a

constant factor approximation for it. Punnen et al. [54] present several heuristics for

BBQP along with a simple but powerful greedy algorithm. The pseudocode of this

greedy algorithm is given in Algorithm 3.

Algorithm 3: Greedy Algorithm for BBQP, BBQP(H)

Input: H ∈ Rm×n

Order i ∈ [m] so that
∑n

j=1 max(0,Hi,j) ≥
∑n

j=1 max(0,Hi+1,j).

Set a = 0m, s = 0>n , b = 0n.

Phase I.
for i ∈ [m] do

f0 =
∑n

j=1 max(0, sj)
f1 =

∑n
j=1 max(0, sj +Hij)

if f0 < f1 then
Set ai = 1, s = s+ Hi,:

Phase II.
for j ∈ [n] do

if sj > 0 then
Set bj = 1

Output: a ∈ {0, 1}m, b ∈ {0, 1}n

The essence of Algorithm 3 is to set entries of a and b to 1 which correspond

to rows and columns of H with the largest positive weights. In the first phase of

the algorithm, the row indices i of H are put in decreasing order according to their

sum of positive entries. Then sequentially according to this ordering, ai is set to 1 if∑n
j=1 max(0,

∑i−1
`=1 a`H`,j) <

∑n
j=1 max(0,Hi,j +

∑i−1
`=1 a`H`,j) and 0 otherwise. In the

second phase, bj is set to 1 if (a>H)j > 0, and to 0 otherwise. Observe that Phase II.

is exactly the algorithm how the optimal solution maxb∈{0,1}n a
>Hb can be obtained

for fixed a. Algorithm 3 runs in O(mn) time. The following result of Punnen et al.

show the approximation strength of the greedy algorithm.

Theorem 8.3.3. [54, Theorem 1.] Let H ∈ Rm×n with m ≤ n be an arbitrary input

matrix of BBQP. If m ∈ {1, 2}, then Algorithm 3 provides the optimal solution of

BBQP and if m > 2 then Algorithm 3 has an approximation ratio of m− 1.
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Proof. Let the rows of H be ordered so that
∑n

j=1 max(0,Hi,j) ≥
∑n

j=1 max(0,Hi+1,j).

In addition, assume that
∑n

j=1 max(0,H1,j) > 0, otherwise the problem is trivial. Let

a∗ and b∗ be an optimal solution of BBQP with optimal objective value denoted by

f(a∗, b∗) = a∗>Hb∗. And let a′ and b′ be the solution of the greedy algorithm with

objective value f(a′, b′) = a′>Hb′.
If m = 1, then the greedy algorithm picks up all positive entries of H and this solu-

tion is optimal. If m = 2, then the optimal solution a∗ must be one of {[ 1
1 ], [ 1

0 ], [ 0
1 ]}.

On the other hand, the greedy algorithm selects the best solution from {[ 1
1 ], [ 1

0 ]}.
Observe that if a∗ = [ 0

1 ], then
∑n

j=1 max(0,H1,j) =
∑n

j=1 max(0,H2,j) must hold,

so [ 1
0 ] is also an optimal solution. Therefore, the greedy algorithm picks an optimal

solution in this case as well.

Let m > 2 and assume that for at least one entry a∗i = 0. Then the optimal

objective value satisfies f(a∗, b∗) ≤ (m − 1) ·
∑n

j=1 max(0,H1,j), while the greedy

objective value satisfies f(a′, b′) ≥
∑n

j=1 max(0,H1,j). Therefore, their ratio is

f(a∗, b∗)

f(a′, b′)
≤

(m− 1) ·
∑n

j=1 max(0,H1,j)∑n
j=1 max(0,H1,j)

= m− 1.

If a∗i = 1 for all i ∈ [m], then let s∗i =
∑n

j=1Hi,jb
∗
j . Then since the greedy

algorithm picks the optimal solution for m = 2, it must select a′1 = a′2 = 1. Thus the

greedy objective value satisfies f(a′, b′) ≥ s∗1 + s∗2. Furthermore, for any i ∈ [m], the

greedy objective value also satisfies

f(a′, b′) ≥
n∑
j=1

max(0,H1,j) ≥
n∑
j=1

max(0,Hi,j) ≥ s∗i .

Using this, the optimal objective value can be bounded as

f(a∗, b∗) =
m∑
i=1

s∗i ≤ (s∗1 + s∗2) + (m− 2) · f(a′, b′) ≤ (m− 1) · f(a′, b′),

which shows that f(a∗,b∗)
f(a′,b′)

≤ m− 1.

The following m×m matrix is a tight case for the greedy algorithm,

H =


1 −1 −1 . . . −1
−1 1 0 . . . 0
−1 0 1 0
...

...
. . .

−1 0 0 1

 ∈ {0,±1}m×m.
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This is because the greedy algorithm only sets a′1 = b′1 = 1 and the rest of the entries

to 0. While the optimal solution has a∗i , b
∗
j = 1 for all i 6= 1, j 6= 1.

We explored this greedy algorithm because it can be used to get good quality

heuristic solutions for 1-BMF. In practice, we observe that it provides much more

sensible solutions than the CLP1 based 2-approximation for 1-BMF. Furthermore,

this greedy algorithm and several modifications that we detail below, will be used to

find rank-1 binary matrices with negative reduced cost as part of a column generation

algorithm that we will present in Section 10.1.

There are many variants of Algorithm 3 one can explore. First, the solution

greatly depends on the ordering of i’s in the first phase. If for some i1 6= i2 we have∑n
j=1 max(0,Hi1,j) =

∑n
j=1 max(0,Hi2,j), comparing the sum of negative entries of

rows i1 and i2 can put more “influential” rows of H ahead in the ordering. Let us call

this ordering the revised ordering and the one which only compares the positive sums

as the original ordering. Another option is to use a completely random order of i’s or

to apply a small perturbation to sums
∑n

j=1 max(0,Hi,j) to get a perturbed version

of the revised or original ordering. None of the above ordering strategies clearly

dominates the others in all cases but they are fast to compute hence one can evaluate

all five ordering strategies (original, revised, original perturbed, revised perturbed,

random) and pick the best one. Second, the Algorithm 3 as presented above first

fixes a and then b. Changing the order of fixing a and b can yield a different result

hence it is best to try for both H and H>. In general, it is recommended to start the

first phase on the smaller dimension [54]. Third, the solution from Algorithm 3 may

be improved by computing the optimal a with respect to fixed b. This idea then can

be used to fix a and b in an alternating fashion and stop when no changes occur in

either.
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Chapter 9

Rank-k binary matrix factorisation

In this chapter, we present three integer programs for k-BMF. Recall that the objec-

tive function of k-BMF can be expanded as in Equation (1.4.1) to get

‖PΩ(X− Z)‖2
F = | supp1(X)| −

∑
(i,j)∈supp1(X)

zi,j +
∑

(i,j)∈supp0(X)

zi,j. (9.0.1)

Furthermore, observe that Boolean matrix multiplication Z = A ◦B can be written

to have entries zi,j = min{1,
∑

` ai,`b`,j} using standard arithmetic summation. In the

following sections, we use the linear objective function (9.0.1) and this observation

on Boolean matrix products to model k-BMF.

9.1 Compact formulation

We start with a formulation that uses a polynomial number of variables and con-

straints and has previously appeared in [61]. The following Compact Integer linear

Program (CIP) models the entries of matrices A,B,Z directly via binary variables

ai,`, b`,j and zi,j respectively and uses McCormick envelopes to avoid the appearance

of quadratic terms that would correspond to the constraints yi,`,j = ai,`b`,j,

ζCIP(X, k) = min
a,b,y,z

∑
(i,j)∈supp1(X)

(1− zi,j) +
∑

(i,j)∈supp0(X)

zi,j

s.t. yi,`,j ≤ zi,j ≤
k∑
l=1

yi,l,j i ∈ [m], j ∈ [n], ` ∈ [k]

yi,`,j ∈MC(ai,`, b`,j) i ∈ [m], j ∈ [n], ` ∈ [k],

ai,`, b`,j, zi,j ∈ {0, 1} i ∈ [m], j ∈ [n], ` ∈ [k].

(9.1.1)

(9.1.2)

(9.1.3)

(9.1.4)

Constraints (9.1.2) encode Boolean matrix multiplication, while a simple modi-

fication of the model in which constraints (9.1.2) are replaced by zi,j =
∑k

`=1 yi,`,j
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models k-BMF under standard arithmetic. The McCormick envelopes in constraints

(9.1.3) ensure that for ai,`, b`,j ∈ {0, 1}, yi,`,j are binary variables taking the value

ai,`b`,j. Due to the objective function, constraints (9.1.2) and the binary nature of

yi,`,j, the binary constraints on variables zi,j may be relaxed to zi,j ∈ [0, 1] without

altering optimal solutions of the formulation.

CIP can easily be adapted to give a polynomial size IP for exact-BMF as follows.

Let t = min{m,n}. As the Boolean rank is bounded by t, we can replace k in CIP

by t. Delete variables zi,j from the model and in constraints (9.1.2) replace zi,j by

the input values xi,j. Introduce indicator variables d` ∈ {0, 1} (` ∈ [t]) and add the

constraints ai,` ≤ d` (i ∈ [m], ` ∈ [t]) and b`,j ≤ d` (j ∈ [n], ` ∈ [t]). The objective

function mina,b,y,d
∑

`∈[t] d` then corresponds to minimising the Boolean rank.

The LP relaxation of CIP (CLP) is obtained by replacing constraints (9.1.4) by

ai,`, b`,j, zi,j ∈ [0, 1]. For k = 1, we have zi,j = yi,1,j and and the model reduces to

CIP1 from the previous chapter and we know that its LP relaxation CLP1 gives a

2-approximation. This however, does not apply for k > 1. We next show that CLP

for k > 1 has an objective function value 0.

Proposition 9.1.1. For any X ∈ {0, 1, ?}n×m we have ζCLP(X, k) = 0 for all k > 1.

Moreover, for k > 2 CLP has at least k · | supp1(X)|+ 1 vertices with objective value

0.

Proof. For each (i, j) ∈ supp1(X) let L(i,j) ⊆ [k] such that |L(i,j)| ≥ 2 and consider

the point

ai,` =
1

2
i ∈ [m], ` ∈ [k], b`,j =

1

2
` ∈ [k], j ∈ [n],

yi,`,j =

{
1
2

(i, j) ∈ supp1(X), ` ∈ L(i,j)

0 otherwise,
zi,j =

{
1 (i, j) ∈ supp1(X),

0 otherwise.

For all (i, j) ∈ [m] × [n] and ` ∈ [k], setting ai,` = b`,j = 1
2

implies that yi,`,j ∈
MC(1

2
, 1

2
) = [0, 1

2
] and

∑k
l=1 yi,l,j ≥ 1 holds for all (i, j) ∈ supp1(X), hence this point

gives a feasible solution to CLP with objective value 0. For k = 2, we can only set

L(i,j) = [2] for all (i, j) ∈ supp1(X), hence the above construction leads to a single

unique point. For k > 2 however, as the choice of L(i,j)’s is arbitrary, there are many

feasible points with objective value 0 of this form. As each of these points can differ

at only k · | supp1(X)| entries corresponding to entries yi,`,j for (i, j) ∈ supp1(X),

` ∈ [k], there are at most k · | supp1(X)|+ 1 affinely independent points among them.

