

Citation for published version: Frey, A, Bosak, D, Stonham, J, Sangan, C & Pountney, O 2024, 'Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management', *Journal of Engineering for Gas Turbines and Power*. https://doi.org/10.1115/1.4066047

DOI: 10.1115/1.4066047

Publication date: 2024

Document Version Peer reviewed version

Link to publication

Publisher Rights CC BY **ASME © 2024**

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from http://nondestructive.asmedigitalcollection.asme.org/gasturbinespower/article-pdf/doi/10.1115/1.4066047/7355572/gtp-24-1261.pdf by University Of Bath user on 24 July 2022

Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management

5	Adam C. Frey, first author
6	University of Bath
7	University of Bath, Department of Mechanical Engineering, Bath, BA2 7AY, United
8	Kingdom
~	

- 9 af718@bath.ac.uk
- 10

11 David Bosak, second autho	David Bosak, se	econd autho
------------------------------	-----------------	-------------

- 12 GKN Aerospace
- 13 GKN Aerospace, Global Technology Centre, Filton, BS34 6FB, United Kingdom
- 14 david.bosak@gknaerospace.com
- 15

16 Joseph Stonham, third author

- 17 GKN Aerospace
- 18 GKN Aerospace, Global Technology Centre, Filton, BS34 6FB, United Kingdom
- 19 joseph.stonham@gknaerospace.com
- 20
- 21 Carl M. Sangan, fourth author
- 22 University of Bath
- 23 University of Bath, Department of Mechanical Engineering, Bath, BA2 7AY, United
- 24 Kingdom
- 25 C.M.Sangan@bath.ac.uk
- 26
- 27 Oliver J. Pountney, fifth author¹
- 28 University of Bath
- 29 University of Bath, Department of Mechanical Engineering, Bath, BA2 7AY, United
- 30 Kingdom
- 31 O.J.Pountney@bath.ac.uk
- 32
- 33 34
- 35
- 36
- 37

38

¹ Oliver J. Pountney is the corresponding author.

Journal of Engineering for Gas Turbines and Power. Received July 03, 2024; Accepted manuscript posted July 22, 2024. doi:10.1115/1.4066047 Copyright (c) 2024 Journal of Engineering for Gas Turbines and Power

40 ABSTRACT

41

42	Electric propulsors powered by Proton Exchange Membrane Fuel Cells (PEMFCs) offer a net zero solution to
43	aircraft propulsion. Heat generated by the PEMFCs can be transferred to atmospheric air via a liquid
44	cooling system; however, the cooling system results in parasitic power and adds mass to the propulsion
45	system, thereby affecting system specific power. The design of the cooling system is sensitive to the choice
46	of liquid coolant and so informed coolant selection is required if associated parasitic power and mass are
47	to be minimized.
48	Two approaches to selection of coolants for PEMFC-powered aircraft are presented in this paper
49	for operating temperatures in the range 80-200°C (this covers low, intermediate, and high temperature
50	PEMFCs). The first approach uses a Figure of Merit (FoM) alongside minimum and maximum operating
51	temperature requirements. The FoM supports the selection of coolants that minimize pumping power and
52	mass while maximizing heat transfer rate. The second approach uses a cooling system model to select
53	"Pareto efficient" coolants. A hybrid-electric aircraft using a PEMFC stack is used as a representative case
54	study for the two approaches.
55	Hydrocarbon-based coolants are shown to be favorable for the case study considered here
56	(aromatics for PEMFCs operating at <130°C and aliphatics for PEMFCs operating at >130°C). As the PEMFC
57	operating temperature increases, the parasitic power and mass of the Thermal Management System
58	(TMS) decreases. Operating at elevated temperatures is therefore beneficial for liquid cooled PEMFC-
59	powered aircraft. Nevertheless, there are diminishing performance gains at higher operating
60	temperatures.
61 62 63	1. INTRODUCTION

64 The International Air Transport Association (IATA) and International Civil Aviation
65 Organization (ICAO) have proposed targets for achieving net zero carbon dioxide
66 emissions in aviation by 2050 [1,2]. These targets are driving research and development

67	of low emission aircraft propulsion technologies. The following are the three leading
68	solutions for net zero aircraft propulsion: (1) hydrogen fuel cells, (2) hydrogen
69	combustion, and (3) Sustainable Aviation Fuel (SAF) combustion [3]. The concept of a
70	hydrogen-powered aircraft is not a recent development. In 1937, Heinkel bench-tested
71	the first jet engine (HeS 1), which operated with hydrogen owing to their accelerated
72	development program [4]. The first flight of a hydrogen combustion powered-aircraft
73	took place in 1956, conducted by the US Air Force using a modified B-57 twin-engine
74	bomber [5]. Since the 1950s, kerosene has been the preferred aviation fuel due to its
75	availability, cost, low freezing point, and its suitable combustion properties [6,7].
76	However, kerosene cannot meet net zero emission targets; alternative propulsion
77	systems which achieve net zero carbon dioxide emissions must be developed. One of
78	the leading candidates is a hydrogen fuel cell, electricity is generated through an
79	electrochemical reaction between hydrogen and oxygen. This electricity is then utilized
80	to produce thrust on the aircraft via an electric-powered propulsor. Hydrogen fuel cells
81	achieve superior efficiency, cost reductions, and a lack of particulate and nitrogen oxide
82	emissions compared to both hydrogen and SAF combustion [8,9].
83	Initially designed for space power plants, fuel cell technology was later adapted
84	for and further refined within the automotive industry. Proton Exchange Membrane
85	Fuel Cells (PEMFCs) are the most common fuel cell and display favorable traits for
86	aerospace applications. For example, PEMFCs operating at 80°C are commercially
87	mature, they operate with a high efficiency, and have surpassed 5000 hours of
88	continuous and transient operation (which betters early jet engine technology) [10-13].

Pountney

89 PEMFCs are categorized as Low Temperature (LT), Intermediate Temperature (IT), and 90 High Temperature (HT). Typical temperature ranges are: LT 80-100°C, IT 100-120°C, and 91 HT 120-250°C [14-16]. Note that these temperature ranges vary somewhat in the wider 92 literature. In this study, the maximum operating temperature is set at 200°C due to the 93 low Technology Readiness Level (TRL) of PEMFCs exceeding 200°C. Figure 1 outlines the 94 key components in a PEMFC and the electrochemical reaction, the byproduct being heat 95 and water.

96

- 97 98
- 99 Figure 1: Schematic of a Proton Exchange Membrane Fuel Cell (PEMFC) and the
- 100 101

electrochemical reaction.

102 While hydrogen fuel cells show promise, the Thermal Management System 103 (TMS) poses a critical challenge due to the associated parasitic power and mass. The 104 TMS challenge with fuel cell propulsion systems is highlighted by the system specific 105 power [11]. Achieving a system specific power that approaches and exceeds 2 kW/kg is

106 crucial for the market success of regional aircraft (80-165 passengers, <2000 km range,

107	and 0.44-0.72 Mach) [17]. Regional aircraft present market opportunities for fuel cell
108	propulsion systems because they contribute to at least 30% of aviation's carbon dioxide
109	emissions [17]. Estimates place fuel cell propulsion system specific power at ~ 1 kW/kg
110	[11]. To enhance the system specific power and consequently approach the 2 kW/kg
111	target, there are two primary objectives: first, increase the power output without
112	compromising system efficiency, and second reduce the mass of the system. These
113	objectives are strongly dependent on the TMS.
114	Figure 2 illustrates the transfer of the heat generated by a PEMFC stack to the
115	terminal sink (atmospheric air) via a liquid cooling system installed within the aircraft
116	structure. Note that phase-change cooling is beyond the scope of this paper (the
117	interested reader is directed to [18] for associated information). The key components of
118	the liquid cooling system are the radiator, pump, piping and coolant. For a regional
119	aircraft, the cooling system must transfer megawatts of heat to the surrounding air. It
120	must do this while minimizing associated parasitic power and mass to ensure that the
121	specific power level of the propulsion system is adequate. The design of the cooling
122	system (and thereby its parasitic power and mass) is sensitive to the choice of coolant,
123	and so it is important to understand the implications of coolant properties on the
124	cooling system so that an informed selection can be made.
125	

Figure 2: Notional liquid cooled proton exchange membrane fuel cell propulsion
 system with a ducted radiator installed under the wing.

131	This paper develops an approach for informed coolant selection and makes
132	recommendations for PEMFCs which require pure hydrogen and operate at
133	temperatures in the range 80-200°C. A review of literature pertinent to coolant
134	selection in the context of PEMFCs is provided in Section 2. A new Figure of Merit (FoM)
135	is outlined in Section 3 and used to screen coolants for high specific heat transfer rate
136	and low pumping power. Section 4 outlines a cooling system model that enables a more
137	refined coolant selection method than the FoM; the model is subsequently used to carry
138	out a sensitivity study on relevant boundary conditions. Liquid coolants are selected via
139	model-informed Pareto fronts for different PEMFC operating temperatures in Section 5.
140	Selection "use cases" for favorable coolants are also included in Section 5 and compared
141	against those obtained from the FoM. Finally, Section 6 addresses the main conclusions.
142	Note that coolant selection is less critical in jet engines as heat energy is dissipated

143 directly to air; nevertheless, the approach presented in this paper could be readily

144 applied to jet engine subsystems.

145

146 2. LITERATURE REVIEW

147

148	From an operational standpoint, the ideal coolant should possess
149	thermophysical properties that ensure favorable performance across the entire
150	operating temperature range, while also adhering to safety requirements. The adequacy
151	of thermophysical properties is mainly dependent on the density, dynamic viscosity,
152	thermal conductivity, and specific heat capacity. There are various coolant compositions
153	that have been proposed in the broader literature [19]. Most suppliers of coolants offer
154	hydrocarbons, silicones, pure glycols, and aqueous solutions [20,21]. For this reason,
155	these are included in Figure 3. Aqueous coolants encompass any coolant containing
156	water, while hydrocarbons can be further classified based on chemical structure (details
157	not discussed here) into aliphatic and aromatic types. A coolant is classified as "other
158	HC" (HC – hydrocarbon) if the exact composition is unknown. Recently, much of the
159	literature on coolants has focused on the development of nanofluids [22]. These are not
160	assessed in this paper (and therefore not presented in the ontological plot in Figure 3)
161	due to limited commercial availability and practical challenges [23], such as degradation
162	of nanofluid coolant properties through particle agglomeration [24].

