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Abstract
Detecting the Kirsten Rat SarcomaVirus (KRAS) genemutation is significant for colorectal cancer
(CRC) patients. TheKRAS gene encodes a protein involved in the epidermal growth factor receptor
(EGFR) signaling pathway, andmutations in this gene can negatively impact the use ofmonoclonal
antibodies in anti-EGFR therapy and affect treatment decisions. Currently, commonly used
methods like next-generation sequencing (NGS) identifyKRASmutations but are expensive, time-
consuming, andmay not be suitable for every cancer patient sample. To address these challenges, we
have developedKRASFormer, a novel framework that predictsKRAS genemutations from
Haematoxylin and Eosin (H& E) stainedWSIs that are widely available formost CRCpatients.
KRASFormer consists of two stages: the first stage filters out non-tumor regions and selects only
tumour cells using a quality screeningmechanism, and the second stage predicts theKRAS gene
either wildtype’ ormutant’ using a Vision Transformer-based XCiTmethod. The XCiT employs
cross-covariance attention to capture clinicallymeaningful long-range representations of textural
patterns in tumour tissue andKRASmutant cells.We evaluated the performance of the first stage
using an independent CRC-5000 dataset, and the second stage included both The Cancer Genome
Atlas colon and rectal cancer (TCGA-CRC-DX) and in-house cohorts. The results of our
experiments showed that the XCiT outperformed existing state-of-the-artmethods, achieving
AUCs for ROC curves of 0.691 and 0.653 onTCGA-CRC-DX and in-house datasets, respectively.
Our findings emphasize three key consequences: the potential of usingH & E-stained tissue slide
images for predictingKRAS genemutations as a cost-effective and time-efficientmeans for guiding
treatment choice with CRC patients; the increase in performancemetrics of a Transformer-based
model; and the value of the collaboration between pathologists and data scientists in deriving a
morphologicallymeaningfulmodel.
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1. Introduction

Colorectal cancer (CRC) is the third most common
type of cancer [1], projected to cause about 3.2 million
new cases and around 1.6 million mortality by 2040
worldwide [2]. Specificmutationsmaymake a tumour
resistant to certain treatments, while others may make
it more susceptible. By identifying mutations, clin-
icians can tailor treatment plans to the particular
patient, potentially leading to better outcomes [3].
From tissue samples, molecular testing can identify
specific mutations that may predict response to
specific and targeted therapies [4]. The need for
molecular testing of the KRAS gene in CRCs has long
been established, where mutations are negative pre-
dictive markers for anti-EGFR pathway monoclonal
antibodies [5]. The prediction ofKRASmutations aids
in selecting an appropriate treatment for a cancer
patient. Technologies for molecular testing such as
Next Generation Sequencing (NGS) require minimal
tissue samples, typically between 5% and 20% tumour
cell content and minimum nucleic acid content for
successful testing [6]. Nonetheless, extensive molecu-
lar testing is challenging on an enormous scale and is
not done at all the labs with limited resources for each
patient. In turn,Haematoxylin andEosin (H& E) stain
images are commonly available on CRC tissue biopsy
samples. Using H & E stained images to predict cancer
mutations is a cost-effective solution that broadens the
scope of sample types that can be accurately tested.

In recent years, there has been exceptional success
in the field of computer vision tasks, particularly in
object classification, image segmentation, and object
detection within natural image datasets [7]. Various
deep-learning methods have been utilized, including
Convolutional Neural Networks (CNNs) and Vision
Transformer-based models. These methods have

proven to be highly effective in various applications of
computer vision tasks by extracting robust feature
representation [8, 9]. In particular, CNN layers utiliz-
ing digital filters to perform convolution operations
allowmodels to extract spatial features (such as shape,
texture, intensity, and margins) and global features
that describe the complete image. Additionally, Vision
Transformers-basedmethods are employed inmodel-
ing long-range dependencies through its strong cap-
ability of a self-attention mechanism that focuses on
essential, meaningful features in images while ignor-
ing the irrelevant ones [10]. In the field of medical
imaging, these methods have played a crucial role in
the disease diagnosis, prognosis, and treatment of sev-
eral types of cancer, including colon, breast, lung, rec-
tal, prostate, and ovarian cancer [11, 12]. Vision
Transformer-based approaches are currently being
utilized as an alternative to CNNs for analyzing histo-
pathology images to extract important morphological
features that can aid in predicting clinically relevant
information [13].