Next we present k · | supp1(X)| + 1 affinely independent points of this form. Since

the objective value is 0 at these points, they must lie on a face of dimension at least
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k · | supp1(X)| and this face must have at least k · | supp1(X)| + 1 vertices of CLP

with objective value 0. For each (i, j)∗ ∈ supp1(X) and `∗ ∈ [k], letting L(i,j) = [k]

for all (i, j) ∈ supp1(X) \ {(i, j)∗} and L(i,j)∗ = [k] \ {`∗} provides k · | supp1(X)|
different points of the above form. Each such point has exactly one entry yi,`,j along

the indices (i, j) ∈ supp1(X), ` ∈ [k] which is zero. Hence the matrix whose columns

correspond to these k · | supp1(X)| points has a square submatrix of the form

1

2
(Jk| supp1(X)| − Ik| supp1(X)|)

corresponding to entries yi,`,j for (i, j) ∈ supp1(X), ` ∈ [k], where Jt is the all 1s

matrix of size t × t and It is the identity matrix of size t. Since matrix Jt − It is

nonsingular, the k · | supp1(X)| points are linearly independent. In addition, letting

L(i,j) = [k] for all (i, j) ∈ supp1(X) gives an additional point for which yi,`,j = 1
2

for

all (i, j) ∈ supp1(X), ` ∈ [k], hence the corresponding part of this point is 1
2
1. Now

subtracting 1
2
1 from the columns of 1

2
(Jk| supp1(X)|−Ik| supp1(X)|), we get the nonsingular

matrix −1
2
Ik| supp1(X)|, hence the k·| supp1(X)|+1 above constructed points are affinely

independent.

The above result suggests that unless the factorisation error is 0 i.e. the input

matrix is of Boolean rank less than or equal to k, before improving the LP bound

of CIP many fractional vertices need to be cut off. To strengthen the formulation

of CIP, valid inequalities may be explored. Especially, some of the fractional points

that appear in Proposition 9.1.1 may be cut off by some of the odd-cycle inequalities

over the bipartite Boolean Quadric Polytope. However, adding all non-dominated

odd-cycle inequalities to CLP is not sufficient to cut off all the fractional points with

0 objective value that appear in Proposition 9.1.1. For instance, take X to be I4

and set k = 3. As I4 has Boolean rank 4, no zero error rank-3 factorisation exists.

Yet, none of the fractional points that appear in Proposition 9.1.1 are cut off by the

odd-cycle inequalities.

Furthermore, for k > 1, any feasible rank-k factorisation A◦B and a permutation

matrix P ∈ {0, 1}k×k provide another feasible solution AP ◦ P>B to CIP with the

same objective value. Hence, CIP is highly symmetric for k > 1. These properties

of CIP make it unlikely to be solved to optimality for k > 1 in a reasonable amount

of time for a large matrix X, though some symmetries may be broken by enforcing

lexicographic ordering of rows of B. For small matrices however, CIP constitutes the

first approach to get optimal solutions to k-BMF.
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9.2 Exponential formulation I.

Recall that any m × n Boolean rank-k matrix X can be equivalently written as the

Boolean sum of k rank-1 binary matrices

X =
k∨
`=1

a`b
>
` for some a` ∈ {0, 1}m, b` ∈ {0, 1}n, ` ∈ [k].

This suggest to directly look for k rank-1 binary matrices instead of introducing

variables for all entries of factor matrices A and B. The second integer program

we detail for k-BMF relies on this approach by considering an implicit enumeration

of rank-1 binary matrices. Let Rm,n denote the set of all rank-1 binary matrices of

dimension m × n and let Rm,n
(i,j) denote the subset of rank-1 matrices of Rm,n which

have the (i, j)-th entry equal to 1,

Rm,n = {ab> : a ∈ {0, 1}m, b ∈ {0, 1}n,a, b 6= 0},
Rm,n

(i,j) = {ab> ∈ Rm,n : ai = bj = 1}.

Introducing a binary variable qr for each rank-1 matrix r in Rm,n and variables zi,j

for (i, j) ∈ Ω(X), we obtain the following Master Integer linear Program (MIP),

ζMIPF (X, k) = min
z,q

∑
(i,j)∈supp1(X)

(1− zi,j) +
∑

(i,j)∈supp0(X)

zi,j

s.t. zi,j ≤
∑

r∈Rm,n
(i,j)

qr (i, j) ∈ supp1(X)

∑
r∈Rm,n

(i,j)

qr ≤ k zi,j (i, j) ∈ supp0(X)

∑
r∈Rm,n

qr ≤ k

zi,j, qr ∈ {0, 1} (i, j) ∈ Ω(X), r ∈ Rm,n

(9.2.1)

(9.2.2)

(9.2.3)

(9.2.4)

(9.2.5)

The objective, as before, measures the factorisation error in squared Frobenius norm,

and subscript F in MIPF stands for Frobenius. Constraints (9.2.2) and (9.2.3) enforce

Boolean matrix multiplication: zi,j takes value 1 if there is at least one active rank-1

binary matrix that covers entry (i, j), otherwise it takes value 0. Notice, that due to

the difference in sign of objective coefficients for variables zi,j with (i, j) ∈ supp1(X)

and (i, j) ∈ supp0(X) it is enough to declare constraints (9.2.2) and (9.2.3) for indices

(i, j) ∈ supp1(X) and (i, j) ∈ supp0(X) respectively. Constraint (9.2.4) ensures that

at most k rank-1 binary matrices are active and hence we get a rank-k factorisation

of X. Observe that constraints (9.2.2) together with qr being binary imply that zi,j
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automatically takes binary values for (i, j) ∈ supp1(X), and due to the objective

function it always takes the value at its upper bound, hence zi,j ∈ {0, 1} may be

replaced by zi,j ≤ 1 for all (i, j) ∈ supp1(X) without altering the optimum. In

contrast, zi,j for (i, j) ∈ supp0(X) need to be explicitly declared binary as otherwise,

if there are some active rank-1 matrices which cover a zero of X, i.e. qr > 0 for some

r ∈ Rm,n
(i,j), (i, j) ∈ supp0(X), then variable zi,j corresponding to that zero takes the

possibly fractional value 1
k

∑
r∈Rm,n

(i,j)
qr. One can also consider a strong formulation of

MIPF with exponentially many constraints, in which constraints (9.2.3) are replaced

by qr ≤ zi,j for all r ∈ Rm,n
(i,j) and (i, j) ∈ supp0(X).

The LP relaxation of MIPF (denoted by MLPF) is obtained by replacing the

integrality constraints by zi,j, qr ∈ [0, 1]. Unlike CLP, the optimal objective value of

MLPF (ζMLPF (X, k)) is not always zero. By comparing the rank of the factorisation,

k to the isolation number i(X) of the input matrix X we can deduce when MLPF

takes non-zero objective value.

Proposition 9.2.1. Let X ∈ {0, 1, ?}m×n and k ∈ Z++. If i(X) > k, then the optimal

objective value of the LP relaxation of MIPF satisfies

ζMLPF (X, k) ≥ 1

k
(i(X)− k) .

Proof. Let S be an isolated set of X of cardinality i(X). We will establish a feasible

solution to the dual of MLPF (MDPF) with objective value 1
k

(i(X)− k) implying the

result.

Let us apply a change of variables ξi,j = 1− zi,j for (i, j) ∈ supp1(X) for the ease

of avoiding the constant term in the objective function of MLPF. Then the bound

constraints of MLPF can be written as ξi,j ≥ 0 for (i, j) ∈ supp1(X), zi,j ≥ 0 for

(i, j) ∈ supp0(X) and qr ≥ 0, r ∈ Rm,n as the objective function is minimising both

ξi,j and zi,j and we have the cardinality constrains on qr. Associating dual variables

pi,j ≥ 0 (i, j) ∈ supp1(X) with constraints
∑

r∈Rm,ni,j
qr+ξi,j ≥ 1; dual variables si,j ≥ 0

(i, j) ∈ supp0(X) with constraints (9.2.3) and dual variable µ ≥ 0 with constraint
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(9.2.4), the Master Dual Program (MDPF) of MLPF is

ζMDPF (X, k) = max
p,s,µ

∑
(i,j)∈supp1(X)

pi,j − k µ

s.t.
∑
(i,j)∈

supp1(X)∩supp1(R)

pi,j −
∑
(i,j)∈

supp0(X)∩supp1(R)

si,j ≤ µ R ∈ Rm,n,

0 ≤ p,ij ≤ 1 (i, j) ∈ supp1(X),

0 ≤ si,j ≤
1

k
(i, j) ∈ supp0(X),

0 ≤ µ.

(9.2.6)

Let si,j = 1
k

for (i, j) ∈ supp0(X) and let pi,j = 1
k

for (i, j) ∈ S and pi,j = 0 for

all other (i, j) ∈ supp1(X) \ S. The bound constraints on pi,j and si,j are satisfied

then. It remains to choose µ ≥ 0 so that we satisfy constraint (9.2.6) for all rank-1

binary matrices R ∈ Rm,n. Let R ∈ Rm,n correspond to a rectangle of X, so we have

| supp0(X) ∩ supp1(R)| = 0. Then by the definition of isolated sets, R can contain

at most one element from S and hence we have | supp1(R) ∩ S| ≤ 1. This tells us

that for any µ ≥ 1
k
, constraint (9.2.6) is satisfied for all R ∈ Rm,n that corresponds

to a rectangle of X. Now let R ∈ Rm,n be a rank-1 binary matrix which covers

at least one zero entry of X. Then R may contain more than one element from S.

However, if it contains more than one element from S then it must also contain at

least
(| supp1(R)∩S|

2

)
-many zeros as for any two distinct elements (i1, j1), (i2, j2) in S

we have (i1, j2) ∈ supp0(X) or (i2, j1) ∈ supp0(X) by the definition. Hence, for all

R ∈ Rm,n such that | supp0(X) ∩ supp1(R)| > 0, constraint (9.2.6) satisfies

1

k
|S ∩ supp1(R)| − 1

k
| supp0(X) ∩ supp1(R)|

≤ 1

k
|S ∩ supp1(R)| − 1

k

(
|S ∩ supp1(R)|

2

)
≤ 1

k
.

Thus we can set µ = 1
k

to get the objective value

1

k
(i(X)− k) ≤ ζMDPF (X, k) = ζMLPF (X, k).

The following example shows that we cannot strengthen Proposition 9.2.1 by

replacing the condition k < i(X) with the requirement that k has to be strictly

smaller than the Boolean rank of X.
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Example 9.2.2. Let X = I4, the 4×4 complement identity matrix which has i(I4) = 3

and br(I4) = 4 (and is minimally non-firm). Since I4 is of Boolean rank 4, for k = 3

we have ζ(I4, 3) > 0. On the other hand, the optimal objective value ζMLPF
(I4, 3) is

0 which is attained by a fractional solution in which the following 6 rank-1 binary

matrices are active each with weight qr = 1
2
,

0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0

 ,


0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0

 ,


0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0

 ,


0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

 ,


0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

 ,


0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

 .