Coolant genus Hydrocarbon Silicone Pure glycol Aqueous <u>[]</u> Aliphatic Aromatic Other HC 164 88 165 166 Figure 3: Coolant ontology. Note – Aliphatic and Aromatic Hydrocarbons may 167 comprise blends, and 'Other HC' categorizes Hydrocarbons of unknown composition. 168 169 The critical requirements of a coolant for a liquid cooled PEMFC operating in an 170 aircraft are detailed in Table 1. These are critical requirements because a coolant must 171 not freeze, boil, auto-ignite, or short circuit across the operating temperature range. 172 The thresholds in Table 1 are: 173 1. Min. temperature: The minimum temperature is taken as the freezing point of Jet 174 A-1 [25]. This is a pragmatic threshold as conventional aircraft safely operate with 175 Jet A-1 in subzero conditions. The reader is referred to Barron's work on aircraft 176 lubrication oil in subzero conditions for further context [26]. 2. Max. temperature: The maximum temperature is defined by the PEMFC operating 177 178 temperature (80-200°C) plus a margin of 10°C. A 10°C margin is typically used for 179 jet fuel autoignition prevention; the same margin is adopted here but for the 180 boiling point [27]. For example, to select a suitable coolant for a PEMFC stack that 181 operates at 80°C, the boiling point must exceed 90°C. Some of the coolants considered in this study have flash points below the PEMFC operating 182 183 temperature. For context, Jet A-1 has a minimum flash point of 38°C at ~1 bar but 184 is deemed safe for operation above this temperature because of ignition

Pountney

185	prevention measures [25,28]. For this reason, the boiling point (rather than flash				
186	point) is also employed as the threshold for flammable coolants here.				
187	3. <u>Electrical conductivity:</u> The coolant flows through channels, typically pressed into				
188	bipolar plates. An electrically conductive coolant will cause current leakage and				
189	short circuiting between the electrodes on these bipolar plates. It is therefore a				
190	critical requirement to keep the conductivity below 5 μ S/cm [29].				
191					
192	Table 1: Critical system level requirements for liquid coolants inside a fuel cell				
193	powered aircraft.				
194					
	Property Threshold Unit				
	Min. temperature ≤-47 °C				
	Max. temperature ≥[80:200]+10 °C				
	Electrical conductivity <5 µS/cm				
195					
196	The effect of coolants on the TMS is the purpose of this paper. Hence, noncritical				
197	operational requirements such as chemical compatibility, maintenance requirements,				
198	environmental impact, and regulation are not addressed here. It is recommended that				
199	such considerations are evaluated prior to the widespread adoption of a particular				
200	coolant.				
201					

202 **3. FIGURE OF MERIT**

203

204 Selecting a coolant based purely on its thermophysical properties at expected

- 205 operating temperatures is desirable in terms of expediency. To do so, a parameter
- 206 exclusively composed of thermophysical properties must be developed.

207	In 1942, Mouromtseff proposed a 'factor' which assesses the ability of a fluid to
208	transfer heat by convection; it is derived from the Dittus-Boelter Nusselt number
209	correlation for turbulent internal flow by grouping fluid properties [30]. Mouromtseff's
210	'factor' can be rederived for other practical cases by using the corresponding Nusselt
211	number correlation. However, it is unsuitable for selecting coolants with a low pumping
212	power and mass as they are not considered in its derivation. Newton's law of cooling
213	shows that convective heat transfer rate is dependent on the surface area, temperature,
214	and heat transfer coefficient. Hence, the selection of a coolant via Mouromtseff's
215	approach does not necessarily maximize the heat transfer rate, as this 'factor' only
216	considers the heat transfer coefficient.
217	In 1957, Bonilla proposed several FoMs for coolant selection in the nuclear
218	industry [31]. Bonilla's FoM captures both the heat transfer rate and pumping power,
219	<i>i.e.</i> for a given heat transfer rate it enables coolants which have low pumping powers to
220	be selected. Following Bonilla, Lenert et al. (2012) and Ehrenpreis et al. (2020) both
221	developed similar FoMs which attempt to minimize pumping power for a given heat
222	transfer rate [32,33]. In addition, Ghajar and Tang (1994) proposed several ratios to
223	assess the relative difference in performance between coolants [34]. FoMs for coolant
224	selection have also been developed in the electronic industry. Green et al. (2010)
225	compared air, liquid, and phase-change cooling performance using FoMs that did not
226	consider fluid mass [35].
227	A FoM which includes mass is critical in enabling favorable coolant selection for

228 aerospace applications. It is apparent that none of the above-mentioned FOMs capture

Downloaded from http://nondestructive.asmedigitalcollection.asme.org/gasturbinespower/article-pdf/doi/10.1115/1.4066047/7355572/gtp-24-1261.pdf by University Of Bath user on 24 July 2024

229	the effect of coolant mass and so a new FoM is developed here to assist in selecting
230	coolants for high heat transfer, low pumping power, and low mass applications.
231	Thermophysical properties and pipe flow equations are used to arrive at the FoM
232	(denotated by ϕ) given in Equation (1) – the complete derivation is provided in
233	Appendix A. The FoM maximizes the specific heat transfer rate (\dot{Q}/ ho) for a given
234	pumping power (P_p). The FoM has units of (J/K)(m/kg ^{4/3}). The index <i>b</i> does not affect
235	the units as it arises from a correlation between dimensionless numbers.
236	
230	$\phi = \frac{c_{\rho}}{\left(\mu^{b/(3-b)}\right)\left(\rho^{(1-b)/(3-b)}\right)} = \frac{c_{\rho}}{\mu^{1/14}\rho^{2/7}} $ (1)
238	
239	Blasius's correlation gives values of <i>b</i> = 1 and <i>b</i> = 0.2 for laminar and turbulent
240	flow respectively [36]. A Reynolds number in the turbulent regime is expected in
241	practice because of the high mass flow rates required for cooling. The FoM for turbulent
242	flow is given in Equation (2).
243	
244	$\phi = \frac{c_p}{1/14 \cdot 2^{1/2}} \tag{2}$
245	$\mu^{1/14}\rho^{2/7}$
246	To select a favorable coolant, $oldsymbol{\phi}$ must be maximized at the anticipated
247	bulk operating temperature. By maximizing ϕ a coolant with a high heat transfer rate
248	and low mass is selected for a given pumping power. Table 2 compares definitions of
249	FoMs from wider literature with the newly proposed FoM from Equation (2). The new
250	FoM captures heat transfer, pressure loss, and mass effects. None of the previous FoMs
251	considered mass, which (as discussed above) is critical in aerospace applications.
252	
253	Table 2: Comparison of proposed figure of merits.

Downloaded from http://nondestructive.asmedigitalcollection.asme.org/gasturbinespower/article-pdf/doi/10.1115/1.4066047/7355572/gtp-24-1261.pdf by University Of Bath user on 24 July 2024

Pountney

FoM	Maximize for		Poforonco
	High	Low	Reference
$\rho^{0.8}k^{0.6}c_{\rho}^{0.4}/(\mu^{0.4})$	\overline{h}	_	Mouromtseff [30]
$\rho^2 c_p^{2.8} / (\mu^{0.2})$	Ż	Pp	Bonilla [31]
$\rho^2 c_p^{1.6} k^{1.8} / (\mu^{1.4})$	Ż	P_p	Lenert <i>et al.</i> [32]
$ ho^{0.5} c_p^{0.5} k^{0.5} / (\mu^{0.25})$	Ż	P_p	Ehrenpreis <i>et al.</i> [33]
$c_{\rho}/(\mu^{1/14}\rho^{2/7})$	Ċ/ρ	Pp	Current study

255

A database of 43 coolants was constructed from the following references [20,21,37-40]. These coolants are classified as hydrocarbon (aromatic, aliphatic, and other HC), pure glycol, silicone, and aqueous. Figure 4 shows FoM regions for these

263 Aromatics, and Other HCs. *Refer to Table 1.

265	coolant categories across their operating temperature at 1 bar; at higher pressure their
266	boiling points increase. The minimum and maximum temperature lines align with those
267	outlined in Table 1. Note that for clarity, the main plot in Figure 4(a) does not distinguish
268	between hydrocarbon types (the hydrocarbon region is broken down into subregions in
269	Figure 4(b)). As is the case for Ashby charts, Figure 4 is intended for broad comparisons
270	required in preliminary design. The temperature spans the freezing point to boiling
271	point for aqueous coolants, and the pour point to boiling point for other coolants. The
272	freezing and pour points are lower limits, and the boiling point is the upper limit. The
273	upper and lower limits form a region's boundary. The addition of more coolants
274	increases confidence in the boundaries of each region – the number of coolants in each
275	genus is denoted by n.
276	It is apparent from Figure 4 that aqueous coolants operating at 80-100°C
277	outperform other coolant categories. Although the temperature range of water is
278	extended by adding glycol, the FoM deteriorates as indicated by the difference between
279	the curves for Water (W) and 60-40% Ethylene Glycol and Water (EG-W). Operating
280	below -47°C is challenging with aqueous coolants. IT and HT-PEMFCs require use of
281	hydrocarbons and silicones to avoid boiling if the coolant pressure is not increased
282	above atmospheric pressure.
283	The average FoM and operating temperatures for coolant categories are
284	compared statistically in Figures 5(a) and 5(b) respectively – note that pure glycol is not
285	included as the n = 2 sample does not provide robust statistical outputs. $\overline{\phi}$ is the

286	integrated average bounded by the lower and upper temperature limits for each
287	coolant; the average FoMs are grouped for each genus to produce the statistics.
288	Similarly, the temperature statistics are generated from the lower and upper
289	temperature limits.
290	Aqueous coolants achieve the highest median average FoM of $\overline{\phi}$ = 691
291	(J/K)(m/kg ^{4/3}). Aqueous coolants also have the largest interquartile range of $\overline{\phi}$. The large
292	range is attributed to the large quantity of different aqueous coolant compositions.
293	However, aqueous coolants have the smallest operating temperature range, which
294	limits their suitability for IT and HT-PEMFCs. In addition, aliphatic coolants achieve a
295	higher median $\overline{oldsymbol{\phi}}$ than other HCs, aromatics, and silicones which makes them more
296	favorable in general. This performance difference is one of the reasons for the
297	widespread adoption of polyalphaolefin (PAO) coolants (an aliphatic) in aircraft cooling
298	installations [37].