In the past few years, very limited studies have
been aimed at the possibility of predicting KRAS gene
mutations through images of CRC tumours stained
with H & E. Figure 1 shows the examples of KRAS
mutant and wildtype WSI acquired from the TCGA-
CRC-DX cohort [14]. Tried to predict CRCmutations
from the H & E-stained WSIs. The authors analyzed
five genes: APC, KRAS, PIK3CA, SMAD4, and TP53.
They used the 629 CRC patients from The Cancer
Genome Atlas (TCGA-COAD and TCGA-READ) and
142 CRC samples from in-house datasets. The authors
employed the CNN-based Inception-v3 architecture
to predict the gene mutations and obtained mean area
under the receiver operating characteristic (AUROC)
scores ranging from 0.645 to 0.783 in formalin-fixed
paraffin-embedded (FFPE) tissue slides. Another

Figure 1.Visualization of aHaematoxylin and Eosin (H & E) stainedWSI forKRAS gene inCRC.Here (a) and (b) showKRASmutant
andwildtype examples, respectively.
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study by [15] developed a weakly supervised deep
learning-based framework to identify molecular path-
ways and specific gene mutations in CRC patients
using H & E images. The framework employed the
ResNet-18 model to distinguish between tumour and
non-tumour patches. Subsequently, the ResNet-34
model was utilized to predict the probabilities of each
patch corresponding to molecular labels such as high
or low mutation density, microsatellite instability or
stability, chromosomal instability or genomic stabi-
lity, CpG island methylator phenotype (CIMP), BRAF,
TP53, and KRAS. The authors used 502 WSIs of pri-
mary colorectal tumours from 499 patients extracted
from the TCGA-CRC-DX dataset. The framework
achieved an AUROC score of 0.6 for KRAS mutation
prediction. While most studies have focused on pre-
dicting gene mutations through WSIs, their analysis
was constrained to assessing the potential of Vision
Transformer-based methods for classifying KRAS
mutations using a limitedH & Edataset.

A recent study [16] proposed an innovative Vision
Transformer-based approach for predicting bio-
markers from H& E-stained CRC tissue images. The
authors combined a pre-trained Vision Transformer
encoder andTransformer network to accomplish patch
aggregation. The study’s primary focus was on mana-
ging multi-institutional cohort data, with less attention
paid to conducting an in-depth analysis of the clinical
or pathological context that could limit the model’s
effectiveness for use in clinical settings. The authors uti-
lized ten CRC datasets of over 9, 000 patients to predict
genetic biomarkers related to microsatellite instability
(MSI) andmutations in theBRAF andKRAS genes. The
authors trained their model using four large cohorts to
predictKRAS genemutations and obtained an AUROC
score of 0.75.However, due to the large cohorts utilized,
the authors still need to address their proposed model
optimization issues related to details and training
hyperparameters of the proposed Vision Transformer-
based architecture.

There has been some interest in categorizing gene
mutations in CRC from H& E slides [17], but muta-
tion detection fromH& E slides are relatively uncom-
mon due to limitations of H & E which is primarily
used for morphology, and where tumour hetero-
geneity is seen. For instance, staining provides infor-
mation about tissue architecture and cellular
morphology but does not explicitly highlight genetic
alterations or mutations. It may reveal specific mor-
phological changes that can raise suspicion of an
underlying genetic alteration. The tumours are often
genetically heterogeneous, containing a mixture of
genetic mutations and alterations. The H & E slides
may not capture the full extent of this heterogeneity,
making it challenging to identify specific mutations
and mutational complexities accurately. The avail-
ability of H & E-stained slide images of CRC tumours
may facilitate employing deep learning models to pre-
dict KRASmutation status. Using such resources may

bemore cost-effective than traditional NGSmolecular
testing.

This paper introduces a novel framework called
KRASFormer that predicts KRAS gene mutations in
patients with CRC. The framework consists of two
stages: a quality screening mechanism that selects col-
orectal tumour tissue by disregarding non-tumour
patches and KRAS gene mutation prediction using
H & E stained WSI, classified as either wildtype
(KRASWT) or mutant (KRASMT). The KRASFormer
framework relies on a Vision Transformer network
inspired by the XCiT model [18]. It has three compo-
nents: a cross-variance attention (XCA) block, a local
patch interaction layer (LPI) layer, and a feed-forward
network (FFN). The XCA block operates on the fea-
ture or channel dimensions of the input patches to
capture long-range representation using spatial and
global features of the input patches. The LPI and FFN
components enhance the extracted features and pro-
vide per-patch knowledge through fully connected
layers. An extensive ablation experiment was con-
ducted, comparing the performance of CNNs and
Vision Transformer-based methods, using three data-
sets to build both stages of the experiments. The
results show that the XCiT model outperforms exist-
ing CNNs and other Vision Transformer-based meth-
ods in the KRAS mutation prediction task. Note that
this article discusses the technical and clinical aspects
of understanding the prediction of the KRAS gene
mutation fromWSIs. It does not propose a new deep-
learning model but explores how the Vision Transfor-
mer-based XCiT approach can improve tumour tissue
selection and KRAS mutation classification. This
paper’smain contributions are five folds:

• Propose a new framework called KRASFormer for
classifying KRAS gene mutations from H& E
stained slide images inCRCpatients.

