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Abstract

Supervised deep neural networks trained with substantial amounts of an-

notated speech data have demonstrated impressive performance across a

spectrum of spoken language processing applications, frequently establish-

ing themselves as the leading models in respective competitions. Nonethe-

less, a significant challenge arises from the heavy reliance on extensive

annotated data for training these systems. This reliance poses a significant

scalability limitation, hindering the continual enhancement of state-of-the-

art performance. Moreover, it presents a more fundamental obstacle for

deploying deep neural networks in speech-related domains where acquiring

labeled data is inherently arduous, expensive, or time-intensive, which are

considered as low-resource ASR problems in this thesis.

Unlike annotated speech data, collecting untranscribed audio is typically

more cost-effective. In this thesis, we investigate the application of self-

supervised learning in low-resource tasks, a learning approach where the

learning objective is derived directly from the input data itself. We employ

this method to harness the scalability and affordability of untranscribed

audio resources in problems where we do not have enough training data,

with the goal of enhancing the performance of spoken language technol-

ogy. In particular, we propose three self-supervised methodologies. One

model is based on the concept of two-fine-tuning steps, while the other two
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revolve around the notion of identifying an improved hidden unit. These ap-

proaches are designed to learn contextualized speech representations from

speech data lacking annotations. We demonstrate the capacity of our self-

supervised techniques to learn representations that convert the higher-level

characteristics of speech signals more effectively than conventional acoustic

features. Additionally, we present how these representations enhance the

performance of deep neural networks on ASR tasks with limited resources.

Beyond introducing novel learning algorithms, we conduct in-depth anal-

yses to comprehend the properties of the acquired self-supervised repre-

sentations and elucidate the distinct design elements that separate one

self-supervised model from another.
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Chapter 1

Introduction

Speech, being the most common form of human communication [1], has mo-

tivated both computer scientists and linguists to develop machines, which

can effectively communicate with humans.This has led to the creation of

Automatic Speech Recognition (ASR) systems [2]. ASR systems have

played an important role in advancing the field of machine learning [3].

Today, personal assistants on smartphones, such as Apple’s Siri, or voice-

activated services, such Amazon’s Echo, are examples of ASR systems al-

ready used for everyday tasks [4].

Speech and Spoken Language Technology cover a broad range of functions.

These include ASR systems, which convert speech into text, and speech

synthesis, which does the opposite by turning text into speech [5, 6]. Ad-

ditionally, they facilitate speaker identification, emotion classification and

affect recognition [2]. For most of these tasks, the ultimate goal remains the

same: to have seamless and natural communication between humans and

machines based on speech [1]. The past decade has seen a rapid develop-

ment of deep learning methods in machine learning. The application of deep

learning in ASR has resulted in more robust and accurate models, together
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with a wide range of different applications [7, 8, 9]. By employing com-

plex neural network architectures, such as Convolutional Neural Networks

(CNNs) [10, 1] and Recurrent Neural Networks (RNNs) [11, 12, 13, 14],

deep learning algorithms can effectively process and interpret vast amounts

of spoken language data [15]. This has enabled ASR systems to better un-

derstand and transcribe speech with nuances in accent, tone, and context,

significantly reducing error rates [16, 17, 18]. Additionally, deep learning

has empowered ASR systems to adapt to new languages and dialects more

quickly [19].

State-of-the-art ASR systems achieve Word Error Rate (WER) as low as

9.34% [20] with two-headed cltLSTM, which is trained with transcribed

data from a variety of Microsoft products, and 3.6% [21] with Conv-Transformer

Transducer on Librispeech clean data, while some other models in the area

obtain a WER of 9.92% [22], and 10.92% [23]. In ASR systems research

area, the advent of large datasets has undeniably crucial role in the advance-

ment of the state-of-the-art ASR models. However, it is crucial to consider

that the achievement of significantly low WERs is not only attributable

to the availability of these extensive datasets. Indeed, Transformer-based

models, the application of data augmentations techniques and the improv-

ment of the language models have all significantly contribute to the re-

duction of the WERs in ASR system algorithms. Two-headed cltLSTM

approach [20] which uses a training set of 65k hours of speech data and

cltLSTM and Conv-Transformer Transducer[21] models that respectively

use training sets of more than 30k hours and more than 1k hours of data

are examples that link the amount of training data to the reduction of

the WERs. The Neural Speech Recognizer model [24] uses 125k hours of

YouTube videos to obtain a WER of 13.5%, and Deep Speech 2 [1] obtains

a WER of 13.59% by using almost 12k hours of English speech and 9.4k
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hours of Mandarin Chinese speech to train. Therefore, in addition to the

amount of training data, in-domain data is also very important in model

learning. Using in-domain data can help to ensure that the model learns

the most relevant and important patterns from the data, which makes the

training process more efficient.

The requirement for extensive datasets to effectively train deep learning-

based ASR systems is a consistent characteristic across all state-of-the-art

methodologies. In fact, the availability of larger datasets generally cor-

relates with enhanced performance in contemporary deep learning ASR

systems [4]. For example, the amount of data in the TED-LIUM 3 dataset

[25], which was released in 2018, more than doubled in comparison to the

amount of data from the previous release, TED-LIUM 2 [26], released in

2014. Consequently, the proposed model trained with TED-LIUM 3 was

able to achieve better results [25]: By using a classical 3-gram language

model used in a beam search on top of the end-to-end architecture, WER

decreases to 13.7% with the TED-LIUM 3 training data, while with the

TED-LIUM 2 training data, the same model reached a WER of only 20.3%

[25]. An end-to-end ASR architecture is a model that directly transforms

input speech sequences into output label sequences, without the need for

any intermediate phonetic or linguistic representation [26]. So, in end-

to-end ASR models, an increased volume of training data enhances the

model’s ability to learn diverse linguistic patterns and acoustic variations,

thereby improving its accuracy and robustness in real-world speech recog-

nition tasks. Furthermore, in [27], the authors achieved an improvement in

ASR performance by training the model over LibriSpeech dataset, which

contains over 1k hours of speech. The positive effect of larger training

datasets in ASR model’s performance is also observable with the VoxCeleb2

dataset [28]. By increasing the number of sentences and participants com-
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pared to the previous version of VoxCeleb [29], the models trained with

VoxCeleb2 outperformed the same models previously trained with Vox-

Celeb.

The remarkable performance achieved by these systems, paired with the

extensive training data, lead to an intriguing machine learning question:

What occurs when the training dataset is restricted? For instance, what

if the application environment for these ASR systems is highly specialized,

making the usual available corpora like LibriSpeech and WSJ dataset [30]

irrelevant? What if collecting substantial amounts of data proves to be

challenging?

Low-resource Environments (LREs) refer to situations where are character-

ized by a scarcity of available training data, that presents various challenges

in the development of efficient ASR models. This limitation impacts the

ability to train and refine models effectively, due to the constrained data

[31]. These may include scenarios with noise like environmental noise, chan-

nel noise or speaker-related noise, restricted speaker vocabulary [32], or spe-

cialized vocabulary requirements [33]. ASR systems face significant limita-

tions in under-resourced languages and specific domains, as current state-

of-the-art models struggle to generate highly accurate output sequences

due to the insufficiently large training datasets. The primary hurdle lies

in the inadequacy of acoustic and textual data in these under-resourced or

low-resource domains [4].

Additional examples of LREs are related to the specific domain of the

ASR system. These domains can be characterized as highly specialized

ASR tasks, such as ASR systems designed for children [34] or the accented

speech recognition task [35]. Researchers have not yet treated domain-

specific or domain adaptation in ASR systems in much detail. State-of-
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the-art ASR models use popular benchmark datasets, such as Librispeech

[27], WSJ [30], Fisher [36], and Switchboard [37] which contain public

speech data [6]. The nature of the data has a significant impact on the

vocabulary and the form of the conversations. A domain adaptation in

the ASR system can be seen in [38], which has shown that the amount of

in-domain data has a direct effect on the accuracy of ASR models when

working with conversational topics spoken by people with dysarthria, and

corroborated the importance of more inclusive systems. Previous state-

of-the-art techniques of ASR systems lack focus on non-native language

speakers, so acoustics and linguistics are not considered in the evaluation

of the systems [39]. Our experiments show that general benchmark datasets

are insufficient for specialized LREs.

Current speech recognition systems require massive amounts of labeled

data to train, but most real-world applications do not have much. This is

the aims of our works to develop new methods to train speech recognition

systems without the need for large amounts of labeled data, making them

more accessible and practical for a wider range of applications. To develop

an ASR system for a specific application, a substantial amount of speech

data with transcriptions (known as a spoken corpus) is necessary. However,

in many cases, such a corpus suitable for the target application is not

available. The primary challenge arises from the fact that the task-related

data required for training the LRE ASR is not adequately represented in

the existing public training set. Often, researchers and practitioners try to

overcome this challenge by collecting as much data as possible from similar

conditions. However, this approach does not fully address the problem, as

the uniqueness of each LRE’s linguistic and acoustic properties means that

even a large, but only somewhat relevant dataset may not be sufficient.

Utilizing data specific to the target domain is optimal for enhancing our
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models. However, obtaining such data is challenging, as discussed earlier.

The usual method for developing a new application involves the creation

of a new dataset by recording and transcribing audio. The issue lies in the

impracticality of recording a large volume of new audio for every unique

use-case, especially considering the data-intensive nature of artificial neu-

ral networks. Traditional training approaches for these extensive models

encounter a bottleneck in data collection. The process of collecting and

generating data resources is not only time-consuming but also expensive.

Acquiring acoustic data is particularly challenging, as it entails obtaining

the audio and then transcribing it. Unlike text data, that is generally less

challenging to collect comparing to audio data, primarily due to the greater

availability and accessibility of text-based resources compared to the com-

plexities and resource requirements involved in recording and processing

audio data.

The mentioned scenario has spurred significant research in self-supervised

representation learning. This approach involves leveraging labels gener-

ated from well-designed pretext tasks, to supervise the pre-training of deep

neural networks. The parameters obtained from this pre-training are subse-

quently employed, either wholly or partially, to initialize the parameters of

task-specific deep neural networks. This strategy helps in addressing down-

stream tasks with a reduced need for extensively annotated data compared

to traditional supervised learning.

Self-supervision entails training deep neural networks to predict one aspect

of the input data based on another part of the input. This stands in contrast

to supervised learning, where networks predict a predefined target output,

and generative modeling, where networks estimate input data density or

learn a generator for it. The key distinction in self-supervised learning

algorithms lies in how they define the labels used for prediction, which is
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1.1. RESEARCH QUESTIONS

the pretext task. The choice of this pretext task influences the resulting

learned representations’ (in)variances and, consequently, their effectiveness

for various downstream tasks.

Self-supervised learning methods have proven to enhance the efficiency of

learning with reduced data samples in various domains such as images,

videos, speech, text, and graphs [40, 41, 42, 43, 44]. Some findings indicate

that the quality of self-supervised representations improves logarithmically

with the increase in the amount of unlabeled pre-training data [45]. This

suggests that with advancements in data collection and computational ca-

pabilities, the performance achievable through ”free” pre-training could see

ongoing enhancements, as larger pre-training sets can be utilized without

the necessity of manual annotation for new data.

1.1 Research Questions

This thesis seeks to explore several key research questions:

• How can self-supervised learning be effectively utilized to enhance

speech recognition technology, particularly in the context of low-

resource ASR challenges?

