
On the Preciseness of Subtyping in Session Types: 10 Years Later
Tzu-Chun Chen
Microsoft, Germany

gina.chen@microsoft.com

Mariangiola Dezani-Ciancaglini
University of Torino, Italy

dezani@di.unito.it

Nobuko Yoshida
University of Oxford, UK

nobuko.yoshida@cs.ox.ac.uk

ABSTRACT
The PPDP Most Influential Paper 10-Year Award for our work [11]
was a delightful surprise. We subsequently reviewed the subsequent
literature to see how our results have been utilised. This short note
aims to capture crucial references without missing too many.

CCS CONCEPTS
• Theory of computation → Process calculi; Type theory.

KEYWORDS
π-calculus, Session types, Subtyping, Soundness and Completeness

ACM Reference Format:
Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.
2024. On the Preciseness of Subtyping in Session Types: 10 Years Later. In
Proceedings of the 26th Symposium on Principles and Practice of Declar-
ative Programming, PPDP 2024, Milano, Italy, September 10-11, 2024.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/NNNNNNN.
NNNNNNN

Session types [23, 24, 26, 27, 36] are a successful formalism to struc-
ture interaction and to reason over communicating processes and
their behaviour. The basic idea is to introduce a new form of poly-
morphism which allows the typing of channel names by structured
sequences of types, abstractly representing the traces of channel
usages. A crucial choice is whether the processes communicate
synchronously or asynchronously.

Subtyping enhances the expressiveness of session types. For syn-
chronous processes, two distinct subtyping approaches have been
proposed: one that allows the safe substitution of channels [18]
and another that allows the safe substitution of processes [13]. In
our work [11], focused on replacing processes, we adopted the lat-
ter approach. We dub this subtyping synchronous subtyping. This
subtyping has been extended to accommodate asynchronous commu-
nications [32], essentially capturing the freedom of outputs typical
in such settings.

Preciseness of subtyping was first defined for the call-by-value
λ -calculus with iso-recursive types in [30]. A subtyping is precise
if it is both sound and complete. A subtyping relation is sound if
no typable program is incorrect. It is complete if there is no strictly
larger sound subtyping relation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP ’24, September 10-11, 2024, Milano, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 9-8-4007-0969-297. . . $15.00
https://doi.org/10.1145/NNNNNNN.NNNNNNN

Our first major result in [11] was demonstrating the preciseness
of synchronous subtyping for synchronous sessions. A key element
in proving completeness was the construction of processes that
characterise types.

Asynchronous communication is modelled using queues: output
processes put messages in queues, while input processes read mes-
sages from these queues [26]. In such a scenario, the types should
ensure not only deadlock-freedom, i.e., that input processes will
always find messages, but also orphan message-freedom, i.e., that
all messages in queues will eventually be consumed. This notion
of soundness was first formulated in [11] and then widely adopted
in the literature. The synchronous subtyping that is sound for syn-
chronous sessions is also sound for asynchronous sessions, but it is
not complete for asynchronous sessions. The subtyping proposed
in [32] enjoys subject reduction, but it is unsound for asynchronous
sessions because it does not ensure orphan message-freedom. It is
also incomplete for asynchronous sessions. These incompleteness
and unsoundness results are demonstrated in [11] through examples.
The main achievement of [11] is the definition of a new subtyping
(dubbed asynchronous subtyping) together with the proof of its pre-
ciseness for asynchronous sessions. Again, a key aspect of proving
completeness is the construction of processes that characterise types,
even though this construction is much more complex than in the case
of synchronous subtyping.

Preciseness can be defined operationally by means of processes or
denotationally using type interpretations. Both forms of preciseness
are proved for the synchronous and the asynchronous subtyping
in [11]. Notably, [11] was the first paper discussing preciseness in
the context of process calculi.

The most direct follow-up of [11] are papers discussing various
aspects of preciseness. In [15], denotational and operational pre-
ciseness of subtyping for some λ -calculi and mobile processes are
compared. While in [11] only binary sessions are considered, in [16]
the operational and denotational preciseness of the synchronous sub-
typing for synchronous multiparty sessions types (MPST) is proved.
The novelty of this paper is the introduction of characteristic global
types to show the operational completeness.

In [10], new results about the uniqueness of precise subtyping
relations are provided. In the same paper the approach of [11] is gen-
eralised to session initialisation and communication of expressions
including shared channels. In [19] the preciseness of the synchro-
nous subtyping for synchronous MPST is proved using a novel
coinductive treatment of global type projections, based on global
and local type trees.