• We develop a two-stage system that selects tumour
tissue by disregarding non-tumor tissues types such
as stroma, complex stroma, lymph, debris, mucosa,
adipose, and background in WSI and predicts the
KRAS genemutation.

• Our framework used the XCiT model, combining
cross-variance attention as a backbone architecture
that works on feature or channel dimensions of the
WSI input patches and helps extract clinically
meaningful local and global features from H& E
stained slides.

• Providing extensive experiments with different sets
of ablation analyses using three datasets to demon-
strate the effectiveness of pre-trained CNNs and
Vision Transformer-based methods pre-trained on
ImageNet [19] to predictKRASmutations.

• Building a relationship to bridge the gap between
pathologists and data science researchers to
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understand better the XCiT model for KRAS gene
mutation prediction in WSI. Our experimental
findings demonstrate that XCiT can efficiently learn
the textural patterns of CRC tumour tissue.

This study is organized as follows. Section 2
describes the CRC datasets and the proposed KRAS-
Former framework with its architecture. Section 3 pre-
sents the experimental results with a comprehensive
ablation analysis. Section 4 is dedicated to discussing
both the strengths and the limitations of this study.
Finally, section 5 concludes the study while also out-
lining potential avenues for future research.

2.Material andmethod

2.1.Datasets
In this study, we have utilized three different H & E
datasets, namely CRC-5000 [20], The Cancer Genome
Atlas colon and rectal cancer (TCGA-CRC-DX)8 [21],
and samples from the Northern Ireland Biobank
(NIB). Out of these, we have employed 133 samples
fromTCGA-CRC-DX andNIB datasets to develop the
KRASmutation dataset inWSIs. Below is the summary
of each dataset.

• CRC-5000: This dataset included 10 H & E-stained
CRC WSIs that were acquired from the University
Medical Center Mannheim, Germany [20]. This
dataset comprised eight different tissue types,
including tumour epithelium, simple stroma, com-
plex stroma, immune cells, debris, normal mucosal
glands, adipose tissue, and background with no
tissue information. Each of these tissue types had
distinct textural features, and the dataset contained
both low-grade and high-grade tumours that were
manually labelled by experts. The experts extracted
625 non-overlapping tissue patches with a size of
150× 150 pixels. In total, the dataset contained
5000 patch images extracted from the 10 H & E-
stained WSI, which were used to train and evaluate
the classification model. Figure 2 displays six
examples of patch images for each of the eight tissue
types. As can be seen from the patches, there is
texture variability and stain intensity diversity for
each tissue type.

• TCGA-CRC-DX: In this dataset [21], 166 WSIs of
CRC have KRAS gene mutations extracted from the
right site. Due to the subpar quality (i.e., air bubbles,
tissue folding, compression artefacts, out-of-focus
blur, and pen markings) of the WSIs, only 106
samples with KRAS gene information were utilized.
Out of these, there are 55 KRASWT and 51 KRASMT

samples. These samples consist of formalin-fixed
paraffin-embedded (FFPE) tissue slides categorized
into four stages I, II, III, and IV, with the following

distribution: 1 sample (0.094%) for stage I, 15
samples (14.15%) for stage II, 70 samples (66.03%)
for stage III, and 20 samples (18.86%) for stage IV.

• NIB: This dataset comprises 27 CRC patients WSIs,
17 of which are wildtype and 10 are mutant, with a
share of 12 right-sided, 14 left-sided, and 1 transver-
sal, collected from the Northern Ireland Biobank at
the Patrick G Johnston Center for Cancer Research,
Queenʼs University Belfast in the United Kingdom.
The digital images provided were WSI of formalin-
fixed paraffin-embeddedCRC.

2.2.WSIs annotation protocol
Figure 3 shows the general pipeline forKRASWSI data
preparation. This study had a team of data science
researchers and two pathologists with over 20 years of
experience in their respective fields. We developed an
annotation protocol to identify tumour regions of
interest (ROI) containing malignant cells to predict
KRAS gene mutations in WSIs. In brief, the data
science researchers collected the raw WSIs from the
TCGA-CRC-DXandNIB cohorts and utilizedQuPath
v0.2.3 software [22] to create respective projects in ‘.
svs’ file format. Afterward, the pathologists accessed
the created projects to outline the necessary regions
(ROIs) in the raw WSIs to produce accurate
annotations.