301 302 303 304	Figure 5: (a) Integrated average Figure of Merit for coolant categories and (b) their operating temperature range. *Refer to Table 1.
305 306 307	4. SYSTEM MODEL
308	The FoM cannot capture system-level objectives, which limits its application to
309	initial screening for suitable coolants. A system model is required for a higher fidelity
310	selection. The process of choosing a suitable coolant differs between the FoM and the
311	system model, with the distinctions outlined as follows:
312	1. The FoM maximizes the ratio of specific heat transfer rate (\dot{Q}/ ho) to the pumping
313	power (P_p) for a given system – it is a metric based on the thermophysical
314	properties of a coolant. Variables that define the condition of the system (mass
315	flow rate, etc.) are constants in its derivation.
316	2. In the system model, the thermophysical properties are varied by changing the
317	coolant. For a given heat transfer rate, the parasitic power and system mass are
318	computed. Coolants are selected if they are "Pareto efficient" solutions.
319	These approaches achieve the same objective, they select coolants which
320	maximize the heat transfer rate, and minimize the parasitic power and mass. The system
321	model, principal assumptions, boundary conditions, and the sensitivity to relevant
322	boundary conditions are addressed in the following sections.
323 324 325	4.1 Summary of the Model
326	The system model comprises a radiator, stack, piping, and pump, as illustrated in
327	Figure 6(a). These are fundamental TMS components for liquid cooling and so ensure

Pountney

- 328 that the coolant selection procedure provides general recommendations. For a detailed
- 329 review of different architectures and TMS components the interested reader is referred
- to [41]. The flow of data within the model and the key functions that it uses are outlined
- in Figure 6(b), with associated details provided below:
- Indicative boundary conditions for a PEMFC-powered aircraft were set these
- are discussed in §4.4.
- 334

336 337 338 339 340	Figure 6: (a) A schematic of the system model including the radiator, stack, piping, coolant and pump. (b) A flowchart of the system model which includes the iterative radiator sizing algorithm.
341	A database was constructed from coolant suppliers. Coolant property data were
342	curve fitted via regression. The coefficients of the fits were preloaded into the
343	model to increase computation speed. Second order polynomials were employed
344	for the density, thermal conductivity, and specific heat capacity. A two-term
345	exponential was used for the dynamic viscosity. The R-squared is >0.95 for every
346	coolant and fit. To define the operational temperature range of a coolant, the
347	freezing, pour, and boiling points were taken from coolant suppliers. Air property
348	data was linearly interpolated from Roger and Mayhew [42].
349	• The radiator sizing model was derived from London and Kays [43]. Although the
350	heat exchanger characteristics affect the absolute 'size' of the radiator, they are
351	unimportant in assessing the relative performance of the coolants. A crossflow
352	heat exchanger composed of tubes with plate fins (11.32-0.737-SR) was used here
353	[43]. To determine the radiator size, target pressure losses were assigned to both
354	the air and coolant sides. An iterative algorithm was then utilized to achieve the set
355	pressure loss targets. This process involved three stages:
356	<u>Stage 1.</u> Initialization of the algorithm by assuming the mass flow rate flux was
357	infinitesimal on both the air and coolant sides.
358	Stage 2. Calculation of the friction factor for pressure loss, and the Colburn j-factor
359	and the Nusselt number for heat transfer using empirical correlations

Pountney

360	suitable for both the air and coolant sides. On the airside, the friction
361	factor and j-factor data from London and Kays for the 11.32-0.737-SR
362	surface was used. On the coolant side, Churchill's Nusselt correlation was
363	adopted to estimate the heat transfer coefficient in a smooth tube for
364	11.32-0.737-SR [44]. The friction factor for a circular tube was estimated
365	from Haaland's explicit formula [36].
366	Stage 3. Estimation of the pressure loss on each side and recalculation of the new
367	mass flow rate fluxes until the specified target pressure losses were
368	reached. Note, entry and exit loss coefficients were derived from London
369	and Kays. Linear interpolation was used to estimate these coefficients.
370 •	A friction factor pipe flow correlation was used to estimate the pressure losses in
371	the stack and piping from Haaland's explicit formula [36] using the calculated
372	coolant mass flow rate from above. The pump mass was then estimated from an
373	empirical correlation derived from [45]. A positive displacement coolant pump was
374	assumed because they are used in fuel systems for aircraft. The correlation
375	presented in Equation (3) includes an electric motor to drive the pump (units of kW
376	and kg). The correlation for the electric motor mass was adopted from [46,47].
377 378	$m_{p} = \underbrace{3.40P_{p}^{0.437}}_{\text{pump}} + \underbrace{0.889P_{p}^{0.900}}_{\text{motor}} $ (3)
379 380 •	The system pumping power, drag, and mass were calculated. The drag was
381	estimated from the airside pressure loss across the core [43]. The drag estimate did

Pountney

not account for the ramjet thrust generated by heat addition on the airside, a

383	phenomenon frequently referred to as the Meredith effect [48]. Drela showed the
384	ramjet thrust is proportional to the freestream Mach number and heat load; both
385	are consistent for different coolants [49]. Different coolants were ranked against
386	each other: coolants which performed favorably were selected and their properties
387	were checked to identify whether they met the critical minimum and maximum
388	temperature requirements. Pareto fronts were generated to assess the trade-off
389	between different objectives, <i>e.g.</i> parasitic power and mass for a given heat load.
390 391 392	4.1 Principal Assumptions
393	The analysis was simplified by making the specific assumptions discussed below,
394	most of which applied to the radiator sizing model.
395	Losses were evaluated in the heat exchanger core. The effect of installation drag
396	was not assessed for simplicity. The dimensions of the core, and hence the packaging of
397	the radiator, are affected by the choice of coolant. A greater core drag corresponds to a
398	larger frontal area owing to the target pressure losses remaining constant between
399	coolants. Any coolant which results in a heat exchanger with an increased core drag and
400	consequently a larger frontal area would in practice also exhibit higher installation drag.
401	Hence, the ranking of coolants would be unchanged if installation drag was accounted
402	for. The minor losses, manifolding, entry, and exit losses are not accounted for in the
403	stack and piping [50].
404	

Figure 7: A schematic of radiator geometry (11.32-0.737-SR) with the respective

correlations. *[43], **[36], and *[44].

405 406

407 408

408

410	Figure 7 shows a schematic of the 11.32-0.737-SR heat exchanger geometry
411	adopted from London and Kays [43]. To simplify the analysis, circular tube correlations
412	were used as an approximation for the flat tubes, and the internal flow was assumed to
413	be fully developed. The friction factor and Colburn j-factor data from London and Kays
414	were curve fitted with two-term exponentials. A two-term exponential was chosen for
415	its ability to yield a lower Root Mean Squared Error (RMSE) in comparison to more
416	conventional power laws. London and Kays quote the uncertainty as a nominal $\pm 5\%$ for
417	this data. The fitted curves for 11.32-0.737-SR had a R-squared >0.95. London and Kays
418	included three rows in the test article used to produce the correlations for 11.32-0.737-
419	SR. The number of rows affects the prediction of heat transfer and pressure loss, with
420	Zukauskas suggesting that 16 rows are required before the average heat transfer
421	coefficient settles [51]. Hence, the model's prediction of a heat exchanger with more
422	than the three rows used to generate the correlations introduces uncertainty. It should

423	be noted that the model allows a non-integer number of tube rows as an output. This
424	enables minor variations in radiator mass to be captured during coolant ranking, <i>i.e.</i> it
425	increases the sensitivity of the analysis. This approach allows a TMS designer to select
426	an appropriate coolant for their application and then proceed to refine the design of the
427	radiator (the 11.32-0.737-SR geometry used here was chosen as baseline – there are
428	many geometries that could be chosen from, and scaling up to the nearest integer of
429	rows for the analysis could lead to sub-optimal coolant selection).
430 431 432	4.3 Boundary Conditions for Coolant Selection
433	The boundary conditions used in this study are summarized in Table 3, with
434	associated sensitivities addressed in §4.4. The values are indicative of those for an
435	aircraft operating with a liquid cooled PEMFC powertrain capable of delivering a
436	maximum electrical power of 1 MW. It was assumed that a single stack produced \dot{W}_1 =
437	100kW [52]; the powertrain thereby comprised ten stacks to generate the required
438	power. For assumed cell efficiencies of 50%, the total rate of heat generated by the
439	powertrain at maximum power was \dot{Q} = 1 MW [53]. The stack geometry was derived
440	from data given by PowerCell, Bargal et al., and Yoshida et al. [52,54,55]. Each stack
441	comprised 240 cells of pitch p = 2.5 mm, providing a stack length of L_s = 0.6 m. Cooling
442	channels inside stacks typically have hydraulic diameters of around a millimeter and
443	undergo multiple passes [56] – here $b_s = 1 \text{ mm}$ and $N = 20 \text{ were used as representative}$
444	values.

