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Abstract

Fetal sonography remains a highly specialised skill in spite of its necessity and im-
portance. Because of differences in fetal and maternal anatomy, and human pyscho-
motor skills, there is an intra- and inter-sonographer variability amoungst expert
sonographers. By understanding their similarities and differences, we want to build
more interpretive models to assist a sonographer who is less experienced in scanning.

This thesis’s contributions to the field of fetal sonography can be grouped into two
themes. First I have used data visualisation and machine learning methods to show
that a sonographer’s search strategy is anatomical (plane) dependent. Second, I show
that a sonographer’s style and human skill of scanning is not easily disentangled.

We first examine task-specific spatio-temporal gaze behaviour through the use
of data visualisation, where a task is defined as a specific anatomical plane the
sonographer is searching for. The qualitative analysis is performed at both a
population and individual level, where we show that the task being performed
determines the sonographer’s gaze behaviour.

In our population-level analysis, we use unsupervised methods to identify
meaningful gaze patterns and visualise task-level differences. In our individual-level
analysis, we use a deep learning model to provide context to the eye-tracking data
with respect to the ultrasound image. We then use an event-based visualisation to un-
derstand differences between gaze patterns of sonographers performing the same task.

In some instances, sonographers adopt a different search strategy which is seen
in the misclassified instances of an eye-tracking task classification model. Our task
classification model supports the qualitative behaviour seen in our population-level
analysis, where task-specific gaze behaviour is quantitatively distinct.

We also investigate the use of time-based skill definitions and their appropriate-
ness in fetal ultrasound sonography; a time-based skill definition uses years of clinical
experience as an indicator of skill. The developed task-agnostic skill classification
model differentiates gaze behaviour between sonographers in training and fully
qualified sonographers. The preliminary results also show that fetal sonography
scanning remains an operator-dependent skill, where the notion of human skill and
individual scanning stylistic differences cannot be easily disentangled.

Our work demonstrates how and where sonographers look at whilst scanning,
which can be used as a stepping stone for building style-agnostic skill models.
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1.1 Motivation

Fetal ultrasound screening is a service provided to pregnant women during their

pregnancy to assess the health of their fetus and maternal well-being [90]. The

scan is carried out by a qualified sonographer and for the second trimester scans,

usually takes about 30 minutes to complete. In spite of its necessity and importance,

fetal ultrasound screening is a highly specialised skill that takes several years to

acquire because of differences in sonographer skill, fetal and maternal anatomy,

and individual response to real-time visual feedback [127].

1
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There is a need to better understand how a sonographer performs the scan.

This is done through available data modalities, such as ultrasound videos and gaze

behaviour (of sonographers) recorded using eye-trackers. Perception Ultrasound

by Learning Sonographic Experience (PULSE) is a unique study (to date) that

investigates sonographer scanning behaviour by analysing these data modalities.

Sonographer gaze is currently used for saliency detection to describe the visual

navigation process [109, 112], learn new tasks [133] and classifying skill [137].

However, less work has been done to analyse gaze behaviour of a population

of sonographers. There is research interest for analysing spatio-temporal gaze

characteristics to understand different searching strategies and quantification of

sonographer expertise [126].

Prior work has shown that there is intra- and inter-sonographer variability

amoung a group of experts [39]. Consequently, the searching strategy of one expert

could differ from another expert. Analysing a large amount of data is not trivial

because computational resources required scales with the size of the dataset. Hence,

methods to understand sonographer search strategies need to be both efficient and

informative. There is also room to extend current skill quantification methods to

include sonographers who have not yet fully qualified, and consider approaches

which do not arbitrarily quantify expertise by grouping fully qualified sonographers

based on years of scanning experience.

This thesis is concerned with analysing spatio-temporal gaze characteristics of

sonographers, and extending current definitions of skill classification and assessment

that use eye-tracking data. Hence in the literature review (Chapter 2), I cover

3 different topics. The first topic investigated is the use of data visualisation to

analyse eye-tracking data recorded. Data visualisation is a tool used to understand

participant behaviour. Analysing eye-tracking data of sonographers is not trivial

because of the amount of data collected (over 2-3 years in the PULSE project) and

the number of distinct anatomical planes being searched for in a short period of time.

Data visualisation can be thought of loosely as a qualitative evaluation of gaze

behaviour. Consequently, this thesis also aims to perform a quantitative evaluation
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using task classification models that separates sonographer eye-tracking data when

searching for different anatomical planes. Hence, the second topic is concerned

with the use of eye-tracking to differentiate scanning tasks.

Finally, the third topic is concerned about current definitions of skill used

in literature, and more specifically medical literature. I aim to extend present

definitions of skill in fetal sonography.

1.2 Contributions

The main contribution I have made is with respect to the field of fetal sonography.

Specifically, I have used data visualisation and machine learning methods to show

how sonographers perform their search visually, and where sonographers look at

when searching for 3 different planes: abdomen, brain and heart. Moreover, I have

shown that the search strategy is (anatomical) plane dependent. I also extend

current time-based and task-specific definitions of skill used in medical literature

by building a general (task-agnostic) skill model which shows that the relationship

between human skill and style are not easily disentangled.

First, I investigated spatio-temporal gaze characteristics of sonographers at the

population and individual level using data visualisation methods. Then, following

on from the population analysis, I built a task classification model using eye-tracking

data of sonographers. Finally, I extend current definitions of sonographer skill by

building a skill classification model, where current time-based definitions are over

simplified and omit other important factors that contribute to skill level.

In the population level analysis, I use unsupervised methods to identify mean-

ingful clusters of gaze points and then visualise the spatio-temporal characteristics

of these clusters. The visualisation method also uses ultrasound images as an

additional data modality to further separate the gaze clusters.

In the individual level analysis, I use a deep learning model to first localise the

anatomical plane. Then I use an event-based visualisation to consider differences

when performing tasks of different levels of difficulty.
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Following on these qualitative analyses, I build an eye-tracking task classification

model. The task classification model complements the population level analysis

as it affirms that the distinct spatio-temporal gaze characteristics observed are

also quantitatively distinct.

Finally, I extend current definitions of skill in fetal sonography by building an

eye-tracking based skill classification model. Unlike prior methods [123, 137], I

consider all fully qualified sonographers as experts and sonographers learning

to scan as trainees.

1.3 Thesis Structure

In Chapter 1, I discuss the main contributions and global definitions used

throughout the thesis. The Fetal Anomaly Screening Programme (FASP) and

the project Perception Ultrasound by Learning Sonographic Experience (PULSE)

are introduced. Relevant publications and acknowledgements of collaborators are

described. In Chapter 2, I discusses current literature on 3 main topics: 1) the

use of data visualisation methods to analyse eye-tracking data, 2) the use of eye-

tracking to differentiate tasks and 3) the use of eye-tracking for skill classification of

clinicians, including adjacent medical fields to that of fetal ultrasound. In Chapter

3, I provide an overview of the ultrasound video datasets which were used in

this thesis. These include any pre-processing and feature engineering methods

of the ultrasound video and eye-tracking data of sonographers. In Chapters 4

and 5, I present 2 applications of data visualisation methods on sonographer eye-

tracking data to perform population and individual level analysis. In Chapter 6, I

present a task classification model that was used to differentiate different anatomical

planes using only sonographer eye-tracking data. In Chapter 7, I present a skill

classification model that was used to correlate sonographer scanning skill and years

of scanning experience.Finally, in Chapter 8, I summarising the contents of my

thesis, its limitations and suggest some directions for future work.
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1.3.1 Publications

Work from the following publications form the basis of sections of this thesis

as detailed below:

• Chapter 4 C. Teng, H. Sharma, L. Drukker, A. T. Papageorghiou, Alison

J. Noble, ‘Visualising Spatio-Temporal Gaze Characteristics for Exploratory

Data Analysis,’ In: 14th ACM Symposium on Eye Tracking Research and

Applications (ETRA 2022), Poster Presentation [149]

• Chapter 5 C. Teng, L. H. Lee, J. Lander, L. Drukker, A. T. Papageorghiou,

Alison J. Noble, ‘Skill Characterisation of Sonographer Gaze Patterns during

Second Trimester Clinical Fetal Ultrasounds using Time Curves,’ In: 14th

ACM Symposium on Eye Tracking Research and Applications (ETRA 2022),

Poster Presentation [148]

• Chapter 6 C. Teng, H. Sharma, L. Drukker, A. T. Papageorghiou, Alison J.

Noble, ‘Towards Scale and Position Invariant Task Classification using Nor-

malised Visual Scanpaths in Clinical Fetal Ultrasound,’ In: 2nd International

Workshop of Advances in Simplifying Medical UltraSound (ASMUS 2021) at

MICCAI, Oral Presentation [140]

Reproduced with permission from Springer Nature

• Chapter 7 C. Teng, L. Drukker, A. T. Papageorghiou, Alison J. Noble, ‘Skill,

or Style? Classification of Fetal Sonography Eye-Tracking Data’ In: Gaze

Meets ML Workshop at NeurIPS 2022, Poster Presentation [153]

1.4 Fetal Anomaly Screening Programme

The National Health Service (NHS) offers a second trimester ultrasound scan to

pregnant women through the Fetal Anomaly Screening Programme (FASP) [90].

The purpose of the scan is to check the health of the fetus who is usually between

180 to 20+6 weeks old. During the scan, anatomical structures of the fetus are

assessed by accredited sonographers who are required to measure and capture

specific anatomical planes. Typically, 30 minutes is allocated for the scan. These
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standard planes are also sometimes referred to as the gold standard, where specific

anatomical structures must be visible to be considered as a ‘textbook’ image. In

practice, sonographers may not always capture a gold standard plane because of

differences in fetal position, maternal anatomy and time constraints. However, the

captured plane is sufficient for diagnostic purposes.

Figure 1.1: An example timeline of ultrasound scanning. In this example timeline, the
sonographer started performing their scan in B mode (between T0 and T1), before freezing
the video. Before taking measurements, the sonographer rewinds the video through the
buffered frames. These buffered frames are known as cinemode frames (between T1 and
T2). Once they have found the frame they want to take measurements on, they begin the
measurement phase (between T2 and T3). After measuring, they unfreeze the video and
continue scanning (between T3 and T4).

There are several different modes that the ultrasound video can be used in. This

thesis used the brightness mode (B-mode) frames (Figure 1.1 between T0 and T1,

T4 onwards) which consist of both unfrozen and frozen frames; frozen frames can

be measurement and or cinemode frames (Figure 1.1 between T1 and T3). When

the video is not frozen, sonographers are navigating or searching for the required

anatomical plane and adjusts the ultrasound probe based on what they see on the

display of the ultrasound screen (Figure 1.1 between T0 and T1, and, T3 and T4).

Frozen frames occur when sonographers have frozen the video on the ultrasound

machine to take a measurement of the anatomical plane (Figure 1.1 between T2
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and T3). If the sonographer rewinds the video to obtain a higher quality image,

cinemode (buffered) frames will be generated(Figure 1.1 between T1 and T2). An

example of the scanning process is shown in Figure 1.1.

1.4.1 Standard Planes

During second trimester ultrasound scans, several standard imaging planes are

captured and measured by sonographers [90]. I mention those which are relevant to

this thesis, which are the abdomen, brain and heart plane views (Figure 1.2).

According to [90], the 6 heart views which are assessed include the situs,

the 4 chamber view (4CH), the aorta/left ventricular outflow tract (LVOT), the

pulmonary/right ventricular outflow tract (RVOT), the 3 vessel view (3VV) and

the 3 vessel and trachea view (3VT). The situs is a heart view used to determine

whether the fetus is cephalic (head facing upwards with respect to the cervix) or

breech (head facing towards the cervix). Typically, the sonographer will take a

view of the heart (left of the image) and move the probe towards the abdomen

(right of the image) to determine the orientation of the fetal organs with respect

to the maternal orientation. I specifically mention the situs because the situs view

presents itself differently (Figure 1.2f) from other heart views 4CH, LVOT, RVOT,

3VV and 3VT on the ultrasound machine.

The 2-head views which are assessed are the suboccipitobregmatic view demon-

strating measurement of the transcerebellar diameter (TCB) (Figure 1.3b) and

the head circumference and atrium of the lateral ventricle, also known as the

transventricular plane (TVP) (Figure 1.3a). The abdominal view which is assessed

is the abdominal circumference (AC) (Figure 1.3c).
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(a) 4CH. (b) LVOT. (c) RVOT.

(d) 3VV. (e) 3VT. (f) Situs

Figure 1.2: Standard plane heart views.

(a) TVP. (b) TCB. (c) AC.

Figure 1.3: Head and abdomen standard plane views.

1.5 Perception Ultrasound by Learning Sonographic
Experience (PULSE)

The Perception Ultrasound by Learning Sonographic Experience (PULSE) project

(ERC-2015-AdG-694581) started in 2016 with data collection approved by the UK

Research Ethics Committee (Reference 18/WS/0051). Written informed consent

was given by all pregnant women who participated. The women were at least

19 years old when they came in for their routine ultrasound scan, and up to 20

different sonographers participated in the study [127].

The project aims included to build assistive technology through more powerful



1. Introduction 9

Figure 1.4: PULSE equipment set-up in the John Radcliffe Hospital, Oxford. The
eye-tracker is mounted underneath the ultrasound machine screen. The microphone was
placed near/on the computer set-up. The probe motion was recorded using an inertial
measurement unit (IMU) which was mounted onto the cable of the probe. The position
of the phantom fetus is where the pregnant woman would lie down during the scan.

interpretive models than was previously possible by only analysing ultrasound

videos and images. The project recorded 4 synchronised data sources: ultrasound

videos of first, second and third trimester routine clinical fetal ultrasound scans,

sonographer gaze using an eye-tracker, sonographer probe motion using an inertial

measurement unit (IMU) which was mounted onto the ultrasound probe, and audio

recordings of sonographers providing qualitative descriptions of fetal images during

the scans [127, 94]. Figure 1.4 shows the set-up of the PULSE equipment, where

the probe motion was recorded using a mounted IMU, the eye-tracker mounted

underneath the screen, and the microphone placed within appropriate vicinity

of the sonographer scanning [125].

The processing of obtaining fetal images during the ultrasound scan can be

described as follows [127]. The sonographer adjusts the probe whilst looking for

the standard plane, while receiving real-time visual feedback from the video on the

screen. They re-position the transducer based on what they see, which changes

the video on the ultrasound machine screen. This thesis uses only second trimester

fetal ultrasound video scans and the sonographers’ corresponding eye-tracking data,

focusing on the visual aspect of the sonographer ‘loop’.
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The ultrasound machine used was a commercial General Electric (GE) Healthcare

Voluson E8 or E10 with a sampling frequency of 30Hz, or frames, per second [127].

The video files were recorded using lossless compression [126]. An eye-tracker (Tobii

Eyetracking Eye Tracker 4C, Danderyd, Sweden) was mounted under the ultrasound

machine screen, and the calibration procedure is described in [110]. Sonographers

do not have any knowledge of whether the eye-tracker is functioning [127]. The

eye-tracker samples gaze data at 90Hz. The eye-tracker is used to record the

sonographer’s gaze, as on the ultrasound machine screen, while they are scanning.

The eye-tracker equipment was set up and calibrated prior to the start of the

doctorate. Since this thesis uses the eye-tracking data as the primary data modality,

a brief description of the calibration parameters are listed here. Where possible,

I have included the corresponding details below.

• Eye tracker model/specifications: Tobii Eyetracking Eye Tracker 4C, Dan-

deryd, Sweden.

• Sampling frequency, either of eye tracker itself, or for analogue systems the

sampling frequency of any AD conversion (or some such): 90Hz.

• A description of the setup and geometry: Mounted at the bottom of a

1920x1080 pixel ultrasound machine screen using a magnetic mount and

silicon adhesive.

• Calibration procedure: 9-point calibration per sonographer [110] who partici-

pated in the study.

• Environmental conditions: Eye-tracking data was recorded in a hospital room

at the John Radcliffe Hospital, where the lighting conditions (due to curtains

drawn during the scanning procedure) remain largely unchanged during and

between scans.

The accuracy and precision of the eye-tracker was investigated in [110]. In

their work, they performed an in-situ study with 3 sonographers. I report their

metrics below.

• Median accuracy: 0.65 degrees, (30.1 pixels).
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• Median precision: 0.09 degrees, (4.5 pixels).

In [110], the authors found that there was no effect on the precision of the eye-

tracker, while they reported a loss of accuracy of 0.16 degrees between calibration

and later use. Note that the eye-tracker was calibrated for each sonographer who

participated in the study [136]. In this thesis, the main assumption is that the

eye-tracker’s accuracy validated using the procedure described in [110, 127] is

accurate for the analysis performed.

1.6 Definitions

A list of definitions which are used globally in the thesis are given below. These

definitions are specific to the methods presented in this thesis.

• Segment: A group of adjacent and consecutive frames in the fetal ultrasound

video between time t and t+n.

• PULSENet: A fetal ultrasound frame classification model which was trained

on the PULSE ultrasound videos [142].

• pulsepytools: A Python toolbox built by Dr. Richard Droste which extracts

and pre-processes the PULSE project data collected between 2018 - present

[126].

• Standard plane: A standard plane view of an anatomy must contain key

anatomical structures specified by [90].

A list of eye-tracking specific definitions which are used globally in the thesis

are given below.

• Gaze point: The position of a user’s attention on a 2-dimensional screen

captured using an eye-tracker. The gaze point is recorded using x and y

co-ordinates abbreviated as Gx, Gy.

• Gaze velocity: The difference between Gx, Gy at time t and t + δt divided by

δt, where δt is the inverse of the sampling frequency of the eye-tracker.

• Fixation: The eye is focused on a particular object or area [161].
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• Saccade: The eye is moving rapidly from one point of interest to another

[161].

• Post saccadic oscillation: Ocular instability just after a saccade which occurs

before reaching a steady-state value [6, 45].

• Smooth pursuit: The fovea is actively following a moving object [161].

• Areas-of-interest (AOI): an AOI is a specific anatomical landmark that the

sonographer has looked at while performing the scan.
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In this chapter we review literature relevant to the thesis.

2.1 Visualising Eye-Tracking Events for Videos

The purpose of video visualisation is to provide a visual representation of important

events and features that occurred over time in the video. It is used as a tool to

summarise meaningful information for the end user using graphical representations,

one example being glyph-based visualisation [34]. In eye-tracking specifically,

13
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visualisation systems can be used to identify unique user scanpaths, user specific

fixation/saccadic behaviour and areas-of-interest [47].

There are many factors to consider when designing an eye-tracking visualisation

as outlined in [47]. Some that are relevant to fetal ultrasound are:

• the nature of the stimuli - static or dynamic. Examples of static stimuli

are images, and dynamic stimuli appear when watching a video. In fetal

ultrasound, the fetus moves based on the probe movement and the nature of

the stimuli is said to be dynamic.

• the desired representation of recorded gaze data in the constructed visualisa-

tion. In fetal ultrasound, both spatial and temporal visual representation of

gaze characteristics are desirable.

• the dimensions of recorded data. In the PULSE project, the gaze data is

recorded in 2-dimensions - an x and y co-ordinate.

• the number of participants. In the PULSE project, there are multiple

sonographers of different years of experience whose data was collected.

Eye-tracking visualisation methods follow a general pipeline of 1) classification of

eye movements, 2) calculation of eye movement characteristics and 3) visualisation

of aggregated gaze behaviour. Once raw eye-tracking data is separated into their

respective eye movements, a set of aggregated metrics is calculated. Examples

include, length of fixations, time to completion of task, average radius of fixation

(in degrees). These metrics are collated to produce a suitable visualisation method,

depending on what the user is interested in. For example, the transition between

fixations or spatio-temporal order of areas-of-interest visited. The final visuals are

used to inform the user of differences between participants, such as classification

of skill. Because of the complexity involved across applications, there is no one-

size-fits-all data visualisation solution [75, 72, 31].

Eye-tracking visualisations are usually presented in 2D or 3D. As 3D systems are

not trivial to implement, in this literature review I consider current 2D visualisation

methods which use video (dynamic) stimuli (Section 2.1.1). These methods also
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typically rely on the successful classification of the different types of eye movements

fixations/saccades/smooth pursuits, or a suitable expert who can label them. Hence,

I also consider non-parametric methods of classifying eye movements (Section

2.1.2), since using an off-the-shelf algorithm such as Tobii’s algorithm [38] might

not always be suited for the specific application, and expert labellers might not

be available for every study.

2.1.1 2-Dimensional (2D) Eye-Tracking Visualisation for
Videos

(a) Frame of an abdomen
plane.

(b) Heatmap superimposed
on the abdomen plane in Fig-
ure 2.1a

.

(c) Order of areas-of-interest
visited, labelled using the
numbers. The size of the
circle indicates how long was
spent at each area-of-interest.

.
Figure 2.1: An example of the types of heatmap eye-tracking visualisations, using the
abdomen plane as an example. In Figure 2.1a I show the original abdomen frame. In
Figure 2.1b, I show a heatmap of the eye-tracking data superimposed on the original frame.
The heatmap shows the concentration of the gaze points recorded by the eye-tracker
around the stomach, umbilical vein and aorta. In Figure 2.1c, the areas-of-interest are
numbered based on the order that the sonographer looked at the landmarks, and the
size of the circle indicates how long they spent there. These figures are for illustration
purposes only.

There are several popular methods which are used to display eye movement

characteristics in 2D such as the attention heatmap [32] (Figure 2.1) and scarf

plots (Figure 2.2). Some of these methods focus on spatial characteristics, while

others incorporate both spatial and temporal information. Location of fixation

and saccade is represented in x and y co-ordinates, while time can be represented

with a different attribute such as colour. When creating a visualisation for videos,

there are added complexities such as dynamic stimuli, where there can be multiple
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objects of interest which change in size and location over time. Plotting multiple

heatmaps could be used for multi-participant videos. Videos could be broken down

into different tasks being performed to perform a between participant comparison.

However, the spatial changes in gaze might not be easily captured for long videos

where tasks are not easily defined by a fixed time period. In those instances, a

suitable temporal measure such as length of time is required.

Figure 2.2: An example of scarf plot created using 3 areas-of-interest on the abdomen
plane: stomach, aorta and umbilical vein. The colour identifies the anatomical landmark,
and the length of the colour bar indicates how long was spent at that landmark. Illustration
created in Microsoft PowerPoint using [92] as an example.

For certain applications, the temporal order of objects of interest visited

(Figure 2.1c) is important information to compare between groups of participants.

Another key element of visualisation design to consider is how to display multi-

ple participant characteristics while avoiding visual design clutter which make

interpretation difficult.

Figure 2.3: Example of a storyline visual. This is similar to the scarf plot in Figure 2.2,
but the main idea behind a storyline visualisation is to compare the behaviour between
participants. Here the white gaps indicate that the sonographer had not been looking
at any of the areas-of-interest stomach, aorta or umbilical vein. PX refers to a unique
participant. Illustration created in Microsoft PowerPoint using [71] as an example.

Methods which calculate areas-of-interest display the temporal order of areas

visited using timeline / storyline visuals (Figure 2.3) [63, 71, 50], nodes [66] and
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Figure 2.4: Example of spiral visualisation which uses ‘slices’ of the image. The left
most image shows the abdomen plane, with a red box over a thin slice of the image. The
red box’s position is determined based on the eye-tracking x co-ordinate. The height of
the box is arbitrary. In other similar visualisations, instead of a slice a cropped image
can be used. The middle image shows several slices taken over a period of time. On the
right most image, the slices are now collated to form a spiral, where the direction of time
is anti-clockwise. Illustration created in Microsoft PowerPoint using [64] as an example.

scarf plots [41] (Figure 2.2). Other methods are annotation free and do not identify

specific areas-of-interest, such as [64, 145, 64, 61, 79] which represents images as

thumbnails, or uses clustering-based methods to identify areas-of-interests [102, 57].

More labour intensive methods design dedicated platforms which are integrated

with the eye-tracker and computer [118, 50].

[79] uses Hilbert maps to visualise spatial and temporal characteristics of gaze

behaviour. [64, 145, 64] represents each frame as a small slit (horizontal or vertical)

taken at the x (or y) co-ordinate of the recorded gaze point. [145] uses a spiral

visualisation and does not require any specific annotations. Temporal order is

represented in the anti-clockwise direction (Figure 2.4). [71] uses dynamic time

warping to represent similarities between areas-of-interest and clusters the scanpaths

into a ‘storyline’ visualisation. In storyline visualisations, time is represented on

the x-axis, and an ordered preference of objects viewed is plotted on the y-axis.

[50] uses the 3D space-time cube [44] to produce a timeline based visualisation

of areas-of-interest visited. [41] uses a Sankey diagram to represent multiple areas-

of-interest and the behavior of participants over time.
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Figure 2.5: Example of a space-time cube used to visualise eye-tracking data. In this
illustration, the abdomen plane is used. In the space-time cube, both the spatial aspect
and temporal aspect are displayed. The spatial element is meant to convey where the
plane is with respect to the screen’s location, and the temporal element shows how the
image changes over time. Some key frames are also highlighted and identified (in blue,
red and green), where the cumulative eye-tracking data until that point is shown as a
heatmap. Illustration created in Microsoft PowerPoint using [95] as an example.

2.1.2 Non-Parametric Classification of Eye Movements

Some of the eye-tracking visualisation literature discussed relies on having a suitable

eye movement classification algorithm. These algorithms classify different eye

movements based on whether a threshold, either gaze distance or velocity, is

exceeded. [13] outlines 5 eye movement classification algorithms which form the

building blocks of many other threshold-based algorithms [67]. Briefly, these are

usually written as ‘I-XX’, where I stands for identification, and XX represents

the type of algorithm being used. In this thesis, I refer to Tobii’s [38] Velocity-

Threshold Identification (I-VT) most frequently. Their algorithm considers gaze

points corresponding to ≤ 30 degrees/s as a fixation, otherwise as a saccade.

Suitable thresholds may not always be available based on the study’s require-

ments. Hence researchers have implemented non-parametric methods for separating

fixations/saccades/smooth pursuits from raw eye-tracking data [49, 37, 43]. In

their methods [49, 37, 43], they do not choose a specific threshold based on expert
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knowledge or rely on in-built eye-tracker algorithms [38]. [28, 70] provide an

overview of how choosing the threshold metrics can return vastly different results.

Being able to choose thresholds or parameters which are informative and accurate

for the application is challenging.

