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Abstract 
Colorectal cancer is the most prevalence type of cancers within the digestive 

system. Early screening and removal of precancerous growths in the colon 

decrease mortality rate. The golden standard screening type for colon is 

colonoscopy which is conducted by a medical expert (i.e., colonoscopist). 

Nevertheless, due to human biases, fatigue, and experience level of the 

colonoscopist, colorectal cancer missing rate is negatively affected. Artificial 

intelligence (AI) methods hold immense promise not just in automating 

colonoscopy tasks but also enhancing the performance of colonoscopy 

screening in general. The recent development of intense computational GPUs 

enabled a computational-demanding AI method (i.e., deep learning) to be 

utilised in various medical applications. However, given the gap between the 

clinical-practice and the proposed deep learning models in the literature, the 

actual effectiveness of such methods is questionable. Hence, this thesis 

highlights such gaps that arises from the separation between the theoretical and 

practical aspect of deep learning methods applied to colonoscopy. The aim is to 

evaluate the current state of deep learning models applied in colonoscopy from 

a clinical angle, and accordingly propose better evaluation strategies and deep 

learning models. The aim is translated into three distinct objectives. The first 

objective is to develop a systematic evaluation method to assess deep learning 

models from a clinical perspective. The second objective is to develop a novel 

deep learning architecture that leverages spatial information within colonoscopy 

videos to enhance the effectiveness of deep learning models on real-clinical 

environments. The third objective is to enhance the generalisability of deep 

learning models on unseen test images by developing a novel deep learning 

framework. To translate these objectives into practice, two critical colonoscopy 

tasks, namely, automatic bowel preparation and polyp segmentation are 

attacked. In both tasks, subtle overestimations are found in the literature and 

discussed in the thesis theoretically and demonstrated empirically. These 

overestimations are induced by improper validation sets that would not appear 

or represent the real-world clinical environment. Arbitrary dividing 

colonoscopy datasets to do deep learning evaluation can result in producing 

similar distributions, hence, achieving unrealistic results. Accordingly, these 
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factors are considered in the thesis to avoid such subtle overestimation. For the 

automatic bowel preparation task, colonoscopy videos that closely resemble 

clinical settings are considered as input and accordingly it necessitates the 

design of the proposed model as well as evaluation experiments. The proposed 

model’s architecture is designed to utilise both temporal and spatial information 

within colonoscopy videos using Gated Recurrent Unit (GRU) and a proposed 

Multiplexer unit, respectively. Meanwhile for the polyp segmentation task, the 

efficiency of current deep learning models is tested in terms of their 

generalisation capabilities using unseen test sets from different medical centres. 

The proposed framework consists of two connected models. The first model is 

responsible for gradually transforming textures of input images and arbitrary 

change their colours. Meanwhile the second model is a segmentation model that 

outlines polyp regions. Exposing the segmentation model to such transformed 

images acquires the segmentation model texture/colour invariant properties, 

hence, enhances the generalisability of the segmentation model. In this thesis, 

rigorous experiments are conducted to evaluate the proposed models against the 

state-of-the-art models. The yielded results indicate that the proposed models 

outperformed the state-of-the-art models under different settings. 
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Chapter 1 

 Introduction 
  The gastrointestinal tract, depicted in Figure 1, forms the pathway of the 

digestive system, extending from the mouth to the anus. It comprises vital 

digestive organs such as the oesophagus, stomach, small intestines, and large 

intestines (colon). 

  As per the National Institute of Diabetes and Digestive and Kidney Diseases 

[1], around 60 to 70 million individuals suffer from gastrointestinal diseases. 

Additionally, the Gastrointestinal (GI) tract is associated with eight of the most 

prevalent cancers [2]. Notably, in 2020, colon cancer alone was identified as the 

second leading cause of cancer-related deaths worldwide by the World Health 

Organization [3]. Consequently, regular screening of the gastrointestinal tract, 

with a specific focus on the colon, will lead to a reduction in mortality rates. 

 

Figure 1 Gastrointestinal tract anatomy. Original image was taken from [4]. 

  The primary approach for investigating the gastrointestinal (GI) tract is 

through endoscopy [2]. However, endoscopists are facing challenges due to the 

substantial workload involved in analysing various types of endoscopic images 

[5]. To facilitate timely GI treatment and prevent further complications, it 



2 

 

becomes essential to detect diseases in the inner lining of the gastrointestinal 

tract (i.e., mucosa). Therefore, the implementation of a Computer-aided 

detection (CAD) system holds significant value for assisting endoscopists in 

assessing severity and identifying abnormalities [2]. More discussion on CAD 

can be found in section 1.1.2. 

  Thanks to modern-day computers, CAD systems demonstrate highly enhanced 

pattern-detection capabilities when processing databases [6]. Artificial 

Intelligence (AI) methods employed in this field can be broadly categorized into 

conventional Machine Learning (ML) approaches (such as K-NN and SVM) 

and deep learning (DL) methods such as ResNet [7], U-Net [8], and Faster-R-

CNN [9].  

  Recently, DL methods have garnered significant attention from researchers 

due to their ability to outperform hand-crafted classifiers (i.e., ML approaches) 

[10], [11]. However, DL methods necessitate a substantial amount of training 

datasets to achieve exceptional performance. Regrettably, in the domain of 

Gastrointestinal endoscopy, as well as in the medical domain in general, there 

is a scarcity of such datasets. The lack of extensive and publicly available 

datasets is attributed to the high cost of manual annotation and privacy 

concerns[12], [13]. The absence of an adequate database poses a real challenge 

in developing efficient systems based on DL. 

  To address this limitation, techniques such as image augmentation, Generative 

Adversarial Networks (GANs), Zero/One-shot learning, and Transfer Learning 

have been proposed in the literature to enhance the overall performance of DL 

methods and mitigate the impact of having a small training dataset [14]–[16].  

  Nevertheless, creating an effective DL model for the Gastrointestinal (GI) 

domain remains a challenging task due to the unique nature of the tissues, 

lacking specific shapes or clear edges. Additionally, the high interclass 

similarity further complicates the development of such models. 

1.1 Technical and medical background 

  This section provides a presentation of both medical and technical 

backgrounds. Additionally, it will explain terminologies and specialised 

language used in the field of the Gastrointestinal tract (GI) to aid discussions in 

subsequent sections. Initially, an introduction to various types of GI endoscopy, 

accompanied by informative visuals, will be presented. Following that, different 

types of computer-aided (CAD) systems mentioned in existing literature will be 

discussed. Lastly, an overview of the applications of deep learning in the GI 

domain will be summarized and demonstrated. 
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1.1.1 Gastrointestinal tract anatomy and types of endoscopic 

screening 

  Gastrointestinal tract (GI) or the digestive system is the tract/pathway by 

which the food goes through starting from the mouth followed by oesophagus, 

stomach, small intestine, colon and finally the rectum in which the waste/stool 

is discarded, as depicted in Figure 1. 

  Endoscopy is a medical procedure that utilises an instrument called an 

endoscope to examine the internal organs or pathways within the body [17]. An 

endoscope is a tube-like device equipped with a lens and a light source for 

visualisation. However, the term "endoscopy" is sometimes used 

interchangeably with GI endoscopy, although there is no universal consensus 

on its precise usage [18]. It should be noted that endoscopy is not limited to the 

GI tract and can also be employed in various other areas of the body, such as 

the nose, ears, heart, and joints. For more comprehensive information regarding 

the different types of endoscopy and the technologies available, consult the 

following papers [19]–[21]. 

  The classification of endoscopy types is determined by the specific procedure 

being performed, the targeted area or organ, and the approach used to reach the 

desired location. For instance, Bronchoscopy is utilised to examine the lungs 

and involves inserting the endoscope through the mouth, while Arthroscopy is 

employed for joint surgeries and involves inserting the endoscope through a 

small incision near the joint. In the realm of gastrointestinal screening, the 

following are among the most commonly used types of endoscopy, as 

referenced in [18], [22], [23]: 

• Esophagoscopy: An esophagoscope is inserted through the mouth to 

examine the oesophagus. 

• Gastroscopy: A gastroscope is inserted through the mouth to examine 

stomach and duodenum. Duodenum is the beginning of the small 

intestine. 

• Colonoscopy: A colonoscope is inserted through the anus to examine 

the entire length of the colon and large intestine. Colonoscopy is the 

golden standard for colon screening, as seen in Figure 2. Colonoscopy 

is the main research area targeted in this thesis.  

• Proctoscopy: A proctoscope is inserted through the anus to examine the 

bottom part of the colon which consists of rectum and sigmoid colon. 

• Sigmoidoscopy: A sigmoidoscope is inserted through the anus to 

examine only the sigmoid colon. 

• Wireless Capsule Endoscopy:  • Wireless Capsule Endoscopy is a 

compact device that captures video footage and transmits it to a receiver 

worn on the patient's waist. This capsule is designed for single-use and 

is primarily utilised as a diagnostic tool. Its main application lies in 
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diagnosing conditions affecting the small intestine, which can be 

challenging or even inaccessible using conventional endoscopic 

procedures. 

 
Figure 2 Colonoscopy screening. Image courtesy of  [24]. 

  A laparoscope is an endoscope specifically designed to be inserted through a 

small surgical incision in the abdomen. The procedure performed using a 

laparoscope is called laparoscopy [18]. Laparoscopy can be employed to 

examine and operate on various organs within the abdominal region, including 

the stomach, liver, and other abdominal organs. This minimally invasive 

surgical technique is often referred to as "minimally-invasive surgery". The 

field of robotics and computer vision has shown particular interest in 

laparoscopy due to its potential for three-dimensional organ reconstruction, 

instrument detection, and tracking. These advancements aim to enable robot-

assisted surgery [18].   

  To provide a comprehensive overview of GI endoscopy procedures and their 

interrelationships, Figure 3 has been created. This figure visually depicts the 

target areas for screening within the GI domain, along with the corresponding 

procedure names. GI endoscopy can be broadly classified into two main types:  

• Upper Endoscopy or Esophagogastroduodenoscopy (EGD): This 

procedure involves the examination of the oesophagus, stomach, and 

duodenum. 

• Colonoscopy (also informally known as lower endoscopy): This 

procedure allows for the thorough examination of the entire colon. 

  It's important to note that conventional endoscopy can only reach the initial 

part of the small intestine, known as the duodenum. In order to examine the rest 

of the small intestine, a specialised device called Enteroscopy is employed. 

Enteroscopy utilises a distinct type of endoscope that employs various 

mechanisms to control its movement within the GI tract. Examples of such 
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mechanisms include balloon-assisted Enteroscopy and spiral overtube-assisted 

Enteroscopy [23], [25]. 

  However, due to its limitations and potential complications, Wireless Capsule 

Endoscopy (WCE) is the commonly used method for investigating the small 

intestine. WCE involves using a capsule-shaped endoscope that can capture 

images as it traverses through the digestive system. It's important to note that 

WCE is primarily considered a diagnostic tool, whereas Enteroscopy is 

recognized as both a diagnostic and therapeutic device [23]. 

 
Figure 3 illustrates the various screening types (i.e., endoscopy) categorized according to 

the specific targeted areas within the gastrointestinal tract (GI). 

  Based on the provided information, this study is centered around the 

implementation of deep learning methods specifically for colonoscopy. 

Consequently, other procedures such as Laparoscopy, Cystoscopy (used for 

bladder examinations), Arthroscopy and Gastroscopy are beyond the scope of 

this research. The primary emphasis is on exploring the utilisation of deep 

learning techniques in the context of colonoscopy screenings. 

1.1.2 Types of CAD systems 

  CADe, CADx, and CADm are abbreviations used to distinguish the purpose 

or type of Computer-Aided Diagnosis (CAD) systems. However, there can be 

confusion and overlap between these terms. Generally, the primary objective of 

these systems is to enhance the performance of an endoscopist during or after a 

screening procedure. To clarify the differences between them, explanations are 

listed as follows [26]: 

•   CADe: Computer-aided detection is a CAD system designed to assist 

in the identification of abnormal regions within medical images or 

videos. It focuses on detecting potential abnormalities but leaves the 

determination of severity or grading to the endoscopist. 

•   CADx: Computer-aided diagnosis aims to support endoscopists in 

making optical diagnoses and determining the severity or type of 

detected abnormalities. It goes beyond detection and provides additional 

information to aid in the diagnostic process and targeted biopsies. 

Combining CADe and CADx systems can help endoscopists effectively 

discriminate, diagnose, and disregard abnormalities [27]. 

•   CADm: Computer-aided monitoring system is used to evaluate and 

monitor the performance of procedures or endoscopists. Its tasks include 

ensuring the completeness of inspections, supervising examination time, 
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and enhancing mucosal visibility. Additionally, in the Multimedia 

community, CADm systems can provide summaries for recorded 

endoscopic videos, which is of particular interest for reviewing and 

analysing procedures [18]. 

  In the literature, the term "CAD" (Computer-Aided Diagnosis) is often used in 

a broad sense to indicate that a computer system is employed or proposed to aid 

or evaluate physicians, regardless of the specific medical procedures involved. 

CAD systems can be versatile and applied in various medical fields (e.g., 

clinical pathology, radiology, ophthalmology, and dermatology) to augment 

healthcare professionals' capabilities [28]. 

  It is essential to note that CAD systems can be developed using different 

methodologies, such as Artificial Intelligence (AI) methods or Image processing 

techniques. While both approaches have their merits, AI-based CAD systems 

are particularly powerful and have the capacity to tackle more complex 

problems. Leveraging AI (i.e., deep learning), these systems can learn from 

large datasets, recognize patterns, and provide more advanced decision support 

to healthcare practitioners, thus improving overall diagnostic accuracy and 

patient care. Nonetheless, traditional image processing methods still play a 

valuable role in some applications where AI might be less suitable or necessary. 

1.1.3 Application of deep learning in GI endoscopy screening 

  There are three main applications for deep learning (D) in the Gastrointestinal 

tract (GI) analysis tasks [29], namely, classification, detection, and 

segmentation as seen in Figure 4. These categories are explained as follows: 

a. Classification: In this task, an input image is assigned a specific label. 

For instance, the image may be categorized as either "normal" or 

"abnormal." However, unlike detection and segmentation, the precise 

location of the abnormality within the image is not provided. 

b. Detection: In this task, abnormalities within an image are identified and 

framed using bounding-boxes. These bounding-boxes overlay the 

image, capturing the attention of endoscopists to further investigate the 

identified locations. The input is an image, and the output comprises the 

centre point and dimensions of the bounding-box (e.g., Height and 

Width). 

c. Segmentation: This process can be regarded as a detailed form of 

detection, where each pixel within the image is assigned a specific label. 

The label "0" represents normal regions, while label "1" designates 

abnormal areas. Unlike detection, segmentation provides a precise 

outline of the abnormal regions in the image, enabling more accurate 

localisation of affected areas. 
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Figure 4 illustrates the application of a CAD system for GI screening and diagnosis [29]. 

  Classification tasks can be viewed as image-level labelling, while 

segmentation tasks can be seen as pixel-level classification. On the other hand, 

detection tasks are akin to regression problems, where the output consists of real 

numbers representing the box borders that identify the detected abnormalities. 

1.2 Challenges of deep learning applied in 

colonoscopy 

  Observations from the existing literature reveal that a significant portion of the 

research conducted in the field of colonoscopy has predominantly utilised 

carefully selected high-quality still images, as opposed to video data. This 

choice of using carefully selected images contrasts with the reality of 

colonoscopy, where challenges such as image blurring and poor quality are 

commonplace. Moreover, the real-time scenario involves a multitude of 

ambiguous and non-informative frames that need to be considered during the 

design of a deep learning (DL) model [30]. Failing to account for temporal 

frames leads to the loss of a crucial form of contextual awareness, which 

otherwise contributes to improved decision-making capabilities [30]. 

  Moreover, a notable absence of standardized benchmarks that could facilitate 

performance comparisons is evident. Consequently, a significant portion of 

researchers tend to construct their training and validation datasets in an arbitrary 

manner, thereby hindering the possibility of cross-performance evaluations and 

hampering the reproducibility of research outcomes. What's more, this ad-hoc 

dataset preparation method could potentially result in a subtle inflated 

performance. To elaborate, while a system might yield impressive outcomes 

during validation, its performance could drastically decline when tested on 

unseen datasets or when put into practical use (referred to as the 

“generalisability problem” [31]. 
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  In response to this issue, a cohort of researchers initiated a colonoscopy 

challenge that is explicitly tailored to evaluate generalisability. This challenge 

provides training and validation sets while withholding a separate test set [32]. 

Consequently, participants are required to submit their trained models 

(checkpoints), which are subsequently assessed by the challenge organizers. 

Such challenges serve as effective mechanisms for assessing the generalisability 

capabilities of deep learning models. However, it is worth noting that these 

challenges often exhibit limited scale, both in terms of participants and the 

datasets used, especially when compared to other domains outside of the 

medical field. 

  Furthermore, ensuring the reproducibility and transparency of deep learning 

models within the medical domain remains uncertain, even when the source 

code is made available [33], [34]. Addressing this concern, the Norwegian 

Artificial Intelligence Research Consortium (NORA) orchestrated a challenge 

aimed at evaluating not only the performance of deep learning models but also 

the transparency procedures implemented or suggested by participants [35]. 

Initiatives of this nature, which strive for both reproducibility and transparency, 

are relatively uncommon in the medical domain as a whole, and particularly 

within the field of colonoscopy. 

  Consequently, contemporary journals and conference proceedings have started 

to encourage researchers to share their source codes as a means to facilitate 

research reproducibility. Nonetheless, certain published studies are based on 

proprietary datasets [36]–[39], rendering reproducibility unattainable. For 

privacy considerations, researchers are often unable to disclose these private 

datasets. Furthermore, even if the datasets used are publicly accessible, 

achieving reproducibility is not guaranteed due to the vague definition and 

arbitrary creation of training and validation sets. 

  Considering the remarkable achievements of deep learning in domains like 

natural images (e.g., ImageNet), it seems reasonable to assume that such success 

might extend to the field of colonoscopy. However, disregarding the distinctive 

characteristics of colon mucosa (i.e., the inner surface of the colon), which 

markedly differs from non-medical domain images, could result in subpar 

performance. Unlike the clear and well-defined shapes commonly found in non-

medical domains, colonoscopy images lack such structure (i.e., for instance look 

at Figure 5). Natural images have well defined borders and shape compared to 

colon mucosa. Within the same class, colonoscopy image could look very 

different and vice versa. This presents a formidable challenge that necessitates 

researchers to incorporate these unique properties into the design of their deep 

learning models. 
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Figure 5 Samples from natural images compared against colonoscopy.  

  In the broader context, the prevailing trend in deep learning for non-medical 

domains involves constructing increasingly complex architectures to 

accommodate vast datasets. Applying these deep learning models as-is, rather 

than developing specialised architectures, might lead to overfitting due to the 

relatively limited size of available medical datasets compared to their non-

medical counterparts. 

1.3 Thesis scope, aim, and objectives 

  The digestive system encompasses various organs, including the throat, 

oesophagus, stomach, small intestine, large intestine (colon), and rectum, as 

depicted in Figure 1. Within this system, colonoscopy is recognized as the 

primary screening method for the colon; refer to the preceding section for visual 

representations of these terms. Consequently, the central focus of this thesis 

revolves around the application of deep learning techniques in the context of 

colonoscopy, as seen in Figure 6.  

 
Figure 6 The thesis domain lies between deep learning and colonoscopy. 

  However, it's important to note that this area of study is currently in its early 

stages for the following reasons. First, the vast majority of deep learning studies 

are conducted outside clinical environments, hence, it is anticipated that the 

current stage of applying deep learning models in the context of colonoscopy is 

not optimized for real-world clinical applications.  
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  Second, a significant number of studies are evaluated using high-quality 

selected frames rather than videos which resemble real-clinical environments. 

As opposed to selected frames, videos possess contextual information that can 

be utilised to enhance prediction results, though, they also contain non-

informative frames which could negatively affect the performance of deep 

learning models during screening.  

  Third, a notable absence of benchmark standardization which prevents cross 

evaluation between different studies. Furthermore, improper dataset preparation 

for deep learning experiments could result in having exaggerated results. 

Consequently, the ability of such models to perform well on unseen future data 

is questionable. 

  Fourth, a disproportionate portion of studies utilised private datasets due to 

privacy concerns. Accordingly, ensuring reproducibility and transparency of 

deep learning models is not achievable. This prevented other researchers from 

doing thorough investigations to determine their competence in real-clinical 

environments. 

  Finally, there are clear discrepancies between natural images (e.g., ImageNet) 

and colonoscopy images. As opposed to natural images, colonoscopy images do 

not have specific shape nor defined borders. Furthermore, the elasticity of the 

inner lining of the colon increases the inter-cluster similarities which make it 

difficult to identify unhealthy tissues from healthy ones. With that in mind, it is 

not clear if utilising on-the-shelf models, which are originally proposed for non-

medical domain, would be effective on colonoscopy images. Accordingly, new 

designs should be proposed to target domain-specific tasks. 

  Given the aforementioned drawbacks, the aim and objectives of this thesis are 

designed to bridge the gaps that presently obstruct the integration of deep 

learning models into clinical settings. As a result, the aim of this thesis is 

formulated as follows:  

Aim: Assess the present state of deep learning models used in colonoscopy 

through a clinical lens, and subsequently propose better evaluation 

methodologies and deep learning techniques. 

  With the intention of achieving our defined aim, a series of research questions 

are crafted. These questions act as the navigation compass behind our 

exploration and experimentation, ultimately leading to the compilation of this 

thesis work. The research questions are as follows: 

• Do current evaluation strategies reflect the actual effectiveness of 

deep learning models? In other words, are current preclinical 

experiments on deep learning models signal their actual performance on 

future real scenarios. Furthermore, are the outcomes presented in the 

literature accurate or magnified? 

• How to evaluate deep learning models from a clinical perspective? 

Precisely, how to utilise currently available datasets to assess deep 

learning models from a medical viewpoint? 
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• How to design a deep learning model that can utilise both spatial 

and temporal information? Given that colonoscopists analysing 

videos, which are “fundamentally” sequences of frames, is there any 

necessity to design video-based architecture rather than frame-based 

architecture? Furthermore, how spatial and video features can be merged 

to boost classification performance? 

• How to design a deep learning framework such that it improves 

performance of segmentation models on unseen future colonoscopy 

images? In other words, which approach should be adopted to enhance 

the generalisability of segmentation models on colonoscopy images? 

  To accomplish the thesis aim, a set of objectives were delineated:  

Objective 1: To develop a systematic method from a clinical perspective to 

assess and determine the performance of the existing deep learning models 

employed in colonoscopy.  

Objective 2: To develop a novel deep learning architecture that can exploit 

spatial as well as temporal information within colonoscopy videos to enhance 

its efficiency in real-clinical environment. 

Objective 3: To develop a novel framework to enable segmentation models to 

acquire invariant properties by utilising a supervised learning method which aim 

at enhancing their generalisability capabilities on future unseen samples. 

  The upcoming chapters are crafted to address the outlined aim, objectives, and 

questions. Chapter 2 is considered the starting point in which an extensive 

overview of existing deep learning techniques employed in the broader context 

of the digestive system is conducted, with a focused exploration on the colon. 

The goal is to investigate the current evaluation strategies in the literature and 

accordingly propose an evaluation approach from a clinical perspective (i.e., 

Objective 1). Accordingly, the proposed evaluation approach is applied in both 

Chapter 3 and Chapter 4 to contrast the performance of the proposed deep 

learning model against the current state-of-the-art models. 

  Moving forwards, Chapter 3 and Chapter 4 delve into two distinct yet 

interconnected colonoscopy tasks that address Objective 2 and Objective 3, 

respectively. These tasks are automatic bowel preparation and automatic polyp 

segmentation. The clinical necessity of bowel preparation as a pivotal 

preprocessing stage for successful screenings is paramount. Inadequate 

preparation could lead to the obscuring of polyps by stool and bowel residuals, 

rendering them undetectable to endoscopists. Failure to identify polyps could 

adversely impact mortality rates.  

  In Chapter 3, entire video samples are treated as input. This way, both spatial 

and temporal information could be exploited to extract contextual information, 

hence, enhancing deep learning classification accuracy. Accordingly, a video-

based deep learning model is proposed to achieve Objective 2. 
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  Chapter 4 attacks the polyp segmentation task in which datasets were collected 

from different medical centres. Accordingly, the generalisability of deep 

learning models is investigated. Furthermore, in Chapter 4, a deep learning 

framework which has a better generalisability than the state-of-the-art models 

is proposed which fulfils Objective 3. The proposed framework consists of 

image-to-image transformation unit and a segmentation model. The 

transformation unit manipulates input images’ texture, then they are delivered 

to the segmentation unit during the training phase. This approach acquired the 

segmentation model texture invariant properties; hence, it enhances the 

generalisability performance. 

1.4 Thesis Roadmap 

  The recommended sequence for navigating this thesis is depicted in Figure 7. 

Chapter 1 establishes an introductory foundation, outlining our motivation and 

articulating the aim of the study. Subsequently, the literature review can be 

engaged with, building upon the terminologies introduced in Chapter 1. At this 

juncture, readers may delve into either Chapter 3 or Chapter 4. Finally, the 

conclusion of this thesis can be explored in Chapter 5. A detailed information 

about each chapter is outlined as follows. 

 

 
Figure 7 Overview of thesis suggested reading’s roadmap. 
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  Chapter 1 serves as an introductory chapter, consisting of general subject 

matter exploration, consisting of four sections designed to facilitate 

comprehension of the thesis. The first section introduces commonly referenced 

technical and medical terminologies within the thesis. The second section 

discusses challenges in the application of deep learning in colonoscopy. The 

third section outlines the thesis scope, objectives, aim, and research questions. 

The fourth section (i.e., this section) illustrates the general outline of the entire 

thesis. Last section provides a summary of the entire chapter. 

  Chapter 2 encompasses six sections, in which the first four sections dedicated 

for investigating the current literature concerning the application of deep 

learning on the gastrointestinal tract (GI) with focus on colonoscopy. The initial 

two sections within the chapter explore deep learning methodologies for both 

upper and lower endoscopy, respectively. Meanwhile, the third and fourth 

sections are exclusively devoted to investigating the application of deep 

learning techniques in the realm of colonoscopy. These specific sections of the 

literature review chapter correspond directly to Chapter 3 and Chapter 4, 

respectively. Meanwhile section 5 in Chapter 2 wraps up the gaps in the GI 

literature. Finally, a summary section is provided. 

  Chapter 3 and Chapter 4 represent the core segments of this thesis, where they 

delve into a comprehensive empirical exploration of existing voids within the 

literature. Subsequently, our proposed methodology is presented and conduct a 

thorough comparison between our model and the state-of-the-art deep learning 

approaches. 

  Chapter 5 serves as the conclusion chapter of the thesis, encapsulating the 

overall findings. The appendix, situated at the end of the document, 

encompasses comprehensive results from selected experiments and a concise 

summary of the literature review in a tabular format. Furthermore, observations 

which are not directly related to the thesis’s arguments are provided. The 

inclusion of detailed results in the appendix is primarily aimed at promoting 

reproducibility and indorsing ease of comparison with fellow researchers. 
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1.5 Summary 

  In this chapter, an introduction is given to illustrate boundaries and domain of 

this thesis. A technical and background introduction were discussed. An 

introduction to Gastrointestinal tract (GI) (i.e., digestive system) and the used 

of different endoscopy were deliberated such as esophagoscopy, gastroscopy, 

proctoscopy, and colonoscopy. Accordingly, the thesis revolved around deep 

learning applied to colonoscopy. From a use case point of view, any computer 

system or model applied to GI will be under one or multiple of the following 

categories, namely, Computer-aided detection (CADe), Computer-aided 

diagnosis (CADx), and Computer-aided monitoring (CADm) system. The 

components of CAD systems can be deep learning model, machine learning 

model, or any other statistical models. However, the applications of deep 

learning models can be categorized according to their functionality as a 

classification model, a detection model, or a segmentation model. 

   Challenges of deep learning model was also briefed in this chapter. The 

current state of deep learning models is still considered to be pre-clinical due to 

several factors including but not limited to, evaluating using high quality handy-

picked images, a notable absence of standardized benchmarks, and limited 

research reproducibility. Furthermore, most published work conducted outside 

clinical environments.  

  All the latter factors imposed/enlarged the gap between real-clinical 

environments and deep learning applications. Consequently, the aim is to 

evaluate current deep learning methods from a clinical perspective and 

accordingly propose evaluation strategies and efficient deep learning models. 

The aim is translated into three objectives and, accordingly, questions were 

posed to gauge this study. The first objective is to develop an evaluation method 

to overcome overestimations that may arise due to similarity between training 

and validation data. The second objective is to design video-based model to 

utilise colonoscopy videos which ensemble real-clinical situations. The final 

objective is to enhance generalisability of deep learning models so that it 

performs better on unseen test data. 

 To facilitate reading this thesis, a roadmap is provided before this section. This 

chapter is considered the starting point since it lays out all the background 

needed to delve into the thesis. Then the second chapter provide literature for 

the rest of the thesis. Chapter 3 and Chapter 4 can be read in any orders, 

meanwhile, the last chapter conclude the thesis. 
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Chapter 2 

Literature Review 
  A thorough presentation of applications of deep learning on endoscopy is 

presented in this chapter. Accordingly, this chapter is divided into five sections 

to cover all aspects of this domain. The first two sections devoted towards 

discussing current deep learning methods applied to upper endoscopy and lower 

endoscopy. Meanwhile, the third and fourth sections deeply discussed methods 

applied to colonoscopy which are directly related to the upcoming two chapters, 

namely, Chapter 3 and Chapter 4. The fifth section wrap up current gaps in the 

literature. Finally, a summary is presented to conclude this chapter. Moreover, 

selected studies related to digestive system are summarized in Appendix A. 

2.1 Deep learning applied in upper endoscopy 

  Depending on the targeted region within the upper endoscopy, the application 

of deep learning (DL) can be categorized into two main streams, namely, DL 

for esophageal precancerous lesions [40]–[43] and DL for gastric precancerous 

lesions [44]–[47]. It is worth noting that esophageal squamous dysplasia and 

Barrett’s oesophagus are considered as precancerous states for esophageal 

squamous cell carcinoma and esophageal adenocarcinoma, respectively. 

Meanwhile, Helicobacter pylori, atrophic gastritis, gastric intestinal metaplasia, 

and gastric dysplasia are considered to be precancerous states for gastric cancer 

[48]. It is important to inspect these precancerous states as early as possible to 

prevent affected areas from developing into cancerous states. 