445 Conventional aircraft commonly employ aluminum pipework and radiators [57-446 59]. As such, material properties for aluminum ($\rho_m = 2800 \text{ kg/m}^3$ and $k_m = 187 \text{ W/mK}$)

Pountney

447	were used [36,51]. Ions leaching from aluminum into the coolant pose challenges in fuel
448	cells, which would in practice necessitate the use of deionizers to prevent short-
449	circuiting [60] – the effect of deionizers on thermal performance was not considered
450	here. Representative dimensions for the inlet duct (intake area $A_{in} = 0.5 \text{ m}^2$) and piping
451	(hydraulic diameter D_h = 100 mm, wall thickness t = 10mm, surface roughness ϵ = 0.046
452	mm and length $L_p = 5$ m) were informed by preliminary design studies.
453	The radiator was sized for take-off (altitude h = 0 ft), representing the most demanding
454	performance requirement. At this point, the air-to-coolant temperature difference and
455	Mach number (M $_{\infty}$ = 0.2) are at their minimum, while the heat load is at its 1 MW
456	maximum. This ensures that the selected coolant is suitable for the entire mission
457	profile. To evaluate the worst-case scenario, the International Standard Atmosphere
458	(ISA) was employed, with the ambient temperature increased by δT = 25°C to represent
459	a hot day [61]. The diffuser adiabatic efficiency was taken as η_d = 0.9 – this is typical of
460	well-designed diffusers [62]. The coolant inlet temperature $(T_{I_{in}})$ was obtained from the
461	stack operating temperature. This temperature depends on the fuel cell MEA, as
462	discussed in §1. A range of 80-200°C is employed here because the TRL of stacks
463	operating >200°C is low. Minimizing the non-uniformity of the MEA surface temperature
464	is crucial to prevent elevated degradation rates [54,63]. The temperature difference on
465	the coolant-side is taken as $\Delta T_l = 20^{\circ}$ C to limit this temperature gradient. The coolant-
466	side is assigned a target pressure loss of $\Delta \hat{p}_{j}$ = 0.5 bar across the radiator. While this
467	target is contingent on the design of the system, Topuz et al. demonstrated similar
468	pressure losses for a liquid-cooled radiator loop [64]. An allowable pressure loss

469	coefficient is implemented	on the airside.	This parameter	[•] defines the targe	t pressure
-----	----------------------------	-----------------	----------------	--------------------------------	------------

- 470 loss on the airside as a fraction of the available dynamic pressure; a value of greater
- 471 than one corresponds to an airside pressure loss greater than the dynamic pressure. A
- 472 baseline value of ξ = 0.5 is adopted to ensure that the total pressure aft of the radiator is
- 473 maintained above ambient.
- 474
- 475 476

Table 3: System model boundary conditions for coolant selection.

-			
-	Parameter	Magnitude	Unit
-	Ŵ1	100	kW
	ġ	1	MW
	р	2.5	mm
	L _s	0.6	m
	bs	1	mm
	N	20	-
	$ ho_m$	2800	kg/m³
	k _m	187	W/mK
	A _{in}	0.5	m²
	D_h	100	mm
	t	10	mm
	ε	0.046	mm
	L_p	5	m
	h	0	ft
	ΔT_{I}	20	°C
	M∞	0.2	-
	δΤ	25	°C
	η_d	0.9	-
	$T_{I_{in}}$	80:200	°C
	∆p̂,	0.5	bar
-	ξ	0.5	-

477

478

479 **4.4 Sensitivity to Boundary Conditions**

480

481 The following sensitivity analysis shows that the coolant inlet temperature is the

482 boundary condition that provides the largest contribution to total mass (M_t – piping,

483	coolant, and dry radiator core mass) and total power (P_t – pumping power and core
484	drag). Sensitivity was captured from a full factorial Design of Experiments (DoE) with
485	two levels ('low' and 'high') applied to the boundary conditions presented in Table 4
486	(see references [65,66] for a discussion of the associated DoE methodology). All other
487	boundary conditions remained at the nominal values provided in Table 3. The boundary
488	conditions in Table 4 were considered at two-levels as they are the most uncertain
489	based on preliminary designs and trade studies. By showing that the coolant inlet
490	temperature is the most important boundary condition, the number of degrees of
491	freedom is reduced in subsequent analysis and coolant selection is generalized.
492	
402	Table 4. Full factorial Design of Experiments with two levels to determine the consitivity

493 **Table 4:** Full factorial Design of Experiments with two levels to determine the sensitivity
 494 of total mass and total power to uncertain boundary conditions.

495

Parameter	Low	High	Unit
A _{in}	0.4	0.6	m²
T _{lin}	80	200	°C
ΔT_{l}	20	30	°C
$\Delta \hat{p}_{I}$	0.5	0.8	bar
ξ	0.5	0.8	_

496

The percentage contributions of each main effect and their interactions on the response variables M_t and P_t are shown in Figure 8 for aliphatic coolant YF-22 PAO (interacting variables are denoted with a colon). The percentage contributions were estimated from the sum of the squares; it provides a measure of the contribution of the main effects and interactions relative to the total sum of squares. Hence, a larger contribution signifies a model term (main effect or interaction) which has a greater relative importance on the response variable.

GTP-24-1261

504	Figure 8(a) shows the percentage contribution of the model terms on the total
505	mass. The coolant inlet temperature (highlighted in Table 4) is the most significant
506	model term, accounting for ~50% of the contribution to mass. Figure 8(b) shows the
507	percent contribution on the pumping and core drag power. The coolant inlet
508	temperature accounts for ~70% of contribution to total power. The coolant inlet
509	temperature had the largest contribution of any of the boundary conditions considered
510	in the DoE. Changing the boundary conditions for a fixed coolant inlet temperature will
511	lead to a similar coolant being selected because the other boundary conditions have a
512	minor influence on the mass and power. This enhances the general applicability of the
513	results, allowing the selection of favorable coolants by adjusting the inlet coolant
514	temperature only. The understanding that other boundary conditions exert only a minor
515	influence on the selection process adds robustness to the coolant selection approach.
516	Figure 8 was generated for YF-22 PAO (aliphatic) because it has a high boiling
517	point (>200°C), which allowed contributions to total mass and power to be considered
518	over the full range of $T_{l_{in}}$. Although the contributions do vary for different coolants, the
519	coolant inlet temperature remains the most important. To avoid boiling when
520	comparing the contributions of different coolants, 120°C was used as the high value of
521	the coolant inlet temperature instead of 200°C. Each coolant genus was sampled once
522	with this high value, the minimum contribution to both total mass and power attributed
523	to the coolant inlet temperature was \sim 30% (a silicone coolant) and the average was
524	~70%.

25

Downloaded from http://nondestructive.asmedigitalcollection.asme.org/gasturbinespower/article-pdf/doi/10.1115/1.4066047/7355572/gtp-24-1261.pdf by University Of Bath user on 24 July 2024

Figure 8: Percent contribution of the model terms on (a) total mass and (b) total power.
 derived from a full factorial Design of Experiment for an Aliphatic coolant. Up to 95% of
 the percent contribution is included.

- 531
- 532

533 5. SELECTION OF A LIQUID COOLANT

534

535 The maximum and minimum operating temperatures and electrical conductivity requirements for coolants operating on PEMFC-powered aircraft were provided in Table 536 537 1. Maximum temperature was applied as a constraint in the selection process used to 538 produce the results shown in Figures 9 and 10. The minimum temperature constraint is 539 specific to aircraft requirements and often operational mitigations can be made. As 540 such, minimum temperature constraints are addressed subsequently in §5.3. 541 Mitigations include the use of electrical heaters, and the design of a freeze tolerant system. Electrical conductivity is also discussed in §5.3. Inhibitors can be introduced to 542 543 the coolant to reduce the conductivity, and deionizers can be integrated into the 544 system.

545	Figure 9(a) shows normalized total power (\tilde{P}_t – pumping power and core drag)
546	versus the normalized total mass (\widetilde{M}_t) at 80°C, and Figure 9(b) shows normalized
547	pumping power ($ ilde{P}_p$) versus the normalized total mass at 80°C. The data is normalized by
548	deionized water at 80°C. Figure 9(a) aids in the selection of favorable coolants for
549	aircraft radiators where freestream velocities are high and drag is important; Figure 9(b)
550	is relevant when the freestream velocity is relatively low and core drag is not important
551	(<i>e.g.</i> automotive and marine applications) – these "use cases" are addressed in Table 5.
552	To select a favorable coolant, the powers and mass must be minimized. The most
553	favorable coolant for both Figures 9(a) and 9(b) is deionized water. This coolant is
554	Pareto efficient because it achieves a dominance rank of one. Aqueous coolants perform
555	better than other coolants at 80°C. There are two aromatic outliers, and one other
556	hydrocarbon outlier; these show better performance than most hydrocarbon coolants.
557	This indicates that the composition of hydrocarbon coolants can be tailored to achieve
558	similar performance to aqueous coolants at 80°C if required. Pure glycols show worse
559	performance to aqueous coolants, yet they perform better than most hydrocarbon and
560	silicone coolants.
561	

Figure 9: Pareto fronts at 80°C for (a) and (b), and 200°C for (c) and (d). Total power
versus total mass: (a) and (c). Pumping power versus total mass: (b) and (d). Normalized
by deionized water at 80°C. Excludes low temperature threshold.

Figure 9(c) shows \tilde{P}_t versus \tilde{M}_t at 200°C, and Figure 9(d) shows \tilde{P}_p versus \tilde{M}_t at 200°C. In both figures aqueous coolants are not plotted because they boil below 200°C, which makes them unsuitable for selection. Figure 9(c) shows that aliphatic coolants are Pareto efficient. In Figure 9(d), both aliphatic coolants and a pure glycol form a Pareto

572	front (this is formed when more than one coolant is Pareto efficient). The low $ ilde{P}_{ ho}$ and
573	low \widetilde{M}_t solutions are circled on the Pareto front. In Figures 9(c) and 9(d) the range in
574	normalized total mass is 0.27 to 0.47. This is smaller than the range in Figures 9(a) and
575	9(b). Hence, the performance difference between coolant compositions is smaller at
576	200°C compared to 80°C.
577 578 579	5.1 Selection with Core Drag
580	The full factorial DoE in §4.4 revealed that the coolant inlet temperature (a proxy
581	for the stack temperature) was the parameter with the strongest effect on the total
582	mass and power of the TMS. The model was thereby employed to generate data using
583	coolant inlet temperatures in the range 80-200°C with all other parameters set to the
584	values provided in Table 3. The Pareto efficient coolant(s) were selected for each
585	temperature via dominance ranking.
586	Figures 10(a) and 10(b) show $ ilde{P}_t$ versus $ ilde{M}_t$ for the Pareto efficient coolants. Data
587	points were generated at 10°C coolant inlet temperature intervals (these temperatures
588	are labelled on the plots). Pareto fronts are illustrated by a single line connecting
589	coolants from the low $ ilde{P}_t$ to low $ ilde{M}_t$ solutions (cf. 160°C, 170°C and 180°C in Figure
590	10(b)). Pareto efficient solutions in between the low \tilde{P}_t and low \tilde{M}_t solutions are omitted
591	to aid visual interpretation. Four significant trends are observed:
592	1. Between 80 and 110°C there is a ~50% reduction in \widetilde{M}_t and a ~30% reduction in \widetilde{P}_t .
593	This highlights the benefit of using higher-temperature PEMFCs. Note, the
594	percentage reduction in \tilde{P}_t and \tilde{M}_t reduces as the temperature increases.