• What are the properties of the speech representations learned through

self-supervised methods, and how do these properties contribute to

the effectiveness of ASR systems?

• Can new methodologies be developed to train speech recognition

models efficiently without relying on extensive labeled data?

• How can these self-supervised learning methods enable ASR models

to learn useful speech representations with minimal labels, and what
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1.2. THESIS CONTRIBUTIONS

impact does this have on the performance of ASR systems in low-

resource settings?

1.2 Thesis Contributions

This thesis makes the following contributions:

• We provide a thorough series of experiments to assess the effectiveness

of the latest High-Resource Environment (HRE) ASR models when

tested in scenarios with limited resources. Our findings indicate that

simply increasing training data from a different domain does not en-

hance the accuracy of ASR systems in low-resource environments.

The empirical evidence suggests that utilizing deeper model struc-

tures is not efficient for LREs, even though they prove potent with

abundant training data. Furthermore, we demonstrate that a suc-

cessful approach involves pre-training with a language resource rich

in data and fine-tuning with pertinent in-domain data for effective

handling of low-resource ASR tasks.

• We illustrate a method for enhancing the performance of low-resource

ASR tasks by leveraging large-scale corpora from unrelated domains.

To overcome the challenge of limited training data, we introduce a

novel model called ScoutWav. This model combines Self-Supervised

Learning (SSL) with context-based word boundary information to

create a high-performing ASR model for Low-Resource Environments.

ScoutWav employs an improved Scout Network with a context vec-

tor embedding mechanism, enabling it to capture both local acous-

tic characteristics and broader contextual attributes, thus yielding

high-quality word boundary data for a two-stage fine-tuning process.

8
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Initially, we pre-train a wav2vec 2.0 [46] model using a high-resource

dataset and then fine-tune it with LR data to adapt it to the spe-

cific task. Recognizing that different layers within a Transformer

architecture capture various levels of linguistic information, we em-

ploy a wav2vec 2.0 layer analysis to identify subpar layers that fail to

adequately capture acoustic-linguistic features. These underperform-

ing layers are subsequently improved through a second fine-tuning

step, leveraging context-based word boundary data to embed global

context awareness into the ScoutWav model. We showcase the per-

formance of the ScoutWav model on two different LRE datasets.

• We introduced Local Aggregation BERT (LABERT), a new self-

supervised speech representation learning model designed to gener-

ate speech representations suitable for low-resource ASR tasks. It

is inspired by HuBERT [47], but uses a different approach to detect

hidden units in the latent feature space. LABERT uses a committee-

based active learning model to select more informative speech units

for training. This helps to address the data bottleneck in low-resource

ASR. To detect hidden units, LABERT uses a non-parametric aggre-

gation method instead of a global clustering algorithm. This makes

LABERT more efficient and scalable to large datasets. To select infor-

mative speech units, LABERT uses a committee-based active learn-

ing model. This model is trained to classify speech units with similar

statistical structures into the same clusters. This allows LABERT to

select a subset of the data that is both informative and diverse. This

approach helps overcome data bottlenecks and enables the modeling

of well-suited representations for downstream LRE ASR tasks.

• We proposed a new self-supervised speech representation learning

model called Regularized Contrastive Clustering BERT (RC-

9
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CBERT). It is proposed to generate speech representations that are

well-suited for low-resource ASR tasks. RCCBERT is inspired by Hu-

BERT, but it adopts a contrastive learning based clustering model to

identify hidden units within the latent feature space. In this work, we

adapt a one-stage online deep clustering method called Contrastive

Clustering (CC) for the speech recognition problem to identify hid-

den units. CC uses a deep model to learn the feature matrix whose

rows and columns correspond to the instance and cluster representa-

tions, respectively. In other words, CC utilizes the label as a special

representation by mapping the input instances into a subspace with

a dimensionality of the cluster number. This allows CC to view the

matrix’s rows as the likelihood of a particular cluster assignment (or

soft labels for instances), and the columns of the feature matrix could

be interpreted as the cluster distributions over instances (i.e., clus-

ter representations). RCCBERT employs regularizing constraints to

impose slow changes in the latent representations and overcome the

definition of the negative samples, which helps to overcome data bot-

tlenecks and enables the model to present well-suited representations

for downstream LRE ASR tasks.

1.3 Chapter Road Map

The following chapters in this thesis are structured as follows:

• Chapter 2 provides an overview of the key concepts and background

materials that are relevant to the research presented in the thesis.

The goal of this chapter is to ensure that readers have a sufficient un-

derstanding of the field to appreciate the contributions of the thesis.

10
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• Chapter 3 compares a set of deep neural network models with different

percentages of the pre-training data to determine the key factors that

influence in model selection for low-resource ASR problems.

• Chapter 4 presents self-supervised representation learning that makes

use of the idea of two-step fine-tuning for low-resource ASR problems.

• Chapter 5 proposes a novel method that integrates local aggregation

function and active learning technique to detect informative hidden

speech units in low-resource ASR tasks.

• Chapter 6 presents another approach based on the contrastive ori-

ented clustering to detect more informative speech units in low-resource

scenarios.

• Chapter 7 summarizes this thesis and discusses possible future direc-

tions.

11



Chapter 2

Literature Review

In this chapter, we present the foundational information relevant to the

thesis. We initiate by presenting an overview of automatic speech recog-

nition in Section 2.1, which is a crucial application in speech processing

and a key evaluation task for the systems in this thesis. Following that,

in Section 2.2, we conduct a survey of three commonly employed neural

network architectures in speech processing: RNN, CNN, and Transformer.

Section 2.3 commences with a brief historical review of neural network pre-

training and then delves into its recent advancements in self-supervised

techniques, notably in the realms of visual, textual, and speech represen-

tation learning. Section 2.4 provides a focused review of prior research in

neural representation analysis, establishing the methodological foundation

for the subsequent analysis of self-supervised speech representations within

this thesis. Finally, Section 2.5 surveys various low-resource ASR system

approaches, establishing a benchmark for the subsequent evaluation of our

proposed method.
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2.1. AUTOMATIC SPEECH RECOGNITION

2.1 Automatic Speech Recognition

The objective of automatic speech recognition is to empower machines

with the ability to transcribe human speech into text automatically. We

limit our discussion to the impact of End-to-End (E2E) deep learning tech-

niques that are driving state-of-the-art speech-to-text recognition models.

Speech-to-text ASR systems can detect input voice signals and produce the

corresponding transcribed text in a computer-readable format [48]. The

quality of the speech recognition system affects the difficulty of machine

language understanding, which in turn can also influence the efficacy of

spoken dialogue systems [49]. Therefore, it is a crucial step to create seam-

less communication between humans and machines. A brief history of ASR

systems and their components are presented in Section 2.1, followed by a

discussion of deep learning based state-of-the-art ASR techniques in Sec-

tion 3. Section 4 provides an overview of applications of ASR on LREs, to

present challenges, which motivated this study.

2.1.1 History and Components of ASR Systems

An ASR system converts an acoustic input sequence X =
{
x1, ..., xT

}
of

length T into a word sequence W =
{
w1, ..., wN

}
of length N . The goal of

the system is to find the most likely label sequence Ŵ for the speech input

vector, X as follows:

Ŵ = arg max
W∈V∗

P (W |X) (2.1)

where V∗ refers to all the label sequences [3]. Based on Equation 2.2, an

ASR system aims to build a model, which can accurately compute the
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posterior distribution P (W |X).

The first speech recognition system, which mapped the output of a filter

bank to hand-constructed templates to recognize 10 digits, was proposed by

Bell Labs in the 1950s [50]. Voice-activated typewriters [51] and speaker-

independent 10-vowel recognition systems were examples that used a filter-

based approach in speech recognition [52]. These primary systems were

able to detect only a single word which are called isolated word recognition

systems.

Subsequently, researchers showed increased interest in expanding speech

recognition to Large Vocabulary Continuous Speech Recognition (LVCSR)

systems [53, 54]. Unlike in isolated word recognition systems, context in

speech data and large vocabulary corpus has been major problems in ASR

models for LVCSR [3]. Hence, integration of multiple models were devel-

oped, where models based on the Hidden Markov Model (HMM) showed

impressive results [55], by categorizing the ASR problem into sub-problems

(such as language and acoustic aspects being handled separately) and learn-

ing multiple models for each sub-problem category. However, In multiple

model approaches, neural networks were employed for acoustic modelling,

and hybrid Hidden Markov Model/Deep Neural Network (HMM/DNN)

systems demonstrated significant effectiveness [56].

Categories of ASR Systems

A large and growing body of literature has investigated ASR systems.

Based on fundamental principles and basic innovations, previous research

can be classified into classical and end-to-end categories:
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2.1. AUTOMATIC SPEECH RECOGNITION

Classical ASR Systems A classical ASR approach converts input audio

to its associated text representation by using multiple models to solve each

sub-task related to the larger problem [4]. This approach was used in ASR

for several decades [57, 55, 58]. The minimal configuration of these models

includes a combination of three independent modules: the acoustic model,

lexical model, and language model, each playing a different role in the

whole system.

Figure 2.1 shows a general classical ASR system, which includes acoustic

(acoustic–phonetic) modeling, lexical (pronunciation, lexicon/vocabulary)

modeling, and language modeling as the three main sub-problem compo-

nents. An acoustic model captures the relationship between the audio

signal and the phonetic units, the lexical model captures probabilistic cor-

relation between latent variables and lexical units, and the language model

calculates the likelihood of a sequence of words.
 

Feature 

Extractor 
Speech Decoder 

Feature Vectors 

Acoustic 

Model 
Lexical 

Model 

Language 

Model 

Speech 

Data 
Text Data 

Input Speech Output Text 

Figure 2.1: Architecture of a generalized classical ASR system consisting of acoustic, language and
lexical modelling as well as a speech decoder.

An Acoustic Model (AM) is created by taking an audio recording of speech

and then providing a statistical representation of the sound that makes up

each phoneme. The main goal of the acoustic model is to map a sequence of
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acoustic features to a sequence of phonetic units. For a given text sequence

Y , an acoustic model provides the following estimation:

p(X|Y ) (2.2)

in which presents the probability or likelihood of a speech utterance X

given Y .

To obtain a statistical model for ASR models, we need a collection of

audio recordings along with their parallel text transcripts. This collection

is called a corpus. The corpus is typically made up of a large number

of audio-transcript pairs, where each pair consists of an audio recording

and its corresponding text transcript. The audio recording is represented

as a raw waveforms. Feature vectors are extracted from the audio signal

using a variety of techniques, such as the log Mel-filterbank features and

Mel-frequency Cepstral Coefficients (MFCCs). The sequence length of the

feature vectors varies from recording to recording. The text transcript Y

is a sequence of textual tokens. The specific tokens used in the transcript

depend on the ASR system’s final usage. For example, if the ASR system

is to be used for transcribing conversations, the tokens might be words

or phrases. If the ASR system is to be used for transcribing text, the

tokens might be characters or subwords. Once we have the corpus, we can

train a statistical model to map from the sequence of feature vectors to the

sequence of textual tokens.

A commonly employed approach to represent Y involves utilizing a man-

ually crafted pronunciation model that associates each word in Y with

its corresponding pronunciation and associated likelihood. In this model,

pronunciation model emits a sequence of phonemes, given a word. The
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adoption of such a pronunciation model enhances the efficiency of model-

ing P (X|Y ). Instead of needing to estimate a distinct probability distribu-

tion for each unique word in the vocabulary, the acoustic model now only

needs to account for a set of fundamental acoustic units, such as phonemes.