  Most published papers on Barrett’s oesophagus analysis have been using 

mainly hand-crafted features, thus, [49] proposed a computer-aided diagnosis 

(CAD) system based on deep learning. For training, small patches were 

generated from endoscopic colour images and augmented to increase the 

number of samples. Rotation, translation, mirroring along the horizontal and 

vertical axis, contrast, brightness hue and saturation jittering were used 

randomly as augmentation methods. The goal is to classify image patches into 

either esophageal carcinoma (i.e. cancer) or Barrett’s oesophagus (i.e. high-

grade inflammation). Those classified small patches were then used to 

delineate/segment object of interest within images. ResNet [7] was used as CNN 

classifier with two private datasets namely, Augsburg and MICCAI. 

  Groof and his colleges developed a computer aided system based on deep 

learning and they tested it during endoscopic screening [41]. They targeted 10 

patients with Barrett’s oesophagus and other 10 patients without Barrett’s. They 

developed Unet-based architecture with ResNet as encoder to produce both 

classification and segmentation information. They demonstrated high results in 

terms of recall, specificity, and accuracy with values of 91%, 89%, and 90% 
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respectively. The system does not utilise temporal information within video as 

opposed to the work of [42]. In fact, the first attempt to utilise temporal frames 

to detect abnormalities in oesophagus was proposed by [42]. The model was 

proposed to discriminate and detect four categories within the videos frames, 

namely, 1) Normal, 2) Barrett’s Oesophagus (pre-cancer), 3) Esophageal 

Adenocarcinoma (cancer) and 4) Squamous Cell Carcinoma (cancer). Inspired 

by [50] they propose a 3D Sequential Dense-Convlstm Faster R-CNN to detect 

esophageal abnormalities from endoscopic videos. The proposed model is 

further enhanced by employing a post-processing method named Frame Search 

Conditional Random Field (FS-CRF). The purpose of FS-CRF is to recover the 

missing regions in neighbourhood frames and to remove false positives within 

the same clip. Simply stated, for a frame in a video the FS-CRF method search 

15 frames forwards and 15 frames backwards to compensate the missing 

detection result using CRF [51]. If FS-CRF method didn’t find a detection 

within 15 frames, it assumes that the current frame is normal, and it labelled as 

false positive sample. The proposed model is able to discriminate and locate 

abnormalities within oesophagus videos with 93.2% F-score. However, the 

proposed model is computation-intensive given the fact that a 3D-CNN alone 

demands high computational complexity [30]. Furthermore, the proposed post 

processing method (FS-CRF) requires searching frames forwards and 

backwards which is not possible for real-time environment. Without FS-CRF 

the proposed model achieved F-score of 88.9%. Therefore, the proposed 

framework by [42] as it stands is not applicable for real-time clinical practice. 

However, it may be suitable for applications that don’t demand real-time 

detection such as Wireless Capsule Endoscopy WCE videos [23]. 

    DL for gastric precancerous lesions [45]–[47], [52]. The works of [52] and 

[44] are considered one of the earliest studies that utilised convolutional neural 

network CNN to classify Helicobacter pylori. Both work utilised GoogLeNet 

[53] model on privately collected datasets. The initial results for both works are 

impressive, yet, given that they utilised private data, it is hard to conclude 

regards their effectiveness in real-clinical scenarios. On the other hand, Zhang 

and his team compared their CNN model against human experts for atrophic 

gastritis classification task [45]. Interestingly enough, their model which is 

based on DenseNet [54] overcome human experts. 

  Notable efforts were made to pool all papers related to upper GI diseases in 

order to estimate its potential clinical value [55]. They pooled 1678 articles and 

then narrow it down through different exclusion and inclusion criteria to 36 

articles. On average, 90% accuracy were achieved across spectrum of different 

upper GI precancerous diseases [55]. However according to [55], the main 

drawback of those analysed studies is that they were performed in an 

experimental settings rather than real-clinical environment in which interaction 

between AI and the endoscopists is an important aspect of the inspection 

process. Furthermore, very few studies included videos which are considered to 

be closer to everyday clinical practice [55]. 
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2.2 Deep learning applied in lower endoscopy 

  Miss rate of polyp/adenoma detection in colonoscopy is considered one of the 

factors that limit mortality [27]. Hence, CAD systems have been proposed to 

increase the detection rate during screening. However, the actual effectiveness 

of those CAD systems in real-time situation are yet to be investigated. The 

recent development of deep learning frameworks facilitates researchers to 

initiate studies that address computer aided CAD systems. In fact, a decent work 

have been conducted to address deep learning methods applied to detect and 

segment colorectal polyps [56]. The authors adopted PRISMA 

recommendations [57] to construct their systematic literature review. Out of 

1332 studies, only 35 full texts were eligible for reviewing. The authors noted 

an increase trend towards the usage of deep learning for polyp classification, 

detection and segmentation since 2016 [56]. However, still it is not confirmed 

whether deep learning models would reduce the incidence and mortality rate of 

colorectal cancer [58]. Moreover, [58] suggested to test deep learning models 

in the context of less than optimal settings rather than testing on high-quality 

images. 

  Nevertheless, there are few attempts to study such systems in real-clinical 

environments. One of such attempt was conducted by [27]. They used their 

previously proposed system [29] to assess the effect of the CAD on colorectal 

adenoma detection rate (ADR). Interestingly, they involved endoscopists 

having various screening experience levels in the experiments to contrast the 

performance with and without CAD involvement. They concluded that CAD 

system increased adenoma detection rate due to an increase in diminutive 

adenomas which are considered to be small and portrayed less risk for 

malignancy. On the other hand, researcher team reported that the used system 

may have limited capacity to assist the endoscopist in detection more adenomas 

in the cecum and ascending colon due to the higher instability of the 

colonoscopy in those areas [27]. 

  In order for a system to be useful in real clinical practice, it should be 

responsive and give real-time results. Accordingly, a recent paper has been 

published recently that review all types of deep learning models employed in 

localising and classifying colorectal  polyps [59]. They concluded that only 7 

studies reported that they considered real-time for polyp localisation and only 

one study for polyp classification [59]. Furthermore, most of the published work 

in the polyp analysis domain used private datasets which prevents 

reproducibility and common ground in comparing different deep learning 

models [59]. 

  In general, studies in lower endoscopy (i.e., colonoscopy) can be categorized 

into mainly three types [60], including, a) computer-aided detection (CADe), b) 

computer-aided diagnosis (CADx), and c) computer-aided monitoring 

(CADm). More discussion can be found in section 1.1.2. CADe and CADx are 

applications related to localising abnormalities (i.e., segmentation or boundary 

box detection) and classifying abnormalities, respectively. Meanwhile, CADm 
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is any system that provide a secondary support during or after the screening 

such as polyp size calculation [61], withdrawal time monitoring [62], and bowel 

preparation assessment [31]. Both CADe and CADx applications constitute 

most of studies in the colonoscopy literature. Furthermore, polyps are the main 

lesion type in colonoscopy literature due to the availability of public datasets. 

The majority of CADx deep learning applied to colonoscopy are utilised to 

classify cancerous and non-cancerous polyps [60] , though, other abnormalities 

studies exist such as Crohn’s [63] and ulcerative colitis [64]. CADe based on 

deep learning models are thoroughly discussed in section 2.4. 

  In [63], on the shelf deep learning model (i.e., pretrained Xception [65]) was 

utilised to predict Crohn’s disease on Wireless Capsule Endoscopy WCE 

images  [63]. They conducted two experiments: 1) entire dataset from 50 

patients are mixed and randomly divided to create 5-fold cross validation, 2) 

leave one-patient-out cross validation. Interestingly, the model achieved on 

experiment 1 accuracies range from 95.4% to 96.7%, meanwhile, accuracies for 

experiment 2 range from 73.7% to 98.2%. This variability of experiment 2 (i.e., 

leave one-patient-out cross validation) signifies concerns regards the 

generalisability of such models in real clinical environments. 

  To attack the problem of ulcerative colitis classification, Efficient Attention 

Mechanism Network (EAM-Net) which combines the efficient channel 

attention network and spatial attention module is proposed [64]. First, the 

features are extracted by DenseNet [54] model, and the output is divided into 

two deep learning units, including recurrent neural networks (RNN) and EAM-

Net module to generate attention maps. Both generated feature maps are utilised 

to produce final classification prediction. The proposed model achieved on 

average 86% F1-score on two private datasets. However, it is worth noting that 

they refine their dataset by excluding unclear images with stool, blur, or halos. 

Accordingly, a drop in performance is anticipated if the system is tested in real 

clinical settings. 
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2.3 Automatic Bowel Preparation Assessment 

(Classification) 

 There have been multiple proposals for automatically determining the degree 

of bowel cleansing, as in [36]–[39], [66]–[68]. These methods can be classified 

into two categories based on their approach: a) conventional machine learning 

or image processing methods such as those described in [37]–[39], and b) deep 

learning methods as seen in [36], [39], [66]–[68]. While some of the published 

work utilised private datasets, others utilised a publicly available dataset known 

as Nerthus [39]. It is worth pointing out that some studies used the Nerthus 

dataset for purposes other than estimating bowel preparation such as increasing 

the number of training images to address other tasks such as disease detection 

in gastrointestinal tract [69], [70]. Since the main goal is to evaluate the clarity 

of the bowel such papers as in [69], [70] are excluded from our literature review. 

  In [37], Support Vector Machine (SVM) was employed to segment stool 

region in images. They extracted colour features from image blocks and fed 

them to the SVM to produce a binary mask that indicates stool regions. Despite 

achieving high sensitivity of 99.25%, the model's performance significantly 

declined when presented with new images [38]. Additionally, the dataset used 

in this study is private, which hinders reproducibility. 

  As opposed to [37], the works in [38] targeted pixels’ colour rather than 

blocks’ features to identify the stool region. Initially, a 3D-space was created, 

where red, green, and blue channels were considered as coordinates of the 3D-

space, and all stool pixels were projected in this space. The space was then 

divided into equally spaced 256 planes along the red axis and only planes with 

stool pixels were selected, and only planes with stool pixels were selected. 

Consequently, each plane contained a projection of stool pixels at the 

corresponding location, and these planes were treated as a 2D classifier at the 

relevant location. A pixel-level classification was carried out on the validation 

images, achieving 92.9% and 95% for sensitivity and specificity, respectively. 

However, this proposed method may not work effectively in practice as the 

colour of stool and mucosa pixels can appear similar due to variations in light, 

field of view, bubbles, water, and residual liquid. Additionally, mucosa with a 

thin layer of semi-transparent liquid stool was not included in the training set 

[38]. Therefore, the generalisability of this method under various real-life 

situations are questionable. 

  A recent research article has been published that provides a bowel preparation 

score every 30 seconds during the withdrawal phase of colonoscopy and shows 

the cumulative ratio of frames for each score [36]. However, the authors did not 

provide any details about the model they used except that they used DenseNet 

[54] with/without transfer learning. Even though this work was published in 

2020, the authors did not employ any public datasets and instead they used a 

private dataset of colonoscopy videos. Furthermore, they treated as separate 

images, as a result, they did not utilise the temporal information found in videos 
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(i.e., consecutive frames). The proposed model achieved an accuracy of 93.33% 

on 120 images (2.191% of the entire dataset size), while achieving an accuracy 

of 89.04% when tested on 20 colonoscopy videos. However, the accuracy 

dropped to 80% when images with bubbles were included in the experiments. 

According to them, the proposed system outperformed endoscopists of various 

experience levels. 

  Previously discussed research utilised proprietary datasets, making it 

impossible to reproduce and analyse their findings. Moreover, these private 

datasets were composed of high-quality, hand-selected images that do not 

accurately represent real-world scenarios.  

  A group of researchers were motivated to address the lack of a public bowel 

preparation dataset and thus released a dataset called Nerthus [39]. The owner 

of the Nerthus dataset conducted preliminary experiments to establish baseline 

performance using various models. Two primary approaches were employed: 

a) classification using hand-crafted global features (GF) (e.g., colour layout, 

edge histogram, auto colour correlogram), b) deep learning convolutional neural 

networks (CNN) with/without transfer learning. The highest F1-score=89.9% 

achieved by GF with Logistic Model Tree method. 

  Deep learning methods were utilised in [66], [67] to evaluate bowel cleansing 

using Nerthus dataset. In [67], four convolution blocks were used, each 

consisting of a convolution layer followed by rectified linear unit (ReLU), batch 

normalisation, and max pooling. Meanwhile, [66] utilised a pre-trained 

ResNet50 [7], a relational mapping [71], Long Short-Term Memory (LSTM) 

[72], and three fully-connected layers. The ResNet50 was only used to extract 

representative features, so all its weights were frozen during training. The 

relational map "RN" was proposed to map the correspondences between two 

distinct feature streams (i.e., feature maps from shallow and deep layers).  

  Both works [66] and [67] achieved high validation accuracy of 100% and 

97.7%, respectively. In [68], the Nerthus dataset was used to test a proposed 

model consisting of a pre-trained ResNet50 attached to a Bayesian neural 

network [73] to authenticate the prediction accuracy. Similar to the previous 

methods, [68] achieved a validation accuracy of 100%. However, these results 

are overestimation due to having similar data distribution in both training and 

validation as will be demonstrated in the next paragraph. 

  The papers that used the public Nerthus dataset attained a high validation 

accuracy. However, it is found in this thesis that the accuracy was not a result 

of the model's architecture, but rather due to mishandling of the video dataset. 

The frames of all videos were assumed to be "independent" images, which is 

problematic when randomly dividing them into training and validation datasets. 

Due to the high level of similarities between consecutive frames of a video, it is 

highly likely that the validation dataset would contain images resembling many 

in the training dataset. This would lead to a trained model being tested on images 

that it has already "seen" or seen very similarly before, resulting in artificially 

high testing accuracy. However, this is not reflective of a real-life clinical 
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environment where none of the frames in a colonoscopy video would have been 

previously encountered by the model. 

  Accordingly, it is crucial to ensure that the training frames and validation 

frames used for evaluating models are entirely distinct and selected from 

different distributions to obtain accurate evaluations. Otherwise, the model's 

performance would be overestimated. This overestimation issue is thoroughly 

demonstrated later in Chapter 3. 

2.4 Automatic Polyp Delineation (Semantic 

Segmentation) 

  Colorectal cancer is the third most prominent contributor to cancer-related 

fatalities globally, with an alarming mortality rate of approximately 51% [74]. 

Overlooked polyps can lead to their transformation into cancerous polyps. To 

address this issue, numerous public polyp segmentation datasets have been 

created, allowing researchers to explore the problem using deep learning 

models. Due to the variety of models utilised, this section has been divided into 

subsections, each focusing on a specific architectural type. 

2.4.1 Fully Convolutional and Encoder-Decoder based models 

  Fully Convolutional Networks, commonly known as FCNs [75], represent a 

segmentation model that relies exclusively on convolution, pooling, and up-

sampling layers, as seen in Figure 8-(a). Unlike traditional Convolutional 

Neural Networks (CNNs), FCNs do not incorporate fully-connected layers 

(dense layers). This unique characteristic allows FCNs to be adaptable to any 

input resolution [75]. Accordingly, several works investigated the usability of 

such architecture in polyp segmentation [76]–[79]. 

  Three different FCN-based architectures were trained and fine-tuned for polyp 

segmentation [77], whereas in [78] multistep were used including region 

proposal generation using FCN followed by spatial features extracting and 

utilising forest classifier for the refinement phase. Similar approach is adopted 

by [76] in which patch selection while training FCN is employed followed by 

applying Otsu thresholding for accurate polyp localisation. 

  In general, FCN is known to produce a coarse segmentation output due to its 

multiple pooling operations which yield a condense feature map. The feature 

map is then up-sampled only once to produce a segmentation mask. 

Accordingly, a progressive up-sampling architecture is proposed including 

encoder-decoder and Unet architecture [8], as seen in Figure 8-(b) and Figure 

8-(c). Originally, Unet architecture was primarily designed for biomedical 

image segmentation tasks. Recently, many variants of Unet-based architecture 

have been proposed for several segmentation tasks such as lungs segmentation 

[80], [81], liver tumour segmentation [82], and cell segmentation [83].  
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  Nevertheless, different flavours of Unet were proposed for polyp segmentation 

task [84]–[87]. For instance, multiple deep encoder-decoder networks were 

proposed by [84] to contextual information, meanwhile in [85] double Unet was 

proposed to learn rich information. Mahmud et al [86] demonstrated that a better 

feature representations can be achieved by utilising dilated inception blocks. 

Meanwhile, a lightweight encoder-decoder was proposed by [87] which is 

capable of accurately segment polyps with 86 frame/second. 

 

 

 

2.4.2 Pyramid-based models and Dilated convolution based models 

  Pyramid representation is a type of multi-scale representation developed by 

signal/image processing communities in which an image is subject to 

consecutive down sampling. This process results in having a pyramid of stacked 

images in which each layer in the pyramid has a different scale, as shown in 

Figure 9-(a). This method enables deep learning models to extract global and 

local information which results in having better feature representations. 

  Like the pyramid representation method, dilated convolution is proposed to 

attack multi-resolution object detection. In contrast to pyramid method, dilated 

convolution expands convolution kernels to enlarge the field of view of filters 

to embed multi-scale context [89], as depicted in Figure 9-(b). It is worth 

mentioning that pyramid and dilated convolution methods are not mutually 

exclusive, hence they can be applied at the same time. 

  
(a) (b) 

 
(c) 

Figure 8 Three conventional types of segmentation models, (a) Fully Convolutional 

Network FCN [75], (b) Encoder-Decoder network [88], and (c) Autoencoder with skip 

connections (i.e., Unet [8]). 
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  Pyramid method were utilised for polyp segmentations as in [90] and [91]. In 

[90] a model called PLPNet was proposed. PLPNet consists of two parts, 

including feature representation and segmentation (i.e., FCN model) units. 

Training PLPNet is conducted in two steps. In the first step, the feature 

representation unit is trained to generate rich features. After that its weights are 

frozen and the segmentation unit is trained to generate polyp masks. The 

proposed model performed extraordinarily well on CVC-ClinicDB [92]. 

Meanwhile in SegNet [88] and U-Net were used to create ensemble deep 

learning model. To unify the output of the two models, a voting method was 

utilised. 

 

 
 

(a) (b) 
Figure 9 (a) Pyramid features representations and (b) Dilated convolution. Image (b) is 

courtesy of [89].  

  Dilated convolution has been utilised in various polyp segmentation studies 

[93]–[96]. Both works in [93], [94] utilised Unet architecture as the backbone 

architecture, though, the latter utilised attention and residual block in the 

decoder. Interestingly, both methods achieved a high F1-score of ~96% on 

CVC-ClinicDB [92]. Given that CVC-ClinicDB consists of series of similar 

frames, the achieved results may indicate an overestimation due to arbitrary 

splitting the dataset into training and validation set. This issue is empirically 

demonstrated in section 4.3.2. On the other hand, DeeplabV3 [89] architecture 

is the base model of the proposed model in [95], [96]. The DeeplabV3 model 

combines both pyramid and dilated convolution to enrich feature maps 

representation, hence, achieving better segmentation results. In [95]  Long 

Short-Term Memory (LSTM) [72] is used to interconnect feature maps from  

within different blocks of DeeplabV3. Meanwhile in [96], a collective of several 

DeeplabV3 models is used in conjunction of a pyramid of multi-scale versions 

of the input images. The work in [95] utilised CVC-ClinicDB for training and 

validation and reported achieving 93.21% mean Intersection over Union 

(mIOU) even though the number of images in the training set is less than 

validation set (i.e., training and validation sets consists of 267 and 345 images, 

respectively). Again, the achieved results could be exaggerated given the high 

similarities between the training and validation set (more discussion in section 

4.3.2). 
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2.4.3 Self-attention based models 

  Self-attention and Transformer-based architecture have been recently adopted 

in colonoscopy application domain after their prevalent success in language 

tasks [97]–[101]. The distinction between Transformer and self-attention is that 

the latter is the basic building block of the former. Added to that, Transformer 

utilises other learnable components such as input/output embedding , positional 

encoding and multi-head attention [97]. 

  ACSNet [98] and CaraNet [99] are two deep learning models that utilised 

attention-based layers. ACSNet consists of Local Context Attention (LCA) 

module, Global Context module (GCM) and Adaptive Selection Module 

(ASM). The purpose of ACSNet is to enhance polyp segmentation capabilities 

on various sizes [98]. On the other hand, CaraNet employed a proposed Context 

Axial Reverse Attention Network (CaraNet) to improve the segmentation 

performance on small objects [99]. Such models which are heavily dependent 

on attention mechanism may easily overfit small training set, hence, it would 

affect their generalisability performance. This overfitting issue is empirically 

demonstrated in section 4.3.5. 

  An encoder-decoder based architecture embedded with attention blocks on the 

decoder part was proposed in [100]. The utilisation of attention method here is 

to lessen noise and surplus features, hence, enhances retaining desirable 

contextual feature relationships. Kvasir-SEG  segmentation dataset [102] was 

used for training, validation, and testing with ratio of 80%, 10%, and 10% of 

the entire dataset, respectively. Although they used other non-polyp datasets for 

experimentation, they didn’t utilise any unseen polyp test set to verify the 

generalisability of the proposed model [100]. Meanwhile, in [101] a mix of two 

parallel convolutional neural networks CNNs along with a Transformer based 

unit are fused together to capture global and local polyp features. The proposed 

model in [101] was trained using 1450 training images partly selected from 

Kvasir-SEG [102] and CVC-ClinicDB [92] (i.e., 80% reserved for training), 

meanwhile, they tested their model on the rest of the datasets, including, Kvasir-

SEG [102], CVC-ClinicDB [92], ETIS-Larib [103], and CVC-EndoSceneStill 

[104]. Nevertheless, they achieved high mean Intersection over Union (mIoU) 

of 87% on Kvasir-SEG and 89.7% on CVC-ClinicDB. However, the 

generalisability of the model is still unclear given that both dataset is partially 

seen during training phase.  
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2.5 Current gaps in the literature 

  The following arguments have been formulated after conducting an extensive 

and in-depth examination of the literature. Some of these arguments were 

empirically demonstrated in later chapters of the thesis (specifically, Chapter 3 

and Chapter 4). Others were uncovered while reviewing the literature, as well 

as through participation in colonoscopy workshops, conferences, and 

competitions. To streamline the discussion, several related arguments have been 

consolidated under single subsections, resulting in forming several subsections 

each discussing a specific issue. 

2.5.1 Image-based approaches versus video-based approaches 

  Colonoscopy images or frames are extracted from colonoscopy videos, and as 

a result, some published works in literature do not make a clear distinction 

between the two. Consequently, it has been observed that certain studies have 

labelled their proposals as being applicable to video colonoscopy, even though 

they developed and assessed their proposed techniques using handy-picked 

image datasets rather than video datasets. Unlike deep learning models tailored 

for images, deep learning architectures created for videos must account for 

temporal information. As a result, image-based and video-based deep learning 

models exhibit differences in their architectural design. 

  Additionally, video-based datasets typically remain untrimmed, encompassing 

non-informative frames such as those that are blurred, out-of-focus, saturated, 

or contain mucosa residuals. These frames are commonly encountered in real 

clinical environments and could potentially have a detrimental impact on the 

performance of deep learning models when tested under such conditions.  

  Furthermore, certain diseases manifest exclusively in specific regions within 

the gastrointestinal tract, such as Barrett's oesophagus, which is localised to the 

z-line in the distal oesophagus [30]. Consequently, contextual awareness 

assumes paramount significance. This contextual understanding is attainable 

through the utilisation of sequence modelling on videos. The absence of such 

awareness could hinder the performance of deep learning models. Indeed, as it 

is empirically showcased in Chapter 3, the utilisation of videos as training data 

markedly improved overall performance, surpassing frame-based models and 

achieving a state-of-the-art outcome. 

  Up to this point, the deep learning models that have been adopted to handle 

temporal frames in the gastrointestinal tract and colonoscopy domain have 

largely been borrowed from other computer vision domains, which are 

inherently distinct from the endoscopy domain. For instance, the 3D-ConvLstm 

architecture was initially introduced for detecting human movements in videos, 

while recently developed Transformers and self-attention methods were initially 

designed and evaluated for addressing Natural Language Processing (NLP) 

tasks. Even though these models can function in the medical domain, crafting 

specialised architectures tailored to the characteristics of colonoscopy videos 

would likely boost the performance of such deep learning models. 
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  However, it's worth noting that the emphasis on video-based approaches 

within the literature remains relatively rudimentary in comparison to frame-

based approaches especially in the colonoscopy domain. 

2.5.2 Subtle overestimation and absence of unified benchmarks 

  Distinguishing between frame-based and video-based datasets is not only 

crucial when designing deep learning models but also during the validation and 

testing phases. The methodology chosen for splitting video frames into training, 

validation, and test sets holds paramount importance. Videos often contain a 

substantial number of duplicate frames. Consequently, if videos are treated as 

individual, unrelated images and shuffled to form training, validation, and test 

sets, it becomes inevitable to encounter similar frames across all three sets. In 

such a scenario, even if a deep learning model has overfitted the training set, it 

may yield high accuracy when tested on the validation and test sets simply 

because it has encountered analogous images during training. This ultimately 

leads to an exaggerated assessment of deep learning models. Indeed, as 

empirically illustrated in Chapter 3, this form of overestimation undoubtedly 

widens the disparity between empirical research and clinical feasibility. 

  That being said, certain image-based datasets, like CVC-ClinicDB and ETIS-

LaribPolypDB polyp datasets, can also contain semi-sequenced frames. In these 

datasets, a sequence of frames is extracted from colonoscopy videos for each 

polyp. Consequently, each polyp is represented in multiple images, potentially 

exhibiting variations in lighting and angles.  

  Failing to account for this during the preparation of training and testing images 

can lead to the presence of similar datasets in both the training and testing sets. 

As a result, deep learning models may achieve high performance, which is 

essentially a consequence of arbitrary dataset partitioning. This subtle 

overestimation is empirically demonstrated in Chapter 4. Consequently, it's not 

surprising that significant discrepancies in reported results were observed, 

where some papers achieved notably higher outcomes on these datasets 

compared to others. A cursory review could erroneously suggest that achieving 

high results on such datasets signifies being at the forefront of the field. 

  Hence, one might choose to personally examine these models to form a 

definitive judgment regarding their performance or to compare them against a 

proposed model. Nevertheless, achieving reproducibility in deep learning 

research is widely considered to be challenging, and at times, even unattainable. 

This is primarily due to the vast number of hyperparameters and intricate 

implementation details that are frequently left unreported, all of which 

significantly influence the final outcomes. Even when the source code is made 

available, the absence of precise information about the colonoscopy images 

used for training and testing renders true reproducibility an elusive goal. 
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  Consequently, determining from the literature whether a specific method is 

indeed state-of-the-art becomes problematic, and comparing performance 

across various papers becomes an invalid approach. By shuffling the training 

and validation sets differently, one can produce disparate performance results, 

an occurrence that are empirically verified in Chapter 4. Accordingly, the lack 

of unified benchmarks that provide clear delineation between training, 

validation, and testing datasets hinder the assessment of different models across 

the literature.  

2.5.3 Inadequate, homogeneous, and private datasets 

  The insufficiency of publicly available datasets is a well-recognized issue 

within the gastrointestinal tract domain. Indeed, this scarcity of public datasets 

has been a topic of discussion in numerous survey papers within the literature. 

Consequently, some researchers resort to utilise their proprietary datasets, while 

in certain cases, they seek unlabelled data from the internet and proceed to 

annotate it privately. As an example, there has been a notable absence of a 

publicly accessible endoscopic dataset for oesophagus lesions thus far. 

Conversely, the existing public endoscopic datasets are notably limited in 

quantity and predominantly focused on a few specific lesion types. Ultimately, 

this shortage hampers progress in research within this domain, significantly 

impeding the applicability of deep learning in addressing endoscopic 

challenges.  

  In contrast to the prevailing trend in the literature, our perspective contends 

that the advancement of computer-aided systems (CAD) within the 

gastrointestinal tract and colonoscopy domains is progressing at an inactive 

pace and it is still distant from practical clinical application. Without access to 

comprehensive public datasets, CAD systems will continue to linger in the 

preclinical phase. This predicament arises because deep learning models 

inherently demand a wealth of data, and consequently, their performance is 

heavily reliant on the quality and quantity of the data they were trained on. 

Additionally, the use of private datasets for testing hinders the ability to 

reproduce and compare the performance of these methods. 

2.5.4 Domain-specific transfer learning 

  Quite a few papers have discussed the juxtaposition of domain-specific 

transfer learning and transfer learning from natural image datasets like 

ImageNet. Domain-specific transfer learning involves using an endoscopic 

dataset to pre-train a deep learning model, as opposed to employing well-

established datasets like ImageNet or COCO. Given the fundamental disparities 

between natural images (e.g., those featuring cats, dogs, trees, and humans) and 

endoscopic images, there are indications that lean towards the adoption of 

domain-specific transfer learning rather than the conventional transfer learning 

approach. However, further investigation is required to validate the utility and 

applicability of domain-specific transfer learning. Consequently, it remains 

unconfirmed whether utilising domain-specific transfer learning would indeed 
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outperform the traditional transfer learning technique which depends on 

extensive non-medical datasets like ImageNet. 

2.5.5 Generalisation challenges in deep learning for colonoscopy 

  The prevailing practice involves conducting training, validation, and testing 

using either a single dataset or a combination of datasets that got their frames 

divided randomly. However, as illustrated in Chapter 3 and Chapter 4, this 

approach tends to result in an overestimation of the reported results. 

Unfortunately, due to the current dearth of substantial public datasets, 

evaluating the generalisability of proposed models becomes a challenging 

endeavour. Reports within the literature have indicated that deep learning 

models may experience a decline in performance when assessed on datasets 

sourced from different hospitals or produced by various endoscope 

manufacturers. Ultimately, this will have ramifications for the integration of 

deep learning models into routine clinical practice. 

2.6 Summary 

  A lengthy discussion of deep learning methods applied to colonoscopy was 

presented in this chapter. First, upper and lower endoscopy literature were 

discussed in general. Then, two subsections were devoted to deliberate methods 

directly related to Chapter 3 and Chapter 4, respectively. Finally, current gaps 

in the literature, that is related to the application of deep learning applied to 

colonoscopy were discussed. The arguments of current gaps were organized in 

a sectioned format to facilitate the dissection.  