Certainly, the most interesting development in this line of research
is contained in the papers [20, 21], where the first formalisation of
the precise subtyping relation for asynchronous MPST is presented.
The proof is based on a novel session decomposition technique, from
full session types (including internal/external choices) into single

https://orcid.org/0000-0002-8872-5318
https://orcid.org/0000-0002-3341-0941
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.1145/NNNNNNN.NNNNNNN
https://doi.org/10.1145/NNNNNNN.NNNNNNN
https://doi.org/10.1145/NNNNNNN.NNNNNNN

PPDP ’24, September 10-11, 2024, Milano, Italy Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida

input/output session trees (without choices). This session decompo-
sition technique expresses the subtyping relation as a composition
of refinement relations between single input/output trees and pro-
vides a simple reasoning principle for optimising the order between
asynchronous messages. A related denotational semantics of action
permutations under different multiparty communication queues and
buffers is studied in [14]. There the permutation defined in [21] is
modelled as a valid semantic transformation which does not cause
deadlock.

A second line of research inspired by [11] addresses the unde-
cidability of asynchronous subtyping. In [4] a core undecidable
subtyping relation (obtained by imposing limitations on the structure
of types) is devised. As a result of this initial undecidability finding,
the asynchronous subtyping and the subtypings of [31, 32] are all
shown to be undecidable. The undecidability proof for asynchro-
nous subtyping in [29] relies on a new Turing-complete subclass
of two-party communicating finite-state machines, demonstrating
that asynchronous subtyping is equivalent to the halting problem
for this class of machines. The undecidability result for asynchro-
nous session subtyping is used to obtain an undecidability result for
asynchronous contract refinement in [7] and for asynchronous com-
municating finite state machines in [8]. A novel variant of session
subtyping that leverages the notion of controllability from service
contract theory and that is a sound characterisation of fair refinement
is proposed in [6]. Also, this subtyping and the fair refinement are
undecidable.

A natural reaction to the undecidability of asynchronous subtyp-
ing is the search for either decidable restrictions or algorithms that
can terminate without providing a definitive answer. The decidability
of a fragment that does not impose any limitation on communication
buffers and allows both the subtype and the supertype to include
multiple choices is shown in [5]. The algorithm in [3] is based on
a tree representation of the coinductive definition of asynchronous
subtyping; this tree could be infinite, and the algorithm checks for
the presence of finite witnesses of infinite successful subtrees. The
proposal of [2] uses sets of traces instead of trees. The obtained
algorithm applies abstract interpretation techniques.

The promotion of asynchronous subtyping incorporation in ap-
plications is also an interesting follow-up of [11]. The first work
which informally introduces the idea of asynchronous subtyping in
practice is [25], where asynchronous multiparty subtyping enables
the programmer to permute the order of messages for performance
gain without introducing deadlock. The asynchronous subtyping is
used to model the double buffering protocol [28]. This approach was
implemented and evaluated in C [35, 38] and MPI-C [33, 34] in the
context of high-performance computing.

The tool presented in [1] integrates several algorithms for check-
ing subtyping that can be invoked from an easy-to-use Python GUI.
This interface allows users to input, using standard session type
syntax, two types: the candidate subtype and supertype.

The recent work [9] proposes CAMP, which is a static perfor-
mance analysis framework for message-passing concurrent and dis-
tributed systems based on MPST. CAMP augments MPST with
annotations of communication latency and local computation cost,
defined as estimated execution times, which is used to extract cost
equations from protocol descriptions and to statically predict the

communication cost. CAMP is also extended to analyse asynchro-
nous communication optimised programs. The tool based on cost
theory is applicable to different existing benchmarks and use cases
in the literature with a wide range of communication protocols,
including the implementations in [34, 35].

The Rust programming framework, Rumpsteak [12], incorporates
multiparty asynchronous subtyping [21] to optimise asynchronous
message-passing in the Rust programming language. Specifically,
the authors propose an algorithm for asynchronous subtyping based
on the session decomposition technique in [20, 21] that is bounded
by a number of iterations and proved to be sound and decidable. They
evaluate the performance and expressiveness of Rumpsteak against
three previous Rust implementations. Rumpsteak is more efficient
and can safely express many more examples by offering arbitrary
ordering of messages. The authors also analyse the complexity of the
new algorithm and benchmark it against the binary session subtyping
algorithm in [3]. The algorithm in [3] turns out to be exponentially
slower than Rumpsteak.

Hinrichsen’s PhD thesis [22] introduces Actris, a Coq tool that
integrates separation logics and asynchronous binary session types
with the asynchronous subtyping in [11].