595	2.	Aqueous coolants are favorable for LT-PEMFCs operating in the range 80-90°C, but
596		are not optimal for PEMFCs operating at temperatures above 90°C for two reasons:
597		• First, they have relatively low boiling points. At elevated temperatures
598		aqueous coolant loops must be pressurized to prevent boiling; this poses
599		challenges for the design of high burst pressure coolant channels and seals
600		within the stack.
601		Second, cooling systems operating with aqueous coolants need (as predicted
602		by the model) radiators with relatively large frontal areas. This increases core
603		drag and thus \tilde{P}_t .
604	3.	Aromatic coolants are suited to IT-PEMFCs (100-120°C).
605	4.	Aliphatic coolants are favorable at HT-PEMFC (120-200°C) operating temperatures.
606		

Jorable at H

Journal of Engineering for Gas Turbines and Power. Received July 03, 2024; Accepted manuscript posted July 22, 2024. doi:10.1115/1.4066047 Copyright (c) 2024 Journal of Engineering for Gas Turbines and Power

607 608

609 **Figure 10:** Pareto efficient coolants for 80–200°C. (a) Normalized total power versus

- Normalized total mass. (b) Magnification of (a). (c) Normalized pumping power versus
 Normalized total mass. The number labels correspond to the operating temperature.
- 612

613 **5.2 Selection without Core Drag**

614

```
615 Figure 10(c) shows \tilde{P}_p versus \tilde{M}_t for the Pareto efficient coolants. It is evident
```

616 from comparison of Figures 10(a) and 10(c) that core drag has a significant impact on

617 the selection of favorable coolants. The trend in Figure 10(c) aligns with the prevalent

618	use of glycol and aqueous coolants in the automotive industry where the freestream
619	velocity (core drag) is small compared to aircraft and the mass is less critical. Note, the
620	low $ ilde{P}_p$ to low $ ilde{M}_t$ solutions are circled for 110°C with the connecting line signifying the
621	Pareto front. Three significant trends are observed:
622	1. There is an overall reduction in total mass as the operating temperature increases
623	from 80-200°C. The temperature difference driving the heat transfer between the
624	coolant and ambient air increases as the operating temperature increases – this
625	reduces the required heat transfer surface area in the radiator for a given heat
626	load, i.e. a smaller (and thus lower mass) radiator can be used in the TMS. It is
627	important to note that the trend is not monotonic. For instance, the total mass
628	increases from 100-110°C for aqueous coolants, and from 160-170°C for pure
629	glycol. This is due to changes in coolant composition to satisfy the boiling margin. If
630	the PEMFC operating temperature exceeds the boiling point of a coolant, then that
631	coolant can no longer be considered for selection – this means that a coolant that
632	was deemed sub-optimal at a lower operating temperature may become pareto
633	efficient at a higher operating temperature.
634	2. Aqueous coolants begin to boil beyond 130°C. The low \tilde{P}_p Pareto efficient solutions
635	switch from aqueous coolants to pure glycols accordingly.
636	3. The Pareto fronts result in a trade-off between \tilde{P}_p and \tilde{M}_t . Aromatic and aliphatic
637	coolants generally result in higher pumping powers and lower total masses
638	compared with aqueous solutions and pure glycols at a specific temperature. For
639	example, at 170°C, $ ilde{P}_{ ho}$ = 5.0 and $ ilde{M}_t$ = 0.29 for the Pareto efficient aliphatic, and $ ilde{P}_{ ho}$ =

Pountney

640	3.1 and \widetilde{M}_t = 0.57 for the Pareto efficient pure glycol – as such the aliphatic would
641	be selected for a low mass use case and the glycol would be selected for a low
642	pumping power use case.
643 644 645 646	5.3 Selection with Core Drag – with the Minimum Temperature and Electrical Conductivity Thresholds
647	The minimum temperature constraint from Table 1 was applied to the results in
648	Figures 10(a) and 10(b) to generate Figures 11(a) and 11(b). It is apparent that aqueous
649	and pure glycol solutions are no longer viable – this suggests that hydrocarbon-based
650	coolants are the most suitable for aircraft at a coolant pressure of 1 bar (pressurizing
651	the coolant loop can raise the boiling point of aqueous solutions, but this approach is
652	not considered in this study). Aromatics show favorable performance between 80-
653	130°C while aliphatics outperform them between 130-200°C. Improvements in
654	performance are shown to diminish at elevated temperature and so coolant selection
655	is more important for aircraft powered by LT and IT-PEMFCs than those powered by
656	HT-PEMFCs. Further improvements in system-level performance must come from
657	other developments in the TMS beyond coolant selection and elevated temperatures.
658	Mohapatra and Loiskits report that the electrical conductivity of aromatics and
659	aliphatics is negligible due to their dielectric properties [19]. In contrast, aqueous
660	solutions necessitate the use of inhibitors and deionizers to control electrical
661	conductivity. Hence, the aromatics and aliphatics outlined in Figure 11 also satisfy the
662	electrical conductivity threshold (<i>cf</i> . Table 1).
663	

Figure 11: Pareto efficient coolants for 80–200°C. (a) Normalized total power versus
 Normalized total mass. (b) Magnification of (a). The number labels correspond to the
 operating temperature.

670

669

- 671 5.4 Use Cases for Coolant Selection672
- Table 5 outlines several practical cases pertinent to coolant selection for liquid
- 674 cooled PEMFC applications the requirements from Table 1 are applied. Case I is the
- 675 most relevant to aircraft; Cases II and III are relevant to applications where minimizing
- 676 radiator core drag is not an essential TMS requirement. Applying the methodology
- 677 developed in this paper to different use cases demonstrates its versatility.
- 678

Table 5: Liquid coolant use cases.

Case	Delineation
	Aerospace: typified by low mass and low parasitic
5	power.
	Parata afficient coolants that minimize $\tilde{\Omega}$ and \tilde{M}
	$Pareto entrent coolants that minimize P_t and M_t.$
	Automotive: where low mass is prioritized over
II	low pumping power.

		Low \widetilde{M}_t solutions on the Pareto front that minimize \widetilde{P}_p and \widetilde{M}_t .
		Marine: where low pumping power is prioritized over low mass.
	I	Low \tilde{P}_p solutions on the Pareto fronts that minimize \tilde{P}_p and \tilde{M}_t .
680		
681	In §3 the F	oM (ϕ) was introduced for expedient screening of coolants. The
682	screening techniq	ue involves selecting a coolant by maximizing ϕ at a given operating
683	temperature. Figu	re 12 plots the maximized ϕ against temperature (the max(ϕ) curve).
684	Equation (1) was	used to calculate ϕ for the Pareto efficient coolants for the cases
685	described in Table	25 – these are plotted on Figure 12 for comparative purposes. Cases I
686	and II show agree	ment with the max(ϕ) for >110°C and Case III shows agreement with
687	the max(ϕ) for <1	50°C. Regions where there is a lack of agreement between the max(ϕ)
688	curve and the cur	ves for Cases I to III result from the difference in approach to
689	generating the da	ta used to plot the curves – data for the three use cases are obtained
690	from the model, v	which captures system-level objectives, whereas data for the max(ϕ)
691	curve is obtained	from coolant properties alone (see discussion in §4). While the $\max(\phi)$
692	curve is useful for	screening purposes in preliminary TMS design, the model is
693	recommended for	higher fidelity selection because it uses the Pareto efficient solutions
694	for the relevant ca	ase. For example, at 80°C the Pareto efficient coolant for Case I
695	achieves a 53% de	ecrease in \widetilde{M}_t and a 22% decrease in \widetilde{P}_t compared to the coolant
696	predicted by max	(ϕ) – selecting a coolant with max(ϕ) alone would result in sub-optimal
697	performance.	

Pountney

Downloaded from http://nondestructive.asmedigitalcollection.asme.org/gasturbinespower/article-pdf/doi/10.1115/1.4066047/7355572/gtp-24-1261.pdf by University Of Bath user on 24 July 2024

- Figure 12: Cases for selecting suitable coolants. The requirements from Table 1 are
 applied.
- 710

707

- 711
- 712 **6. CONCLUSION**
- 713

```
714 Two approaches to selection of liquid coolants for Proton Exchange Membrane
```

- 715 Fuel Cell (PEMFC) powered aircraft were considered for PEMFCs with operational
- 716 temperatures in the range 80-200°C. The first approach maximized a Figure of Merit
- 717 (FoM); the second approach relied on output of Pareto efficient solutions from a

Downloaded from http://nondestructive.asmedigitalcollection.asme.org/gasturbinespower/article-pdf/doi/10.1115/1.4066047/7355572/gtp-24-1261.pdf by University Of Bath user on 2 July 2024

718	physically informed model of the Thermal Management System (TMS). The results from
719	both approaches showed that coolant selection is highly sensitive to the PEMFC stack
720	temperature. The outputs from the model indicated that there is a trade-off between
721	mass and parasitic power of the TMS, and that TMS performance improves at elevated
722	temperatures. The FoM provides a useful method for expediently screening coolants,
723	but the <i>model</i> is recommended for optimal coolant selection.
724	The outputs from the model provided two key findings pertinent to PEMFC-powered
725	aircraft:
726	1. It was shown for the case study presented here (a hybrid-electric aircraft using a
727	1MW PEMFC stack) that hydrocarbon-based coolants are favorable, with aromatics
728	optimal for coolant inlet temperatures <130°C and aliphatics optimal for coolant
729	inlet temperatures >130°C.
730	2. There are diminishing gains in performance at elevated temperatures. As such, a
731	step change in system-level performance must come from developments other
732	than coolant selection and increases in operating temperatures.
733 734	ACKNOWLEDGMENT
735	
736	The authors would like to thank GKN Aerospace for their financial support and
737	expertise, and Matthias Schröder (DLR) for providing the heat exchanger sizing data that
738	enabled a comparison between models in Appendix B.
739	The datasets generated and supporting the findings of this article are obtainable
740	from the corresponding author upon reasonable request.
741	

GTP-24-1261

Pountney

742 743	APPENDIX A: FIGURE OF MERIT DERIVATION
744	Firstly, consider the heat transfer rate given in Equation (4); fluid properties are
745	expressed as a separate grouping.
746	
747	$\dot{Q} = c_{\rho}\rho \cdot Q\Delta T \tag{4}$
748	
749	The fluid properties depend on the coolant however the flow rate and
750	temperature difference are constant. Equation (5) shows the Darcy-Weisbach equation,
751	it is used to evaluate the pumping power.
152	aV^2
753	$\Delta p/L_p = f \frac{p}{2} \frac{v}{D_h} \tag{5}$
754	
755	The friction factor for fully developed turbulent pipe flow can be expressed as a
756	function of Reynolds number; the form of Blasius's power law approximation is adopted
757	in Equation (6) [36].
758	
759	$f = C/Re^{D} $ (6)
760	
/61	Equation (7) relates the pressure loss and friction factor to the pumping power
762	by substituting (5) and (6).
763	
764	$P_{\rho} = \left(\frac{CA^{b^{-2}}L_{p}}{2D_{h}^{b+1}}\right) \cdot \rho^{1-b}\mu^{b} \cdot Q^{3-b} $ $\tag{7}$
765	
766	The flow rate in (7) is substituted with (4) to form Equation (8). To select
767	coolants with a low mass, the specific heat transfer rate is adopted; this is analogous to
768	specific strength in material selection. A high specific heat transfer rate corresponds to a
769	high heat transfer rate and low mass.