These phonemes, which are limited in number and shared across words in

a language, simplify the modeling process. If we denote the phonemes

sequence obtained from Y using the pronunciation model as U , the task

of modeling the conditional distribution of an audio sequence X given a

text sequence Y , P (X|Y ), is transformed into the task of modeling the

conditional distribution of X given the phone sequence U , P (X|U).

Hidden Markov Models are popular models for acoustic modeling [59].

Probabilistic or deterministic models can be used in this structure as an

acoustic model. A Gaussian Mixture Model (GMM) is a probabilistic model

that is used to represent the distribution of feature vectors in a multidi-

mensional space. These feature vectors are extracted from the audio signal

and represent various properties of the speech, such as frequency content,

energy levels, and spectral dynamics. The GMM is used to model the statis-

tical properties of these feature vectors for different phonemes (basic units

of speech sound) or words in the language being recognized. HMMs can be

combined with GMM, referred to as GMM-HMM systems [60], to improve

the accuracy of ASR systems. In contrast, a deterministic model such as

Deep Neural Networks (DNNs) produces the output sequence exactly like

the input sequence. GMMs and DNNs can be combined to calculate the

hidden states of HMM to produce a final output sequence [61]. Recent de-

velopments in the field of deep learning have led to renewed interest in ASR

systems to provide more accurate text [62]. As a result, HMMs were also

combined with DNNs for acoustic modeling. In the process of parameter

estimation for a DNN-based acoustic model, the typical procedure begins
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by employing a pre-trained baseline GMM-HMM speech recognizer. This

recognizer is employed to determine the target state label for each frame

within the audio sequence. Once the target state sequence has been identi-

fied, the DNN-based acoustic model can be trained using backpropagation

along with standard gradient descent methods.

The lexical model is responsible for mapping acoustic features of speech

to corresponding words in the vocabulary. The lexical model is typically

based on a pronunciation dictionary that contains the mapping between

phonemes or sub-word units and their corresponding word forms. The

pronunciation dictionary may also contain information about the stress

and intonation patterns of words, which can be important for accurately

transcribing spoken language. In some ASR systems, the lexical model may

also include a mechanism for handling out-of-vocabulary (OOV) words,

which are words that are not included in the vocabulary. This can be done

by mapping OOV words to a set of similar words in the vocabulary, or by

using a separate module to generate new pronunciations for OOV words

based on their spelling or phonetic structure.

The language model (LM) is used to apply constraints on the recogni-

tion process to capture the structure and semantics of the target language.

Within the ASR systems, pronunciation models play a critical role in bridg-

ing the gap between the symbolic realm of text and the acoustic world of

spoken language. They operate as a specialized component within the LM,

tasked with the crucial function of mapping written words to their corre-

sponding phonetic representations. Unlike LMs, which focus on analyzing

word sequences and assessing their likelihood based on grammatical and

semantic principles, pronunciation models delve deeper into the linguistic

structure. They essentially serve as a phonetic dictionary, decoding indi-

vidual words identified by the LM and representing them through their
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constituent phonemes – the fundamental building blocks of spoken lan-

guage. Hence, language modeling is a process which used to convert a

sequence of phonetic units into meaningful words and sentences. Recur-

rent Neural Network LM (LM) [63, 64] is one of the most well-known LM

models. LM is primarily responsible to model the statistical properties

of language, such as word probabilities and word sequences. This allows

the ASR system to determine the likelihood of different word sequences

occurring in a given context. For example, it helps distinguish between

homophones (words that sound the same but have different meanings) by

considering the surrounding context.

There are two main types of language models used in ASR:

• N-gram language models: These models are based on the n-gram

hypothesis, which states that the probability of a word occurring

depends on the n− 1 words that have come before it. For a given a

text sequence W = (w1, w2, ..., wN) where N represents the number of

tokens (like words) in the sequence. A n-gram model decomposes the

likelihood of producing W into the multiplication of the probabilities

for each token in the sequence. Each token’s probability is dependent

on all the tokens that precede it in the sequence.

• Neural language models: Neural language models are a type of

statistical language model that uses neural networks to predict the

next word in a sequence. They are more powerful than n-gram lan-

guage models because they can learn more complex relationships be-

tween words. Neural language models are typically trained on a large

corpus of text, such as a book or a news article. The corpus is used

to train the neural network to predict the next word in a sequence.
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A speech decoder is another component of a classical ASR system that

converts audio input data into a sequence of words. The acoustic signal is

converted to a vector of features of the speech signal that is used to reduce

the dimension [2]. An ASR decoder can produce a representation of the

recognition hypotheses, and then, by applying language models, it is able to

present the best recognition hypothesis. Therefore, language models can

help to decide between interpretations of the same acoustic information,

and using it in the ASR model increases the accuracy of the ASR model

[1].

A classical ASR system can be simply formalized as follows:

Ŵ = arg max
W

P (W |X) = arg max
W

(P (X|W ).P (W )) (2.3)

in which Ŵ , P (W |X), P (X|W ), and P (W ) are the estimated word se-

quence that the ASR system predicts, the posterior probability of the word

sequence W given the observation sequence X, likelihood of observing the

sequence X given the word sequence W which is modeled by the acoustic

model, and prior probability of the word sequence W which is modeled by

the language model, respectively.

Classical structures have some limitations [65]: As different models need

different training methods and in-domain data, the training process be-

comes increasingly complex when trying to achieve global optimization. In

addition, conditional independence between the tasks addressed by each

model is assumed to simplify the training process. This is not reflective of

the reality, in which all parts of speech are interconnected together.

End-to-End ASR Systems End-to-end models are supervised meth-

ods of learning in which the input audio feature is directly mapped to an

20



2.1. AUTOMATIC SPEECH RECOGNITION

output sequence [4]. In this sense, end-to-end models are altered classical

architectures that just use a deep network to convert audio to text di-

rectly. Therefore, there is no need to design many modules with different

optimization functions [66].

Figure 2.2 shows the architecture of the end-to-end model, in which the

encoder and decoder are the two main parts of the model. The encoder

is the part of the model that maps the input sequence into a feature se-

quence, while the decoder produces the final text representation [66]. This

architecture enables the model to learn the acoustic model and language

model together within a network.
 

Encoder Block 

Decoder Block 

Input Speech 

Output Text 

Figure 2.2: Architecture of an End-to-End Automatic Speech Recognition System

A considerable amount of literature has been published on end-to-end ASR

systems [67, 68, 69, 70]. End-to-End models can be trained from scratch

and can operate on words, sub-words or characters. They can be formally

defined as:

P (W |X) = NeuralNetwork(X), (2.4)

where X is the speech data and NeuralNetwork(X) is a single, unified

model that directly maps speech X into word probabilities.
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The end-to-end speech recognition models use a single loss function for

parameter estimation. This enables the model to use a function which

is completely relevant to the final result, hence significantly improves the

accuracy of the ASR system. Unlike the classical approach, there is no

need for additional processing to obtain true transcription in the end-to-

end model.

As the end-to-end model replaces the engineering process, which required

to build classical systems, with a learning process, there is no longer a need

for domain knowledge and experience to build the ASR model [3]. However,

an end-to-end ASR system uses a deep neural network to directly convert

the input sequence into an output sequence, it needs a large volume of

training data to acquire higher accuracy, which is not feasible for every

real application.

2.2 A Survey of the State-of-the-Art in End-

to-End ASR Systems

Vast majority of state-of-the-art research in the speech recognition area has

focused on large training datasets that use up to hundreds or thousands

of hours of audio data in their models. In this section, we will discuss the

extensive literature in the area according to the base architecture used in

the model, which will be examined in five main branches. Section 2.2.1 will

cover CNN- and RNN-based strategies. Section 2.2.2 and 2.2.3 will discuss

recent research on Attention-Based models and Transformer-based models,

respectively.
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2.2.1 Methods Based on Convolutional Neural Net-

works and Recurrent Neural Networks

Due to the impressive results of DNN models, almost all state-of-the-art

ASR systems use a modification of DNNs in their structure [71, 72, 18].

As RNN architectures, especially LSTMs, are a good option for sequence

processing, they have been used in state-of-the-art STT systems [12]. CNN-

based models are primarily known for their success in image processing

and computer vision [73]. However, CNNs can also be applied to sequence

learning tasks, including natural language processing (NLP) and, to some

extent, ASR, albeit with certain limitations and adaptations. While CNNs

are not the first choice for sequence learning due to their lack of explicit

mechanisms to handle long-range dependencies in sequences, their ability

to capture local patterns and their efficiency in training make them valuable

in certain contexts or as part of hybrid models that leverage the strengths of

different architectures. The combination of CNN layers before RNN layers

are used to help the model to provide more accurate feature extraction

[74]. In this section we summarize the CNN and RNN based a Table 2.1

illustrates an overview of these models.

RNN-Based Models for ASR

RNN-based architectures were used as language models in end-to-end mod-

els in the literature in [75, 76]. Research has shown the restricted ad-

vantages of minor architectural improvements in the original LSTM as a

language model [77]. The design of Vanilla-LSTM is based on the use

of intuitive multiplicative gates. Highway connections [78] and residual

connections [79, 80] are the most prominent changes in the LSTM-based

architectures, along with dropout [81].
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A typical LSTM layer converts the input vector xt to the output vector ht

through a gate-cell structure as follows [82]:

it = σ(WixXt + Wihht−1 + Pi ⊙ ct−1 + bi) (2.5)

ft = σ(WfxXt + Wfhht−1 + Pf ⊙ ct−1 + bf ) (2.6)

ct = ft ⊙ ct−1 + it ⊙ ϕ(WcxXt + Wchht−1 + bc) (2.7)

ot = σ(WoxXt + Wohht−1 + Po ⊙ ct + bo) (2.8)

ht = ot ⊙ ϕ(ct) (2.9)

where Xt is the speech spectrum input at the time step t. The activation of

the input, output, forget and memory cells are it, ot, ft and ct, respectively.

The output of the LSTM cell is ht. W.x and W.h which are the weight

matrices for the input and recurrent inputs, respectively. Pi, Po, Pf are

vectors that are associated with peephole connections. Finally, bi, bf , bc,

and bio are bias vectors.

A large and growing body of literature has investigated the LSTM-RNN

model [11, 12, 83, 84] and has shown state-of-the-art results on ASR tasks.

LSTM variations, such as multiple LSTM layers stacked, yield better results

[12]. However, gradient vanishing errors and the need for a large amount

of training data are major problems of such models [85].

The gradient vanishing problem can be partially solved by adding skip

connections or gating functions between LSTM layers. Residual LSTMs

[79, 80] have connections between layers, reducing the severity of the gra-

dient vanishing problem. Highway-LSTMs [78] are another structure that

connects the memory cells in adjacent layers to create a parallel path for

data flow. In Grid-LSTMs [86] the network created a multidimensional
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grid with memory cells in LSTM cells. The results show better performance

compared to Highway-LSTM on several ASR tasks. Layer-Trajectory Long

Short-Term Memory (ltLSTM) combines stacked LSTMs, which scans the

outputs from time-LSTMs, with a summarized layer to include trajectory

information for the final classification [82]. This model decouples the time

recurrence and the final classification. Based on this architecture, the

forward-propagation of time-LSTM and layer-LSTM can be considered in

two separate threads, hence the network computation time is the same as

the standard time-LSTM [82].