Current methods include custom quantitative metrics [28, 43], distribution based

methods [37, 55, 22], probabilistic methods [67] and machine learning based methods

[106, 93, 49]. Quantitative metrics, distribution based methods and probabilistic

methods aim for a ‘sweet spot’, where the metric or distribution value reaches

a steady state value. Machine-learning based methods use random forest [93],

convolutional neural networks [106] and clustering to separate eye movements.

[28] created a group of behaviour scores which allowed a set of optimal threshold

values to be determined when fixations and saccades are present, which was followed

by [43] who used [28]’s existing metrics and additional scores to include smooth

pursuits. [43]’s customised metrics combined of classical eye movement methods. [67]

uses Bayesian decision theory to automate classification of fixation/saccades/smooth

pursuits in real-time from low frequency eye-trackers. Unlike classical threshold-

based methods, their work uses a probabilistic approach based on eye speed. [55]

uses a 3-step segmentation algorithm to identify fixations and smooth pursuit

events. Their work uses the Rayleigh test which tests the hypothesis that the

direction vectors between samples are uniformly distributed around a unit circle.

[93] uses a random forest to classify fixations/saccades/post-saccadic oscillations,

and performs post-processing heuristics to return the final labels. More recent work

uses advanced machine learning techniques such as deep learning. For example, [106]

who used convolutional neural networks to classify fixations/smooth pursuit/noise

using an open source labelled dataset [27].

2.1.3 Challenges in Fetal Ultrasound

Eye-tracking visualisation that are designed specifically for videos usually involve a

complex set-up. These equipment are not trivial to implement in a clinical setting

where the participants can be patients, clinicians or both. In fetal sonographer,
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to utilise methods like the space-time cube [50, 44] which allow for post-analysis

of gaze behaviour, the video that participants watch have to be identical so that

their behaviour can be compared. However, the fetus presents itself differently in

each scan. No two fetal videos will look exactly alike.

Applications which visualise gaze behaviour while watching videos used bench-

mark datasets like that of [51] use coloured videos with defined objects of interest

for the participant to follow. For example, a car driving along the road or a group

of people play a game of UNO (which have colours) [51]. Fetal ultrasound images

are recorded in greyscale. This makes annotation free methods like [145] difficult to

use because each slit of the frame would look similar to the other slits. The slit also

needs to be wide enough to provide overall context of the anatomical landmark that

the sonographer is looking at. For planes like the heart plane where the aortas and

pulmonary arteries are spatially close, segmentation of these landmarks is not trivial.

Other methods that require labelling of areas-of-interest would be labour intensive.

To reduce the eye-tracking labelling efforts involved for a fetal ultrasound video,

non-parametric methods could be used to separate the eye tracking data into their

respective eye movements. However, the current non-parametric methods are not

easily extendable to the PULSE data because of sampling frequency differences and

length of data available on a task-basis. This is because the fetal ultrasound videos

are recorded ‘in-the-wild’ with pregnant women and sonographers, and there are

also more than 20 standard planes which need to be captured over a 30-40 minute

period. As a result, the time of capturing a specific plane could be as short as a

few seconds [135]. Conversely, methods like that of [37, 49] require a reasonable

amount of data being available per participant, per task.

There is a need to find a method that can analyse the gaze behaviour of

sonographers, taking into account the complexities such as grey-scaled images, fast

transition between landmarks of interest and the low sampling frequency of the

eye-tracker. This question is explored in this thesis (Chapters 4 and 5).
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2.2 Task Classification: Medical Applications

The literature on task classification is usually closely intertwined with skill assess-

ment, so I will discuss task classification and skill assessment in separate sections.

Task classification is used to identify the specific task being performed. In surgical

applications this could be tying a knot whilst closing a suture [68]. Whilst using a

sewing machine [111], this could be adjusting the knob’s settings to increase tension

in the thread. In fetal ultrasound, a task is defined as the sonographer searching

for a specific anatomy plane (for e.g. TCB or TVP). The literature around task

classification using eye-tracking can be segregated based on the use of a) images

or videos, and b) the use of either eye-tracking (raw/feature engineered/calculated

eye movements) or pupillometry [138].

I focus my literature review on medical applications using eye-tracking in videos,

such as fetal ultrasound [126] or surgery [26], and images such as radiology [108],

for example chest X-rays [18, 21] and breast mammograms [10].

2.2.1 On Surgical and Fetal Ultrasound Video Differences

Surgical skill data science is an example of a field in parallel to that of sonography

data science [147]. I briefly comment on the similarities and differences between

surgery and fetal ultrasound and why the methods used in surgical research cannot

necessarily be applied directly to analyse fetal ultrasound videos.

Surgery and ultrasound are similar in the following ways. Surgical skill motions

can be broken down into smaller gestures such as passing the needle through the

suture, knot tying and clipping [68, 20]. Similarly, fetal ultrasound probe motion

can be described as 6 general motions slide, rock, sweep, fan, pressure/compression

and rotation [60]. Both use hand-eye co-ordination, requiring interpretation of

medical images while manipulating their hand/probe to achieve the desired view.

For example, the use of psychomotor skills [52] involving the use of visual attention

(eyes) and hand motion to manipulate the tools (scalpel and probe) and reading of

medical videos. There are instances where the sonographer/surgeon looks away from

the video, for example when changing instruments [20] or when the sonographer
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interacts with the patient [127]. Finally, simulators (or phantoms [58] in fetal

ultrasound and cadavers [26] in surgery) are also widely used for training and

experimental studies to ensure patient safety.

In spite of these similarities, there are also some key differences. The process

of carrying out surgery is more structured than that of fetal ultrasound. Each

surgical task is well defined and considers a specific point of entry when performing

the surgery e.g. the nose in sinus surgery [26]. Beginning and ending points of

fetal ultrasound is dependent on sonographer skill, maternal anatomy and fetal

anatomy. Movements of the object of interest (fetus in fetal ultrasound, and

anatomy in surgery) also differ: a fetus can be actively moving in response to

the probe, in surgery the patient is typically under anesthetic and hence still.

Consequently, it is not easily replicable to use eye-tracking methods for surgery in

fetal ultrasound research. The fetus is also small in comparison to an adult patient,

and correspondingly their organs are also much smaller than an average adult. In

surgeries which use endoscopes, optic cameras are attached to obtain a clear view of

the patient’s anatomy whilst performing the surgery [26, 20]. Ultrasound imaging

has its own challenges such as acoustic shadows [119]. For example, during fetal

ultrasound scanning, the fetal bones can cast shadows onto the region of interest. In

those cases, it may not be possible to get a good standard view of the fetus and in this

case the sonographer would capture a view that is sufficient for diagnostic purposes.

2.2.2 Classification of Medical Tasks using Gaze

Images and Pupillometry. In some studies, the scanpath is superimposed

onto an image [137, 144, 96] (Figure 2.6) . Gaze points can also be convolved

with a Gaussian kernel to return a visual attention map or saliency maps [137,

109, 113, 69, 139].
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Figure 2.6: Example of gaze scanpath superimposed onto an image for task classification.
X and Y represent the gaze x and y co-ordinates. The gaze points are connected using a
lineplot.

Pupillometry, the study of the measurement of pupil size and reactivity, has

been used to understand cognitive load or operator work load [146]. Larger changes

in pupil diameter are associated or indicative of a higher cognitive load. Pupillary

activity can be calculated using the raw pupil diameter to compute metrics such as

Low/High Index of Pupillary Activity [114] (LHIPA), Index of Pupillary Activity [85]

(IPA) or Task Evolved Pupillary Response [5] (TEPR). [116] uses a combination of

pupillometry and raw eye-tracking to generated hand-crafted and engineered features

to discriminate patients with and without dementia. Their work shows that using

eye-tracking can be used to detect significant biomarkers of cognitive differences

between patients with and without dementia. [136] uses both pupillometry and

eye-tracking to classify different fetal ultrasound tasks, brain and heart planes, and

found statistically significant variation between sonographer expertise groupings and

their pupillary responses. Their results suggest that more experienced sonographers

have lower cognitive workloads. The use of pupillometry has been studied in real-

world ultrasound scanning conditions [136]. The authors have noted that it is

challenging to control environmental factors which can lead to errors in the observed

data, specifically in the context of pupil data because the pupil diameter is sensitive

to changes in environmental conditions such as light.
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Raw and Feature Engineered Gaze Points. Gaze data can be used in its raw

form or feature engineered into useful features for task classification. For example,

gaze points can be discretised [58, 26] to return a sequence. The gaze data can

be discretised into a sequence of numbers. For example, raw gaze points can be

clustered using k-means and return a string of label clusters [26]. Another example

of is computing a sequence of labelled states, where the states are identified by

unique fixations visited in temporal order [58]. Gaze points are also commonly

used to calculate eye movements such as fixations, saccades and smooth pursuits

[130, 129, 58, 73, 96], and correspondingly metrics such as time spent per type

of eye movement such as fixations, and transition between fixations [134]. This

can be done using off-the-shelf algorithms such as Tobii’s I-VT algorithm [38]

(defined in Section 3.4.2) or non-parametric methods [37, 28]. In some studies, this

is also done manually by suitable experts. Some medical areas which have been

researched include radiographs [73], autism [96], fetal ultrasound [58], dementia

[116], schizophrenia [33] and porcine laparoscopic cholecystectomy [20].

2.2.3 Challenges in Fetal Ultrasound

The works discussed above are not applicable or easily extendable to fetal ultrasound

for the following reasons. They largely depend on having a suitable algorithm or

expert to separate different types of eye movements, namely fixations, saccades

and smooth pursuits. This can be very labour intensive because no two fetal

ultrasound videos present in the same manner. Studies which superimpose the

scanpath onto the image being read rely on the image/object-of-interest being

fixed in time and space, as opposed to reading a video. Typically, these studies

use simulated environments or are conducted in highly controlled environments.

There are opportunities to repeat the experiment if they are unable to collect the

data properly due to equipment malfunction, and also do not necessarily account

for external influencing factors from their surroundings such as patient-clinician

interaction. In the PULSE project, data is being collected ‘in-the-wild’ whilst the

sonographer is performing the ultrasound scan. Prior work has been carried out
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using image-based methods [137] but images are computationally expensive to use

for classification compared to time-series data. There is a need to find a method

that can classify eye-tracking behaviour of sonographers when searching for different

anatomical planes considering only eye-tracking data, in its raw form or feature

engineered form. This question is explored in this thesis (Chapter 6).

2.3 Skill Classification

There are 2 different aspects of skill that I will discuss in this subsection. First,

the definition of skill used across studies. Secondly, the types of different methods

used to classify skill.

Defining Skill. The definition of skill in the medical literature is most often

quantified by the number of years of experience the clinician has been practicing

for. In fetal ultrasound, this typically corresponds to the number of years after

qualification. For example, if a sonographer has been scanning for 2 years or less

[123, 137, 131], then they are considered newly qualified, while someone who has

been scanning for 10 years is considered an expert. [35, 29, 99] considers experts as

those who performed a minimum number of surgeries, and novices as those who

did not meet the threshold. [128, 82, 141, 23, 25] considers those at a specific

stage of their career to be experts. For example, [82, 141] considers expertise based

on number of semesters completed, with fellows as experts. [23] considers those

with no prior experience as novices, those with 1 year of training as intermediate

and others as experienced readers. In other medical fields such as surgery, where

possible, studies quantify skill based on the number of instances the specific surgery

is performed. [117, 86]. In dentistry, the number of semesters completed by the

students is used as a measure of skill [82, 141]. This time-based definition of skill

can also be found in surgical literature [115, 91, 98, 26, 124].

This time-based measure of skill does not necessarily take into account other

factors that can contribute to skill. For example, the frequency of scanning could

decrease over time as the sonographer takes on additional responsibilities later in
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their career. Another limitation of this time-based definition is that it does not

consider the differences (and hence difficulty) between types of task. A 2-year and

10-year experienced sonographer could be equally skilled in searching for the head

or abdomen plane, since it is considered an easier plane to search for. However,

the differences in skill could be more separable when searching for the heart plane,

where multiple views of the heart need to be examined and the probe movement

to reach these different slices of the heart involves fine movements.

Methodologies. In medical studies where eye-trackers have been used, researchers

use metrics such as number of fixations, time taken to complete the task, number

of saccades to differentiate between groupings of clinicians [91, 141]. They also

use statistical properties of the distribution of fixation and saccadic properties

(e.g. mean length of fixation, median length of fixation) to determine if the two

groups (newly qualified and expert) are significantly different [98, 16]. I discuss

studies which use pre-calculated metrics in Section 2.3.1. These studies have the

unique characteristic of using a predefined eye movement classification algorithm

or suitable experts to separate eye-tracking data into fixations, saccades, smooth

pursuits and areas-of-interest (defined in Section 1.6).

Studies which utilise raw eye-tracking data, or some form of feature engineered

eye-tracking data (not including the pre-calculated metrics above) are discussed

in Section 2.3.2. These studies do not separate eye-tracking data into separate

eye movement types before classification.

Eye-trackers are also able to record the pupil diameter, which is referred to as

pupillary data and the study of which is referred to is pupillometry. Pupillary data

is more commonly used to assess cognitive workload in participants, where a larger

dilation in pupil diameter is an indicator of higher cognitive workload. It is used

to compare differences between varying levels of difficult tasks and consequently,

an indirect measure of skill level of clinicians [117]. I discuss studies which utilise

pupillary data only in Section 2.3.3.
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2.3.1 Aggregated Eye Movement Characteristics

There are many works which consider skill using aggregated eye movements to

characterise skill. For example, [128] consider arthroscopic surgery using cadavers,

dentistry expertise in reading orthopantomograms [82, 141], detecting lesions [23],

visual search patterns in colonoscopists [25], different phases of micro-neurosurgery

[35] and laparoscopic cases [29, 99]. In their work they use a combination of eye

movement characteristics such as blinks, fixations, saccades and pupil diameter to

separate experts and non-experts at performing the clinical task. [82] compares the

reading scanpaths of dentists and trainees, using pre-labelled stimuli to measure

instances of participants observing the correct area of interest.

There are several works which use statistical modelling methods such as [35,

99, 25, 23], who use statistical models such as analysis of variance (ANOVA) to

discriminate skill levels between groups of clinicians. There are also other works

which use machine learning models such as support vector machines [128], long-short

term memory deep learning models [82], linear discriminate function analysis [141]

and nonlinear neural network analysis [29] to classify skill groupings. In [136],

authors use both statistical models and machine learning models to classify skill.

2.3.2 Feature Engineered Eye-Tracking Data

Unlike previous works mentioned in Section 2.3.1, there are several studies which use

raw eye-tracking data for skill classification as opposed to aggregated eye movement

characteristics. In some studies, the eye-tracking data is combined with other data

such as tool motion data recorded using sensors. These have been researched in

applications such as surgery and fetal ultrasound [17, 19, 123].

[26] uses a Hidden Markov model to separate 95 experts and 139 novices using

both their eye-tracking and tool motion data. [30] fits a statistical model to eye-

tracking and tool motion data for separating 7 experts and 13 novices in endoscopic

sinus surgery. [137] uses a combination of raw eye-tracking, pupillary data and image

data to classify newly qualified and expert sonographers. They use convolutional

neural networks and consider uni-modal and multi-modal data for 2 different tasks.
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Their results show that majority of their multi-modal models outperform uni-modal

models. [26] considers an expert as a surgeon who has knowledge of sinus anatomy

structure and operation of the endoscope. Novices are those without prior endoscopic

experience. [137] separates skill using a 2 year experience threshold.

2.3.3 Pupillometry

In fetal ultrasound, [137, 136] uses gaze data to compare different years of experience

of sonographers for two different tasks, searching for the brain and heart anatomical

plane. [136] suggests, as measured by pupillary data, that different expertise

and tasks in fetal ultrasound show significant statistical variation. In parallel,

in surgical studies, [146, 117, 86, 46] use pupillary data to assess differences in

skill for thoracostomy, laparoscopy, laparoscopic Roux-en-Y gastric bypass and

ophthalmoscopy skills respectively. In [146], they found that when the trainees’

required help, their pupillary response showed a difference compared to when they

were ‘performing normally’. Their results suggest that pupillary response is an

important indicator of when a trainee is struggling with a particular task. In

[117], they found that using metrics such as larger pupil size, indicating a greater

cognitive workload, could be used objectively to label the difficulty of surgical

tasks. In [86], experts focused more on important areas-of-interest while having

a reduced cognitive workload. Finally, in [46] experience was a significant factor

in differences in pupillary response.

[117, 86] consider different skill levels of surgeons based on the number of

procedures they performed. [117] define experts as having >50 procedures, and

novices without any experience. In their study, they used 16 surgeons (5 experts,

11 novices) watched surgical videos with 8 different steps. [86] consider experts as

clinicians who completed >75 procedures and junior as those without. In total,

they had 12 junior, 8 expert surgeons and they watched 20 procedures. [117] show

that novice surgeons have higher average pupil diameter during the duration of the

video compared to expert surgeons. [86] show that experts have a smaller maximum

pupil size during the operation segments, a reduced mental workload and increased
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concentration. [46] considered medical students, residents and attending physicians

(75 in total, but specific breakdown not specified) and 3 different factors which could

affect performance: experience, frequency of cases and viewable fundus field range.

Their work suggests that experience is a factor which affected performance. [146]

consider only a single group of trainees for easy and difficult tasks and their results

show differences in behaviour depending on task type. In their work they did not

specify the number of trainees who participated. These studies focused specifically

on participants watching surgical videos [117] or using simulated data [46]. In

[46] there were a large number of unique participants, but they did not specify

the percentage breakdown of the number of students, residents and physicians. In

[86] the surgeons watched 20 procedural videos.

2.3.4 Challenges in Fetal Ultrasound

The literature I have described in this section on skill classification relies on several

assumptions which are not necessarily available in fetal ultrasound. Eye-tracking

studies separate raw eye-tracking data into different eye movements. However,

research has shown that results are parameter dependent [13]. In the studies cited

above, simulations or videos are also often used to quantify differences between expert

and non expert. However, due to the differences (between fetal ultrasound videos

and other similar medical domains) I mentioned in Section 2.2.3, it is not always

possible to consider a like-for-like comparison between an expert sonographer’s

gaze behaviour and a non-expert.

There is also an open question around the time-based definition of skill. In fetal

ultrasound, skill result in events such as fast probe movement and transitions between

anatomical planes. They also depend on sonographer experience, and maternal and

fetal anatomy [127]. In fetal ultrasound, there is an open question on how skill is

defined, and whether time-based measures are sufficient. Following on, whether it is

possible to use eye-tracking data to quantify skill without making prior assumptions

about the groupings of expertise. This question is explored in this thesis (Chapter 7).
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In this chapter, I introduce the software packages used to pre-process the PULSE

data. The data collected are ‘in-the-wild’, therefore the ultrasound videos need

to be annotated at an anatomical plane level for analysis, and eye-tracking data

processed to account for any tracking errors that occur during the scan; tracking

errors occur when the eye-tracker did not record any gaze points at a specific point

in time whilst the sonographer was scanning. My colleague Dr. Richard Droste

(also part of the PULSE project) created a toolbox pulsepytools to process the

data; the functionality relevant to my thesis will be described.

30
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The ultrasound videos which were used for the methods presented in Chapters

4 to 7 are described. Finally, the methods used to pre-process ultrasound images

and sonographer eye-tracking data are discussed. The recorded ultrasound videos

were annotated using different labelling methods. The data was not labelled by the

same group of annotators each time, and the final quantity of labelled data was

also driven by the project’s need of what labels were required then. Hence, the

number of videos which were annotated differs. The labelled datasets also did not

have an equal number of anatomical planes for each anatomy which were captured

during the scan. For example, the abdomen has a single anatomical plane, the

brain has 2 planes and the heart has 5 planes (Section 1.4.1). To increase the

dataset size and improve robustness for image-based models, image augmentation

methods were used which are described in Section 3.4.1.

3.1 Software Packages

The software packages that were used to process the data is listed below. The

packages COBYLA and pytesseract were chosen by [126] who built pulsepytools to

analyse the ultrasound videos and eye-tracking data collected in PULSE. A detailed

explanation of how these packages were used is found in Section 3.2. difflib

was used in Section 3.3.3 as a supplement to the OCR algorithm that I built to

detect sonographer text written on the images.

• COBYLA [8] A numerical optimisation method where the gradient of the

objective function is unknown. The parent package of COBYLA is SciPy

(version 1.7.0).
• difflib [158] A Python package that compares two different words and

returns a score metric that measures the degree to which the two words are

similar (version 0.18.0).
• pytesseract [157] An OCR algorithm that was first developed at Hewlett-

Packard Laboratories Bristol UK and at Hewlett-Packard Co, Greeley Col-

orado USA. Since November 2018, pytesseract has been developed and

maintained by Google (version 0.3.9).
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3.2 A Brief Description of pulsepytools

I give a brief overview of the functionality in pulsepytools that was used in this

thesis. pulsepytools was a toolbox built by Dr. Richard Droste [126] during

his doctorate and was used to extract and process the PULSE data from the

data storage server.

Resampling 90Hz Eye-Tracking Data to match 30Hz Video Frequency.

The eye-tracking and video sampling frequency were 90Hz and 30Hz respectively.

COBYLA [159, 9] was used to estimate the geometric median of these 3 gaze points

to return a single gaze point per video frame.

Figure 3.1: Example of the GUI displayed to the annotator. The GUI was used to
manually label anatomical planes. The GUI selects a frame with biometric measurements
and 5 other frames based on the annotated frame using predefined offsets. The user is
able to choose from a set of abbreviations which anatomical plane is displayed. If they
are unsure, they can skip the frame and move to the next annotated frame. The example
shown has been annoymised and displays the ultrasound image only without the frames
corresponding clipboard annotations.

Graphical User Interface for Extracting Standard Planes. A graphical

user interface (GUI) (Figure 3.1) was built by Dr. Richard Droste [126] to extract

and label frames of full-length ultrasound scans. The GUI first selects frames which
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have been annotated with biometric measurements by the sonographer. For each

measurement segment, (n, m), where n and m are the start and end frame of the

measurement segment, the GUI selects 5 other frames based on predefined offsets.

The offsets are n − 60, n − 9, n − 8, n − 7, n + 30, m − 30. At a 30Hz video

sampling frequency, these offsets correspond to 2 seconds before the measurement

segment (n− 60), and just before freezing (n− 9, n− 8, n− 7). The frozen frame 1

second after freezing the video (n + 30) and 1 second before unfreezing the video

(m − 30) is also displayed. These specific frames would be able to show which

anatomy the sonographer was searching for just before freezing. Since the frozen

frame does not change unless the sonographer rewinds the video after, the frozen

frame just after freezing and just before unfreezing is displayed. The GUI displays

these 6 frames and allows the user to choose a label based on the appearance of

these 6 frames using specified abbreviations e.g. kk for kidneys. The full list of

abbreviations can be found in Table 3.1.

3.3 Datasets

3.3.1 Manually Labelled Second Trimester Scans

The dataset presented in this section was used in Chapters 4 and 6. The research

presented in Chapters 4 and 6 was carried out in late 2020 and early 2021. This

labelled datasets was made available from earlier works of colleagues who wanted

to investigate the clinical workflow of sonographers [104]. The workflow analysis

included which anatomical planes were searched for the most frequently, and

whether there was any specific ordering to the planes sonographers were looking

for. Subsequently, full-length second trimester scans were manually labelled at

an anatomy level, where the labels did not distinguish between different views of

the anatomy. For example, the heart was labelled as ‘Heart’ and was not further

separated into the different views RVOT, LVOT, 3VV, 3VT and 4CH (Section 1.4.1).

The manually labelled segments contained 150 frames, corresponding to 100

frames before freezing and 50 frames after freezing. These were labelled using the

procedure set out in [121], and performed by 2 engineering researchers and 1 clinical
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research fellow using the GUI presented in Section 3.2. In total, there were 25

different labels (Table 3.1). A sample of labelled images are shown in Figure 3.2.

The overall inter-annotator agreement for labelling is 79.7% [121].

Figure 3.2: Overview of Anatomy Labels. Figure reproduced from [105].

When I qualitatively investigated the appearance of these segments, I found

several images which contained a heart and abdomen view side by side. In the

later stage of my doctorate, I learnt that these views are the situs view (Figure

3.3b, Section 1.4.1). Since the sonographer has only displayed the heart view on

half of the screen, and the abdomen on the other half, the heart view was half

the scale of the other heart views (Figure 3.3). For this dataset, the situs views

were not included since they presented differently from other heart views and the

corresponding sonographer’s gaze would present differently as well. For example,

the sonographer would focus their gaze on one half of the screen at any time in

comparison to reading the image at its full size. There were several labelled segments
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Label name Abbrv. Comments
3D and 3D+t mode 3Dm Views taken in static or real-time 3D mode,

showing surface rendering of the fetal head and
face.

Abdomen Ab Fetal abdomen (with biometric measurements).
Arms Ar Fetal arms.
Background search Bk Operator quickly froze-unfroze as they did

not finalise the frozen (or saved) frame as a
standard view during search.

Bladder with Doppler BlD Fetal bladder (including Doppler mode).
Brain with skull head
and neck

Br Fetal brain (with biometric measurements).

Face side profile Fa Side view of the fetal face.
Feet Ft Fetal feet.
Femur Fm Fetal femur (with biometric measurements).
Full body side profile Fb Full-body side views of the fetus. May include

face, hands, heart, ribs, spine, diaphragm.
Girl or boy GoB Views to determine fetal sex.
Hands Ha Fetal hands.
Heart He Fetal heart without Doppler mode.
Heart with Doppler HeD Fetal heart with Doppler mode.
Kidneys Ki Fetal kidney (including Doppler mode).
Legs Le Fetal lower legs.
MiscellaneousMaternal
anatomy

Ma Maternal uterine artery without Doppler mode.

MiscellaneousMaternal
anatomy with Doppler

MaD Maternal uterine artery with (pulse) Doppler
mode.

Mixed Mx Clip containing views (frames) of more than
one annotation label, representing abrupt scene
changes.

Front face with nose and
lips

NL Fetal front face showing nose or lips or both.

Placenta Pl Placenta (with biometric measurements).
Situs Si Situs
Spine Sp Fetal spine (may be full spine or part of spine).
Top head with eyes and
nose

Th Top of the fetal head showing eye sockets
and/or nose.

Umbilical cord insertion Um Insertion of the umbilical cord.