2.2.1. Annotation selection criteria
We established the standard criteria for selecting
annotations on two H & EWSI datasets using QuPath
software [22]. Multiple ROIs were identified if neces-
sary; artefacts were avoided; ROIs were adjusted to
avoid white pixels if needed; the final result could be
filtered by the data scientists using image processing or
deep learning techniques. We also defined our exclu-
sion criteria. In this process, the full WSI was excluded
if the stain was not a recognizableH & E; there were no
tumour areas; artefacts where substantial (more than
30% of the image); image blurring was present, or
most of the section was composed of white pixels or
red blood cells.

2.3. KRASFormer framework
Figure 4 provides an overview of our proposed
KRASFormer framework, which consists of two stages
for tumour tissue selection and KRAS mutation
prediction. Stage I was developed to establish a quality
screening pipeline that enriches for malignant epithe-
lial cells. A Vision Transformer-based XCiT model
was utilized to classify eight types of tissue patches
extracted from theWSI. Stage II involves the classifica-
tion of WSIs for KRAS mutations status as either
KRASWT or KRASMT using the TCGA-CRC-DX
and NIB cohorts. QuPath software, v0.2.3, was used
to extract non-overlapping patches from the 40 ×
magnification WSI, where experienced pathologists8

https://doi.org/10.7937/TCIA.YZWQ-ZZ63
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annotated the crucial ROI. The QuPath software
generated these patches in .png’ file format. The patch
images were extracted with a fixed size of 256× 256.
Figure 5 illustrates the general description of the XCiT
layer [18]. It incorporates three main components:
cross-covariance attention layer (XCA), local patch
interaction (LPI), and feed-forward network (FFN).
During training, we resized the patches using bilinear
interpolation to 224× 224 pixels to serve as input for
the model. Later, it used a patch size measuring
16× 16, an embedded dimension of 768, 16 heads, a

multilayer perceptron (MLP) ratio of 4, and two class
attention layers. More details about each XCiT comp-
onent are explained in the below subsections.

2.3.1. Cross-covariance attention
To attain a more profound understanding of cross-
covariance attention [18], our initial focus was on the
self-attention mechanism utilized in the Vision Trans-
former. This mechanism lets the model focus on crucial
and relevant features within images while ignoring
irrelevant information like non-tumour tissue in WSIs.

Figure 2.Overview of six patch images for each of eight tissue types inCRC.Note that (a) tumour epithelium, (b) stroma, (c) complex
stroma, (d) immune cell, (e)debris andmucus, (f)normalmucosal glands, (g) adipose tissue, and (h) backgroundwith no tissue.
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The attention mechanism calculates a weighted sum of
all the features obtained from given patch images. The
Transformer model is then trained to learn the weights
allocated to each extracted feature, which are used to
estimate the attention coefficient.

The XCA is generally described as a layer that uses
cross-covariance attention to compute attention along
the features or channels dimension instead of the token
dimension. This can be represented as follows [18]:

( ) ( ) ( )=XCA Q K V V K Q, , , 1Attn XCA

Figure 3.Overview of theKRASWSI data preparation pipeline.

Figure 4. Illustration of the integratedKRASFormer framework, combining stages I and II. In stage I, the XCiTmodel is employed as a
robust feature extractor, initially identifying tumour regions while disregarding non-tumour regions. In Stage II, the TCGA-CRC-DX
dataset isfirst patient-wise split intofive-fold cross-validationwhere deep learning-basedCNNandVisionTransformermodels are
trained and evaluated separately. During this process, stage I help to select the tumour tissue region by ignoring the other tissue types.
Then, the selected tumour patches undergo computation of patch-level probabilities for the presence of theKRAS gene. These
probabilities are subsequently combined to assess the performance at the patient level by classifying them intoKRASwildtype and
mutant categories. The current framework provides feature learning explainability usingGradCamwhen themodel paysmore
attention to the specific region highlighted in red and less represented by blue. Stage IIKRAS genemutation classification performance
is independently externally validated on theNorthern IrelandBiobank (NIB) dataset.
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Where  ( )K Q,XCA is the
( ˆ ˆ )tSoftmax K Q that

generate the attention scores, and τ correspond to a
learnable temperature that provides better model
training. For every patch embedding, three linear
projections are used to acquire three vectors: Query
(Q), Keys (K), and Values (V). It is essential tomention
that the estimation of attentionweights relies on the
cross-covariancematrix.

2.3.2. Local patch interaction
Figure 6 shows the general architecture of LPI layer.
The local associations between pixels in input images
that the model can capture may be limited by the need
for a more direct connection between tokens in XCA.
To address this, the LPI layer comes into play,
combining information between tokens in the input
sequence. The attention layers from the attention
mechanism are typically utilized to merge this infor-
mation. However, the XCA attention layer takes
information integration between features or channels
in the input sequence a step further, similar to CNNs.
This results in better outcomes and allows for the
capture of local spatial features. The convolutional
layers within the LPI block have a kernel size of 3× 3,
and they are implemented using two depth-wise
convolutions separated by batch normalization and a

nonlinear Gaussian Error Linear Unit (GELU) activa-
tion function.