9.3 Exponential formulation II.

For t ∈ [2n − 1] let βt ∈ {0, 1}n be the vector denoting the binary encoding of t and

note that these vectors give a complete enumeration of all non-zero binary vectors of

size n. Let βt,j denote the j-th entry of βt. In [74], the authors present the following

Exponential size Integer linear Program (EIP) formulation using a separate indicator

variable dt for each one of these exponentially many binary vectors βt,

ζEIP(X, k) = min
α,z,d

∑
(i,j)∈supp1(X)

(1− zi,j) +
∑

(i,j)∈supp0(X)

zi,j

s.t. zi,j ≤
2n−1∑
t=1

αi,tβt,j (i, j) ∈ supp1(X),

2n−1∑
t=1

αi,tβtj ≤ kzi,j (i, j) ∈ supp0(X)

2n−1∑
t=1

dt ≤ k

αi,t ≤ dt i ∈ [m], t ∈ [2n − 1],

zi,j, dt, αi,t ∈ {0, 1} (i, j) ∈ Ω(X), t ∈ [2n − 1].

(9.3.1)

(9.3.2)

(9.3.3)

(9.3.4)

(9.3.5)

(9.3.6)

The above formulation has an exponential number of variables and constraints but

it is an integer linear program as βt,j are input parameters to the model. Let ELP

be the LP relaxation of EIP. Observe that due to the objective function the bound

constraints in ELP may be simplified to zi,j, αi,t, dt ≥ 0 for all i, j, t and zi,j ≤ 1 for

(i, j) ∈ supp1(X) without changing the optimum. To solve EIP or ELP explicitly,

158



one needs to enumerate all binary vectors βt (t ∈ [2n − 1]), which is possible only

up to a very limited size. To the best of our knowledge, no method is available that

avoids explicit enumeration and can guarantee the optimal solution of EIP. Previous

attempts at computing a rank-k factorisation via EIP all relied on working with only

a small heuristically chosen subset of vectors βt [74, 75]. However, if there was an

efficient method to solve ELP, the following result shows it to be as strong as the LP

relaxation of MIPF.

Proposition 9.3.1. The optimal objective values of ELP and MLPF are equal.

Proof. Note that due to constraints (9.2.2) and (9.2.3) in MLPF and constraints

(9.3.2) and (9.3.3) in ELP, it suffices to show that for any feasible solution αi,t, dt

of ELP one can build a feasible solution qr of MLPF for which
∑2n−1

t=1 αi,tβt,j =∑
r∈Rm,n

(i,j)
qr, and vice-versa.

First consider a feasible solution αt ∈ Rm, dt ∈ R (for t ∈ [2n − 1]) to ELP and

note that by constraint (9.3.5) we have 0 ≤ αi,t ≤ dt for all i ∈ [m] and t ∈ [2n − 1].

We can therefore express each αt as a convex combination of binary vectors in {0, 1}m

scaled by dt,

αt = dt

2m−1∑
s=1

λs,t as as ∈ {0, 1}m \ {0},
2m−1∑
s=1

λs,t ≤ 1, λs,t ≥ 0, s ∈ [2m − 1]

where as denotes the binary encoding of s. Note that we do not require λs,t’s to add

up to 1 as we exclude the zero vector. We can therefore rewrite the solution of ELP

as follows

2n−1∑
t=1

αtβ
>
t =

2n−1∑
t=1

(
2m−1∑
s=1

dt λs,t as

)
β>t =

2m−1∑
s=1

2n−1∑
t=1

qs,tasβ
>
t where qs,t := dt λs,t.

Now it is easy to see that asβ
>
t ∈ Rm,n and since

∑2n−1
t=1 dt ≤ k holds in any feasible

solution to ELP, we get
∑2m−1

s=1

∑2n−1
t=1 qs,t ≤ k, which shows that qs,t is feasible for

MLPF.

The construction works backwards as well, as any feasible solution to MLPF can be

written as
∑2m−1

s=1

∑2n−1
t=1 qs,tasβ

>
t for some rank-1 binary matrices asβ

>
t ∈ Rm,n and

corresponding variables qs,t ≥ 0. Now let αt :=
∑2m−1

s=1 qs,t as and dt := maxi∈[m] αi,t

to satisfy αi,t ≤ dt. Then since we started from a feasible solution to MLPF, we have∑2m−1
s=1

∑2n−1
t=1 qs,t ≤ k and hence

∑2n−1
t=1 dt ≤ k is satisfied too.
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9.4 Working under a new objective

In the previous section, we presented formulations for k-BMF which measured the

factorisation error in the squared Frobenius norm, which coincides with the entry-

wise `1 norm as showed in Equation (9.0.1). In this section, we explore another

objective function which introduces an asymmetry between how false negatives and

false positives are treated. Whenever a 0 entry is erroneously covered in a rank-k

factorisation, it may be covered by up to k rank-1 binary matrices. Our new objective

function attributes a weighted error term to each 0 entry which is proportional to the

number of rank-1 matrices covering that entry. As previously, by denoting Z = A◦B
a rank-k factorisation of X, the new objective function is

ζ(ρ)(X, k) =
∑

(i,j)∈supp1(X)

(1− zi,j) + ρ
∑

(i,j)∈supp0(X)

k∑
`=1

ai,`b`,j. (9.4.1)

Note that the constraints ai,`b`,j ≤ zi,j ≤
∑k

`=1 ai,`b`,j encoding Boolean matrix mul-

tiplication imply that 1
k

∑k
`=1 ai,`b`,j ≤ zi,j ≤

∑k
`=1 ai,`b`,j. Therefore, denoting the

original squared Frobenius norm objective function in Equation (9.0.1) by ζF (X, k),

for any X and rank-k factorisation Z of X the following relationship holds between

ζF (X, k) and ζ(1)(X, k),

ζF (X, k) ≤ ζ(1)(X, k) ≤
∑

(i,j)∈supp1(X)

(1− zi,j) +
∑

(i,j)∈supp0(X)

k zi,j ≤ k · ζF (X, k)

and between ζF (X, k) and ζ( 1
k

)(X, k),

1

k
· ζF (X, k) ≤ ζ( 1

k
)(X, k) ≤ ζF (X, k).

We next show that this new objective function ζ(ρ)(X, k) with ρ = 1 can overesti-

mate the original objective ζF (X, k) by a factor of k. But first, we need a technical

result which shows that whenever the input matrix X contains repeated rows or

columns we may assume that an optimal factorisation exists which has the same

row-column repetition pattern.

Lemma 9.4.1 (Preprocessing). Let X contain some duplicate rows and columns.

Then there exists an optimal rank-k binary matrix factorisation of X under objective

ζF (X, k) (or ζ(ρ)(X, k)) whose rows and columns corresponding to identical copies in

X are identical.
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Proof. Since the transpose of an optimal rank-k factorisation is optimal for X>, it

suffices to consider the rows of X. Furthermore, it suffices to consider only one set

of repeated rows of X, so let I ⊆ [m] be the index set of a set of identical rows of X.

We then need to show that there exists an optimal rank-k factorisation whose rows

indexed by I are identical. Let Z = A ◦ B be an optimal rank-k factorisation of X

under objective ζF (X, k). For all i1, i2 ∈ I we must have∑
j:(i1,j)∈supp1(X)

(1− zi,j) +
∑

j:(i1,j)∈supp0(X)

zi,j =
∑

j:(i2,j)∈supp1(X)

(1− zi,j) +
∑

j:(i2,j)∈supp0(X)

zi,j

as otherwise replacing Ai,: for each i ∈ I with row Ai∗,: where i∗ ∈ I is a row index for

which the above sum is minimised leads to a smaller error factorisation. Then since

the condition stated in the equation above holds, replacing Ai,: for each i ∈ I with

row Ai∗,: for any i∗ ∈ I leads to an optimal solution of the desired property. Similarly,

if Z is an optimal factorisation under objective ζ(ρ)(X, k), then for all i1, i2 ∈ I the

corresponding objective terms must equal and hence an optimal solution of the desired

property exists.

This result implies that whenever the input matrix X contains repeated rows

or columns we may solve the following problem on a smaller matrix instead. Let

X′ ∈ {0, 1}m′×n′ be the binary matrix obtained from X by replacing each duplicate

row and column by a single representative and let r ∈ Zm′+ and c ∈ Zn′+ be the counts

of each unique row and column of X′ in X respectively. By Lemma 9.4.1 an optimal

rank-k factorisation Z′ = A′ ◦B′ of X′ under the updated objective function

ζF (X′, k, r, c) :=
∑

(i,j)∈supp1(X′)

ri cj (1− z′i,j) +
∑

(i,j)∈supp0(X′)

ri cj z
′
i,j

or
ζ(ρ)(X

′, k, r, c) :=
∑

(i,j)∈supp1(X′)

ri cj (1− z′i,j) + ρ
∑

(i,j)∈supp0(X′)

ri cj a
′
i,`b
′
`,j

leads to an optimal rank-k factorisation of X under the original objective function

ζF (X, k) or ζ(ρ)(X, k).

Proposition 9.4.2. For each positive integer k there exists a binary matrix X(k)

for which the optimal rank-k binary matrix factorisations under objectives ζF (X(k), k)

and ζ(1)(X
(k), k) satisfy

ζ(1)(X
(k), k) = k · ζF (X(k), k).
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Proof. The idea behind the proof is to consider a matrix Z(k) of exact Boolean rank-k

in which all the k rank-1 components (rectangles) overlap at a unique middle entry

and then replace this entry with a 0 to obtain X(k). Now X(k) and Z(k) are exactly

at distance 1 in the squared Frobenius norm and hence Z(k) is a rank-k factorisation

of X(k) with objective value 1 under objective ζF . On the other hand, since exactly

k rectangles cover the entry at which X(k) and Z(k) differ, if Z(k) is taken as a rank-k

factorisation of X(k) under objective ζ(1) it incurs an error of size k. Figure 9.1 shows

the idea how to build such a X(k) for k = 2, 4, 6. Each colour corresponds to a rank-1

component and white areas correspond to 0s.

(a) k = 2 (b) k = 4 (c) k = 6

Figure 9.1: Example matrices for which ζ(1) = k · ζF

We first consider the case when k is even. For k = 2 take the symmetric ma-

trix X(2) as in Equation (9.4.2) which corresponds to Figure 9.1a. Since X(2) has

repeated rows and columns, according to Lemma 9.4.1 we may simplify the problem

by replacing X(2) by X′(2) and recording a weight vector for the rows and columns

which indicate how many times each row and column is repeated. This weight vector

is then used to update each entry in the objective function with the corresponding

weight. For X(2) the row and column weight vectors coincide as X(2) is symmetric

and we denote it by w(2),

X(2) =



1 1 1 1
1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1


⇒ X′(2) =

1 1
1 1

1 1

 with w(2) =

3
1
3

 (9.4.2)
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The Boolean rank of X(2) is 3 and it’s isolation number is 3 as the shadowed entries

show. Let Z(2) be obtained from X(2) by replacing the 0 at entry (4, 4) by a 1. Z(2)

clearly has Boolean rank 2, hence it is a feasible rank-2 factorisation of X(2). Under

objective ζF Z(2) incurs an error of size 1, which is optimal as ζF (X(2), 2) ≥ 1 by X(2)

being of Boolean rank-3. On the other hand, under objective ζ(1), Z(2) has objective

value 2 as the middle entry is covered twice. To see that Z(2) is optimal under ζ(1)

observe that every entry in X′(2) apart from the middle entry has weight strictly

greater than 2. Hence not covering a 1 of X′(2) or covering a 0 different from the

middle entry incurs an error strictly greater than 2.