The first formalisation of multiparty asynchronous subtyping
within the Coq proof assistant is given in [17]. Session types are
decomposed into session trees that do not involve choices, and then
a coinductive refinement relation is established over them to govern
subtyping. This approach allows for the proof of example subtyping
schemas that appear in the literature. Notably, to the best of our
knowledge, no other decidable sound algorithm is able to verify all
these examples.

We conclude by observing that we were wrong in [11], as we
wrote: “Algorithms for checking the synchronous and asynchronous
subtypings of the present paper can be easily designed". In fact,
while there are algorithms for synchronous subtyping (see [37] and
the references there), the asynchronous subtyping is undecidable as
discussed above. The challenge of asynchronous subtyping remains
intriguingly complex and theoretically rich. This underscores the
evolving nature of the field and opens avenues for future exploration.

ACKNOWLEDGMENTS
We thank Alceste Scalas for his collaboration in writing the jour-
nal version [10] of [11]. We are grateful to Ilaria Castellani for her
valuable suggestions that improved the presentation of this abstract.
The last author is partially supported by EPSRC EP/T006544/2,
EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/N027833/2,
EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1 and
Horizon EU TaRDIS 101093006.

REFERENCES
[1] Lorenzo Bacchiani, Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. 2021.

A Session Subtyping Tool. In COORDINATION (LNCS, Vol. 12717), Ferruccio
Damiani and Ornela Dardha (Eds.). Springer, Heidelberg, 90–105. https://doi.
org/10.1007/978-3-030-78142-2_6

[2] Laura Bocchi, Andy King, and Maurizio Murgia. 2024. Asynchronous Subtyping
by Trace Relaxation. In TACAS (LNCS, Vol. 14570), Bernd Finkbeiner and Laura
Kovács (Eds.). Springer, Heidelberg, 207–226. https://doi.org/10.1007/978-3-
031-57246-3_12

[3] Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi
Zavattaro. 2021. A Sound Algorithm for Asynchronous Session Subtyping and
its Implementation. Log. Methods Comput. Sci. 17, 1 (2021), 20:1–20:35. https:

https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-031-57246-3_12
https://doi.org/10.1007/978-3-031-57246-3_12
https://lmcs.episciences.org/7238
https://lmcs.episciences.org/7238

On the Preciseness of Subtyping in Session Types: 10 Years Later PPDP ’24, September 10-11, 2024, Milano, Italy

//lmcs.episciences.org/7238
[4] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2017. Undecidability

of Asynchronous Session Subtyping. Inf. Comput. 256 (2017), 300–320. https:
//doi.org/10.1016/J.IC.2017.07.010

[5] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2018. On the Boundary
between Decidability and Undecidability of Asynchronous Session Subtyping.
Theor. Comput. Sci. 722 (2018), 19–51. https://doi.org/10.1016/J.TCS.2018.02.
010

[6] Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. 2021. Fair Refinement for
Asynchronous Session Types. In FOSSACS (LNCS, Vol. 12650), Stefan Kiefer and
Christine Tasson (Eds.). Springer, Heidelberg, 144–163. https://doi.org/10.1007/
978-3-030-71995-1_8

[7] Mario Bravetti and Gianluigi Zavattaro. 2019. Relating Session Types and Be-
havioural Contracts: The Asynchronous Case. In SEFM (LNCS, Vol. 11724),
Peter Csaba Ölveczky and Gwen Salaün (Eds.). Springer, Heidelberg, 29–47.
https://doi.org/10.1007/978-3-030-30446-1_2

[8] Mario Bravetti and Gianluigi Zavattaro. 2021. Asynchronous Session Subtyping as
Communicating Automata Refinement. Softw. Syst. Model. 20, 2 (2021), 311–333.
https://doi.org/10.1007/S10270-020-00838-X

[9] David Castro-Perez and Nobuko Yoshida. 2020. CAMP: Cost-Aware Multiparty
Session Protocol. In OOPSLA, Vol. 4. ACM, New York, 155:1–155:30. Issue
OOPSLA. https://doi.org/10.1145/3428223

[10] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko
Yoshida. 2017. On the Preciseness of Subtyping in Session Types. Log. Methods
Comput. Sci. 13, 2 (2017), 12:1–12:62. https://doi.org/10.23638/LMCS-13(2:
12)2017

[11] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2014. On
the Preciseness of Subtyping in Session Types. In PPDP, Olaf Chitil, Andy King,
and Olivier Danvy (Eds.). ACM Press, New York, 135–146. https://doi.org/10.
1145/2643135.2643138