  It is noticed that deep learning methods have been recently applied to 

colonoscopy. Machine learning was extensively used before the era of deep 

learning. Furthermore, there are similarities between methods used for upper 

and lower endoscopy. A large amount of deep learning methods applied to 

colonoscopy are inspired/borrowed from non-medical domains. Accordingly, 

such models are not tailored for colonoscopy, despite, the discrepancy between 

non-medical domain and colonoscopy domain. 

  The usage of private datasets disabled research reproducibility which in return 

hindered the progress in this domain. Furthermore, current available datasets 

are low in quantity. Furthermore, images are handy-picked high quality which 

are far from real clinical-settings which in turn rise questions regards their 

effectiveness in real-life settings. Lack of proper datasets impose questions 

regards the generalisability of proposed models in the literature. 

  All the aforementioned gaps indicates that deep learning applied to 

colonoscopy is still in the pre-clinical stage. Therefore, more efforts and 

investigations are mandatory in order to enhance the effectiveness of deep 

learning method to a point in which they are ready to be used on a daily clinical 

practice. 
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Chapter 3  

Automatic Bowel Preparation 

Assessment 

3.1 Introduction 

  Colorectal cancer ranks among the primary reasons for cancer-related deaths. 

It is acknowledged as the second and third most common cause of cancer 

fatalities worldwide and in the United States, respectively  [105]. Early 

detection of lesions can considerably increase the chances of survival. Although 

there are various screening methods available for colon screening, colonoscopy 

is the preferred technique. This involves using an endoscope to screen the colon, 

whereby a tube with a camera attached at the end (i.e., endoscope) is inserted 

into the rectum, enabling a healthcare provider (endoscopist) to view the colon's 

internal structure. 

  The quality of colonoscopy screening is crucial in preventing colorectal  

cancers, and there are several factors used to measure its quality, including 

withdrawal time, thorough examination of the colon, and the quality of bowel 

preparation [37], [38]. If the bowel is inadequately prepared, the likelihood of 

missing polyps or lesions increases. This means that the rate of polyp detection 

is affected by the degree of cleansing of the colon mucosa. Unfortunately, 

randomized controlled trials have shown that up to 75% of patients experience 

inappropriate cleansing [106], which can result in a degradation of the quality 

of colonoscopy screening [107]. Therefore, bowel preparation is a crucial step 

before and during colonoscopy screening. As a result, both the American 

Society for Gastrointestinal Endoscopy (ASGE) and the American College of 

Gastroenterology (ACG) Taskforce on Quality in Endoscopy recommend 

reporting the quality of bowel preparation [38]. 

  Authors of [108] have proposed Boston Bowel Preparation Scale (BBPS), a 

method that quantifies the clarity of the bowel. The BBPS quantization method 

consists of four degrees of clarity (i.e., “poor”, “fair”, “good” and “excellent”) 

assigned numbers ranging from 0 (poor) to 3 (excellent). However, the 

quantification method relies on human experts, which can introduce biases, 

subjectivity, and errors. Implementing an automated system to assess the clarity 

of the bowel would eliminate these biases and reduce the burden of reporting 

the cleansing degree in a daily basis routine. Therefore, an automated system 

for evaluating the quality of colonoscopy screening, including bowel clarity, 

would be a valuable tool. 
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  It is important to note that research on automatic evaluation of bowel 

preparation has been conducted previously [37], [38], [66], [67]. However, the 

actual performance of these systems in real-life situations are questionable for 

various reasons. For instance, previous research mostly utilised private datasets, 

hence preventing research reproducibility. Additionally, these private datasets 

were filtered to exclude non-informative frames, such as blurry frames, bubbles, 

out-of-focus frames, and saturated frames. However, such frames are commonly 

found in real clinical environments and could negatively impact the 

performance of the proposed system.  

  Fortunately, only recently has a public dataset (Nerthus) [39] been introduced, 

which includes short videos containing both informative and non-informative 

frames. A dataset containing videos is more representative of clinical real-

environment than a dataset with handy-picked frames. However, failure to 

recognize Nerthus as a video dataset could lead to an overestimation of the 

proposed model's performance. Since videos consist of nearly identical 

consecutive frames, arbitrary dividing them into training and validation sets can 

result in high similarity between the two sets. If both sets are drawn from the 

same distribution, any trivial model would perform well. However, its 

performance would significantly drop when tested on an unseen dataset, 

rendering the model less useful. This issue has propagated to several works in 

literature [39], [66]–[68], and attaining such high performance can discourage 

further research in automatic bowel preparation evaluation. This has led to a 

halt in research in this area, despite the severe lack of public datasets in the 

colonoscopy domain. This problem is elaborated and empirically demonstrated 

in the subsequent sections. 

  Section 3.1 provides a concise yet thorough literature review, while section 3.2 

introduces the proposed framework and delves into its intuition and analysis. In 

section 3.3, the experiments and results are discussed, and section 3.4 provides 

the conclusion of this chapter. 
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3.2 Methodology 

  This section will showcase the public video dataset, Nerthus, with examples, 

and empirically demonstrate the issue that arises when treating the dataset as a 

collection of independent frames rather than videos. Due to GPU limitations, 

the proposed model was not able to be trained using entire videos as input. 

Therefore, a sampling method that enables us to use a shorter version of the 

input video without losing critical information is presented. Finally, analysis 

and intuitive discussion of the proposed model are illustrated. 

3.2.1 Nerthus Dataset 

  The Nerthus dataset comprises of videos featuring varying levels of bowel 

preparation degree [39]. The dataset creators utilised the Boston Bowel 

Preparation Scale (BBPS) [108] scheme to categorize the videos, which is 

depicted in Figure 10. The label "class 0" signifies that the bowel is completely 

covered with solid stool, whereas "class 3" indicates that the bowel is 

completely clear. There are a total of four classes, as demonstrated in Figure 10. 

The video durations range from 7 to 15 seconds, with a frame rate of roughly 

25 frames per second. Therefore, each video contains 175 to 375 frames, as 

outlined in Table 1. Additionally, the number of videos in each class is uneven. 

 

Class 0 Class 1 Class 2 Class 3 

Mucosa is not clear 

due to solid stools 

Mucosa is partially 

clear. 

Generally, the 

mucosa is clear, 

however, some 

fragments remain 

Mucosa is 

completely clear 

    

    

    

Figure 10. Nerthus dataset labels with a description and examples for each corresponding 

label. 
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Table 1 Each class in Nerthus dataset along with their corresponding videos and frames are 

listed. 

 Class 0 Class 1 

Video 
Number 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 

Frames 225 275 275 175 275 325 250 325 275 300 250 250 

Total 500 2700 

 Class 2 Class 3 

Video 
Number 

V13 V14 V15 V16 V17 V18 V19 V20 V21 

Frames 250 175 375 175 275 250 250 325 250 

Total 975 1350 

  It should be taken into consideration that while a video may be classified under 

a certain category, certain frames within the video may considered non-

informative images such as blurred and saturated images or may belong to a 

different class altogether. For instance, a few frames within a video may visually 

appear to be categorized as "class 2", even though the entire video is categorized 

as "class 1" due to the overall appearance of the bowel in that video. This is a 

typical occurrence as different regions of a bowel may have varying degrees of 

clarity, which can lead to uncertainty in determining the actual classification. 

  There are only two videos available for "class 0" which limits the number of 

folds that can be used as cross-validation sets. As a result, a 2-fold cross-

validation approach is employed to evaluate the effectiveness of the proposed 

model. However, three shuffles of the complete dataset were conducted and, for 

each shuffle, 2-fold cross-validation were carried out in accordance with the 

steps outlined in the next section. 

3.2.2 Sampling videos and creating cross-validation sets 

  Because GPUs have a limited capacity, considering complete videos as 

training batches was not attainable. However, it is known that a video comprises 

nearly identical consecutive frames, which allowed us to implement a 

straightforward sampling technique. This method generates smaller, but still 

indicative, sub-videos for each video in the dataset. This section elaborates on 

the used sampling method.  

  The core concept is to extract a single frame from various positions in a video 

and create a condensed version of that video (referred to as a sample). As the 

video consists of almost identical consecutive frames, capturing one frame from 

each location in the video is sufficient to represent the video's overall 

information. Figure 11 illustrates this sampling technique. 
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Figure 11 Sampling representative sub videos out of a single video. 

  Let 𝑉 = 𝒗1, … , 𝒗𝑁 represent a set of 𝑁 videos with corresponding labels 𝑌

= {𝑦1, … , 𝑦𝑁}. Then the training set can be represented as a collection of tuples 

𝑇 = {(𝒗1, 𝑦1), … , (𝒗𝑁, 𝑦𝑁)}. Each tuple in the set T consists of an input video 

𝒗𝑛 and its corresponding label 𝑦𝑛. Furthermore, each video consists of frames 

𝒗𝑛 = {𝑓0, … , 𝑓𝑀}. However, because of the limitations of the GPU capacity, 

these input pairs in 𝑇 couldn't be used to train the proposed model. To resolve 

the GPU storage limitation, representative samples (i.e., sub-videos 𝒙𝑛,0, 𝒙𝑛,1, … 

) from each video 𝒗𝑛 is proposed using the following equation: 

 𝒙𝑛,𝑗 = {⋃𝑓𝑗+𝑑𝑛∙𝑖

𝑠−1

𝑖

} , 𝑗 = 0, … , 𝑑𝑛 − 1 (1) 

where 𝑠 is a user-defined variable that determines the size of a sub-video and 

𝑑𝑛 = ⌊
𝑀𝑛

𝑠
⌋ is the effective sampling step for video 𝒗𝑛 that has a total number of 

frames 𝑀𝑛. Note that the created sub-videos 𝒙𝑛,𝑗 have the following properties: 

 ⋃𝒙𝑛,𝑗

𝑗

= 𝒗𝑛 (2) 

 ⋂𝒙𝑛,𝑗 = ∅

𝑗

 (3) 

 |𝒙𝑛,𝑗| = 𝑠 (4) 

 |𝒗𝑛| = |{𝒙𝑛,0, 𝒙𝑛,1, … }| = ⌊
𝑀𝑛

𝑠
⌋ = 𝑑𝑛 ∈ ℝ (5) 

  That is, each video 𝒗𝑛 will be sampled into 𝑑𝑛 ∈ ℝ smaller representative 

videos, each of them would have the same number of frames 𝑠 . The newly 

created representative videos 𝒙𝑛,𝑗 are subset of the original video 𝒗𝑛. 
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  Considering the listed settings (1) to (5), the new training set �̃�

= {(𝒙1,0, 𝑦1), (𝒙1,1, 𝑦1), … , (𝒙1,𝑑, 𝑦1), (𝒙2,0, 𝑦2), … }. To put it differently, every 

video from the initial dataset 𝑇 would be depicted by sub-videos with identical 

labelling as the original video. 

  Table 2, Table 3, and Table 4 present the number of newly generated samples 

and their corresponding videos using the proposed sampling method, forming 

our new dataset for the training and validation sets. The sub-video size is set to 

be 𝑠 = 25 𝑓𝑟𝑎𝑚𝑒𝑠 𝑝𝑒𝑟 𝑣𝑖𝑑𝑒𝑜 (i.e., by trial and error). Given that the Nerthus 

dataset contains variable video sizes, 25 frames per video is the greatest 

common divisor of all the videos in the dataset. This approach ensures that all 

frames are utilised by the proposed model and enables comparisons between 

frame-level models and the proposed video-level model. 

 

Table 2 2-fold cross-validation for dataset1. videos with their corresponding samples are 

listed. 

Class 

Dataset 1 

Fold1 validation Fold2 validation 

Video 

number 

Video 

samples 

Total 

frames 

Video 

number 

Video 

samples 

Total 

frames 

Class 0 

(stool) 
V1 9 225 V2 11 275 

Class 1 
V3 V5 V6 

V8 V9 
59 1475 

V4 V7 V10 

V11 V12 
49 1225 

Class 2 V13 V16 17 425 V14 V15 22 550 

Class 3 

(clear) 
V17 V20 24 600 

V18 V19 

V21 
30 750 

Total 10 109 2725 11 112 2800 
       

 

Table 3 2-fold cross-validation for dataset2. videos with their corresponding samples are 

listed. 

Class 

Dataset2 

Fold1 validation Fold2 validation 

Video 

number 

Video 

samples 

Total 

frames 

Video 

number 

Video 

samples 

Total 

frames 

Class 0 

(stool) 
V2 11 275 V1 9 225 

Class 1 

V3V4 

V5 

V7 V9 

50 1250 

V6 V8 

V10 

V11 V12 

58 1450 

Class 2 V14 V15 22 550 V13 V16 17 425 

Class 3 

(clear) 
V17 V18 21 525 

V19 V20 

V21 
33 825 

Total 10 104 2600 11 117 2925 
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Table 4 2-fold cross-validation for dataset3. videos with their corresponding samples are 

listed. 

Class 

Dataset3 

Fold1 validation Fold2 validation 

Video 

number 

Video 

samples 

Total 

frames 

Video 

number 

Video 

samples 

Total 

frames 

Class 0 

(stool) 
V1 9 225 V2 11 275 

Class 1 

V4 V6 

V8 

V10 V12 

55 1375 

V3 V5 

V7 

V9 V11 

53 1325 

Class 2 V15 V14 22 550 V16 V13 17 425 

Class 3 

(clear) 
V17 V21 21 525 

V18 V19 

V20 
33 825 

Total 10 107 2675 11 114 2850 

 

3.2.3 Proposed model 

  Colonoscopy videos in Nerthus dataset contain frames that are non-

informative, such as those that are blurry, out of focus, or over-saturated, and 

sometimes even include frames that do not belong to the appropriate category. 

Nevertheless, there are informative frames within the videos that are nearly 

identical to each other and can be useful for training purposes. By using these 

consecutive frames, issues related to non-informative video segments can be 

addressed, hence, improving the overall performance of the model [30]. To 

achieve this, a model that incorporate consecutive temporal frames by 

employing a recurrent neural network RNN model is proposed, namely, Gated 

Recurrent Unit (GRU) [109].  

  In addition, utilising non-sequential information by choosing a key frame is 

proposed. The key frame can indicate the category of the corresponding video. 

This way, both sequential and non-sequential information in a video can be 

utilised, as illustrated in Figure 12. Moreover, Figure 13 is presented to aid in 

illustrating the conceptual framework of the proposed model in relation to the 

design hierarchy. 

The proposed model has mainly four components:  

• The base component is an encoder that maps frames to vectors. This could 
be ResNet50 [7] or any other model such as DenseNet [54] or Inception. 
Both ResNet50 [7] and VGG11 [110] were used as an encoder for the 
proposed model and both options were evaluated in the experiments. 
Furthermore, both backbone models achieved comparable validation 
accuracy. 

• A sequence-based layer that captures temporal information. For this 
purpose, Gated Recurrent Unit (GRU) [109] is used. 

• A none-Sequence based layer that selects a key frame. The proposed 
None-Sequence layer is called “Multiplexer”. This name indicates the 
functionality of this layer. Given multiple feature vectors, the Multiplexer 
would forward a selected feature vector (i.e., key frame’s feature vector). 
The produced vector by this layer 𝒓𝑖 is scaled to match the magnitude of 
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the one produced by the GRU layer 𝒈. More details are given in the 
following section. 

• Finally, a fully-connected layer is utilised to extract high-level features 
from vectors that are produced by both the Sequence and None-Sequence 
layers (i.e., the GRU and Multiplexer, respectively). SoftMax is then 
applied to generate probabilities for each class based on the resulting 
vectors. 

 

 

 

 

 

 

Figure 12. The proposed model has mainly four components: an encoder, GRU, Multiplexer, 

and fully-connected layer to generate probabilities for each class. 

 
Figure 13. Hierarchal overview of the proposed model. 
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3.2.4 Intuition of the proposed architecture 

  Since training input consist of sequences of consecutive frames, it's essential 

to take into account the temporal information inherent within these sequences. 

To capture this information, Gated Recurrent Unit GRU [109] is used, which 

has been shown to be effective in this regard. The resulting feature map vector 

produced by the GRU layer is denoted as 𝒈. 

  By examining Nerthus dataset, it is possible to choose a single frame from each 

video that can serve as a representation for the entire video’s class. To achieve 

this, a layer named "Multiplexer" is proposed that produces key vectors. These 

keys are employed to extract a sole feature vector “𝒓𝑖” that corresponds to a 

specific frame in the given video, as illustrated in Figure 12. This selected 

feature vector “𝒓𝑖” would then serve as the representative for the whole video. 

  The objective is to make use of both the sequential data embedded within 

videos and the key-frame located within each video. The feature vector that 

encompasses the sequential information is denoted as the vector 𝒈 ∈ ℝ2048, 

whereas the single key-frame features vector is represented by the vector 𝒓𝑖 ∈

ℝ2048, with 𝑖 ∈ {1,2, … , 25} indicating the frame position or index. Both 𝒈 and 

𝒓𝑖 are vectors of size 2048. An elementary equation is employed to combine the 

information from both the sequential and non-sequential data (i.e., 𝒈 and 𝒓𝑖): 

 𝒒 = 𝒈 + 𝒓𝑖 (6) 

  The vector 𝒒 (appearing in Equation (6)) signifies a feature vector that 

corresponds to high-dimensional data, namely a video. Assuming there are two 

video sets A and B that belong to different class labels, an effective 

dimensionality reduction mapping 𝑓 should possess the following 

characteristic: 

 𝑑(𝑓(𝐀𝑖), 𝑓(𝐀𝑛)) < 𝑑 (𝑓(𝐀𝑖), 𝑓(𝐁𝑗)) (7) 

 𝑑 (𝑓(𝑩𝑗), 𝑓(𝑩𝑚)) < 𝑑 (𝑓(𝑨𝑖), 𝑓(𝑩𝑗)) (8) 

  In this context, 𝑑(∙) represents a distance metric and 𝑖, 𝑗, 𝑚 𝑎𝑛𝑑 𝑛 ∈ ℕ. 

Essentially, an effective projection function should be able to project vectors in 

a way that preserves the differences and similarities within and between classes 

(i.e., inter and intra class correlation). Equation (6) is designed to achieve this 

goal, as depicted in .  demonstrates the impact of adding two vectors, 𝒈 and 𝒓𝑖, 

which alters the direction and magnitude of the resultant vector 𝒒 and 

compensates for any faulty mapping produced by either 𝒈 or 𝒓𝑖. If the 

sequenced layer, GRU, generates two similar feature vectors 𝒈0 and 𝒈1 that 

belong to different classes, the Multiplexer layer generates vectors, which 

redirects the feature vectors to be further apart.
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  Equations (7) and (8) represent the optimal situation in which the vector 𝒓 

successfully maintains the differences between similar feature vectors, as 

demonstrated in . However, in the worst-case scenario, 𝒓 may make two distinct 

vectors appear more alike. Nevertheless, both the GRU and Multiplexer layers 

are capable of learning how to produce the corresponding vectors 𝒈 and  𝒓𝑖 

during the training phase. The experiment section, specifically section 3.3.5, 

depicts the visualisation of the produced feature vectors 𝒒 using two projection 

techniques namely, principle component analysis PCA [111] and t-distributed 

stochastic neighbour embedding t-SNE [112]. 

  The GRU layer's feature vector 𝒈 is regarded as the primary feature vector as 

it aggregates all frames of a video. On the other hand, the feature vector 

generated by the Multiplexer 𝒓𝒊 is viewed as a supplementary element. 

Therefore, to utilise the vector 𝒓𝒊 as a guide for the vector 𝒈, it is necessary to 

regulate the magnitude of 𝒓𝒊 which is produced by the Multiplexer layer. This 

is achieved by normalising the magnitude of 𝒓𝒊 to match that of 𝒈, thereby 

controlling the impact of the former on the latter. The normalisation is achieved 

using the following equation: 

 𝒒 = 𝒈 +
𝒓𝒊

‖𝒓𝒊‖
‖𝒈‖ (9) 

  Alternatively, instead of using Equation (9), it is possible to normalise both 

vectors 𝒈 and 𝒓𝒊 so that they have the same magnitude. Nevertheless, this 

method yielded comparatively inferior outcomes. The impact of this 

normalisation, as well as the associated results, are deliberated in the experiment 

section 3.3.6. 

 

 

 Good scenario Bad scenario  

 

  

 

Figure 14. A conceptual view regards adding the two vectors generated by Multiplexer “r” 

and GRU “g”. The dashed circle represents the range of the addition of two vectors given 

all possible values of “r”.  
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3.3 Results and discussions 

  In this section, the parameters, metrics, and training mechanism used in the 

proposed model is introduced. Also, a demonstration on how treating a video 

dataset (Nerthus) as a set of individual images can result in overestimation is 

discussed. Next, the experimental results of the proposed model are then 

compared to various state-of-the-art deep learning models, which have been 

improved through the use of transfer learning. To gain a better understanding of 

the proposed model's performance, t-distributed stochastic neighbour 

embedding (t-SNE) [112] and principal component analysis (PCA) [111] are 

utilised to visualise the feature vectors (i.e. 𝒈 + 𝒓𝒊) generated by the proposed 

model. Furthermore, a discuss on how selecting different video sizes affects the 

proposed model's performance will be discussed in a later subsection. At the 

end of this section, mathematical analyses of the effect of the proposed 

normalisation (i.e., Equation (9)) on the proposed model will be discussed. 

Finally, a summary is given to wrap up and highlights core arguments of this 

chapter. 

3.3.1 The used parameters and metrics 

  PyTorch framework [113] have been adopted to develop the proposed model 

and experiments. The used GPU are Tesla P100-PCIE and Tesla T4. The 

hyperparameters used in this experiment are summarized in Table 5. 

 

Table 5 Hyperparameters used for the experiments. 

Hyperparameter Value 

Epochs 150 

Learning rate lr 0.001 

Optimizer 
Stochastic Gradient Descent 

SGD 

Momentum 0.9 

Batch size (for the proposed model) 4 videos (25 frames/video) 

Batch size (for SOTA models) 100 frames 

 

  The used objective loss is weighted negative log likelihood loss [114]. Given 

a generated probability matrix �̂� ∈ ℝ𝑁×4, corresponding target labels 𝒚 ∈

ℝ𝑁 𝑤ℎ𝑒𝑟𝑒 𝑦𝑛 ∈ {0,1,2,3}, and a batch size N, the loss is defined as follows: 

 𝑙𝑛(𝑦𝑛, �̂�𝑛) = −𝑤𝑦𝑛
𝑙𝑜𝑔(�̂�𝑛,𝑦𝑛

), 𝑛 = 1,2, … ,𝑁 (10) 

where 𝑤𝑦 is a weight for the corresponding target label 𝑦. The weights are 

employed to mitigate the used unbalanced dataset available. The weights used 

in all experiments 𝒘 = (0.307, 0.159, 0.278, 0.255). Class 1 is the dominant 

class in terms of the total number of images as seen in Table 1. Hence, it 

assigned the lowest weight (i.e., 0.159). The weights were calculated as follows. 

First, the total number of images for each class was normalised to be between 
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[0,1] (i.e., frames = [500, 2700, 975, 1350]/5525 = [0.09, 0.488, 0.176, 0.244]). 

Then the complement is applied to each element and normalised so that the total 

sum of all weights is one (i.e., [0.91, 0.512, 0.824, 0.756]/2.96 ≈ [0.307, 0.159, 

0.278, 0.255]).  

  The mean loss is calculated to do backpropagation and update models’ weights 

[114]: 

 𝐿 = ∑
𝑙𝑛

∑ 𝑤𝑦𝑛
𝑁
𝑛=1

𝑁

𝑛=1

 (11) 

 

  Common metrics in the literature were used in this thesis, namely, F1-score, 

Precision, Recall, and Accuracy. The weighted average is adopted to combine 

the metrics across all 4 classes.  

  These metrics, including F1-score, Precision, Recall, and Accuracy, rely on 

the identification of true positives, true negatives, false positives, and false 

negatives. Here are the definitions of these sample classifications used in the 

computation of these metrics: 

TP (True Positive): An image or sample that belongs to a specific class (label) 

and the classification model correctly predicts it as belonging to that class. 

TN (True Negative): An image or sample that does not belong to a specific 

class (label) and the classification model correctly predicts it as not belonging 

to that class. 

FP (False Positive): An image or sample that does not belong to a specific class 

(label) and the classification model incorrectly predicts it as belonging to that 

class. 

FN (False Negative): An image or sample that belongs to a specific class (label) 

and the classification model incorrectly predicts it as not belonging to that class. 

  Accordingly, the definitions of including accuracy, precision, recall, and F1 

score as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (15) 
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3.3.2 Subtle overestimation in the literature 

  The hierarchy of the Nerthus dataset is shown in Figure 15. There are a total 

of 21 videos available for training, but the literature considers individual frames 

as input. Since consecutive frames in a video are nearly identical, randomly 

assigning images to training and validation set would result in having two 

similar sets. Accordingly, high validation accuracy and overestimation would 

be achieved by any model. Even if the videos were divided into halves, shuffled, 

and split into training and validation sets, the overestimation issue would not be 

resolved. This is due to having similar frames in both halves, as depicted in 

Figure 15 -at the sub-video level. This issue has resulted in nearly 100% 

validation accuracy in previous studies [67], [115], [116]. As far as this thesis 

reveals, Nerthus dataset has not been treated as a collection of videos in 

literature. 

 

Figure 15 Hierarchy of Nerthus dataset. Nerthus dataset can be viewed as a collection of 

Videos, Sub-videos, or Frames. 

  However, considering entire videos as an input/instance is the proper way to 

overcome overestimation issue. Therefore, training and validation sets should 

consist of entire videos so that both sets become different. Empirically, 

experiments at each level were conducted and summarized in Table 6 and 

Figure 16. Each model in the table was tested by considering Nerthus as a 

collection of frames, sub-videos (i.e., video divided into half), and videos. A 

significant drop in performance for each model is noticed when video level is 

targeted. 
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  To address the issue of overestimation, it is recommended to use entire videos 

as input during training and validation. This ensures that both sets are distinct. 

Experimental results, presented in Table 6 and Figure 16, demonstrate that 

testing each model with Nerthus as a collection of frames, sub-videos (i.e., 

videos divided in half), and full videos reveals a significant decrease in 

performance at the video level for all models. 

Table 6 Various models are tested with different level configurations. Notice the difference in 

performance between Frames level and Videos level. 

Model 
Validation Accuracy 

Frames Sub-videos Videos 

ResNet50 [7] 0.9982 0. 8241 0.6837 

ViT [117] 0.9982 0. 8212 0.7516 

MLP_Mixer [118] 0.9973 0. 8353 0.6462 

VGG11 [110] 1 0. 8526 0.7156 

InceptionV3 [119] 0.9982 0. 8241 0.6899 

DenseNet [54] 0.9991 0. 8673 0.6683 

 

 

Figure 16 This Parallel Coordinates conveys the information listed in Table 6. Notice the 

drop in performance between Frame level and Videos level for each model 

 

3.3.3 Comparisons against the state-of-the-art models 

  To evaluate the performance of the proposed model, the videos were 

randomized, and a 2-fold cross-validation setup was established for conducting 

the experiments. This procedure was repeated three times to generate multiple 

folds, which are presented in Table 2, Table 3, and Table 4. Explicit listing of 

the video numbers in the aforementioned tables allows other researchers to 

compare their findings with the proposed model. In this section, the proposed 

model is compared against the state-of-the-art (SOTA) “frame-level” models to 

accommodate the literature approach. In addition, the novelty of the proposed 

model is demonstrated by comparing it with state-of-the-art "video-level" 

models from non-medical domains. Lastly, the impact of video sample sizes on 

the proposed model is discussed. 
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Proposed model against frame-level models 
  Various models, including both conventional and new ones such as ResNet50 

[7] and Vision Transformer (ViT) [117], were tested. The micro average (i.e., 

weighted average) for each metric across all validation folds can be found in 

Table 7. Accordingly, a bar chart is provided in  Figure 17. To facilitate future 

benchmarking on this dataset, the specific details of the three shuffled datasets 

are outlined in Table 2, Table 3, and Table 4. Additionally, the standard 

deviation is listed to show the variance across the different validation folds. The 

best two records for each metric results are highlighted. Furthermore, a whisker 

plot for the F1-score is shown in Figure 18. 

  On average, the proposed model consistently achieved the highest 

performance across all metrics. In fact, there exists a significant margin between 

the proposed model and the next best model in terms of Precision, Recall, and 

F1-score, with differences of 5.19%, 5.59%, and 6.19% respectively. Based on 

the findings presented in Table 7 and  Figure 17, it can be concluded that the 

proposed model outperformed state-of-the-art models that utilise frame-level to 

form classification predictions. Furthermore, it can also be inferred that, 

contrary to existing literature, employing a video-level model is the correct 

approach, considering that Nerthus comprises a collection of labelled videos. 

  The proposed model utilised two different backbone models (i.e., encoders): 

ResNet50+TL and VGG11+TL. Both encoders were pre-trained on ImageNet 

and fine-tuned on the Nerthus dataset. As shown in Table 7, the VGG11+TL 

(i.e., SOTA) model outperformed the ResNet50+TL (i.e., SOTA) model, 

leading to improved overall results when used for the proposed model. 

Therefore, the proposed model, utilising VGG11 as the encoder, exhibited 

better performance compared to the model employing ResNet50. This 

observation suggests that the choice of the encoder in the proposed model 

played a role in enhancing the overall performance. Nevertheless, it is important 

to highlight that substantial improvements were achieved regardless of the 

specific backbone model chosen, as clearly evident in  Figure 17. These 

improvements can be attributed to the utilisation of temporal and spatial 

information through the proposed GRU and Multiplexer layers, respectively. 

  Observations from Table 7 reveal that the proposed model's standard deviation 

for each metric falls neither at the lowest nor highest end. To visualise the 

deviation of the F1-score metric, a whisker plot (Figure 18) was generated for 

comparison. The fine-tuned models, such as ViT+TL, displayed improved 

results compared to the vanilla models (i.e., ViT without transfer learning). As 

a result, only the fine-tuned models were selected for the F1-scores comparisons 

against the proposed model. Notably, the median F1-score of both variants of 

the proposed model surpassed that of other state-of-the-art models. 
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Table 7 The average and standard deviation are calculated over all validation folds (i.e., 6 

folds in total). The first and second highest results are highlighted. 