770 $P_{p} \propto \left(\frac{\dot{Q}}{\rho}\right)^{3-b} \frac{\rho^{1-b}\mu^{b}}{c_{n}^{3-b}}$ 771 (8) 772 773 By manipulating the heat transfer rate with the density of the coolant, the effect 774 of coolant mass is captured. The FoM (denotated by ϕ) is now derived by maximizing the specific heat transfer rate (\dot{Q}/ρ) for a given pumping power – refer to Equation (9). 775 776 $\phi = \frac{c_p}{\mu^{(b/_{3-b})}\rho^{(1-b/_{3-b})}} \propto \frac{\dot{Q}}{\rho} \left(\frac{1}{\rho_p}\right)^{1/_{3-b}}$ 777 (9) 778 For laminar and turbulent flow, b = 1 and b = 0.2 [36]. The ϕ for a turbulent 779 regime is given in Equation 10. As the friction factor is dimensionless the index b does 780 not affect the units of the FoM. It has units of $(J/K)(m/kg^{4/3})$. 781 782 $\phi = \frac{c_p}{u^{1/14} \rho^{2/7}}$ 783 (10)784 785 APPENDIX A: COMPARISON OF RADIATOR SIZING MODELS 786 787 788 Industry seldomly releases data pertaining to radiator mass. To aid comparison 789 in the wider literature, the dry radiator core mass predicted by this model is released 790 and it is compared to one developed independently by Schröder et al. [67]. A close 791 agreement between these models is not expected given the large uncertainty in the 792 correlations, and the differences in the construction of the models. Nevertheless, the 793 trend is consistent; the dry heat exchanger core mass diminishes monotonically as the 794 inlet coolant temperature increases.

795	Schröder et al. employed a crossflow plate-fin heat exchanger with louvered fins
796	and was validated at a single coolant inlet temperature with data from a manufacturer.
797	Louvered fins are used on the airside; the coolant side has no secondary surface and
798	tubes are employed [68,69]. The heat exchanger model proposed in this study is
799	compared to Schröder et al. at coolant inlet temperatures from 70-98°C. The boundary
800	conditions used to compare the models are given in Table 6.
801	Figure 13 illustrates the comparison between the models based on the dry
802	radiator core mass using 50-50% EG-W as the coolant. On the airside, louvered fin
803	correlations were employed from London and Kays (3/8-6.06). Note, Schröder et al.
804	implemented louvered fin correlations from Chang et al. [43,68,69]. On the coolant side,
805	heat transfer and friction factor correlations for tubes were utilized [36,44,70]. Each
806	model relies on different correlations and coolant thermophysical property data. The
807	comparison presented in Figure 13 does not amount to a validation because of these
808	differences. Both models show consistent trends, the ranking of coolants should
809	therefore be reliable between models.

- 810
- 811

 Table 6: Boundary conditions used for both the radiator sizing models.

812

Daramotor	Magnituda	Linit
Parameter	wagnitude	Unit
T _{airin}	35	°C
T _{airout}	50	°C
ΔT_{I}	10	°C
p _{airin}	1	bar
$\Delta \hat{p}_{air}$	0.05	bar
$\Delta \hat{p}_{l}$	0.1	bar
Ż	400	kW

813

815Figure 13: Comparison of the radiator sizing model with 50-50% EG-W to [67]. Dry816radiator core mass versus coolant inlet temperature.

817

818

819 **NOMENCLATURE**

	N	
A	Flow area [m ²]	
A _{in}	Duct intake area [m ²]	
b	Empirical constant	
b _s	Stack cooling channel width [m]	
С	Empirical constant	
Cp	Coolant specific heat capacity [J/kgK]	
D _h	Hydraulic diameter [m]	
E	Convergence error	
f	Friction factor	

h	Altitude [ft]	
ħ	Convective heat transfer coefficient [W/m ² K]	
j	Colburn j-factor	
k	Coolant thermal conductivity [W/mK]	
k _m	Radiator thermal conductivity [W/mK]	
L _p	Pipe length [m]	
L _s	Stack length (along the coolant axis) [m]	
m _p	Pump mass [kg]	
M∞	Freestream Mach number	
M _t	Total mass (coolant inside the radiator and pipes, dry radiator core, dry	
	pump, and dry pipe mass) [m]	
<i>M</i> _t	Normalized total mass*	
Nu	Nusselt number	
N	Number of coolant passes in a bipolar plate	
р	Fuel cell pitch (distance between bipolar plates) [m]	
P _{airin}	Air inlet pressure [Pa]	
P _p	Pumping power [W]	
P _t	Total power (pumping and core drag power) [W]	
Ρ _ρ	Normalized pumping power*	

\tilde{P}_t	Normalized pumping and core drag power*	
Pr	Prandtl Number	
Q	Volume flow rate [m ³ /s]	
Q	Heat transfer rate [W]	
Re	Reynolds number	
t	Pipe wall thickness [m]	
Т	Temperature [°C]	
T _{airin}	Air inlet temperature [°C]	
T _{airout}	Air outlet temperature [°C]	
T _{lin}	Coolant inlet temperature [°C]	
V	Bulk velocity [m/s]	
Ŵ1	Power of a single stack [W]	
X	Direction axis	
δΤ	International Standard Atmosphere (ISA) temperature deviation (+25°C	
	for hot day) [°C]	
Δp	Pressure loss [Pa]	
$\Delta \hat{p}_{air}$	Airside pressure loss target [Pa]	
$\Delta \hat{p_{j}}$	Coolant side pressure loss target [Pa]	
ΔΤ	Temperature difference [°C]	

ΔT_l	Liquid coolant temperature difference [°C]	
ε	Roughness [m]	
η _d	Adiabatic diffuser efficiency	
ξ	Allowable pressure loss coefficient	
μ	Coolant dynamic viscosity [kg/ms]	
ρ	Coolant density [kg/m ³]	
ρ _m	Pipe and radiator density [kg/m ³]	
φ	Figure of Merit (FoM) [(J/K)(m/kg ^{4/3})]	
$\overline{oldsymbol{\phi}}$	Average Figure of Merit (FoM) [(J/K)(m/kg ^{4/3})]	
	ced manus	

823 REFERENCES 824 [1] International Air Transport Association (IATA), 2021, "Net-Zero Carbon Emissions by 825 2050," International Air Transport Association (IATA), accessed Dec. 15, 2023. 826 https://www.iata.org/en/pressroom/pressroom-archive/2021-releases/2021-10-04-03/. 827 828 [2] Raillant-Clark, W., 2022, "States adopt net-zero 2050 global aspirational goal for 829 international flight operations," International Civil Aviation Organization (ICAO), 830 accessed Dec. 15, 2023. https://www.icao.int/Newsroom/Pages/States-adopts-netzero-831 2050-aspirational-goal-for-international-flight-operations.aspx. 832 833 [3] Dahal, K., Brynolf, S., Xisto, C., Hansson, J., Grahn, M., Grönstedt, T., and Lehtveer, 834 M., 2021, "Techno-economic review of alternative fuels and propulsion systems for the 835 aviation sector," Renewable and Sustainable Energy Reviews, 151, p. 111564. 836 https://doi.org/10.1016/j.rser.2021.111564. 837 838 [4] Meher-Homji, C. B., and Prisell, E., 2000, "Pioneering Turbojet Developments of Dr. 839 Hans Von Ohain-From the HeS 1 to the HeS 011," J Eng Gas Turbine Power, 122(2), pp. 840 191-201. https://doi.org/10.1115/1.483194. 841 842 [5] Contreras, A., 1997, "Hydrogen as aviation fuel: A comparison with hydrocarbon 843 fuels," Int J Hydrogen Energy, 22(10-11), pp. 1053-1060. 844 https://doi.org/10.1016/S03603199(97)00008-6. 845 846 [6] Maurice, L. Q., Lander, H., Edwards, T., and Harrison, W. E., 2001, "Advanced aviation 847 fuels: a look ahead via a historical perspective," Fuel, 80(5), pp. 747-756. 848 https://doi.org/10.1016/S0016-2361(00)00142-3. 849 850 [7] Dukek, W., Ogston, A., and Winans, D., 1969, "Milestones in aviation fuels," AIAA 851 Aircraft Design and Operations Meeting, Reston, Virginia, Jul. 1969. 852 https://doi.org/10.2514/6.1969-779. 853 854

[8] Schmelcher, M., and Häßy, J., 2022, "Hydrogen fuel cells for aviation? A potential
analysis comparing different thrust categories," *Proceedings of the ISABE*, Ottawa, Sep.
25-30, 2022, ISABE-2022-291.