Future context frames always carry noteworthy information, which helps

to predict the target label more accurately. In [22], the authors improve

the accuracy of ltLSTM models by utilizing future context frames [82].

They use a fixed-size vector representation of the variable’s future, named

look-ahead embedding. Bi-directional LSTM can reduce the latency of the

BLSTM model [78] by using chunk-wise forward LSTM. Time-delay neu-

ral networks (TDNN) [87] and feed-forward sequential memory networks

(FSMN) [88] use the same architecture: a window of acoustic frames fed

into 1-D Convolutional Neural Networks. These models consider future

acoustic frames to improve the accuracy of the models. In, [20] the authors

improved the contextual layer trajectory LSTM (cltLSTM) [22] by using a

two-headed structure in which one head has zero latency while the other

head has a small latency.

Furthermore, in end-to-end models, deep-BLSTM neural networks obtain

state-of-the-art results [89, 90]. As BLSTM-based ASR systems need the

entire speech utterance to compute the output frames, it is necessary to

know the entire past and future context of the speech [91]. Therefore,

it can be concluded that as such models need large future context, they

can not be used for streaming ASR systems. A possible solution to over-
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come this problem can be used by overlapping chunks of frames to com-

pute the output of the backward LSTM. Consequently, latency-controlled

BLSTM (LCBLSTM) has been proposed [92, 93]. However, an important

issue in these models is that frame overlapping increases the computa-

tional cost. Deep contextualized acoustic representations (DeCoAR) [94]

exploits a large amount of unlabeled data through representation learning

and reconstruct a temporal slice of filterbank features from past and future

context frames. By using contextual information, such as the words that

come before and after a particular sound, DeCoAR can better understand

the meaning and context of spoken language. DeCoAR has shown promis-

ing results in a variety of speech recognition tasks, including speech-to-text

transcription, speaker recognition, and keyword spotting.

Feedforward Neural Networks (FNN) have also been combined with RNN

to improve the accuracy of STT systems. In [95], the authors presented

different networks in which FNNs were combined with LSTM to show tem-

poral patterns and to summarize the long history of previous inputs. LSTM

Recurrent Projection was proposed in [12], in which the authors added a

feedforward layer by considering recurrent information based on the out-

put of LSTM. Simultaneously, a LSTM structure was updated by adding

FNN before and after LSTM in [96]. However, while clear improvements

have been introduced to manage the gradient vanishing problem, no clear

improvements or modifications have been done to LSTM-based models to

tackle the limited training datasets.

CNNs for ASR

Convolutional Neural Network (CNN) is a specialized form of neural net-

work that uses a supervised deep feature learning model to process data
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Architecture Paper Data set (duration) Error rate

RNN/CNN

DLSTM[11] TIMIT 37.6 - 17.7(PER)
[12] Google Voice Search Task

(1900 h)
11.8 - 10.7 (WER)

two-head cltLSTM [20] English Spoken Utter-
ance (200 h-2000 h)

12.24 - 9.34 (WER)

Highway LSTM[78] AMI (100 h) 57.5 - 37.7
[24] data from YouTube,

Google Videos, and
Broadcast News

24.0 (WER)

ltLSTM[82] Microsoft Cortana and
Conversation Data (30k
h)

19.41 - 9.28 (WER)

[73] WSJ (81 h), Librispeech
(1000 h)

19.7 - 17.3 (WER)

Residual LSTM [80] AMI (100 h) 57.5 - 37.7 (WER)
residual LSTM [79] TIMIT, HKUST (150 h) 50.8 - 39.3 (PER/CER)
improved ltLSTM[22] Microsoft Anonymized

Production (65k h)
19.41 - 9.28 (WER)

[84] artificially created data
(2k h)

15.7 (WER)

prioritized Grid LSTM
(pGLSTM) [85]

AMI (100 h), HKUST
(150 h), GALE Man-
darin, Arabic MGB

22.54 (WER)

feedforward sequen-
tial memory networks
(FSMN)[88]

Switchboard (300 h) 13.2 (WER)

[89] TIMIT 29.0 - 18.3 (WER)
[90] TIMIT -
time-delay LSTM (TDL-
STM) [91]

(81 h), HKUST (150 h),
LibriSpeech (1000 h)

35.5 - 4.6 (WER)

DBLSTM-HMM[92] Switchboard (300 h) 14.7 (WER)
[95] CHiME 11.91 (WER)
CRNN [96] HKUST 31.43 (WER)
[97] Bable (10 h) 83.8 - 67.7 (WER)
[98] Bable (10 h) -
[99] TIMIT -
Jasper [100] WSJ, Hub5 16.1 - 2.95 (LER)
TDS convolution [101] LibriSpeech (1000 h) 7.25 - 3.01 (WER)
DeCoAR [94] WSJ (81 h), LibriSpeech

(1000 h)
10.38 - 4.64 (WER)

PASE [102] DIRHA 33.5 - 29.8 (WER)

CTC-Based

Quartznet [103] WSJ (81 h), Librispeech
(1k h)

10.98 - 2.96 (LER)

Contextnet[104] Librispeech (1k h) 1.9 (LER)
[105] TIMIT 30.51 (LER)
[69] WSJ (81 h) 14.1 (WER)
Deep speech 2 [1] WSJ, LibriSpeech, Vox

Forge, CHiME (11940 h)
50.7 - 3.1 (WER)

[106] TIMIT -
[107] Switchboard-1(300 h),

Fisher (1698 h)
20.8 (WER)

Table 2.1: CNN and RNN based ASR models.
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[108]. A specialized kind of linear operation called convolution is utilized

by this type of deep neural network. One of the first research on CNN has

been done in [109] which this network has been used to identify handwritten

characters. Image and video recognition, recommendation systems, image

classification, medical image analysis, and natural language processing are

different applications of this network. [71]. CNN architecture needs a large

amount of data for training to be able to utilize it for applications with

high-dimensional input data, such as image processing and speech recog-

nition. Furthermore, by increasing the number of parameters to train in

deeper structures, this network requires high performance computing power

[110].

CNNs are efficient deep networks that exploit local properties in speech

recognition [98]. The frequency variation in speech signals is another appli-

cation of this network in speech recognition systems[111]. Recent develop-

ments in CNNs have led to interest in their use in both high-resource [112]

and low-resource [97] environments. CNN is used for acoustic modeling

in [99, 113]. In these approaches, to achieve more stable acoustic features

from the input audio, convolution layers are applied over the windows of

the acoustic frames. Jasper [100] is a deep convolution model in which the

convolutional layer 1D is stacked with skip connections. While Jasper’s

fully convolutional design allows for efficient handling of sequential audio

data, this approach might not capture the temporal dynamics as effec-

tively as RNN based models or those incorporating attention mechanisms.

CNNs are excellent for extracting hierarchical features from data, but the

inherently sequential and context-dependent nature of speech might benefit

from architectures designed to handle long-term dependencies more explic-

itly. Jasper’s reliance on dense residual connections and a large number

of convolutional layers can lead to a substantial increase in computational
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resources and memory usage. This could limit its applicability in resource-

constrained environments, such as mobile devices or embedded systems,

despite its design intentions for efficiency and scalability. Additionally, the

training complexity and data requirements for Jasper to achieve optimal

performance may be prohibitive for some applications. The need for large

labeled datasets and significant computational power for training might

not be feasible for all organizations or languages, particularly those with

limited resources or less-represented languages. In [101], the authors used

depth-wise separable convolution layers [114] to improve the speed and ac-

curacy of CNN networks and introduce an innovative approach to ASR

by employing a sequence-to-sequence model that utilizes Time-Depth Sep-

arable (TDS) convolutions. This architecture aims to improve both the

computational efficiency and the accuracy of ASR systems by integrating

TDS convolutions into the model, which separates the convolution opera-

tion into time-based and depth-based components. This separation allows

for a significant reduction in the number of parameters and computational

complexity while maintaining or even enhancing model performance on

speech recognition tasks.

QuartzNet [103] is another CNN-based architecture that obtains state-of-

the-art results in ASR systems. The authors proposed a very deep network

that uses 1D time-channel separable convolution layers. ContextNet [104]

is a CNN-based model that squeeze-and-excitation layer [115] to enhance

the accuracy of the ASR system in terms of WER. ContextNet used an SE

layer after the convolution layer to gain global information from the audio

input to obtain the output of the system. However, with this growth in the

proposed CNN-based ASR, there is an increasing concern about modeling

the long-term context dependencies among the spectrum of speech signals.

As CNNs access the context of higher layers, this network cannot modu-
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late information from the lower layers. Problem-agnostic speech encoder

(PASE) [102] is an end-to-end architecture that consists of several layers

of convolutional neural networks and long short-term memory networks. It

takes raw speech waveforms as input and generates high-level features that

capture the salient characteristics of the speech signal. These features can

then be used as input to other speech processing models or for downstream

tasks such as speech recognition or speaker identification.

While RNNs capable of processing sequential data, often face difficulties in

directly mapping the speech input sequence to the textual output sequence.

This challenge is primarily due to RNNs’ limitations in handling long-term

dependencies within sequences [105]. The output phonemes or other small

output units require further processing to produce the final transcription

[3]. Due to this fact, pre-segmentation should be applied to the training

data, and post-processing of the output will be necessary to produce the

final label sequence [105]. In addition, end-to-end models faced with data

alignment problem when using RNN and CNN to model the time-domain

features. The loss functions in RNN and CNN are defined based on each

point in the input sequence, therefore, for training purposes, these mod-

els should know the alignment relation between the output sequence and

the target sequence. Connectionist Temporal Classification (CTC) is a

loss function that can be combined with RNN and CNN to overcome this

drawback. CTC can solve the problem of the alignment relation while cal-

culating the loss [3]. Hence, it can be concluded that with the advent of

the CTC loss, data alignment and producing target transcription problems

have been solved, and RNN and CNN can be used in the end-to-end ASR

model. Table 2.1 presents CTC-based ASR models.

BLSTM-CTC, proposed in [116], contains a feedforward layer combined

with two LSTM layers. The authors showed that by increasing the number
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of hidden units in the network structure, the accuracy of the ASR system

could be improved. Another combination of deep bidirectional LSTM and

CTC objective functions is presented in [67], where audio spectrograms

are processed by a deep bidirectional LSTM layer and finally a CTC loss

function is used as the output layer. In [106], an end-to-end model is

implemented that consists of two different neural networks for phoneme

recognition. Convolutional layers are applied for frame-level classification,

and RNN with CTC is used to decode frames in the output sequence. The

combination of hierarchical CNNs with a CTC layer without using recurrent

connections is used in [65], in which the authors showed the ability of the

CNN model to capture temporal dependencies. To produce a large context

window for each output in this model, a stacked convolutional layer is

utilized, which is followed by multiple fully connected and CTC layers.

A deep RNN layer with CTC utilized for large labelled training datasets

for two different languages, English and Mandarin, is shown in [117]. The

direct acoustics-to-word CTC model [107] demonstrated results on two well-

known benchmark datasets, Switchboard and CallHome. In this model, two

techniques are proposed to improve the training of the ASR model in these

datasets. To speed up the training process in ASR, the authors in [68]

used a partition scheme to improve parallelization and mapping their RNN

model to GPUs successfully. This model also used a novel combination of

collected and synthesized data to develop a robust process to account for

realistic variations in noise and speakers. This model is an efficient method

for large-scale data training in the ASR task.