Models Precision Recall F1-score Accuracy 

InceptionV3 [119] 73.79 ± 5.26 73.03 ± 5.19 71.39 ± 4.81 73.03 ± 5.19 

VGG11 [110] 73.61 ± 4.89 70.39 ± 6.14 69.37 ± 5.5 70.39 ± 6.14 

DenseNet [54] 69.69 ± 6.51 67.87 ± 6.65 66.28 ± 6.4 67.87 ± 6.65 

ViT [117] 71.99 ± 4.77 70.86 ± 4.49 70.22 ± 5.12 70.86 ± 4.49 

ResNet50 [7] 68.61 ± 4.52 69.39 ± 6.1 67.18 ± 5.38 69.39 ± 6.1 

MLP_Mixer [118] 68.77 ± 6.33 66.02 ± 6.88 65.96 ± 6.65 66.02 ± 6.88 

InceptionV3 +TL 75.94 ± 5.13 72.71 ± 4.41 69.42 ± 5.78 72.71 ± 4.41 

VGG11 +TL 80.88 ± 2.88 81.3 ± 2.48 79.52 ± 2.92 81.3 ± 2.48 

DenseNet +TL 79.63 ± 3.23 79.05 ± 3.19 77.66 ± 3.16 79.05 ± 3.19 

ViT +TL 84.35 ± 2.55 82.18 ± 3.51 81.94 ± 2.65 82.18 ± 3.51 

ResNet50 +TL 79.31 ± 4.23 79.22 ± 2.08 76.35 ± 2.18 79.35 ± 2.12 

MLP_Mixer +TL 81.99 ± 2.77 79.57 ± 5.33 77.72 ± 6.21 79.57 ± 5.33 

Proposed (Encoder: ResNet50) 87.94 ± 4.83 86.28 ± 6.28 86.06 ± 5.92 86.28 ± 6.28 

Proposed (Encoder: VGG11) 91.74 ± 3.95 89.68 ± 4.73 89.41 ± 4.96 89.68 ± 4.73 

TL: Transfer learning with ImageNet is used to initialise models’ weights and then 

fine-tuned on Nerthus images. 

 

 
 

 Figure 17 The average over the two-fold cross-validation is depicted. The proposed model 

achieved the best results across all metrics (i.e., precision, recall, F1-score, and accuracy). 
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Figure 18 Whisker plot created based on the F1-score over all validation folds. The cross (x) 

inside the boxes represents the mean, meanwhile, the horizontal line (-) inside the box 

represents the median. 

 

  Considering only the F1-score, the proposed model achieved an approximate 

10% improvement compared to the corresponding state-of-the-art models, 

namely VGG11 and ResNet50. These findings suggest that incorporating 

temporal information by considering sequential consecutive frames in a video 

enhances the overall performance, in contrast to treating each frame as an 

independent entity. To gain further insight into the results achieved by the 

proposed model, two different 2D projection mappings is used to visualise the 

feature vectors produced by the proposed Multiplexer and GRU, as seen in 

Figure 20. More comprehensive details regarding these results will be 

elaborated upon in section 3.3.5. 
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Proposed model against video-level models 
  To the best of our knowledge, no existing research paper has utilised the 

"Nerthus" dataset or any other private bowel preparation dataset as a collection 

of videos, focusing on video-level classification rather than individual images. 

Accordingly, in order to further validate the effectiveness of the proposed 

model, a comparison between our video-level model and other state-of-the-art 

video models from different domains are conducted. The performance results 

of the proposed model, along with the state-of-the-art video models, are 

presented in Table 8. 

Table 8 The average and standard deviation are calculated over all validation folds (i.e., 6 

folds in total). The first and second highest results are highlighted. 

Models Precision Recall F1-score Accuracy 

C2D [120] 63.18 ± 6.5 74.81 ± 5.98 67.86 ± 6.24 74.81 ± 5.98 

I3D [121] 60.45 ± 4.28 66.76 ± 5.59 61.78 ± 5.07 66.76 ± 5.59 

Slow [122] 67.04 ± 11.38 75.43 ± 9.76 69.89 ± 10.8 75.43 ± 9.76 

C2D + TL  70.14 ± 10.79 74.86 ± 5.18 69.9 ± 7.03 74.86 ± 5.18 

I3D + TL   87.28 ± 3.99 83.81 ± 6.98 82.1 ± 8.89 83.81 ± 6.98 

Slow + TL  72.45 ± 10.34 72.11 ± 10.58 68.96 ± 10.38 72.11 ± 10.58 

Proposed (Encoder: ResNet50) 87.94 ± 4.83 86.28 ± 6.28 86.06 ± 5.92 86.28 ± 6.28 

Proposed (Encoder: VGG11) 91.74 ± 3.95 89.68 ± 4.73 89.41 ± 4.96 89.68 ± 4.73 

TL: Transfer learning with Kinetics-400 is used to initialise video models’ weights and then 

fine-tuned on Nerthus videos. Kinetics-400 contains 400 human action classes, with at least 

400 video clips for each action. 

 

  The proposed model, irrespective of the chosen encoder, demonstrated state-

of-the-art performance in terms of precision, recall, F1-score, and accuracy. 

This suggests that the architecture of the proposed model, which incorporates 

both temporal and key frames, outperforms models that solely rely on temporal 

frames. Notably, the utilisation of transfer learning, from the Kinetics-400 

dataset, significantly improved the performance of video models, as observed 

in Table 8. Figure 19 further highlights that the use of transfer learning resulted 

in a better F1-score and precision for the used video models. 

 
Figure 19 For each video-level model F1-score and Precision are depicted as bar chart. 
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  Having established the superior performance of the proposed model compared 

to both frame-level and video-level models in the previous and current 

subsections, respectively, a comprehensive analysis of the proposed model from 

three different perspectives is elaborated in the upcoming sections. These 

include examining the impact of video sampling on the proposed model, 

visualising the feature vectors in a 2D space, and conducting a mathematical 

analysis of the prediction layer's gradients under two normalisation equations. 

3.3.4 The effect of video size on the proposed model 

  In subsection 3.2.2, a method for representing videos as smaller representative 

samples (i.e., sub-video) was introduced. This is due to the limitation of the used 

GPU storage capacity. Each sub-video comprises 25 frames, which enabled 

creating training mini-batches with adequate size given the current limitation of 

the GPU. However, the impact of different sample sizes is also investigated in 

this thesis: 5, 15, 25, 35, and 45 frames per sub-video for “Dataset1”, as 

illustrated in Table 9. Nevertheless, other variations are possible as well such as 

having 20-frames shift (i.e., 5, 25, and 45) or 5-frames shift (i.e., 5, 15, 20, 25, 

30, 35, 40, and 45). However, both settings produce either less variations or too 

many variations which consume a lot of computational resources. Accordingly, 

a 10-frames shift is selected.  

Table 9 The effect of sample size on the proposed model. The following results are an average 

of the 2-fold cross-validation of dataset1. 

 Video sample's size (frame per sub-video) 

5 15 25 35 45 

Precision 84.6 89.86 89.97 90.14 93.66 

Recall 84.22 89.87 87.32 87.4 91.79 

F1-score 83.9 89.12 87.33 87.44 91.88 

Accuracy 84.22 89.87 87.32 87.4 91.79 

 

  The results obtained for each sample size were averaged across the validation 

folds (a total of 2 folds), as presented in Table 9.  The results clearly demonstrate 

that the model performs the worst when the sample size is 5 frames per sub-

video. With only 5 frames per video, there is a higher likelihood of missing 

crucial frames that are essential for accurately determining the overall class 

label. Additionally, videos with predominantly non-informative frames are 

more likely to occur, which can lead the model astray during training. 

Consequently, the model's performance is negatively affected by such training 

batches. 

  On the contrary, when using 45 frames per sub-video, a more comprehensive 

representation is achieved, encompassing key frames, non-informative frames, 

and informative frames. Since the proposed model leverages both temporal 

frames and key frames, the presence of non-informative frames has a 

diminished impact on the model's performance. The same rationale can be 

applied to sub-video sizes of 15, 25, and 35 frames. 
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3.3.5 Visualising the produced feature vector 

  The aim of this section is to visualise and compare the feature maps generated 

by the "Multiplexer+GRU" layer against those produced by the encoder 

(specifically, ResNet50+TL). Furthermore, a thorough analysis of the fully-

connected layer responsible for the classification decision is provided in section 

3.3.6. 

  To gain insight into the impact of the proposed layers, a visualisation of the 

generated feature maps is presented in Figure 20. Specifically, feature maps 

representing frames of "Dataset2-fold1" validation set were selected, as outlined 

in Table 3. To avoid any biases towards favouring the proposed model, a 

deliberately chosen validation fold that doesn’t represent the best-case scenario 

for the proposed model is selected for evaluation. Two visualisation techniques, 

namely t-distributed stochastic neighbour embedding (t-SNE) [112] and 

principal component analysis (PCA)  [111], have been employed. It is important 

to note that the ResNet50 encoder [7] is designed to represent features for 

individual frames, while the proposed layer is trained to represent videos 

consisting of 25 frames, as discussed in section 3.2.2. Both t-SNE and PCA 

maps high-dimensional vector space to a lower-dimensional vector space, hence 

facilitating vectors’ visualisation. In Figure 20, each point in the subfigures 

within the left column represents a feature map vector generated by the encoder 

layer of the proposed model, while each point in the subfigures within the right 

column represents a sub-video (i.e., 25 frames) generated by the 

"Multiplexer+GRU" layer.  

  In Figure 20, the t-SNE visualisation showcases the feature vectors generated 

by the encoder (ResNet50) as a series of interconnected strings. This implies 

that consecutive frames belonging to the same video exhibit similar features, 

resulting in similar embeddings. However, it is observed that some of the t-SNE 

encoder embeddings cluster in the middle, indicating that the encoder struggles 

to differentiate certain frames from different classes. This directly affected the 

classification results. On the other hand, the embeddings generated by the 

proposed "Multiplexer+GRU" layer are more scattered, indicating that videos 

from different classes are assigned to distinct feature vectors. 

  As shown in Figure 20, principal component analysis (PCA) embeddings for 

both the encoder and the proposed layer "Multiplexer+GRU" are shown in the 

second row. Unlike t-SNE, PCA captures the global structure by preserving the 

overall properties (i.e., eigenvectors correspond to high variance). The encoder 

embeddings exhibit similarities between neighbouring classes. For example, 

"class 2" (small fragment of stool on the mucosa) shares similar features with 

"class 1" (residual stool) and "class 3" (clear mucosa).  

 



49 

 

 
Figure 20 t-SNE and PCA embedding for the feature vectors produced by the encoder 

ResNet50 and the one produced by the proposed Multiplexer+GRU layer. 

  In contrast, the PCA embedding of the proposed layer "Multiplexer+GRU" 

shows a distinct separation between "class 1" and "class 3". However, there is 

some overlap between "class 0" and "class 1", indicating that the proposed layer 

didn't completely differentiate between them. Nevertheless, the proposed layer 

performs relatively better than the encoder, as evident from the embeddings in 

Figure 20 and the metrics' results in Table 7. 

3.3.6 Gradient analysis of the proposed normalisation 

  This section focuses on investigating the impact of normalising the vectors 𝒓 

and 𝒈 on the performance of the proposed model, as described in section 3.2.4 

and outlined by Equation (9). The detailed calculation of the prediction layer's 

gradients can be found in Appendix C. However, in this section, analysis of the 

performance of the proposed model in relation to the chosen normalisation 

method is discussed, taking into account the computed gradients presented in 

Appendix C.  

  The vectors 𝒓, 𝒈 ∈ ℝ2048 are produced by GRU [109] and the proposed 

Multiplexer layer, respectively. The vector 𝒈 is considered to be the main 

feature map vector since it represents the entire frames sequence, meanwhile, 

the vector 𝒓 is utilised to support 𝒈. To balance the effect of each vector, their 
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magnitude needs to be controlled by normalising their magnitudes. The 

magnitude of vector 𝒓 can be normalised to be equivalent to the magnitude of 

the vector 𝒈. 

  The vector 𝒈 serves as the primary feature map vector as it represents the entire 

sequence of frames, while the vector 𝒓 supports 𝒈. In order to balance the impact 

of each vector, it is necessary to control their magnitudes through normalisation. 

One approach is to normalise the magnitude of vector 𝒓 to be equivalent to that 

of vector 𝒈: 

 𝒒1 = 𝒈 +
𝒓

‖𝒓‖
‖𝒈‖ (16) 

Alternatively, both vectors can be normalised to be unit vectors, hence, both 

vectors would have the same magnitude: 

 𝒒2 =
𝒈

‖𝒈‖
+

𝒓

‖𝒓‖
 (17) 

  Please note that the normalisation applied in Equation (16) and Equation (17) 

ensures that the magnitude of vector 𝒓 matches the magnitude of vector 𝒈. 

However, it's important to consider that these normalisation equations will have 

an impact on the gradients of the fully-connected layer responsible for making 

the decision, as illustrated in Figure 21 and formulated as follows: 

 
𝒛 = 𝒇(𝒒) = 𝜽𝒒 + 𝒃 (18) 

 
�̂� = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝒛) (19) 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝒊

∑ 𝑒𝑧𝑙𝑛
𝑙=1

, ∀𝑖 = {1,… , 𝑛} (20) 

where the function 𝒇(∙) is an affine transformation with learnable weights 𝜽 ∈

 ℝ4×2048 and a learnable bias 𝒃 ∈  ℝ4. The vectors 𝒛 and �̂� are produced by the 

function 𝒇 and a given discrete probability vector (i.e., target vector), 

respectively. The variable 𝑛 = 4 since there is in total four classes in Nerthus 

dataset. The SoftMax function doesn’t have any learnable parameters, hence, 

the layer that makes the classification decision is the fully-connected layer, as 

shown in Figure 21. 
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Figure 21 depicts the last fully connected layer that is responsible for generating 

probabilities vector. 

  The used loss function of the proposed model is negative log likelihood “ℒ”: 

ℒ(𝒚, �̂�) =  −∑𝑦𝑖lo g(�̂�𝑖)

𝑛

𝑖=1

 (21) 

where the vector y represents the target discrete distribution and it is a one hot 

vector (e.g., 𝒚 = [0010]𝑇). The loss function ℒ(∙) takes two vectors of size n 

and produces one real number: 

ℒ:ℝ𝑛 → ℝ (22) 

 The gradients of the fully-connected layer in Figure 21 with respect to the loss 

function ℒ is given by the following: 

𝜕ℒ

𝜕𝜽
=

𝜕ℒ

𝜕�̂�
 
𝜕�̂�

𝜕𝒛
 
𝜕𝒛

𝜕𝜽
 (23) 

𝜕ℒ

𝜕𝒃
=

𝜕ℒ

𝜕�̂�
 
𝜕�̂�

𝜕𝒛
 
𝜕𝒛

𝜕𝒃
 (24) 

The gradients of Equation (23) is derived in Appendix C: 

𝜕ℒ

𝜕𝜽
= (�̂� − 𝒚)𝑇  

𝜕𝒛

𝜕𝜽
, ∈ ℝ1×(4×2084) (25) 

 

𝜕𝑧𝑖

𝜕𝜽
= 

[
 
 
 
 
𝟎𝑇

⋮
𝒒𝑇

⋮
𝟎𝑇]

 
 
 
 

∈ ℝ1×(4×2048), ∀𝑖 = {1,… , 𝑛} (26) 

where 𝑛 = 4 due to having four classes (i.e., bowl cleansing degree). Since the 

gradients of the loss function ℒ w.r.t weights 𝜽 is calculated, the effects of the 

applied normalisation for Equation (16) and Equation (17) can be analysed by 

calculating the magnitude of the gradients 
𝜕ℒ

𝜕𝜽
. The lower and upper bound of the 

Frobenius norm ‖∙‖𝐹 of the gradients 
𝜕ℒ

𝜕𝜽
  can be calculated, given that 𝒚 and �̂� 

each represents a discrete probability vector: 
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‖
𝜕ℒ

𝜕𝜽
‖

𝐹
= ‖(�̂� − 𝒚)𝑇  

𝜕𝒛

𝜕𝜽
‖

𝐹
≤ ‖(�̂� − 𝒚)𝑇‖𝐹 ∙ ‖

𝜕𝒛

𝜕𝜽
‖

𝐹
 (27) 

‖
𝜕ℒ

𝜕𝜽
‖

𝐹
≤ 𝑐 ∙ ‖

𝜕𝒛

𝜕𝜽
‖

𝐹
 (28) 

where 𝑐 is just a constant term. The Frobenius norm in Equation (28) can be 

calculated given the gradients of 
𝜕𝒛

𝜕𝜽
 in Equation (26): 

𝑐 ∙ ‖
𝜕𝒛

𝜕𝜽
‖

𝐹
= 𝑐 ∙ ‖4𝒒‖ = 𝑐 ∙ ‖𝒒‖ (29) 

∴ ‖
𝜕ℒ

𝜕𝜽
‖

𝐹
≤ 𝑐 ∙ ‖𝒒‖ (30) 

  Since the gradients 
𝜕𝒛

𝜕𝜽
 contains only zeros and four q’s, the Frobenius norm 

‖
𝜕𝒛

𝜕𝜽
‖

𝐹
 would be equal to the Euclidean norm of ‖4𝒒‖. It is noted that the lower 

and upper bounds of the gradients’ magnitude ‖
𝜕ℒ

𝜕𝜽
‖

𝐹
are 0 and 𝑐 ∙ ‖𝒒‖, 

respectively. Given Equation (30), the effect of normalising the vectors r and g 

in both Equation (16) and Equation (17) can be clearly contrasted. For Equation 

(16) the upper bound of the gradients’ magnitude is: 

𝑐 ∙ ‖𝒒1‖ = 𝑐 ∙ ‖𝒈 +
𝒓

‖𝒓‖
‖𝒈‖‖ = 𝑐 ∙ ‖𝒈‖ ‖

𝒈

‖𝒈‖
+

𝒓

‖𝒓‖
‖ (31) 

≤ 𝑐 ∙ ‖𝒈‖ (‖
𝒈

‖𝒈‖
‖ + ‖

𝒓

‖𝒓‖
‖) = 𝑐 ∙ ‖𝒈‖ (32) 

Meanwhile for Equation (17), the upper bound of the gradients’ magnitude is: 

𝑐 ∙ ‖𝒒2‖ = 𝑐 ∙ ‖
𝒈

‖𝒈‖
+

𝒓

‖𝒓‖
‖ ≤ 𝑐 ∙ (‖

𝒈

‖𝒈‖
‖ + ‖

𝒓

‖𝒓‖
‖) = c (33) 

In conclusion, the range of the gradients’ magnitude ‖
𝜕ℒ

𝜕𝜽
‖

𝐹
is approximately 

given by the interval (0 , 𝑐 ∙ ‖𝒈‖) and (0 , 𝑐)  when normalising the feature 

vectors using Equation (16) and Equation (17), respectively. It is noticed that 

gradients’ magnitude ‖
𝜕ℒ

𝜕𝜽
‖

𝐹
will be bounded by a constant range if the feature 

vectors 𝒓 and 𝒈 are normalised to a unit vector as in Equation (17). On the other 

hand, normalising vector 𝒓 to have a similar magnitude as vector 𝒈 will result 

in having a various/stochastic gradients’ magnitudes. This eventually induces 

elements of stochasticity regards updating the parameters.  

  The models' parameters were updated using stochastic gradient descent with 

momentum, which led to reaching and escaping several local minima. This 

information is supported by Figure 22-(a), which demonstrates the optimization 

process and the behaviour of the loss function during training. 
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Figure 22 Dataset1-Fold1 validation loss of the proposed model when (a) normalising the 

vector r to have similar magnitude as g and (b) normalising both vectors r and g to become 

a unit vector. 

  In Figure 22, the comparison of validation losses between Equation (16) and 

Equation (17) is shown in columns (a) and (b), respectively. The validation set 

used for this comparison is Dataset1-Fold1, which can be referred to in Table 

2. To highlight the pattern of the validation loss, a moving average with a 

window size of 10 is applied. The window size was determined via trial and 

error. 

  The epoch that achieved the best validation accuracy is highlighted in green. 

It is noticed that there is a significant improvement in accuracy, approximately 

13%, when using Equation (16) compared to Equation (17). This improvement 

can be attributed to the model's ability to escape multiple local minima, as 

depicted in Figure 22-(a). 

  It is worth noting that the epoch with the lowest validation loss does not 

necessarily align with the epoch that achieves the best validation accuracy. 

However, in this specific experiment, it happened that the epoch with the lowest 

loss in Figure 22-(a) also corresponded to the best validation accuracy, which 

was approximately 86%. 

 
Figure 23 Dataset1-Fold2 validation loss of the proposed model when (a) normalising the 

vector r to have similar magnitude as g and (b) normalising both vectors r and g to become 

a unit vector. 

  In the case of the dataset Dataset1-Fold2, it is observed from Figure 23 that 

the proposed model achieved high validation accuracy regardless of the 

normalisation method used. Specifically, when Equation (16) was used for 

normalisation, the validation accuracy was 91.9%, and when Equation (17) was 

used, the accuracy increased to 92.8%. This indicates that the proposed model 

might have found a good local minimum when both vectors (r and g) were 

normalised to unit vectors. 
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  However, the difference in performance between the two normalisation 

methods, Equation (16) and Equation (17), is only 0.9% for the dataset 

Dataset1-Fold2. In this case, using Equation (16) to escape local minima did not 

yield better results than using Equation (17), as depicted in Figure 23. 

  Nevertheless, the difference in performance between the two normalisation 

methods is insignificant compared to the significant improvement achieved 

using the dataset Dataset1-Fold1, which corresponds to approximately 13%. 

Therefore, it is decided to choose Equation (16) as the normalisation method, 

despite the slight sacrifice in performance in some validation folds. 

3.4 Summary 

  In this chapter, the performance of various deep learning methods for assessing 

bowel clarity is investigated by leveraging a public database named Nerthus. It 

is shown in this chapter that the literature achieved over-estimated performance 

due to improper treatment of this video dataset. Dealing with the dataset as a 

collection of independent frames/images, and randomly dividing the images 

into training and validation, resulted in creating nearly identical distributions 

(training and validation) and thereby achieving amplified performance. 

Furthermore, it is advisable to consider videos when testing a model to mimic 

real-clinical environment. Accordingly, it is proposed to treat Nerthus dataset 

as a collection videos, instead of independent frames/images, to create various 

validation folds. Given the limited capacity of the used GPU, a sampling method 

is proposed to create smaller representative sub-videos to enable training the 

proposed model with adequate batch size.  

  The proposed model is designed to leverage temporal information within 

videos, as well as spatial information within individual frames. The proposed 

model consists of mainly four components, namely, an encoder that encode 

input frames into feature-vectors, a layer that handle sequenced data (i.e. GRU), 

a layer that select a representative feature-vector (i.e. Multiplexer), and finally 

a fully-connected layer that generates probability distribution for the target 

labels. The produced vectors by the Multiplexer and GRU layers are normalised 

and added together to increase the inter-class separability and intra-class 

compactness. This effect has been visualised in a 2D plot using the principal 

component analysis (PCA) as well as t-distributed stochastic neighbour 

embedding (t-SNE).  

  The extensive experiments on different validation folds indicate that the 

proposed model achieved better than the state-of-the-art deep learning models. 

The proposed model achieved the highest record on Precision, Recall, F1-score, 

and Accuracy with approximately 10% enhancement, on average, compared 

with the best performing frame-level state-of-the-art models.  
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  Moreover, the proposed model outperformed video-level state-of-the-art 

models across all metrics. Specifically, when considering only the F1-score, the 

difference between the best video-level model and the proposed model amounts 

to 7.31%. The performance improvements across different metrics indicate the 

effectiveness and superiority of the proposed approach in comparison to other 

models. 

  It is hoped that this work would spark interest in the research community to 

further investigate this problem and construct public annotated datasets that 

enable appropriate evaluation of the generalisability of models. 
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Chapter 4  

Polyp Segmentation 

4.1 Introduction 

  Polyps are abnormal growth in the mucosa which signifies a risk of developing 

cancer if left untreated, as seen in Figure 24. Hence, it is essential to identify 

and analyse any formed polyp by colonoscopist as soon as it appears. Colorectal 

cancer is a prevalent type of cancer in which it is considered the third leading 

cause of cancer deaths [74]. Polyp recognition and treatment often pose 

significant challenges due to the complexity of the anatomical structure of the 

colon and rectum, making such screening require a high level of expertise. 

Furthermore, the irregularity of polyp shapes and human-based errors such as 

being prone to fatigue could affect the quality of screening. Furthermore, 

colonoscopists’ expertise level effect polyp missing rate. In fact non-

gastroenterologists are five times more likely to miss colorectal  cancer during 

colonoscopy than gastroenterologists [123]. To address these confronts, 

computer systems have been proposed as a promising assistance. These systems 

aim to reduce human subjectivity and enhance polyp detection rates. 

  Recently, computer vision community has signified a considerable interest in 

deep learning models due to their ability to exceed hand-crafted classifiers 

regularly portrayed as conventional machine learning models [124]. 

Nevertheless, deep learning models suffer from a pivotal set of challenges. 

Challenges such as the need for solid training datasets, addressing the issue of 

overfitting, and effectively tuning hyperparameters to achieve optimal 

performance. As a result, a notable decline in performance is observed when 

these models are tested on unseen future samples [32]. Accordingly, several 

architecture designs are presented in the literature [99], [124]–[129]. 

Nevertheless, these models, by default, inherit the limits of deep learning 

methods in which the accessibility of adequate dataset is vital. Currently, this is 

not the case in the colonoscopy domain which automatically leads to the usage 

of image augmentation. However, such simple augmentation methods such as 

rotation, flipping, and shearing would not significantly enhance the 

performance on unseen data due to some invariants properties entrenched in 

deep learning models [130], [131]. 

  Utilising generative adversarial networks (GANs) are considered admirable 

alternatives to expand the training dataset. Nevertheless, generating synthetic 

polyp images using GANs is not a clear-cut procedure, and, in some incidence, 

it needs manual intervention [14], [15]. In [15], an edge filtering-based 

conditioned image mask is proposed to train conditional GAN [132]. 

Meanwhile, [14] used real non-polyp images and converted them to polyp  
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 images using GAN inpainting model. The earlier method requires pre-

processing time to merge the extracted edge-filtering images and random polyp 

masks, whereas the latter requires post-processing to verify that synthetic 

polyps are realistic [134]. 

To address these limitations, a synthetic data generation pipeline called 

SinGAN-Seg is proposed by [134]. As opposed to [14], [15], SinGAN-Seg 

generate synthetic images along with corresponding labels without the need for 

doing post-processing or manual work. Essentially, they utilised SinGAN [135] 

to generate images with masks and utilised a style-transfer method [136] to fine-

tune them. Although their proposed method produced realistic polyp images, 

the inflated dataset did not enhance the performance of the used segmentation 

model except when the training data was extremely small (i.e., less than 20 

images). 

  It is noticed in general that generating synthetic images using GANs is a time-

consuming procedure, demands high computational complexity, and unstable. 

Furthermore, the anticipated segmentation enhancement is not promising. In 

fact, a comprehensive study was conducted by [137] to compare the 

effectiveness of conventional augmentation methods and GANs encompassing 

sophisticated techniques. They concluded that traditional augmentation 

techniques remain the most fruitful [12], [137]. The reason is that GANs based 

models sample its data from the training distribution which yield images that 

have similar features as the original training images which turns to be not 

beneficial in enhancing generalisability of deep learning models. 

  This thesis presents an alternative approach to improve generalisability 

without explicitly increasing the dataset size. Instead of augmenting or adding 

new images to the dataset, a segmentation model is exposed to out-of-domain 

images during training epochs. The method involves gradually transforming the 

original images by manipulating their texture meanwhile feeding those on-the-

 
Figure 24 If polyp left untreated it may develop to a cancer. Image courtesy of [133]. 
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fly transformed images to the segmentation model to acquire it invariant 

properties towards colour and texture changes. Two concrete implementations 

stemmed out of this proposed framework, including, minimizing images’ total 

variations 𝑇𝑉∅ and texture interpolations 𝑇𝐼∅. The 𝑇𝑉∅ objective is to gradually 

wash-out background’s textures (i.e., the gradient of the background ≈ 0) while 

maintaining the region of interest’s texture (i.e., polyp). On the other hand, 𝑇𝐼∅ 

applies spatial interpolation between an input image with fine-grained texture 

and a corresponding version with reduced texture details. By training on a range 

of texture and colour variations, the segmentation model becomes more robust 

and adaptable to different conditions. Each one of the proposed models is 

elaborated independently in the Methodology section. Both models were tested 

against the state-of-the-art models and showed superior generalisability results 

on unseen test sets from different medical centres. 

4.2 Methodology 

  In the first section, a proposed framework will be presented from a general 

perspective. Following that, two different concrete implementations of the 

proposed framework will be elaborated in two subsequent sections. Finally, the 

used datasets for experiments will be demonstrated. 

4.2.1 Proposed framework: An overview 

  Polyps do not exhibit specific shapes, colours, or sizes, and the elasticity of the 

colon lining (i.e., mucosa) can sometimes look like polyps. These factors 

significantly affect the performance of deep learning models used for polyp 

segmentation. Moreover, worse generalisability performance is anticipated 

when these models are tested on unseen polyp images from different medical 

centres. Accordingly, their suitability for clinical practice is questionable. Due 

to the scarcity of proper datasets, polyp segmentation remains a challenging 

problem.  

  To address this issue, researchers often opted to techniques such as data 

augmentation or generative adversarial networks (GANs) to artificially increase 

the size of available datasets. However, these approaches have not been proven 

to significantly enhance generalisability performance. In contrast, this section 

proposes a novel approach that involves on-the-fly image-to-image 

transformation during the training phase. The goal is to introduce out-of-domain 

samples in each epoch to regularize a segmentation model 𝑓(⋅), as illustrated in 

Figure 25.  
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Figure 25 The effects of introducing artificial samples on the mapping functions (i.e., 

learnable models). 

 

  In essence, deep learning model is a function governed by a set of parameters 

𝑓(𝑥; 𝜃). The function maps inputs to outputs 𝑓𝜃: 𝑋 → �̃� and both the inputs and 

the outputs could be any mathematical object, including, number, vector, matrix 

or an image. Furthermore, a loss function is utilised to quantify mapping errors 

𝐿: �̃� → ℝ and accordingly tune function’s parameters 𝜃 to get the desired output 

close to ground truth 𝑌. Such a function can be called a “model”.  

  Given limiting data 𝑋 and the complexity of the model 𝑓𝜃, the latter can overfit 

the training data in various ways, as seen in Figure 25. Furthermore, there is no 

unique solution to the mapping problem, hence, several different set of 

parameters 𝜃 can drive the model to have the desired output. However, the 

model 𝑓𝜃 may not perform well on future unseen data due to lack enough 

training samples (i.e., poor generalisability). 