For k > 2 even let us give a recipe to construct a symmetric matrix X′(k) and

corresponding weight vector w(k). Let t = k
2
−1 and let the following (4t+3)×(4t+3)

matrix be X′(k), where It is the identity matrix of size t× t, Ĩt is the reverted identity

matrix of size t× t (so Ĩ2 = [ 0 1
1 0 ]) and Jt is the all 1s matrix of size t× t,

X′(k) =



It 1t Ĩt
1 1>t 1

1t Jt 1t Ĩt
1>t 1 1>t 0 1>t 1 1>t
Ĩt 1t Jt 1t

1 1>t 1

Ĩt 1t It


, w(k) =



(k + 1)1t
(k + 1)

(k + 1) 1t
1

(k + 1) 1t
(k + 1)

(k + 1)1t


.

X′(k) has isolation number i(X′(k)) ≥ 2t + 3 = k + 1 (indicated by the shadowed

entries), so no rank-k factorisation can have zero error. Let Z′(k) be obtained from

X′(k) by replacing the middle 0 by a 1 and let its weight vector be the same as of

X′(k). The Boolean rank of Z′(k) is then at most k as Z′(k) = A′(k) ◦ (A′(k))> is an

exact factorisation and A′(k) is of dimension (4t+ 3)× k given by

A′(k) =



It
1

1t Ĩt
1>t 1 1 1>t
Ĩt 1t

1
It


.

This factorisation is illustrated in Figure 9.1 for k = 4, 6. Therefore Z′(k) is a feasible

rank-k factorisation of X′(k). Now Z′(k) under objective function ζF has error 1 and

hence it is optimal. In contrast, Z′(k) evaluated under objective ζ(1) has error k as the

middle 0 is covered k times and it has weight 1. To see that Z′(k) is optimal under
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ζ(1) as well, note that all entries of X′(k) apart from the middle 0 have weight strictly

greater than k. Therefore, any other rank-k factorisation which does not cover a 1

or covers a 0 which is not the middle 0, incurs an error strictly greater than k, and

hence Z′(k) is optimal under objective ζ(1) with value k · ζF .

For k = 1, all 1-BMFs satisfy ζF (X, 1) = ζ(1)(X, 1) by definition. For k > 1 odd,

we can obtain X′(k) and w(k) from X′(k+1) and w(k+1) by removing the first row and

column of X′(k+1) and the corresponding first entry of w(k+1). For X′(k) then, the

same reasoning holds as for k even.

While Proposition 9.4.2 shows that ζ(1)(X, k) can be k times larger than the

Frobenius norm objective ζF (X, k), the matrices in the proof are quite artificial, and

in practice we observe that not many zeros are covered by more than a few rank-1

matrices. In fact, our main motivation to consider this new objective function is that

we observed that Exponential Formulation I. becomes computationally easier when

using objective ζ(ρ) without compromising the accuracy of factorisations in practice.

These numerical observations will be demonstrated in Sections 10.2.2.1 and 10.2.2.2.

Therefore let us consider the previously introduced formulations for k-BMF under

the new objective ζ(ρ)(X, k).

Let us denote a modification of formulation MIPF with the new objective function

ζ(ρ) as MIP(ρ) and use the transformation ξi,j = 1− zi,j for (i, j) ∈ supp1(X) to get

ζMIP(ρ)(X, k) = min
ξ,q

∑
(i,j)∈supp1(X)

ξi,j + ρ
∑

(i,j)∈supp0(X)

∑
r∈Rm,n

(i,j)

qr

s.t.
∑

r∈Rm,n
(i,j)

qr + ξi,j ≥ 1 (i, j) ∈ supp1(X),

∑
r∈Rm,n

qr ≤ k

ξi,j ≥ 0, qr ∈ {0, 1} (i, j) ∈ supp1(X), r ∈ Rm,n.

(9.4.3)

(9.4.4)

(9.4.5)

One of the imminent advantages of using objective ζ(ρ) is that we need only de-

clare variables for entries (i, j) ∈ supp1(X) and can consequently delete the weak

constraints (9.2.3) from the formulation. The LP relaxation of MIP(ρ) (MLP(ρ)) is

obtained by giving up on the integrality constraints on qr and observing that without

loss of generality we can simply write qr ≥ 0 for all r ∈ Rm,n. We next show that the

optimal solutions of the LP relaxation of MIPF and MLP(ρ) with ρ = 1
k

coincide.

Proposition 9.4.3. The optimal solutions of the LP relaxations MLPF and MLP( 1
k
)

coincide.
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Proof. It suffices to observe that as MLPF is a minimisation problem, each zi,j

(i, j) ∈ supp0(X) takes the value 1
k

∑
r∈Rm,n

(i,j)
qr in any optimal solution to MLPF due

to constraint (9.2.3). This implies that the second terms in the objective function

(9.2.1) of MIPF and (9.4.3) of MLP( 1
k
) have the same value.

Therefore one may instead solve MLP( 1
k
) that has fewer variables and constraints

than MLPF. In addition, for all ρ > 0, a corollary of Proposition 9.2.1 holds by looking

at the dual of MLP(ρ) (MDP(ρ)). Let us associate variables pi,j for (i, j) ∈ supp1(X)

to constraints (9.4.4) and variable µ to constraint (9.4.5). Then the dual of MLP(ρ)

is (MDP(ρ)):

ζMDP(ρ)(X, k) = max
p,µ

∑
(i,j)∈supp1(X)

pi,j − k µ

s.t.
∑
(i,j)∈

supp1(X)∩supp1(R)

pi,j − µ ≤ ρ · | supp0(X) ∩ supp1(R)| R ∈ Rm,n,

µ ≥ 0, pi,j ∈ [0, 1] (i, j) ∈ supp1(X).

(9.4.6)

Corollary 9.4.4. Let X ∈ {0, 1, ?}m×n and k ∈ Z++. If i(X) > k, then for all ρ > 0

the optimal objective value of the LP relaxation of MIP(ρ) satisfies

ζMLP(ρ)(X, k) ≥ ρ · (i(X)− k) .

Proof. The proof is a simple modification of Proposition 9.2.1’s proof. The dual of

MLP(ρ) (MDP(ρ)) differs from MDPF by having the constant value ρ instead of dual

variables si,j and constraints (9.4.6) instead of (9.2.6). Therefore setting pi,j = ρ for

all (i, j) ∈ S and 0 otherwise (where S is a maximum isolated set of X), and µ = ρ

gives the required bound of ρ (i(X)− k).
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Chapter 10

Computational approach and
experiments

The integer programs introduced in the previous sections provide a framework for

computing k-BMF with dual bounds. In this chapter, we present a computational

approach to solve Exponential formulation I. despite it having an exponential number

of variables. Then we present some experimental results to demonstrate the practical

applicability of integer programming to obtain low-error factorisations. More specifi-

cally we detail our pricing strategies during the column generation process and present

a thorough comparison of models MIPF, MIP(ρ) and CIP on synthetic and real world

datasets. Our code and data can be downloaded from [59].

10.1 Column generation

It is clearly not practical to solve the master integer program MIP(ρ) or its LP relax-

ation MLP(ρ) explicitly as the formulation has an exponential number of variables.

Column generation (CG) is a well-known technique to solve large LPs iteratively by

only considering the variables which have the potential to improve the objective func-

tion [7]. The column generation procedure is initialised by solving a Restricted Master

LP (RMLP) which has a small subset of the variables of the full problem. The next

step is to identify a missing variable with negative reduced cost to be added to RMLP.

To avoid considering all missing variables explicitly, a pricing problem is formulated

and solved. The solution of the pricing problem either returns a variable with nega-

tive reduced cost and the procedure is iterated; or proves that no such variable exists

and hence the solution of RMLP is optimal for the full MLP. In this section, we detail

how CG technique can be used to solve the LP relaxation of MIP(ρ) iteratively.
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Each Restricted MLP(ρ) (RMLP(ρ)) has the same number of constraints as the

full MLP(ρ) and all variables ξi,j for (i, j) ∈ supp1(X) but it only has a small subset

of variables qr for r ∈ R′ ⊂ Rm,n where |R′| � |Rm,n|. Recall that each variable qr

corresponds to a rank-1 binary matrix r ∈ Rm,n which determines the coefficients of

qr in the constraints as well as the objective function. Hence at every iteration of the

CG procedure we either need to find a rank-1 binary matrix for which the associated

variable has a negative reduced cost, or, prove that no such matrix exists.

The pricing problem. At the first iteration of CG, RMLP(ρ) may be initialised

with R′ = ∅ or can be warm started by identifying a few rank-1 matrices in Rm,n

using a heuristic. After solving the RMLP(ρ) to optimality via a standard LP solver,

one obtains an optimal dual solution [p∗, µ∗] to the current RMLP(ρ). To identify

a missing variable qr that has negative reduced cost, we solve the following pricing

problem (PP):

(PP) ω(µ∗,p∗) = µ∗ −max
a,b,y

∑
(i,j)∈supp1(X)

p∗ijyi,j − ρ
∑

(i,j)∈supp0(X)

yi,j

s.t. yi,j = aibj, i ∈ [n], j ∈ [m],

ai, bj ∈ {0, 1}, i ∈ [n], j ∈ [m].

PP may be formulated as an integer linear program (IPPP) by using McCormick

envelopes [82]. The objective of PP depends on the current dual solution [p∗, µ∗] and

its optimal solution corresponds to a rank-1 binary matrix ab> = r ∈ Rm,n whose

corresponding variable qr in MLP(ρ) has the smallest reduced cost. If ω(µ∗,p∗) ≥ 0,

then the current RMLP(ρ) does not have any missing variables with negative reduced

cost and consequently the current solution of RMLP(ρ) is optimal for MLP(ρ). If

ω(µ∗,p∗) < 0, then the variable qr associated with the rank-1 binary matrix r = ab>

is added to the next RMLP(ρ) and the procedure is iterated. Moreover, any feasible

solution to PP with a negative reduced cost can (also) be added to the RMLP(ρ) to

continue the procedure. CG terminates with a proof of optimality if at some iteration

we have ω(µ∗,p∗) ≥ 0.