An important assumption in the CTC model is that all labels in the output

sequence are independent of each other [3], so the CTC cannot model lan-

guages. Therefore, the models that are used with CTC have to be combined

with external language models to improve the final accuracy of the model.
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In [118], the authors combined a recurrent neural network architecture with

a language model which includes a large vocabulary and continuous speech

recognition. The results demonstrated and emphasized the importance of

using language models to achieve high accuracy in ASR systems. Further-

more, other models, such as Deepspeech2 [1], have shown the importance

of using a language model in a complex structure. Recently, the CTC loss

has been combined with Attention-based and Transformer-based models

and has achieved better results on ASR tasks, as we will cover in the next

sections.

2.2.2 Methods Based on Attention Models

The Neural Transducer [119] considered the attention method on chunks for

input and using end-of-chunk symbol for training. Incremental prediction

is one of the major problems that affect the models presented in the previ-

ous sections. This problem arises when there are new arriving input data or

long input and output sequences are presented to the model. Neural Trans-

ducer models are able to overcome them by computing the next-step distri-

bution conditioned on the partially observed input. In [120], an end-to-end

model based on hard monotonic attention was presented for online decoding

and has linear time complexity. In [121], Monotonic chunk-wise Attention

(MoChA) was proposed. In MoChA, soft attention module is calculated

over the small chunks of data which obtained from the input sequence. An

improved MoChA-based ASR system is presented in [122], where CTC and

cross-entropy losses are jointly used to train the MoChA models and the

MWER model is adopted to optimize the model. In [123, 124] a hybrid

CTC-attention architecture is proposed, which utilizes CTC loss as a reg-

ularization process in an attention-based network. In [125] an end-to-end
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Architecture Paper Data set (duration) Error rate

Attention-Based

Neural Transducer [119] TIMIT 33.4 - 18.2 (PER)
[120] TIMIT 16.0 (PER)
MoChA [121] WSJ 17.4 - (WER)
Improved MoChA[122] LibriSpeech (1000 h) 8.82 (WER)
hybrid
CTC/attention[123]

WSJ (81 h), CHiME 43.45 - 11.27 (CER)

joint CTC-attention
[124]

WSJ1 (81 hours), WSJ0
(15 hours), CHiME

44.99 - 7.36 (WER)

CTC/attention [125] LibriSpeech (1000 h),
HKUST(200 h)

22.5 - 5.3 (WER)

[127] WSJ (81 h), TIMIT 25.8 (WER)
[129] WSJ (81 h), TIMIT 15.7 (WER)

Table 2.2: Attention based ASR models.

hybrid CTC attention architecture was proposed using a stable monotonic

chunk-wise attention(sMoChA) to provide a stream-based global attention

and a truncated CTC (T-CTC) to compute prefix scores.

Another common output sequence for attention-based end-to-end ASR sys-

tems is a character (i.e., grapheme) sequence [126, 127]. In [128], words

and sub-word units are used as the language model to be learned in the

decoder. The length bias and the corresponding beam problem are the

main problems of the attention-based encoder-decoder model, which has

been mentioned in [129], and a heuristic-based model is not suitable for

it; therefore, a beam search structure based on reinterpreting the posterior

sequence was proposed. Attention based ASR models are set out in Table

2.2.

2.2.3 Methods Based on Transformer Networks

Transformer Networks have become one of the most popular and powerful

models in natural language processing [130]. The architecture of the Trans-

former model has made it possible to train a stack of self-attention layers

[131] by applying residual connections between layers, [132] followed by a

normalization layer [133]. In [134, 135], a transformer decoder was used as

a language model and showed impressive results on different benchmarks.

33



2.2. A SURVEY OF THE STATE-OF-THE-ART IN END-TO-END
ASR SYSTEMS

Transformer based ASR models are presented in Table 2.3.

Speech-Transformer [23] is an end-to-end sequence-to-sequence model that

has no recurrence and is completely based on attention mechanisms. This

model uses the basic structure of a transformer network, but the encoder

combines a self-attention layer with convolution layers to present an approx-

imate hidden representation with character length. In [136], the authors

mentioned that an encoder based on the self-attention mechanism is unable

to present an effective acoustic model, so a combination with LSTM layers

was proposed. A transformer-based acoustic model for hybrid ASR sys-

tems is presented in [137] that evaluated several architectures to encode the

input sequence based on absolute or relative positional information. Fur-

thermore, applying iterated loss enables it to train a deeper model based on

transformer networks. Wav2vec 2.0 is a Transformer-based framework for

self-supervised learning of representations from raw audio [46]. Wav2vec

2.0 used a multi-layer convolutional neural network to encode the input

data and, after masking the spans of the resulting latent speech represen-

tations, fed them to a Transformer network to build the contextualized

representations. Another self-supervised learning model is HuBERT [47]

based on the Transformer encoder that used an offline clustering step to

present target labels for a BERT-like prediction loss [138].

The Conformer [139] is a hybrid model in which the Transformer and con-

volution layers are combined to capture content-based global interactions

and relative offset-based local correlations, respectively. In [140], the Lite-

Transformer architecture, an efficient mobile NLP, was proposed. In this

model, self-attention is combined with convolution layers between a pair

of feedforward modules. The Conv-Transformer Transducer [21] is a trans-

ducer framework that is suitable for streaming ASR systems. In this model,

a unidirectional transformer is combined with interleaved convolution lay-
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ers for capturing the future context, to present the audio encoding process.

In [141], a Transformer-based architecture is proposed for post-processing

ASR tasks. This model receives the output of the acoustic model and

presents grammatically and semantically the correct final output sequence.

w2v-BERT [142] is a combination of contrastive learning and Masked Lan-

guage Modeling (MLM), where the first method involves training a model to

convert continuous speech signals into a limited number of distinct speech

tokens that can be distinguished from each other. The second method

trains the model to understand the context of speech by predicting masked

tokens in the discretized speech data.

In [143], a Transformer-Transducer architecture was proposed. The au-

thors presented a training technique that defines both streaming and non-

streaming models in a single algorithm. A stack of transformer layers is

applied to encode the audio. In [144] a speech Transformer is combined

with a bidirectional decoder to learn the encoder and decoder. The en-

coder in STBD is similar to a standard encoder in transformer networks,

but it has two different unidirectional decoders which generate two differ-

ent directional targets. Finally, the use of convolutional layers instead of

positional embedding in transformer networks is a strategy used in [145]

to acquire relative positional information. Transformer Encoder Represen-

tations from Alteration (TERA) [146] proposes a self-supervised learning

method for training transformer encoder models to generate high-quality

speech representations. The method is designed to address the challenge

of training speech recognition systems in low-resource settings, where large

amounts of labeled speech data are not available. TERA learns through the

reconstruction of acoustic frames from their altered counterpart which are

time, frequency, and magnitude. Speech SimCLR [147] is a self-supervised

objective for speech representation learning where applies augmentation
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on raw speech and its spectrogram. Speech SimCLR objective is the

combination of contrastive loss that maximizes agreement between dif-

ferently augmented samples in the latent space and reconstruction loss

of input representation. WavLM [148] learns universal speech representa-

tions from large amount of unlabeled speech data and adapts effectively

across various speech processing tasks. BERT-based Speech pre-Training

with Random-projection Quantizer (BEST-RQ)[149] is a self-supervised

learning algorithm for speech recognition which masks speech input and

feeds into the encoder. The encoder learns to predict the masked region

based on the unmasked speech signals where the learning targets are labels

provided by a random-projection quantizer. ScoutWav [150] is a model

which integrates context-based word boundaries with self-supervised learn-

ing, wav2vec 2.0, to present a low-resource ASR model. ScoutWav pre-

trains a model on high-resource environment datasets and then fine-tunes

with the LRE datasets to obtain context-based word boundaries. The re-

sulting word boundaries are used for fine-tuning with a pre-trained and

iteratively refined wav2vec 2.0 to learn appropriate representations for the

downstream ASR task. LABERT (Local Aggregation and BERT-based

Self-Supervised Learning [151] is a novel approach designed to enhance

ASR systems, particularly in low-resource scenarios. LABERT addresses

the challenge of detecting informative hidden units within ASR models by

combining local aggregation techniques [152] with self-supervised learning

strategies derived from the BERT (Bidirectional Encoder Representations

from Transformers) framework. This method focuses on efficiently utilizing

the limited available data to improve the representation of speech features,

making it more effective for ASR tasks. By leveraging local context and

self-supervised learning, LABERT aims to identify and emphasize the most

relevant features within speech data, thus improving the model’s ability to

recognize speech accurately with fewer resources. The approach demon-
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Architecture Paper Data set (duration) Error rate

Transformer

[135] TEDLIUM (200 h) 38.6 - 15.82 (WER)
[136] LibriSpeech (1000 h) 2.26 (WER)
[137] LibriSpeech (1000 h) 11.28 - 4.3 (WER)
HuBERT [47] LibriSpeech (1000 h) 6.8 - 1.7 (WER)
wav2vec 2.0 [46] LibriSpeech (1000 h),

TIMIT
15.6 - 1.9 (WER)

Conformer [139] AISHELI-1 (178 h) 10.56 - 6.64 (CER)
Lite-Transformer [140] LibriSpeech (1000 h) 14.7 - 5.2 (WER)
[141] LibriSpeech (1000 h) 8.3 - 3.4 (WER)
Speech-transformer [23] WSJ (81 h) 12.2 - 10.92 (WER)
Tera [146] LibriSpeech (1000 h),

TIMIT
8.31 - 6.01 (WER)

w2v-BERT [142] LibriSpeech (1000 h),
Libri-Light(60k h)

5.0 - 1.3 (WER)

Speech SimCLR [147] LibriSpeech (1000 h),
TIMIT, IEMOCAP

15.1 - 5.89 (WER)

WavLM [148] VoxCeleb1, VoxCeleb2 29.2 - 4.0 (WER)
BEST-RQ [149] LibriSpeech (1000 h) 2.7 - 1.4 (WER)
ScoutWav [150] LibriSpeech (1000 h),

WSJ, TEDLIUM, Com-
mon Voice

10.14 - 24.55 (WER)

Table 2.3: Transformer based ASR models

strates potential in boosting the performance of low-resource ASR systems

by enhancing the quality and informativeness of speech representations,

offering a promising direction for future research in speech processing tech-

nologies.

2.3 Self-Supervised Learning

2.3.1 Definition of Self-Supervised Learning

Over the course of the past decade, there has been a remarkable revo-

lution in the field of speech processing, driven by the advancements in

deep learning techniques. This revolution has opened up new possibilities

and unleashed the potential for a variety of real-world applications. At

the heart of this transformation lies the use of supervised learning in con-

junction with deep neural networks. This approach has proven to be a

game-changer, particularly in scenarios where there is an ample supply of

labeled data [153].
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What makes this development so significant is the substantial leap in per-

formance it has facilitated. Traditional methods in speech processing often

struggled to handle the intricacies of spoken language, especially in noisy

or complex environments. However, deep learning models have shown ex-

ceptional prowess in understanding and interpreting speech patterns [72].

Furthermore, the versatility of deep learning-based speech processing has

paved the way for a multitude of applications. These range from voice

assistants that understand and respond to natural language commands to

automatic transcription services that convert spoken words into written

text with remarkable accuracy. Additionally, speech recognition in noisy

environments, such as crowded restaurants or busy streets, has improved

significantly, making it possible to develop technologies that function effec-

tively in real-world settings [154].