  To address the poor generalisability problem, researchers tend to regularize 

their model using L1 & L2 regularization, dropout, early stopping, data 

augmentation, and inflating dataset using Generative Adversarial Networks 

(GANs). It is true that these methods reduce overfitting problems, however, it 

may not enhance the generalisability of a model if the distribution of future data 

is shifted from the distribution of training data. In other words, if the model has 

not been exposed to patterns similar to future data, reducing overfitting will not 

improve its generalisability. Moreover, inflating the training set with samples 

taken from a distribution that resembles the training distribution will not 

enhance the generalisability. To that end, a deep learning framework that 

continuously exposes the model to out-of-domain samples is proposed, thus, 

enhancing its generalisability competence, as seen in Figure 26.   
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Figure 26 Overview of the proposed framework. The input image 𝑥 is independently 

transformed by both a random hue-shift function and image-to-image transformation unit. 

  The proposed framework consists of mainly three components, including an 

image-to-image transformation unit 𝑇∅, a random hue shift unit 𝐻, and a 

segmentation model 𝑓𝜃 parameterized by 𝜃. For each epoch 𝑡, the learnable unit 

𝑇∅ responsible for continuously transforming input images’ texture 𝑇∅(𝑥, 𝑡) =

𝑥𝑡
∗, meanwhile, the unit 𝐻 randomly shift the colour of input images 𝐻(𝑥, 𝑡) =

�̂�𝑡. Here, the goal is not inflating the number of training samples but rather apply 

online transformations to input images during training epochs. More details 

about these transformations are further elaborated in the subsequent sections. 

  A colourful image 𝑥 ∈ ℝ3×𝐻×𝑊 can be seen as a point in high-dimensional 

space ℝ𝑘, as depicted in Figure 27. According to manifold hypothesis, training 

images cluster in a small subset of the high-dimensional space ℝ𝑘 [114], where 

𝑘 < 3 ⋅ 𝐻 ⋅ 𝑊. This subspace is referred to as training manifold. Outside the 

training manifold resides noisy images as depicted in Figure 27. Given this 

manifestation, the essence of the proposed framework is to produce samples 

nearby the training manifold by leveraging image-to-image transformations. By 

introducing variations to the original input, the used model would be introduced 

to new patterns and get regularized. As a result, the generalisability of the used 

model would be enhanced. 

 
Figure 27 An image can be seen as a point in high-dimensional space. Each pixel is 

considered a single dimension. 
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  The overall training objective to be minimized by the proposed framework is 

illustrated in Figure 28. The segmentation model 𝑓𝜃 calculates the likelihood of 

having polyp regions given an input image 𝑥 (i.e., 𝑃𝜃(𝑦|𝑥)). Accordingly, the 

segmentation model receives images 𝑥 as input and produce �̃� as an output 

𝒇𝜽: 𝑿 → �̃�. The variable �̃� resembles an estimation to a target conditional 

likelihood distribution 𝑦 ≡ 𝑃(𝑦|𝑥), hence, �̃� ≡ 𝑃𝜃(𝑦|𝑥). Furthermore, log loss 

function is utilised to quantify the distance between the target distribution 

𝑃(𝑦|𝑥) and the estimate distribution 𝑃𝜃(𝑦|𝑥). Accordingly, the segmentation 

model 𝑓𝜃 tries to minimize negative log-likelihood −𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥) in order to 

find parameters 𝜃 that best produce the target distribution 𝑃(𝑦|𝑥) (i.e., polyp 

segmentation mask). 

  As shown in Figure 28, there are a set of images 𝑿 and corresponding ground 

truth labels (i.e., masks) 𝒀 sampled from two distributions 𝑿~𝑃𝑑𝑎𝑡𝑎(𝑥) and  

𝒀~𝑃𝑑𝑎𝑡𝑎(𝑦), respectively. Added to that, for each training sample 𝑥, there are 

two conditional probability distributions, including �̂�~𝐻(�̂�|𝑥) and 

𝑿∗~𝑇∅(𝑥
∗|𝑥). As discussed above, 𝐻 and 𝑇∅ are two different transformation 

units (more details in subsequent sections). If only the original training set 𝑿  

are considered for training, then the objective of the segmentation model is to 

minimize on average the negative log-likelihood 𝔼𝑃𝑑𝑎𝑡𝑎(𝑥)
− 𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥). On 

the other hand, if a set of transformed images �̂�𝒏~𝐻(�̂�𝑛|𝑥𝑛) that correspond to 

a single image 𝑥𝑛 is considered for training, then the objective is to minimize 

on average the negative log-likelihood 𝔼𝐻(�̂�𝑛|𝑥𝑛) − 𝑙𝑜𝑔𝑃𝜃(𝑦𝑛|�̂�𝑛). Likewise, 

if another set of transformed images 𝑿𝑛
∗ ~𝑇∅(𝑥𝑛

∗ |𝑥) is considered for training, 

then the training objective is to minimize 𝔼𝑇∅(𝑥𝑛
∗
|𝑥𝑛) − 𝑙𝑜𝑔𝑃𝜃(𝑦𝑛|𝑥𝑛

∗) ). 

However, if all the training images 𝑥 are considered along with all applied 

transformations by 𝐻 and 𝑇∅, then the training objective is to minimize the 

following nested negative-log likelihood: 

−𝔼𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥) + 𝔼𝐻(�̂�|𝑥)𝑙𝑜𝑔𝑃𝜃(𝑦|�̂�) + 𝔼𝑇∅(𝑥∗

|𝑥)𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥∗)] (34) 

  Therefore, the training process of a segmentation model can be explained as 

performing stochastic gradient descent on the expectation in Equation (34). It is 

empirically demonstrated in the experiment section (i.e., Ablation study) that 

the best performance for the used segmentation model is achieved only if all 

terms in Equation (34)  were considered for the training process. Deleting any 

term in Equation (34) negatively affects the performance of the segmentation 

model. Given the above presentation of the proposed framework, two concrete 

implementations are discussed in the following two subsections. 



62 

 

 

Figure 28 Proposed framework objective. For each training image x there are two series of 

transformations produced by H and T units, respectively.  

4.2.2 Proposed model I: Total Variational 

    The proposed framework consists of mainly three components including 𝑇𝑉∅ 

model that apply image-to-image transformation, a random colour shift unit, 

and a segmentation model as shown in Figure 29. For each epoch, different 

transformation is applied to an input image 𝑥. 

  To enhance the generalisability and robustness of any segmentation model, it 

should be exposed to images sampled from a probability distribution different 

than the training distribution 𝑃𝑑𝑎𝑡𝑎(𝑥). The intention of introducing out-of-

domain samples is to regularize the used segmentation model, hence, preventing 

overfitting. Furthermore, introducing new patterns to the segmentation model 

will enhance its recognition competence. Accordingly, a novel image-to-image 

transformation is proposed that is inspired by Total Variational method [138]. 

  Total Variational minimization was originally proposed to lessen noises of a 

given image 𝑞 by introducing a denoised version 𝑔. The new denoised image 𝑔 

should have fundamental features of image 𝑞 with minimum variations. This 

objective is formulated as follows: 

  𝑚𝑖𝑛
𝑔

𝜆

2
‖𝑞 − 𝑔‖2 + ‖𝛻𝑔‖ (35) 
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Figure 29 This figure depicts the first concrete implementation of the proposed framework. 

The input image is independently transformed by a random Hue-shift function and Total 

Variation minimization model 𝑇𝑉𝜙. 

  The first term measures the discrepancy between the original image 𝑞 and the 

produced one 𝑔, meanwhile, the second term quantify the total variations ‖𝛻𝑔‖ 

of the generated image. The above equation is regularized by a scalar 𝜆 to 

balance between reconstruction term ‖𝑞 − 𝑔‖2 and denoising term ‖𝛻𝑔‖. 

  The concept of Total Variational minimization objective is leveraged by 

considering the entire background region as being noises that need to be 

eliminated. On the other hand, only the structure of the region of interest (i.e., 

polyps) is retained. This objective can be formulated as follows.  

  Let 𝑥 and �̌� be two 2D images which represent original and transformed 

images, respectively. Furthermore, let 𝑨 be set of points that represents polyp 

pixels’ location. Then our proposed Total Variation minimization objective, 

which will be addressed by 𝑇𝑉∅ deep learning model, is defined by: 

  𝑚𝑖𝑛
�̌�

{
𝛼‖𝑥(𝑤, ℎ) − �̌�(𝑤, ℎ)‖2      𝑓𝑜𝑟   (𝑤, ℎ) ∈ 𝑨 

𝛽‖𝛻�̌�‖                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
 (36) 

where (w, h) represents pixel coordinates, whereby, 𝛼 and 𝛽 are scalars used 

to balance between construction and total variation ‖𝛻�̌�‖ objectives. Since the 

training images consists of RGB channels, the gradients for a single channel 

𝛻�̌�𝑐 is defined as follows: 

  𝛻�̌�𝑐 = [
𝜕�̌�𝑐

𝜕𝑤

𝜕�̌�𝑐

𝜕ℎ
] (37) 

where 𝑐 represent a RGB channel of a colourful image, meanwhile, 𝑤 and ℎ 

are the x-axis and y-axis coordinates of polyp pixel. Since the transformed 

image �̌� consists of 3 channels (i.e., Red, Green, and Blue), the total variations 

for colour images are defined as follows: 

  ‖𝛻�̌�‖ = √‖𝛻�̌�𝑅‖2 + ‖𝛻�̌�𝐺‖2 + ‖𝛻�̌�𝐵‖2 (38) 
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where ‖∙‖ is Frobenius norm, meanwhile, �̌�𝑅, �̌�𝐺, and �̌�𝐵 are 2D Red, Green, 

Blue channels, respectively. To calculate the patrial derivatives 
𝜕�̌�𝑐

𝜕𝑤
 and 

𝜕�̌�𝑐

𝜕ℎ
 

two 3-by-3 kernels are employed to the input image �̌�𝑐 by convolution: 

 
𝜕�̌�𝑐

𝜕𝑤
(𝑎, 𝑏) = 𝑘𝑤 ∗ �̌�𝑐(𝑎, 𝑏) = ∑ ∑ 𝑘𝑤(𝑖, 𝑗)

3

𝑗=−3

�̌�𝑐(𝑎 − 𝑖, 𝑏 − 𝑗)

3

𝑖=−3

 (39) 

 
𝜕�̌�𝑐

𝜕ℎ
(𝑎, 𝑏) = 𝑘ℎ ∗ �̌�𝑐(𝑎, 𝑏) = ∑ ∑ 𝑘ℎ(𝑖, 𝑗)

3

𝑗=−3

�̌�𝑐(𝑎 − 𝑖, 𝑏 − 𝑗)

3

𝑖=−3

 (40) 

  where 𝑘𝑤 and 𝑘ℎ are Sobel operators: 

𝑘𝑤 = [
1 0 −1
2 0 −2
1 0 −1

]  𝑎𝑛𝑑 𝑘ℎ = [
1 2 1
0 0 0

−1 −2 −1
] (41) 

  Other than Sobel operators could be used, and it would have some effect on 

produced images by the 𝑇𝑉∅ model. The effect of using different derivative 

operators on the produced images is discussed in .  

  The 𝑇𝑉∅(�̌�|𝑥) is a deep learning model consists of Unet [8] followed by a 

sigmoid layer. The sigmoid layer is used to normalise the Unet output range to 

be (0,1). The 𝑇𝑉∅ has learnable parameters ∅ that get updated during the 

training epochs through stochastic gradient descent. Accordingly, 𝑇𝑉∅ learns to 

identify polyp texture to preserve it, meanwhile smoothing the background in a 

progressive matter as seen in Figure 30 and Figure 31. More examples are 

presented in Appendix D.2. 

  The proposed model is designed to be an end-to-end deep learning model in 

which only one training phase are required to train both the TV and 

segmentation models as depicted in Figure 29. At epoch 𝑡, an original image 𝑥, 

a corresponding Hue shifted image �̂�𝑡, and a transformed image �̌�𝑡 are produced 

by 𝑇𝑉∅ model, all of which are fed to a segmentation model. Accordingly, the 

training process of a segmentation model can be viewed as performing 

stochastic gradient descent on the following expectation: 

−𝔼𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥) + 𝔼𝐻(𝑥|𝑥)𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥) + 𝔼𝑇𝑉∅(𝑥|𝑥)𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥)] (42) 

where 𝑃𝑑𝑎𝑡𝑎(𝑥) is the training distribution, 𝐻(�̂�|𝑥) represents a conditional 

distribution over Hue shifted samples �̂�, given a data sample 𝑥, and finally, 

𝑇𝑉∅(�̌�|𝑥) represents a conditional distribution over transformed samples �̌�, 

given a data sample 𝑥. 
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Figure 30 Illustrations of the transformation of input images using 𝑇𝑉∅ model during 

training. While training is progressing, background textures are gradually washed out 

meanwhile polyp are retained. 

 

 
Figure 31 Examples of the transformed validation images using the proposed 𝑇𝑉∅ model. 
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  It is worth noting that it is the case that the total variations of a transformed 

image is always less than the original image (i.e.,  ‖𝛻�̌�𝑡‖ < ‖𝛻𝑥‖ for every 

epoch 𝑡). A segmentation model learns from three different samples (i.e., 

𝑥, �̂�𝑡, 𝑎𝑛𝑑 �̌�𝑡) and updates its parameters 𝜃 to produce a better corresponding 

mask for each sample. Accordingly, the learning process is attained by 

performing gradient-based approximate minimization on nested negative log-

likelihood, as defined in Equation (42). Minimizing nested negative log-

likelihood proved to enhance the generalisability of various segmentation 

models as discussed in section 4.3.7. Note that the objective of 𝑇𝑉∅ unit is to 

minimize Equation (36), meanwhile, the segmentation model learning objective 

is illustrated in Equation (42).  

  The machinery of the entire training process is visually explained in Figure 32. 

Essentially, the segmentation model 𝑓(𝑥, �̂�𝑡, �̌�𝑡; 𝜃) learns how to map training 

manifold to the prediction manifold. Notice that during the training phase, 

instances outside the training manifold are introduced to enhance the 

segmentation performance on future unseen instances. The original images as 

well as the produced out-of-domain images have the same output mask which 

in turn act as implicit regularization mechanism to the mapping function 𝑓(⋅). 

  The loss of the overall deep learning model can be defined by consulting 

Equation (36) and Equation (42) for 𝑇𝑉∅ and the segmentation model 

objectives, respectively. For an epoch 𝑡, an original input image 𝑥, Hue shifted 

image �̂�𝑡, 𝑇𝑉∅ image �̌�𝑡, and a corresponding image mask 𝑦, the loss function 𝑙 

is defined by: 

 

𝑙(𝑥, 𝑥𝑡 , 𝑥𝑡 , 𝑦) = 𝑙𝑇𝑉∅
(𝑥, 𝑥𝑡, 𝑦) + 

                                    𝐵𝐶𝐸(𝑃𝜃(𝑦|𝑥), 𝑦) + 

                                     𝐵𝐶𝐸(𝑃𝜃(𝑦|𝑥𝑡), 𝑦) + 

                               𝐵𝐶𝐸(𝑃𝜃(𝑦|𝑥𝑡), 𝑦) 

(43) 

 
Figure 32 Hypothetical illustration of the proposed framework with respect to the training 

manifold. 
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where 𝑙𝑇𝑉∅
(⋅) is the loss function of the 𝑇𝑉∅ unit and 𝐵𝐶𝐸(⋅) is binary cross 

entropy loss for the segmentation model [139]. Finally, 𝑃𝜃(⋅ | ⋅) is a conditional 

probability distribution which represents the output of the segmentation model. 

The 𝑙𝑇𝑉∅
(⋅) and 𝐵𝐶𝐸(⋅) are defined as follows: 

𝑙𝑇𝑉∅
(𝑥, �̌�𝑡 , 𝑦) =

𝛼

𝐻𝑊
‖[𝑥(𝑤, ℎ) − �̌�𝑡(𝑤, ℎ)] ⨀ 𝑦‖2 +

𝛽

𝐻𝑊
‖𝛻�̌�𝑡  ⨀ (𝟏 − 𝑦)‖ (44) 

𝐵𝐶𝐸(�̃�, 𝑦) =
1

𝐻𝑊
𝑠𝑢𝑚[𝑦 ⨀ 𝑙𝑜𝑔 �̃� + (𝟏 − 𝑦) ⨀ 𝑙𝑜𝑔(𝟏 − �̃�)] (45) 

where ⨀ is elementwise multiplication operator and 𝟏 ∈ ℝ𝑯×𝑾 is a matrix of 

ones. The label 𝑦 is a 2D mask image that has a pixel value of 1 for a polyp 

pixel and 0 otherwise. Finally, 𝑙𝑜𝑔(𝑩) and 𝑠𝑢𝑚[𝑩] are elementwise log function 

and a summation of elements of matrix 𝑩 ∈ ℝ𝑯×𝑾, respectively. 

4.2.3 Proposed model II: Spatial Interpolation 

  Following the previous presentation, another concrete instance of the proposed 

framework is presented in this subsection in which its core idea stemmed from 

Equation (42) (i.e., minimizing nested negative log-likelihood). Another image-

to-image transformation is proposed by replacing the 𝑇𝑉∅ with a texture 

interpolation unit 𝑇𝐼∅. The overall proposed model is depicted in Figure 33.  

 
Figure 33 This figure depicts the second concrete implementation of the proposed 

framework. The input image is independently transformed by a random Hue-shift function 

and Texture Interpolation unit 𝑇𝐼𝜙 . 

  In each training epoch, the proposed framework applies a texture interpolation 

transformation using 𝑇𝐼∅ model to produce an image �̅� that has different texture 

details than original inputs. The 𝑇𝐼∅ get an input image and then applies a simple 

spatial interpolation between the input image 𝑥 and a corresponding textureless 

version �̃�, as depicted in Figure 33 and Figure 34. 
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𝒙:Original image �̃�:Textureless image �̂�𝒕:Hue shifted image 𝑦:Target mask 

    

    

    

Figure 34 Some examples for input images and their corresponding transformations. 

The texture interpolation is defined as follows: 

 �̅�𝑡 = (1 − 𝛼𝑡)𝑥 + 𝛼𝑡�̃�, 𝛼𝑡 ∈ [0,1] (46) 

 
𝛼𝑡 = 0.5 ∙ (1 + 𝑐𝑜𝑠 (

𝑐𝑦𝑐𝑙𝑒𝑠 ∙ 2𝜋 ∙ 𝑡

𝑇
)) (47) 

where 𝑥, �̅�𝑡, 𝑎𝑛𝑑 �̃� are original image, interpolated image, and textureless 

image. Meanwhile 𝛼𝑡 is a scalar that controls the interpolation rate. The two 

variables 𝑡 and 𝑇 are the epoch number and the total training epochs, 

respectively. Finally, 𝑐𝑦𝑐𝑙𝑒𝑠 is an integer that sets the interpolation periodicity 

rate between the original image 𝑥 and its corresponding textureless image �̃�, a 

visual illustration is depicted in Figure 35. 

    The textureless images �̃� are generated by a pre-trained autoencoder, which 

was trained beforehand, to approximately reconstruct the input image, 

preserving only the most relevant aspects of the images. Examples of textureless 

images produced by the auto-encoder are shown in Figure 34. The autoencoder's 

latent space has a relatively smaller spatial dimension compared to the encoding 

space, allowing it to capture essential features while omitting texture details, as 

shown in Figure 36. Additionally, the autoencoder was trained to generate polyp 

masks along with reconstructing original images to prevent the autoencoder 

from learning an identity function. Eventually objective loss for the autoencoder 

𝐴𝐸 is defined as follows: 

 𝑙𝐴𝐸(𝑥, �̃�, 𝑦, �̃�) = ‖𝑥 − �̃�‖ + 𝐵𝐶𝐸(𝑦, �̃�) (48) 

where 𝑥, �̃�, 𝑦, 𝑎𝑛𝑑 �̃� are an input image, approximated textureless image, 

original mask, and output mask by the Autoencoder 𝐴𝐸. 
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Figure 35 Interpolation between an original image 𝑥 and a corresponding textureless 

version �̃�. The x-axis of the curve represents the epoch number 𝑡, meanwhile, the y-axis 

represents interpolation rate 𝛼𝑡. 

 

 
Figure 36 Autoencoder used to produce textureless approximation of the original image. 

  After the Autoencoder 𝐴𝐸 is trained, its weights are frozen and used to produce 

textureless version of the input image. The 𝑇𝐼∅ unit then applies linear 

interpolation between the input image 𝑥 and the textureless version �̃� to produce 

an image with different texture details, as depicted in Figure 35. The 

transformation depends on the epoch number 𝑡 and, consequently, the scalar 𝛼𝑡. 
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  For training a segmentation model, the same training strategy as the previous 

section is followed here as well. In each epoch, the segmentation model receives 

an input image with a different level of texture details to make the segmentation 

model invariant to texture changes, as shown in Figure 33 and Figure 35. 

Additionally, to enhance the model's robustness to colour changes, random hue 

transformations are applied. Accordingly, the loss for the segmentation model 

is defined as follows: 

𝑙(𝑥, 𝑥𝑡 , �̅�𝑡 , 𝑦) = 𝐵𝐶𝐸(𝑃𝜃(𝑦|𝑥), 𝑦) + 

                             𝐵𝐶𝐸(𝑃𝜃(𝑦|𝑥𝑡), 𝑦) + 

                       𝐵𝐶𝐸(𝑃𝜃(𝑦|�̅�𝑡), 𝑦) 

(49) 

where 𝐵𝐶𝐸(⋅) is binary cross entropy loss for the segmentation model and it is 

defined in Equation (45). Meanwhile, 𝑃𝜃(⋅ | ⋅) is a conditional probability 

distribution which represents the output of the segmentation model. Finally, 

𝑥, �̂�𝑡, �̅�𝑡 , 𝑎𝑛𝑑 𝑦 are original image, Hue shifted version, texture image-to-image 

transformed version, and target mask image, respectively. 

  The underlying concept behind this proposed design is to enable the 

segmentation model to learn from both the original training manifold and a 

corresponding, yet distinct, training manifold, as depicted in Figure 37. This 

approach helps mitigate overfitting issues that may arise due to deprived 

training samples. By including three different images within the same batch, 

learnable weights 𝜃 of the segmentation model are updated to capture robust 

features, resulting in improved results, as demonstrated in the experiment 

section. A segmentation model 𝑓(𝑥, �̂�𝑡, �̅�𝑡; 𝜃) is trained to map various samples 

with different texture and colour patterns to a single point on the prediction 

manifold (i.e., polyp mask), as depicted in Figure 37. During the training phase, 

𝑇𝐼∅ unit gradually shift original input from the training manifold to a new 

training manifold, meanwhile, make segmentation model 𝑓(⋅) to map these 

transformed samples to a single point on the prediction manifold, as seen in 

Figure 37. Eventually, deep features are learned by the segmentation model 

𝑓(⋅), hence, performing better on unseen test sets. 

 
Figure 37 Hypothetical illustration of the proposed model with respect to the training 

manifold. 
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  Mathematically, the training process can be interpreted as performing 

stochastic gradient descent on the following expectation: 

−𝔼𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥) + 𝔼𝐻(𝑥|𝑥)𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥) + 𝔼𝑇𝐼∅(�̅�|𝑥)𝑙𝑜𝑔𝑃𝜃(𝑦|�̅�)] (50) 

where 𝑃𝑑𝑎𝑡𝑎(𝑥) is the training distribution, 𝐻(�̂�|𝑥) represents a conditional 

distribution over Hue shifted samples �̂�, given a data sample 𝑥, and finally, 

𝑇𝐼∅(�̌�|𝑥) represents a conditional distribution over transformed samples �̌�, 

given a data sample 𝑥. Accordingly, the learning process is attained by 

performing gradient-based approximate minimization on nested negative log-

likelihood, as defined in Equation (50). Minimizing nested negative log-

likelihood proved to enhance the generalisability of various segmentation 

models as established in the experiments section. 

4.2.4 Polyp dataset 

  Three different datasets are used in the experiments, namely, Kvasir-SEG 

[102], CVC-ClinicDB [92], ETIS-Larib [103], and CVC-EndoSceneStill [104]. 

Those datasets are publicly available and have variety number of polyp images 

as illustrated in Table 10. The resolutions of the images in these datasets are not 

standardized. Therefore, prior to being fed into the deep learning models, all 

images were resized to a uniform size of 216-by-288 pixels. 

Table 10 The used datasets in the experiments 

Database Number of images Resolution in pixels 

Kvasir-SEG 1000 384×288 

CVC-ClinicDB 612 332×487 to 1920×1072 

ETIS-Larib 196 1224×966  

CVC-EndoSceneStill 912 384×288 to 574×500 

Total 2,720 N/A 

  

  The training and validation images are constructed randomly from CVC-

clinicDB dataset with a split of 70% and 30% for training set and validation set, 

respectively. Meanwhile the entire Kvasir-SEG dataset along with ETIS-Larib 

and CVC-EndoSceneStill are preserved as unseen test set. Nevertheless, it is 

worth mentioning that EndoSceneStill dataset is a combination of CVC-

ClinicDB and other dataset called CVC-ColonDB [104].  
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4.3 Results and discussions 

4.3.1 The used hyperparameters and metrics 

  All the experiments in this study were conducted with the same 

hyperparameters. PyTorch framework was used with Nvidia Tesla P100-PCI 

GPU. The hyperparameters are listed in Table 11: 

Table 11 Hyperparameters of the conducted experiments 

Hyperparameter Value 

Learning rate 0.01 

Batch size 7 images 

Numpy pseudorandom seed 0 

Pytorch pseudorandom seed 0 

Images size Height=217, Width=288 

Training epochs 300 

Optimizer Adam [140] 

Loss Binary Cross Entropy 

 

  Prevalent metrics in the literature were used to quantify the model 

performance. Given two sets A and B, the used metrics are listed as follows: 

Intersection over Union (IoU)/Jaccard: 

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = 𝐼𝑜𝑈 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (51) 

Dice/F1-score: 

 𝐹1 = 𝐷𝑖𝑐 =
2|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵| + |𝐴 ∩ 𝐵|
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  (52) 

Mean IOU (mIoU): 

𝑚𝐼𝑜𝑈 =  
𝐼𝑜𝑈𝑝𝑜𝑙𝑦𝑝 + 𝐼𝑜𝑈𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

2
=

𝑇𝑃

2(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
+

𝑇𝑁

2(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (53) 

Accuracy: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (54) 

Precision: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (55) 

Recall: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (56) 

 



73 

 

where TP, TN, FP, and FN are defined as follows: 

TP (True Positive): A polyp pixel is correctly predicted as a polyp pixel. 

TN (True Negative): A background pixel is correctly predicted as a 

background pixel. 

FP (False Positive): A background pixel is wrongly predicted as polyp pixel. 

FN (False Negative): A polyp pixel is wrongly predicted as a background 

pixel. 

4.3.2 Subtle overestimation in the literature 

  Generally, when a deep learning model attains a high Intersection over Union 

(IoU) score for polyps, it suggests that the model effectively delineates polyp 

boundaries. Numerous studies have demonstrated this level of performance on 

publicly available datasets like CVC-ClinicDB [92]. However, it is important 

to question whether such accomplishments truly reflect the models' ability to 

perform well on unseen images in the future. These achievements are more 

likely a result of overestimation in the tested models rather than a sign of strong 

generalisation capabilities. 

  Considering that public datasets like CVC-ClinicDB [92] consist of sub-

sequences of consecutive frames, it is inevitable that there will be repetitive 

images with potentially minor variations in lighting, angles, or focus. 

Consequently, if one were to randomly shuffle such a dataset and split it into 

different subsets, it would result in each subset containing similar-looking 

images, as depicted in Figure 38. Deep learning, known for its capability to 

overfit to training data, would then be evaluated on data that bears resemblance 

to what it has already seen during training. Consequently, deep learning models 

are likely to yield high performance, especially if they have overfit patterns 

present in the training set. 

  Under these circumstances, a deep learning model will acquire knowledge of 

the data patterns present in the training images, and as a result, it will accurately 

identify those same patterns in the validation images because both sets of 

images exhibit substantial similarities. Indeed, this exaggeration issue are 

empirically showcased in various deep learning models when evaluating them 

with the CVC-ClinicDB [92] dataset, as depicted in Figure 39.  

  Two distinct methods were applied to generate training and validation sets. 

The initial approach involved random shuffling of the dataset followed by 

splitting it into training and validation sets. The second approach was sequence-

based, wherein a series of images were exclusively assigned to either the 

training or validation set. Consequently, two distinct dataset partitions were 

obtained. Subsequently, the best validation results for four distinct deep learning 

models were recorded, as depicted in Table 12. 
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Figure 38 Partitioning a dataset comprising sequences of almost consecutive frames in an 

arbitrary manner will lead to two similar sets. 

 

Table 12 Validation results using CVC-ClinicDB dataset given two approaches, Arbitrary and 

Series-based. 

Model 

Split type 

Arbitrary Series-based 

Polyp IoU Polyp IoU 

Unet 0.71268 0.41857 

FCN 0.75312 0.44938 

Lraspp 0.76834 0.45119 

DeeplabV3 0.72453 0.38111 

 

  Regardless of the model employed, it is evident that random shuffling of CVC-

ClinicDB leads to deep learning models achieving impressive validation 

Intersection over Union (IoU) scores. Conversely, when employing an informed 

splitting method, such as the sequence-based approach, a substantial decrease 

in validation performance becomes apparent, as illustrated in Table 12 and 

Figure 39. Both Table 12 and Figure 39 convey identical information, albeit the 

latter visually represents the results' patterns.  
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Figure 39 Randomly shuffling and splitting CVC-ClinicDB will result in an overestimation. 

  As evident, the choice of split method significantly influences the validation 

results obtained by any deep learning model. Consequently, it is common to 

observe substantial disparities in outcomes across various published works that 

utilise the same dataset. Attaining high validation results does not inherently 

imply a superior deep learning architecture. Hence, direct comparisons based 

solely on published results are not advisable. This subtle issue appears to persist 

across numerous research papers, highlighting the need for clarification in 

addressing it. 

  A more effective approach involves training and validating a model on one 

dataset and subsequently testing it on an entirely different dataset collected from 

a distinct healthcare source. This is the approach that was employed to conduct 

experiments and compare against the state-of-the-art models in this chapter. As 

detailed in the following section, CVC-ClinicDB was utilised for training and 

validation, and then assessed the performance of deep learning models on 

Kvasir-SEG [102], CVC-EndoSceneStill [104], and ETIS-Larib [103]. This 

methodology enables us to assess the generalisability of the proposed model and 

benchmark it against state-of-the-art models. Improved generalisability 

performance indicates a model's better suitability for clinical applications. 