We mention that the pricing problem is essentially as hard as CIP1, since it has

the same exact formulation except for the different linear objective. This shows that

we can expect that solving PP to optimality will be a bottle neck in our column

generation approach. On the other hand, via our column generation approach we can

compute a rank-k factorisation by reducing it to solving a series of problems that are

equivalent to the rank-1 case.
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Solving the master integer program. After the CG process, if the optimal

solution of MLP(ρ) is integral, then it also is optimal for MIP(ρ). However, if it is

fractional, then this solution only provides a lower bound on the optimal value of

MIP(ρ). In this case we obtain an integer feasible solution by solving a Restricted

MIP(ρ) (RMIP(ρ)) over the rank-1 binary matrices generated by the CG process

applied to MLP(ρ). This integer feasible solution is optimal for MIP(ρ) provided

that the objective value of RMIP(ρ) is equal to the ceiling of the objective value of

MLP(ρ). If this is not the case, one needs to embed CG into a branch-and-bound

tree [80] to solve MIP(ρ) to optimality, which is a relatively complicated process and

we do not consider it in this thesis.

Computing lower bounds. Note that even if the CG procedure is terminated

prematurely, one can still obtain a lower bound on MLP(ρ) and therefore on MIP(ρ)

by considering the dual of MLP(ρ). Let the objective value of of the current RMLP(ρ)

be

ζRMLP(ρ)(X, k) =
∑

(i,j)∈supp1(X)

ξ∗i,j + ρ
∑

(i,j)∈supp0(X)

∑
r∈Rm,n

(i,j)

q∗r =
∑

(i,j)∈supp1(X)

p∗i,j − k · µ∗

where [ξ∗, q∗] is the optimal solution of RMLP(ρ) and [p∗, µ∗] is the corresponding

optimal dual solution which does not necessarily satisfy all of the constraints (9.4.6)

for MDP(ρ). Now assume that we solve PP to optimality and obtain a rank-1 binary

matrix with a negative reduced cost, ω(µ∗,p∗) < 0. In this case, we can construct

a feasible solution [p, µ] to MDP(ρ) by setting p := p∗ and µ := µ∗ − ω(µ∗,p∗) and

obtain the following bound on the optimal value ζMLP(ρ)(X, k) of MLP(ρ),

ζMLP(ρ)(X, k) ≥
∑

(i,j)∈supp1(X)

pi,j − k µ

=
∑

(i,j)∈supp1(X)

p∗i,j − k (µ∗ − ω(µ∗,p∗))

= ζRMLP(ρ)(X, k) + k ω(µ∗,p∗). (10.1.1)

If we do not have the optimal solution to PP but have a lower bound ω(µ∗,p∗) on it,

ω(µ∗,p∗) can be replaced by ω(µ∗,p∗) in Equation (10.1.1) and the bound on MLP(ρ)

still holds. Furthermore, this lower bound on MLP(ρ) naturally provides a valid lower

bound on MIP(ρ), thus giving us a bound on the optimality gap.
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Column generation for MLPF The CG approach is described above as applied

to the LP relaxation of MIP(ρ). To apply CG to MLPF only a small modification

needs to be done. The Restricted MLPF provides dual variables for constraints (9.2.3)

which are used in the objective of PP for coefficients of yi,j for (i, j) ∈ supp0(X).

We note that CG cannot be used to solve the LP relaxation of the strong for-

mulation of MIPF in which constraints (9.2.3) are replaced by exponentially many

constraints qr ≤ zi,j for all r ∈ Rm,n
(i,j) and (i, j) ∈ supp0(X). This is due to the fact that

CG could cycle and generate the same column over and over again. For example, con-

sider applying CG to solve the strong formulation of MLPF and start with the rank-1

binary matrix of all 1s as the first column associated with variable q1. The objective

value of the corresponding Restricted MLPF would be ζ
(1)
RMLP(X, k) = 0 + | supp0(X)|

for the solution vector [ξ(1), z(1), q(1)] = [0,1, 1] as all entries of the input matrix are

covered. Adding the same rank-1 binary matrix of all 1s in the next iteration and

setting [q1, q2] = [1
2
, 1

2
], allows us to keep ξ(2) = 0 but reduce the value of z(2) to 1

2
1

to obtain an objective value ζ
(2)
RMLP(X, k) = 0 + 1

2
| supp0(X)|. Therefore, repeatedly

adding the same matrix of all 1s for t iterations, the objective function would become

ζ
(t)
RMLP(X, k) = 0 + 1

t
| supp0(X)| for the solution vector [ξ(t), z(t), q(t)] = [0, 1

t
1, 1

t
1].

Consequently, as t → ∞ we would have ζ
(t)
RMLP(X, k) → 0 and during the column

generation process we repeatedly generate the same rank-1 binary matrix.

Heuristics for the pricing problem Generating rank-1 binary matrices with

negative reduced cost efficiently is at the heart of the CG process. The pricing

problem for MLP(ρ) can be formulated as a Bipartite Binary Quadratic Program

(BBQP),

(QPPP) ω(µ∗,p∗) = µ∗ − max
a∈{0,1}m,b∈{0,1}n

a>Hb. (10.1.2)

with Hi,j = p∗i,j ∈ [0, 1] for (i, j) ∈ supp1(X), Hi,j = −ρ for (i, j) ∈ supp0(X) and

Hi,j = 0 for (i, j) 6∈ Ω(X). Since any rank-1 binary matrix with negative reduced cost

is valid to be added as a column to the next RMLP, we may use Algorithm 3 and

its modifications mentioned in Section 8.3.2 to provide a warm start to PP at every

iteration of CG.

A heuristic for k-BMF. In addition, in some cases it is useful to add a few

columns for MLP(ρ) before starting the CG process so that set R′ is not completely

empty. In Algorithm 4, we give a new heuristic for k-BMF which sequentially finds

k rank-1 binary matrices using the greedy algorithm for BBQP as a subroutine. We

refer to this heuristic as the k-Greedy method.
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Algorithm 4: Greedy algorithm for k-BMF (k-Greedy)

Input: X ∈ {0, 1, ?}m×n, k ∈ Z++.
Set W ∈ {−1, 0, 1}m×n to Wi,j = 2xi,j − 1 for (i, j) ∈ Ω(X) and Wi,j = 0
otherwise.
for ` ∈ [k] do
a, b = BBQP(W) // compute a 1-BMF via Algorithm 3

A:,` = a
B`,: = b>

W [ab> == 1] = 0 // set entries of W to zero that are covered

end
Output: A ∈ {0, 1}m×k, B ∈ {0, 1}k×n

10.2 Experiments

10.2.1 Data

If X contains rows (or columns) of all zeros, deleting these rows (or columns) leads to

an equivalent problem whose solution A and B can easily be translated to a solution

for the original problem by inserting a row of zeros to A (respectively a column of

zeros to B) in the corresponding place. In addition, if X contains duplicate rows or

columns, by Lemma 9.4.1 there is an optimal rank-k factorisation which has the same

row-column repetition pattern as X. Hence we solve the problem on a smaller matrix

X′ which is obtained from X by keeping only one copy of each row and column, and

use an updated objective function in which every entry is weighted proportional to

the number of rows and columns it is contained in X.

Synthetic data. We build our dataset of binary matrices with prescribed sparsity

and Boolean rank as follows. To get a matrix X ∈ {0, 1}m×n with Boolean rank at

most κ, first we randomly generate two binary matrices Ã, B̃ of dimension m×κ and

κ × n, then compute their Boolean product to get X. This ensures X has Boolean

rank at most κ. To obtain a certain sparsity for X, we control the probability of

entries of Ã, B̃ being zero. More specifically, if we generate ãi,`, b̃`,j to be zero with

probability p, then xi,j =
∨κ
`=1 ãi,`b̃`,j is zero with probability (1− (1− p)2)κ. Hence,

to obtain X with σ percent of zeros, we need to generate entries of Ã, B̃ to be zero

with probability p = 1−
√

1− (σ/100)
1
κ .

We generate matrices as described above with n = 20 columns and κ = 10. The

number of rows (m) is set to be 20, 35 or 50. For each of the three dimensions

(20 × 20, 35 × 20, 50 × 20), we generate 10 sparse matrices with 75% zeroes and
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10 normal matrices with 50% zeroes, corresponding to 10 different seed settings in

the random number generation. We call this initial set of 2 · 3 · 10 matrices the

clean matrices. Next, we create a set of noisy matrices from the clean matrices

by randomly flipping 5% of the entries of each matrix. The noisy matrices are not

necessarily of Boolean rank at most κ = 10, but they are at most 0.05 ·m · n squared

Frobenius distance away from a Boolean rank 10 matrix. Therefore, our test bed

consists of 120 matrices corresponding to 2 noise level settings (noisy or clean), 2

sparsity levels (sparse or normal), 3 dimensions (20 × 20, 35 × 20, 50 × 20) and 10

random seeds. Applying the preprocessing steps to our synthetic dataset achieves the

largest dimension reduction on clean matrices, while the dimension of noisy matrices

scarcely changes. A table summarising the parameters used to generate our data can

be found in Appendix B.1.

Real world data. We work with eight real world categorical datasets that were

downloaded from online repositories [31, 64]. In general if a dataset has a categorical

feature C with N discrete options vj, (j ∈ [N ]), we convert feature C into N binary

features Bj (j ∈ N) so that if the i-th sample takes option vj for C that is (C)i =

vj, then we have (Bj)i = 1 and (B`)i = 0 for all ` 6= j ∈ [N ]. This technique

of binarisation of categorical columns has been applied in [61] and [5]. If a row i

has a missing value in the column of feature C, we leave the corresponding binary

feature columns with missing values in row i. Table 10.1 shows a short summary

of the resulting full-binary datasets used, in-depth details on converting categorical

columns into binary, missing value treatment and feature descriptions can be found

in Appendix B.2.

zoo tumor hepatitis heart lymp audio apb votes
m× n 101 × 17 339 × 24 155× 38 242× 22 148×44 226 × 92 105× 105 435 ×16
# missing 0 670 334 0 0 899 0 392
%1s 44.3 24.3 47.2 34.4 29.0 11.3 8.0 49.2

Table 10.1: Summary of binary real world datasets

10.2.2 Testing the computational approach to exponential
formulation I.

Since the efficiency of CG greatly depends on the speed of generating columns, let

us illustrate the speed-up gained by using heuristics to solve the pricing problem. At

each iteration of CG procedure, 30 variants of Algorithm 3 are computed to obtain an
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initial feasible solution to the pricing problem. The 30 variants of the greedy algorithm

use the original and revised ordering, their transpose and perturbed version and 22

random orderings. All greedy solutions are improved by the alternating heuristic until

no further improvement is found.

Under exact pricing, the best heuristic solution is used as a warm start and IPPP

is solved to optimality at each iteration using CPLEX [23]. In simple heuristic (heur)

pricing, if the best heuristic solution to PP has negative reduced cost then it is directly

added to the next RMLP(ρ). If at some iteration, the best heuristic column does not

have negative reduced cost, CPLEX is used to solve IPPP to optimality for that

iteration. The multiple heuristic (heur multi) pricing strategy is a slight modification

of the simple heuristic strategy, in which at each iteration all columns with negative

reduced cost are added to the next RMLP(ρ).