Table 3.1: Description of Manual Labels. Reproduced from [105].
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(a) 3VV (b) Situs

Figure 3.3: Comparison of a 3VV heart view (a) against a situs heart view (b), where
the situs heart view shows the heart on the left side of image (b), and a corresponding
abdomen plane on the right side of image (b).

which did not have 150 frames as set out in [104]. This could have been due to an

error in the pre-processing pipeline, or that the time period between frozen frames

were shorter than 100 frames. For consistency, segments which had 100 and 50

unfrozen and frozen frames labelled respectively were included.

3.3.2 PULSENet Standard Planes

The dataset in this section was used in Chapter 5. The dataset was created because

my colleagues [142] wanted to build a deep-learning model (PULSENet) to classify

fetal standard planes using domain-specific knowledge and characteristics of the

fetus. Having a fetal ultrasound standard plane classification model meant that

tasks such as clinical workflow analysis and identification of the desired standard

plane is made much faster and easier. In a fetal ultrasound scan video, this is not

insignificant as each video can be up to 30-40 minutes long. At a 30Hz sampling

frequency, this corresponds to at least 54,000 frames to filter through. My colleagues

used pulsepytools’s GUI to extract the anatomical planes [126]. The research

presented in Chapter 5 was carried out in late 2021 and early 2022.

The labels generated for the manually labelled second trimester scans (Section

3.3.1) did not separate the different planes for each anatomy; for example, the 2

head planes were labelled as ‘Brain’ (Table 3.1). To create view-specific labels,

[142] annotated a selection of standardised anatomical views based on prior work

[97] which included: 3VT, 4CH, RVOT, LVOT, TCP, TVP, two views of the spine
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(coronal and sagittal), abdomen, femur, kidneys, lips, profile and background. They

selected frames that did not contain any sonographer annotation on the ultrasound

frame so that the network would not learn the text on the image that contained the

abbreviation annotated by the sonographer. An example of sonographer annotation

on the frame can be seen in yellow and green text in Figure 3.3.

3.3.3 Identification of Heart Standard Planes using Optical
Character Recognition

Whilst verifying the labels generated by the PULSENet team, it was found that some

of the heart view labels were noisy. Some of the labels were incorrect and some of

the key anatomical structures required to achieve a standard plane (Section 1.4.1)

were not present in several frames. The latter means that the frame does not qualify

as a clinical standard plane. The sonographer can easily capture multiple heart

views in the same video segment by manipulating the probe with fine movements.

By selecting the heart view a few frames before the annotated frame, it is not

surprising that some frames were mislabelled. For example, if the sequence of

heart views captured by the sonographer was 3VV, LVOT and RVOT, a frame

labelled as an LVOT could be a 3VV view. Instead of manually labelling the

frames (Section 3.3.1), or using the GUI presented in Section 3.2, I used OCR to

identify the different heart views: 3VV, 3VT, 3CH, LVOT, RVOT and Situs. This

is possible because sonographers can label the frozen segments of videos using text

(Figure 3.3a). The OCR aims to read these sonographer-annotated labels. The

dataset presented in this section was used in Chapter 7.

The Python package used for OCR is pytesseract [155] (Section 3.1). The

training data for pytesseract used images with black text on a white background

which made it challenging to use the model on fetal ultrasound frames directly;

ultrasound images have low contrast and are majority grey pixels, and the text is in

a shade of yellow or green. Some of the suggestions in [157] were used to improve

the visibility of the text on the ultrasound frame to maximise the performance

of the pytesseract model on the frame.
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(a) Original frame (b) Green text on black
background

(c) Black text on white
background

Figure 3.4: Process of frames being pre-processed for maximum OCR. From left to
right: (a) Original frame with text ‘SITUS BREECH’, (b) Non-green pixels converted
to black pixels, (c) Green pixels converted to black pixels, and black pixels converted to
white pixels.

Pre-processing Frames. To improve the accuracy of the text detected by

pytesseract, the frames were pre-processed before running the OCR algorithm on

the frame. The original text abbreviation on the frame is green or yellow. First,

a green/yellow mask was created to detect any green/yellow pixels in the frame

(Figure 3.4, b). Then, any pixels which were not green/yellow were converted to

black, and green/yellow pixels were converted to white. This step was carried out

because it was empirically found that pytesseract performed better with black

text on a white background compared to white text on a black background. Finally,

the white and black pixels were inverted; any white pixels were converted to black

and black pixels to white (Figure 3.4, c).

Curating Frames to Label. The ultrasound videos that need to be processed

have a mean of 12983 frames and a median of 12667 frames in length. To reduce

the computational resources required to run the OCR model on every frozen frame,

every 45th frame blue (corresponding to 1.5 seconds at 30Hz sampling frequency)

of each frozen segment in a full-length scan was labelled. For example, if the frozen

segment corresponds to frame numbers (100, 200) inclusive, the 100th, 145th, 190th

frame were labelled. 45 was chosen as a suitable interval because the video sampling

frequency is 30Hz. If the sonographer annotates a frame, it would be present for

at least 1 second but could be less than 2 seconds. By sampling every 1.5 seconds,
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at least 2 out of 3 seconds of the video will pass through the labelling process,

ensuring that any sonographer written text is picked up.

Rule-Based Filtering. Empirically, it was found that using the pre-processing

steps was not sufficient to identify the text on the frames correctly and several

frames were still mislabelled. One reason was because there was other text present

in the frame such as the measurements, and removing such text is not a trivial

task even after removing the clipboard annotations; the clipboard annotations are

located on the left side of the screen where sonographers can save frames.

In particular, ‘3VV’ and ‘3VT’ were often mistaken for each other. pytesseract

was also not able to correctly identify ‘VV’ as 2 separate V’s and returned ‘W’.

pytesseract also often detected ‘SL’ which was a half-written ‘SITUS’ label (‘SI’),

i.e. the sonographer had not completed the text. ‘LVOT’ was also often picked

up as ‘WOT’. Some miscellaneous text such as ‘WW’ was also detected by the

OCR, which was misidentified as ‘3VV’ or ‘3VT’.

To increase the accuracy of identifying the views correctly, a rule-based filter

was implemented after the text was read by pytesseract. These rules were based

on empirical observation, where pytesseract was unable to read the characters

properly. Before implementing these rules, special characters (e.g. %, #) that

appeared in the read text were removed, and all alpha numeric characters converted

to uppercase. The rules can be found in the Appendix 8.4.

The final frame label was chosen as the closest matching label, with a probability

of at least 80%, compared to a list of pre-defined labels using the Python package

difflib [158]. The probability threshold was manually selected. The pre-defined

labels were 4CH, Situs, LVOT, RVOT, 3VV and 3VT. As a final check, a manual

inspection of all frames was performed to ensure that the final label corresponded

to the sonographer’s annotation.



3. Datasets and Pre-processing Methods 40

3.3.4 Trainer-Trainee Sessions

To analyse task-agnostic differences in skill, where a task is a specific anatomical

plane being searched for, data were collected from not yet fully qualified sonographers

learning how to scan with a fully qualified sonographer. The dataset was used

in Chapter 7. This data presented in this section was collected from March 2022

until July 2022, after the PULSE project was able to resume data collection

due to Covid-19 restrictions.

The videos in Table 3.2 were scans performed by a fully qualified sonographer

training a trainee (not-yet fully qualified) sonographer how to scan. This involved

a teacher (fully qualified sonographer) and the trainee present during the scan,

where the teacher would show the trainee how to scan. During the training sessions,

due to time constraints, the trainee does not necessarily perform the scan but is

instead given opportunities to try searching for planes with some guidance from

the teacher. In total, there were 4 unique trainees (Table 3.2) and a single teacher

with 5 years of scanning experience at the time of these sessions.

Trainee 1 Trainee 2 Trainee 3 Trainee 4 Teacher
# of pregnant women 6 6 1 1 14

Table 3.2: Number of unique pregnant women scanned by a teacher training a trainee
sonographer.

3.3.5 Fully Qualified Sonographer Scan Sessions

To complement the trainer-trainee dataset, the fully qualified sonographer scan

sessions dataset was curated to serve as the expert population of sonographers for

skill analysis. This dataset was necessary because the fully qualified sonographer

in the trainer-trainee dataset was accompanied by a trainee sonographer. The

presence of the trainee can affect the way that a teacher would perform the scan

since the sonographer is also interacting with the trainee for teaching purposes. In

contrast, the fully qualified sonographers in the second trimester scan performed

the scan individually and reflect more typical behaviour of a sonographer whilst

scanning. The dataset is used in Chapter 7.
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The total number of second trimester scans performed by the cohort of PULSE

sonographers are shown in Table 3.3. Table 3.3 does not include the teacher-trainee

videos in Table 3.2 and were performed by fully qualified sonographers individually.

Years of experience 0 1 2 3 5 6 7 8 10 11 14 15 16
# of pregnant women 136 115 33 8 22 16 5 4 18 13 104 39 2

Table 3.3: Number of unique pregnant women scanned by fully qualified sonographers.

3.4 Pre-processing Methods

3.4.1 Image Augmentation

Image augmentation is a technique that is used to increase the size of a dataset

available to train a machine learning model. Its purpose is to increase the robustness

of the trained model by ensuring that the model is able to learn invariant features.

For example, the model should be able to correctly classify two ultrasound images

that have the same anatomical landmarks but different orientations. Given that the

number of unique views of an anatomy is different (Chapter 1.4.1), for example, the

brain has 2 views to be scanned and the heart has 5, the number of planes available

for each anatomy is imbalanced. To analyse differences in sonographer behaviour

when scanning for the abdomen vs. heart, for example, the dataset needs to be

balanced first. As such, in this section, I describe the image augmentation methods

which were applied on manually labelled second trimester scan dataset presented in

Chapters 5 and 6 on the PULSENet standard plane dataset, as set out by [132].

Augmenting Images by Flipping. To increase the size of the manually labelled

dataset in Chapter 6, I augmented the images by flipping the images about the

horizontal, vertical, and horizontal and vertical axis.

The method presented in Chapter 6 uses only eye-tracking data to train the

model, and not images. Consequently, the orientation of the augmented image is

important since sonographers have to capture the anatomical plane in a specific

orientation [90], and other augmentations such as rotation or translation would
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not have been appropriate.For example, the TVP and TCB plane needs to be

captured horizontally and centered on the ultrasound machine to ensure that the

head circumference can be measured accurately. Hence these specific types of

augmentations were chosen for the dataset in Chapter 6.

Principled Data Augmentation of Images. In Chapter 5, the PULSENet

standard plane dataset was augmented using principled data augmentation [132] to

increase the size of the PULSENet standard plane dataset and ensure robustness

for the image-based model presented. In [132], authors found that using 3 random

augmentations of scale 3 outperformed conventional augmentation methods like

that of flipping. The magnitude of the augmentation depends on the type of

augmentation that is performed. For example, a translation of magnitude 3 means

that the image is translated by 3 pixels (in the positive or negative direction).

3.4.2 Eye-Tracking Data

The recorded eye-tracking data needs to be pre-processed before being used to build

any models. The methods below describe industry standard methods which are

used to process raw eye-tracking data. Eye-tracking data is usually used in terms of

gaze angle, the change in angle between two gaze points. Subsequently, the change

in gaze angle over a unit of time is used as gaze velocity. In the PULSE data, one

unit of time δt is used as 1
90 seconds (at a 90Hz sampling frequency).

In this section I describe how the change in gaze angle between time t and t + δt

is calculated, as the gaze angle is used frequently in this thesis. I also describe

the pre-processing and feature engineering methods used to generate normalised

eye-tracking data, and interpolation methods for filling in missing values.

Gaze Angle. This is defined as difference between a gaze point at time t and

t + δt, calculated in degrees or radians. Gaze angles are used to calculate gaze

velocity, which is typically used to separate different types of eye movements. The

method of calculating the change in gaze angle between time t and t + δt is given
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in Algorithm 1. δ below refers to the phrase ‘change in’ for e.g. δ pixel per mm

refers to change in pixel per mm.

Algorithm 1 Pseudocode showing how to calculate the gaze angle between two
gaze points at time t and t + δt.

x_pixel_mm ←w / w_res . Constant
y_pixel_mm ←h / h_res . Constant
unit_pixel_mm ←sqrt(x_pixel_mm2 + y_pixel_mm2) . Constant
δd_pixels ←sqrt(δx_pixel2 + δy_pixel2)
δd_mm ←unit_pixel_mm × δd_pixels
Gaze angle ←tan−1(0.5 * δd_mm / d)

• d: distance from screen to user (mm)

• δx_pixel: difference in Gx between time t and t + δt

• δy_pixel: difference in Gy between time t and t + δt

• h: height of screen (207 mm)

• w: width of screen (332 mm)

• h_res: screen height in pixels (1080 pixels)

• w_res: screen width in pixels (1920 pixels)

• unit_pixel_mm: change in mm per pixel (mm/pixel)

Zero Padding Eye-Tracking Data.

In Chapter 6, the presented method requires that the time-series data are of equal

length. To satisfy this constraint, any eye-tracking segments which are missing gaze

points just before freezing, for example, the 100th unfrozen frame in the segment, or

due to natural variable length of sequences [137], were zero-padded to create equal-

length time-series. For a visual example of where this method is used, see Figure 3.5.

Linear Interpolation of Eye-Tracking Data.

Zero padding should not be used for missing gaze data where tracking errors

occurred whilst the video is unfrozen, since the missing gaze was not due to natural

variable length data. The missing gaze points are filled using linear interpolation

on [38], and is used in Chapters 4 to 7.
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Figure 3.5: Overview of Eye-Tracking Interpolation Methods using Linear Interpolation
and Zero Padding.

First, a step size is calculated as the difference between time t and t + i. The

inverse of the step size, 1
t−ti

, is multiplied by the difference in raw gaze point

Gt − Gti
. This is multiplied by the number of steps, (n − i + 1) and summed

with the gaze point at ti to return the interpolated gaze point value at ti+n. n

is the index where the gaze point is missing.

Gti+n
= 1

ti − t
× (Gti

−Gt)× (n− i + 1) + Gti
(3.1)

where t < n < ti. For a visual example of where this method is used, see Figure

3.5.

Pupillary Pre-processing Method.

Tracking errors of an eye-tracker would also affect any pupillary data which was

recorded. However, any recorded pupil diameter that is out of range of the human

eye needs to be discarded before linearly interpolating any missing values. The

pre-processing method is used in Chapter 7.

The pupillary data pre-processing method used is outlined in [136]. Any pupil

diameters <1.5mm and >9.0mm was discarded, and any missing values were linearly

interpolated. For the interpolation, only gaps <210ms (or 7 frames at 30Hz) were

interpolated. The final pupil diameter was smoothed using a Gaussian window

with a standard deviation of 1.
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Figure 3.6: An example showing how a raw gaze point (green) with co-ordinates Gx, Gy

is normalised with respect to the hand drawn bounding box (yellow). The point of origin
of the bounding box is given as the bottom left corner.

Scale and Position Invariant Eye-Tracking Data (Feature Engineering).

Whilst scanning, a sonographer spends the majority of their time looking specifically

at the anatomical view and landmarks that they are interested in. This view is

normally centered on the screen, but can also be off-center. The same landmark,

for example the aorta, could be at different positions of the screen depending on

the scan. There is a need to normalise the gaze data such that observing the same

landmark, even when the view of the plane does not occupy the same space on the

screen, returns the same co-ordinates. To provide contextual information to the

gaze data recorded by the eye-tracker, eye-tracking data is normalised with respect

to the anatomy to return scale and position invariant gaze points between multiple

scans. This eye-tracking processing method is used in Chapter 5 and Chapter 6.

Manual bounding boxes using OpenCV [156] are drawn around the circumference

of the anatomy plane on a cropped (1008×784 pixels) image (shown as the red box

Figure 3.6). All text and clipboard images are excluded to view the circumference
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clearly. Then, gaze points are normalised with respect to the corner positions

of the bounding box along the x and y axis: XL, XR, YT , YB where L, R, T

and B represent left, right, top and bottom. The X and Y offsets (shown as

Xoffset, Yoffset in Figure 3.6) is 427 and 66 pixels respectively. An example of this

normalisation process is shown in Figure 3.6.

Raw gaze points recorded by the eye-tracker along the x and y axis with respect

to the screen dimensions of 1920×1080 pixels are defined as Gx, Gy. Raw gaze

points normalised by co-ordinates of a hand drawn bounding box on the image

are given as GxBB, GyBB (Equation 3.2).

GxBB = Gx −XL −Xoffset

XR −XL

and GyBB = Gy − YB − Yoffset

YT − YB

(3.2)

I-VT Algorithm.

Tobii’s velocity-threshold fixation identification (I-VT) algorithm [38] is the in-

built algorithm in Tobii’s eye-trackers used to separate fixations and saccades. It

has also been used in previous fetal ultrasound eye-tracking studies and therefore

serves as a baseline for the method in Chapter 4. Their algorithm to separate eye

movements works as follows. Any eye movement greater than 30 degrees/s will

be classified as a saccade, and less than that will be classified as a fixation. Any

missing data is interpolated using the procedure described in Section 3.4.2. Tobii’s

velocity-threshold fixation identification (I-VT) algorithm is referred to in Chapter 4.
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4.1 Introduction

Data visualisation provides a way to understand what story the data is telling

– it can be used to spot data trends and subsequently anomalies. Eye-tracking

visualisations help us understand what was observed when a participant was reading

47
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an image or watching a video. These visualisations potentially assist to differentiate

participant behaviour when performing different tasks, and in clinical applications

help differentiate more experienced clinicians from less experienced clinicians. The

added complexity of analysing gaze behaviour of sonographers is that the fetus

may move and change its position during the scan. In addition, even though the

sonographer is observing the same anatomy structure, for example the brain, there

are several different parts of the brain that they observe. Taking these factors into

account, we want to come up with a way to understand both spatial and temporal

characteristics of where and how sonographers look when they perform their visual

search. Broadly, this could be useful when training new sonographers to help them

locate important landmarks that will help them reach a desired standard plane.

Visualising longitudinal data collected from projects such as PULSE adds an

additional challenge because of the amount of data available for analysis. Extracting

meaningful summary statistics whilst maintaining the level of granularity of data

desired is a trade-off between how simple, and easy to implement, and complex

the final visual is. In this chapter, I aim to find a balance to understand gaze

behaviour of sonographers at a population level. Population-level analysis enables

us to learn general gaze characteristics demonstrated by the sonographers while

searching for a specific anatomical plane.

Current challenges to visualising ‘eye-tracking data’ (discussed in Section 2.1.3)

include: the implementation complexities involved in using visualisation methods

that analyse videos, and the requirement of annotated eye movements. In this

chapter I present a visualisation method that helps us overcome these constraints.

4.1.1 Example Visualisation of Gaze and Ultrasound Frames

Before introducing the method, I present some examples here to show some of

the current challenges in applying visualisation techniques to gaze and ultrasound

frames. In this example, I have used an abdomen gaze segment of 100 frames and

plotted the gaze points as scatterpoints and heatmaps. The first frame in this

segment is frame 16584, and the last frame is 16684.
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A more general note on the differences between a point (or binary) representation

(scatterpoint) versus a distribution representation (heatmap). The scatterpoints

allow the user to see precisely where the sonographer has looked at, where the color of

the point represents a specific position of the image the sonographer’s gaze focused on.

The heatmap provides an approximate distribution of the sonographer’s attention,

where the colours represent the different probability levels of the sonographer

looking at a certain area of the image.

The first example in Figure 4.1 I present is a summary of all gaze points from

frames 16584 to 16684 which were superimposed on the last frame 16684. The gaze

points are represented as scatterpoints and a heatmap. The plots show some of

the areas of the abdomen which the sonographer had looked at whilst scanning.

Spatially, these visualisations appear to have provided a reasonable estimation

of what the sonographer had looked at.

(a) Scatter: Frame 16584. (b) Heatmap: Frame 16684.

Figure 4.1: Gaze points from frame 16584 to 16684 plotted as a scatterplot and heatmap
on the final frame 16684.

I also investigate the temporal gaze patterns to determine whether the rep-

resentation in Figure 4.1 is sufficient. I plot the middle frame 16634, with gaze

points recorded from frames 16584 to 16634 in Figure 4.2. Some limitations of

using the presented visualisation methods for fetal ultrasound videos start to be

seen here. The image itself has changed over time, where the landmarks are not as

clear, since the sonographer is still finishing their search. Also, the gaze pattern

presents differently in Figure 4.2, where the gaze attention in Figure 4.1 is clustered

on the left side but the attention in Figure 4.2 is horizontal.
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(a) Frame 16684. (b) Frame 16684.

Figure 4.3: Gaze points from frame 16634 to 16684 plotted as a scatterplot, contour
and heatmap on the last frame 16684.

(a) Scatter: Frame 16634. (b) Heatmap: Frame 16634.

Figure 4.2: Gaze points from frame 16584 to 16634 plotted as a scatterplot, contour
and heatmap on the middle frame 16634.

I also plot the last frame 16684, with gaze points recorded from frames 16634

to 16684. Instead of a horizontal gaze sweeping on the left side of the frame

(Figure 4.2), the gaze pattern is slightly diagonal, veering towards the right side

of the frame (Figure 4.2b).

Finally, I plot the first frame of the abdomen segment frame 16584 (Figure 4.4)

to investigate whether the abdomen plane had changed. Here, another challenge of

using the visualisation method shown in Figure 4.3 can be seen - the sonographer

had scaled the abdomen plane to fit the screen before freezing.

Figure 4.4: First frame of the abdomen segment, frame 16584.
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Some of the general challenges associated with using current methods (Section

2.1.3) on fetal ultrasound videos can be seen here. For example, the complexity of

the video segment. The size of the abdomen changed during the video segment

(Figure 4.4, 4.3). The temporal gaze patterns also show variation over time (Figure

4.2, 4.3), depending on which landmark the sonographer was observing.

4.1.2 Contribution

The method presented in this chapter proposes an unsupervised clustering method

using Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN) [42] to cluster raw eye-tracking data to first locate areas-of-interest

(AOIs) of fetal ultrasound scan videos. Their corresponding images are used to

capture granular changes within AOIs. The transitions within and between AOIs

both spatially and temporally are visualised using a two-dimensional contour

plot. The presented method presents both spatial and temporal information

which distinguish between gaze patterns when searching for different anatomical

planes. The proposed method combines unsupervised machine learning and data

visualisation which is suitable for exploratory data analysis when analysing a large

eye-tracking dataset consisting of several participants performing different tasks.

4.1.3 Data

The dataset used in this chapter was manually labelled second trimester scans

(Section 3.3.1). To compare task differences, anatomical planes which sonographers

spent the most time on whilst scanning were used. These planes were Ab, Br

and Ht which represent the abdomen, brain and heart respectively. An example

of each of these planes is shown in Figure 4.5. In total, there are 84, 160, 122

abdomen, brain and heart plane clips respectively. These were acquired by 10

fully qualified sonographers on 76 unique pregnant women. Eye-tracking data

corresponding to the live-B mode video frames was used. The sonographer is

actively searching for the anatomical plane during this time and differentiating gaze
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behaviour could be present. Any gaze data which was missing was interpolated

using the method described in Section 3.4.2.

(a) Abdomen. (b) Brain. (c) Heart.

Figure 4.5: An example of the abdomen, brain and heart anatomical plane.

4.1.4 Definitions

Before presenting the method, I define terminology that is used in this chapter.

Depending on the application, an area-of-interest (AOI) can be defined as a fixation

or as gaze points which fall within an area specified by the user. In this chapter,

an area-of-interest (AOI) is defined as a specific anatomical landmark that the

sonographer has looked at while performing the scan.

4.2 Methods

In this work, I use unsupervised methods to reduce the labelling effort required

to identify meaningful eye movement events. Specifically, unsupervised clustering

methods allows the user to identify meaningful clusters of sonographer recorded gaze

points. Next, I use 2D visualisation methods to make useful inferences about the

spatial and temporal characteristics of the gaze data; 2D methods are chosen over

3D because there are fewer dimensions to visualise whilst presenting meaningful

information about the data.

4.2.1 Determining Areas-of-Interest (AOIs) using Unsuper-
vised Clustering

Unsupervised clustering algorithms were used to reduce the need for manually

annotating different eye movements and AOIs from raw eye-tracking data. Clustering
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Figure 4.6: An example of determining the elbow of a clustering algorithm. The scoring
metric used here is the Silhouette score discussed in Equation 4.9, and the number of
clusters being tested ranges from 2 to 12. In this toy example, the optimal number of
clusters is 7.

will identify gaze points which are spatially close - a first step towards identifying

meaningful AOIs. Eye-tracking data includes different eye movements, such as

saccadic movement, resulting in gaze data that is outside a specified radius of

a fixation. These gaze data would need to be classified into their own cluster,

and the clustering algorithm would need to capture single (or several) gaze points

which represent saccadic movement.

k-means clustering. The first algorithm, k-means clustering, was chosen because

it has been used in previous eye-tracking studies to separate fixations and saccades

[49]. k-means clustering is an unsupervised clustering algorithm that partitions the

data into k clusters. A new data point is assigned to the nearest cluster using a

specified distance metric, typically the Euclidean distance.

The optimal number of clusters for a dataset is determined using the elbow

method. The elbow method [1] is a heuristic method used to determine the optimal

number of clusters in a dataset for a given clustering algorithm. To determine the

elbow, a graph of the selected scoring metric (e.g. Euclidean distance) against the
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number of clusters is plotted. The elbow is the point in the graph which returns

the maximum curvature. An example is given in Figure 4.6.

One of the main assumptions of using k-means clustering for any data is that the

algorithm assumes that the underlying data distribution is globular and spherical

(example in Figure 4.7). This means that clusters with irregular shapes are not

likely to be separated well via the k-means clustering algorithm. Isolated gaze

points are more likely to be assigned to the nearest cluster as opposed to being

considered as a single cluster.

Figure 4.7: An example of globular and spherical data clustered using a k-means
algorithm [160]. In this example, the k-means clustering algorithm has produced 3
different clusters. The x and y axis represent the numerical values of the dummy data
points [Reproduced under the BSD License].

Hierarchical Density-Based Spatial Clustering of Applications with Noise.