4.3.3 The effectiveness of the proposed framework using 

conventional segmentation models 

  In this subsection, the efficacy of employing the proposed framework in 

conjunction with traditional segmentation models will be illustrated. Both 

proposed models (i.e., 𝑇𝑉∅ and 𝑇𝐼∅) are compared against various segmentation 

models. The used conventional segmentation models include Unet [8], 

DeeplabV3 [89], FCN [75], and Lraspp [141]. It's worth noting that Unet and 

Lraspp are both considered lightweight models when compared to DeeplabV3 

and FCN. For the purpose of training and validation, the CVC-ClinicDB dataset 

[92] was exclusively utilised, as seen in Table 13. The training and validation 

split is 70% and 30%, respectively. Other training to validation ratios could be 

used such as 80% to 20% or even 90% to 10%, however, our aim is to increase 

the chances of having a representative validation set by increasing validation 

samples. Conversely, the Kvasir-SEG [102], CVC-EndoSceneStill [104], and 
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ETIS-Larib [103] datasets were reserved for testing, as seen in Table 14, Table 

15, and Table 16.  

  This approach of using the entire dataset solely for testing is the best strategy 

for assessing the generalisability of deep learning models, as these datasets 

originate from different medical centers. Thus, the testing datasets are treated 

as unseen sets, rather than combining all datasets and then partitioning them into 

training, validation, and test sets. However, there is an exception regards CVC-

EndoSceneStill being not entirely from a different datacenter since part of it 

contains images from CVC-ClinicDB dataset and the other part from CVC-

ColonDB [104] dataset. 

  For each of the four models, experiments were conducted to demonstrate the 

improvement in generalisability when applied to unseen test sets, both with and 

without the inclusion of the proposed framework. Additionally, each model's 

performance were evaluated with and without the utilisation of pretrained 

weights from the COCO segmentation dataset [142]. It's worth noting that the 

COCO dataset comprises non-medical images; however, pretrained weights 

were employed from this dataset to facilitate a comparative assessment of 

transfer learning against the proposed framework. 

  In general, there are moderate differences in metrics, in favor of the proposed 

framework, between the conventional deep learning models with and without 

the proposed framework on the validation set. In fact, the differences in polyp 

IoU range from approximately 0.3% to 5%. In certain instances, the proposed 

model attained superior validation polyp Intersection over Union (IoU); 

however, in other cases, conventional segmentation models outperformed only 

the proposed 𝑇𝑉∅, as evident in Table 13. Such variations are unsurprising since 

both the training and validation data are drawn from the same dataset. In fact, 

the results achieved by these models are mainly influenced by overfitting to the 

training images. This overfitting had a negative impact on the generalisability 

of the conventional models when tested using unseen test sets, as established in 

Table 14, Table 15, and Table 16. 

  While the validation set results do not exhibit a clear pattern, a distinct 

advantage in favour of the proposed framework becomes apparent across all 

unseen test sets, as indicated in Table 14, Table 15, and Table 16. Apart from a 

few instances in the Recall results, the proposed framework consistently 

outperformed the corresponding segmentation models. This underscores the 

notion that irrespective of the chosen segmentation model, the use of the 

proposed framework consistently enhances the generalisability capabilities of 

the model. 
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Table 13 Validation results on the CVC-ClinicDB dataset. The training and validation split is 

70% and 30%, respectively. The highest results are highlighted. 

CVC-ClinicDB Validation set 

Settings Model Acc IoU Dice Rec Prec mIOU 

Vanilla 

Unet 93.88 43.56 56.13 68.33 57.21 68.47 

Proposed TV 

(Seg:Unet) 
94.65 43.25 54.98 55.05 65.21 68.79 

Proposed TI 

(Seg:Unet) 
94.77 47.03 59.97 70.78 59.87 70.69 

DeeplabV3 94.86 46.03 57.25 67.35 56.98 70.23 

Proposed TV 

(Seg:DeeplabV3) 
94.45 39.12 49.55 53.61 52.15 66.6 

Proposed TI 

(Seg:DeeplabV3) 
94.21 46.95 58.66 68.2 58.76 70.38 

FCN 95.79 45.29 55.84 60.9 57.85 70.37 

Proposed TV 

(Seg:Fcn) 
94.97 45.94 56.3 64.8 59.2 70.26 

Proposed TI 

(Seg:Fcn) 
95.35 50.07 61.14 68.62 63.57 72.52 

Lraspp 95.37 52.06 63.27 72.19 63.3 73.52 

Proposed TV 

(Seg:Lraspp) 
96.23 53.97 64.46 70.39 67.76 74.95 

Proposed TI 

(Seg:Lraspp) 
96.32 57.83 68.33 77.42 67.22 76.91 

TL-

Coco* 

DeeplabV3 94.31 37.83 46.84 52.7 48.34 65.88 

Proposed TV 

(Seg:DeeplabV3) 
95.28 42.66 52.57 52.27 59.39 68.82 

Proposed TI 

(Seg:DeeplabV3) 
93.3 42.14 53.68 68.22 51.21 67.5 

FCN 95.25 47.81 58.96 66 61.71 71.33 

Proposed TV 

(Seg:Fcn) 
94.49 40.24 50.93 57.52 55.08 67.17 

Proposed TI 

(Seg:Fcn) 
95.07 48.41 59.34 66.02 63.99 71.56 

Lraspp 95.88 51.57 63.12 68.29 66.7 73.56 

Proposed TV 

(Seg:Lraspp) 
96.22 52.87 63.54 66.08 67.85 74.4 

Proposed TI 

(Seg:Lraspp) 
96.33 55.12 66 69.68 70.05 75.59 

TL-Coco*: Segmentation model is pretrained on COCO dataset [142] and fine-

tuned on polyp dataset CVC-ClinicDB. 
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Table 14 Results of the test set Kvasir-Seg. Models were trained and validated using CVC-

ClinicDB dataset. The highest results are highlighted. 

Kvasir-SEG Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

Vanilla 

Unet 69.85 27.94 40.67 72.56 36.44 46.89 

Proposed TV 

(Seg:Unet) 
84.88 33.65 47.37 51.06 57.11 58.53 

Proposed TI 

(Seg:Unet) 
77.95 30.68 44.61 67.35 40.02 52.93 

DeeplabV3 76.66 23.95 34.84 50.53 34.74 49.24 

Proposed TV 

(Seg:DeeplabV3) 
85.73 28.93 40.16 38.25 59.89 56.87 

Proposed TI 

(Seg:DeeplabV3) 
86.74 37.49 49.96 50.69 62.46 61.51 

FCN 72.42 29.79 41.85 68.46 38.42 49.45 

Proposed TV 

(Seg:Fcn) 
87.67 42.29 53.62 55.05 66.55 64.4 

Proposed TI 

(Seg:Fcn) 
87.29 40 52.57 53.01 64.46 63.04 

Lraspp 85.35 36.43 48.64 53.95 55.44 60.19 

Proposed TV 

(Seg:Lraspp) 
89.66 50.69 62.04 57.9 79.22 69.69 

Proposed TI 

(Seg:Lraspp) 
89.84 50.99 62.22 59.61 77.86 69.96 

TL-Coco* 

DeeplabV3 83.16 19.3 28.13 28.72 42.58 50.8 

Proposed TV 

(Seg:DeeplabV3) 
87.07 35.63 46.93 43.08 69.63 60.93 

Proposed TI 

(Seg:DeeplabV3) 
86.11 34.97 47.17 47.83 59.15 59.97 

FCN 76.46 30.93 43.11 62.73 44.62 52.36 

Proposed TV 

(Seg:Fcn) 
87.05 35.33 47.1 43.49 68.26 60.76 

Proposed TI 

(Seg:Fcn) 
87.29 39.57 51.61 51.92 64.65 62.84 

Lraspp 84.52 34.33 46.63 50.05 56.85 58.72 

Proposed TV 

(Seg:Lraspp) 
88.26 41.34 51.43 46.68 74.78 64.45 

Proposed TI 

(Seg:Lraspp) 
89.48 48.32 59.12 55.73 77.88 68.47 

TL-Coco*: Segmentation model is pretrained on COCO dataset [142] and fine-

tuned on polyp dataset CVC-ClinicDB. 
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Table 15 This is the results of the test set CVC_EndoSceneStill. Models were trained and 

validated using CVC-ClinicDB dataset. The highest results are highlighted. 

CVC_EndoSceneStil Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

Vanilla 

Unet 92.13 46.99 56.79 65.73 62.17 69.36 

Proposed TV 

(Seg:Unet) 
95.22 52.1 62.37 62.17 75.29 73.52 

Proposed TI 

(Seg:Unet) 
94.65 54.25 64.33 71.01 66.46 74.27 

DeeplabV3 94 56.87 65.07 74.41 65.9 75.27 

Proposed TV 

(Seg:DeeplabV3) 
95.95 56.49 65.33 67.28 69.7 76.1 

Proposed TI 

(Seg:DeeplabV3) 
95.12 60.44 69.09 75.97 69.65 77.64 

FCN 93.27 53.53 61.9 70.54 63.64 73.21 

Proposed TV 

(Seg:Fcn) 
96.06 60.54 69.41 74.31 71.24 78.16 

Proposed TI 

(Seg:Fcn) 
96.62 64.64 72.34 74.94 75.02 80.52 

Lraspp 96.29 61.89 70.2 75.22 70.96 78.97 

Proposed TV 

(Seg:Lraspp) 
97.47 70.62 78.22 80.8 80.43 83.95 

Proposed TI 

(Seg:Lraspp) 
97.6 71.16 78.68 82.82 78.95 84.29 

TL-Coco* 

DeeplabV3 94.03 45.77 54.29 59.43 57.3 69.75 

Proposed TV 

(Seg:DeeplabV3) 
96.58 60.95 68.8 68.9 74.01 78.65 

Proposed TI 

(Seg:DeeplabV3) 
95.1 57.18 65.97 75.98 63.16 76 

FCN 93.94 54.75 63.11 69.78 65.79 74.18 

Proposed TV 

(Seg:Fcn) 
95.89 57.69 66.58 69.31 71 76.66 

Proposed TI 

(Seg:Fcn) 
96.28 63.03 70.7 74.6 73.23 79.55 

Lraspp 96.2 58.18 68.19 69.41 73.59 77.05 

Proposed TV 

(Seg:Lraspp) 
97.39 66.15 74.37 74.53 79.38 81.67 

Proposed TI 

(Seg:Lraspp) 
97.4 68.04 75.29 77.76 77.89 82.63 

TL-Coco*: Segmentation model is pretrained on COCO dataset [142] and fine-

tuned on polyp dataset CVC-ClinicDB. 
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Table 16  This is the results of the test set ETIS_LaribPolypDB. Models were trained and 

validated using CVC-ClinicDB dataset. The highest results are highlighted. 

ETIS-LaribPolypDB Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

Vanilla 

Unet 51.35 7.77 12.91 73.16 9.09 28.78 

Proposed TV 

(Seg:Unet) 
94.1 11.46 16.74 17.92 23.05 52.71 

Proposed TI 

(Seg:Unet) 
69.82 9.41 15.44 57.01 11.82 39.2 

DeeplabV3 89.2 7.86 12.08 24.25 11.77 48.42 

Proposed TV 

(Seg:DeeplabV3) 
93.37 13.95 19.47 28.08 22.74 53.58 

Proposed TI 

(Seg:DeeplabV3) 
91.77 14.31 19.71 26.28 22.29 52.94 

FCN 60.05 9.01 14.16 62.68 11.3 34.05 

Proposed TV 

(Seg:Fcn) 
94.04 16.63 21.81 28.22 26.99 55.28 

Proposed TI 

(Seg:Fcn) 
93.47 11.47 16.42 20.75 20.34 52.39 

Lraspp 91.1 11.03 16.17 22.95 18.04 50.95 

Proposed TV 

(Seg:Lraspp) 
95.53 20.45 25.6 26.11 31.45 57.93 

Proposed TI 

(Seg:Lraspp) 
95.55 23.44 30.54 32.89 35.96 59.42 

TL-Coco* 

DeeplabV3 93.36 6.9 10.63 15.03 11.45 50.04 

Proposed TV 

(Seg:DeeplabV3) 
94.13 16.62 21.67 25.18 28.29 55.32 

Proposed TI 

(Seg:DeeplabV3) 
95.49 11.63 16.18 15.79 24.63 53.49 

FCN 57.29 7.64 12.52 64.43 9.49 31.88 

Proposed TV 

(Seg:Fcn) 
94.22 14.58 20.42 23.58 24.43 54.34 

Proposed TI 

(Seg:Fcn) 
93.06 13.04 18.18 24.32 20.7 52.98 

Lraspp 85.41 13.4 19.2 34.92 19.7 49.22 

Proposed TV 

(Seg:Lraspp) 
95.68 17.63 22.66 22.26 31.71 56.6 

Proposed TI 

(Seg:Lraspp) 
95.51 16.89 22.72 21.82 34.5 56.15 

TL-Coco*: Segmentation model is pretrained on COCO dataset [142] and fine-

tuned on polyp dataset CVC-ClinicDB. 
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  In certain instances, the recall results of deep learning models surpass those of 

the proposed framework. It's important to note that achieving high recall results 

does not necessarily signify excellent performance but rather evokes a bias 

towards polyp pixels. When there's a high recall coupled with relatively lower 

Precision, it indicates that a model exhibits a higher sensitivity in classifying 

background pixels as polyp pixels. Consequently, it amplifies the false-positive 

errors, resulting in lower precision. In fact, even a simple, naive model that 

labels all pixels as polyp would achieve a perfect 100% recall rate at the expense 

of the precision. 

  Notably, what's interesting is that the proposed framework, when paired with 

any segmentation model, outperforms its corresponding model with transfer 

learning, as illustrated in Figure 40. In fact, this is true not only for the proposed 

𝑇𝑉∅ model, but rather both the proposed 𝑇𝑉∅ and 𝑇𝐼∅ models, as shown in 

Figure 40. In this specific scenario, transfer learning did not appear to provide 

any added benefit. The rationale behind this lies in the fact that these 

segmentation models were originally trained on natural images, such as the 

COCO dataset, which significantly differs from the context of colonoscopy 

images. It is reasonable to anticipate a substantial performance improvement if 

these models were pretrained on colonoscopy images instead of non-medical 

datasets. In fact, there is currently a growing call for the development of an 

ImageNet-like dataset tailored specifically for endoscopy.  

 
Figure 40 Polyp Intersection over Union results on Kvasir-SEG (i.e., test set). The proposed 

segmentation models without TL against corresponding segmentation model with TL. 
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4.3.4 Proposed framework against the state-of-the-art models 

  The preceding section demonstrated how the integration of the proposed 

framework led to a notable improvement in the generalisability performance of 

traditional segmentation models. In this section, a comparative analysis of the 

proposed framework will be conducted against recent models explicitly 

designed for polyp segmentation. These models include ACSNet [98] (2020), 

MSNet [125] (2021), CaraNet [99] (2022), and M2SNet [127] (2023).  

  ACSNet was introduced with the aim of capturing both global context features 

and local context information through an encoder-decoder framework that 

employs adaptive context selection [98]. In contrast, MSNet and M2SNet are 

U-Net-based architectures that incorporate multiscale subtraction units between 

the encoder and decoder, rather than relying solely on direct skip connections 

[127]. For a more detailed understanding of segmentation architectures, refer to 

section 2.4. On the other hand, CaraNet leverages a self-attention mechanism 

and a channel-wise feature pyramid module to extract feature information from 

small medical objects [99]. 

  Similar recall results are evident on the validation set, though, the proposed 

framework overcome the state-of-the-art models on other metrics, as illustrated 

in Table 17. For example, the discrepancy in recall between the proposed 

framework 𝑇𝑉∅ with Lraspp and MSNet is just 0.51%. Conversely, MSNet 

negligibly outperforms the proposed framework 𝑇𝑉∅ with FCN in terms of dice 

scores. However, a substantial performance gap emerges strongly in favour of 

the proposed framework when tested on unseen datasets, as depicted in Table 

18, Table 19, and Table 20. 

  Overall, the proposed framework consistently outperformed state-of-the-art 

models (SOTA) across all metrics on every test set. Specifically, reflecting on 

the Kvasir-SEG test set and considering the polyp IoU metric for both 

segmentation networks (FCN and Lraspp), the proposed framework surpassed 

other SOTA models by a notable margin, ranging from approximately 10.62% 

to 29.82%. This clearly underscores the effectiveness of the proposed 

framework on unseen test datasets, highlighting its superior generalisability 

capabilities.  
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Table 17 Validation results on the CVC-ClinicDB dataset. The training and validation split is 

70% and 30%, respectively. The highest two results are highlighted.  

CVC-ClinicDB Validation set 

Settings Model Acc IoU Dice Rec Prec mIOU 

TL* 

MSNet 94.78 45.43 56.45 69.88 56.27 69.91 

M2SNet 90.33 33.08 45.2 66.04 42.57 61.35 

CaraNet 91.52 28.53 38.52 53.09 35.5 59.76 

ACSNet 88.0 29.73 41.74 67.9 37.32 58.54 

w/o TL 

Proposed TV 

(Seg:FCN) 
94.97 45.94 56.3 64.8 59.2 70.26 

Proposed TI  

(Seg:FCN) 
95.35 50.07 61.14 68.62 63.57 72.52 

Proposed TV 

(Seg:Lraspp) 
96.23 53.97 64.46 70.39 67.76 74.95 

Proposed TI 

(Seg:Lraspp) 
96.32 57.83 68.33 77.42 67.22 76.91 

TL*: Only the encoder is pretrained using ImageNet. 

 

Table 18 Test results of the Kvasir-Seg dataset. Models were trained and validated using 

CVC-ClinicDB dataset. The highest results are highlighted. 

Kvasir-SEG Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

TL* 

MSNet 85.23 29.21 39.95 41.11 55.37 56.65 

M2SNet 68.69 25.85 37.87 71.28 31.3 45.25 

CaraNet 73.07 27.38 39.65 66.17 34.92 48.66 

ACSNet 84.28 20.87 30.29 31.99 43.64 52.1 

w/o TL 

Proposed TV  

(Seg:FCN) 
87.67 42.29 53.62 55.05 66.55 64.4 

Proposed TI  

(Seg:Fcn) 
87.29 40 52.57 53.01 64.46 63.04 

Proposed TV  

(Seg:Lraspp) 
89.66 50.69 62.04 57.9 79.22 69.69 

Proposed TI  

(Seg:Lraspp) 
89.84 50.99 62.22 59.61 77.86 69.96 

TL*: Only the encoder is pretrained using ImageNet. 
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Table 19 Test results of the CVC_EndoSceneStil dataset. Models were trained and validated 

using CVC-ClinicDB dataset. The highest results are highlighted. 

CVC_EndoSceneStil Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

TL* 

MSNet 94.44 52.65 61.54 69.64 62.66 73.39 

M2SNet 88.36 37.7 48.12 66.35 46.85 62.69 

CaraNet 90.06 29.98 39.3 50.39 40.33 59.78 

ACSNet 88.42 29.11 40.78 61.84 38.18 58.48 

w/o TL 

Proposed TV 

(Seg:FCN) 
96.06 60.54 69.41 74.31 71.24 78.16 

Proposed TI 

(Seg:Fcn) 
96.62 64.64 72.34 74.94 75.02 80.52 

Proposed TV 

(Seg:Lraspp) 
97.47 70.62 78.22 80.8 80.43 83.95 

Proposed TI 

(Seg:Lraspp) 
97.6 71.16 78.68 82.82 78.95 84.29 

TL*: Only the encoder is pretrained using ImageNet. 

 

Table 20 Test results of the ETIS-LaribPolypDB dataset. Models were trained and validated 

using CVC-ClinicDB dataset. The highest results are highlighted. 

ETIS-LaribPolypDB Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

TL* 

MSNet 87.09 9.65 14.63 28.42 18.58 48.23 

M2SNet 58.06 8.55 13.52 64.06 9.55 32.64 

CaraNet 69.01 10.38 16.41 66.06 13.77 39.24 

ACSNet 93.22 7.84 11.47 17.37 12.7 50.44 

w/o TL 

Proposed TV 

(Seg:FCN) 
94.04 16.63 21.81 28.22 26.99 55.28 

Proposed TI 

(Seg:Fcn) 
93.47 11.47 16.42 20.75 20.34 52.39 

Proposed TV 

(Seg:Lraspp) 
95.53 20.45 25.6 26.11 31.45 57.93 

Proposed TI 

(Seg:Lraspp) 
95.55 23.44 30.54 32.89 35.96 59.42 

TL*: Only the encoder is pretrained using ImageNet. 
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  Nevertheless, there are a few exceptions, particularly in the case of the recall 

metric in certain instances. For example, in Table 18, CaraNet has a recall that 

is approximately 6.56% higher than the proposed framework 𝑇𝐼∅ with Lraspp. 

However, this elevated recall achieved by the CaraNet model comes at the 

expense of a lower precision result. It signifies a pronounced inclination towards 

the polyp class, resulting in the misclassification of a substantial background 

region as polyp. In essence, CaraNet is prone to high false-positive errors, which 

have a detrimental impact on its overall performance across other metrics. In 

fact, when comparing the proposed framework 𝑇𝐼∅ with Lraspp and CaraNet in 

terms of precision and mean IoU (mIoU) on the unseen Kvasir-SEG test set, the 

difference stands at 42.94% and 21.3% in favour of the proposed framework, 

respectively. Similar comparisons are found with the other proposed 

frameworks 𝑇𝑉∅. 

  Overall, state-of-the-art (SOTA) models did not attain high results on the 

unseen test sets primarily because of severe overfitting during training. In fact, 

as it will be showcased in the subsequent section, the generalisability 

performance of SOTA models can be significantly improved by introducing 

random augmentation to the training batches. 

4.3.5 Proposed framework against the state-of-the-art models with 

augmentation 

  Limited training data increase the chances of training overfitting specially 

when training complex deep learning models, especially with limited training 

data. Several methods exist to lessen this problem, including utilising a 

regularization term to the loss function, incorporating dropout layers, applying 

early stopping, and inflating the dataset through augmentation. Given our 

constrained training dataset, augmentation holds the potential to be beneficial. 

  Consequently, the training batches were inflated by implementing random 

augmentation during the training process. Throughout the training epochs, 

random augmentation is applied to each training batch, and both the original 

and augmented images are provided as inputs to the segmentation model. Since 

the augmentation process is stochastic, varying degrees of augmentation are 

applied to the training images for each batch and during each training epoch. 

The augmentation techniques employed include random horizontal and vertical 

flipping, rotation, shearing, brightness adjustment, and hue shifting. 

  The state-of-the-art SOTA models significantly benefited from applying 

random augmentation during training and accordingly achieved better 

validation and test results as shown in Table 21, Table 22,  

Table 23, and Table 24. Furthermore, Figure 41 shows performance of SOTA 

models on the unseen Kvasir-SEG test set with and without augmentation. 

Significant enhancements are observed after applying augmentation which 

indicates that SOTA models initially suffered from a severe training overfitting. 
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Table 21 Validation results on the CVC-ClinicDB dataset. The training and validation split is 

70% and 30%, respectively. The highest two results are highlighted. 

CVC-ClinicDB Validation set 

Settings Model Acc IoU Dice Rec Prec mIOU 

Aug+TL* 

MSNet 93.78 41.45 51.77 58.65 56.65 67.42 

M2SNet 91.61 32.87 42.34 56.62 42.53 62 

CaraNet 93.59 36.7 48.45 58.91 50.41 64.95 

ACSNet 94.69 42.93 54.37 60.61 56.5 68.63 

w/o 

Aug+TL* 

Proposed TV 

(Seg:FCN) 
94.97 45.94 56.3 64.8 59.2 70.26 

Proposed TI  

(Seg:FCN) 
95.35 50.07 61.14 68.62 63.57 72.52 

Proposed TV 

(Seg:Lraspp) 
96.23 53.97 64.46 70.39 67.76 74.95 

Proposed TI 

(Seg:Lraspp) 
96.32 57.83 68.33 77.42 67.22 76.91 

Aug+TL*: Only the encoder is pretrained using ImageNet. Random augmentation is 

applied to training batches on-the-fly. Augmentation used were random rotation, horizontal 

& vertical flipping, shear, brightness, and hue shifting.  

 

Table 22 Test results of the Kvasir-Seg dataset. Models were trained and validated using 

CVC-ClinicDB dataset. The highest results are highlighted. 

Kvasir-SEG Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

Aug+TL* 

MSNet 87.25 42.6 54.96 59.98 61.09 64.27 

M2SNet 86.39 40.39 52.43 56.85 59.82 62.73 

CaraNet 84.57 32.03 44.53 50.35 50.66 57.66 

ACSNet 88.2 42.16 54.08 48.26 75.7 64.78 

w/o 

Aug+TL* 

Proposed TV  

(Seg:FCN) 
87.67 42.29 53.62 55.05 66.55 64.4 

Proposed TI  

(Seg:Fcn) 
87.29 40 52.57 53.01 64.46 63.04 

Proposed TV  

(Seg:Lraspp) 
89.66 50.69 62.04 57.9 79.22 69.69 

Proposed TI  

(Seg:Lraspp) 
89.84 50.99 62.22 59.61 77.86 69.96 

Aug+TL*: Only the encoder is pretrained using ImageNet. Random augmentation 

is applied to training batches on-the-fly. Augmentation used were random rotation, 

horizontal & vertical flipping, shear, brightness, and hue shifting. 
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Table 23 Test results of the CVC_EndoSceneStil dataset. Models were trained and validated 

using CVC-ClinicDB dataset. The highest results are highlighted. 

CVC_EndoSceneStill Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

Aug+TL* 

MSNet 96.18 61.28 69.31 73.96 69.98 78.61 

M2SNet 93.17 50.52 59.04 69.86 57.15 71.67 

CaraNet 93.33 39.91 51.56 60.73 54.11 66.45 

ACSNet 96.51 60.67 69.43 70.86 73.17 78.47 

w/o 

Aug+TL* 

Proposed TV 

(Seg:FCN) 
96.06 60.54 69.41 74.31 71.24 78.16 

Proposed TI 

(Seg:Fcn) 
96.62 64.64 72.34 74.94 75.02 80.52 

Proposed TV 

(Seg:Lraspp) 
97.47 70.62 78.22 80.8 80.43 83.95 

Proposed TI 

(Seg:Lraspp) 
97.6 71.16 78.68 82.82 78.95 84.29 

Aug+TL*: Only the encoder is pretrained using ImageNet. Random augmentation is 

applied to training batches on-the-fly. Augmentation used were random rotation, horizontal 

& vertical flipping, shear, brightness, and hue shifting. 

 

Table 24 Test results of the ETIS-LaribPolypDB dataset. Models were trained and validated 

using CVC-ClinicDB dataset. The highest results are highlighted. 

ETIS-LaribPolypDB Test set 

Settings Model Acc IoU Dice Rec Prec mIOU 

Aug+TL* 

MSNet 94.24 10.56 13.8 14.7 17.1 52.34 

M2SNet 94.51 21.13 26.9 32.53 26.82 57.73 

CaraNet 91.09 12.61 18.53 27.45 19.51 51.75 

ACSNet 95.43 25.65 32.55 35.74 35.09 60.47 

w/o 

Aug+TL* 

Proposed TV 

(Seg:FCN) 
94.04 16.63 21.81 28.22 26.99 55.28 

Proposed TI 

(Seg:Fcn) 
93.47 11.47 16.42 20.75 20.34 52.39 

Proposed TV 

(Seg:Lraspp) 
95.53 20.45 25.6 26.11 31.45 57.93 

Proposed TI 

(Seg:Lraspp) 
95.55 23.44 30.54 32.89 35.96 59.42 

Aug+TL*: Only the encoder is pretrained using ImageNet. Random augmentation is 

applied to training batches on-the-fly. Augmentation used were random rotation, horizontal 

& vertical flipping, shear, brightness, and hue shifting. 
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  Nevertheless, the proposed framework (i.e., 𝑇𝑉∅ and 𝑇𝐼∅ versions) with Lraspp 

segmentation model achieved better results than SOTA models with 

augmentation. However, unsignificant margin between SOTA with 

augmentation and the proposed framework with Fully Convolutional Network 

(FCN) model are present. FCN is known to have low resolution prediction 

which affect the accuracy of segmentation boundaries [143]. This coarse 

prediction by FCN is due to consecutive layers of convolution and pooling 

which results in having down-sampled output feature map. Nevertheless, both 

SOTA models and the proposed framework achieved high results on 

CVC_EndoSceneStill compared to other test sets. This is mainly due to the fact 

that CVC_EndoSceneStill combines two different datasets include CVC-

ClinicDB which used as training and validation, and CVC_ColonDB which is 

considered wholeheartedly unseen. On the other hand, all evaluated 

segmentation models achieved relatively low results on ETIS-LaribPolypDB 

dataset. This is due to the discrepancy between the training/validation set (i.e., 

CVC-ClinicDB) and ETIS-LaribPolypDB in terms of polyp shapes and images’ 

resolution. Furthermore, the author of ETIS-LaribPolypDB modified the raw 

images to delete its black borders produced by the colonoscopy devices which 

usually have meta information. This discrepancy between the training set and 

ETIS-LaribPolypDB set caused all tested deep learning models to achieve less 

than other test sets. 

 
Figure 41 The effects of augmentation on the state-of-the-art models in comparison to the 

proposed framework without augmentation. 
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  The proposed framework with Lraspp segmentation model achieved the state-

of-the-art on all used test sets even though SOTA models utilised augmentation. 

A significant margin between the proposed model and SOTA models are 

observed which signals the generalisability effectiveness of the proposed 

framework. 

4.3.6 Comparisons using EndoSceneStill benchmark 

  For further analysing the proposed framework, a standard benchmark based on 

EndoSceneStill dataset is selected [104]. Data split created by [104] was 

followed to be able to do fair comparisons against the proposed framework. The 

datasets are divided into training, validation and test set with 547, 183, and 182 

images, respectively. The results on the test set are reported in Table 25 [104].  

FCN8 model architecture was used in with two extra classes were added in the 

original EndoSceneStill benchmark including light specularity and lumen (i.e., 

the opening inside the bowels).  

  It is clear from Table 25 that the proposed deep learning framework achieved 

the state-of-the-art results on every metric with a noticeable margin. Since the 

background is the dominant class, all models achieved high background 

Intersection over Union (IoU) as opposed to polyp IoU. In terms of polyp IoU, 

the difference between the proposed framework and FCN8 with augmentation, 

which considered best results, is ~8% to ~12.9% in favour of the proposed 

framework. Given that the stated results are based on unseen test set, it is then 

evident that the proposed framework enhances the generalisability of 

segmentation models. 