857

[9] Baena Mejías, R., Saias, C. A., Roumeliotis, I., Pachidis, V., and Bacic, M., 2024,
"Assessment of hydrogen gas turbine-fuel cell powerplant for rotorcraft," *Int J Hydrogen Energy*, **50**, pp. 772-783. https://doi.org/10.1016/j.ijhydene.2023.07.076.

- 861
- 862 [10] Lü, X., Qu, Y., Wang, Y., Qin, C., and Liu, G., 2018, "A comprehensive review on
- 863 hybrid power system for PEMFC-HEV: Issues and strategies," *Energy Convers Manag*,
- 864 **171**, pp. 1273-1291. https://doi.org/10.1016/j.enconman.2018.06.065.

[11] Aerospace Technology Institute (ATI), 2022, "Fuel cells roadmap report," Technical 866 867 Report No. FZO-PPN-COM-0033. 868 869 [12] Schmidt, T. J., and Baurmeister, J., 2008, "Properties of high-temperature PEFC 870 Celtec®-P 1000 MEAs in start/stop operation mode," J Power Sources, 176(2), pp. 428-871 434. https://doi.org/10.1016/J.JPOWSOUR.2007.08.055. 872 873 [13] Whatley, K. F., 1962, "American airlines experience with turbojet/turbofan 874 engines," Proceedings of the ASME 1962 Gas Turbine Power Conference and Exhibit, 875 Houston, Texas, March 4-8, 1962. https://doi.org/10.1115/62-GTP-16. 876 877 [14] Agyekum, E. B., Ampah, J. D., Wilberforce, T., Afrane, S., and Nutakor, C., 2022, 878 "Research progress, trends, and current state of development on PEMFC-New insights 879 from a bibliometric analysis and characteristics of two decades of research output," 880 Membranes, **12**(11), p. 1103. https://doi.org/10.3390/MEMBRANES12111103. 881 882 [15] Haider, R., Wen, Y., Ma, Z., Wilkinson, D. P., Zhang, L., Yuan, X., Song, S., et al., 2021, 883 "High temperature proton exchange membrane fuel cells: progress in advanced 884 materials and key technologies," Chem Soc Rev, 50(2), pp. 1138-1187. 885 https://doi.org/10.1039/D0CS00296H. 886 887 [16] Branco, C. M., Sharma, S., Madalena de Camargo Forte, M., and Steinberger-888 Wilckens, R., 2016, "New approaches towards novel composite and multilayer 889 membranes for intermediate temperature-polymer electrolyte fuel cells and direct 890 methanol fuel cells," J Power Sources, 316, pp. 139-159. 891 https://doi.org/10.1016/J.JPOWSOUR.2016.03.052. 892 893 [17] Fuel Cells and Hydrogen 2 Joint Undertaking, 2020, "Hydrogen-powered aviation: a 894 fact-based study of hydrogen technology, economics, and climate impact by 2050," EU 895 Publications Office. https://data.europa.eu/doi/10.2843/471510. 896 897 [18] Kösters, T. L., Liu, X., Kožulović, D., Wang, S., Friedrichs, J., and Gao, X., 2022, 898 "Comparison of phase-change-heat-pump cooling and liquid cooling for PEM fuel cells 899 for MW-level aviation propulsion," Int J Hydrogen Energy, 47(68), pp. 29399-29412. 900 https://doi.org/10.1016/j.ijhydene.2022.06.235. 901 902 [19] Mohapatra, S. C., and Loikits, D., 2005, "Advances in liquid coolant technologies for 903 electronics cooling," Semiconductor Thermal Measurement and Management IEEE 904 Twenty First Annual IEEE Symposium: pp. 354-360, San Jose, California, 2005. 905 https://doi.org/10.1109/STHERM.2005.1412204. 906 907 [20] Therminol, 2023, "Fluid Selection Resources," Therminol, accessed Dec. 15, 2023. 908 https://www.therminol.com/resources/fluid-selection. 909

910 911 912	[21] Dynalene, 2023, "Heat Transfer Fluids," Dynalene, accessed Dec. 15, 2023. https://www.dynalene.com/heat-transfer-fluids/.
913 914 915 916	[22] Jadeja, K. M., Bumataria, R., and Chavda, N., 2023, "Nanofluid as a coolant in internal combustion engine - a review," <i>International Journal of Ambient Energy</i> , 44 (1), pp. 363-380. https://doi.org/10.1080/01430750.2022.2127891.
917 918 919 920 921 922	[23] Zakaria, I., Michael, Z., Mohamed, W. A. N. W., Mamat, A. M. I., Azmi, W. H., Mamat, R., and Saidur, R., 2015, "A review of nanofluid adoption in Polymer Electrolyte Membrane (PEM) fuel cells as an alternative coolant," <i>Journal of Mechanical</i> <i>Engineering and Sciences</i> , 8 , pp. 1351-1366. https://doi.org/10.15282/jmes.8.2015.10.0132.
923 924 925 926	[24] Yang, Y., Oztekin, A., Neti, S., and Mohapatra, S., 2012, "Particle agglomeration and properties of nanofluids," <i>Journal of Nanoparticle Research</i> , 14 (5), p. 852. https://doi.org/10.1007/s11051-012-0852-2.
927 928 929 930	[25] Shell, 2023, "Civil Jet Fuel", Shell, accessed Dec. 15, 2023. https://www.shell.com/business-customers/aviation/aviation-fuel/civil-jet-fuel- grades.html.
931 932 933	[26] Barron, S., 1952, "Low-Temperature Lubrication of Aircraft Engines," SAE Technical Paper 520224, https://doi.org/10.4271/520224.
934 935 936 937	[27] ESF E-33MAX Consultation, 2007, "Equivalent Safety Finding on CS 25.981: Fuel Tank Ignition Prevention – A Hot Surface Ignition Temperature," European Union Aviation Safety Agency.
938 939 940	[28] Federal Aviation Administration, 2018, "Fuel Tank Ignition Source Prevention Guidelines," Advisory Circular No. AC 25.981-1D.
941 942 943 944 945	[29] Mueller, S. A., Kim, B. R., Anderson, J. E., Kumar, M., and Huang, C., 2023, "Leaching of ions from fuel cell vehicle cooling system and their removal to maintain low conductivity," SAE Technical Paper 2003-01-0802. https://doi.org/10.4271/2003-01-0802.
946 947 948	[30] Mouromtseff, I. E., 1942, "Water and Forced-Air Cooling of Vacuum Tubes Nonelectronic Problems in Electronic Tubes," <i>Proceedings of the IRE</i> , 30 (4), pp. 190-205. https://doi.org/10.1109/JRPROC.1942.234654.
949 950 951	[31] Bonilla, C. F., 1957, "Nuclear Engineering," McGraw Hill, New York.

952 953	[32] Lenert, A., Nam Y., and Wang, E. N., 2012, "Heat Transfer fluids," <i>Annual Review of Heat Transfer</i> , 15 (15), pp. 93-129.
954 955	https://doi.org/10.1615/AnnualRevHeatTransfer.2012004122.
956 957 958 959 960 961 962	 [33] Ehrenpreis, C., El Bahi, H., Xu, H., Roux, G., Kneer, R., and Rohlfs, W., 2020, "Physically-motivated Figure of Merit (FOM) assessing the cooling performance of fluids suitable for the direct cooling of electrical components," 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm): pp. 422-429, Orlando, Florida, 2020. https://doi.org/10.1109/ITherm45881.2020.9190343.
963 964 965 966	[34] Ghajar, A., Tang, W-C., and Beam, J., 1994, "Comparison of hydraulic and thermal performance of PAO and Coolanol 25R liquid coolants," <i>6th Joint Thermophysics and Heat Transfer Conference</i> , Reston, Virginia, 1994. https://doi.org/10.2514/6.1994-1965.
967	[35] Green, C. E., Fedorov, A. G., and Joshi, Y. K., 2009, "Scaling analysis of performance
968	trade-offs in electronics cooling." Proceedings of the ASME 2009 InterPACK Conference:
969	pp. 1047-1056. San Francisco. California. Jul. 19-23. 2009.
970	https://doi.org/10.1115/InterPACK2009-89389
971	
972	[36] White F M 2021 "Eluid mechanics" 9th ed McGraw Hill New York
973	
974	[37] Baird D and Ferentinos L 1998 "Application of MIL-C-87252 in F-22 Liquid
975	Cooling System " SAF Technical Paper 981543 https://doi.org/10.4271/981543
976	cooming system, she reenned ruper sols 43. https://doi.org/10.42/1/301343.
970	[38] Dow 2023 "Lubricants Heat Transfer and Deising Eluids" Dow accessed Dec 15
078	2022 https://www.dow.com/on.us/product.tochpology/pt.lubricants.html
970	2025. https://www.dow.com/en-us/product-technology/pt-lubilcants.html.
979	[20] Padeo 2022 "Heat Transfer Eluids" Padeo accessed Dec 15, 2022
900	[59] Rauco, 2025, Heat Hallsler Fluids, Rauco, accessed Dec. 15, 2025.
981	https://www.radcoind.com/neat-transfer-huids/.
982	[40] NUCT 2022 (NUCT Character, Mich Deals // NUCT Standard Defense of Detahase
983	[40] NIST, 2023, "NIST Chemistry WebBook," NIST Standard Reference Database
984	Number 69, accessed Dec. 15, 2023. https://doi.org/10.18434/14D303.
985	
986	[41] Asli, M., König, P., Sharma, D., Pontika, E., Huete, J., Konda, K. R., Mathiazhagan, A.,
987	et al., 2024, "Thermal management challenges in hybrid-electric propulsion aircraft,"
988	Progress in Aerospace Sciences, 144 , p. 100967.
989	https://doi.org/10.1016/j.paerosci.2023.100967.
990	
991	[42] Mayhew, Y. R. and Rogers, G. F. C., 2013, "Thermodynamic and transport properties
992	of fluids: SI units," 5th ed., Wiley Blackwell, Chichester.
993	
994	[43] Kays, W. M. and London, A. L., 1984, "Compact Heat Exchangers," 3rd ed., McGraw-
995	Hill, New York.