2.3.3. Feed forward network
By utilizing the point-wise FFN layer with a single
hidden layer containing four-dimensional hidden
units, the XCA block enables seamless interaction
between all features. This feature proves to be particu-
larly useful, especially in situations where there are no
feature relations in the LPI block.

2.4. Cost function
In this study, we assigned higher weights to minority
classes, which contained fewer patches in each cross-
validation fold, the Weighted Cross Entropy (WCE)
method prioritizes their impact on the loss function,
resulting in a more balanced training of the model.
This strategy efficiently tackles the difficulties pre-
sented by imbalanced class distributions, improving
the model’s ability to generalize across all classes. It
can be expressed as follows:

 ( )
( )

( )
( )

å
= -

=

x y w
x

x
, log

exp

exp
2WL

y
n y

c

C
n c

,

1 ,
n

n

where x, y, w, and C are the input, target, weight, and
number of classes, respectively.

Figure 5.Overview of theXCiT layer that includes layer normalization layers, cross-covariance attention, local patch interaction, and
a feed-forward network.Here, hw,H ,N , andC refer to the height, width, head, token length, and channels respectively.

Figure 6.Overview of the local patch interaction layer that includes two depth-wise convolutional layers, a non-linear GELU
activation function, and a batch normalization layer.
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3. Experimental setup and results

3.1. Training and evaluation
A stratified five-fold cross-validation technique was
used during the training and testing phases to produce
robust classification results from the model. We split
our dataset into the patient-wise setting with a ratio of
70%, 10%, and 20% for training validation and testing,
respectively. The XCiT utilized a WCE loss function
with a batch size of 4 patch images to minimize the
error accurately. The model was trained with the
Adam optimizer with a learning rate of 0.0002 and 100
epochs. To validate and evaluate stage II performance,
patient-level predictions were calculated by averaging
the patch-level probabilities generated by themodel.

( )å=KRAS
P

P
1

3MT
total

i

Where Pi is the mutation score of slide patch i and
Ptotal is the total number of patches present in each
patient.

During both stages of the experiment, we utilized
data augmentation techniques to enhance the diversity
and heterogeneity of the tissue images used in model
training. This involved horizontal flipping with a
probability of 0.5, scaling, rotation by 30 degrees, and
illumination changes. The model parameters were
saved based on the highest achieved classification acc-
uracy on the validation set. We employed a similar
experimental setup for all methods to ensure a fair
comparison between our XCiT model and other
methods. Table 1 summarizes the hyperparameters
used in the experiment.

3.2. Computational setup
The experiments in this study were carried out on
PyTorch, utilizing the National High-Performance
Computing (HPC) Kelvin-2 administered by Queen’s
University Belfast (QUB). All models were trained on a
32 GB GPU memory equipped with CUDA version
11.2. Themodel evaluation, however, was executed on
a local workstation with a Linux operating system and
anRTX2080 TiGPU (11GB).

3.3. Evaluationmetrics
We used five evaluation metrics to determine the
effectiveness of our proposed approach and its com-
parison with other methods. These metrics include
accuracy, precision, recall, and F1-score [23].

( )=
+

+ + +
Accuracy

TP TN

TP TN FP FN
4

( )=
+

Precision
TP

TP FP
5

( )=
+

Recall
TP

TP FN
6

( )- =
+ +

F score
TP

TP FP FN
1

2

2
7

During the evaluation process, we considered the
four terms: TP, TN, FP, and FN. These terms refer to
true positives, true negatives, false positives, and false
negatives. Additionally, we utilized Area Under the
AUROC as a metric to assess the model’s ability to dif-
ferentiate between classes [24]. A higher value of
AUROC, closer to 1, indicates a better classification
performance by themodel.

3.4. Results
3.4.1. Stage I: Colorectal tumour tissue classification
Table 2 demonstrates the tissue classification results
yielded via the XCiT compared with recently pub-
lished works, including [20, 25, 26], and [27] using the
CRC-5000 dataset.

The experimental results show that the XCiT
achieved the most promising classification results with
2% improvement than second-best [27]. The cross-
covariance attention facilitates linear computation
against different tissue region structures aggregating
local and global features in given patches. From the
visual inspection and tissue morphology, the patch
images of the eight classes were different in their tex-
tural patterns. This suggests that the XCiT learned to
recognize meaningful textural and morphological fea-
tures, encouraging multiclass classification accuracies.
To classify the eight tissue types, [20] employed a set of
classical machine learning-based techniques that con-
tained the first benchmark accuracy of 87.4%. They
assigned the 1-nearest neighbour, linear support vector

Table 1.The hyperparameters used for stages I
and II.