Table 25 This benchmark table is taken directly from [104]. This table presents results on the 

test set. Training, validation, and test set are all created from EndoSceneStill dataset and 

provided by [104]. 

  Augmentation 
IoU 

background 

IoU 

polyp 

IoU 

lumen 

IoU 

Specularity 

IoU 

mean 

Accuracy 

mean 

4 classes  None 86.36 38.51 43.97 32.98 50.46 87.40 

3 classes  None 84.66 47.55 36.93 N/A 56.38 86.08 
2 classes  None 94.62 50.85 N/A N/A 72.74 94.91 

4 classes  Combination 88.81 51.60 41.21 38.87 55.13 89.69 

State-of-the-art methods       
[144], [145], and [146]                 N/A 73.93 22.13 23.82 44.86 41.19 75.58 

Proposed TI (Seg:Lraspp)          None 94.57 58.65 N/A N/A 76.61 94.8 

Proposed TV (Seg:Lraspp)          None 94.76 64.56 N/A N/A 79.66 95.01 

         

4.3.7 Analysis of the proposed framework 

  Qualitative and quantitative analysis of the proposed framework are presented 

in this section by first present ablation study followed by demonstrating 

gradients of the transformed images by the 𝑇𝑉∅(�̌�|𝑥) and 𝑇𝐼∅(�̅�|𝑥) components. 

The purpose of the ablation study is to explore the performance of the proposed 

framework by removing certain components to understand the enhancement of 

each component to the overall framework. Meanwhile, images’ gradient help 

understand the effect of both 𝑇𝑉∅(�̌�|𝑥) on the input images in terms of their 

edges and textures. 
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Ablation study 
  There are mainly three components in the proposed framework including, a 

segmentation model (i.e., Lraspp), Hue transformation 𝐻(�̂�|𝑥), and texture 

transformation unit (i.e., Total Variational 𝑇𝑉∅(�̌�|𝑥) or Texture Interpolation 

𝑇𝐼∅(�̅�|𝑥)). To understand the contribution of each component of the proposed 

framework 𝐻(�̂�|𝑥), 𝑇𝑉∅(�̌�|𝑥), or 𝑇𝐼∅(�̅�|𝑥) transformations were alternatively 

removed and the generalisability performance on unseen Kvasir-SEG dataset 

was evaluated, as seen in Table 26. Consistent patterns, as per previous 

experiments, are prevalent in which segmentation models achieved comparable 

results on the validation set. Meanwhile they evolved disparity results on unseen 

Kvasir-SEG test set. 

 

Table 26 Validation results on the CVC-ClinicDB dataset. The training and validation split is 

70% and 30%, respectively. The highest records are highlighted. 

CVC-ClinicDB Validation set 

Model Acc IoU Dice Rec Prec mIOU 

Lraspp 95.37 52.06 63.27 72.19 63.3 73.52 

Lraspp + Hue 𝐻(�̂�|𝑥) 95.74 51.65 63.21 63.66 69.85 73.56 

Lraspp + total variational 𝑇𝑉∅(�̌�|𝑥) 95.53 52.33 63.01 74.03 61.66 73.73 

Lraspp + 𝐻(�̂�|𝑥) + 𝑇𝑉∅(�̌�|𝑥) 96.23 53.97 64.46 70.39 67.76 74.95 

Lraspp + 𝐻(�̂�|𝑥) + 𝑇𝐼∅(�̅�|𝑥) 96.32 57.83 68.33 77.42 67.22 76.91 

 

  Vanilla Lraspp segmentation model along with its other variations achieved 

polyp IoU of 51.6% to 57.8%. However, the results’ range is enlarged on the 

test set in which the lowest polyp IoU of 36.4% is achieved by Lraspp, and the 

highest polyp IoU of 50.9% is achieved by the proposed framework. The low 

performance of vanilla Lraspp is attributed to a sever overfitting to the training 

data, hence, it negatively affected generalisability capabilities on unseen test 

data. Adding Hue variations during training lessen the overfitting suffered by 

vanilla Lraspp, hence, it performed much better compared without the usage of 

Hue component. Furthermore, it is worth noting that Lraspp with Hue 

component achieved analogous results to Lraspp with only the proposed 𝑇𝑉∅ 

unit. Adding texture variations along with Hue variations acquired Lraspp 

model colour and texture invariance properties and lessen overfitting problem. 

Accordingly, Lraspp achieved a better on unseen test set which signifies better 

generalisability capabilities. 
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Table 27 Test results of the Kvasir-SEG dataset. Models were trained and validated using 

CVC-ClinicDB dataset. 

Kvasir-SEG Test set 

Model Acc IoU Dice Rec Prec mIOU 

Lraspp 85.35 36.43 48.64 53.95 55.44 60.19 

Lraspp + Hue 𝐻(�̂�|𝑥) 88.75 44.2 55.3 52.54 73.69 66.03 

Lraspp + total variational 𝑇𝑉∅(�̌�|𝑥) 88.04 45.14 57.36 59.57 67.07 66.02 

Lraspp + 𝐻(�̂�|𝑥) + 𝑇𝑉∅(�̌�|𝑥) 89.66 50.69 62.04 57.9 79.22 69.69 

Lraspp + 𝐻(�̂�|𝑥) + 𝑇𝐼∅(�̅�|𝑥) 89.84 50.99 62.22 59.61 77.86 69.96 

 

  Comparative results on Kvasir-SEG are noticed for both 𝑇𝐼∅ and 𝑇𝑉∅. 

However, Lraspp segmentation model achieved its highest results only when 

both 𝐻𝑢𝑒 and 𝑇𝐼∅ components were used, which indicates the gain of 

minimizing the nested accumulated negative log-likelihood 

−𝔼𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝑃𝜃(𝑦|𝑥) + 𝔼𝐻(�̂�|𝑥)𝑙𝑜𝑔𝑃𝜃(𝑦|�̂�) + 𝔼𝑇𝐼∅(�̅�|𝑥)𝑙𝑜𝑔𝑃𝜃(𝑦|�̅�)] using stochastic 

gradient descent.  

Qualitative gradient analysis 
  To deeply understand the transformations imposed by the proposed 𝑇𝑉∅ and 

𝑇𝐼∅ units, image’s gradient was applied to a training image sample as well as its 

transformed version, as shown in Figure 42, Figure 43, and Figure 44.   

  Notice that 𝑇𝑉∅ completely distorted background textures and edges, 

meanwhile, it left polyp structure intact. This observation is evident given the 

gradient of the 𝑇𝑉∅ image. Furthermore, it is noticed that specular reflections 

on the background of the 𝑇𝑉∅ transformed image are completely decayed and 

disappeared. Exceptions are noticed when those specular reflections are on the 

polyp itself, as seen in Figure 42, Figure 43, and Figure 44. This behaviour is 

expected due to the dictated objective which entitled the 𝑇𝑉∅ unit to preserve 

polyp texture regardless of the presence of specularity or other remaining 

residuals. Moreover, due to black borders surrounding the images, the highest 

gradient values are found around borders’ edges, though, the transformed 𝑇𝑉∅ 

images had successfully cleared those artificial edges. 

  On the other hand, inspecting the gradient of 𝑇𝐼∅ images indicates that the 

applied transformation smoothed only mucosa texture, though, it preserved the 

main edges, as seen in Figure 42, Figure 43, and Figure 44. This is due to the 

training objectives imposed to the autoencoder as discussed in section 4.2.3. 

The autoencoder that generate textureless images has a loss consisting of two 

terms, in which the first term is a reconstruction loss ‖𝑥 − �̃�‖ and the second 

term to prevent the autoencoder from learning identity function 𝐵𝐶𝐸(𝑦, �̃�). 

Accordingly, the autoencoder learned to generate images that have main 

features found in the corresponding original images. 
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 Image 𝑔 Gradient 𝛻𝑔 

Original 𝑥 

  

𝑇𝑉∅(�̌�|𝑥) 

  

𝑇𝐼∅(�̅�|𝑥) 

  
Figure 42 Gradient analyses of a transformed image using  𝑇𝑉∅ and 𝑇𝐼∅, respectively. 
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 Image 𝑔 Gradient 𝛻𝑔 

Original 𝑥 

  

𝑇𝑉∅(�̌�|𝑥) 

  

𝑇𝐼∅(�̅�|𝑥) 

  
Figure 43  Gradient analyses of another transformed image using  𝑇𝑉∅ and 𝑇𝐼∅, respectively. 
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 Image 𝑔 Gradient 𝛻𝑔 

Original 𝑥 

  

𝑇𝑉∅(�̌�|𝑥) 

  

𝑇𝐼∅(�̅�|𝑥) 

  
Figure 44 Gradient analyses of another transformed image using  𝑇𝑉∅ and 𝑇𝐼∅, respectively. 

 

  Furthermore, the effect of 𝑇𝑉∅ transformation can be seen as an anomaly 

pattern detection unit in which polyp patterns are considered to be a valid 

pattern. Meanwhile any other patterns that deviate significantly from polyp 

patterns are considered an outlier, hence, it got washed away during the 

transformation, as seen in Figure 45. It is worth noting that during the training 

phase CVC-ClinicDB was utilised which does not have any image that contains 

instrument, nevertheless, the TV∅ washed away an instrument region of an 

unseen test image, as seen in Figure 45. Since 𝑇𝑉∅ unit was not exposed to such 

pattern, it suggests that the 𝑇𝑉∅ unit considered the instrument region as an 

outlier, hence, the gradients of that regions were reduced. 
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 Test image x 𝑇𝑉∅(�̌�|𝑥) 

Image 

𝑔 

 

Gradient 

𝛻𝑔 

 
Figure 45 The effect of  𝑇𝑉∅ transformation can be seen as an anomaly-detection unit. 

4.4 Summary 

  This chapter introduced a novel framework aimed at improving the 

generalisability of segmentation models. The limited availability of polyp 

datasets poses a challenge to deep learning-based segmentation models. While 

typical methods implicate data augmentation or generative models to inflate the 

training datasets, these approaches have not shown significant effectiveness in 

the literature. Contrary to the current methods, our proposed approach suggests 

employing image-to-image transformations in conjunction with a segmentation 

model to enhance its performance. The proposed framework consists of texture-

based unit and random hue shifting unit to variate texture and colour of input 

images, respectively. Two concrete implementations of the texture unit are 

proposed, including, Total Variational 𝑇𝑉∅ and Texture Interpolation 𝑇𝐼∅. 

Experimental results have shown that the proposed framework consistently 

enhances segmentation results. The experimental results show that the proposed 

framework achieved improvements in Intersection over Union (IoU) ranging 

from approximately 1.8% to 16.4% across three different test sets when 

considering only the polyp mask. However, when considering the background 

mask in addition to the polyp mask, the improvements in mean Intersection over 

Union (mIoU) were even more significant. The mIoU improvements ranged 

from approximately 1.2% to 21.9% across the unseen test sets. These results 

indicate that the proposed framework not only enhances the segmentation 

accuracy of polyps but also improves the overall segmentation performance, 

including the accurate delineation of the background region. The reported 

enhancements highlight the effectiveness of the proposed framework in 

enhancing the generalisability of segmentation models, irrespective of their 

internal architectural design. 
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Chapter 5 

Conclusions and future work 
  Within this chapter, the entirety of our thesis conclusions is encapsulated. To 

this end, the chapter is subdivided into two distinct sections, each offering a 

platform for showcasing various dimensions of this endeavour. In the initial 

section , conclusions will be drawn from both Chapter 3 and Chapter 4, which 

encapsulate our efforts in addressing certain voids identified within the existing 

literature. Subsequently, an exploration of our vision for future work and the 

subsequent trajectory of our research is presented. 

5.1 Contributions 

  Given the recent remarkable achievements of deep learning in diverse 

computer vision tasks, there has been a natural assumption that this success 

would seamlessly extend to other domains, including colonoscopy. However, 

this thesis reveals that the success achieved in non-medical domains does not 

automatically translate to the domain of colonoscopy. This conclusion, while it 

may appear straightforward, is actually quite nuanced, especially in light of the 

consistently high results reported in the literature regarding the application of 

deep learning in colonoscopy. Consequently, the application of deep learning in 

colonoscopy might be prematurely perceived as ready for use in real clinical 

practice, whereas the reality is that these models are still in the preclinical stage. 

  To illustrate this unfortunate reality, two distinct yet interconnected tasks 

within colonoscopy were chosen, namely, bowel preparation assessment and 

polyp segmentation. Both tasks were addressed using deep learning in Chapter 

3 and Chapter 4, respectively. In the first task, the colon undergoes an extensive 

cleansing process to eliminate any stool or residues that might obscure the 

visibility of polyps during screening. After bowel preparation, a colonoscopist 

performs screening to detect any abnormal inflammation or mucosal growth 

(i.e., polyps) and removes them accordingly. Subsequently, the colonoscopist 

compiles a report summarizing the findings. 

  Contributions of this thesis are listed as follows: 

•   In this thesis, two distinct deep learning models were introduced and 

designed to provide support to colonoscopists. The first model serves to 

automatically evaluate the degree of bowel preparation, thereby 

optimizing time and energy allocation for other tasks (as discussed in 

Chapter 3). The second model is focused on the automatic identification 

of polyp locations and the subsequent generation of polyp masks (as 

discussed in Chapter 4). This automatic polyp segmentation process 

significantly enhances the accuracy of polyp screening, ultimately 
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reducing the likelihood of missed polyps during the screening 

procedure. 

•   For both tasks (i.e., automatic bowel preparation and polyp 

segmentation), subtle overestimations results in the literature had been 

elaborated in the thesis. Colonoscopy datasets consist of semi-

consecutive frames or sometimes videos. Hence, arbitrary dividing such 

datasets result in subsets that closely resemble each other, consequently 

leading to inflated performance metrics during validation and testing. 

To substantiate this assert, experiments were conducted in this study that 

show the gap between real and inflated results.  

•   A novel video-based deep learning model is proposed in Chapter 3. We 

argue that using video-based deep learning models to evaluate bowel 

cleansing degree is better than frame-based model due to contextual 

information embedded in videos. Accordingly, a video-based model was 

designed to classify bowel preparation degree on video samples. The 

proposed model leverages both sequential information and spatial 

information by utilising recurrent neural network unit (i.e., GRU) and a 

proposed Multiplexer unit, respectively. Consequently, mathematical 

analysis was conducted to justify the chosen normalisation method. 

Finally, the proposed model was evaluated against frame-based deep 

learning models as well as video-based deep learning models. 

Experiment results consistently indicated the superiority of the proposed 

model against state-of-the-art models. 

•   A novel segmentation framework is proposed in Chapter 4. The 

proposed deep learning framework enhances the generalisability by 

utilising two deep learning components, namely, transformation unit and 

a segmentation model. The segmentation model gets as input out-of-

domain images with correct corresponding masks using the image-to-

image transformation unit. Both the transformation unit and the 

segmentation model are two separate deep learning models. The 

fundamental concept behind the proposed deep learning framework is to 

instil colour and texture detail invariance properties into any 

segmentation model, thus enhancing its generalisability.  

•   A mathematical justification was presented in Chapter 4 for the 

proposed segmentation framework. The learning phase of the proposed 

framework can be seen as performing gradient-based approximate 

minimization on nested negative log-likelihood. This is due to the 

segmentation loss imposed for each training image as well as a 

corresponding series of transformed versions. 

•   Two concrete implementations of the proposed segmentation 

framework were presented in Chapter 4, including minimizing total 

variations 𝑇𝑉∅ and texture interpolation 𝑇𝐼∅. The proposed 𝑇𝑉∅ unit can 

be described as an autoencoder model featuring a unique loss function. 
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The loss function computes the overall image gradients, known as Total 

Variation, for the background. The primary aim of the 𝑇𝑉∅ unit is to 

minimize these gradients within the less critical regions of the images, 

notably the background, all the while maintaining the integrity of the 

regions of interest, such as the polyps. On the other hand, the proposed 

𝑇𝐼∅ employ spatial interpolation between input images and 

corresponding textureless version. The textureless images are produced 

by a pretrained autoencoder. 

•   Extensive experimentations were conducted to showcase the 

effectiveness of the proposed framework in improving generalisability 

and performance on unseen test datasets. The proposed framework is 

tested against conventional segmentation models and the state-of-the-art 

models with/without augmentations. Furthermore, the proposed 

framework was evaluated using a published benchmark (i.e., 

EndoSceneStill benchmark). In terms of polyp Intersection over Union 

(IoU) on the unseen test set, the proposed framework outperformed the 

reported benchmark by approximately 12%. The results of these 

experiments clearly demonstrate that the proposed framework 

significantly enhanced the generalisability of the used segmentation 

model regardless of its internal architectural design. 

5.2 Future work 

  The task of automatic bowel preparation assessment is generally regarded as 

less complex than polyp segmentation. This is primarily due to the fact that 

polyps lack a distinct and specific shape, making it challenging for both humans 

and deep learning models to accurately delineate the precise boundaries of these 

abnormal growths. On the other hand, in the case of automatic bowel 

preparation assessment, there exist similarities in the discrete clarity levels of 

the bowel, which can introduce ambiguity for both humans and models in 

determining the actual class for certain instances. Nevertheless, it is worth 

noting that the performance of deep learning models in both tasks can be 

improved. 

  Currently, the problem of automatic bowel preparation evaluation is treated as 

classification task in which frames or videos belong to one of four discrete 

classes accordingly to the clarity level. Instead, this problem could be treated as 

a regression task in which frames or videos should be given a number between 

[0,1] to indicate the clarity level. The nature of this problem may need such 

uncertainty treatment to further enhance performance of deep learning models 

and providing justifiable results. Accordingly, better clinical reports would be 

expected hence encourage the usage of deep learning models in real-clinical 

environments. 
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  A big high quality polyp dataset is not expected in the near future; however, 

we expect to have various unlabelled colonoscopy datasets. Such unlabelled 

data are currently utilised using unsupervised learning methods to enhance 

feature representations produced by deep learning models. Instead, this 

unlabelled data could be utilised in a novel way to facilitate generating out-of-

domain labelled images. For instance, unlabelled data could facilitate learning 

training manifold and accordingly one can utilise that to generate new images 

on-the-fly to exposed segmentation models to new pattern hence enhance the 

generalisability of segmentation models. Furthermore, prior knowledge about 

polyp topology should be considered to extend accuracy of segmentation 

models specially on unseen samples. 
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Appendices 

Appendix A 

  Selected papers related to digestive system are summarized in Table 28. It 

contains deep learning methods as well as machine learning methods. 

Furthermore, it includes endoscopic and non-endoscopic domains. 

 

Table 28 Papers related to the application of AI in the digestive system.  

Capsule Endoscopy 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[147] 

- Presented a new texture-

based protocol for ulcer 

regions 

- curvelets 

- Local Binary Patterns (LBP) 

- None 

- Multilayer 

Perceptron 

Network 

(MLP) 

 

- SVM 

- MLP in 

YCbCr “Best 

combination”: 

92.37% 

accuracy 

91.46% 

specificity 

93.28% 

sensitivity 

100 private 

images. Each 

image is 

segmented into 

patches and each 

patch is classified 

either ulcer or not. 

4- fold 

cross 

validation 

[148] 

- proposed real time bleeding 

detection 

- developed texture feature 

descriptor that operates on the 

Normalised Grey Level Co-

occurrence Matrix (NGLCM) 

in the magnitude spectrum of 

the images. 

- None -SVM 

99.19% 

Accuracy 

99.41% 

Sensitivity 

98.95% 

Specificity 

- 600 bleeding 

and 600 non-

bleeding images 

used for training. 

- 860 bleeding 

and 860 non-

bleeding images 

used for testing. 

Cross 

validation 

[149] 

- Identify small intestine 

motility type using Deep CNN 

- the motility types are; wall, 

wrinkles, bubbles, turbid, clear 

blob and undefined. 

- It showed a better 

performance than the 

handcrafted features proposed 

by others. 

- None 

- simple 

CNN that 

has 3 conv, 3 

pool and 3 

FC 

 

- Mean 

Accuracy 96% 

- 100,000 

annotated images. 

- 10,000 testing 

images. 

Cross 

Validation 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[150] 

- Detect 

inflammatory 

lesions in the 

Gastrointestinal 

tract. 

- They 

investigate the 

visibility of 

training a CNN 

using image-

level 

annotations (e.g. 

contain 

inflammation or 

not) rather than 

graphical 

annotation (i.e. 

pixel-based). 

- Proposed a 

weakly-

supervised 

learning 

technique based 

on CNN that 

uses only 

image-level 

semantic 

annotations for 

the training 

process. 

-None 

- Weakly 

supervised 

learning 

CNN 

- 5 conv 

layers and 4 

max-pooling 

followed by 

2 FC 

 

- 90% Accuracy 

- 92% Sensitivity 

- 88% Specificity. 

- KID “public 

dataset” 

- 227 

graphically 

annotated 

images of 

inflammatory 

lesions and 

599 normal 

images of the 

GI tract. 

- Training 

(200 normal 

& 200 

abnormal) 

- Testing (27 

normal & 27 

abnormal) 

Cross 

Validation 

Narrow Band Imaging (NBI) & Near-Focus (NF-NBI) 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[151] 

- They used 

colour space 

extracted from 

NF-NBI images 

-  They applied 

crypt-space 

colour 

segmentation 

And Discrete 

Wavelet 

Transform 

- None - SVM 
86% sensitivity and 

specificity 

56 images (16 

non-

neoplastic 

polyps) 

LOOCV 

[152] 

- Collection of 

Features were 

extracted from 

NBI images: 

- Co-occurrence 

matrices, 

summation and 

difference of 

histogram, 

statistical 

geometric and 

Gabor Filters. 

- None 
- Euclidian 

Distance 

Accuracy [85% - 

92%] for a 

combination of 

features. Epithelium 

97% (202 images),  

Cardiac 91% (78 

images), and BE 74% 

(46 images) 

326 regions 

of Interest 

annotated and 

classified 

between: 

1- Epithelium 

2- Cardiac 

mucosa 

3- BE 

LOOCV 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[153] 

- The employed super-pixels 

segmentation technique. 

- They extracted 8 features 

from each super-pixels. 

-3 features are calculated as 

mean intensities of each colour 

channel 

-3 features stand for mean 

intensities of the red-channel 

with the application of three 

different morphological filters 

(top-hat, entropy and range 

filters) 

- 2 features are related to the 

contrast and homogeneity of 

the super-pixels. 

- None 
- Random 

Forest 

83.9% 

Accuracy 

79.2% 

Sensitivity 

87.3% 

Specificity 

116 NBI images 

private from 

Oncologico 

Veneto. Detect 

the metaplasia 

region within the 

images. 

10-fold-

cross 

validation 

[154] 

- The aim is to evaluate the 

feasibility of automated 

classification of intrapapillary 

capillary loops (IPCLs) to 

improve the detection of 

esophageal squamous cell 

carcinoma (ESCC). 

- A double-labelling fully 

convolutional network (FCN) 

was developed for image 

segmentation. 

 

 

- Augmentation 

methods were 

used but they 

didn’t mention 

which type of 

augmentation. 

FCN “CNN” 

- mean 

diagnostic 

accuracy 89% 

at the lesion 

level and 93% 

at the pixel 

level. 

Performed 

significantly 

better than 

endoscopists. 

-Private 

- 1383 NBI-

Magnified images 

were studied (207 

type A, 970 type 

B1, and 206 type 

B2) 

 

 

 

 

 

Confocal Laser Endomicroscopy (CLE) 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[155] 

- Contrast value and a 

multiscale texture analysis 

was obtained with rotation 

invariant local binary pattern 

(RI-LBP) from each sub-

image. 

- Classify to either GM or IM 

- None - SVM 

- 98.85% 

Sensitivity 

- 65.22% 

Specificity in 

the detection of 

IM. 

- By ROC 

curve, trade-off 

can be made 

(96.5% 

Sensitivity, 

95.6% 

Specificity) 

285 images (262 

images showing 

IM and 23 GM). 

Using a simple 

voting scheme, 

the image is 

classified either 

GM or IM. 

LOOCV 

http://www.ioveneto.it/
http://www.ioveneto.it/
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Table 28 Papers related to the application of AI in the digestive system, continued. 

 

 

 

 

 

 

 

 

 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[156] 

- Block Features where 

extracted to Identify the image 

either IM or Other. 

- Image Features to identify 

GM or NPL 

- Block Features: multiscale 

local binary pattern (LBP), 

(moments, percentiles, 

entropy). 

- Image Features: fractal 

dimension of the bright pixels, 

computed with the box 

counting method [157] 

- None -SVM 

Sensitivity: 

- 96% Gastric 

Metaplasia 

(GM) 

- 95% 

Intestinal 

Metaplasia 

(IM) 

- 100% 

Neoplasia (NP) 

“cancerous” 

 

Total 337 

- GM 23 images 

- IM 263 images 

- NPL 51 images 

LOOCV 

[158] 

- Three stages classification 

model was developed to 

distinguish between IM, GM 

and NPL 

- The image is first enhanced 

by applying fractional 

differential and fractional 

integration in the wavelet sub-

bands. 

- Gray Level Co-occurrence 

Matrices (GLCM), Fractal 

Texture Features, Fuzzy Local 

Binary Patter (FLBP), 

Intensity Features and Wavelet 

Features. 

- For each classification stage, 

subset of these features was 

employed 

- None -SVM 

- Accuracy 

90.45% 

- 98.8% for 

discriminating 

NPL from 

others 

-96.7% to 

separate IM 

from GM 

- 32 patients 

- 262 images 

Public images. 

- GM 172 images 

- IM  30 images 

- NPL 60 images 

LOOCV 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology Augmentation Classifier Results Database 
Validatio

n Protocol 

[159] 

- They investigate the visibility 

of using CNN to classify 

endomicroscopy imaging data 

of BE. 

- propose 5 simple distortions 

(random scaling, random flip, 

random rotation, random 

brightness, and random 

contrast 

- Designed the CNN 

architecture 

- They acknowledge the lack 

of data, so he employed simple 

augmentation techniques. 

However, they didn’t report 

the effectiveness of the used 

augmentation methods. 

 

- They used 

random gaussian 

scaling with a 

mean of 1.0 and 

standard 

deviation of 0.2. 

- The scaled 

image is then 

randomly flipped 

vertically or 

horizontally and 

then they were 

rotated in 

counter-

clockwise 

direction by 0º, 

90º, 180º and 

270º 

- They added 

random number 

under 30 for each 

pixel to adjust the 

brightness 

- the image 

contrasts were 

adjusted with the 

contrast factor 

between 0.8 and 

1.2. 

-CNN 

composed of 

4 conv 

layers, 2 

max-pooling 

layers 

2 FC layers 

- Total 

Accuracy 

80.77% (26 

images are used 

for testing) 

- (ISBI) 2016 

challenge 

database (public) 

- 262 images used 

(236 for training 

and 26 images for 

testing) 

26 images 

-17 IM images 

-4 GM images 

-5 NPL images 

Cross 

Validation 

[160] 

- Classify images into Normal 

Squamous NS, gastric 

metaplasia (GM), intestinal 

metaplasia (IM), and neoplasia 

(NPL) 

- Enhance the image in the 

DWT domain by fractional 

differentiation (FD) and 

fractional integration (FI), then 

features were extracted 

- Multiscale Pyramid with 

Rotation Invariant Local 

Binary Pattern (MP-RLBP), 

Maximally Stable Extremal 

Regions (MSER), Gray Level 

Co-occurrence Matrix 

(GLCM) features (entropy, 

contrast, and homogeneity), 

fractal features (i.e. dimension 

using box-counting, mean gray 

level, and pixel count) , and 

Fuzzy Local Binary Pattern 

(FLBP) 

- None 

-SVM 

-Random 

Forest 

- SVM 

achieved 96% 

Accuracy 

 

- Random 

Forest 91% 

Accuracy 

- 557 images 

- (IM 402 images, 

GM 41 images, 

NPL 68 images, 

NS 45 images) 

 

LOPOCV 

 



124 

 

 

 

Table 28 Papers related to the application of AI in the digestive system, continued. 

High Definition White Light Endoscopy (HD-WLE) 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[161] 

1- pre-processing the image 

(Colour Transformation + 

(DWT) ) 

2- feature extraction (colour 

histogram + Gabor features). 

Dimensionality reduction 

3- classification of a patch to 

either tumorous or normal. 

(50*50 pixel) 

- Detect if the image has early 

cancer and where it resides. 

-Detect and locate early cancer 

in Oesophagus to support 

physicians in finding early 

stage cancer. 

-None 

-SVM. 

Different 

parameters 

and kernels 

were used 

95% Accuracy 

with 99% Area 

under the curve 

(AUC) 

- 66 patients 

- ?? images 

- Each image is 

segmented into 

patch and each 

patch is classified 

either tumorous or 

normal 

10-fold 

cross-

validation 

[162] 

- Extract local colour/texture 

features based on the original 

and Gabor-filtered image. 

-Detect and locate early cancer 

in Barrett’s Oesophagus to 

support physicians in finding 

early stage cancer. 

-None -SVM 
-95% Recall 

-75% Precision 

-Private 

-64 images 

-7 patients 

EAC/15 without 

EAC 

 

LOPOC 

[163

] 

- Based on the previous 

research published in 2014. 

- They argued that the 

gastrointestinal tract 

cancerous tissue should not 

be treated as a binary 

problem 

- Sweet spot metric is 

proposed for the training 

phase “SST” and the 

Jaccard Golden Standard 

“JIGS” a metric able to 

handle multiple 

annotations. 

- They showed that these 

two metrics increased the 

performance of a detection 

algorithm of early 

neoplastic lesions in BE by 

10% using F1-score 

-None -SVM They 

showed that 

the system 

performance 

of a 

detection 

algorithm 

can be 

increased by 

up to 10% 

of F1 

- MICCAI 

dataset 

- 100 

endoscopic 

images from 

39 patients 

 

--- 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[164] 

- Enhance a CAD system 

based on their previous work 

[162] by introducing Random 

Forest, thereby introducing a 

measure of confidence for the 

detected regions. 

- (ROI) is determined by 

removing borders, reflections, 

and the lumen. 

- features extraction from ROI 

then classification and finally 

annotation. 

-None 
-Random 

Forest 

- 75% 

Accuracy 

- 90% Recall 

-100 images of 39 

patients. 50 

images showing 

cancerous. 