Figure 10.1 indicates the differences between pricing strategies when solving MLP(1)

via CG for k = 5, 10 on the zoo dataset. The primal objective value of MLP(1) (de-

creasing curve) and the value of the dual bound (increasing curve) computed using

the formula in Equation (10.1.1) are plotted against time. Sharp increases in the dual

bound for heuristic pricing strategies correspond to iterations in which CPLEX was

used to solve IPPP, as for the evaluation of the dual bound on MLP(1) a lower bound

on ω(µ∗,p∗) is needed which heuristic solutions do not provide. While we observe

a tailing off effect [80] on all three curves, both heuristic pricing strategies provide

a significant speed-up from exact pricing, adding multiple columns at each iteration

being the fastest.

Figure 10.1: Comparison of pricing strategies for solving MLP(1) on the zoo dataset

In order for CG to terminate with a certificate of optimality, at least one pricing

problem has to be solved to optimality. Unfortunately for larger datasets we cannot

expect this to be achieved in a short amount of time. Therefore, we change the

multiple heuristic pricing strategy to get a pricing strategy that we use in the rest of
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the experiments as follows. We impose an overall fixed time limit on the CG process

and use the barrier method in CPLEX as the LP solver for RMLP at each iteration.

At each iteration of CG, we add up to 2 columns with the most negative reduced cost

to the next RMLP. If at an iteration, heuristics for PP do not provide a column with

negative reduced cost and CPLEX has to be used to improve the heuristic solution,

we do not solve IPPP to optimality but abort CPLEX after 25 seconds if a column

with negative reduced cost has been found. While these modifications result in a

speed-up, they reduce the chance of obtaining a strong dual bound. In case we wish

to focus more on computing a stronger dual bound on MLP, we may continue solving

IPPP via CPLEX even when a heuristic negative reduced cost solution is available.

10.2.2.1 MLP(1) vs MLPF

In this section we compare the LP relaxations of MIP(1) and MIPF. According to

Proposition 9.4.3 the optimal solution of MLPF is equivalent to MLP( 1
k
) and hence

we solve MLP( 1
k
) which has fewer variables and constraints than MLPF. To solve

MLP(1) and MLP( 1
k
), we start off from 0 rank-1 binary matrices so R′ = ∅ in the

first RMLP and set a total time limit of 600 seconds, so we either solve MLP to

optimality under 600 seconds or run out of time and compute the gap between the

last RMLP and the best dual bound MDP according to formula

100 · ζRMLP(X, k)− ζMDP(X, k)

ζRMLP(X, k)
.

As MLP(1) and MLP( 1
k
) correspond to the LP relaxations of MIP(1) and MIPF with

integral objective coefficients, any fractional dual bound may be rounded up to give

a valid bound on the master IP. Therefore, we stop CG whenever the ceiling of the

dual bound reaches the objective value of RMLP.

Figure 10.2: Time taken in seconds to solve MLP(1) and MLP( 1
k
) via CG on synthetic

data
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Figure 10.2 shows the time taken in seconds on a logarithmic scale to solve MLP(1)

and MLP( 1
k
) via CG for k = 2, 4, . . . , 10 on the synthetic matrices. Each line corre-

sponds to the average taken over 10 instances with the same dimension, sparsity and

noise level. Blue lines correspond to matrices of dimension 20 × 20, red to 35 × 20

and green to 50× 20. Solid lines are used for MLP(1) and dashed for MLP( 1
k
). First,

we observe that it is significantly faster to solve both MLPs on sparse and clean ma-

trices as opposed to normal and noisy ones of the same dimension. Preprocessing is

more effective in reducing the dimension for clean matrices in comparison to noisy

ones (see Table B.1 in Appendix B.1) which explains why noisy instances take longer.

In addition, both MLP(1) and MLP( 1
k
) have a number of variables and constraints

directly proportional to non-zero entries of the input matrix, hence a sparse input

matrix requires a smaller problem to be solved. Second, we see that k = 10 are

solved somewhat faster. This can be explained by all matrices in our test bed be-

ing generated to have Boolean rank at most 10. For a rank-10 factorisation of clean

matrices without noise we get 0 factorisation error under both models MIP(1) and

MIPF and hence LP relaxation objective value 0. For noisy matrices we observe the

error to be in line with our expectation of 0.05 · m · n. We observe that in some

cases it takes significantly longer to solve MLP( 1
k
), and in all ten instances of 50× 20

normal -noisy matrices MLP( 1
k
) for k = 6 runs out of the time budget of 600 sec. In

the experiments, we see the amount of time CG takes is directly proportional to the

number of columns generated, MLP( 1
k
) generating significantly more columns than

MLP(1).

10.2.2.2 Obtaining integral solutions

Once we obtain some rank-1 binary matrices (i.e. columns) via CG applied to a

master LP, we can obtain an integer feasible solution by solving either of the master

IPs over the columns available. Here we explore obtaining integer feasible solutions

by solving MIP(1) and MIPF over the columns generated by formulations MLP(1)

and MLP( 1
k
). We use CPLEX as our integer program solver and set a total time limit

of 300 seconds.

Figure 10.3 shows the factorisation error in ‖ · ‖2
F of integer feasible solutions

obtained by solving MIP(1) over columns generated by MLP(1) and MLP( 1
k
). As

previously, each line corresponds to the average taken over 10 matrices with same

dimension, sparsity and noise level. Solid lines are used to denote where the columns

used were generated by MLP(1) and dashed where by MLP( 1
k
). Comparing the error

values of the dashed and solid lines we draw a crucial observation: columns generated
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Figure 10.3: Factorisation error in ‖·‖2
F of integral solutions by MIP(1) from columns

by MLP(1) and MLP( 1
k
)

by MLP(1) seem to be a better basis for obtaining low-error integer feasible solutions

than columns by MLP( 1
k
). We suspect this is the case as in the majority of rank-k

factorisations most entries are only covered by a few rank-1 binary matrices whereas

MLP( 1
k
) favours rank-1 matrices which heavily cover 0 entries of the input matrix.

This is because the coefficient in MLP( 1
k
)’s objective function corresponding to a zero

entry at position (i, j) is only 1
k
×(number of rank-1 matrices covering (i, j)), hence it

is cheaper for MLP( 1
k
) to cover a 0 by a few (less than k) rank-1 matrices than to leave

any 1s uncovered. We also conducted a set of experiments using formulation MIPF

and we see that the factorisation error when using formulation MIP(1) to obtain the

integral solutions is extremely close to that of MIPF, see Appendix B.3 Tables B.2

and B.3 for the precise difference in the factorisation error between the two master

IPs.

Figure 10.4: Time taken in seconds to solve MIP(1) and MIPF on columns generated
by MLP(1)

Figure 10.4 shows the time taken to solve the master IPs on columns generated

by MLP(1). We observe that MIP(1) takes notably faster to solve than MIPF and

on most normal-noisy matrices MIPF runs out of the time budget of 300 seconds.

Solving both master IPs on columns by MLP( 1
k
) also shows us that while solving

MIP(1) over a larger set of columns adds only a few seconds for most instances,

MIPF runs out of the time budget of 300 secs in about half the cases, see Appendix

Table B.3. These observations suggest using MIP(1) to find integer feasible solutions

175



in the future as the solution quality is extremely close to that of MIPF but at a

fraction of computational effort.

10.2.3 Accuracy and speed of the IP formulations

In this section we computationally compare the integer programs introduced in Sec-

tion 9. CIP due to its polynomial size can be directly given to a general purpose IP

solver like CPLEX and we set a time limit of 600 seconds on its running time. We

expect solution times for CIP to grow proportional to k and density of X according

to Proposition 9.1.1. Similarly, we may try to attack the exponential formulation

EIP directly by CPLEX. Since however EIP requires the complete enumeration of 2n

binary vectors for an input matrix X of size m × n we can only solve its root LP

under 600 seconds in a very few cases. For these few cases however, we observe the

objective value of ELP to agree with MLP( 1
k
), which gives an experimental confir-

mation of Proposition 9.3.1. In the following experiments, formulation MIPF is used

on columns generated by MLP( 1
k
), while MIP(1) on columns by MLP(1). The final

solution of MIP(1) is evaluated under the original ‖ · ‖2
F objective and that error is

reported. As previously, the master LPs are solved with a time limit of 600 seconds

and the master IPs with an additional time limit of 300 seconds.

data k=2 k=5 k=10
(n-sparsity-noise) MIPF MIP(1) CIP MIPF MIP(1) CIP MIPF MIP(1) CIP
20-sparse-clean 49.6 47.4 47.4 20.8 16.6 16.7 0.0 0.0 0.0
20-sparse-noisy 64.0 59.5 59.3 42.6 30.3 30.7 11.2 10.2 10.3
20-normal-clean 75.0 70.0 68.7 30.6 27.7 26.5 0.3 0.3 0.0
20-normal-noisy 84.6 78.9 77.2 47.3 40.2 40.1 11.2 10.7 11.2
35-sparse-clean 90.9 84.7 84.7 39.1 34.5 34.9 0.1 0.0 0.0
35-sparse-noisy 113.4 107.5 106.9 84.4 60.5 61.7 28.4 23.3 27.1
35-normal-clean 134.2 125.0 121.7 64.5 54.1 53.4 0.0 0.0 0.0
35-normal-noisy 153.6 143.1 139.1 101.7 80.3 81.7 31.1 25.5 31.1
50-sparse-clean 136.0 126.1 125.6 61.4 50.6 51.5 0.1 0.0 0.0
50-sparse-noisy 166.2 156.5 156.7 135.0 89.8 93.9 49.6 36.7 41.4
50-normal-clean 215.1 198.0 194.3 106.1 91.0 95.0 0.0 0.0 0.0
50-normal-noisy 237.2 218.6 214.2 168.6 123.9 123.4 62.2 44.3 61.3

Table 10.2: Factorisation error in ‖ · ‖2
F of solutions obtained via formulations MIPF,

MIP(1) and CIPF

Table 10.2 shows the factorisations error in ‖ · ‖2
F obtained by MIPF, MIP(1) and

CIP and Table 10.3 shows the corresponding solution times in seconds. Each row

of Table 10.2 and 10.3 corresponds to the average of 10 synthetic matrices of the

same size, sparsity and noise. The lowest error results are indicated in boldface. We
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data k=2 k=5 k=10
(n-sparsity-noise) MIPF MIP(1) CIP MIPF MIP(1) CIP MIPF MIP(1) CIP
20-sparse-clean 1.1 0.4 1.6 4.6 0.4 169.7 0.7 0.4 1.9
20-sparse-noisy 2.7 0.6 21.8 233.7 0.8 601.6 10.9 1.8 602.9
20-normal-clean 15.2 3.5 56.2 303.2 5.4 600.3 3.3 1.0 15.8
20-normal-noisy 31.3 5.4 295.5 336.6 17.6 600.8 65.2 8.0 602.0
35-sparse-clean 4.0 0.8 17.3 108.4 0.9 449.8 1.9 0.5 5.3
35-sparse-noisy 12.1 1.9 147.8 514.0 6.4 602.3 275.1 6.8 605.2
35-normal-clean 76.0 14.2 188.6 378.5 21.8 600.8 23.2 1.6 80.6
35-normal-noisy 195.3 31.8 589.7 739.3 132.1 600.7 394.7 45.3 602.4
50-sparse-clean 2.6 0.6 21.9 176.3 1.1 519.9 3.8 0.7 12.9
50-sparse-noisy 28.1 2.2 285.4 827.7 6.6 602.3 523.9 6.9 605.1
50-normal-clean 362.0 46.8 509.9 692.1 153.6 602.1 187.2 2.5 139.4
50-normal-noisy 601.6 194.8 578.2 903.9 341.1 601.0 649.8 146.2 601.6

Table 10.3: Time in seconds to obtain solutions in Table 10.2 via formulations MIPF,
MIP(1) and CIPF

observe that MIP(1) provides the lowest error factorisation in most cases, but CIP

gives the lowest error when only looking at k = 2. The significantly higher error

values of MIPF are due to the lower quality columns generated by MLP( 1
k
) on which

it is solved and also partly due to the fact that it is slower to solve MIPF than solving

MIP(1). We emphasise that we do not do branch-and-price when solving MIP(1) or

MIPF. Table 10.3 shows that MIP(1) is the fastest in all cases, while CIP runs out

of its time limit on all noisy instances for k = 5, 10. In conclusion, CIP provides very

accurate solutions for k = 2 but it is slower to solve than MIP(1), while for larger k’s

MIP(1) dominates in both accuracy and speed.