Parameter
Stage

I II

input size 224 × 224 224 × 224

learning rate 0.0002 0.0002

optimizer Adam Adam

batch size 4 4

epoch 100 100

loss function WCE WCE

data augmentation Yes Yes

number of classes 8 2

Table 2.Comparison of theXCiT
results against existingmethods in
classifying the tumour versus non-
tumour tissues inH & Eon the
CRC-5000 dataset. Note that ↑
indicates higher is best highlighted
in bold.

Method Accuracy (↑)

Kather et al [20] 87.40

ARA-CNN [25] 92.44

Ohata et al [26] 92.08

Zeid et al [27] 94.75

Proposed 96.75
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machine (SVM), radial basis functions, and decision
tree classifiers to classify tumour and non-tumor patch
images. Notably, this method included the hand-craf-
ted feature extractor such as local binary pattern (LBP),
grey-level co-occurrence matrix (GLCM), and Gabor
filters to extract the features of patch images. The XCiT
model exceeded the [25] with a substantial margin of
4% where they leveraged the bayesian convolutional
neural network (ARA-CNN). In addition, [26] obtained
2% lower result against the XCiT based solely on the
transfer learning approach. Conclusively, the XCiT
extracted the small details through small patches with a
cross-covariance attention mechanism. The image fea-
tured details were mixed between the channels, which
provided an improvement in classification.

Figure 7 shows two examples of WSI and how the
XCiT model selected the patch-level tumour tissue while
disregarding the non-tumour regions, highlighted in red
and green, respectively.Notably, the trained stage Imodel
was applied to stage II for selecting tumour tissue in the
TCGA-CRC-DX and NIB cohorts. Since patch-level
multiple tissue regions ground truth is unavailable,
experienced pathologists manually reviewed the WSIs of
the TCGA-CRC-DX and NIB cohorts. Their visual
inspection found that themodel correctly identifiedmore
than80%of the tumour tissuepatches in eachpatient.

The results of the XCiT model’s classification of
CRC tissue into eight classes are presented in the confu-
sion matrix shown in figure 8(a). The model success-
fully classified themajority of tissue patches, with only a
few patches of misclassification. The distinct textural
patterns of these eight tissue types helped the model

learn more accurate feature representations. However,
it can be challenging to determine the patch class in
some cases due to the presence of various tissue types
with different textural or morphological information.
Despite this, the model classified most patches as
tumours due to the distinct textural pattern. There were
three patches of misclassification of the tumour as
stroma and complex stroma, and stroma was mis-
classified as complex stroma or debris four and three
times, respectively. The remaining classes (mucosa, adi-
pose, and background) had a low error rate of only 2%,
while the lymphocytic class had a slightly higher error
rate of 6% with misclassifications to the stroma and
complex stroma categories. The results of the AUROC
score, shown in figure 8(b), confirm the high classifica-
tion performance of the XCiT, with all classes having a
score of more than 98%. Therefore, the more visually
simple the tissue type, the more successful the model
was in identifying the correct tissue. With complexity
inevitably came errors in classification, with the Trans-
former model confusing complex stroma with malig-
nancy. Figure 9 shows that the t-SNE visualization
obtained by the XCiT utilizes an 8-dimensional class
vector in its final layer embedding. This vector is then
transformed into 2 dimensions. The resulting plot
demonstrates that each patch sample class is easily dis-
tinguishable and forms its owndistinct cluster.

3.4.2. Stage II: A KRAS mutation prediction on TCGA-
CRC-DX cohort
The quantitative results of KRASmutation prediction
in H & E can be seen in table 3. It showcases the

Figure 7.Classification of tumour tissues versus non-tumour regions using theXCiT in Stage I, validated onTCGA-CRC-DX cohort.
Pathologists visually examined the patches and found that themajority were accurately classified as tumour tissues. Note that (a) and
(c) show examples of whole slide images (WSIs), while (b) and (d) display patch-level predictions. Tumour patches are highlighted in
red, while the remaining classes are depicted in green.
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Figure 8.TheXCiTmodel classification results for the eight tissue regions are depicted in the confusionmatrix andAUROC shown in
(a) and (b), respectively. .

Figure 9. t-SNE visualization for eight-class colorectal tissue region classification fromCRC-5000 dataset.

Table 3.Aquantitative comparison of theXCiTmodel results for predictingKRASmutations in the TCGA-CRC-DX cohort is provided
with existing CNNandVisionTransformer-basedmethods. The results are reported at the patient level and obtained by averaging five-fold
cross-validation scores alongwith the standard deviation. The best significant results are in bold.