- Annotated by 5 

gastro experts 

LOPOC 

[165] 

- proposed a method to 

diagnose early Esophageal 

Cancer from images 

- they employed the Dyadic 

Wavelet Transform (DYWT) 

and fractal dimension 

HDE 

LBI 

FICE 

- 

Unsupervised 

No 

quantification 

data 

23 patients with 

EC 

- no Data 

found 

[166] 

- Detect Adenocarcinoma in 

BE patients 

- Used Group of features 

called Speeded Up Robust 

Features (SURF) [167] 

-None -SVM 

- Image-Based 

accuracy: 

77% Sensitivity 

82% specificity 

 

- Region-Based 

accuracy: 

89.6% 

Sensitivity 

95.1% 

Specificity 

- MICCAI 

- 100 public 

image images 

from EndoVis 

Challenge 

LOPOCV 

[168

] 

- Early detection of 

adenocarcinoma in the 

oesophagus of BE patients 

- A deep convolutional 

neural network is adapted 

to the data using a transfer 

learning approach. 

- The image is divided into 

patches and a deep learning 

is trained to produce a 

probability for a cancer. 

- The image is assigned as 

cancerous if a one patch is 

detected as cancerous with 

a predefined threshold. 

- Since the 

cancerous 

patches is 

smaller than 

non-

cancerous, 

data 

augmentation 

was employed 

to solve the 

imbalance 

data. 

1-Randomly, 

30% of the 

labelled patch 

are selected 

and rotated 

by:90◦, 180◦ 

or 270◦. 

 

- Deep 

CNN 

-ResNet 

with 

transfer 

learning. 

- The 

ResNet 

was 

initialised 

with the 

parameter

s learned 

on the 

ImageNet 

dataset. 

 

Sensitivity 

94% 

Specificity 

88% 

100 public 

image images 

from EndoVis 

Challenge 

(MICCAI) 

- 50 images 

BE and 50 

images 

adenocarcinom

a (Cancerous). 

 

LOPOC

V 

 

https://endovissub-barrett.grand-challenge.org/
https://endovissub-barrett.grand-challenge.org/
https://endovissub-barrett.grand-challenge.org/
https://endovissub-barrett.grand-challenge.org/
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[169] 

- The aim is to detect BE 

lesions 

- They used SURF (Speeded 

Up Robust Features[167]) 

AND 

SIFT (Scale-Invariant Feature 

Transform [170]) 

*Computer Vision Techniques 

- For comparisons, they used 

Optimum Path Forest classifier 

and SVM 

- None 
- SVM 

- OPF 

- OPF 

outperform 

SVM. 

- OPF results: 

SURF: 

73% Sensitivity 

78% Specificity 

73% Accuracy. 

SIFT: 

73% Sensitivity 

80% Specificity 

73% Accuracy. 

 

- 100 public 

image images 

from EndoVis 

Challenge 

(MICCAI). Some 

of them are 

normal and some 

has BE lesion. 

 

Cross-

Validation 

[171] 

- Detect the esophagitis by 

analysing esophageal 

irregularities (the Z-line). 

- The true image is converted 

to gray. 

- To segment the z-line, the 

system and a user define the 

segmentation parameters using 

the watershed algorithm. 

-The statistical Hu Momentum 

is collected from the extracted 

region and Fourier transform is 

applied on shape signature of 

the Z-line. 

-None 

- K-NN 

- Random 

Forest 

(Fourier + RF) 

Best 

Combinations: 

86% Sensitivity 

72% Specificity 

80% Accuracy 

10 healthy tissue 

images and 16 ill 

tissue images. 

Cross-

Validation 

[172

] 

- The goal is to achieve 

real-time performance in 

order to work towards a 

clinical application 

- Detects Esophageal 

cancer EC using Transfer 

Learning of CNN 

- Intermediate layers of the 

network are used as 

features in traditional 

classifiers. 

- Sliding window are used 

to locate the cancer 

- the detection and 

annotation at 2 frames per 

second (fbs), which is 

suitable tame for real-time 

application. 

- None - Transfer 

Learning 

- CNN 

-Using 

VGG16 and 

SVM: 

~92% AUC 

using 

AlexNet 

with SVM 

at window 

size of 

200*150 

pixels. 

 

- MICCAI 

dataset 

- 39 patients 

- 100 images 

LOPOC

V 

 

 

https://endovissub-barrett.grand-challenge.org/
https://endovissub-barrett.grand-challenge.org/
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology Augmentation 
Classif

ier 
Results Database 

Validation 

Protocol 

[173] - The aim is to study 

the feasibility of the 

state-of-art CNN 

object detection 

algorithms to detect 

Esophageal 

abnormalities. 

- The tested CNNs 

are; 

1) Regional-based 

CNN “R-CNN” [174] 

2) Fast R-CNN [175] 

3) Faster R-CNN [9] 

4) single shot 

multibox detector 

“SSD” [176] 

 

-flipping along 

the axial plane 

and rotation in 

different angles 

with 90◦, 180◦ 

and 270◦. 

- The effect of 

these 

augmentation is 

not reported nor 

the number of 

generated 

images. 

- R-

CNN 

- Fast 

R-CNN 

- Faster 

R-CNN 

- SSD 

-  The best results 

are achieved by 

SSD: 

- cross-validation: 

93% specificity 

93% sensitivity 

- 5-fold-cv: 

88% specificity 

90% sensitivity 

- LOPOCV: 

92% specificity 

96% sensitivity 

- MICCAI 

dataset 

-100 

images 

annotated 

by 5 

experts. 

- 60%/40% 

cross-

validation. 

- 5-fold-cv 

- LOPOCV 

[49] . 

This 

work is 

an 

extensi

on to 

his 

previou

s work 

[168] 

- Two tasks: 1) 

Classification 2) 

Segmentation 

“delineation” 

- ResNet consist of 

100 layers. 

- Small patches were 

used in the training 

stage. The patches 

were augmented “i.e. 

rotation mirroring 

…etc” 

- high/low grade 

dysplasia are not 

included in the study. 

- None -

ResNet 

- Augsburg data 

WLE: 

97% Sensitivities 

88% Specificities 

- Augsburg data 

NBI: 

94% Sensitivities 

80% Specificities 

- MICCAI data 

WLE: 

92% Sensitivities 

100% Specificities 

 

- Using a 

significant test 

“McNemar”, the 

system 

outperformed 11 

endoscopists in 

Sensitivity, 

Specificity or both 

“Augsburg 

dataset”. 

 

 

2 

databases 

1) 

Augsburg 

“their 

data”. 148 

HD 

images 

WLE+NB

I (33 early 

EAC and 

41 non-

neoplastic 

Barrett’s 

mucosa) 

2) 

MICCAI 

“public” 

 

- LOPOCV 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[177] 

“15 MD 

authors” 

- The aim is to test the 

feasibility of Deep learning 

to detect Squamous Cell 

Carcinoma and 

Adenocarcinoma. 

- They employed SSD 

using Caffee Deep learning 

Framework 

- None 

-Single Shot 

Multi-Box 

“SSD” 

using 

Caffee 

Framework 

- 98% 

Sensitivity in 

detection of 

cancer (patient 

based). 

- 98% Accuracy 

in distinguish 

between 

superficial from 

advance cancer 

(from all cancer 

images detected 

by the system 

correctly). 

--------------------

-------- 

However, for 

the image-based 

classification 

for both 

WLE+NBI: 

-79.1 Accuracy 

- 77% 

Sensitivity 

- 79% 

Specificity 

 

- Private dataset 

- 384 patients. 

- 8428 training 

images 

- 1118 testing 

images (558 

WLE & 560 

NBI). 47 

patients with 49 

esophageal 

cancer (41 SCC 

and 8 

adenocarcinoma

s) and 50 non-

esophageal 

cancers patients. 

 

Cross-

Validation 

[6] 

Real Time* 

-hand crafted features of 

colour and texture. (I Need 

to read it) 

- None  

Identify the 

images to 

neoplastic or 

non-neoplastic 

- 95% 

sensitivity 

- 85% 

specificity 

40 images of 

Barrett’s cancer 

and 20 images 

non-dysplastic 

BE. 

 

 

[178] 

Real 

Time* 

Clinical 

version 

based on 

the 

above 

paper 

[49] and 

[168]. 

- Based on CNN and 

ResNet “101 layers” 

architecture, an encoder-

decoder network was 

adapted. DeepLab V.3+ 

was used. 

- The system takes 

random images from the 

real-time video and 

provide a prediction of 

the probability of 

cancer. 

- None -CNN 

- ResNet 

- 100% 

Sensitivity 

- 83.7% 

Specificity 

“outperforme

d human 

endoscopists

” 

 

- Trained on 

129 images 

from their 

database 

“Augsburg” 

- Tested on 

62 images 

(36 of early 

EAC and 26 

of normal 

BE) 

- 

Classificatio

n: cancer vs 

non-cancer 

and 

annotations. 

- -- 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology 
Augmenta

tion 

Classif

ier 
Results Database 

Validation 

Protocol 

[179] - They proposed deep 

learning method based 

on Faster R-CNN to 

automatically detect 

abnormalitites in the 

oesophagus from WLE 

images. 

- The system is based on 

a combintion of Gabor 

handcrafted features 

with the CNN features. 

- DenseNets architecture 

is emraced to extrract the 

CNN features. 

- Simple 

augmentati

on 

techniques 

were 

applied to 

increase 

the dataset 

such as 

random 

rotation, 

flipping, 

stretching 

horizantaly 

and 

vertically. 

- 

Dense

Nets 

- Kvasir: 

90.2%  Recall 

92.1% Precision 

- MICCA: 

95% Recall 

91% Precision 

- MICCA 

2015 

dataset 

(100 

images) 

that 

contains 

EAC 

lesions 

- Kvasir 

dataset 

(1000 

images) 

that 

contains 

Esophigitie

s 

“precancero

use stage” 

- Kvasir : 

cross-

Validation( 

50% 

training 

,10% 

validation 

and 40% 

testing) 

- MICCAI: 

LOPOCV 

(10% are 

used for 

validation 

and the rest 

for training) 

[180] 

- They employed 

Deeplabv3+ network for 

preliminary prediction of 

early esophageal cancer, 

then they used 

morphology with 

different radiuses to 

finalise the annotations. 

 

- Simple 

Augmentat

ion were 

adopted to 

increase 

the 

stabiltiy: 

1- Rotation 

by 90,180 

or 270 

degree 

2- Flipping 

3- 
Increase/de

crease 

brightness 
by 25% 

- 

Deepla
bv3+ 

- Precesion: 78% 

- Recall: 77.5% 

- DSC = 74%. 

- Private 

database 

(3190 

images of 

732 

patients) 

-500 

images 
were used 

as testing 

(15% of the 
whole 

dataset) 

- Cross-

Validation 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Endoscopic ultrasonography (EUS) 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[181] 

- Graph based algorithm 

- The texture features are 

extracted from the spectral 

domain of the images. ” Scale-

invariant Feature Transform - 

SIFT” 

- The texture features are 

represented as a graph where 

the nodes represent pixels’ 

feature and the edge represent 

the similarity between the gray-

level/local-features of the 

images. 

- The similarity was provided 

by a high-order graph matching 

of the texture features. 

- None 

- SVM “new kernel 

based on graphics 

matching for EUS 

images is designed” 

- 93% 

Over all 

accuracy 

- For EC: 

 Accuracy 

89% 

Sensitivity 

94% 

Specificity 

95% 

1210 EUS 

images. 

(66 with 

early 

cancer and 

91 

without). 

The 

images are 

classified 

into (early 

esophagea

l 

carcinoma

, normal 

and 

leiomyom

a tissues) 

10-fold-cross 

validation 

Volumetric Laser Endoscopy (VLE) 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[182] 

- Proposed three new features 

based on the classic Haralick 

features. 

- Benchmarking of machine 

learning and feature extraction 

techniques. 

 

- None -SVM 

- Receiver 

Operating 

Characteris

tic (ROC) 

0.95 

- Mod. 

GLCM 

achieved: 

- 92% 

Accuracy 

- 90% 

Sensitivity 

- 93% 

Specificity 

-95% AUC 

60 images. 

30 

dysplastic 

BE images 

and 30 

non-

dysplastic 

BE 

images. 

- 10-fold-cross 

validation. 

Ref. Methodology Augmentation Classifier Results 
Databas

e 

Validation 

Protocol 
 

Flexible spectral Imagining Colour Enhancement (FICE) 

[165] 

- Detect Early cancer EC by 

first converting the image into 

L*a*b*. 

- Only *a is processed. 

- The Daubechies Wavelet 

Transform (DWT) is calculated 

in non-overlapped blocks 

“64*64 pixels” 

- Detection is done by applying 

a threshold to the histogram. 

-None -Hard Coded - None 

The 

results are 

illustrated 

in 5 

images. 

No 

quantifica

tion of the 

results 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[183] 

- Conducted VLE 

features comparisons. 

- Generic image 

analysis features 

(Gray-level co-

occurrence matrix, 

Local Binary patterns, 

Histogram of oriented 

gradients, and wavelet 

transform) 

- Clinically inspired 

features “Proposed” 

(Layering, Signal 

Intensity Distribution, 

and signal decay 

statistics) 

- None 

- SVM 

-Discriminant 

Analysis 

- AdaBoost 

- Random 

Forest 

- K-Nearest 

Neighbours 

- Naïve Bayes 

- Linear 

Regression 

- Logistic 

Regression 

- layering and signal 

decay statistic show 

an optimal 

performance Using 

AdaBoost. 

An area under the 

receiver operating 

characteristic curve 

(AUC) of 91%. 

 

90% Sensitivity 

93% Specificity. 

60 images. 

- 30 nondysplastic 

BE and 30 high-

grade dysplasia/early 

adenocarcinoma 

images 

- LOOCV 

E- Nose 

Ref Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[184] 

- The goal is to develop a 

technology that discriminates 

the subtle differences of 

volatile organic compounds 

(VOCs), which differentiate 

the smell of diseases. 

- Identify patients who has 

BE by analysing the breath 

using e-nose 

- VOC profiles were 

introduced into an artificial 

neural network. 

- None - NN 

- 81% 

Accuracy 

- 80% 

Specificity 

- 82% 

Sensitivity 

- Area 

Under 

Curve 

(AUC) 79% 

- 122 patient. 66 

Volatile Organic 

Compounds (VOC) 

of patients 

presenting BE and 

56 VOC’s pf patients 

without BE 

Leave-

some-out 

cross 

validation 

(LSOCV) 

CT scan 

Ref. Methodology Augmentation Classifier Results Database 
Validation 

Protocol 

[185] 

- They used Multiple 

Instance Learning method 

(MIL) for the identification 

of tumor invasion depth of 

gastric cancer with dual-

energy CT imaging. 

- For instance-level features, 

a proposed Citation-KNN 

method is used to solve the 

ambiguity in assigning labels 

to selected patches. 

- None 

- Multiple 

Instance 

Learning 

(MIL) 

76.9% total 

Accuracy 
---- - LOOCV 
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Table 28 Papers related to the application of AI in the digestive system, continued. 

High-Resolution Micro-Endoscope 

Ref. Methodology 
Augmenta

tion 
Classifier Results Database 

Validatio

n Protocol 

[186] 

- combination of colour & 

texture features were proposed 

- Principal Component 

Analysis were employed to 

reduce the features space 

- None -SVM 96.48% accuracy. 

129 sites 

composed of 

16 HMRE 

images.   

Cross-

validation 
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Appendix B 

  Chapter 3 provided the average across 2-fold cross-validation of 3 differently 

shuffled dataset. In order to facilitate analysis and comparison with future 

research, the average scores of 2-fold cross-validation for each individual 

dataset are provided in Table 29, Table 30, and Table 31. These tables 

correspond to the datasets listed in Table 2 Table 3, and Table 4, respectively. 

Table 29 Validation results Dataset1. Dataset1 consists of 2-fold cross-validation. The best 

results highlighted. 

Models (Avg. Dataset1) Precision Recall 
F1-

score 
Accuracy 

InceptionV3 [119] 70.85 71.28 69.64 71.28 

VGG11 [110] 72.37 71.66 70.1 71.66 

DenseNet [54] 70.4 66.86 64.91 66.86 

ViT [117] 71.48 69.25 68.58 69.25 

ResNet50 [7] 69.75 67.42 65.07 67.42 

MLP_Mixer [118] 71.79 67.58 67.62 67.58 

InceptionV3 +TL 74.95 73.77 71.27 73.77 

VGG11 +TL 78.09 79.15 76.74 79.15 

DenseNet +TL 77.45 77.76 76.17 77.76 

ViT +TL 83.08 80.89 80.41 80.89 

ResNet50 +TL 78 80.32 75.91 80.32 

MLP_Mixer +TL 80.75 80.81 78.77 80.81 

Proposed (Encoder: ResNet50) 90.12 89.1 89.12 89.1 

Proposed (Encoder: VGG11) 89.97 87.32 87.33 87.32 
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Table 30 Validation results Dataset2. Dataset2 consists of 2-fold cross-validation. The best 

results highlighted. 

Models (Avg. Dataset2) Precision Recall 
F1-

score 
Accuracy 

InceptionV3 [119] 76.88 75.44 74.45 75.44 

VGG11 [110] 71.83 69.66 68.8 69.66 

DenseNet [54] 72.4 70.61 69.2 70.61 

ViT [117] 74.94 75.01 73.98 75.01 

ResNet50 [7] 67.95 72.32 68.93 72.32 

MLP_Mixer [118] 69.2 65.93 66.38 65.93 

InceptionV3 +TL 72.12 67.28 62.42 67.28 

VGG11 +TL 81.17 81.76 80.62 81.76 

DenseNet +TL 78.72 77.52 76.61 77.52 

ViT +TL 83.92 81.62 82.11 81.62 

ResNet50 +TL 78.54 77.6 76.08 77.98 

MLP_Mixer +TL 80.05 75.01 72.53 75.01 

Proposed (Encoder: 

ResNet50) 
84.31 82.75 82.09 82.75 

Proposed (Encoder: 

VGG11) 
90.93 88.3 87.51 88.3 

 

Table 31 Validation results Dataset3. Dataset3 consists of 2-fold cross-validation. The best 

results highlighted. 

Models (Avg. Dataset3) Precision Recall 
F1-

score 
Accuracy 

InceptionV3 [119] 73.64 72.39 70.07 72.39 

VGG11 [110] 76.64 69.86 69.21 69.86 

DenseNet [54] 66.29 66.15 64.73 66.15 

ViT [117] 69.55 68.31 68.11 68.31 

ResNet50 [7] 68.15 68.44 67.55 68.44 

MLP_Mixer [118] 65.32 64.56 63.89 64.56 

InceptionV3 +TL 80.77 77.1 74.58 77.1 

VGG11 +TL 83.4 82.99 81.22 82.99 

DenseNet +TL 82.73 81.87 80.2 81.87 

ViT +TL 86.07 84.04 83.31 84.04 

ResNet50 +TL 81.38 79.75 77.08 79.75 

MLP_Mixer +TL 85.19 82.9 81.86 82.9 

Proposed (Encoder: ResNet50) 89.41 86.99 86.99 86.99 

Proposed (Encoder: VGG11) 94.32 93.42 93.39 93.42 
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Appendix C 

To analyse the effect of normalising the vectors r and g in Equation (16) and 

Equation (17), the gradients of 𝜽 needed first to be estimated. The gradients of 

𝜽 is given by the following equation (for more context, see Equation (23) in 

section 3.3.6): 

 

(57) 

 

  In this appendix, the calculation of the gradients will be presented in two 

stages. The first stage will focus on the gradients of the input feature vector (q) 

with respect to the parameters of the fully-connected layer 
𝜕𝒛

𝜕𝜽
, which is derived 

in Appendix C.1. On the other hand, Appendix C.2 derives the gradients of the 

resultant feature vector of the fully-connected layer with respect to the SoftMax 

function and the Cross Entropy loss 
𝜕ℒ

𝜕�̂�
 
𝜕�̂�

𝜕𝒛
.  

  To provide a contextual background for the calculations in Appendix C.1 and 

Appendix C.2, Figure 21 is presented once again below, as seen in Figure 46. 

Figure 46 illustrates the final layers of the proposed model, helping to establish 

a visual reference for understanding the calculations detailed in Appendix C.1 

and Appendix C.2. 

 
Figure 46 depicts the last fully connected layer that is responsible for generating 

probabilities vector. The full model architecture is depicted in Figure 12.  

Appendix C.1 

Given the gradients of 
𝜕ℒ

𝜕�̂�
 
𝜕�̂�

𝜕𝒛
 (Appendix C.2), the gradients of 

𝜕ℒ

𝜕𝜽
 is defined as 

follows: 

𝜕ℒ

𝜕𝜽
= (�̂� − 𝒚)𝑇

𝜕𝒛

𝜕𝜽
, ∈ ℝ1×(4×2048)      (58) 
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 The function z is an affine transformation that maps a high dimensional input 

vector to a much lower space: 

𝒛:ℝ2048 → ℝ𝑛    (59) 

where n=4 represents the number of classes. Therefore, the gradients 
𝜕𝒛

𝜕𝜽
 is a 

Jacobian matrix of size ℝ4×(4×2048) [187]. Nevertheless, most of the elements 

of this Jacobian matrix are zeros as shown below: 

𝜕𝒛

𝜕𝜽
=

[
 
 
 
 
𝜕𝑧1

𝜕𝜽
⋮

𝜕𝑧𝑛

𝜕𝜽 ]
 
 
 
 

  ,   
𝜕𝑧𝑖

𝜕𝜽
∈ ℝ1×(4×2048) (60) 

𝑧𝑖 = ∑ 𝜃𝑖𝑗 ∙ 𝑞𝑗 + 𝑏𝑖

2048

𝑗=1

, 𝑖 = 1,… , 𝑛 (61) 

The partial derivatives w.r.t 𝜃𝑖𝑗 are then given as follows: 

𝜕𝑧𝑖

𝜕𝜃𝑖𝑗
= 𝑞𝑗  (62) 

Hence the derivatives w.r.t the row 𝜃𝑖,: are given as follows: 

𝜕𝑧𝑖

𝜕𝜃𝑖,:
= 𝒒𝑇 ∈ ℝ1×1×2048 (63) 

𝜕𝑧𝑖

𝜕𝜃𝑤≠𝑖,:
= 𝟎𝑇 ∈ ℝ1×1×2048 (64) 

 Thus, the partial derivatives 
𝜕𝑧𝑖

𝜕𝜽
 is given by: 

𝜕𝑧𝑖

𝜕𝜽
=  

[
 
 
 
 
𝟎𝑇

⋮
𝒒𝑇

⋮
𝟎𝑇]

 
 
 
 

∈ ℝ1×(4×2048) (65) 

By ignoring the zeros in Equations (65), the gradients 
𝜕𝒛

𝜕𝜽
∈ ℝ4×(4×2048) boils 

down to a Jacobian matrix filled mostly with 𝟎𝑇 and four 𝒒𝑇 vectors. 

Appendix C.2 

In this section, the gradients of 
𝜕ℒ

𝜕�̂�
 
𝜕�̂�

𝜕𝒛
  will be derived to facilitate the calculation 

of the gradients of 
𝜕ℒ

𝜕𝜽
. The derivation presented here utilised in Appendix C.1 

and section 3.3.6. First the gradients 
𝜕ℒ

𝜕�̂�
∈ ℝ1×4 will be calculated, followed by 

the gradients 
𝜕�̂�

𝜕𝒛
∈ ℝ4×4, and then multiply the two gradients to obtain 

𝜕ℒ

𝜕�̂�
 
𝜕�̂�

𝜕𝒛
. 

However, leveraging the fact that the logarithm function in the Cross Entropy 

loss ℒ (i.e., Equation (21)) is the inverse function of the exponential functions 
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used in the SoftMax function (i.e., Equation (20)), which simplifies the 

derivation process. Therefore, the composite function (ℒ ∘ 𝑆𝑜𝑓𝑡𝑀𝑎𝑥)(𝒛) ∈ ℝ4 

will be calculated first, and then derive the gradients accordingly: 

(ℒ ∘ 𝑆𝑜𝑓𝑡𝑀𝑎𝑥)(𝒛) =  −∑𝑦𝑖 log(𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑧𝑖))

4

𝑖=1

= −∑𝑦𝑖log (
𝑒𝑧𝒊

∑ 𝑒𝑧𝑙𝑛
𝑙=1

)

4

𝑖=1

 

 

(66) 

= −∑𝑦𝑖𝑙𝑜𝑔(𝑒𝑧𝒊) − 𝑦𝑖 log (∑𝑒𝑧𝑙

4

𝑙=1

)

4

𝑖=1

= ∑ −𝑦𝑖𝑧𝒊 + 𝑦𝑖 log (∑ 𝑒𝑧𝑙

4

𝑙=1

)

4

𝑖=1

 (67) 

Using vector compact notation and given that 𝒚 is a one-hot vector (e.g., 𝒚 =
[0100]𝑇), Equation (67) can be written as follows: 

−𝒚𝑇𝒛 + log (∑𝑒𝑧𝑙

𝑛

𝑙=1

) ∙ ∑𝑦𝑖

4

𝑖=1

= −𝒚𝑇𝒛 + log (∑ 𝑒𝑧𝑙

𝑛

𝑙=1

) ∙ 1 (68) 

∴ (ℒ ∘ 𝑆𝑜𝑓𝑡𝑀𝑎𝑥)(𝒛) = 𝑙𝑜𝑔 (∑𝑒𝑧𝑙

𝒏

𝒍=𝟏

) − 𝒚𝑻𝒛 (69) 

The gradients of the composite function 
𝜕ℒ

𝜕�̂�
 
𝜕�̂�

𝜕𝒛
 can be calculated directly by 

using Equation (69): 

𝜕ℒ

𝜕�̂�

𝜕�̂�

𝜕𝒛
=

𝜕ℒ

𝜕𝒛
=

𝜕

𝜕𝒛
𝑙𝑜𝑔 (∑𝒆𝒛𝒍

𝒏

𝒍=𝟏

) −
𝜕

𝜕𝒛
𝒚𝑻𝒛 = (

𝑒𝒛

∑ 𝒆𝒛𝒍𝒏
𝒍=𝟏

)

𝑇

− 𝒚𝑇 (70) 

𝜕ℒ

𝜕𝒛
= �̂�𝑇 − 𝒚𝑇 = (�̂� − 𝒚)𝑇 ∈ ℝ1×4 (71) 

 The gradients of 
𝜕ℒ

𝜕𝒛
 are used in section 3.3.6 to derive the gradients of the fully-

connected layer 
𝜕ℒ

𝜕𝜽
 and accordingly analyse the effects of normalising the 

feature vectors r and g. 

 

 

 

 

 

 

 

 



138 

 

Appendix D 

  This appendix presents an experiment related to the proposed image-to-image 

transformation, namely, Total Variational 𝑇𝑉∅ and Texture Interpolation 𝑇𝐼∅ , 

explained in Chapter 4. The experiment has no direct effects on the downstream 

task (i.e., polyp segmentation), hence they are deferred here for discussion. 

Appendix D.1 articulate checkerboards emerged due to selecting different 

gradient filter for calculating total variation loss ‖𝛻�̌�‖. Meanwhile, Appendix 

D.2 provides additional demonstration of 𝑇𝑉∅ and 𝑇𝐼∅ transformations during 

the training phase. 

Appendix D.1 

  The objective of Total Variational 𝑇𝑉∅ is to minimize the total variations of 

the background, meanwhile retains polyp texture as follows: 

  𝑚𝑖𝑛
�̌�

{
𝛼‖𝑥(𝑤, ℎ) − �̌�(𝑤, ℎ)‖2      𝑓𝑜𝑟   (𝑤, ℎ) ∈ 𝑨 

𝛽‖𝛻�̌�‖                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
 (72) 

where A is a set of points that represent coordinates of polyp pixels. (w, h) 

represents pixel coordinates, whereby, 𝛼 and 𝛽 are scalars used to balance 

between construction and total variation ‖𝛻�̌�‖ objectives. The Sobel derivative 

filter was utilised to calculate 𝛻�̌� and accordingly checkerboard artefacts were 

noticed as shown in Figure 47 at first row.  

  However, this effect vanishes when central difference is used as seen in the 

third row in Figure 47. Nevertheless, regardless of the used derivative, a 

segmentation model would learn to ignore this artefact during the training 

phase. Accordingly, utilising any derivative operator will not affect the 

downstream task. 
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Derivative filter  

type 𝛻�̌�   
𝑇𝑉∅(�̌�|𝑥) 

 

 

 

 

 

 

 

 

 

Figure 47 The effect of different derivative operators on the transformed image �̌�. 

Appendix D.2 

    As illustrated in Chapter 4, the Texture Variational 𝑇𝑉∅, which is a deep 

learning unit, applies online texture transformations to input images in order to 

provide a segmentation model with various transformed images during the 

training phase. The transformation process decreases image’s gradient of the 

background meanwhile reserve polyp regions. Accordingly, the segmentation 

model gets exposed to various vanishing texture levels, hence, it obtains texture 

invariance properties. Figure 48 and Figure 49 show transformation progress 

along with the generated mask by the segmentation model. At the first epoch 

both the 𝑇𝑉∅ and the segmentation model produces unsatisfactory results, 

though, they gradually learn to achieve their corresponding objectives as 

training epochs progress. 
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Figure 48 𝑇𝑉∅ transformations and mask generation during training phase. 
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Figure 49 𝑇𝑉∅ transformations and mask generation during training phase. More examples. 

  As discussed in Chapter 4, Texture Interpolation 𝑇𝐼∅ unit is another 

implementation of the proposed framework. The 𝑇𝐼∅ produce an interpolated 

image given an original image and a textureless image produced by a pre-trained 

unit (i.e., Autoencoder unit). Therefore, 𝑇𝐼∅ produces valid images starting from 

Epoch 1 as opposed to the 𝑇𝑉∅, as seen in Figure 50. However, the segmentation 

unit gradually learn to segment polyp regions as the training progresses. 
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Figure 50 𝑇𝐼∅ transformations and mask generation during training phase. 

 

  Figure 51 shows the progress of the Autoencoder AE component that is used 

in the 𝑇𝐼∅ unit. The AE unit was assigned a polyp mask generation task along 

with input reconstruction task to prevent it from learning identity function. 

Accordingly, AE learns to reconstruct original images without texture details, 

as seen in Figure 51. As it can be seen from Figure 51, AE failed to reconstruct 

original images at the first training epoch, however after a while, it learns to 

reconstruct main features of input images. 
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Figure 51 Training the Autoencoder in 𝑇𝐼∅ unit to reconstruct original image. 

 

 