10.2.4 Binary matrix completion

In this section we explore how successful our approach is at recovering missing entries

of incomplete binary matrices. We create an incomplete dataset of our synthetic

matrices by deleting 5, 10, . . . , 30% of the entries of each matrix. This way, after

computing a rank-k factorisation of the incomplete matrix, we can easily compare to

the corresponding original matrix to see how many of the entries we have recovered

successfully. Since our synthetic matrices are generated to be of Boolean rank at most

10, we cannot expect to recover all the entries by a rank-k completion with k < 10

and thus we perform the experiments with k = 10.

Figure 10.5 shows the reconstruction percentage against the percentage of missing

entries when solving MIP(1) on columns generated by MLP(1) on the incomplete

matrices. As previously, the three colours correspond to dimensions of the matrices:
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green to 50 × 20, red to 35 × 20 and blue to 20 × 20. We define the percentage of

reconstruction as 100 · (1 − ‖X −A ◦B‖2
F/‖X‖2

F ) where X is the original complete

matrix and A ◦B is the rank-k factorisation of the incomplete matrix. As expected

the recovery percentage decreases with the percentage of missing entries and clean

matrices are better recovered than noisy ones. All in all, we see a very high percentage

of the entries can be recovered by MIP(1).

Figure 10.5: Rank-10 binary matrix completion of artificial matrices with 5 − 30%
missing entries

10.2.5 Comparing integer programming approaches against
heuristics

In this section, we compare our integer programming approaches against the most

widely used k-BMF heuristics on real-world datasets. The heuristic algorithms we

evaluate include the ASSO algorithm [83, 84], the alternating iterative local search

algorithm (ASSO++) of [5] which uses ASSO as a starting point, and the penalty

objective formulation (pymf) of [108] via the implementation of [97]. We also compute

rank-k NMF, scale rank-1 factors and then binarise them to obtain a k-BMF. The

exact details and parameters used in the computations can be found in Appendix

B.4.

We solve CIP using CPLEX with a time limit of 20 mins and provide the heuristic

solution of k-Greedy as a warm start to it. The column generation approach results

are obtained by generating columns for 20 mins using formulation MLP(1) with a

warm start of initial rank-1 binary matrices obtained from k-Greedy, then solving

MIP(1) over the generated columns with a time limit of 10 mins. Table 10.4 shows

the factorisation error in ‖ · ‖2
F after evaluating the above described methods on all

real-world datasets without missing entries for k = 2, 5, 10. The best result for each

instance is indicated in boldface. We observe that CG provides the strictly smallest

error for 8 out of 12 instances.
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MIP(1) CIP ASSO++ k-Greedy pymf ASSO NMF

k=2

zoo 272 271 276 323 274 367 281
heart 1185 1187 1187 1187 1241 1251 1267
lymp 1192 1184 1202 1201 1225 1352 1272
apb 776 776 776 776 794 778 808

k=5

zoo 126 129 133 218 153 354 140
heart 737 738 738 738 813 887 782
lymp 982 1026 1039 1053 1067 1484 1103
apb 684 688 694 688 733 719 721

k=10

zoo 39 72 55 175 80 377 51
heart 425 529 419 565 483 694 450
lymp 728 829 812 859 952 1525 821
apb 573 605 591 606 611 661 617

Table 10.4: Comparison of factorisation error in ‖ · ‖2
F for two IP based methods and

five k-BMF heuristics

While integer programming based approaches are able to handle missing entries by

simply setting the objective coefficients of the missing entries to 0, the k-BMF heuris-

tics ASSO, ASSO++ and pymf cannot so simply be adjusted. Non-negative matrix

factorisation however, has an available implementation that can handle missing en-

tries [69, 70]. Our next experiment compares our integer programming approaches

against k-Greedy and NMF on the real datasets that have missing entries. Table

10.5 shows the results with the lowest error results indicated in boldface. For k = 2,

k-Greedy provides very accurate solutions which MIP(1) and CIP fail to improve on

in 3 out of 4 instances. For k = 5, 10 however, MIP(1) produces notably lower error

factorisations than the other methods.
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MIP(1) CIP k-Greedy NMF

k=2

tumor 1352 1352 1352 1529
hepatitis 1264 1344 1416 1304
audio 1419 1419 1419 1876
votes 1246 1246 1246 1268

k=5

tumor 962 993 1004 1229
hepatitis 1138 1229 1238 1172
audio 1064 1078 1094 1634
votes 779 853 853 900

k=10

tumor 514 632 646 851
hepatitis 907 1048 1056 1013
audio 765 881 881 1580
votes 240 701 706 815

Table 10.5: Comparison of factorisation error in ‖·‖2
F for real-world data with missing

entries
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Chapter 11

Conclusions

In Part II. of this thesis, we investigated the rank-k binary matrix factorisation prob-

lem from an integer programming perspective. We analysed a compact and two

exponential size integer programming formulations for the problem and made a com-

parison on the strength of the formulations’ LP-relaxations. We introduced a new

objective function, which slightly differs from the traditional squared Frobenius ob-

jective in attributing a weight to zero entries of the input matrix that is proportional

to the number of times the zero is erroneously covered in a rank-k factorisation. In

addition, we discussed a computational approach based on column generation to solve

one of the exponential size formulations and reported several computational experi-

ments to demonstrate the applicability of our formulations on real world and artificial

datasets.

Our column generation approach is rather computationally challenging and the

bottleneck is to compute a tight lower bound on the pricing problem which is needed

to determine the master dual bound in Equation (10.1.1). Therefore, it seems that

larger datasets are currently out of reach for our methods. If however, one needs

an accurate factorisation on moderate size matrices and not a tight optimality gap,

our real word data experiments show that our methods provide the lowest error

factorisations in most instances with the 600 seconds time limit.

To be able to obtain tighter master dual bounds, future research directions could

include developing faster exact algorithms for the pricing problem. In addition,

considering semidefinite programming relaxations of the pricing problem to obtain

stronger lower bounds could be an interesting avenue to explore. Once, computing

good quality lower bounds on the pricing problem is faster, a full branch-and-price

implementation would be interesting to explore.
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Appendix A

A.1 Minimally non-superfirm interval matrices

We examined several interval matrices with an odd hole in their rectangle cover

graph and observed that all of them contained a D4 submatrix. Therefore, we state

the following conjecture.

Conjecture A.1.1. D4 is the only minimally non-superfirm interval matrix.

The below simple result of odd holes in the rectangle cover graph of interval ma-

trices may be useful for the proof of this conjecture. Let us start with an observation.

Observation A.1.2. Let X be an interval matrix with (i1, j1), . . . , (i4, j4) ∈ supp1(X)

such that the column indices satisfy j1 ≤ j2 ≤ j3 ≤ j4. In the rectangle cover graph

G(X), if (i1, j1) is adjacent to (i3, j3) and (i2, j2) is adjacent to (i4, j4), then (i2, j2) is

adjacent to (i3, j3).

Proof. By the interval property we have

j1 j2 j3 j4


xi1,j1 . . . 1

xi2,j2 . . . 1

1 . . . xi3,j3
1 . . . xi4,j4

.

If the row or column indices are not distinct then the observation holds in an even

simpler way.

Lemma A.1.3. Let C be an n-hole n ≥ 4 in the rectangle cover graph of an interval

matrix X′. Let X be the submatrix of X′ indexed by {i : (i, j) ∈ C}×{j : (i, j) ∈ C}.

(1.) Then X has an all 1s row.
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(2.) If X does not have any repeated rows, then the first and last columns of X both

have exactly two 1s.

Proof. (1.) By duplicating rows and columns of X, we may assume that X is of

dimension n × n and C contains exactly one vertex from each row and column of

X. Note that row-column duplication does not alter interval form if the column

duplicates are placed directly next to the column they are copied from and it cannot

introduce a row of all 1s. Let v1, . . . , vn be the vertices of C such that vj is in column

j of X.

First, suppose that v1 and vn are not adjacent in G(X). Let v` and vk be the two

neighbours of v1 in C, with ` < k < n. Let T be all the vertices of C which are

(1) to the left of vk and (2) are on a path from v1 through v`. Since k 6= n, there

must exist a vertex vt ∈ T which has a neighbour vp in C with k < p. Then we have

v1, vt, vk, vp ∈ supp1(X) with column indices 1 < t < k < p, hence by Observation

A.1.2 vt is adjacent to vk in G(X). However, then [vt, vk] is a chord of C which is a

contradiction. Therefore, v1 and vn must be neighbours in C. Then by the interval

form, we have
1 ... n[ ]
v1 . . . 1

1 . . . vn
.

Therefore, if v1 = (i1, 1) and vn = (in, n), rows i1 and in are equal to the all 1s row

and the unduplicated form of X has at least one all 1s row.

(2.) Now let X not have any row duplicates. Observe that if X with row duplicates

contains a copy of C, then X without row duplicates also does. By Observation 4.2.1,

X has at least two 1s in each row and column. In addition, by part (1.) of this proof

X has an all 1s row and let this be the first row of X. Let k be the number of columns

of X. From part (1.) we know that (1, 1) and (1, k) are the leftmost and rightmost

vertices of C respectively. Let v2, . . . , vn−1 be the rest of the vertices of C with v2

being adjacent to (1, 1) and vn−1 to (1, k). Then all the rows i that contain vertices

v3, . . . , vn−1 must satisfy xi,1 = 0 as row 1 is an all 1s row and otherwise a chord

appears between v1 and any vertex in row i. Similarly, all the rows i that contain

vertices v2, . . . , vn−2 must satisfy xi,1 = 0. Therefore, column 1 and column k both

have exactly two 1s, one in the first row and the second in the row of v2 and vn−1,

respectively.
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Appendix B

B.1 Synthetic data

Table B.1 gives a summary of the parameters used to generate our synthetic dataset.