CNN-Based Models
Metrics

Accuracy (↑) Precision (↑) Recall (↑) F1-Score (↑) AUROC (↑)

ResNet-50 61.25 ± 11.47 62.77 ± 13.62 60.04 ± 16.86 59.92 ± 12.58 64.27 ± 13.59

ResNext 64.51 ± 8.90 66.14 ± 7.84 62.66 ± 19.13 61.54 ± 11.63 67.05 ± 10.80

EfficientNet-B7 57.63 ± 16.95 58.24 ± 17.77 56.82 ± 20.35 57.68 ± 14.27 61.43 ± 14.11

EfficientNetV2 59.91 ± 13.31 59.82 ± 14.38 57.33 ± 14.96 57.83 ± 13.06 63.01 ± 12.19

MobileNetV3 56.66 ± 17.73 57.03 ± 19.60 55.14 ± 18.21 57.34 ± 15.89 59.17 ± 15.52

VisionTransformer-Based ViT 60.45 ± 11.93 61.83 ± 10.20 59.61 ± 13.44 60.25 ± 12.50 61.94 ± 13.21

Swim 63.63 ± 11.27 64.72 ± 9.93 62.14 ± 10.85 63.66 ± 8.89 65.48 ± 9.19

BEiT 59.99 ± 9.91 60.65 ± 9.65 48.0 ± 19.50 51.90 ± 16.52 61.58 ± 14.30

ResMLP 60.72 ± 12.36 62.08 ± 11.23 58.69 ± 14.55 60.07 ± 11.81 63.44 ± 11.73

Proposed 67.09 ± 8.06 68.80 ± 5.52 69.33 ± 6.79 67.35 ± 6.03 69.16 ± 6.12
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performance of state-of-the-art CNN-based and
Transformer-based models that have been fine-tuned
for WSI prediction tasks on the patient level. CNN-
based models include ResNet-50 [28], ResNext-101
[29], EfficientNet-B7 [30], EfficientNet-V2 [31], and
MobileNetV2 [32]. The Transformer-based models
comprise of recently developed ViT [33], Swim [34],
BEiT [35], ResMLP [36], and XCiT [18] networks, all
pre-trained on ImageNet.

The ResNext-101 model demonstrated the highest
performance among all CNN-basedmodels, with a clas-
sification accuracy of 64.51% and an AUROC score of
67.05%. This model used the ”split-transform-merge”
technique, which enabled better discrimination between
wildtype and mutant classes than other methods.
ResNext-101 could extract rich features from the input
due to its increased cardinality, and it had a lower stan-
darddeviation rate thanotherCNN-basedmethods. The
ResNet-50 obtained the second-best results in terms of
accuracy, precision, recall, F1-score, and AUROC scores
with values of 61.25%, 62.77%, 60.04%, 59.92%, and
64.27%, respectively. In comparison, EfficientNet-B7,
EfficientNet-V2, and MobileNetV3 performed similarly
and did not significantly contribute to the KRASmuta-
tion prediction task. The MobileNetV3, a lightweight
deep CNN that uses depthwise separable convolutions,
had the lowest classification scores among all methods
due to its limited capacity to extractmeaningful features.

Presently, Vision Transformer-based approaches
have gained tremendous success in image recognition
tasks. Table 3demonstrates the results ofKRASmutation
prediction by the latest Transformer-based methods.
The XCiT model exceeded the performance of all other
CNNandTransformermethods, achieving accuracy and
AUROC scores of 67.09% and 69.12%, respectively.
Figure 10 presents the AUROC for each cross-validated
fold. The Swim Transformer was the second best
performer,with anAUROCof 65.48%, thanks to its shif-
ted windows method, which restricts self-attention

computations to non-overlapping local tissue patches
and enables cross-window connections. However, it
scored 4%–6% lower than the XCiT on all metrics.
Meanwhile, ViT, BEiT, and ResMLP produced compar-
able results anddidnot significantly contribute to solving
this challenging KRAS prediction task. Figure 11 shows
examples of the XCiT prediction overlaid on the raw
TCGA slide images to examine the patch-wise predic-
tion. We randomly chose four examples corresponding
to theKRASMT andKRASWT categories.KRASMT exam-
ples I and II show a very high confidence rate of more
than 90% in correctly predicting the mutation in H&E.
Nevertheless, KRASWT patches also predicted well and
obtained lowermutant scores.

3.4.3. Stage II: KRAS mutation prediction on external
independentNIB cohort
We assessed the robustness of the XCiT using the NIB
cohort as an independent test to classify the digital
slide images into KRASMT and KRASWT classes.
Figure 12 (a) presents the classification results using 27
H & E samples. We achieved an accuracy, precision,
recall, and F1-score of 70.37%, 84.61%, 80.0%,
66.67%, and 65.29%, respectively. The model per-
formed significantly better than the TCGA-CRC-DX
cohort due to the good quality of slide images contain-
ing lower imaging artifacts. Figure 12 (b) provides the
AUROC curve with a slightly lower outcome of
65.21% than the TCGA-CRC-DX cohort. Based on
the experimental findings, we found that the model
has the potential to predict the mutation in H & E but
requires an additional data set of samples to verify the
outcome for diagnostic purposes in the clinical setting.