Conversely, the Hierarchical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN) algorithm is able to capture and classify single gaze points in

their own cluster. HDBSCAN is a density-based clustering algorithm that uses a

minimum spanning tree1 to construct a cluster hierarchy (given a minimum cluster

size). HDBSCAN [42, 78] does not assume spherical clusters and considers varying
1A graph that connects all the vertices using the minimum possible edge weights.
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cluster densities and accounts for signal noise. This allows points which are far

away from the AOI to be classified as a single cluster, which satisfies the constraint

described above of isolating saccadic eye movement from fixations.

Clustering Distance Metrics.

To assess how well the clustering algorithm performs, metrics compute how well the

points in a cluster are tightly packed, and how far apart each cluster is from the

next cluster. If the clusters are tightly packed and far apart, then that is usually

considered as a ‘good’ clustering performance. However, the nature of unsupervised

clustering is such that unlike supervised methods, where the aim is to minimize

(or maximise) the value of a specified loss function, there are no strict labels in

unsupervised clustering. Therefore defining a ‘good’ performance is usually based

on comparing the value of a calculated metric across different clustering algorithms.

In this chapter, the metrics used to evaluate the clustering algorithm performance

are: Davies-Bouldin [4], Calinski-Harabasz [3] and the Silhouette coefficient [7] .

These 3 metrics compute the inter-and-intra similarity of clusters.

Davies-Bouldin (DB) Index.

Si =
{∑Ni

j=1 ||dj − ci||2

Ni

} 1
2

(4.1)

Rij = Si + Sj

||ci − cj||2
(4.2)

DB =
∑K

i=1 max(Rij)
K

(4.3)

• ci cluster center of cluster i

• K total number of clusters

• dj data points assigned to cluster i

• Ni total number of points in cluster i
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The DB index of a dataset (Equation 4.3) is calculated as the average ratio

of the distances between each cluster center and all other points assigned to the

same cluster (Equation 4.1), and the distance between cluster centers (Equation

4.2). A lower DB value is returned if the distance between points assigned to each

cluster is small, and the distance between different cluster centers is large. Hence,

a low DB value is indicative of a better clustering algorithm.

Calinski-Harabasz (CH) Index.

WGk =
∑K

k=1
∑Ni

j=1 ‖dj − ck‖2

N −K
(4.4)

BGk =
∑K

i=1 Ni ‖ci − c‖2

K − 1
(4.5)

CH = BGk

WGk

(4.6)

• ci cluster center of cluster i

• K total number of clusters
• dj data points assigned to cluster i

• Ni total number of points in cluster i

• c centroid of the dataset
• N total number of points in the dataset

BGk calculates the ‘between groups’ distance between cluster centers ci and

centroid of the dataset c given by Equation 4.5. WGk calculates the total ‘within

groups’ distance between each cluster center ck and all points assigned to the

same cluster dj.

The CH index of a dataset with N number of observations is calculated as the

ratio between 2 variables defined as BGk and WGk, abbreviated for ‘between-group’

and ‘within-group’ respectively. A larger CH value indicates a large between group

distance and small within group distance value; clusters are well-separated and

individual clusters are densely packed. Hence, a larger CH value is indicative

of a better clustering algorithm.
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Silhouette coefficient.

µdI
= 1
|CI | − 1

∑
j∈CI ,i 6=j

d(i, j) (4.7)

µdJ
= min

J 6=I

1
|CJ |

∑
k∈CJ

d(i, k) (4.8)

si = µdJ
− µdI

max(µdI
, µdJ

) (4.9)

The Silhouette coefficient of a data point is calculated as shown in Equation

4.9. If a data point si is assigned to cluster I, then the Silhouette coefficient

of si is calculated as µdI
− µdJ

divided by the maximum value of µdI
, µdJ

. The

Silhouette coefficient falls within a range of (-1, 1). The higher the coefficient,

the better the clustering algorithm.

µdI
(Equation 4.7) calculates the average distance between si and all other points

j assigned to cluster I. This measures how densely packed a cluster is. µdJ
(Equation

4.8) calculates the average distance between si and all other points k assigned to

the nearest cluster J ; this measures how far apart the next nearest cluster J is to si.

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDB-

SCAN) was used to identify AOIs after pre-processing using the methods described

in Section 3.4.2. Only valid AOIs are used in this work; a valid AOI is a gaze

segment which has ≥ 7 identical consecutive cluster labels.

4.2.2 Visualising Scanning Characteristics in the Spatial
and Temporal Domain

In this subsection, I present a 2D visualisation method that was used to visualise

meaningful clusters of gaze data. Common industry measures of describing par-

ticipant behaviour using eye-tracking data are used to create this visualisation -

time spent at each AOI and the change in gaze angle between AOIs. Instead of

assuming that a sonographer’s visual attention remains fixed within each AOI, I

aim to capture local changes within each AOI. This step was performed to also

consider changes in the video frames over time.
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To capture these local changes, a snapshot of the sonographer’s focus is taken

by cropping a bounding box using the gaze point as the center. The size of the

bounding box spans ±1.5 degrees in the x and y direction, where 1.5 degrees is

a typical range of the fovea human field of view [36, 81] around a fixation point.

Then, the cosine similarity is calculated between adjacent cropped images. The

cosine similarity is a distance metric that measures how far apart two vectors

are in Euclidean space, calculated using the dot product between two vectors ~A

and ~B given in Equation 4.10.

~A. ~B = ||A|| × ||B||cosθAB (4.10)

Where the cosine similarity is less than a threshold, chosen as two standard

deviations less than the mean µCS of all anatomy specific cosine similarity values:

µCS − 2σCS, where σCS is the standard deviation at the population level, the

sonographer is considered to have looked at a different AOI on the image. The

distance between AOIs is defined by the change in gaze angle between the centroids

of each AOI. The time taken between AOIs provides a quantitative measure of

temporal variance, while the change in gaze angle between AOIs is a measure

of spatial variance.

Sonographer Visual Scanning Modes.

Four visual scanning modes are considered, and they aim to capture the most

common sonographer gaze behaviour observed in the data. They are presented

in Figure 4.8 and described in Table 4.1. Two factors being considered are: how

long the sonographer looks at a AOI, calculated in number of frames, at time t

before moving onto the next AOI at t + n, and how far the gaze has travelled

from one AOI to another.

In Table 4.1, large spatial variance is defined as >3 degrees, twice that of the

typical range of the human field of view. Accordingly, a small spatial variance is ≤3

degrees. A small temporal variance is defined as ≤30 frames (1 second at a 30Hz

video sampling frequency), and a large temporal variance as >30 frames.
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Qualitative Description of Scanning Modes
Modes Spatial variance Temporal variance Example action of sonogra-

pher
I Large Small Shifts focus quickly between

landmarks which are far
apart in space.

II Small Small Following a landmark as a
guide to refine the selected
anatomy plane.

III Large Large Transitioning between land-
marks to perform final ad-
justments to the image.

IV Small Large Focusing on a specific
anatomical landmark.

Table 4.1: Description of modes I, II, III and IV being considered for spatial and
temporal analysis of sonographer visual scanning characteristics (top left, bottom left,
top right, bottom right).

Figure 4.8: Description of modes I, II, III and IV being considered for spatial and
temporal analysis of sonographer visual scanning characteristics (top left, bottom left,
top right, bottom right).
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Referring to Figure 4.8 and Table 4.1, Mode I considers the sonographer looking

at different positions in space and at different AOIs. Mode II considers the

sonographer focusing on the same position in space while changing the image

quickly. Mode III considers the sonographer changing their focus at a specific

position in space. Last, mode IV considers the sonographer focusing at a specific

position in space and at a specific AOI.

Figure 4.8 shows a qualitative description of how these modes can be thought of,

and is used to present the results. The modes are described in detail in Table 4.1. In

the context of eye-movements, the spatial variation indicates the size of the area-of-

interest, where the larger landmarks, the greater the spatial variation. For temporal

variation, more time spent at an area-of-interest means a larger temporal variance.

Bi-variate Contour Plots.

To create the visualisation, a bi-variate distribution is calculated by superimposing

a Gaussian kernel on each data point and returning a normalised density mass

function. These data points represent AOI characteristics - length of AOI calculated

by number of frames (x axis), and distance from previous AOI to following AOI (y

axis) (Figure 4.8). Figure 4.9 shows an example of how to read the visualisation,

where the contour lines represent cumulative density masses at 10 equally spaced

levels from 0 to 1, where 0.1 is the outer-most contour and 1 is the inner-most

contour. To avoid cluttering the contour plots, these contour level labels are

not shown in the result plots.

I provide a brief description on how to interpret the visualisation in Figure

4.9 as an example of how to interpret the contour plots. An AOI in Figure 4.9

is defined using the definition above, where each AOI is a unique part of the

image that the sonographer has looked at while scanning. The specific example

shown in Figure 4.9 shows that the sonographer spent a short time looking at

different AOIs, where on average they looked at each AOI for between 20-40 frames

(bottom left of the figure). At a sampling frequency of 30Hz, that corresponds

to approximately 1 second. There are several (20%) data points which lie on the
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Figure 4.9: Example of bi-variate contour plot showing amount of temporal variance (x
axis), and spatial variance (y axis) based on Figure 4.8.

bottom right side, which indicates that these AOIs were looked at for longer periods

of time, approximately 100 frames (≈ 3 seconds). Both these observations are

related to the temporal aspect of how long the AOIs were observed for before

the sonographer moved on to the adjacent AOI. For the spatial aspect, I observe

the plot characteristics along the y-axis. As seen in Figure 4.9, the majority of

the AOIs which were observed were not far in distance (degrees). Therefore the

sonographer looked at AOIs which were close together on the screen. Finally, to

relate it back to the visual scanning modes discussed above, the sonographer would

have been considered to be scanning in mode II and IV, where the AOI data points

are located mostly in the bottom left, and right of the plot. Mode II and IV occurs

when the sonographer’s gaze has not changed much during the scan (less spatial

variance, as seen in Figure 4.9 along the y axis), while the image changed quickly

for most of the scan (concentration of gaze points on the left side of the x-axis
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representing temporal variance). In some parts of the scan, the image remained

constant (concentration of gaze points on the right side of the x-axis).

Baseline Comparisons.

As a baseline technique to compare with, the I-VT algorithm [38] was chosen since

one or more fetal ultrasound studies have also used I-VT for detection of standard

fetal imaging planes [81]. The AOIs using the I-VT algorithm are calculated using

the procedure described by [38]. The calculated AOIs are represented using the

visualisation in Figure 4.9. A second baseline is chosen using the method proposed

by [49], where they used k-means to separate eye-tracking data into fixations

and saccades. Since I-VT was used specifically in a previous study [81], a visual

inspection of qualitative differences was performed. Generated contour plots and

visual scanning modes were compared for the output from I-VT and HDBSCAN.

4.3 Results

The quality of the identified clusters of AOIs are assessed by using standardised

clustering validity measures which calculate performance based on the distance

between points within the cluster, and the distance between cluster centers. These

measures calculate the compactness and separability of clusters, where a densely

packed cluster far away from other clusters is considered to be compact and separable.

Three metrics which assess unsupervised clustering are used: the Davies-Bouldin

(DB) index [4], Calinski-Harabasz [3] (CH) index scores and the Silhouette coefficient

[7]. These are defined in Section 4.1.4.

Silhouette [7] DB [4] CH [3]
I-VT 0.43±0.28 1.25±1.47 684.11±1354.32

k-means 0.74±0.09 0.35±0.13 1602.47±2427.37
HDBSCAN 0.83±0.08 0.22±0.10 3660.03±4781.0

Table 4.2: Average and standard deviation of Silhouette, DB and CH scores using I-VT,
k-means and HDBSCAN. A higher score for CH and Silhouette and a lower score for
DB indicates a better clustering performance. In bold, the best performing clustering
algorithm assessed against each of the metrics.
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Abdomen Brain Heart
I-VT 32 22 112
k-means 3 4 7
HDBSCAN 5 12 27

Table 4.3: Number of abdomen, brain and heart segments which returned a single AOI
using I-VT, k-means and HDBSCAN.

Table 4.2 show the mean scores of Silhouette, DB and CH, which return a

better score when using HDBSCAN compared to I-VT and k-means to cluster raw

eye-tracking data. Clips which only had one predicted cluster label, corresponding

to a single AOI, were not included in Table 4.2 as this would return a null score.

The number of clips which returned a null score is shown in Table 4.3. The scores

in Table 4.2 were for 76, 146 and 29 abdomen, brain and heart plane clips which

returned more than 1 cluster.

For a qualitative assessment, results using HDBSCAN and I-VT are compared

since the I-VT algorithm has been used and tested on one or more ultrasound fetal

studies [81]. The visualisations for abdomen, brain and heart planes are shown in

Figure 4.10. A comparison across tasks using HDBSCAN (red line) shows that

heart planes use the least amount of spatial information while brain planes use the

most. However, heart planes use more temporal information, where the contour

of Figure 4.10 (right) is stretched in the temporal direction, while the contours

of brain and abdomen (Figure 4.10, left and middle) are stretched in the spatial

direction. These results show that the searching process is task dependent.

A visual comparison shows that HDBSCAN returns more granular and anatomy

specific results compared to I-VT. For HDBSCAN, abdomen and brain planes

show similar temporal characteristics (Figure 4.10 left, middle) but show more

spatial variance for the brain compared to the abdomen. Using I-VT returns similar

spatial-temporal gaze characteristics for abdomen and brain planes (Figure 4.10

left, middle). For heart planes, Figure 4.10 (right) shows opposite characteristics

for the HDBSCAN and I-VT algorithm, where HDBSCAN returns mode II AOIs

while I-VT returns mode IV. This is explained by the algorithm I-VT clustering 94

heart scans as a single cluster indicating no change in image or gaze over time.
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4.4 Discussion

Figure 4.10 (left) shows that whilst scanning for abdomen planes, sonographers

use both spatial and temporal information. When empirically investigating the

data, this was found to be true as sonographers focus on the areas within the three

anatomical landmarks, stomach, aorta and umbilical vein (Figure 4.11), resulting in

a general viewing area around the center of the image. In some cases, sonographers

focused at the center of the image whilst refining the plane. I-VT captures this as

mode IV (Figure 4.8). However, since image changes have been accounted for, these

instances are now captured correctly as mode II (Figure 4.10, left) using HDBSCAN.

Figure 4.11: Labelled anatomical landmarks.
Left: Abdomen (stomach, aorta and umbilical vein).
Right: Brain (anterior part of the falx cerebi, cavum speti pellucidi and choroid plexus)
plane.

For brain planes, sonographers often move between the anterior part of the falx

cerebri, cavum septi pellucidi and the choroid plexus where measurement of the

ventricular atrium occurs (Figure 4.11), and these two anatomical landmarks are at

opposite sides of the head. This behaviour is reflected by the large change in spatial

variance over short periods of time seen in Figure 4.10 (left), not captured by

the I-VT algorithm.

For heart planes, it was observed that sonographers follow landmarks such as

the septum or aorta closely to transition between heart planes; this is reflected
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by the concentration of AOIs in mode II (Figure 4.10, right). However, the I-

VT algorithm classified these instead as mode IV not having taken the change

in image into account. This is a misleading result since the sonographer has in

fact refined their image over time while following their chosen landmark closely

showing little to no change in gaze.

Note that mode III is empty for all the anatomy planes. This is reasonable since

such behaviour is more likely to be observed in a global static image, such as a sono-

grapher reading an image. An alternative scenario is when an involuntary/voluntary

saccade has occurred, but in this instance AOIs are being compared.

4.5 Summary

In this chapter, I used unsupervised methods to reduce the labelling effort required

to identify meaningful eye movement events. Specifically, unsupervised clustering

methods allows the user to identify meaningful clusters of sonographer recorded

gaze points. I also use the ultrasound image to determine how similar the adjacent

frames were. If they exceeded a certain threshold similarity, then the sonographer is

considered to have moved onto the next meaningful event. By using a combination

of unsupervised clustering and measuring image similarity metrics, eye movement

classification algorithms were not required. Next, I used a simple 2D method to

visualise patterns in sonographer eye-tracking data recorded during a longitudinal

study which is easy to interpret and able to capture task specific characteristics

when considering multiple viewing references and moving images such as videos.

Several types of scanning behaviour for abdomen, brain and heart planes

were presented. Most noticeably, there are distinct behaviours for each type

of task. HDBSCAN was used to cluster raw eye-tracking data and returned a

more informative and meaningful eye-tracking data visualisation than using the

established I-VT algorithm. The method presented in this chapter does not require

manual labelling of AOIs or hand selecting threshold parameters for separating eye

movements which is expensive and not always possible in large scale studies.



5
Individual Level Visualisation of Spatial

Temporal Gaze Characteristics of
Sonographers

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Normalisation of Eye-Tracking Data by Localising Anatomy

Circumference using Affine Transformer Networks . . . 71
5.2.2 Visualisation of Eye-Tracking Data using Time Curves . 72

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Introduction

In Chapter 4, I explained how data visualisation can be used to understand where

and how sonographers have looked at whilst scanning for particular anatomical

planes. The results of Chapter 4 were specifically for analysing the gaze behaviour

of a population of sonographers. It is expected that on average a population of

67



5. Individual Level Visualisation of Spatial Temporal Gaze Characteristics of
Sonographers 68

sonographers search for the same anatomical plane in similar ways. This assumption

means that studies such as [109, 113] are able to use gaze to build saliency prediction

methods that describe the visual search of sonographers. Naturally, this leads to

the question: are we able to visualise gaze behaviour on a per-scan basis? Broadly,

a deeper understanding of how gaze patterns can differ between scans helps us

discover new (or different) ways in which sonographers perform their scan which

may be helpful for characterising sonographer skill.

To answer this, we want to visualise gaze behaviour using a concise and

informative method. In this chapter, I present a method that is concise and

informative of individual gaze behaviour. Individual-level analysis enables us to learn

where and what sonographers have looked at across different scans. Performing the

analysis on a per-scan basis also means that we can analyse the differences between

tasks that have different levels of difficulty. This chapter complements Chapter 4,

in that, alongside understanding a population of sonographers’ gaze behaviour, we

aim to ‘dig deeper’ and understand the gaze behaviour on an individual level.

5.1.1 Contribution

The approach I describe combines a deep learning model to normalise the eye-

tracking data and an event-based visualisation method to characterise the normalised

gaze data. The deep learning model is an affine transformer network [54] for localising

the anatomy circumference of a fetus ultrasound video which allows for scale and

position invariance of the fetal image between scans. Then, a data visualisation

methodology, time curves [59], is used to characterise sonographer scanning patterns

for different tasks. The proposed method allows us to analyse sonographer gaze

behaviour on a per-scan basis and compare different gaze characteristics when a

population of sonographers are searching for the same plane.

5.1.2 Data

The dataset used was the PULSENet standard planes described in Section 3.3.2. The

subset of anatomies chosen were heart and brain planes to compare differences
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in sonographer skill. Brain planes are considered easier to search for compared

to the heart due to differences in anatomy size, and [104] showed that operators

spend the most time searching for these anatomy planes during a routine clinical

second trimester scan. The planes which were used are TVP, TCB, 3VT, 3VV,

4CH, LVOT and RVOT. Figure 5.1 shows examples of the 5 heart and 2 brain

views respectively. In total, there were 185 TVP, 188 TCB, 65 4CH, 50 LVOT,

61 RVOT, 57 3VV and 65 3VT planes. 10 fully qualified sonographers performed

the scans, and there were 250 unique pregnant women. Any gaze data which was

missing was interpolated using the method described in Section 3.4.2.

Figure 5.1: Selected brain and heart views from the PULSENet DS rescaled to 224x224
pixels. From left to right: (i) TVP, (ii) TCB, (iii) 3VT, (iv) 3VV, (v) 4CH, (vi) LVOT
and (vii) RVOT.

5.1.3 Definitions

Before describing the method used to analyse individual-level gaze characteristics,

I define terminology that is used in this subsection.

The deep learning model presented in this chapter builds on the scanpath

normalisation method presented in Section 3.4.2. In Section 3.4.2, the eye-tracking

data was normalised manually using bounding boxes. To reduce the effort required

to draw bounding boxes, an automatic way of normalising the eye-tracking data

is desired. Instead, the anatomy circumference is identified using a deep learning

model. The anatomy circumference is defined as the visible outer bounds of the

fetus’s anatomy displayed on the ultrasound machine screen (also described in

Section 3.4.2). An example of the brain’s circumference is shown in Figure 5.2.

The visualisation method presented is an event-based visualisation - time curves.

An event is defined as a period of time when a meaningful activity has taken place.

These activities are application dependent [40] and study specific. In this fetal
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Figure 5.2: Example of a drawn anatomy circumference (in yellow) of a brain plane.

ultrasound application, an event is defined as a unique anatomical landmark that

the sonographer has looked at whilst scanning.

Since each scan presents differently, assessing each scan individually is required to

analyse differences between sonographer gaze behaviour. Event-based visualisations

are useful for highlighting different events that occurred during each scan and are

a useful way of providing summary information to the user quickly. As shown

in Chapter 4, the population of sonographer gaze characteristics have different

spatial and temporal characteristics. The chosen event-based visualisation must

be able to account for spatio-temporal differences.

Time curves [59] was chosen because it is a 2D visualisation method that

preserves temporal order of defined events and displays spatial similarity between

events. First a linear timeline of events is plotted along the x axis, time. A distance

matrix is used to represent the similarity between events. In general, the distance

metric chosen is application dependent. Events are mapped onto a lower dimensional

space (2D) using the distance matrix. Finally, a suitable interpolation curve, for

example, splines, is used to connect event points. An example is shown in Figure 5.4.

5.2 Methods

A method is presented for localising the anatomy circumference in ultrasound frames

using an affine transformer network inspired by spatial transformer networks [54].
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Time curves [59] are then used to visualise sonographer recorded eye-tracking

data. A variety of scanning styles is observed while searching for heart and

brain anatomical planes.

5.2.1 Normalisation of Eye-Tracking Data by Localising
Anatomy Circumference using Affine Transformer Net-
works

Spatial transformer networks (STNs) [54] are differentiable modules that can be

used within deep learning network architectures to remove spatial and position

variance between images for a downstream task such as classification or object

detection. They have been used for ultrasound image registration [100, 120]. The

affine transformer network (ATN) architecture proposed by [54] is used in this work.

The network localises the fetal anatomy circumference to ensure that the fetus is

the object of reference for the raw eye-tracking data. The AOI is the anatomy

plane that the sonographer is searching for.

Normalising eye-tracking data with respect to the anatomy circumference has

been shown to improve the performance of using eye-tracking data for anatomy plane

classification (Chapter 6). However, for that work the circumference was manually

labelled for >300 segments (Chapter 6). To reduce the manual labour needed

to label a large-scale dataset, the proposed method uses an ATN to localise the

anatomy circumference. The estimated affine transformation contains 6 parameters

(Equation 5.1) and is able to account for scale, translation, shear and rotation [54].

(
xt

yt

)
=
[
θ11 θ12 θ13
θ21 θ22 θ23

]x
y
1

 (5.1)

The learnt transformation (Equation 5.1) is applied to the eye-tracking data

for normalisation.
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Implementation.

Following their proposed architecture, the backbone of the ATN uses GoogleNet

[53]. The last average pooling layer and last fully connected layer are removed. On

top of this, the following layers are stacked: (i) a 1 x 1 convolutional layer to reshape

the AOI channels from 1024 to 128, (ii) a fully connected layer with 128x7x7

output and (iii) a fully connected layer with 6 outputs representing the affine

transformation parameters [54]. The dataset was augmented using the principled

data augmentation method described in Section 3.4.1.

The AdamW optimizer [77] is used, and the base learning rate starts at 1e-

4 and reduces by a factor of 10 after 25, 50, 75 and 100 epochs. The loss is

calculated as the mean squared error between the transformed image and the

ground truth at the pixel level [103]. The model is allowed to train for 150 epochs

and early stopping is implemented if the validation loss does not decrease by

0.001 after 10 consecutive epochs.

5.2.2 Visualisation of Eye-Tracking Data using Time Curves

An event-based visualisation method was chosen because this class of methods

inform the user of what event has occurred and its characteristics. Each event must

depict attributes of the data independently, similar to a glyph-based visualisation

[40]. Time curves [59] were used because they are informative and simple to

implement and interpret. To construct the time curve two variables are required:

time spent at an event, and a similarity matrix to define how similar events are.

Fixations and saccades are calculated using the standardised I-VT algorithm

[38] since a previous study [81] used the I-VT algorithm.

An event is defined as a snapshot of what landmark the sonographer is focusing

on during a fixation. The position of a fixation is typically calculated as the average

gaze point [38] during the fixation. Likewise, the middle time stamp (Figure 5.3,

step 2) of the fixation is used as the average frame representing the AOI. A segment

(20x20 pixels) of the image is cropped around the gaze point to create an event

(Figure 5.3, step 4). Since the images are resized to 224x224, a 20x20 crop was
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Figure 5.3: Figure demonstrating the process of generating an event to represent a
fixation from the original ultrasound frames.
Step 1: Original ultrasound frames.
Step 2: Frames transformed using an affine transformer network.
Step 3: Selecting a representation of the event as the middle frame of the fixation.
Step 4: Landmark focused on, defined as an event.

Figure 5.4: Figure summarising the process of developing the time curve (Illustrative
purposes only, not to scale).
Step 1: Creating events, here number of events n=9.
Step 2: Calculating distance matrix between events, here numbered from 0 to 8.
Step 3: Distance matrix reduced to 2D using multi-dimensional scaling (MDS).
Step 4: Events connected using splines.

considered to be sufficient to capture the landmark that the sonographer focused

on. The size of the crop was adjusted based on the visibility of the structures in the

frames. For frames where gaze points were outside of the anatomy circumference,

the landmark was substituted as a 20x20 grey square. Events which partially fell

outside the anatomy circumference were zero padded with grey pixels.

Each task specific event image was flattened (Figure 5.4, step 1) to a 1×n

dimensional vector. The Euclidean distance between each vector was calculated,
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returning a square form distance matrix (Figure 5.4, step 2). The Euclidean distance

was used as [59] has shown that a naive pixel difference for normalised images still

returns informative results. The distance matrix is transformed to a lower 2D space

using multi-dimensional scaling (MDS). From a m×m matrix, where m is the number

of total snapshots in the dataset, a m×2 matrix is returned. These transformed data

points are shown in Figure 5.4, step 3. Finally, to connect the events in temporal

order (Figure 5.4, step 4), a 2nd order B-spline with a smoothing factor of 1 to

interpolate between the transformed data points was used. These parameters were

chosen by determining whether the interpolated curve was able to pass through or

near the events. A colour mapping is used to indicate the temporal order (Figure 5.4,

step 3). Light orange indicates the start of the time-series, and dark orange the end.