[12] Zak Cutner, Nobuko Yoshida, and Martin Vassor. 2022. Deadlock-Free Asynchro-
nous Message Reordering in Rust with Multiparty Session Types. In PPoPP,
Vol. abs/2112.12693. ACM, New York, 261–246. https://doi.org/10.1145/
3503221.3508404

[13] Romain Demangeon and Kohei Honda. 2012. Nested Protocols in Session
Types. In CONCUR (LNCS, Vol. 7454), Maciej Koutny and Irek Ulidowski (Eds.).
Springer, Heidelberg, 272–286. https://doi.org/10.1007/978-3-642-32940-1_20

[14] Romain Demangeon and Nobuko Yoshida. 2015. On the Expressiveness of
Multiparty Session Types. In FSTTCS (LIPIcs, Vol. 45), Prahladh Harsha and
G. Ramalingam (Eds.). Dagstuhl Publishing, Dagstuhl, 560–574. https://doi.org/
10.4230/LIPIcs.FSTTCS.2015.560

[15] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pan-
tovic, and Nobuko Yoshida. 2015. Precise Subtyping for Synchronous Multiparty
Sessions. In PLACES (EPTCS, Vol. 203), Simon Gay and Jade Alglave (Eds.).
Open Publishing Association, Waterloo, 29–43. https://doi.org/10.4204/EPTCS.
203.3

[16] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pan-
tovic, and Nobuko Yoshida. 2016. Denotational and Operational Preciseness
of Subtyping: A Roadmap. In Theory and Practice of Formal Methods (LNCS,
Vol. 9660), Erika Ábrahám, Marcello M. Bonsangue, and Einar Broch Johnsen
(Eds.). Springer, Heidelberg, 155–172. https://doi.org/10.1007/978-3-319-30734-
3_12

[17] Burak Ekici and Nobuko Yoshida. 2024. Completeness of Asynchronous Session
Tree Subtyping in Coq. In ITP (LIPICS), Yves Bertot, Temur Kutsia, and Michael
Norrish (Eds.). Dagstuhl Publishing, Dagstuhl, 6:1–6:20. https://doi.org/10.4230/
LIPIcs.ITP.2024.6

[18] Simon Gay and Malcolm Hole. 2005. Subtyping for Session Types in the pi-
calculus. Acta Informatica 42, 2/3 (2005), 191–225. https://doi.org/10.1007/
s00236-005-0177-z

[19] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko
Yoshida. 2019. Precise Subtyping for Synchronous Multiparty Sessions. J. Log.
Algebraic Methods Program. 104 (2019), 127–173. https://doi.org/10.1016/J.
JLAMP.2018.12.002

[20] Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko
Yoshida. 2021. Precise Subtyping for Asynchronous Multiparty Sessions. Proc.
ACM Program. Lang. 5, POPL (2021), 1–28. https://doi.org/10.1145/3434297

[21] Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko
Yoshida. 2023. Precise Subtyping for Asynchronous Multiparty Sessions. ACM
Trans. Comput. Logic 24, 2 (2023), 14:1–14:73. https://doi.org/10.1145/3568422

[22] Jonas Kastberg Hinrichsen. 2021. Separations and Sessions. PhD thesis. ITU.
Available at https://jihgfee.github.io/.

[23] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (LNCS, Vol. 715),
Eike Best (Ed.). Springer, Heidelberg, 509–523.

[24] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language Prim-
itives and Type Discipline for Structured Communication-based Programming.
In ESOP (LNCS, Vol. 1381), Chris Hankin (Ed.). Springer, Heidelberg, 122–138.
https://doi.org/10.1007/BFb0053567

[25] Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2009. Type-
Directed Compilation for Multicore Programming. ENTCS 241 (2009), 101–111.
https://doi.org/10.1007/978-3-642-04167-9_12

[26] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchro-
nous Session Types. In POPL, George C. Necula and Philip Wadler (Eds.). ACM
Press, New York, 273–284. https://doi.org/10.1145/1328897.1328472

[27] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asyn-
chronous Session Types. Journal of the ACM 63, 1 (2016), 9:1–9:67. https:
//doi.org/10.1145/2827695

[28] Hai Huang, Padmanabhan Pillai, and Kang G. Shin. 2002. Improving Wait-Free
Algorithms for Interprocess Communication in Embedded Real-Time Systems. In
USENIX, Carla Schlatter Ellis (Ed.). USENIX Association, Berkeley, 303–316.
https://www.usenix.org/legacy/events/usenix02/huang.html