To address the challenge of obtaining labeled data, researchers have ex-

plored methods that utilize unpaired audio-only information. These ap-

proaches aim to expand the range of industrial applications for speech and

address the limitations posed by languages with limited available resources

[155]. Taking inspiration from how children acquire their first language by

listening and engaging with their family and environment, scientists are in-

vestigating the use of raw audio waveforms and spectral signals to develop

speech representations. These representations are designed to encompass

a wide spectrum of information, including low-level acoustic elements, lex-

ical knowledge, and even syntactic and semantic details. Subsequently,

these acquired representations can be employed in various downstream ap-

plications that require minimal labeled data [156, 157]. In a formal sense,

representation learning refers to algorithms that extract hidden features

capable of capturing the fundamental explanatory factors behind the ob-

served input [157].
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Representation learning methods are typically categorized under unsuper-

vised learning, a branch of machine learning that identifies inherent pat-

terns in training data without predefined labels or scores [158]. This un-

supervised designation distinguishes these methods from supervised tech-

niques, which assign labels to training samples, and semi-supervised meth-

ods, which use a small set of labeled samples to guide the learning process

with a larger volume of unlabeled data. Unsupervised learning encompasses

various techniques, such as k-means clustering [159], mixture models [160],

and autoencoders [161].

Within the realm of unsupervised learning, there’s a rapidly growing sub-

category known as self-supervised learning. Self-supervised learning ap-

proaches leverage information extracted from the input data itself to gen-

erate labels for training, with the goal of learning representations that

prove valuable for subsequent tasks. For instance, it’s worth noting that

traditional unsupervised k-means clustering doesn’t adhere to this self-

supervised definition, as it primarily focuses on minimizing within-cluster

variance during the learning process.

We can break down self-supervised learning approaches into two stages. In

the initial stage, an SSL model is employed to pre-train a representation

model. In the subsequent stage, downstream tasks can either utilize the ac-

quired representation from the fixed model or refine the entire pre-trained

model during a supervised phase [162]. Examples of these downstream ap-

plications include automatic speech recognition and Speaker Identification

(SID).

Desirable speech representations should ideally possess three key character-

istics: they should be disentangled, invariant, and hierarchical. This means

that they should be able to separate and distinguish various factors within
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spoken utterances, such as speaker identity, style, emotion, surrounding

noise, and communication channel noise, which are typically richer in in-

formation compared to the corresponding text transcriptions [163]. Ad-

ditionally, these representations should remain consistent even when con-

fronted with changes in background noise and communication channels,

ensuring their stability across different application scenarios. Lastly, the

ability to create hierarchical features at different levels, including acoustic,

lexical, and semantic, is essential to accommodate various application re-

quirements. For example, a task like speaker identification benefits from a

detailed, low-level acoustic representation, whereas speech translation tasks

require a more abstract and semantic representation of the input utterance

[163].

2.3.2 Background

Self-supervised representation learning is a paradigm in machine learning

that aims to learn useful representations of data without relying on ex-

plicit human-provided labels. Instead, SSL techniques generate their own

supervisory signals by exploiting the inherent structure of the data. In this

section, we will discuss the history of self-supervised representation learn-

ing methods and how they have led to the recent surge in interest in these

methods.

Clustering Models

Early investigations into acquiring hidden speech and audio representations

primarily employed basic models that directly optimized the likelihood of

training data or used the expectation maximization (EM) algorithm as an

40



2.3. SELF-SUPERVISED LEARNING

intermediary. These initial studies also utilized straightforward clustering

techniques. For instance, in research like [164], word patterns underwent

a semi-automated clustering process using methods like k-means. Subse-

quently, isolated words were identified by associating them with the training

cluster that was the closest match to the test data.

By evolving, in the modeling, progressing to the point where subword units

were described using Gaussian mixture models [165]. This advancement al-

lowed for a better representation of the various nuances present in the input

data. Initially, GMMs were constructed for context-independent phonemes.

Subsequently, state-clustering algorithms [166] were developed to create

GMMs for context-dependent phonemes. In these mixture models, each

latent component served as a template for a typical speech frame, which

posed challenges when dealing with extensive datasets exhibiting diverse

characteristics.

Neural Models

Recently, there has been a noticeable shift in emphasis within representa-

tion learning towards neural models. These neural models, when compared

to GMMs and HMMs, offer distributed representations with a greater ca-

pacity to efficiently encode various input signals into latent binary codes.

Some early techniques in this domain include Restricted Boltzmann Ma-

chines (RBM) [162], denoising autoencoders [167], Noise Contrastive Esti-

mation (NCE) [168], sparse coding [169], and energy-based methods [170].

Many of these techniques have found applications in computer vision (CV)

and natural language processing problems, which served as a source of

inspiration for their adaptation to speech-related tasks.
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Learning By Optimizing Pretext Task

The emerging trend focuses on networks that achieve the mapping of input

data to desired representations by addressing a pretext task. A pretext

task serves as a means for the model to effectively obtains the knowledge

present in unlabeled data. It’s crucial for this task to present a sufficient

level of difficulty to encourage the model to grasp higher-level abstract rep-

resentations and not be too simple, which could lead to the exploitation of

basic shortcuts. Early advancements in this area encompassed end-to-end

training of deep neural architectures using pretext tasks, such as restoring

the original colors in black-and-white images [171], simultaneous learning

of latent representations and their cluster assignments [172], and predict-

ing the relative positions of image patches [173]. Another well-received

approach involves variational autoencoders (VAEs) [[174]. While conven-

tional autoencoders focus on unsupervised learning by reconstructing input

data after it passes through an information bottleneck, VAEs take a differ-

ent route by estimating a neural model of a probability density function.

This estimation approximates the unknown true distribution of the ob-

served data, for which we only have access to independently identically

distributed samples.

In the self-supervised learning domain, a common pretext task associated

with autoencoding involves creating an object based on incomplete infor-

mation about it. This concept finds widespread application in natural lan-

guage processing, as seen, for instance, in tasks where the aim is to predict

the next token in a sentence using the preceding tokens, as demonstrated

in ELMo [175], or in predicting the masked tokens within a sentence, as ex-

emplified by the Bidirectional Encoder Representations from Transformers

(BERT) series [176]. Another prevalent pretext task in the third wave of
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SSL is contrastive learning [177], wherein a model is trained to distinguish

a target instance from a set of negative samples.

2.4 Speech Representation Learning

Speech is a complex and dynamic signal that is characterized by its tempo-

ral and spectral variability. This variability makes it challenging to develop

self-supervised learning pretext tasks that are directly applicable to speech

processing. Pretext tasks that are based on image patches or text sequences

may not be effective for speech processing because speech signals do not

have a clear spatial or sequential structure.

In contrast to computer vision, where an image typically maintains a fixed-

size representation, representing a speech utterance as a sequence of vari-

able length is more appropriate. Consequently, pretext tasks created for

CV are generally not directly transferable to speech processing. Text and

speech can both be expressed in sequential form. Therefore, it seems in-

tuitive to employ learning techniques initially designed for text directly

in the context of speech. However, a significant disparity lies in the fact

that speech signals are characterized by sound pressure measurements with

thousands of samples per second, leading to notably longer sequences com-

pared to text. Even attempts to shorten the sequence length using spectral

representations can still result in hundreds of frames per second. Employ-

ing conventional neural network architectures like Transformers to process

such extended sequences can present challenges concerning computational

speed and memory demands. Furthermore, in NLP, a prevalent practice

involves employing a pretext task that emulates a categorical distribution

of masked or forthcoming inputs. Given the structure of text where it
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can be segmented into distinct tokens like words, subwords, or characters,

establishing a finite vocabulary for these tasks is a straightforward pro-

cess. However, this concept doesn’t transfer to speech modeling due to the

continuous nature of speech signals. Therefore, adapting self-supervised

models from NLP and CV directly to speech processing necessitates inno-

vative approaches tailored to the unique attributes of speech signals.

Self-supervised techniques for acquiring speech representations can be broadly

divided into generative, contrastive, and predictive approaches.

2.4.1 Generative Approaches

In generative approaches, the pretext task involves generating or recon-

structing the input data using a restricted perspective. This encompasses

predicting forthcoming inputs based on prior inputs, distinguishing masked

from unmasked elements, or discerning the original input from an altered

or corrupted view. Autoencoders (AEs) are one of the main groups of

algorithm in the generative approaches which consists of an encoder and

decoder and the pretext task is to reconstruct the given input. The Vari-

ational Autoencoders (VAE) presents a probabilistic approach to the au-

toencoder, establishing the latent representation through a posterior dis-

tribution involving stochastic latent variables [174]. Another model within

this realm is the Vector-Quantized Variational Autoencoders (VQ-VAE)

[178], which builds upon the original VAE [179] by introducing a unique

parameterization for the posterior distribution related to discrete latent

representations.

The concept of Autoregressive Predictive Coding (APC) [180], [181] draws

upon the principles of traditional Linear Predictive Coding (LPC) utilized
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in speech feature extraction [182] and autoregressive language models ap-

plied to text. In this approach, the model is trained to anticipate forthcom-

ing information based on past observations. In [183], the Autoregressive

Predictive Coding objective is expanded to encompass multi-target train-

ing. This modified objective involves generating frames both from the past

and future, considering the preceding context. Additionally, the VQ-APC

technique described in [184] incorporates quantization into the APC ob-

jective, introducing an information bottleneck that acts as a regularization

mechanism. One limitation of Autoregressive Predictive Coding is its focus

on encoding information solely from previous timesteps and not consider-

ing the complete input. To address this concern, DeCoAR [94] merges the

bidirectional capability found in ELMo, a widely used NLP model [175],

with APC’s reconstruction objective. This hybrid approach aims to over-

come the limitation and enable the encoding of information from the entire

input.

Masked reconstruction methods are another generative approaches which

takes the inspiration from BERT’s masked language model task [176]. In

the pre-training phase of BERT, some tokens within input sentences are

obscured by substituting them with a designated masking token or an al-

ternative input token. The model’s objective is to successfully restore these

masked tokens based on the non-masked ones. Recent research has delved

into comparable preliminary tasks for speech representation learning. Much

like the DeCoAR model mentioned earlier, this approach enables a model

to acquire contextualized representations that capture information from

the complete input. pMPC [185] is a method that chooses speech frames

with masking based on the phonetic segmentation present within a spoken

expression. However, it is important to note that acquiring this segmen-

tation requires some labeled data. While many studies employ masking
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over the temporal dimension of the input, it is also possible to mask speech

over the frequency dimension when using spectral input features [186]. In

the case of non-autoregressive predictive coding (NPC) [187], time masking

is incorporated through masked convolution blocks. Drawing inspiration

from XLNet [188], some proposals suggest reconstructing the input from a

shuffled version [189] to bridge the gap between the pre-training and fine-

tuning phases in masking-based approaches. DeCoAR 2.0 [190] incorpo-

rates vector quantization, demonstrating enhanced learned representations.

Additionally, the TERA model [146] introduces two dropout regularization

methods—attention dropout and layer dropout—which are modifications

of the original dropout method [81].

2.4.2 Contrastive Approaches

A speech signal encapsulates richer information compared to text, encom-

passing elements like speaker identity and prosodic features. This complex-

ity makes generating speech a more challenging task. Hence, it might not

be the most effective approach to uncover contextualized hidden factors

of variation by focusing solely on reconstructing the unprocessed speech

signal. Contrastive models take a different approach to representation

learning; they do so by discerning a target sample (positive) from other

unrelated samples (negatives) with reference to an anchor representation.