I provide a brief description of how to interpret the time curves based on Figure

5.4. In Step 4, there are the different colours of each event. These are used to

quickly identify which events were observed toward the end of the scanning period

just before freezing, where event 8 in step 4 was the last event that occured just

before freezing. Event 8 is also numbered, and the darkest shade of orange. Event

0 and 8 are within proximity of each other, which suggests, given the distance

matrix calculated in Step 2, that these events are similar in terms of image content.

Events 3 and 7 are nearly overlapping, which suggests that these two events are

also similar, if not nearly identical in image content. In fetal ultrasound, this would

be a case of the sonographer revisiting a particular anatomical landmark whilst

refining the final plane that needs to be captured.

The gaze scanning patterns are described (Table 5.1) using definitions of visual

patterns given by [59] in Figure 17 of their paper. The examples are cluster,

transition, cycle, u-turn, outlier, oscillation and alternation.
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Pattern Description of events
Cluster Close in space.
Transition Cluster of events migrated from one point in space

to another.
Cycle Start and end events are near each other and creates

a closed circle loop.
U-turn Start and end events are near each other.
Outliers Several events far away in position compared to

majority of other events.
Oscillation Resembles a sine/cosine wave.
Alternation Similar/identical events are repeatedly visited.

Table 5.1: Qualitative description of scanning patterns given by [59]. The patterns are
cluster, transition, cycle, U-turn, outliers, oscillation and alternation.

5.3 Results

Figure 5.5: An example showing the performance of the ATN on standard plane images.
Left to right: TVP, TCB, 3VT, 3VV, 4CH, LVOT, RVOT.
Top: Original images resized to 224x224 pixels.
Bottom: Images after ATN transformation, resized to 224x224 pixels.

First visually, the result of applying the ATN to localise the anatomy plane is

assessed. Examples are shown in Figure 5.5. Figure 5.5 shows the ATN model is

able to localise the anatomy circumference for different standard brain and heart

planes. The localisation effect is particularly effective for TCB, 3VT, 4CH and

LVOT where the original images were off center and did not completely fill. The

final transformed image is scaled and centered.

Several types of scanning patterns for each standard plane are presented in

Figures 5.6, 5.7 and 5.8 which were observed since the primary interest is in

characteristic patterns. For reference, the fully labelled time curve can be seen
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Figure 5.6: An example of several scanning patterns for brain plane TVP.

Figure 5.7: An example of several scanning patterns for brain plane TCB.

in Figure 5.4, step 4. To allow for ease of comparison between time curves, a

task-specific reference line is provided in blue.

The average number of events for heart planes range from 1-2, while it ranges

from 4-5 for brain planes. Figures 5.6 and 5.7 show that for brain planes there

are several types of scanning patterns. Many of the scans show a combination

of a u-turn, cycle, clusters and transitions where sonographers have revisited

similar anatomical landmarks several times over the course of scanning.

For TVP, the majority of events in Figure 5.6 (left) are clustered below the

reference line with differing temporal order (of events). For TCB, the majority of

events in Figure 5.7 (right) are clustered above the reference line. There are also

patterns which show that sonographers follow 3 - 5 distinct landmarks without

revisiting them (Figure 5.7, right). There does not appear to be a pattern for when

the events occurred, as shown by the scattered distribution of colours.
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Figure 5.9: Example of landmarks which were viewed while scanning for brain planes
TVP (left) and TCB (right). To avoid visual clutter, event numbers are not shown in
this figure.

Figure 5.8 shows that for heart planes most of the scans only have a single

event occurring, corresponding to a unique landmark that the sonographer focused

on during the scan. Since the event is coloured dark orange, this indicates that

the landmark was followed for the full length of 5 seconds. A small minority show

patterns of loops and straight lines, where only 2-3 events have occurred.

A comparison between brain and heart plane scanning patterns show that

typically it was observed that there are more unique landmarks that sonographers

observe and revisit for brain planes. The majority of heart planes return a single

event. Although both the brain and heart are 3-dimensional objects, the size of the

heart is smaller and sonographer gaze does not need to travel as far. To obtain the

correct heart plane view, the sonographer makes smaller adjustments with the probe

compared to the brain. These differences are reflected in the visual patterns of brain

plane time curves in Figures 5.6 and 5.7 and heart plane time curves in Figure 5.8.

A qualitative analysis of event trajectories was performed. For brain planes, these

are shown in Figure 5.9. For TVP, the sonographers generally look at the choroid

plexus and cavum septum pellucidem. For TCB, they look at the cerebellum where

they measure the transcerebellar diameter.
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Figure 5.10: Example of landmarks which were viewed while scanning for heart planes
3VT, 3VV, 4CH, LVOT, RVOT. To avoid visual clutter, event numbers are not shown in
this figure.

For heart planes, some examples are presented in Figure 5.10 where the

sonographer has looked at the trachea, and the intersection of the pulmonary

artery and aorta (3VT), pulmonary artery (3VV), crux of the ventricular septum

(4CH), aorta walls (LVOT) and bifurcation of the pulmonary artery (RVOT).

The chosen definition of an event is less able to provide defining characteristics

for heart planes compared to brain planes. Many time curves returned a single

event (Figures 5.8d and 5.8e) over 150 frames as their gaze points were classified

as a single fixation.

5.4 Summary

In this chapter, an affine transformer network was used to localise the anatomy

circumference, which provides a reference to normalise sonographer eye-tracking

data recorded while performing second trimester fetal ultrasound scans. The

normalised eye-tracking data was visualised using time curves. Then, task-specific

sonographer scanning patterns were distinguished when searching for the heart and

brain plane. This work showed that representing fixations as events to build time

curve visualisations is a useful method to demonstrate observed landmarks and

scanning patterns for brain planes, but less so for heart planes.

The final results demonstrate that the gaze characteristics of a sonographer is

dependent on the anatomical plane being searched for and also that gaze patterns

are not identical between scans. The presented method highlighted differences in

the ways in which sonographers search for anatomical planes with different levels of

difficulty, the brain and the heart plane. Most notably, the sonographers revisit the
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brain anatomical landmarks more frequently than the heart landmarks. Broadly,

these results are useful for understanding how the different anatomical structure

of different fetal organs affect the gaze patterns of sonographers.
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6.1 Introduction

Chapter 4 showed that sonographers have distinct gaze patterns when searching for

the abdomen, brain and heart planes. Visualising these differences at the global

level was useful to gain a general understanding of the differences between the

landmarks located on the anatomical plane. The methods in Chapter 4 generate a

81
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qualitative representations of sonographer gaze. Subsequently, is the gaze behaviour

of sonographers sufficiently distinct for classifying separate scanning tasks?

Current challenges (discussed in Section 2.2.3) associated with task classification

of eye-tracking data for fetal ultrasound is that there are various ways that a plane

can be searched for. Where a sonographer starts their search differs from other

scans and sonographers because the fetus is constantly moving and changing its

position. It is non-trivial to use eye-tracking data in its raw form for classification.

Other methods which use eye movement characteristics to classify tasks rely on

the availability of a suitable eye movement classification algorithm to calculate

suitable fixations and saccades metrics for comparison.

The method presented in this chapter aims to overcome these limitations by

using normalised eye-tracking data to classify fetal ultrasound tasks which does not

require any separation of eye-tracking data into fixations and saccades. Time-series

eye-tracking data is also less computationally expensive than using images for task

classification, and is an added benefit of considering using only eye-tracking data.

6.1.1 Contribution

The method presented in this chapter proposes first normalising the eye-tracking

data to account for the change in scale and position of anatomy during the scan.

Then, the normalised eye-tracking data is classified using a deep learning model.

The best-performing model was a Gated Recurrent Unit (GRU) classification model

which was able to classify the visual scanpaths of sonographers performing fetal

ultrasound tasks. These two proposed steps resulted in the fetal ultrasound task

being identified using only sonographer eye-tracking data.

6.1.2 Data

The dataset used was the manually labelled second trimester scans, which is

described in Section 3.3.1. The anatomy labels Ab, Br and Ht, the abdomen, brain

and heart respectively are used. These planes were chosen because sonographers

spent the most time on them whilst scanning [135]. These labels do not separate
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anatomy specific views. For example, the ‘Br’ label consists of both TVP and TCB

(Table 3.1). The ‘Ht’ label consists of all heart views excluding the situs view.

The total number of segments available is shown below.

• Total number of abdomen plane segments: 84

• Total number of brain plane segments: 160

• Total number of heart plane segments: 122

There were 10 fully qualified sonographers and 76 unique pregnant women.

Eye-tracking data corresponding to the live-B mode video frames was used. The

sonographer is actively searching for the anatomical plane during this time and

differentiating gaze behaviour could be present. Any gaze data which was missing

was interpolated, and any clips which were less than 100 frames in length were zero

padded according to the procedures described in Section 3.4.2.

6.1.3 Definitions

In this chapter, a task is defined as the action of a sonographer looking for a

specific anatomical plane. For example, the head is a separate task from the

abdomen and heart.

In eye-tracking literature, a scanpath can be used to refer to eye-tracking data

represented in its raw form and also as aggregated eye movements such as fixations

[89]. In this chapter, a scanpath is defined as the visual attention of an individual

sonographer captured by eye-tracking data over time.

6.2 Methods

In this work, I first considered several different representations of the eye-tracking

data. The purpose is to investigate whether using the eye-tracking data in its raw

form or feature engineered form is more informative for the task being performed.

Then, I used time-series classification models to identify the fetal ultrasound

task being performed.
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6.2.1 Normalisation of Gaze Data

To give the gaze data context with respect to the anatomical plane being searched

for, I normalised the eye-tracking data with respect to the anatomy’s circumference.

The procedure is described in Section 3.4.2.

Raw gaze points recorded by the eye-tracker along the x and y axis with

respect to the screen dimensions of 1920×1080 pixels are defined as Gx, Gy. Raw

gaze points normalised with respect to the anatomy’s circumference are given

as GxBB, GyBB (Equation 3.2); BB is an abbreviation for bounding box, as the

anatomy circumferences were drawn manually using bounding boxes 1. An example

of the drawn bounding box can be seen in Figure 6.1.

(a) Abdomen plane. (b) Brain plane. (c) Heart plane.

Figure 6.1: A bounding box drawn (in yellow) around the (a) abdomen, (b) brain and
(c) heart plane’s circumference. To calculate the area occupied by the plane on the frame,
the area of the yellow box is divided by the area of the frame. The frame has dimensions
1008x784 pixels.

To test the effectiveness of providing context to the eye-tracking data, I consider

the raw gaze points Gx, Gy as my first baseline, and Gx, Gy normalised with respect

to the screen dimensions of 1920×1080 pixels as my second baseline. The gaze

points normalised with respect to the screen dimensions are referred to as Gxs, Gys,

where s is an abbreviation for ‘screen’.

In addition to the feature engineered gaze points, I also calculated how much

space on the ultrasound machine screen the anatomical plane occupies. Typically the

anatomical planes differ in scale, depending on the ‘zoom’ factor that the sonographer

used (Figure 6.1) and this could be a factor that is important for task classification.
1The anatomy circumferences of the ultrasound video frames in Chapter 5 were identified using

a deep learning model.
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I use the bounding box drawn (Figure 6.1) to capture the difference in scale

between planes. I do so by calculating the ratio of the screen that the anatomy

occupies with respect to the frame. A ratio of 1 is where the anatomy image occupies

the entire screen. The area of screen occupied by the bounding box (yellow box)

divided by the area of the cropped image (1008x784 pixels) is given as A (Figure 6.1).

The final list of features which were used to train the model are:

1. Gx, Gy: raw gaze points.

2. Gxs, Gys: raw gaze points normalised by screen dimensions.

3. Gxs, Gys, A: raw gaze points normalised by screen dimensions, and area

occupied by the screen.

4. GxBB, GyBB, A: raw gaze points normalised by the anatomy circumference,

and area occupied by the bounding box relative to the screen.

6.2.2 Time-series Classification Models

In this work I consider three different classification models. I first choose a baseline

model based on prior works. The first baseline model requires that the eye-tracking

data is in discrete form. Hence, for the next baseline model I consider a model that

can use the eye-tracking data in its continuous form. Finally, due to its success

with time-series classification, I choose a suitable off-the-shelf deep learning model.

Hidden Markov Model (HMM).

The first model which was considered was a hidden Markov model (HMM), based

on prior works [26]. HMM [154] is a time-series model which assumes that the

process being modelled adheres to the Markov property. The Markov property is the

assumption that the conditional probability distribution of future states only depends

on the present state, and not past states. A hidden Markov model assumes that only

the data, and therefore model parameters, is observed, while the states are hidden.

In their work, [26] first transformed the scanpath into a discrete sequence of

numbers using k-means clustering. The eye-tracking data is transformed into a

sequence of discrete cluster labels. The sequence is used to train the HMM. To
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estimate the HMM’s parameters, the Baum-Welch [12, 162] algorithm is used. The

Baum-Welch algorithm estimates the model parameters of a HMM using only the

observed data by updating its belief of the parameter values based on maximising a

specified loss function. The loss function used to train the HMM in this chapter was

the Maximum A Posteriori as shown in Equation 6.1. The maximum a posteriori

estimation maximizes the posterior probability distribution with respect to variable

Y given variable X is observed (Equation 6.1).

a∗
MAP = argmax

Y
P (Y | X = x) (6.1)

The final model parameters which are estimated are the probability of being in

a specific state, known as the emission probability, and the probability of transiting

between states known as the transition probability. In [26], each separate task

was trained using a HMM, and each test sequence is scored against task specific

HMMs. The predicted class is selected as the model which returns the maximum

loss function value.

k-nearest neighbours Model (k-NN).

Since the eye-tracking data was represented as a sequence of discrete cluster labels,

a whole time-series comparison is also considered. The purpose of doing so is to

investigate whether raw gaze points are better for task classification compared to

the coarse representation used in an HMM.

To classify the eye-tracking data in its continuous form, a k-nearest neighbours

model (k-NN) was used. k-NN [2] is a non-parametric time-series classification

model and classifies a data point based on the most frequent label amoungst its

nearest k neighbours. The distance metric used to calculate its nearest neighbours is

chosen by the user, for example, Euclidean distance. To select the optimal number

of clusters, k, the elbow method is used. The elbow method was explained in

Section 4.2.1, and an example demonstrated in Figure 4.6.

As mentioned in Section 6.1.2, zero padding was used to make the eye-tracking

data equal lengths. In this instance, using the Euclidean distance is not suitable
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for comparing the whole time-series2. The dynamic time warping (DTW) distance

metric is used instead. DTW is a distance metric used to compare two time-series

x and y of different lengths [24]. The algorithm calculates an optimal warped path

W by matching each element in x to the closest (in Euclidean distance) element in

y. The cost of the final path, given as the DTW value, is the sum of the minimum

distances calculated from matching x to the nearest element in y. An example of

using the dynamic time warping distance to find the closest spatial match between

the x co-ordinates of a heart and brain segment can be seen in Figure 6.2.

Figure 6.2: An example of calculating the distance between 2 time-series (in this instance
the x-co-ordinate of the gaze data) using the dynamic time warping distance metric. The
dotted lines represent the nearest match between two data points.

Gated Recurrent Unit (GRU) Model.

Given the success of deep learning models for time-series classification, I also chose

an off-the-shelf deep learning model for task classification. The gated recurrent

unit (GRU) model [48, 56] is a subset of recurrent neural networks (RNN) that

retains long-term time dependencies between sequences. The GRU is a variation

of the long short-term memory (LSTM) model [11] which is also very popular for

time-series classification. However, the GRU has fewer parameters than a LSTM and

have been shown to return comparable performance to the LSTM while requiring
2Note that this is different how the distance metric was used in Chapter 4 since there we were

comparing the distance between individual data points. In this chapter, we are concerned with
comparing whole time-series.
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less specified parameters [107]. A LSTM model uses gates 3 to regulate which

information the model retains and discards while training. The GRU has fewer

parameters because the model combines 2 of the gates into a single gate. The

input to the GRU model are equal-length time-series gaze data, and the output

of the model returns a class label for each time-series.

Model Parameter Selection. To select the model’s optimal parameters, the

asynchronous successive halving algorithm (ASHA) was used. ASHA [87] is a

hyperparameter tuning method that combines random search and principled early

stopping asynchronously [65]. Principled early stopping uses the successive halving

algorithm (SHA), also known as the multi-armed bandit algorithm. Briefly, the

SHA evaluates the performance of the given set of configurations for a small number

of epochs. At the next iteration, the top 50% performing configurations are kept

and evaluated again with a slightly larger number of epochs. This process continues

until one configuration remains.

To remove the computational bottleneck caused by using a top-down approach

(i.e. starting with the entire set of configurations), the ASHA algorithm favours a

bottom-up approach to [101] by selecting suitable configurations to keep. Initially,

ASHA performs a random search of configurations to evaluate. For the next iteration,

the algorithm finds suitable configurations to keep and discards those that did

not meet a minimum required performance [101].

Loss Function. The GRU requires a specified loss function to train the model.

In this chapter, 2 different loss functions are explored: cross entropy and focal loss.

Cross entropy loss is a standardised function used to train classification models,

and focal loss is a function similar to cross entropy but takes class imbalance of the

dataset into account. For the reasons outlined in Section 3.3.1, the dataset used

in this chapter is imbalanced. These two loss functions are explored to investigate

whether the class imbalance of the dataset affects the final model’s performance.
3A gate is a combination of a sigmoid neural network layer and a pointwise multiplication

operation which returns an value of 0 or 1 to discard or retain information respectively [56].
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The cross entropy loss function is given in Equation 6.2. The cross entropy loss

function (Equation 6.2) gives equal weights to all classes in the dataset. Equation

6.2 shows the cross entropy loss function for a binary classification problem.

CE(p, y) =

−log(p) if y = 1
−log(1− p) otherwise

(6.2)

• p ∈ [0, 1] is the model’s estimated probability for the class y = 1

The focal loss function is given in Equation 6.3 [76].

FL (pt) = −αt (1− pt)γ log (pt) (6.3)

pt =

p if y = 1
1− p otherwise

(6.4)

αt =

α if y = 1
1− α otherwise

(6.5)

• αt ∈ [0, 1] is a weighting factor to address class imbalance

The focal loss function (Equation 6.3, assuming a binary class classification) is

a variation of the cross entropy function that accounts for class imbalance. Unlike

the cross entropy function which weights all classes equally, the focal loss forces

the model to penalise the contribution of the majority class to the final loss value.

The modulating factor γ in Equation 6.3 regulates the loss value of the majority

class. As γ increases, the loss value of the majority class decreases and increases for

the minority class. α (Equation 6.5) is a hyperparameter that acts as weighting

factor on the majority and minority classes.

Implementation.

For training and testing, a 3-fold stratified cross validation was performed. 80% of

the data was used for cross validation and 20% for tuning model parameters.
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Gated Recurrent Unit. RayTune’s [88] ASHA [87] was used to tune the hy-

perparameters. The ASHA config parameters used to search for the optimal

parameters were:

• n_layers: 2, 3, 4

• n_hidden: 4, 8, 16, 32, 64, 128, 256

• n_epoch: 100, 250, 500, 750, 1000

• batch_size: 1, 2, 4, 8, 12, 16

• dropout: 0.55, 0.65, 0.75, 0.85, 0.95

• lr: loguniform(1e-4, 1e-1)

The ASHAScheduler parameters were:

• time_attr: training_iteration

• metric: loss

• mode: min

• max_t: 100

• grace_period: 10

• reduction_factor: 3

• brackets: 1

The final optimised GRU hyperparameters implemented in PyTorch were:

• Number of hidden layers n_hidden: 32

• Number of recurrent layers n_layers: 2

• Number of epochs n_epoch: 250

• batch_size: 4

• dropout: 0.55

• optimiser: Adam

• learning rate lr: 0.003

• loss function: cross entropy
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Baseline Implementations. For the hidden Markov model, the elbow method

[1] was used to determine the optimal number of clusters for k-means, and a

Gaussian hidden Markov model with a full covariance matrix. The optimal number

of clusters was determined to be k=5. The results of using the elbow method

can be seen in the Appendix, Figure 8.1.

The list of hmmlearn GaussianHMM parameters are:

• covariance_type: full

• n_iter: 1000

• tol: 0.001

• n_components (k): 5

The corresponding normalised gaze points GxBB, GyBB and their cluster labels

after being classified by k-means is shown in Figure 6.3. The gaze points are

clustered around the center, returning 5 clusters which are spatially close by. These

cluster labels form the states which are used to train the hidden Markov model.
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Figure 6.3: The cluster labels of gaze points after being classified by a k-means algorithm.
There are 5 clusters, k, generated. These cluster labels are used as the states to train the
hidden Markov models.

For the k-nearest neighbours time-series classifier, implemented using the

tslearn [122] Python package, the optimal number of neighbours was determined to

be k=2. The results of using the elbow method can be seen in the Appendix, Figure

8.2. The value of k means that the class label assigned to the gaze time-series

data is dependent on its nearest 2 neighbours.

6.2.3 Qualitative Visualisation of Scanpath

A qualitative analysis was performed to understand the differences between abdomen,

brain and heart plane scanpaths. The visualisation of these differences at the

population level was described in Chapter 4. However, the aim of the visualisation

in this section is to determine the differences between scanpaths which were classified

correctly and incorrectly.
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Figure 6.4: Contour density plot of abdomen gaze points normalised using the bounding
box method, GxBB, GyBB (left), and an example abdomen scanpath (right). The dotted
lines provide a 1:1 reference between the contour plot axes (left) and plotted scanpath
(right). In this example, the abdomen scanpath on the left falls within the total distribution
of abdomen gaze points on the right - below 0.5 on the y-axis.

This is done by visualising the distribution of the normalised gaze points,

GxBB, GxBB, shown in Figure 6.4 on the left. Figure 6.4 (left) shows a contour density

plot of training and correctly classified abdomen plane gaze points GxBB, GxBB

with cumulative density masses at 4 equally spaced levels 0.2, 0.4, 0.6, 0.8 where

0.2 is the outer most contour and 0.8 is the inner most contour. The bi-variate

distribution was calculated by superimposing a Gaussian kernel on each gaze point

and returning a normalised cumulative sum. The right side of Figure 6.4 shows an

example abdomen scanpath. The dotted lines on the left and right side of Figure

6.4 were drawn at a 1:1 ratio. These dotted lines provide the relative position of

the example scanpath with respect to the distribution of GxBB, GxBB.

6.3 Results

6.3.1 Task Classification Results

Due to class imbalance, the data was randomly down sampled with respect to the

minority class (abdomen plane segments), to prevent bias towards the majority
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Model Affix Features Weighted-
F1

Average
Accuracy

HMM [26] raw Gx, Gy 0.38±0.20 0.49±0.19
scr Gxs, Gys 0.38±0.07 0.45±0.09

k-NN TSC
raw Gx, Gy 0.57±0.05 0.57±0.06
scr Gxs, Gys 0.55±0.04 0.55±0.04
scr+A Gxs, Gys, A 0.52±0.05 0.54±0.04
bb+A GxBB, GyBB, A 0.63±0.03 0.64±0.02

GRU

raw Gx, Gy 0.56±0.05 0.57±0.05
scr Gxs, Gys 0.68±0.04 0.67±0.04
scr+A Gxs, Gys, A 0.72±0.05 0.72±0.05
bb+A GxBB, GyBB, A (ours) 0.84±0.01 0.83±0.01

Table 6.1: Comparison of weighted F1 scores and accuracies calculated using hidden
Markov model (HMM) [26], k-nearest neighbours time-series classifier (k-NN TSC), gated
recurrent unit (GRU) to classify abdomen, heart and brain plane eye-tracking segments.
The table shows the different eye-tracking data forms that was used to train the HMM,
k-NN TSC and GRU. The four different forms of eye-tracking data were: raw eye-tracking
(raw), eye-tracking normalised using the screen dimensions (scr), eye-tracking normalised
using screen dimensions and area of screen occupied by the anatomical plane (scr+A)
and eye-tracking normalised using the bounding box method in Section 3.4.2 and area of
screen occupied by the anatomical plane (bb+A). For brevity, the column Affix contains
the abbreviation to refer to the type of eye-tracking data used.

classes (brain plane segments). Different sets of features (shown in Table 6.1)

was used to demonstrate that the proposed feature engineering method of using

bounding boxes for normalisation and proposed GRU model performs better than

the current baseline models. The classification results are shown in Table 6.1. The

average transition and emission probabilities generated from the HMM is shown

in the Appendix as Tables 8.1, 8.2, 8.3 and 8.4.

Table 6.1 shows that the best performing model normalised raw eye-tracking

data with respect to the anatomy circumference (as defined in Section 3.4.2) used

the GRU model architecture and performed better than previous works [26] and

several baselines, returning a weighted F1 score of 0.84.

Table 6.1 shows [26] is unable to classify fetal ultrasound tasks well, where

HMM(raw) and HMM(scr) returns score metrics between 38% and 49%. Instead,

using k-NN TSC and GRU models improves the task classifier performance by at

least 20% - HMM(raw) and HMM(scr) versus k-NN TSC(raw) and k-NN TSC(scr),
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Figure 6.5: Confusion matrix for the GRU(bb+A) model normalised with respect to
total number of segments per anatomy plane in the test set (106 segments in total).

GRU(raw) and GRU(scr) respectively.

Normalisation using the bounding box shows an improvement of at least 10%

(Table 6.1 GRU(scr+A) versus GRU(bb+A), k-NN TSC(scr+A) versus k-NN

TSC(bb+A)), returning a final F1 score of 84%. There is a slight decrease (1%-

3%) in performance when including the size of the anatomy relative to the screen

for models k-NN TSC, but a slight increase (4%) for GRU using scr and scr+A.

GRU is better able to use the anatomy size information compared to k-NN TSC.

Overall, normalising gaze points with respect to the anatomy circumference is

more indicative of task type (bb), compared to how much space the anatomy

occupies on the screen (A).

The confusion matrix for the GRU(bb+A) model (the best performing model)

is shown in Figure 6.5. Figure 6.5 shows that heart scanpaths are the most distinct,

where only 3% are misclassified. In contrast, 13% and 20% of abdomen scanpaths

were misclassified as heart and brain scanpaths respectively, and 12% of brain

scanpaths were predicted as abdomen scanpaths.