For a synthetic binary matrix X, m× n is the dimension of X, κ is the Boolean rank

which was used to generate X, and m′× n′ is the dimension obtained after removing

zero and duplicate row and columns of X. Our synthetic data can be downloaded

from [59].

(n-sparsity-noise) m× n κ 0s% noise% #instances m′ × n′
20-sparse-clean

20 × 20 10

75
0

10

14× 15
20-sparse-noisy 5 19× 19
20-normal-clean

50
0 18× 18

20-normal-noisy 5 19× 20
35-sparse-clean

35 × 20 10

75
0

10

22× 15
35-sparse-noisy 5 31× 19
35-normal-clean

50
0 29× 18

35-normal-noisy 5 34× 20
50-sparse-clean

50 × 20 10

75
0

10

30× 15
50-sparse-noisy 5 45× 20
50-normal-clean

50
0 40× 18

50-normal-noisy 5 48× 20

Table B.1: Parameters of the synthetic dataset

B.2 Real world data

Our binarised real world data is available for download at [59]. The following datasets

were used in the experiments:

• The Zoo dataset (zoo) [35] describes 101 animals with 16 characteristic features.

All but one feature is binary. The categorical column which records the number
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of legs an animal has, is converted into two new binary columns indicating if

the number of legs is less than or equal or greater than four. The size of the

resulting fully binary matrix is 101× 17.

• The Primary Tumor dataset (tumor) [58] contains observations on 17 tumour

features detected in 339 patients. The features are represented by 13 binary

variables and 4 categorical variables with discrete options. The 4 categorical

variables are converted into 11 binary variables representing each discrete op-

tion. Two missing values in the binary columns are left as missing values. The

final dimension of the binary matrix is 339× 24 with 670 missing values.

• The Hepatitis dataset (hepat) [43] consists of 155 samples of medical data of

patients with hepatitis. The 19 features of the dataset can be used to predict

whether a patient with hepatitis will live or die. 6 of the 19 features take

numerical values and are converted into 12 binary features corresponding to

options: less than or equal to the median value, and greater than the median

value. The column that stores the sex of patients is converted into two binary

columns corresponding to labels man and female. The remaining 12 columns

take values yes and no and are converted into 24 binary columns. The missing

values in the raw dataset are left as missing in the binary dataset as well. The

final dimension of the binary matrix is 155× 38 with 334 missing values.

• The SPECT Heart dataset (heart) [20] describes cardiac Single Proton Emission

Computed Tomography images of 267 patients by 22 binary feature patterns. 25

patients’ images contain none of the features and are dropped from the dataset,

hence the final dimension of the binary matrix is 242× 22.

• The Lymphography dataset (lymp) [57] contains data about lymphography ex-

amination of 148 patients. 8 features take categorical values and are expanded

into 33 binary features representing each categorical value. One column is nu-

merical and we convert it into two binary columns corresponding to options:

less than or equal to median value, and larger than median value. The final

dimension of the fully binary matrix is 148× 44.

• The Audiology Standardized dataset (audio) [96] contains clinical audiology

records on 226 patients. The 69 features include patient-reported symptoms,

patient history information, and the results of routine tests which are needed for

the evaluation and diagnosis of hearing disorders. 9 features that are categorical
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valued are binarised into 34 new binary variables indicating if a discrete option

is selected. The missing values in the raw dataset are left as missing in the

binary dataset as well. The final dimension of the binary matrix is 226 × 92

with 899 missing values.

• The Amazon Political Books dataset (books) [64] contains binary data about 105

US politics books sold by Amazon.com. Columns correspond to books and rows

represent frequent co-purchasing of books by the same buyers. The dimension

of the binary matrix is 105× 105.

• The 1984 United States Congressional Voting Records dataset (votes)[98] in-

cludes votes for each of the U.S. House of Representatives Congressmen on the

16 key votes identified by the CQA. The 16 categorical variables taking values

of “voted for”, “voted against” or “did not vote”, are converted into 16 binary

features taking value 1 for “voted for”, value 0 for “voted against” and a miss-

ing value indicates “did not vote”. The final dimension of the binary matrix is

435× 16 with 392 missing values.

B.3 Obtaining integer feasible solutions

In this section we give additional numerical results supporting our conclusions drawn

in Section 10.2.2.2. Table B.2 shows the factorisation error measured in ‖·‖2
F of integer

feasible solutions obtained by solving MIP(1) and MIPF over columns generated

by MLP(1). MIP(1) takes significantly faster to solve than MIPF but the absolute

difference in error between solutions produced by MIP(1) and MIPF is at most 1,

except for the last row in column k = 5 where MIPF runs out of the time budget of

300 seconds and produces higher error solutions than MIP(1).

Table B.3 shows the result of an analogous experiment where the columns used

are generated by MLP( 1
k
). Since MLP( 1

k
) is slower to solve than MLP(1), more

columns are generated during CG and the master IPs have a harder task on selecting

k columns from a larger set of columns in Table B.3. However, while solving MIP(1)

over a larger set of columns adds only a few seconds for most instances, MIPF runs

out of the time budget of 300 secs in about half the cases. This is also demonstrated

in the error difference, with solutions by MIP(1) having smaller error than solutions

by MIPF in most cases.
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data k=2 k=5 k=10
(n-sparsity-noise) MIP(1) MIPF MIP(1) MIPF MIP(1) MIPF

20-sparse-clean 47 (0.0) 47 (0.0) 16 (0.0) 16 (0.0) 0 (0.0) 0 (0.0)
20-sparse-noisy 59 (0.0) 59 (0.0) 30 (0.0) 30 (0.0) 10 (0.0) 10 (0.0)
20-normal-clean 70 (0.0) 69 (0.3) 27 (0.1) 27 (2.7) 0 (0.0) 0 (0.0)
20-normal-noisy 78 (0.1) 78 (0.9) 40 (0.5) 39 (76.5) 10 (0.5) 10 (3.4)
35-sparse-clean 84 (0.0) 84 (0.1) 34 (0.0) 34 (0.1) 0 (0.0) 0 (0.0)
35-sparse-noisy 107 (0.0) 107 (0.1) 60 (0.0) 60 (0.6) 23 (0.1) 23 (0.2)
35-normal-clean 125 (0.4) 124 (2.2) 54 (0.8) 53 (154.8) 0 (0.0) 0 (0.1)
35-normal-noisy 143 (0.6) 141 (4.9) 80 (4.1) 80 (245.4) 25 (2.0) 24 (114.2)
50-sparse-clean 126 (0.0) 126 (0.0) 50 (0.0) 50 (0.1) 0 (0.0) 0 (0.0)
50-sparse-noisy 156 (0.0) 156 (0.1) 89 (0.0) 89 (0.2) 36 (0.0) 36 (0.2)
50-normal-clean 198 (1.4) 197 (8.2) 91 (30.9) 91 (173.4) 0 (0.1) 0 (0.1)
50-normal-noisy 218 (2.2) 218 (41.4) 123 (39.7) 126 (271.1) 44 (10.1) 44 (165.8)

Table B.2: Error in ‖ · ‖2
F (and runtime in seconds) of integer solutions by MIP(1)

and MIPF on columns by MLP(1)

data k=2 k=5 k=10
(n-sparsity-noise) MIP(1) MIPF MIP(1) MIPF MIP(1) MIPF

20-sparse-clean 50 (0.0) 50 (0.2) 21 (0.0) 21 (2.6) 0 (0.0) 0 (0.0)
20-sparse-noisy 64 (0.0) 64 (0.6) 42 (0.1) 43 (219.0) 11 (0.2) 11 (6.3)
20-normal-clean 76 (0.2) 75 (3.9) 30 (0.5) 31 (289.6) 0 (0.1) 0 (0.2)
20-normal-noisy 85 (0.3) 85 (6.3) 47 (1.2) 47 (300.4) 11 (0.6) 11 (54.2)
35-sparse-clean 91 (0.0) 91 (1.5) 39 (0.2) 39 (98.9) 0 (0.1) 0 (0.1)
35-sparse-noisy 114 (0.1) 113 (3.1) 81 (0.5) 84 (300.7) 28 (0.3) 28 (229.9)
35-normal-clean 136 (1.0) 134 (19.1) 61 (2.0) 65 (300.8) 0 (0.8) 0 (11.9)
35-normal-noisy 154 (1.6) 154 (58.9) 93 (6.2) 102 (301.3) 28 (2.1) 31 (301.0)
50-sparse-clean 137 (0.0) 136 (0.8) 61 (0.2) 61 (160.0) 0 (0.8) 0 (0.2)
50-sparse-noisy 167 (0.1) 166 (6.5) 128 (0.7) 135 (301.5) 46 (0.6) 50 (301.5)
50-normal-clean 215 (2.2) 215 (131.6) 100 (34.4) 106 (302.1) 0 (0.8) 0 (153.7)
50-normal-noisy 238 (5.7) 237 (226.4) 149 (95.8) 169 (302.9) 51 (39.4) 62 (302.5)

Table B.3: Error in ‖ · ‖2
F (and runtime in seconds) of integer solutions by MIP(1)

and MIPF on columns by MLP( 1
k
)
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B.4 Heuristics for k-BMF

The following methods were evaluated for the comparison in Tables 10.4 and 10.5.

Our code is available at [59].

• For the alternating iterative local search algorithm of [5] (ASSO++) we obtained

the code from the author’s github page, see the reference. The code implements

two variants of the algorithm and we report the smaller error solution from two

variants of it.

• For the method of [108], we used a python implementation in the package pymf,

see [97] and we ran it for 10000 iterations.

• We evaluated the heuristic method ASSO [83] which depends on a parameter

and we report the best results across nine parameter settings (τ ∈ {0.1, 0.2, . . . , 0.9}).
The code was obtained form the webpage of the author:

https://people.mpi-inf.mpg.de/ pmiettin/src/DBP-progs/. We observe

that ASSO does not return monotone solutions and sometimes we get a higher

error solution for a higher value of k.

• In the case of no missing entries in the binary matrix, we used the function

non negative factorization from the sklearn.decomposition module in

python for the computation of rank-k NMF. We tried all 4 possible initiali-

sation methods: ’nndsvda’, ’nndsvd’, ’nndsvdar’ and ’random’. After obtaining

the k-NMF we scale each rank-1 factor to have the same max value on the left

and right hand side. Then, we binarise each rank-1 factor with a threshold of

δ ∈ {0.1, 0.2, . . . , 0.9}. In Table 10.4 we report the best result over all these

parameter settings.

As the above python function does not allow missing entries, for incomplete bi-

nary matrices we used a Matlab implementation of NMF [70, 69]. Only random

initialisation method was available for this implementation and we used 11 dif-

ferent random seeds. Then we performed the same scaling and thresholding as

described above and report the best result over all parameter settings in Table

10.5.

• The heuristic k-greedy algorithm was ran with 70 random seeds and the subrou-

tine for BBQP used the greedy and alternating algorithms for BBQP given in

Algorithms 3. In addition, the k-greedy algorithm can be run on a preprocessed
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or original matrix and we tried both ways. For each instance the lowest error

factorisation is reported.
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