[29] Julien Lange and Nobuko Yoshida. 2017. On the Undecidability of Asynchro-
nous Session Subtyping. In FOSSACS (LNCS, Vol. 10203), Javier Esparza and
Andrzej S. Murawski (Eds.). Springer, Heidelberg, 441–457. https://doi.org/10.
1007/978-3-662-54458-7_26

[30] Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. 2017. On Subtyping-
Relation Completeness, with an Application to Iso-Recursive Types. ACM Trans.
Program. Lang. Syst. 39, 1 (2017), 4:1–4:36. https://doi.org/10.1145/2994596

[31] Dimitris Mostrous and Nobuko Yoshida. 2015. Session Typing and Asynchronous
Subtyping for the Higher-order π-calculus. Inf. Comput. 241 (2015), 227–263.
https://doi.org/10.1016/J.IC.2015.02.002

[32] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal
Typing in Partially Commutative Asynchronous Sessions. In ESOP (LNCS, 5502),
Giuseppe Castagna (Ed.). Springer, Heidelberg, 316–332. https://doi.org/10.1007/
978-3-642-00590-9_23

[33] Nicholas Ng, Jose G.F. Coutinho, and Nobuko Yoshida. 2015. Protocols by Default:
Safe MPI Code Generation based on Session Types. In CC (LNCS, Vol. 9031),
Björn Franke (Ed.). Springer, Heidelberg, 212–232. https://doi.org/10.1007/978-
3-662-46663-6_11

[34] Nicholas Ng and Nobuko Yoshida. 2015. Pabble: Parameterised Scribble. Serv.
Oriented Comput. Appl. 9(3-4) (2015), 269–284. https://doi.org/10.1007/s11761-
014-0172-8

[35] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. 2012. Multiparty Session
C: Safe Parallel Programming with Message Optimisation. In TOOLS (LNCS,
Vol. 7304), Carlo A. Furia and Sebastian Nanz (Eds.). Springer, Heidelberg, 202–
218. https://doi.org/10.1007/978-3-642-30561-0_15

[36] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An Interaction-based
Language and its Typing System. In PARLE (LNCS, Vol. 817), Chris Hankin (Ed.).
Springer, Heidelberg, 122–138. https://doi.org/10.1007/BFb0053567

[37] Thien Udomsrirungruang and Nobuko Yoshida. 2024. Three Subtyping Algo-
rithms for Binary Session Types and their Complexity Analyses. In PLACES
(EPTCS, Vol. 401), Diana Costa and Raymond Hu (Eds.). Open Publishing Asso-
ciation, Waterloo, 49–60. https://doi.org/10.4204/EPTCS.401.5

[38] Nobuko Yoshida, Vasco Thudichum Vasconcelos, Hervé Paulino, and Kohei
Honda. 2008. Session-Based Compilation Framework for Multicore Programming.
In FMCO (LNCS, Vol. 5751), Frank S. de Boer, Marcello M. Bonsangue, and Eric
Madelaine (Eds.). Springer, Heidelberg, 226–246. https://doi.org/10.1007/978-3-
642-04167-9_12

https://lmcs.episciences.org/7238
https://doi.org/10.1016/J.IC.2017.07.010
https://doi.org/10.1016/J.IC.2017.07.010
https://doi.org/10.1016/J.TCS.2018.02.010
https://doi.org/10.1016/J.TCS.2018.02.010
https://doi.org/10.1007/978-3-030-71995-1_8
https://doi.org/10.1007/978-3-030-71995-1_8
https://doi.org/10.1007/978-3-030-30446-1_2
https://doi.org/10.1007/S10270-020-00838-X
https://doi.org/10.1145/3428223
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560
https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.1007/978-3-319-30734-3_12
https://doi.org/10.1007/978-3-319-30734-3_12
https://doi.org/10.4230/LIPIcs.ITP.2024.6
https://doi.org/10.4230/LIPIcs.ITP.2024.6
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1145/3434297
https://doi.org/10.1145/3568422
https://jihgfee.github.io/
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-642-04167-9_12
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://www.usenix.org/legacy/events/usenix02/huang.html
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1145/2994596
https://doi.org/10.1016/J.IC.2015.02.002
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/s11761-014-0172-8
https://doi.org/10.1007/s11761-014-0172-8
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/BFb0053567
https://doi.org/10.4204/EPTCS.401.5
https://doi.org/10.1007/978-3-642-04167-9_12
https://doi.org/10.1007/978-3-642-04167-9_12

	Abstract
	Acknowledgments
	References