6.3.2 Class Imbalance Models

The initial dataset was unbalanced, with the most number of segments available for

brain scanpaths and the least for abdomen scanpaths with a class imbalance ratio of

1.45. The focal loss [76] function which accounts for class imbalance when training
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the model was used for the GRU(bb+A) model. The results were compared against

using the cross entropy loss which did not. The effect of augmenting the dataset was

also compared. The images were augmented by flipping as described in Section 3.4.1.

Downsampled Augmented Loss function Weighted-F1 Average Accuracy
False False Focal loss 0.81±0.01 0.81±0.02
True False Cross entropy 0.79±0.04 0.78±0.05
False True Focal loss 0.83±0.01 0.81±0.02
True True Cross entropy 0.84±0.01 0.83±0.01

Table 6.2: Weighted F1 scores and accuracies using our proposed GRU model comparing
the original, downsampled and augmented datasets. The best performing GRU model’s
weighted F1 scores (taken from Table 6.1) is shown in the last row of the table. The first
row corresponds to the original dataset; the second row the original dataset downsampled
with respect to the minority class; the third row was the original dataset that was
augmented using the flipping method described in Section 3.4.1.

The results in Table 6.2 show that using an augmented dataset does not improve

the performance when comparing the balanced (row 4) and imbalanced (row 3)

datasets, where the weighted F1 score showed a difference of 1%. The effect of

using the downsampled dataset is seen when considering a smaller dataset (row 1

vs row 2) (drop of 2-3%). Using focal loss returns more consistent results than that

of using cross entropy, where the original dataset (row 1) returns a lower standard

deviation across folds compared to the downsampled dataset (row 2). Overall,

using an augmented downsampled dataset did not affect the performance of our

model negatively (row 3 vs row 4), but increasing the size of the dataset through

augmentation (row 2 vs row 4) improved performance by 4-5%.

6.3.3 Qualitative Results

A qualitative investigation was performed to understand why brain and heart

scanpaths are more likely to be confused with abdomen scanpaths, and why abdomen

and brain scanpaths are more often misclassified with each other compared to the

heart. First, the distribution of all GxBB, GyBB for the abdomen, brain and heart

scanpaths are plotted using contour plots (explained in Section 6.2.3) in Figure 6.6.

Figure 6.6a shows that for abdomen planes, sonographer scanpaths are con-

centrated within the central area of the anatomy. Figure 6.6b shows that for
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(a) Abdomen. (b) Brain. (c) Heart.

Figure 6.6: Contour plots of normalised eye-tracking data GxBB, GyBB of abdomen,
brain and heart plane scanpaths.

brain planes, sonographer scanpaths are more elongated compared to abdomen

and heart scanpaths, where the sonographer has looked across the midline of the

anatomical plane. Figure 6.6c shows that for heart scanpaths, the sonographers

gaze is concentrated at the center of the image where the sonographer has looked

focused on and followed a single landmark. An example of individual scanpaths

are shown in Figures 6.7, 6.8 and 6.9.

(a) Abdomen. (b) Abdomen.

Figure 6.7: Examples of individual abdomen scanpaths. The gaze points GxBB, GyBB

are plotted as scatterpoints and joined with connecting lines in temporal order. In these
examples, the sonographers have focused on the middle of the abdomen plane where the
landmarks are located. In Figure 6.7a, the sonographer’s gaze alternated between the
different landmarks (up and down).
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(a) Brain. (b) Brain.

Figure 6.8: Examples of individual brain plane scanpaths. The gaze points GxBB, GyBB

are plotted as scatterpoints and joined with connecting lines in temporal order. In these
examples, the sonographers’ gaze have traversed from the left to right representing their
visual scanpath across the midline of the plane.

(a) Heart. (b) Heart.

Figure 6.9: Examples of individual heart plane scanpaths. The gaze points GxBB, GyBB

are plotted as scatterpoints and joined with connecting lines in temporal order.In these
examples, the sonographers’ gaze have focused near the center of the heart plane. In
Figure 6.9b, the sonographer found the landmark they were interested in and quickly
honed in. When they had finished scanning, their gaze quickly veered off towards a
different point.

The scanpaths which were mislabelled were also investigated. Figure 6.10

shows the abdomen scanpaths which were mislabelled as brain (Figures 6.10a and

6.10b) and heart (Figures 6.10c and 6.10d). For abdomen scanpaths predicted as

heart, the sonographer focused on a single area (Figure 6.10c and 6.10d) similar

to how sonographers visually search for the heart. For scanpaths predicted as

brain, the sonographer moved the probe, causing their gaze to shift accordingly

with the image (ii), or had moved their gaze across the screen (i) similar to how

sonographers search for the brain.
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(a) Misclassified as brain. (b) Misclassified as brain.

(c) Misclassified as heart. (d) Misclassified as heart.

Figure 6.10: Abodomen scanpaths which were misclassified as brain and heart scanpaths.
For scanpaths which were mislabelled as brain (Figures 6.10a and 6.10b), the sonographers’
visual scanpath mimiced a brain scanpath, traversing ‘across’ the plane. For scanpaths
which were mislabelled as heart (Figures 6.10c and 6.10d), the sonographer had focused
in the middle of the plane.

Figure 6.11: Brain scanpaths which were misclassified as an abdomen scanpath. The
sonographer had not scaled the brain plane to fit the screen fully, and did not focus along
the midline horizontally but diagonally across the plane.

For misclassified brain scanpaths (Figure 6.11), the image was small and occupied

<50% of the screen, and the sonographer did not focus along the midline horizontally
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but diagonally across the plane.

(a) Misclassified as abdomen. (b) Misclassified as abdomen.

(c) Misclassified as brain.

Figure 6.12: Heart scanpaths which were misclassified as an abdomen and brain
scanpaths. For those mislabelled as abdomen scanpaths (Figures 6.12a and 6.12b), the
sonographer had looked around the area of focus, as opposed to just focusing on the
landmark and ‘following’ the landmark as they adjusted the probe. For the heart scanpath
which was mislabelled as a brain scanpath, the sonographer was moving their gaze and the
image simultaneously, resulting in a scanpath which was ‘sweeping’, rather than focused.

Misclassified heart scanpaths (Figure 6.12c) showed that the image itself was

moving, indicating that the probe was moving, causing the sonographer to shift their

gaze accordingly or the sonographer was looking around the walls of the heart cavity.
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6.4 Discussion

Figure 6.13: Labelled anatomical landmarks of the abdomen plane: stomach, aorta and
umbilical vein.

Given eye-tracking data of sonographers, differences between type of task being

performed were classified with a weighted F1 score of 84%. Abdomen and brain

plane scanpaths were misclassified because the sonographer did not necessarily

look at the distinguishing landmarks, and showed a slightly different visual search

strategy. On average, the population of sonographers looked at the distinguishing

landmarks. However, in some instances, such as the abdomen plane, the sonographer

focused at the center point of all three landmarks: stomach, aorta and umbilical

vein (Figure 6.13). This specific search strategy is more similar to heart scanpaths,

where the sonographer focused on and followed a single landmark.

This chapter also showed the normalising eye-tracking data with respect to

the area-of-interest, in this case the fetal anatomical plane being searched for,

is important for contextualising the gaze data. Without this prior knowledge,

the classification model performs quite poorly, with a weighted F1 score of 56%

(Table 6.1). The area of the screen occupied is not that important a factor to

consider. The classification results only improve by 4% (Table 6.1, using the GRU

model) compared to the feature engineering sets scr, and scr+A. This suggests the

sonographers on average scale the fetal plane to approximately the same size. This
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is not surprising since the guidelines in [90] suggest that the fetal plane should

occupy at least 2
3 of the screen.

6.5 Summary

In this chapter, the method presented was able to classify the fetal ultrasound task

being performed with a weighted F1 score of 84%. Gaze was normalised to provide

context of the sonographer’s behaviour with respect to the plane being searched

for. Then, a time-series classification model was used to classify the normalised

eye-tracking data into separate planes: abdomen, brain and heart. The final model

which returned the best performance was the gated recurrent unit model.

The final classification results demonstrate that the location of the anatomical

landmarks and method of sonographer scanning affects how well the gaze data can

be classified. These findings are useful for understanding that, even if the scan

presents the plane in a different position and location on the screen, sonographers

largely observe the same landmarks and or look within the vicinity of the final

expected landmark position.
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7.1 Introduction

Classification of human skill in the context of medical applications is still largely

limited by the definition of skill. The motivation behind quantifying or classifying hu-
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man skill at fetal sonography is to find out whether there are quantitative differences

between an experienced and less experienced sonographer. If so, these differences

can be used to improve the scanning skill of the less experienced sonographer.

In fetal ultrasound, the number of years a sonographer has spent scanning

is typically used to group sonographers into different expert categories. Current

studies do not necessarily test whether this skill definition is suitable, i.e., whether

years of experience is sufficient as an indicator of skill (Section 2.3.4). They also

do not consider other factors such as a sonographer’s personal scanning style can

affect the definition of skill. Style is defined as in [123]; the gaze of a sonographer is

the outcome of both human skill, and personal scanning style. Subsequently, there

is a need to validate whether using years of experience to build skill classification

models is suitable, and whether a sonographer’s style of scanning is a factor that

needs to be taken into account.

In this chapter, I aim to determine whether a sonographer’s scanning style is

a factor that affects the chosen definition of expertise. Then, I aim to present a

method that will test the hypothesis that skill and years of scanning experience

are correlated. The main goal is to understand whether years of experience is a

suitable measure of skill, since this has been widely used in prior studies.

To remove the ‘years-of-experience’ constraint when defining skill, a skill

classification model is trained to distinguish between experts and non-experts,

where an expert is defined as a fully qualified sonographer, independent of number

of years spent scanning, and a non-expert as a trainee sonographer. Then, to

consider whether a sonographer’s style affects the model’s results, the population

of experts used to train the model is stratified based on individual sonographers.

The effect of changing the model’s training data on the test dataset is investigated.

This method was based on the paper which was published and presented at Gaze

Meets ML workshop in conjunction with NeurIPS 2022, but its contents have been

modified to suit the format of this thesis.



7. Skill and Style Classification 105

7.1.1 Contribution

The presented method builds a task-agnostic skill classification model using only

eye-tracking and pupillary data of sonographers performing fetal ultrasound scans.

The correlation coefficient is calculated between years of scanning experience

and skill of expert sonographers and its significance (at the 5% level). The

presented method shows that task-agnostic eye-tracking data can be classified

into expert and trainee with a weighted average F1 score of 98% (expert) and

70% (trainee) using a light gradient boosting machine model, and that, depending

on the skill model used, generally there can be a positive relationship between

years of experience and expertise.

7.1.2 Data

The dataset used to build the task-agnostic skill classification model was eye-tracking

trainee data described in Section 3.3.4 and the eye-tracking data from the population

of expert sonographers performing second trimester scans as detailed in Section 3.3.5.

Any missing data was interpolated using the method described in Section 3.4.2.

7.1.3 Definitions

Before describing the method, I define some of the terms in this chapter.

• Expert: refers to a fully-qualified (FQ) sonographer who has been qualified

to work with the National Health Service (NHS), independent of their years

of scanning experience. An expert could be a sonographer with 2 years of

scanning experience, or 10 years of scanning experience for instance.

• Trainee: refers to an individual who is learning how to scan and training

to become a fully qualified sonographer. A trainee is an individual who has

not been accredited with the qualifications to scan with the NHS. An expert

sonographer is performing the scan and training them simultaneously.

• Style: the gaze of a sonographer is the outcome of both human skill, and

personal scanning style [123].
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7.1.4 Software Packages

I used the software package tsfresh to calculate time-series features based on the

eye-tracking data to build the skill classification model. In the package tsfresh, one

of the parameters that needs to be defined is the type of features to be calculated.

The features are categorised based on the computational speed required to calculate

them. These features are pre-defined in tsfresh and the full list of features can

be found in [83]. In this chapter, I used the category EfficientParameters. Both

tsfresh and EfficientParameters are described briefly below.

• tsfresh: A Python package which calculates a range of time-series properties,

such as distribution of data points, correlation properties, stationarity, entropy,

and nonlinear time-series analysis [83].

• EfficientParameters: A parameter in tsfresh which specifies which time-

series properties to calculate – those that are not computationally expensive

and is scalable for large datasets [83]. The features are a combination of

continuous and categorical variables. In total there are 74 unique time-series

features. The full list of features are found in the tables in Appendix 8.4.

7.2 Method

In this work, I first consider whether a sonographer’s gaze behaviour is a function

of both skill and style. Then, I consider whether years of experience is a suitable

indicator of human skill.

In this subsection, I first describe the gaze features which were used to build

the skill models. Then I describe the classification models to classify skill and

sampling methods used to account for class imbalance. After which, I present the

methods which were used to answer the two research questions posed: whether skill

and style are entangled in sonographer gaze behaviour, and if years of experience

is a suitable indicator of skill.
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7.2.1 Generating Features from Eye-Tracking Data

In prior fetal sonography skill studies [138, 123, 150], specific tasks such as the

brain and heart anatomical plane were analysed. This requires a labelling method

to identify the planes of interest. Instead, in this chapter, I consider a task-agnostic

approach. A task-agnostic approach means that the eye-tracking data does not

need to be separated into different segments corresponding to specific anatomical

plane reducing labelling efforts. To analyse skill, only eye-tracking data related

to the live B-mode segments where sonographers are actively searching for an

anatomical plane are considered.

Following [136] where pupillary data was used to compare skill differences

between sonographers with > 2 years and ≤ 2 years of experience, task-evoked

pupillary response (TEPR) is used as a skill classification feature. The TEPR is used

to calculate the cognitive load of the participant whose gaze is being recorded. TEPR

measures the change in pupil dilation with respect to a baseline pupil diameter. A

larger change in TEPR is indicative of a higher cognitive load, and vice versa. The

equation for calculating TEPR is given as δdt in Equation 7.1. The minimum pupil

diameter dr represents the sonographer’s pupil diameter while resting. dt represents

the pupil diameter at time t and δdt represents the TEPR at time t [136].

δdt = dt − dr

dr

× 100% (7.1)

Gaze data (x and y co-ordinates) is also used as features. Each live B-mode

segment is represented by a 3× n feature vector, where n is its segment length and

3 is the number of final features that were used to train the model - gaze x and y

co-ordinates and δdt. Note that n varies from segment to segment.

To overcome the problem that the live B-mode segments are of different lengths,

summarized gaze characteristics are extracted for each segment using the scalable

feature extraction approach tsfresh [83] (described in Section 7.1.4) returning the

eye-tracking data in tabular data form. Tabular data is a data form where each

row represents a single unique instance of the time-series data, and each column
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represents a specific type of feature. The feature is then reduced to a 1×m feature

vector, where m is the number of characteristics extracted using tsfresh [83].

The feature extraction setting used in tsfresh was EfficientParameters [83].

In fetal ultrasound, due to the unstructured nature of searching for anatomical

planes, the time taken per segment is not necessarily a fair indicator of skill. Hence

features related to length are removed: length, and

ratio_value_number_to_time_series_length, which calculate the length of the

segment n and the number of unique values in the segment divided by n, respectively.

The impute method in tsfresh is used to select relevant features for prediction.

7.2.2 Classification Models

To build the task-agnostic model, gradient boosting decision tree models were chosen

because it has been shown that they work best with tabular data, rather than

time-series data (like that in Chapter 6). Gradient boosting decision trees use an

ensemble of weak decision trees to build strong predictors [84, 14]. Random forests

utilise a bagging approach, where the final classification is taken as the majority

vote. However, gradient boosting trees use a sequential approach - the model’s

parameters are updated sequentially based on the residual of each individual tree.

The gradient is boosted over each tree. I briefly describe the 3 models, Extreme

Gradient Boosting, Light Gradient Boosting Machine and Categorical Boosting,

which have been shown to work best with tabular data. These models are used

in this chapter to classify skill.

Extreme Gradient Boosting. (XGBoost) XGBoost is a highly scalable and

efficient gradient tree boosting algorithm that can handle sparse tabular data

because of its algorithmic optimisations detailed in [62]. Briefly, their optimisations

include a sparsity aware algorithm, a weighted quantile sketch and a cache-aware

implementation. The sparsity aware algorithm learns the patterns of missing values

in the dataset (≈ 50 speed up compared to without), where missing values could

be due to frequent zeros in statistics or one-hot encoding. Their weighted quantile
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sketch algorithm finds optimal split points amoung the datasets. Lastly, their

cache-aware implementation (≈ 2 speed up) speeds up computation by pre-fetching

gradient statistics stored in an internal buffer [62].

Light Gradient Boosting Machine. (LightGBM) LightGBM includes two

extra optimisation steps to handle large amounts of data instances and features,

decreasing the computational speed and memory required compared to XGBoost.

Their two optimisation methods are gradient-based one-side sampling and exclusive

feature bundling. Gradient-based one-side sampling amplifies the under-trained

data points (data points with small gradients) when calculating information gain.

Exclusive feature bundling groups features which are mutually exclusive into a

single feature [74].

Categorical Boosting. CatBoost is similar to XGBoost and LightGBM but

is specifically designed to handle categorical features. Instead of pre-processing

categorical features (e.g. one-hot encoding), they are handled during training by

using ordered target statistics, i.e. each category has an estimated target value.

There is an ≈ 25-60 times speed up when compared to XGBoost and LightGBM [84].

7.2.3 Skill and Style of Sonographer Gaze

To understand whether gaze patterns of a sonographer scanning is influenced by

their own personal style, I built several skill models and compare their classification

results. First, a skill classification model is built using a population of expert and

trainee sonographers eye-tracking data. This model is abbreviated as EX0,16 in

Table 7.1; the abbreviation refers to the years of scanning experience of sonographers

in the training dataset, 0 to 16 years of scanning after qualifying. The full list of

abbreviations and corresponding years of experience is seen in Table 7.1. To build

the model, all the trainees data was used, and 20% of the experts’ data was used 1.
1The reason why 80% of the experts’ data was set aside is explained in detailed Section 7.2.5.
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Expert Expertise (years)
20% of EX0,16 0-16
EX1,2 1-2
EX2,3 2-3
EX0,3 0-3
EX10,11 10-11
EX14,15 14-15

Table 7.1: Table of groups of experts represented in the training dataset for skill
classification, with their corresponding number of years of scanning experience. The
abbreviation for these experts are EXa,b, where EX stands for expert, and a, b represents
the lower and upper bound of number of years of scanning experience.

Data used to build the ‘leave-one-in’ skill models Percentages of
Data UsedTrainee Class Expert Class

Trainees
1-4 (as in
Section
3.3.4)

75% Train+Validate
20% Test
5% Tune

20% of EX0,16
EX1,2
EX2,3
EX0,3
EX10,11
EX14,15

Table 7.2: Table showing the percentage of data used to build the skill classification
models. For the ‘leave-one-out’ models, the individual experts’ data was used to build
the model. For the general skill model that used all the experts’ data to represent the
expert class, only 20% of the total experts’ data was used. 80% was set aside to test
the correlation between years of experience and expertise. For the trainee class, all the
trainee data was used.

Then, I consider a reversed leave-one-out approach, analogous to ‘leave-one-in’. A

leave-one-out approach removes an individual sonographer from the training dataset

to investigate how the individual influences the classification results. Conversely,

a leave-one-in approach uses only a single sonographer in the training dataset. It

seems counter intuitive, but the aim of the experiment is to determine whether

one expert’s gaze patterns are similar enough to another, that the classification

results would also likewise be similar.

Due to data imbalance, experts with the most (top 5, Table 7.2) eye-tracking

data is shown. These models are abbreviated as EX1,2, EX2,3, EX0,3, EX10,11,

EX14,15 in Table 7.1 and 7.2. If a sonographer’s unique scanning style does not
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affect their skill, then the results of the different models EX1,2, EX2,3, EX0,3,

EX10,11, EX14,15 would not vary by much. A description of the data used to train

the trainee and expert class is shown in Table 7.2. The data breakdown for training,

testing, validating and tuning the model’s parameters is shown in Table 7.2. A

5-fold stratified cross-validation is carried out with 75% of the dataset, and tested

on the remaining 20%. Model parameters are tuned using a GridSearch with 5%

of the dataset. In all 5 models, the trainee class consists of all 4 trainees’ data. The

expert class consists of only the specific expert sonographer’s data.

7.2.4 Class Imbalance Sampling

Expert Expertise (years) ≈ Class Imbalance Ratio
20% of EX0,16 0-16 14
EX1,2 1-2 23
EX2,3 2-3 8
EX0,3 0-3 17
EX10,11 10-11 3
EX14,15 14-15 15

Table 7.3: Table of groups of experts represented in the training dataset for skill
classification, with their corresponding number of years of scanning experience. The table
also includes a class imbalance ratio of the expert class and trainee segments available for
training; the expert class is the majority class. The abbreviation for these experts are
EXa,b, where EX stands for expert, and a, b represents the lower and upper bound of
number of years of scanning experience.

The data is imbalanced towards the expert class and a breakdown of the class

imbalance ratio is shown in Table 7.3. Due to class imbalance where experts form

the majority class, Synthetic Minority Oversampling Technique (SMOTE) [15,

136] is used to balance the training dataset. SMOTE is a sampling method to

address class imbalance - the minority class is over-sampled by creating synthetic

data points based on the original data points. The synthetic points are generated

along any line segments which connect any of the minority class data points. Such

imbalances in data are not uncommon, where other fetal sonography studies have

also had an imbalanced expert/beginner dataset [137, 123]. This imbalance is
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further amplified when considering separating sonographers on a per-year (of

scanning experience) basis.

7.2.5 Years of Scanning and Level of Expertise

After determining whether style is a factor that influences gaze patterns, I want to

investigate whether years of experience is a suitable measure of expertise. In prior

studies, expertise of sonographers is defined as years of scanning experience. Since

the data was collected over a period of several years, the years of experience

is taken as the number of years of scanning the sonographer had when they

performed the scan.

In this subsection, level of expertise is defined as the percentage of eye-tracking

data segments of an expert that is classified as expert. That is, using a skill

classification model, predict whether an expert’s data is an expert or trainee, and

calculate the total percentage of their segments which were labelled as expert.

The trained skill classification model can identify expert segments which are

more similar to trainee segments (i.e., expert segments which are misclassified

as trainee segments).

The skill classification models built in Section 7.2.3 are used to predict whether

an experts’ data is classified as a trainee or an expert. For each model, the data

used to predict the level of expertise of experts’ is shown in Table 7.4. These data

were not used to train, test, validate and tune the model in Section 7.2.3.
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Data used to build the ‘leave-one-in’ and
population skill models Dataset aside for prediction

of expertise levelTrainee Class Expert Class

Trainees
1-4

20% of EX0,16 80% of EX0,16 /∈ 20% of EX0,16
EX1,2 EX0,16 /∈ EX1,2
EX2,3 EX0,16 /∈ EX2,3
EX0,3 EX0,16 /∈ EX0,3
EX10,11 EX0,16 /∈ EX10,11
EX14,15 EX0,16 /∈ EX14,15

Table 7.4: Table showing the data which was used to build the skill classification models
in Section 7.2.3, and the data used for predicting the level of expertise in Section 7.2.5.
To read the notation used in the column ‘dataset aside for prediction’, EX0,16 /∈ EX14,15
means that all the experts’ data in EX0,16 was used to predict trainee/expert except
EX14,15.

To calculate whether years of experience and level of expertise exhibit a positive

monotonic2 relationship, the Spearman’s rank correlation coefficient (SC) between

the two variables, years of experience and levels of experience, is computed using

(Equation 7.2), where ‘R’ denotes the rank of the variable. The rank of the variable

can be calculated as follows. If X={22%, 37%, 10%, 60%}, the rank of X, RX , is

returned as RX={3, 2, 4, 1}, where the highest rank 1 is the highest score.

SCXY = cov(RX , RY )
σRX

σRY

(7.2)

The SC measures the monotonic relationship between two variables, X and

Y (Equation 7.2), by calculating the covariance between the ranks of X and Y,

cov(RX , RY ), divided by the standard deviation of the rank of X and Y multiplied.

The equation for calculating the Spearman’s rank correlation coefficient is given

as SCXY in Equation 7.2. σ refers to the standard deviation, and cov refers to

the covariance. The range of the SC is between -1 and 1.
2A function which is either entirely nonincreasing or nondecreasing. https://mathworld.

wolfram.com/MonotonicFunction.html

https://mathworld.wolfram.com/MonotonicFunction.html
https://mathworld.wolfram.com/MonotonicFunction.html
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Spearman’s Coefficient Analysis
SC > 0 Expertise increases with years of experience.
SC < 0 Expertise decreases with years of experience.
SC ≈ 0 Expertise and years of experience are not monotonically

related.

Table 7.5: Table showing the interpretation of the Spearman’s rank correlation coefficient
(SC) in relation to years of experience and expertise.

In general, SC > 0 signifies X and Y are increasing. SC < 0 signifies as X

increases Y decreases. SC = 0 signifies that X and Y do not share an increasing or

decreasing relationship. The variables X and Y in Equation 7.2 are years of scanning

experience (X variable) and percentage of expert segments (between 0 and 100%)

(Y variable) respectively. The rank RX , RY of the X and Y variables are calculated

as shown below. A summarised version of this analysis is shown in Table 7.6.

Years of Experience (X) 1 4 5 7 8 9 10
RX 1 2 3 4 5 6 7
Level of Expertise 10% 20% 25% 30% 40% 55% 55%
RY 1 2 3 4 5 7 7

Table 7.6: Calculating the rank of the variables: years of experience and level of expertise.
The higher the level of expertise, the higher the rank. The higher the number of years
of experience, the higher the rank. Values which are identical share the same rank. For
example, where Y={55%}, RY = 7.

The behaviour that I am investigating is qualitatively shown in Figure 7.1.

Figure 7.1 shows the percentage of segments predicted as expert increasing with

years of experience; SC > 0.

As the data was collected over a period of several years (2018 to 2023), there were

2-3 sonographers whose years of experienced increased. For example, a sonographer

who started scanning for the PULSE project in 2018 might have also scanned for

the project in 2019. Their recorded years of experience would then increase by one

(Table 7.7). However, to perform the Spearman’s coefficient correlation, there is

an assumed independence between the 2 variables being compared. To overcome

this challenge, the analysis is performed as follows.
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Figure 7.1: An example lineplot of a positive monotonic relationship between years of
scanning experience and percentage of segments predicted as expert. In this subsection, I
have defined percentage of segments predicted as expert as levels of expertise. The legend
‘3 YEARS’ refers to the years of experience the expert used to train the skill classification
model.