The main objective of this pretext task is to maximize the similarity in the

latent space between the anchor and positive samples, while minimizing

the similarity between the anchor and negative samples.

One notable instance of a contrastive model is Contrastive Predictive Cod-

ing (CPC) [177]. CPC employs a convolutional module to create localized

representations, followed by a recurrent module that generates contextual-

46



2.4. SPEECH REPRESENTATION LEARNING

ized representations. From these contextualized representations, an anchor

representation is derived through a linear projection. The wav2vec model,

as described in [191], builds upon the CPC method. It employs fully con-

volutional parameterizations in its representation model, incorporating re-

ceptive fields of 30 ms and 210 ms. Unlike the CPC loss, which addresses a

1-of-N classification task per instance—assigning the anchor to the positive

class or incorrectly to one of the N − 1 negative classes—the wav2vec loss

focuses on a sequence of N separate binary classifications.

The wav2vec 2.0 model [46] integrates both contrastive learning and mask-

ing approaches. Similar to the CPC model, it employs the InfoNCE loss

[177] to enhance the similarity between a contextualized representation and

a localized representation. Additionally, a quantization module is utilized

to derive a discrete representation, which practically means avoiding neg-

ative sampling from the same category as the positive. To process input

waveforms, the model incorporates a convolutional module followed by a

Transformer encoder. Furthermore, the wav2vec-C approach [192] extends

wav2vec 2.0 by incorporating a consistency term in the loss. This term

aids in reconstructing input features from the acquired quantized represen-

tations, resembling the concept in VQ-VAE [193].

Despite the effectiveness of representations learned through contrastive

methods in various downstream applications, they encounter several dif-

ficulties when applied to speech data. One key challenge lies in how the

determination of positive and negative samples can indirectly introduce in-

variances into the learned representations. Additionally, due to the absence

of explicit segmentation in speech input for acoustic units, both negative

and positive samples may not correspond to complete language units but

instead represent partial or multiple units, depending on the span covered

by each sample. Furthermore, the smooth and continuous nature of speech
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input makes it challenging to establish a contrastive sampling strategy that

consistently provides samples truly indicative of positive and negative re-

lationships with the anchor in a meaningful manner.

2.4.3 Predictive Approaches

Like the contrastive approaches mentioned earlier, predictive approaches

define their pretext task based on a learned target. However, in contrast

to the contrastive methods, they do not utilize a contrastive loss. Instead,

they opt for loss functions such as squared error and cross-entropy. While a

contrastive loss helps prevent the model from learning a trivial solution us-

ing negative samples, predictive methods handle this challenge differently.

For predictive approaches, targets are computed outside the model’s com-

putational graph, often with a completely separate model. Consequently,

the predictive setup bears similarities to teacher-student training. The ini-

tial development of predictive approaches was spurred by the successful

BERT-like methods in NLP [194] and the DeepCluster technique in com-

puter vision [172].

Directly applying BERT-type training to speech input faces a challenge

due to the continuous nature of speech. An alternative approach, known

as Discrete BERT [172], employs a pre-trained vq-wav2vec model to derive

a discrete vocabulary [195] by utilizing quantization to learn discrete rep-

resentations. Discrete BERT showcased the effectiveness of self-supervised

speech representation learning by achieving a WER of 25% on the standard

test-other subset, setting a valuable precedent for subsequent approaches,

despite its reliance on an advanced representation learning model to dis-

cretize continuous inputs. On the other hand, the Hidden Unit BERT

(HuBERT) approach [196] utilizes quantized MFCC features as targets,
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employing classic k-means for learning. Unlike Discrete BERT, HuBERT

takes the raw waveform as input, preventing any loss of essential informa-

tion due to input quantization. It adopts an architecture akin to wav2vec

2.0, involving a convolutional module, a Transformer encoder, and a soft-

max normalized output layer.

The HuBERT model is able to learn both acoustic and language models

because of the way it is trained. First, the model learns to represent un-

masked speech frames as continuous values. This is similar to how acoustic

models work, where each frame of speech is represented as a discrete unit,

such as a phoneme or mel frequency cepstral coefficient (MFCC). Second,

the HuBERT model learns to predict masked speech frames by using the

context of the surrounding frames. This is similar to how language models

work, where the model predicts the next word in a sequence by using the

context of the previous words. In other words, the HuBERT model is forced

to learn to represent the acoustic features of speech and the long-range tem-

poral dependencies between speech frames. This allows the model to be

used for both acoustic and language modeling tasks.

WavLM [148] is a self-supervised pre-trained speech model that is designed

to learn spoken content modeling and speaker identity preservation. It is

largely similar to HuBERT, but it has two key extensions:

• Gated relative position bias: WavLM extends the Transformer

self-attention mechanism with a gated relative position bias. This

bias is added to the attention weights before they are normalized.

The bias is computed based on the input to the Transformer layer

at the current time step and also incorporates a relative positional

embedding for the difference between the current time step and the

time step of the attention target.
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• Utterance mixing: WavLM uses an utterance mixing strategy to

augment the training data. This strategy involves combining signals

from different speakers to create new training examples. Specifically,

random subsequences from other examples in the same batch are

scaled and added to each input example. Only the targets corre-

sponding to the original example are predicted during pre-training.

This forces the model to learn to filter out the added overlapping

speech.

The iterative process of pre-training for HuBERT and wavLM might pose a

logistical challenge, especially when dealing with extensive datasets. More-

over, these models encounter difficulty in ensuring the adequacy of the

initial vocabulary derived from MFCC features.

In this chapter, we have explored a variety of ASR models, with a particular

emphasis on their application and efficacy in low-resource scenarios (LREs).

As we transition to the next chapter, our focus will broaden to include a

comprehensive overview and empirical evaluation of state-of-the-art deep

learning methods for ASR, methods that are originally designed for high-

resource environments (HREs). Our objective is to investigate their utility

and adaptability in LREs.

2.5 Low-Resource ASR systems

In this section of the thesis, we provide a comprehensive review of state-

of-the-art models addressing low-resource ASR problems. Our focus will

focus on the core techniques employed in these models, such as cross-lingual

transfer learning, data augmentation, and the use of specialized architec-

tures designed for low-resource settings. In [197], the authors explore the
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utilization of self-supervised learning models as a solution to enhance ASR

models in languages that lack extensive annotated resources. By leveraging

unlabelled audio data, the study demonstrates how self-supervised learn-

ing techniques can significantly improve the accuracy and efficiency of ASR

systems for low-resource languages. The authors propose a novel frame-

work that combines large-scale pre-trained models with a small amount

of labeled data, highlighting the model’s ability to generalize from high-

resource languages to their low-resource counterparts. The results indicate

substantial improvements in speech recognition accuracy, showcasing the

potential of self-supervised models in overcoming the challenges associated

with linguistic diversity in ASR problems. This approach not only reduces

the dependency on extensive labeled datasets but also provides a solution

for more inclusive language technologies, enabling better communication

and accessibility across different language speakers. In [198] the authors

address the critical role of ASR technologies in preserving and documenting

endangered languages. ASR system presents a valuable tool for the urgent

task of documenting endangered languages. While traditional ASR meth-

ods rely heavily on transcribed data and phonetic dictionaries (scarce for

low-resource languages), recent advancements in end-to-end ASR systems

offer a solution. These systems, powered by self-supervised representa-

tion learning, can effectively utilize large corpora of untranscribed speech

data. This technical approach significantly reduces the need for manual

annotation by linguists, accelerating the documentation process and safe-

guarding the linguistic and cultural heritage embodied within endangered

languages. An innovative approach to enhancing ASR systems for low-

resource languages through the use of high-resource language translitera-

tion models proposed in [199]. Instead of directly training an ASR model for

a low-resource language, the authors propose transliterating high-resource

language text into the script of the target low-resource language. This
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allows for pre-training on large datasets from the high-resource language,

effectively boosting the low-resource ASR model’s performance. Surpris-

ingly, this technique proves effective even when the languages come from

unrelated families, and the authors demonstrate significant gains in ASR

accuracy, particularly in very low-resource scenarios. By converting large-

scale English speech transcriptions into the script of the target language,

the authors create a robust initialization for End-to-End models. After

pretraining on this transliterated data, models are fine-tuned using limited

speech samples from the target language. This approach has proven more

effective than standard transfer learning techniques for various languages.

The enhanced performance likely stems from the way transliteration forces

English transcriptions to share model parameters across encoder and de-

coder layers, promoting better cross-lingual adaptation.

A novel approach to enhance ASR systems in languages with limited lin-

guistic resources presents in [200]. The work introduces a methodical ap-

proach to mine and utilize audio-text pairs from publicly available data

sources, including radio broadcasts, podcasts, and internet videos. By

mining audio and text pairs from public sources, specifically the archives

of All India Radio, the authors create a dataset called Shrutilipi. This

dataset contains over 6,400 hours of labeled audio across 12 Indian lan-

guages. The solution involves adapting the Needleman-Wunsch algorithm

to align sentences with corresponding audio segments, even when dealing

with errors due to OCR, extraneous text, and non-transcribed speech. In-

tegrating Shrutilipi into ASR training significantly reduces the word error

rate for several languages, including Hindi. In [201], the authors introduce

an effective approach to enhance direct speech-to-text translation (ST) for

low-resource languages. The method involves pre-training a model on a

high-resource ASR task and subsequently fine-tuning its parameters for
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ST. By pre-training on 300 hours of English ASR data, the authors signifi-

cantly improve Spanish-English ST from a BLEU score of 10.8 to 20.2, even

when only 20 hours of Spanish-English ST training data are available. No-

tably, the pre-trained encoder (acoustic model) plays a crucial role in this

improvement, despite the shared language being the target text rather than

the source audio. Furthermore, the approach remains effective even when

the ASR language differs from both the source and target ST languages, as

demonstrated by pre-training on French ASR to enhance Spanish-English

ST. Finally, the method proves beneficial for a true low-resource scenario,

where pre-training on a combination of English and French ASR data im-

proves Mboshi-French ST from 3.5 to 7.1 BLEU, using only 4 hours of

available data. Deep maxout networks (DMNs) explores in [202] to im-

prove ASR systems when dealing with low-resource languages (i.e., lan-

guages with limited amounts of transcribed speech data). DMNs are a

type of neural network that use the maxout activation function, allowing

them to learn more complex representations. The authors demonstrate that

DMNs are particularly well-suited for low-resource ASR to reduce model

size and their compatibility with the dropout regularization technique. The

authors extend DMNs to hybrid and bottleneck feature systems, exploring

optimal network structures. On the Babel corpus, DMNs significantly im-

prove low-resource speech recognition. Additionally, DMNs introduce spar-

sity to hidden activations, acting as sparse feature extractors. MetaASR

[203] proposes a novel approach to enhance ASR systems in low-resource

scenarios. The authors treat ASR tasks for different languages as distinct

tasks and apply meta learning to initialize model parameters from a vari-

ety of pretraining languages. Specifically, they employ the Model-Agnostic

Meta Learning (MAML) algorithm to achieve rapid adaptation on unseen

target languages. By evaluating their approach using six languages as pre-

training tasks and four languages as target tasks, they demonstrate that
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their method significantly outperforms state-of-the-art multitask pretrain-

ing approaches across various combinations of pretraining languages. In

[204], the authors investigate the application of Wav2vec2.0 model to en-

hance speech recognition in low-resource scenarios. While Wav2vec2.0 has

demonstrated its powerful representation ability on the Librispeech corpus,

which belongs to the audiobook domain, this work extends its evaluation

to real spoken scenarios and languages beyond English. The authors apply

pre-trained models to solve low-resource speech recognition tasks in vari-

ous spoken languages. Remarkably, they achieve more than 20% relative

improvements in six languages compared to previous work, with English

showing a gain of 52.4%. Additionally, using coarse-grained modeling units

(such as subword or character) yields better results than fine-grained units

(like phone or letter).