4.Discussion and limitation

The study presents a promising approach to predict
KRAS mutations in CRC tissue samples using H & E

Figure 10. Illustration of AUROCusing stratified five-fold cross-validation on the TCGA-CRC-DX cohort. Folds 1, 4, and 5 achieved
similar scores. However, Fold 2 and 3 obtained the AUROC scores of 0.612 and 0.62%.
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stained images. The study utilized a collaborative
approach between pathologists and data scientists to
develop an automated solution to predict KRAS
mutations. We conducted several ablation experi-
ments to gain insight into the clinical context of the
problem. We found that eliminating unwanted tissue
types, such as stroma, complex stroma, adipose,
debris, and background information, was crucial for
the model’s feature learning capabilities and final
classification performance. Further, the textural pat-
tern identification betweenKRASWT andKRASMTwas
complex in H & E images because some cell features
shared similar morphological properties, leading to
incorrect predictions. The study demonstrated that
the Vision Transformer-based XCiT method could
extract better feature representation than traditional
convolutional neural networks (CNNs).

Furthermore, the study found that selecting the
standard patch size of 256× 256 was crucial in

capturing the relationship of spatial features through
cross-covariance attention mechanisms. Although the
study aimed to demonstrate the potential for the
model as a cost-effective alternative to expensive
molecular testing, further training using the principles
outlined in the study is necessary for potential clinical
application. Themodel’s clinical utility will depend on
its ability to accurately predict KRAS mutations in a
wide range of sample types as well as the cost-effective-
ness of implementing themodel in clinical practice.

Earlier, Jang et al [14] attempted to predict CRC
mutations fromH& E-stainedWSIs. They utilized the
CNN-based Inception-v3 architecture to predict
KRAS gene mutations in H & E and achieved AUROC
scores ranging from 0.645 to 0.783 on the TCGA-
CRC-DX and in-house datasets, respectively. Bilal et al
[15] designed a weakly supervised framework to iden-
tifymolecular pathways and specific genemutations in
CRC patients using H & E images. They employed the

Figure 11.Examples of patch-wise prediction visualization using theXCiT overlaid on the rawTCGA slide images. The randomly
selected two examples belong to themutant andwild-type categories. Based on the classification, illustrate themutation score
calculated by averaging the probabilities of all the patches for each example. The correctly predicted patches are shown in green, and
the incorrectly predicted ones are shown in red.

Figure 12. Illustration of the classification results withfivemetrics and area under the curve (AUROC) shown in (a) and (b),
respectively, to predict theKRASmutation achieved using theXCiT.
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ResNet-34model, which achieved an AUROC score of
0.60 on the TCGA-CRC-DX cohorts. While most stu-
dies have focused on predicting gene mutations
through WSIs, their analysis was limited to assessing
the potential of Vision Transformer-based methods
for classifying KRAS mutations. Our proposed
method achieved improvedmutation prediction using
the Vision Transformer-based XCiT model, with a
0.69AUROC score on the TCGA-CRC-DX cohort.

There are some limitations associatedwith this study.
Specifically, the TCGA-CRC-DX cohort does not accu-
rately represent real-world scenarios and fails to encom-
pass the diverse range of morphologies that pathologists
commonly encounter daily. With the limited number of
samples, it is challenging to ensure a full variation of his-
topathological morphology. These limitations suggest
that improving themodel’s performancemay necessitate
the inclusion of supplementary data sources fromdiverse
groups, which could prove beneficial when employing
advanceddeep learning techniques.

5. Conclusion

We developed a cost-effective and time-efficient
KRASFormer framework, where the use of a Vision
Transformer-based XCiT model provides a viable
alternative to CNNs for identifying KRAS gene muta-
tion from H& E stained WSIs. This complete frame-
work was split into two separate stages. The first stage
only selected the tumour region, and the second stage
was crucial in precisely identifying the KRAS gene
mutation. We employed the potential of the XCiT
model to extract the most relevant clinically mean-
ingful features from the WSIs. Our experimental
findings indicated promising results that the model
could identify KRAS mutant patterns in two cohorts.
The XCiT models possess the potential to function as
screening tools for the prediction of KRAS gene
mutations after further clinical validation. It is pre-
mature to conclude that the XCiT model can supplant
conventional techniques like NGS. As the model’s
evaluation is restricted to a limited dataset, further
confirmation in clinical validation studies is required
to develop a clinical application that allows cancer
patient treatment stratification.
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