Years of Experience 1 2 3 4 5 6 7
Level of Expertise 10% 20% 25% 30% 40% 50% 55%
Sonographer ID A B Richard Richard C David David

Table 7.7: Example of data where a sonographer’s data appears in 2 different bins of
years of experience. Years of experience is the independent variable (X), and level of
expertise is the dependent variable (Y). David and Richard’s data appears in 2 different
years of experience.

Where a sonographer’s ID appears multiple times, the Spearman’s coefficient is

calculated as follows. A coefficient is calculated using X={10%, 20%, 25%, 40%,

50%} and Y={1, 2, 3, 5, 6}. Another coefficient is calculated using X={10%, 20%,

30%, 50%, 55%} and Y={1, 2, 4, 5, 7}. The analysis was performed this way to

ensure that that assumption independence between X and Y is not violated.

7.2.6 Implementation

The following parameters were tuned using GridSearch to find the optimal pa-

rameters for the classification decision tree models. To prevent overfitting, the

max depth of the decision trees are limited to 10.

The tuning parameters used for Light GBM were:

• learning_rate: numpy.arange(0.1, 1, 0.1)

• num_leaves: range(2, 20, 3)
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• max_depth: range(3, 10, 2)

The tuning parameters used for xGBoost were:

• learning_rate: numpy.arange(0.1, 1, 0.2)

• max_depth: range(3, 10, 2)

• min_child_weight’: range(1, 6, 2)

• gamma: numpy.arange(0.1, 1, 0.2)

• eval_metric: mlogloss

The tuning parameters used for CatBoost were:

• learning_rate: numpy.arange(0.1, 1, 0.2)

• max_depth: range(2, 10, 2)

7.3 Results

7.3.1 Skill Classification Models

Table 7.8 shows the average results of the model’s performance on the test set across

the 5 folds. On average, both LightGBM and XGBoost outperform CatBoost. This

is not unexpected since the number of continuous features in the dataset is more

than the number of categorical features. Given that class imbalance favours the

majority class (expert), it is not surprising that the performance of the expert class

is much better than that of the trainee class, with average F1 scores of at least

94%. The best performing model based on the trainee class performance uses an

XGBoost architecture and EX10,11 as the expert. It achieves an F1 score of 95%

for the expert class and 88% for the trainee class.

Model LightGBM XGBoost CatBoost
Data Expert Trainee Expert Trainee Expert Trainee
EX0,16 0.98±0.00 0.70±0.03 0.98±0.00 0.66±0.04 0.96±0.00 0.50±0.01
EX1,2 0.99±0.00 0.71±0.04 0.99±0.00 0.74±0.01 0.97±0.00 0.58±0.02
EX2,3 0.98±0.00 0.71±0.03 0.97±0.00 0.65±0.03 0.96±0.00 0.54±0.01
EX0,3 0.99±0.00 0.84±0.02 0.99±0.00 0.80±0.02 0.98±0.00 0.68±0.04
EX10,11 0.95±0.00 0.86±0.01 0.95±0.01 0.88±0.02 0.94±0.01 0.84±0.02
EX14,15 0.98±0.00 0.72±0.02 0.98±0.00 0.71±0.02 0.95±0.01 0.52±0.02

Table 7.8: Average F1 scores on the test dataset using the models built from the different
training datasets described in Table 7.4.
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The performance of the trainee class depends on which experts were used in

training, with F1 scores between 71% and 86% (Table 7.8, LightGBM). When

comparing similar years of experience, EX14,15 and EX10,11, EX0,3 and EX1,2,

there is a difference of at least 13% (Table 7.8). These results suggest that when

considering a skill classification model, a sonographer’s style is also a factor that

is not easily disentangled from their skill. As a result, misclassification of trainee

segments is dependent on the style of the expert’s gaze and how similar their

gaze data was to the expert.

The trainee class was highly imbalanced in some of the training data, such as

EX0,3 and EX1,2 (factors of 17 and 23 respectively, Table 7.3). A comparison of

EX0,3 and EX10,11, which had an imbalance ratio of 17 and 3 respectively, returned

similar results for the best-performing model. When comparing EX0,3 and EX1,2,

both had between 0-3 years of experience but a 13% difference in performance

for the trainee class. Similarly, EX10,11 and EX14,15 had a 14% difference. These

results suggest that although class imbalance could have caused the minority class

(trainee) to perform worse than the expert class, it is more likely that the gaze

behaviour of a sonographer is dependent on their scanning style, causing different

representations of experts to return a range of model performances.

7.3.2 Qualitative Analysis of Trees

A qualitative analysis of the best performing model general skill model (EX0,16)

is discussed here. The best performing model is in bold in Table 7.8, where the

sonographer used to train the ‘expert’ class was the population of sonographers

EX0,16 using LightGBM. As a 5-fold stratified cross validation was performed, the

analysis from the fold with the least F1 score is presented here. The full list of

features and their importance is shown in the tables in the Appendix 8.4. The

feature importance is presented as the numbers of times the feature is used in the

model, following the in-built method of the lightgbm package.

The fold with the lowest F1 score was the 2nd fold, with an F1 score of 0.98

(expert) and 0.65 (trainee) and its qualitative results are presented here.
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Figure 7.2: The 50th boosted tree (100 trees were trained in total) trained. The tree
was generated using the in-built LightGBM plot_tree function. The tree shows the
percentage of data which falls into each leaf. The names of the features which were used
at the splits are given as columns 26, 171, 158, 165, 10, 102, 81, 60, 52, 188. The list of
features can be found in the list below.

The list of features in Figure 7.2 are given below:

1. Column 26: x_permutation_entropy__dimension_5__tau_1
2. Column 171: TEPR_range_count__max_1__min_-1
3. Column 158: x_change_quantiles__f_agg_"mean"__isabs_True

__qh_0.8__ql_0.4
4. Column 165: TEPR_cwt_coefficients__coeff_14__w_5__widths

_(2, 5, 10, 20)
5. Column 10: x__benford_correlation
6. Column 102: x_change_quantiles__f_agg_"mean"__isabs_False

__qh_0.4__ql_0.2
7. Column 81: x_change_quantiles__f_agg_"mean"__isabs_True

__qh_0.6__ql_0.4
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8. Column 60: TEPR_ratio_beyond_r_sigma__r_6
9. Column 52: TEPR_permutation_entropy__dimension_3__tau_1

10. Column 188: x_change_quantiles__f_agg_"mean"__isabs_True

__qh_0.6__ql_0.2

One interesting observation is that the gaze feature TEPR (task-evoked pupillary

response) has a similar number of features which contribute to the skill classification

model, compared to the gaze co-ordinates. Specifically, there are 90, 44 and 61

x, y and TEPR features which has non-zero feature importance values (Appendix

8.4) In particular, there were 5, 4 and 7 x, y and TEPR features which have a

feature importance of >10. This is in line with prior research discussed in the

literature review (Section 2.3) which used pupillary response to separate groups

of experts. TEPR could also be affected by the luminance of the screen whilst

scanning. For example, an expert might spend less time looking at the screen

compared to someone who was less confident, or spend less time overall looking

at specific landmarks. Hence, the importance of TEPR could be a result of both

differences in cognitive load and also of skill. The importance of the x co-ordinate

also suggests that how the sonographer is traversing the plane horizontally (looking

left to right), rather than vertically, is of importance.

7.3.3 Relationship between Years of Scanning and Level
of Expertise

To investigate the correlation between years of scanning experience, the Spearman’s

correlation coefficient is calculated between years of scanning experience and

percentage of expert segments predicted as expert. I use the best performing

EX0,16 (representing a population of expert sonographers) model architecture from

Section 7.3.1, which was the light gradient boosting machine.

The results are shown in Table 7.9. Table 7.9 shows that the models using

experts EX0,3, EX10,11, EX14,15 to train the model returned a positive monotonic

relationship between years of experience and level of expertise. This is unlike the
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models which were trained using 20% of all experts’ data EX0,16, EX1,2 and EX2,3.

The classification results in Section 7.3.1 showed that the style and skill are not

easily disentangled and Table 7.9 corroborates these results.

Model (Spearman’s Coefficient, p-value)

EX0,16
(0.13, 0.75)
(-0.04, 0.93)

EX1,2
(-0.47, 0.21)
(-0.52, 0.15)

EX2,3
(-0.09, 0.81)
(-0.08, 0.85)

EX0,3
(0.78, 0.01)
(0.70, 0.04)

EX10,11
(0.86, 0.01)
(0.86, 0.01)

EX14,15
(0.81, 0.02)
(0.85, 0.01)

Table 7.9: Table of Spearman’s coefficient and p-values between years of experience and
percentage of expert segments predicted. The coefficient was calculated twice where a
sonographer’s ID appeared twice using the method outlined in Section 7.2.5.

The results are investigated qualitatively, as shown in Figures 7.3 and 7.4.

Generally, Figure 7.3 shows a positive monotonic relationship plot of the level of

expertise against years of experience for models EX0,3, EX10,11, EX14,15. Figure

7.3 shows the lineplots of the level of expertise against years of experience for

models EX0,16, EX1,2 and EX2,3 where there is generally neither a strong positive

or negative relationship between years of experience and expertise. These lineplots

show a different behaviour to that of Figure 7.3. When every expert is represented

in the class (EX0,16), the Spearman’s coefficient is 0.13 and -0.04, suggesting that

expertise neither increases or decreases with experience.
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Figure 7.3: Lineplots of models: EX0,3, EX10,11 and EX14,15 which demonstrates a
positive monotonic relationship.

Figure 7.4: Lineplots of models: EX0,16, EX1,2 and EX2,3 which did not show a strong
positive or negative relationship between years of experience and expertise.

7.4 Discussion

Based on the results, the performance of a gaze skill classification model is dependent

on the expert(s) which was used to the train the skill model. The model was used to

predict whether an expert’s years of experience demonstrates a positive monotonic

relationship to an experts’ level of expertise, where the level of expertise was defined

as the percentage of segments predicted as expert. The Spearman’s correlation

coefficient test showed that when using EX0,3, EX10,11, and EX14,15 as the expert

to train the skill model, there is a positive relationship between the number of

scanning years and the percentage of expert segments. In contrast, when using

EX0,16 and EX2,3, there did not appear to be any positive or negative relationship,
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with coefficients ranging from -0.09 to 0.13 (Table 7.9). Finally, when using EX1,2

there was a negative relationship between expertise and years of experience, with

a coefficient of -0.47 and -0.52 (Table 7.9).

These results suggest that, while style is a factor that cannot be disentangled

easily from skill, without making any prior assumptions about the relationship

between scanning years and expertise, there can be a positive relationship between

the 2 variables – 3 out of the 6 models in Table 7.9 had a positive coefficient.

However this cannot be generalised across the population of sonographers, and

a deeper examination would be required to understand why the other models

did not return a strongly positive monotonic relationship between expertise and

experience – in particular, model EX1,2 the relationship was strongly negative

with coefficients of -0.47 and -0.52.

One interesting thing to note is that as as the individual expert’s years of

experience increases, the Spearman’s coefficient also increases. From Table 7.9,

models’ EX1,2, EX2,3, EX0,3, EX10,11, and EX14,15 returns coefficients of -0.47,

-0.09, 0.78, 0.86 and 0.81 (and 0.85). This interesting result also warrants further

examination – it suggests that a sonographer with less experience is less likely

to be predicted as expert, when compared to someone with many more years of

experience. Model EX0,16 returned a coefficient of 0.13 and -0.04 which suggests

neither a strong positive or negative relationship. I hypothesize that this could be

because the different years of expertise was represented in the training set which

created a generalisable model of skill that was less able to account for style.

The results also showed that even though the data was imbalanced, with the

experts’ as the majority class, in models where the experts’ had similar years of

experience, the classification results still showed a >10% difference in performance

for the trainee class. This further strengthens the notion that an experts’ style

of scanning is difficult to entangle from their skill.

One limitation that should be considered is that the dataset did not include

‘intermediate’ years of expertise, where there is an experience gap of 6 years. Hence
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it would be interesting to see if these methods would return the similar trends when

applied on different eye-tracking medical datasets (for example dentistry).

7.5 Summary

A skill classification model was presented, where experts were defined as fully

qualified sonographers independent of their years of scanning experience, and

trainees were defined as sonographers learning how to scan. The best performing

model considering a range of years of experience used a LightGBM and returned

F1 scores of 98% and 70% for expert and trainee classes respectively. It was

also shown that sonographer gaze behaviour is indicative of both skill and style,

with performance differences of up to 16% depending on which experts’ data was

used to train the model. Finally, without making any prior assumptions of the

relationship between years of experience as a direct measure of skill, generally

there can be a positive relationship between years of scanning and expertise when

considering task-agnostic gaze characteristics.

The final results presented demonstrate that skill and years of experience is

positively correlated, but that this result is also dependent on whose data was

used to define the expert population of sonographers. Consequently, sonographer

scanning style is also a factor that is not easily disentangled from years of experience.

Whether a sonographer is considered an expert is dependent both on how the

expert population was represented, and also whether the sonographer’s style of

scanning closely mimicked that of the expert population. These findings are useful

because they validate that years of experience can be a useful indicator of skill,

but more importantly, that there are other factors such as personal scanning

style which are not easily quantified that contribute to whether a sonographer

is considered skillful or not.
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8.1 Summary

I summarise the challenges that were discussed in the literature review in Chapter

2 and how the contributions in Chapters 4 to 7 have addressed these questions. I

finish with some considerations that are unique to the PULSE study that could

be explored in future work.

Briefly, the methods in Chapters 4 to 6 have shown us similarities and differences

in how and where sonographers gaze at different areas-of-interests in abdomen,

brain and heart planes. The skill classification method in Chapter 7 also showed

that style and skill of a sonographer are not easily disentangled.
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8.1.1 Distinct Task-Specific Sonographer Gaze Patterns

In Section 2.1.3, I mentioned that current eye-tracking visualisation methods

designed for videos consider coloured images but in fetal ultrasound, the videos

are recorded in grayscale. They also usually require pre-labelled areas-of-interest.

In fetal ultrasound, there are many diagnostic planes which need to be assessed

[127]. Studies which investigated non-parametric methods to reduce labelling

efforts use high sampling frequency eye-trackers (> 250Hz) which was not available

in the PULSE study.

Given these considerations, Chapters 4 and 5 presented 2-dimensional visualisa-

tion methods for analysing fetal ultrasound videos which requires minimal manual

labelling of eye-tracking data, and was able to capture different gaze characteristics

of anatomical planes and capture specific areas-of-interests that the sonographer

looks at during their scan. Specifically, I used unsupervised methods that allowed

the analysis of eye-tracking data without the use of any manual labels of different

types of eye movements. I used 2 types of visuals. The first were contour plots which

visualised spatio-temporal gaze characteristics of sonographers when searching for

abdomen, brain and heart planes. The second was an event-based visual of gaze

scanning patterns that characterised skill based on which anatomical landmarks the

sonographer had looked at during the scan. Finally, I built an affine transformer

network which normalised gaze with respect to the anatomy circumference, providing

context to the gaze data with respect to the anatomical circumference. The network

reduced the burden of manually labelling bounding boxes (Section 3.4.2). The final

results was able to show both global and local gaze characteristics of sonographers

when searching for the abdomen, brain and heart plane.

In these chapters, the main contributions I have made are the following. First, I

have shown that there are distinct gaze patterns when sonographers are scanning

for the 3 anatomies (of which they spend the majority of their time on during

the scan) abdomen, brain and heart. I have also shown that the manner of

scanning differs between the brain (typically easier) and heart (typically harder

due to its relative smaller size).
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With the knowledge learned from Chapters 4 and 5, this naturally followed

on with the question of whether sonographer eye-tracking data when searching

for these planes were distinct enough to be classified into abdomen, brain and

heart plane tasks. In Section 2.2.3, I mentioned that current task classification

methods which used eye-tracking data require suitable eye movement classification

algorithms to separate eye-tracking data into fixations and saccades. Prior work

also considered static image tasks such as reading a page as opposed to watching

a video. Finally, prior studies used simulated environments that did not account

for external factors which can influence the participant’s behaviour.

Given these considerations, Chapter 6 presented a method which classified 3

different anatomical planes (abdomen, brain and heart) using real-world sonographer

scanpaths without requiring the separation of eye-tracking data into different eye

movements. The final results showed that the success of the classification model was

dependent on the location of the anatomical landmarks for each of the planes, where

the normalised gaze position improved the results as the normalisation method

gave meaningful information about where the landmark was located with respect

to the boundaries of the anatomical plane.

In this chapter, the main contributions I have made are the following. First

I have shown the importance of using gaze data in context of the AOI, in this

chapter, the anatomy’s circumference, to provide the classification model further

information of where the sonographer is looking at. I have also shown that the gaze

patterns are not just qualitatively distinct, but quantitatively via the classification

model. Where the model misclassified gaze data, I have also shown that there

are individual sonographers whose gaze patterns differ from the population of

sonographers. This could have implications for future models which use gaze in

other fetal ultrasound studies.

8.1.2 Human Skill and Style of Sonographer Scanning

Finally, I explored the widely used definition of sonographer skill in Chapter 7. In

Section 2.3.4, I mentioned that current skill classification methods which used eye-
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tracking data consider suitable eye movement classification algorithms to calculate

quantitative metrics and differences between groups of experts. An example metric

is the total number of fixations. They also usually use years of experience to

separate groups of participants into experts and non experts. Other complexities

such as differing anatomical presentations of mother and fetus, image quality and

interpretation are not easily quantified using years of experience.

Given these considerations, Chapter 7 presented a method which trained a skill

classification model using eye-tracking data of trainees and experts, where an expert

was defined as a fully qualified sonographer independent of years of experience,

and trainees were sonographers who were still learning to scan. The final results

were important in validating the use of years of experience as an indicator of skill,

but also showed that skill classification models need to consider sonographer style

as a factor that affects the model’s performance.

In this chapter, the main contributions I have made are the following. First

I have shown that both pupillary and gaze data contain valuable information

regarding a sonographer’s skill of scanning, where the pupillary features contributes

heavily towards the classification of skill, in line with prior work done by [136].

I have also shown that a sonographer’s skill and style of scanning are not trivial

to separate; specifically, the performance of the classification model depends on

which sonographers are represented in the training data. Finally, I also showed

that generally there can be a positive relationship between years of experience

and human scanning expertise.

8.2 Limitations

Although the presented methods have revealed meaningful insights of sonographer

gaze behaviour, there was some limitations which I now highlight.

8.2.1 Hardware

The PULSE data was collected at a single site (John Radcliffe Hospital, Oxford),

using a single ultrasound machine and eye-tracker. Consequently, using a different
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sampling frequency eye-tracker or an ultrasound machine which does produce as

high quality images may not present the visualisations in the same way. In Chapter

5, events are defined using crops of the image centered around the recorded gaze

point. In Chapter 5, the clusters may form differently if the eye-tracking sampling

frequency is higher and is less susceptible to noise. Since the results were also

inspected qualitatively, the overall takeaways of where and how the sonographer

reads the ultrasound video would remain the same.

Eye-Tracking Accuracy and Precision Implications.

The main assumption of this thesis’s work is that the eye-tracking data recorded is

sufficiently accurate to what the sonographer looked at during the scan. In [110],

their study showed that the precision of the eye-tracker was not affected between

calibration and later use, so I focus on how the accuracy could affect the results.

The eye-tracking median accuracy and precision were reported in Section 1.51.

Eye-tracking accuracy and precision can affect the outcomes and conclusions of

experiments, where errors can be propagated from its raw form and into analyses.

I discuss those specific to my thesis, namely, the use of eye-tracking to:

• Determine AOIs (Chapter 4).

• Determine fixations (Chapter 5) using the I-VT algorithm.

• Determine image-based features (Chapters 4, 5).

• Differentiate between tasks (Chapter 6) and experience (Chapter 7).

Determine AOIs. In Chapter 4, unsupervised clustering is used to determine

AOIs for 3 different tasks. Unsupervised clustering relies on spatial proximity of the

gaze points. Taking the accuracy of the eye-tracker into account, it is unlikely that

the conclusion of Chapter 4 would be different because the landmarks are sufficiently

far apart for the abdomen and brain plane. For the heart plane, the conclusion in

Chapter 4 also remains true because the sonographers’ gaze did not change much

over time, returning a closely packed cluster of gaze points. The implications of
1The median accuracy was 0.65 degrees, with a precision of 0.09 degrees (Section 1.5).
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the precision and accuracy could affect planes where separation between important

landmarks fall within the interval of 0.65 degrees ± 0.16 degrees2.

Determine fixations and image-based features. In Chapter 5, I used the

I-VT algorithm to first identify fixations and saccades, and then used fixations to

generate meaningful events. This is followed by an image-based calculation, using

the gaze point as the centroid. A bounding box of 1.5 degrees (in the x and y

direction) around the gaze point is used as a snapshot. Similarly, in Chapter 5, a

crop size of 20x20 pixels (of a resized 224x224 ultrasound frame) is used to capture

the image of the event which occurred. For the I-VT calculation, the identified

fixations and saccades could have been affected by the eye-tracker’s characteristics,

where the associated risk is missing short saccades. However fixations are used

here. That, and the short time-series being considered (3-5 seconds) and prior work

[81] which used I-VT in their analysis, it is likely that the overall conclusion of

brain versus heart analysis would not differ. To obtain events and snapshots, the

image provides (pixel-level) information that would also compensate for eye-tracking

accuracy and precision errors. The snapshot and cropped images provide the general

area of the sonographer’s gaze. Rather than a ‘point’-based analysis, the crop of

the image centered around the gaze gives a suitable and wide enough margin that

differences between tasks can still be calculated.

Differentiate tasks and experience. In Chapters 6, the eye-tracking data was

used in its raw and feature engineered form. The eye-tracker accuracy is less likely

to affect the conclusions because the entire length of time-series gaze data was

being used to classify task rather than calculate specific eye characteristics. Any

loss of accuracy during that short period of time (100-150 frames, or during the

length of the scan of 30-40 minutes) is likely to be negligible. There might have

been periods where the sonographer did not scan for the project, and the loss of

accuracy could be applicable. In this case, the general gaze pattern and subsequent
20.16 degrees is the recorded loss of accuracy over time.
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observed landmarks remains largely unchanged, as seen in Chapters 4 and 5, where

the gaze patterns were qualitatively distinct enough.

In Chapter 7, the skill of the sonographer was being classified using both gaze

and pupil data. Given that the lighting conditions of the room remain reasonably

constant, and the participants were adults (and not young children who might look

away from the screen more often), the baseline pupil size is unlikely to change

significantly. Since entire lengths of time-series were used for building the skill

model, there were instances of eye-tracking data which were not able to be used due

to tracking errors or missing data, or interpolation gaps which were too large to

be considered viable. That coupled with the differences in available data for some

years, whilst the conclusion of Chapter 7 is most likely to remain unchanged (i.e.

style and skill are hard to disentangle), I discuss potential remedies in Section 8.3.

8.2.2 Trimester Differences

The work presented here also used only second trimester data. The purposes of the

first and third trimester have different aims and different sized fetus (smaller in

the first, larger in the third). For example, in the first trimester, the sonographer

measures the nuchal translucency and crown rump length, usually with a side view

of the fetus [151]. In the second trimester, the fetus anatomical planes are 2D cross-

sections of the different anatomies (e.g. abdomen, brain and heart). Sonographer

gaze behaviour in Chapters 4 to 7 would return different insights unique to the

goals of the first and third trimester.

8.2.3 Implementation

Visualisation of data and how best to use these insights in clinical practice is difficult.

This thesis has focused on using data analysis of sonographer gaze behaviour to

reveal similarities and differences depending on the type of anatomical plane searched

for and years of experience. Translating these results into clinical practice would

require careful design of graphical user interfaces to ensure that the eye-tracker

benefits the scanning experience.
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8.3 Future Avenues

In this thesis, I have presented the analysis of spatio-temporal gaze characteristics

of different tasks based on segments of the sonographer’s searching behaviour, i.e.,

unfrozen frames. These segments are calculated from just before freezing (for

example, 100 frames before freezing in Chapter 6) which is only possible having

access to the full ultrasound video. There is still room to explore real-time gaze

behaviour based on the identified gaze characteristics in Chapters 4 and 6. Real-time

analysis of whether their gaze behaviour follows a certain pattern, or more likely

that they have not, could provide sonographers-in-training real-time feedback so

that they can adjust the probe accordingly to get the view that they are looking for.

This would involve a multi-modal analysis, where the ultrasound image also has

to be analysed using appropriate deep learning classification models to determine

which landmarks are present on the screen.

There is also room to explore the concept of skill assessment, using the definitions

described in Chapter 7, where an expert is compared to a trainee. The work

presented in Chapter 7 provides a stepping stone to consider comparison of expert

and non-expert sonographers, without using a time-based definition of skill. Gaze

can also be combined with other sources of data, for example the quality of the

image [150]. Then, the sonographer’s skill would be a function of both gaze and

image quality. Recording the probe’s movement using IMU sensors proved to be

more challenging because of the thickness of the cable (of the probe) where the

sensor was mounted on. In this instances, optical flow of the ultrasound image

[152] could be used instead as a proxy of the probe’s movement.

A brief note on future eye-tracking experiments that can be carried out to miti-

gate some of the known hardware limitations of eye-trackers [143]. For anatomical

planes where important landmarks fall within the error bounds of the accuracy

and precision values, analysis of any gaze characteristics should also include an

error bound. Where skill is being assessed, if possible, a comprehensive study of

data which is not used (due to missingness) and how that can affect the results

should be carried out (for example using an ablation study).
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8.4 Conclusion

This thesis has presented several applications combining visualisation, supervised

and unsupervised learning to sonographer eye-tracking data. I have presented 4

research contributions structured in 3 chapters, on the topics of data visualisation,

task and skill classification. These methods have contributed to the goals of the

PULSE project – a deeper understanding of how sonographers perform second

trimester fetal ultrasound scans.