996	
997	[44] Churchill, S. W., 1977, "Comprehensive correlating equations for heat, mass and
998	momentum transfer in fully developed flow in smooth tubes," Industrial & Engineering
999	<i>Chemistry Fundamentals</i> , 16 (1), pp. 109-116. https://doi.org/10.1021/i160061a021.
1000	
1001	[45] Eaton, 2023, "Engine Fuel Pumps," Eaton, accessed Dec. 15, 2023.
1002	https://www.eaton.com/Eaton/ProductsServices/Aerospace/Fuel/index.htm.
1003	
1004	[46] Lukaczyk, T. W., Wendroff, A. D., Colonno, M., Economon, T. D., Alonso, J. J., Orra,
1005	T. H., and Ilario, C., 2015, "SUAVE: An open-source environment for multi-fidelity
1006	conceptual vehicle design," 16th AIAA/ISSMO Multidisciplinary Analysis and
1007	Optimization Conference, Reston, Virginia, Jun. 2015. https://doi.org/10.2514/6.2015-
1008	3087.
1009	
1010	[47] Sinsay, J., Alonso, J., Kontinos, D., Melton, J., and Grabbe, S., 2012, "Air vehicle
1011	design and technology considerations for an electric VTOL metro-regional public
1012	transportation system," 12th AIAA Aviation Technology, Integration, and Operations
1013	(ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization
1014	Conference, Reston, Virginia, Sep. 2012. https://doi.org/10.2514/6.2012-5404.
1015	
1016	[48] Meredith, F. W., 1935, "Cooling of aircraft engines with special reference to
1017	ethylene glycol radiators enclosed ducts," Technical Report No. 1683.
1018	
1019	[49] Drela, M., 1995, "Aerodynamics of heat exchangers for high-altitude aircraft," 13th
1020	Applied Aerodynamics Conference, Reston, Virginia, Jun. 1995.
1021	https://doi.org/10.2514/6.1995-1866.
1022	
1023	[50] Steinke, M. E. and Kandlikar, S. G., 2006, "Single-phase liquid friction factors in
1024	microchannels," International Journal of Thermal Sciences, 45(11), pp. 1073-1083.
1025	https://doi.org/1016/j.ijthermalsci.2006.01.016.
1026	
1027	[51] Yunus, C. and Ghajar, A., 2020, "Heat and mass: fundamentals and applications,"
1028	6th ed., McGraw-Hill Education, New York.
1029	
1030	[52] PowerCell Group, 2023, "Enabling hydrogen electric airplanes," PowerCell Group,
1031	accessed Dec. 15, 2023. https://powercellgroup.com/segments/aviation/.
1032	
1033	[53] Barbir, F., 2005, "Proton Exchanger Membrane Fuel Cells: Theory and Practice,"
1034	Academic Press. https://doi.org/10.1016/B978-0-12-078142-3.X5000-9.
1035	*
1036	[54] Bargal, M. H. S., Abdelkareem, M. A. A., Tao, Q., Li, J., Shi, J., and Wang, Y., 2020,
1037	"Liquid cooling techniques in proton exchange membrane fuel cell stacks: A detailed
1038	survey," Alexandria Engineering Journal, 59 (2), pp. 635-655.
1039	https://doi.org/10.1016/j.aej.2020.02.005.

1040	
1041	[55] Yoshida, T. and Kojima, K., 2015, "Toyota MIRAI fuel cell vehicle and progress
1042	toward a future hydrogen society," The Electrochemical Society Interface, 24(2), pp. 45-
1043	49. https://doi.org/10.1149/2.F03152if.
1044	
1045	[56] Hashmi, S. M. H., "Cooling strategies for proton exchange membrane fuel cell
1046	stacks," PhD Thesis, Helmut-Schmidt-Universität, Hamburg, Germany, 2010.
1047	https://doi.org/10.24405/396.
1048	
1049	[57] Ugbeh-Johnson, J. and Carpenter, M., 2023, "The impact of sustainable aviation
1050	fuels on aircraft fuel line ice formation and pump performance," The Aeronautical
1051	Journal, 127 (1314), pp. 1287-1307. https://doi.org/10.1017/aer.2023.6.
1052	
1053	[58] Ugbeh-Johnson J., Carpenter, M., Williams, C., Pons, J-F. and McLaren, D., 2022,
1054	"Complexities associated with nucleation of water and ice from jet fuel in aircraft fuel
1055	systems: A critical review," Fuel, 310 , p. 122329.
1056	https://doi.org/10.1016/j.fuel.2021.122329.
1057	
1058	[59] Fly, A. and Thring, R. H., 2016, "A comparison of evaporative and liquid cooling
1059	methods for fuel cell vehicles," Int J Hydrogen Energy, 41 (32), pp. 14217-14229.
1060	https://doi.org/10.1016/j.ijhydene.2016.06.089.
1061	
1062	[60] Fronk, M. H., Wetter, D. L., Masten, D. A., and Bosco, A., 2000, "Proton exchange
1063	membrane fuel cell system solutions for transportation," SAE Transactions, 109, pp.
1064	212-219. https://www.jstor.org/stable/44745837.
1065	
1066	[61] Kellermann, H., Habermann, A. L. and Hornung, M., 2019, "Assessment of aircraft
1067	surface heat exchanger potential," Aerospace, 7(1), p. 1.
1068	https://doi.org/10.3390/aerospace7010001.
1069	
1070	[62] Greatrix, D. R., 2012, "Powered Flight," 1st ed, Springer, London.
1071	https://doi.org/10.1007/978-1-4471-2485-6.
1072	
1073	[63] Liu, Q., Xu, H., Lin, Z., Zhu, Z., Wang, H. and Yuan, Y., 2023, "Experimental study of
1074	the thermal and power performances of a proton exchange membrane fuel cell stack
1075	affected by the coolant temperature," Appl Therm Eng, 225, p. 120211.
1076	https://doi.org/10.1016/j.applthermaleng.2023.120211.
1077	
1078	[64] Topuz, A., Engin, T., Erdoğan, B., Mert, S., and Yeter, A., 2020, "Experimental
1079	investigation of pressure drop and cooling performance of an automobile radiator using
1080	Al2O3-water+ethylene glycol nanofluid," Heat and Mass Transfer, 56(10), pp. 2923-
1081	2937. https://doi.org/10.1007/s00231-020-02916-8.
1082	

1083 [65] Montgomery, D. C., 2013, "Design and analysis of experiments," 8th ed., John Wiley 1084 & Sons Inc. 1085

- 1086 [66] Antony, J., 2003, "Design of experiments for engineers and scientists," Butterworth-1087 Heinemann, Oxford.
- 1088
- 1089 [67] Schröder, M., Becker, F. and Gentner, C., 2024, "Optimal design of proton exchange membrane fuel cell systems for regional aircraft," Energy Convers Manag, 308, p. 1090 1091 118338. https://doi.org/10.1016/j.enconman.2024.118338.
- 1092
- 1093 [68] Chang, Y-J., Chang, W-J., Li, M-C. and Wang, C-C., 2006, "An amendment of the 1094 generalized friction correlation for louver fin geometry," Int J Heat Mass Transf, 49(21-
- 1095 22, pp. 4250-4253. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.011. 1096
- 1097 [69] Chang, Y-J. and Wang, C-C., 1997, "A generalized heat transfer correlation for
- 1098 louver fin geometry," Int J Heat Mass Transf, 40(3), pp. 533-544.
- 1099 https://doi.org/10.1016/0017-9310(96)00116-0.
- 1100
- 1101 [70] Baehr, H. D. and Stephan, K., 2013, "Heat and Mass Transfer," 1st ed., Springer,
- 1102 Heidelberg. https://doi.org/10.1007/978-3-662-03659-4.
- 1103
- 1104

1105 1106		Table Caption List
	Table 1	Critical system level requirements for liquid coolants inside a fuel cell
		powered aircraft.
	Table 2	Comparison of proposed figure of merits.
	Table 3	System model boundary conditions for coolant selection.
	Table 4	Full factorial Design of Experiments with two levels to determine the
		sensitivity of total mass and total power to uncertain boundary conditions.
	Table 5	Liquid coolant use cases.
	Table 6	Boundary conditions used for both the radiator sizing models.
1107 1108		Figure Cantions List
1109		
	Fig. 1	Schematic of a Proton Exchange Membrane Fuel Cell (PEMFC) and the
		electrochemical reaction.
	Fig. 2	Notional liquid cooled proton exchange membrane fuel cell propulsion
		system with a ducted radiator installed under the wing.
	Fig. 3	Coolant ontology. Note – Aliphatic and Aromatic Hydrocarbons may
		comprise blends, and 'Other HC' categorizes Hydrocarbons of unknown
		composition.
	Fig. 4	(a) Figure of Merit for coolant categories spanning their operating
		temperature at atmospheric pressure. The dashed line encompasses all of

the Hydrocarbons. (b) Magnification of the Hydrocarbons which identifies Aliphatics, Aromatics, and Other HCs. *Refer to Table 1.

- Fig. 5 (a) Integrated average Figure of Merit for coolant categories and (b) their operating temperature range. *Refer to Table 1.
- Fig. 6 (a) A schematic of the system model including the radiator, stack, piping, coolant and pump. (b) A flowchart of the system model which includes the iterative radiator sizing algorithm.
- Fig. 7 A schematic of radiator geometry (11.32-0.737-SR) with the respective correlations. *[43], **[36], and +[44].
- Fig. 8 Percent contribution of the model terms on (a) total mass and (b) total power. derived from a full factorial Design of Experiment for an Aliphatic coolant. Up to 95% of the percent contribution is included.
- Fig. 9 Pareto fronts at 80°C for (a) and (b), and 200°C for (c) and (d). Total power versus total mass: (a) and (c). Pumping power versus total mass: (b) and (d). Normalized by deionized water at 80°C. Excludes low temperature threshold.
- Fig. 10 Pareto efficient coolants for 80–200°C. (a) Normalized total power versus Normalized total mass. (b) Magnification of (a). (c) Normalized pumping power versus Normalized total mass. The number labels correspond to the operating temperature.

- Fig. 11 Pareto efficient coolants for 80–200°C. (a) Normalized total power versus Normalized total mass. (b) Magnification of (a). The number labels correspond to the operating temperature.
- Fig. 12 Cases for selecting suitable coolants. The requirements from Table 1 are applied.
- Comparison of the radiator sizing model with 50-50% EG-W to [67]. Dry Fig. 13 radiator core mass versus coolant inlet temperature. Accepted Manuscript Not