Appendix

Rules used to filter the read sonographer text via
the OCR algorithm

Algorithm 2 Pseudocode showing several rule-based filters which were used to
label the heart views after being processed by pytesseract.

label ←string picked up by OCR
number_of_labels ←number of unique strings picked up by OCR in a frozen
segment
if SL in label then

label ←Situs
end if
if (H in label) or (CH in label) then

label ←4CH
end if
if (VT in label) then

label ←3VT
end if
if (WT in label) or (LVOT in label) then

label ←LVOT
end if
if WW in label and number_of_labels == 1 then

label ←None . Erroneous 3VV detected.
end if
if (WW and SL in label) or (WW and SITUS in label) then

label ←Situs
end if

133
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Chapter 6 Task Classification Model Training Pa-
rameters

Hidden Markov Model

Figure 8.1: Elbow method used to determine optimal number of states to use for training
the Hidden Markov Models. Here the figure shows that the optimal number of clusters is
5. The scoring metric used here was distortion in the YellowBrick package [80], which
is the sum of the squared distances between the gaze point and its assigned cluster center.

Abdomen 0.22±0.07 0.10±0.02 0.32±0.16 0.19±0.11 0.17±0.07
Brain 0.34±0.09 0.19±0.04 0.28±0.12 0.19±0.07 0.0±0.0
Heart 0.22±0.17 0.32±0.03 0.12±0.08 0.22±0.12 0.12±0.09

Table 8.1: Emission probabilities of being in states 1-5 for the abdomen, brain and heart
model. The mean probability and its standard deviation across 3 folds is reported in this
table.

State 1 State 2 State 3 State 4 State 5
State 1 0.93±0.0 0.02±0.0 0.03±0.02 0.02±0.01 0.01±0.01
State 2 0.03±0.0 0.92±0.01 0.01±0.0 0.02±0.02 0.02±0.01
State 3 0.02±0.01 0.00±0.0 0.93±0.01 0.03±0.01 0.02±0.01
State 4 0.02±0.01 0.01±0.01 0.04±0.01 0.91±0.01 0.02±0.0
State 5 0.02±0.02 0.02±0.0 0.04±0.01 0.02±0.0 0.89±0.02

Table 8.2: Transition probabilities between states 1-5 for the abdomen HMM model.
The mean probability and its standard deviation across 3 folds is reported in this table.
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State 1 State 2 State 3 State 4 State 5
State 1 0.90±0.06 0.04±0.01 0.03±0.02 0.03±0.03 0.0±0.0
State 2 0.04±0.01 0.90±0.01 0.03±0.02 0.02±0.0 0.0±0.0
State 3 0.03±0.02 0.03±0.01 0.91±0.06 0.04±0.03 0.0±0.0
State 4 0.03±0.02 0.02±0.01 0.03±0.02 0.92±0.05 0.01±0.0
State 5 0.02±0.02 0.0±0.0 0.06±0.05 0.08±0.04 0.85±0.07

Table 8.3: Transition probabilities between states 1-5 for the brain HMM model. The
mean probability and its standard deviation across 3 folds is reported in this table.

State 1 State 2 State 3 State 4 State 5
State 1 0.94±0.01 0.02±0.01 0.01±0.0 0.03±0.02 0.01±0.01
State 2 0.02±0.01 0.94±0.01 0.01±0.01 0.01±0.01 0.01±0.0
State 3 0.04±0.04 0.04±0.02 0.86±0.09 0.02±0.01 0.05±0.0
State 4 0.03±0.03 0.02±0.03 0.01±0.01 0.94±0.03 0.01±0.0
State 5 0.03±0.01 0.04±0.02 0.0±0.0 0.02±0.04 0.91±0.03

Table 8.4: Transition probabilities between states 1-5 for the heart HMM model. The
mean probability and its standard deviation across 3 folds is reported in this table.

k-Nearest Neighbors Time-Series Classifier

Figure 8.2: Elbow method used to determine optimal number of neighbours to train the
k-nearest neighbour time-series classifier. Here the figure shows that the optimal number
of clusters (k) is 2. The scoring metric used here was the accuracy of the tuned dataset
using the tslearn package [122].

Chapter 7 Skill Classification

List of tsfresh features in EfficientFeatures
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Feature name Description of features Settings
abs_energy Returns the absolute energy

of the time-series which is
the sum over the squared
values

absolute_maximum Calculates the highest abso-
lute value of the time-series
x.

absolute_sum_of_changes Returns the sum over the
absolute value of consecutive
changes in the series x

agg_autocorrelation Descriptive statistics on the
autocorrelation of the time-
series.

{f_agg: [“mean", “median",
“var"], maxlag: 40}

agg_linear_trend Calculates a linear least-
squares regression for val-
ues of the time-series that
were aggregated over chunks
versus the sequence from 0
up to the number of chunks
minus one.

{“attr": [“rvalue”, “inter-
cept”, “slope”, “stderr”],
chunk_len: [5, 10, 50],
“f_agg": [“max”, “min”,
“var”, “mean”] }

ar_coefficient This feature calculator
fits the unconditional
maximum likelihood of
an auto-regressive AR(k)
process.

{“coeff”: (0, 10), k: 10}

augmented_dickey_fuller Does the time-series have a
unit root?

“attr”: [“teststat”, “pvalue”,
“usedlag”]

autocorrelation Calculates the autocorrela-
tion of the specified lag

“lag”: (0, 9)

benford_correlation Useful for anomaly detection
applications

binned_entropy First bins the values of x into
max_bins equidistant bins.

“max_bins”: 10

c_3 Uses c3 statistics to measure
non linearity in the time-
series

“lag”: (1, 3)

Continued on next page
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Table 8.5 – continued from previous page
Feature name Description of features Settings

change_quantiles First fixes a corridor given
by the quantiles ql and qh of
the distribution of x.

“f_agg”: [“mean”, “var”],
“isabs”: [false, true], “qh”:
[0.2, 0.4, 0.6, 0.8, 1.0], “ql”:
[0, 0.2, 0.4, 0.6, 0.8, 1.0]

“cid_ce” This function calculator is
an estimate for a time-series
complexity (A more complex
time-series has more peaks,
valleys etc.).

“normalise”: [true, false]

count_above Returns the percentage of
values in x that are higher
than t.

t: 0

count_above_mean Returns the number of val-
ues in x that are higher than
the mean of x.

null

count_below Returns the percentage of
values in x that are lower
than t.

t: 0

count_below_mean Returns the number of val-
ues in x that are lower than
the mean of x.

null

cwt_coefficients Calculates a Continuous
wavelet transform for
the Ricker wavelet, also
known as the “Mexican hat
wavelet”.

“coeff”: (0, 14), “w”: [2, 5,
10, 20], “widths”: [2, 5, 10,
20]

energy_ratio_by_chunks Calculates the sum of
squares of chunk i out of N
chunks expressed as a ratio
with the sum of squares over
the whole series.

num_segments: [10], seg-
ment_focus: (0, 9)

fft_aggregated Returns the spectral cen-
troid (mean), variance, skew,
and kurtosis of the absolute
fourier transform spectrum.

“aggtype”: [“centroid”,
“variance”, “skew”,
“kurtosis”]

Continued on next page
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Table 8.5 – continued from previous page
Feature name Description of features Settings

fft_coefficient Calculates the fourier
coefficients of the one-
dimensional discrete Fourier
Transform for real input by
fast.

“attr”: [“real”, “imag”,
“abs”, “angle”], “coeff”: (0,
99)

first_location_of_maxi-
mum

Returns the first location of
the maximum value of x.

null

first_location_of_mini-
mum

Returns the first location of
the minimum value of x.

null

fourier_entropy Calculate the binned en-
tropy of the power spectral
density of the time-series (us-
ing the welch method).

“bins”: [2, 3, 5, 10, 100]

friedrich_coefficients Coefficients of polynomial
h(x), which has been fitted
to.

“coeff”: (0, 3), “m”: 3, “r”:
30

has_duplicate Checks if any value in x oc-
curs more than once.

null

has_duplicate_max Checks if the maximum
value of x is observed more
than once.

null

has_duplicate_min Checks if the minimal value
of x is observed more than
once.

null

index_mass_quantile Calculates the relative index
i of time-series x where q%
of the mass of x lies left of i.

“q”: (0.1, 0.9)

kurtosis Returns the kurtosis of x
(calculated with the ad-
justed Fisher-Pearson stan-
dardized moment coefficient
G2).

null

large_standard_deviation Does time-series have large
standard deviation?

“r”: (0.05, 0.95)

last_location_of_maxi-
mum

Returns the relative last lo-
cation of the maximum value
of x.

Continued on next page
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Table 8.5 – continued from previous page
Feature name Description of features Settings

last_location_of_minimum Returns the last location of
the minimal value of x.

lempel_ziv_complexity Calculate a complexity esti-
mate based on the Lempel-
Ziv compression algorithm.

“bins”: [2, 3, 5, 10, 100]

length Returns the length of x. null
linear_trend “attr”: [“pvalue”, “rvalue”,

“intercept”, “slope”,
“stderr”]

linear_trend_timewise Calculate a linear least-
squares regression for the
values of the time-series ver-
sus the sequence from 0 to
length of the time-series mi-
nus one.

“attr”: [“pvalue”, “rvalue”,
“intercept”, “slope”,
“stderr”]

longest_strike_above_mean Returns the length of the
longest consecutive subse-
quence in x that is bigger
than the mean of x.

null

longest_strike_be-
low_mean

Returns the length of the
longest consecutive subse-
quence in x that is smaller
than the mean of x.

null

matrix_profile Calculates the 1-D Matrix
Profile and returns Tukeys
Five Number Set plus the
mean of that Matrix Profile.

“feature”: [“mean”, “me-
dian”, “min”, “max”, 25, 75],
“threshold”: 0.98

max_langevin_fixed_point Largest fixed point of
dynamics :math:argmax_x
{h(x)=0} estimated from
polynomial h(x).

“m”: 3, “r”: 30

maximum Calculates the highest value
of the time-series x.

null

mean Returns the mean of x. null
median Returns the median of x.
minimum Returns the minimum of x.
standard_deviation Returns the standard devia-

tion of x.
Continued on next page
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Table 8.5 – continued from previous page
Feature name Description of features Settings

mean_abs_change Average over first differ-
ences.

mean_change Average over time-series dif-
ferences.

mean_n_absolute_max Calculates the arithmetic
mean of the n absolute max-
imum values of the time-
series.

“number_of_maxima”: 7

mean_second_deriva-
tive_central

Returns the mean value of a
central approximation of the
second derivative.

null

number_crossing_m Calculates the number of
crossings of x on m.

“m”: [-1, 0, 1]

number_cwt_peaks Number of different peaks in
x.

“n”: [1, 5]

number_peaks Calculates the number of
peaks of at least support n
in the time-series x.

“n”: [1, 3, 5, 10, 50]

partial_autocorrelation Calculates the value of the
partial autocorrelation func-
tion at the given lag.

“lag”: (0, 9)

percentage_of_re-
occurring_data-
points_to_all_datapoints

Returns the percentage of
non-unique data points.

null

percentage_of_reoccur-
ring_values_to_all_values

Returns the percentage of
values that are present in the
time-series more than once.

null

permutation_entropy Calculate the permutation
entropy.

“dimension”: (3, 7), “tau”:
1

quantile Calculates the q quantile of
x.

“q”: (0.1, 0.9)

Continued on next page
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Table 8.5 – continued from previous page
Feature name Description of features Settings

query_similarity_count This feature calculator ac-
cepts an input query sub-
sequence parameter, com-
pares the query (under z-
normalized Euclidean dis-
tance) to all subsequences
within the time-series, and
returns a count of the num-
ber of times the query
was found in the time-
series (within some pre-
defined maximum distance
threshold).

“query”: null, “threshold”:
0

range_count Count observed values
within the interval [min,
max).

“max”: 1, “min”: -1

range_count Count observed values
within the interval [min,
max).

“max”: 0, “min”: -
1000000000000

range_count Count observed values
within the interval [min,
max).

“max”: 1000000000000,
“min”: 0

ratio_beyond_r_sigma Ratio of values that are more
than r * std(x) (so r times
sigma) away from the mean
of x.

“r”: [0.5, 1, 1.5, 2, 2.5, 3, 5,
6, 7, 10]

ratio_value_num-
ber_to_time_series_length

Returns a factor which is 1 if
all values in the time-series
occur only once, and below
one if this is not the case.

null

root_mean_square Returns the root mean
square (rms) of the time-
series.

null

skewness Returns the sample skew-
ness of x (calculated with
the adjusted Fisher-Pearson
standardized moment coeffi-
cient G1).

null

Continued on next page
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Table 8.5 – continued from previous page
Feature name Description of features Settings

spkt_welch_density This feature calculator esti-
mates the cross power spec-
tral density of the time-
series x at different frequen-
cies.

“coeff”: [2, 5, 8]

sum_of_reoccur-
ring_data_points

Returns the sum of all data
points, that are present in
the time-series more than
once.

null

sum_of_reoccurring_val-
ues

Returns the sum of all val-
ues, that are present in the
time-series more than once.

null

sum_values Calculates the sum over the
time-series values.

symmetry_looking Boolean variable denoting if
the distribution of x looks
symmetric.

“r”: (0, 0.95, 0.05)

time_reversal_asymme-
try_statistic

Returns the time reversal
asymmetry statistic.

“lag”: [1, 2, 3]

value_count Count occurrences of value
in time-series x.

“value”: (-1, 1)

variance Returns the variance of x. null
variance_larger_than_stan-
dard_deviation

Is variance higher than the
standard deviation?

null

variation_coefficient Returns the variation coeffi-
cient (standard error / mean,
give relative value of varia-
tion around mean) of x.

null

Table 8.5: List of features in EfficientParameters from the Python package tsfresh.
Their feature name, description and settings are as presented [83].

LightGBM: Feature Importance

Name Feature Importance
change_quantiles_f_agg_"mean"_is-
abs_False_qh_0.6_ql_0.4

15
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permutation_entropy_dimension_4_tau_1 15
change_quantiles_f_agg_"mean"_is-
abs_False_qh_0.4_ql_0.2

14

permutation_entropy_dimension_3_tau_1 13
fft_coefficient_attr_"real"_coeff_75 12
fft_coefficient_attr_"imag"_coeff_81 10
benford_correlation 10
agg_linear_trend_attr_"inter-
cept"_chunk_len_50_f_agg_"max"

9

change_quantiles_f_agg_"mean"_is-
abs_True_qh_0.6_ql_0.2

8

permutation_entropy_dimension_5_tau_1 8
change_quantiles_f_agg_"mean"_is-
abs_True_qh_0.8_ql_0.4

8

change_quantiles_f_agg_"mean"_is-
abs_True_qh_0.4_ql_0.2

8

mean 8
change_quantiles_f_agg_"mean"_is-
abs_False_qh_0.6_ql_0.2

8

change_quantiles_f_agg_"mean"_is-
abs_True_qh_0.6_ql_0.4

7

ar_coefficient_coeff_0_k_10 7
change_quantiles_f_agg_"var"_is-
abs_True_qh_0.8_ql_0.6

7

minimum 6
change_quantiles_f_agg_"mean"_is-
abs_False_qh_1.0_ql_0.6

6

cwt_coefficients_coeff_1_w_5_widths_(2, 5, 10, 20) 6
change_quantiles_f_agg_"var"_is-
abs_False_qh_0.8_ql_0.6

6

max_langevin_fixed_point_m_3_r_30 5
cwt_coefficients_coeff_5_w_2_widths_(2, 5, 10, 20) 5
energy_ratio_by_chunks_num_segments_10_seg-
ment_focus_8

5

change_quantiles_f_agg_"var"_is-
abs_True_qh_0.6_ql_0.4

5

permutation_entropy_dimension_6_tau_1 5
change_quantiles_f_agg_"mean"_is-
abs_True_qh_0.8_ql_0.6

5

quantile_q_0.1 5
cwt_coefficients_coeff_2_w_2_widths_(2, 5, 10, 20) 4
change_quantiles_f_agg_"var"_is-
abs_False_qh_0.8_ql_0.4

4

change_quantiles_f_agg_"var"_is-
abs_False_qh_0.6_ql_0.4

4
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agg_linear_trend_attr_"inter-
cept"_chunk_len_50_f_agg_"min"

4

cwt_coefficients_coeff_4_w_20_widths_(2, 5, 10, 20) 4
change_quantiles_f_agg_"var"_is-
abs_False_qh_0.4_ql_0.2

4

quantile_q_0.8 4
cwt_coefficients_coeff_2_w_10_widths_(2, 5, 10, 20) 3
longest_strike_below_mean 3
mean_n_absolute_max_number_of_maxima_7 3
change_quantiles_f_agg_"mean"_is-
abs_False_qh_0.8_ql_0.4

3

fft_coefficient_attr_"abs"_coeff_1 3
change_quantiles_f_agg_"mean"_is-
abs_False_qh_0.8_ql_0.2

3

agg_linear_trend_attr_"inter-
cept"_chunk_len_50_f_agg_"mean"

3

cwt_coefficients_coeff_3_w_2_widths_(2, 5, 10, 20) 3
cwt_coefficients_coeff_1_w_2_widths_(2, 5, 10, 20) 3
cwt_coefficients_coeff_14_w_10_widths_(2, 5, 10, 20) 3
quantile_q_0.4 2
permutation_entropy_dimension_7_tau_1 2
cwt_coefficients_coeff_14_w_20_widths_(2, 5, 10, 20) 2
quantile_q_0.7 2
median 2
cwt_coefficients_coeff_12_w_10_widths_(2, 5, 10, 20) 2
quantile_q_0.2 2
autocorrelation_lag_3 2
cwt_coefficients_coeff_5_w_5_widths_(2, 5, 10, 20) 2
agg_linear_trend_attr_"inter-
cept"_chunk_len_5_f_agg_"mean"

2

agg_autocorrelation_f_agg_"median"_maxlag_40 2
cwt_coefficients_coeff_10_w_20_widths_(2, 5, 10, 20) 2
agg_linear_trend_attr_"inter-
cept"_chunk_len_10_f_agg_"mean"

2

quantile_q_0.9 2
number_peaks_n_10 2
agg_linear_trend_attr_"stderr"_chunk_len_5_f_agg_"var" 2
cwt_coefficients_coeff_9_w_20_widths_(2, 5, 10, 20) 1
quantile_q_0.6 1
absolute_maximum 1
change_quantiles_f_agg_"mean"_is-
abs_False_qh_0.8_ql_0.6

1

agg_linear_trend_attr_"inter-
cept"_chunk_len_5_f_agg_"min"

1

number_peaks_n_3 1
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agg_linear_trend_attr_"inter-
cept"_chunk_len_5_f_agg_"max"

1

cwt_coefficients_coeff_13_w_5_widths_(2, 5, 10, 20) 1
number_cwt_peaks_n_1 1
number_peaks_n_5 1
cwt_coefficients_coeff_7_w_5_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_5_w_20_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_12_w_5_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_8_w_20_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_5_w_10_widths_(2, 5, 10, 20) 1
agg_linear_trend_attr_"inter-
cept"_chunk_len_10_f_agg_"max"

1

cwt_coefficients_coeff_11_w_5_widths_(2, 5, 10, 20) 1
agg_autocorrelation_f_agg_"mean"_maxlag_40 1
cwt_coefficients_coeff_7_w_20_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_8_w_10_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_12_w_20_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_11_w_10_widths_(2, 5, 10, 20) 1
agg_autocorrelation_f_agg_"var"_maxlag_40 1
cwt_coefficients_coeff_3_w_10_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_6_w_20_widths_(2, 5, 10, 20) 1
autocorrelation_lag_9 1
autocorrelation_lag_7 1
cwt_coefficients_coeff_13_w_10_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_4_w_10_widths_(2, 5, 10, 20) 1

Table 8.6: Gaze x co-ordinate non-zero features, where feature importance is calculated
as numbers of times the feature is used in the model.

Name Feature Importance
permutation_entropy_dimension_3_tau_1 25
friedrich_coefficients_coeff_1_m_3_r_30 13
kurtosis 12
spkt_welch_density_coeff_5 12
range_count_max_1_min_-1 11
large_standard_deviation_r_0.2 11
spkt_welch_density_coeff_8 11
energy_ratio_by_chunks_num_segments_10_seg-
ment_focus_0

10

fft_coefficient_attr_"angle"_coeff_33 10
change_quantiles_f_agg_"mean"_is-
abs_True_qh_0.4_ql_0.0

10

agg_autocorrelation_f_agg_"mean"_maxlag_40 10
permutation_entropy_dimension_4_tau_1 10
agg_linear_trend_attr_"inter-
cept"_chunk_len_50_f_agg_"var"

9
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large_standard_deviation_r_0.1 8
agg_autocorrelation_f_agg_"median"_maxlag_40 8
index_mass_quantile_q_0.1 7
permutation_entropy_dimension_7_tau_1 7
permutation_entropy_dimension_5_tau_1 6
index_mass_quantile_q_0.2 6
ratio_beyond_r_sigma_r_0.5 6
augmented_dickey_fuller_attr_"pvalue"_auto-
lag_"AIC"

6

ratio_beyond_r_sigma_r_10 5
variation_coefficient 5
large_standard_deviation_r_0.15000000000000002 5
fourier_entropy_bins_100 5
ratio_beyond_r_sigma_r_6 5
ar_coefficient_coeff_0_k_10 4
cwt_coefficients_coeff_14_w_5_widths_(2, 5, 10, 20) 4
ratio_beyond_r_sigma_r_5 4
autocorrelation_lag_2 4
permutation_entropy_dimension_6_tau_1 4
quantile_q_0.1 4
partial_autocorrelation_lag_1 3
friedrich_coefficients_coeff_2_m_3_r_30 3
friedrich_coefficients_coeff_3_m_3_r_30 3
has_duplicate_max 3
change_quantiles_f_agg_"var"_is-
abs_True_qh_0.2_ql_0.0

3

autocorrelation_lag_9 3
max_langevin_fixed_point_m_3_r_30 3
fft_coefficient_attr_"abs"_coeff_16 3
cwt_coefficients_coeff_1_w_2_widths_(2, 5, 10, 20) 3
lempel_ziv_complexity_bins_100 2
cid_ce_normalize_True 2
change_quantiles_f_agg_"mean"_is-
abs_True_qh_0.2_ql_0.0

2

augmented_dickey_fuller_attr_"teststat"_auto-
lag_"AIC"

2

cwt_coefficients_coeff_2_w_2_widths_(2, 5, 10, 20) 2
agg_linear_trend_attr_"inter-
cept"_chunk_len_50_f_agg_"min"

1

quantile_q_0.2 1
lempel_ziv_complexity_bins_2 1
change_quantiles_f_agg_"var"_is-
abs_False_qh_0.2_ql_0.0

1

cwt_coefficients_coeff_14_w_10_widths_(2, 5, 10, 20) 1
maximum 1
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mean_n_absolute_max_number_of_maxima_7 1
autocorrelation_lag_4 1
lempel_ziv_complexity_bins_5 1
autocorrelation_lag_5 1
lempel_ziv_complexity_bins_10 1
autocorrelation_lag_8 1
binned_entropy_max_bins_10 1
ratio_beyond_r_sigma_r_7 1
change_quantiles_f_agg_"var"_is-
abs_False_qh_0.4_ql_0.0

1

Table 8.7: TEPR non-zero features, where feature importance is calculated as numbers
of times the feature is used in the model.

Name Feature Importance
change_quantiles_f_agg_"mean"_is-
abs_False_qh_0.8_ql_0.4

18

permutation_entropy_dimension_3_tau_1 13
has_duplicate_max 13
agg_linear_trend_attr_"stderr"_chunk_len_50_f_agg_"var" 12
variation_coefficient 9
friedrich_coefficients_coeff_3_m_3_r_30 9
augmented_dickey_fuller_attr_"usedlag"_auto-
lag_"AIC"

8

partial_autocorrelation_lag_4 7
friedrich_coefficients_coeff_0_m_3_r_30 7
permutation_entropy_dimension_4_tau_1 7
cwt_coefficients_coeff_14_w_20_widths_(2, 5, 10, 20) 6
ar_coefficient_coeff_4_k_10 6
abs_energy 5
change_quantiles_f_agg_"mean"_is-
abs_False_qh_0.8_ql_0.6

5

linear_trend_attr_"pvalue" 5
cwt_coefficients_coeff_1_w_5_widths_(2, 5, 10, 20) 5
quantile_q_0.1 5
agg_linear_trend_attr_"stderr"_chunk_len_5_f_agg_"var" 5
agg_linear_trend_attr_"inter-
cept"_chunk_len_50_f_agg_"mean"

3

agg_linear_trend_attr_"stderr"_chunk_len_10_f_agg_"var" 3
cwt_coefficients_coeff_8_w_5_widths_(2, 5, 10, 20) 3
agg_linear_trend_attr_"inter-
cept"_chunk_len_10_f_agg_"min"

3

agg_linear_trend_attr_"inter-
cept"_chunk_len_50_f_agg_"min"

3

cwt_coefficients_coeff_2_w_2_widths_(2, 5, 10, 20) 3
number_peaks_n_10 3
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benford_correlation 2
cwt_coefficients_coeff_7_w_5_widths_(2, 5, 10, 20) 2
partial_autocorrelation_lag_3 2
cwt_coefficients_coeff_4_w_5_widths_(2, 5, 10, 20) 2
agg_linear_trend_attr_"stderr"_chunk_len_50_f_agg_"min" 2
friedrich_coefficients_coeff_2_m_3_r_30 2
agg_linear_trend_attr_"stderr"_chunk_len_50_f_agg_"mean" 2
agg_linear_trend_attr_"inter-
cept"_chunk_len_5_f_agg_"min"

2

cwt_coefficients_coeff_3_w_5_widths_(2, 5, 10, 20) 2
cwt_coefficients_coeff_2_w_5_widths_(2, 5, 10, 20) 2
cwt_coefficients_coeff_4_w_2_widths_(2, 5, 10, 20) 2
friedrich_coefficients_coeff_1_m_3_r_30 1
quantile_q_0.2 1
cwt_coefficients_coeff_5_w_5_widths_(2, 5, 10, 20) 1
cwt_coefficients_coeff_1_w_2_widths_(2, 5, 10, 20) 1
agg_linear_trend_attr_"stderr"_chunk_len_10_f_agg_"max" 1
agg_linear_trend_attr_"inter-
cept"_chunk_len_5_f_agg_"max"

1

linear_trend_attr_"intercept" 1
agg_linear_trend_attr_"inter-
cept"_chunk_len_10_f_agg_"max"

1

Table 8.8: Gaze y co-ordinate non-zero features, where feature importance is calculated
as numbers of times the feature is used in the model.
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