In [205], the authors explore a novel speaker augmentation approach to im-

prove ASR systems in scenarios where there are limited data resources, es-

pecially regarding speaker variability. In the context of low-resource tasks,

where the diversity of speakers in the training data is limited, the authors

propose the use of a text-to-speech (TTS) system trained with speaker

representations from a variational autoencoder (VAE). This system is ca-

pable of synthesizing speech data with a wide range of speaker and text

diversity, significantly enhancing the robustness and accuracy of ASR sys-

tems. By synthesizing data from unseen speakers, the approach enables the

generation of diverse training datasets that were previously unachievable.

Their experiments, conducted on a Switchboard task with only 50 hours

of data, demonstrate a remarkable reduction in the WER by 30% relative

to systems without data augmentation, and by 18% relative to systems

using only traditional feature augmentation approaches like SpecAugment.

Cross-Lingual Self-Training (XLST) [206] is a novel pre-training framework,
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aimed at enhancing multilingual representation learning for speech recog-

nition in low-resource settings. Recognizing the challenge posed by data

scarcity in training ASR systems, especially for languages with limited an-

notated data, XLST leverages a small amount of annotated data from a

non-target language alongside large volumes of un-annotated multilingual

data. The method initially employs a phoneme classification model trained

on the non-target language data to generate initial targets. Subsequently,

it trains another model on the multilingual un-annotated data, focusing on

maximizing frame-level similarity between the output embeddings of the

two models. Incorporating mechanisms such as moving average and multi-

view data augmentation, the framework significantly reduces phoneme error

rates in downstream speech recognition tasks across five low-resource lan-

guages when compared to state-of-the-art self-supervised methods. In [207]

the authors investigate the potential of leveraging unsupervised speech rep-

resentation learning from noisy radio broadcasting archives to develop ASR

systems for low-resource languages. Targeting the 700 million illiterate in-

dividuals worldwide, the study introduces a novel approach to bridging the

digital divide by enhancing the availability of speech recognition technol-

ogy for languages spoken by illiterate populations, who are often the most

underserved. The authors release two valuable datasets: the West African

Radio Corpus, with 142 hours of audio in over 10 languages, and the West

African Virtual Assistant Speech Recognition Corpus, consisting of 10K

labeled audio clips in four languages. By training a speech encoder on

these datasets, they demonstrate comparable performance to baseline mod-

els trained on higher-quality data for multilingual speech recognition tasks

and superior performance for language identification tasks. The authors

in [208] propose a comprehensive approach that involves optimizing the

use of available data through several innovative methods. They introduce

strategies for multilingual speech recognition, emphasizing the importance
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of leveraging similarities and correlations between languages. The tech-

niques proposed include utilizing the posterior of the target language from

a language classifier for data weighting, dynamic curriculum learning for

effective data allocation, and length perturbation for data augmentation.

These methods collectively form a new strategy aimed at enhancing data

usage efficiency for languages with scarce resources. The evaluation of the

proposed methods on datasets like CommonVoice and Babel demonstrates

significant improvements in ASR performance, showcasing reductions in

word error rates and character error rates for various target low-resource

languages.

MixSpeech [209] is an innovative adaptation of the mixup technique, which

involves creating augmented data by blending pairs of input speech se-

quences (e.g., mel-spectrograms or MFCC) and their corresponding tex-

tual sequences with a certain weight, resulting in a model that is trained

to recognize both sequences simultaneously. This approach simplifies the

data augmentation process, requiring only a single hyper-parameter for

weight combination, unlike the more complex SpecAugment that necessi-

tates careful tuning of multiple parameters. The effectiveness of MixSpeech

is demonstrated through experiments on several low-resource ASR datasets

including TIMIT, WSJ, and HKUST, where it not only outperforms base-

line models without augmentation but also shows superior performance

compared to the SpecAugment method, achieving significant improvements

in terms of Phone Error Rate (PER) and WER. Task-based Meta Poly-

Loss (TMPL) [210] is a novel method designed to optimize multilingual

meta-learning for low-resource speech recognition. TMPL addresses the

misalignment between the loss functions and the learning paradigms of

meta-learning by treating speech recognition tasks as samples and employ-

ing PolyLoss as the meta-loss function. This approach enables TMPL
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to serve as a linear combination of polynomial functions based on task

query loss, thus allowing for tailored attention adjustment across differ-

ent tasks to accommodate various datasets. The study provides a theo-

retical analysis demonstrating how TMPL enhances meta-learning capa-

bilities through this adaptive attention mechanism. Experimental valida-

tion across multiple datasets shows that TMPL significantly outperforms

conventional gradient-based meta-learning methods, effectively mitigating

the misalignment issue and improving speech recognition accuracy in low-

resource languages. MUST [211] introduces a novel framework designed

to enhance ASR systems for low-resource languages through a multilingual

student-teacher learning approach. This approach addresses the limitations

of conventional knowledge distillation methods, which require the student

model’s classes to be a subset of the teacher model’s classes, a require-

ment that restricts the utilization of acoustically similar languages with

differing character sets. MUST overcomes this by employing a posterior

mapping model that translates the posteriors from a teacher language to

the student language ASR, thereby allowing the use of these transformed

posteriors as soft labels for knowledge distillation learning. The study ex-

periments with various teacher ensemble schemes and demonstrates that

the MUST learning approach can significantly reduce the relative CER

by up to 9.5% compared to baseline monolingual ASR systems. Hidden

Unit Clustering (HUC) framework [212] presents a novel approach to self-

supervised representation learning from raw audio. This method focuses

on generating semantically rich speech representations by categorizing the

outputs of a neural network into a limited number of phoneme-like units.

The process involves windowing audio samples, processing them through

convolutional and LSTM layers to create contextual vector representations,

and then clustering these representations to train the model. The paper

demonstrates the effectiveness of this approach through experiments on
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low-resource speech applications, specifically within the ZeroSpeech 2021

challenge and on datasets like TIMIT and GramVaani.
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Chapter 3

Neural Networks Architecture

Analysis for Low-Resource

ASR

In recent years, significant strides within the realm of deep learning have

reignited interest in integrating the fundamental components of speech

recognition systems into a unified end-to-end model. The primary goal

of such a model is to directly translate input audio sequences into the

corresponding output text sequences [203]. However, it is important to

note that the present state-of-the-art methods for training these end-to-end

models demand a substantial volume of annotated data to achieve optimal

performance [203]. Consequently, it is evident that to construct a highly

accurate and resilient automatic speech recognition system for a new do-

main or application, amassing a large dataset of recorded and transcribed

speech, often referred to as a spoken corpus, is imperative [31].

The growing interest in end-to-end models for speech recognition lies in

their potential to streamline complex systems by directly mapping audio
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to text, promising improved efficiency and easier integration. However, the

major challenge is the need for extensive, accurately labeled training data,

which is labor-intensive and resource-intensive to obtain. This underscores

the critical importance of large recorded and transcribed speech datasets,

especially when expanding into new domains, highlighting the need for

comprehensive spoken corpora to achieve robust and precise system per-

formance.

This is a challenging prospect for those interested in carrying out research

in domains where large amounts of data for training are not available. We

define low-resource environments as environments where the lack of suf-

ficient amount of training data diminishes the performance of the ASR

system. Examples of this include domains such as new or less wide-spread

languages (e.g., the Kyrgyz language) [31], domains in which a highly tech-

nical or specific language is required (e.g., a chemical plant, or a surgery

theatre), child speech recognition [33], speakers with speech disorders (e.g.,

dysarthria) [31], or speakers with accents are all examples of low-resource

environments. In these environments, to the best of our knowledge, there

are very limited suitable public corpora for training purposes.

This indicates the need to understand the various perceptions of low-

resource environments that exist in ASR systems. As shown in the previ-

ous chapter, most state-of-the-art models need more than 2k hours of tran-

scribed audio as training data [31]. Such requirements are simply unattain-

able in low-resource environments. And, as our experiments in this thesis

show, benchmark corpora and models architecture prove to be insufficient

to achieve robust ASR systems using models designed for high resource

environments. Consequently, special attention should be considered when

developing low-resource ASR systems to account for such limited training

data. In this chapter, we analysis different neural network architecture for
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low-resource setting to evaluate their performance in such problems.
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3.1 Datasets

In the preceding section, different ASR techniques were discussed, which

need a large amount of data for training. This section provides an overview

of the datasets that can be used to train and evaluate ASR models. Fur-

thermore, we present our own low-resource dataset, I-CUBE, which has

been used to test state-of-the-art ASR techniques in low-resource task.

3.1.1 Datasets for HRE ASR Task

In this section, we summarize datasets which provide speech and the corre-

sponding transcripts, speaker labels, or a large amount of speech data but

with limited or no labels.

Librispeech [27] is a large-scale corpus (more than 1k hours) of read English

speech that has been widely used to train and evaluate ASR tasks. This

corpus is created from audio-books that are part of the LibriVox project and

contains more than 2,000 hours of speech sampled at 16 kHz [27]. Speakers

in Librispeech are divided based on lower-WER speakers and higher-WER

speakers, which are cleaned and pre-processed. The training portion of the

corpus is divided into three subsets with approximate size of 100, 360, and

500 hours.

The Wall Street Journal (WSJ) corpus [30] consists of speaker-independent

(SI) read material, divided into training, development test, and evaluation

test sets. WSJ has 90 utterances from each of the 92 speakers that are

designated as training material for speech recognition models. A further

48 speakers each read 40 sentence utterances containing only words from

a fixed 5,000-word vocabulary of 40 sentences from the 64,000-word vo-
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cabulary, which will be used as testing material. Each of the total of 140

speakers also recorded a common set of 18 adaptation sentences. Standard

close talking and multiple secondary microphones and equal numbers of

male and female speakers are important considerations to support the di-

versity of voice quality and dialect [30]. All recorded materials were taken

from the WSJ text corpus and recorded in a clean environment using close-

talking microphones.

Fisher corpus [36] is based on the Fisher telephone conversation collection

protocol, which was proposed by the Linguistic Data Consortium (LDC).

Fisher data collection asked participants to speak on an assigned topic that

was randomly selected from a list that changed periodically. This strategy

allowed them to cover a large vocabulary [36]. The main purpose of the

data collection protocol in Fisher was to be able to produce over 2k hours

of conversational speech data from calls. After 11 months, LDC was able

to collect 16,454 calls, with an average of 10 minutes in duration, totalling

2,972 hours of audio [36]. In the Fisher, 53% of calls were made by females,

with 38% of subjects aged between 16 and 29, 45% aged between 30 and

49, and 17% aged over 50 [36].

VoxCeleb [29] is a large-scale speaker identification and audio-visual dataset

which contains around 100,000 utterances of 1,251 celebrities, short clips

of human speech, extracted from interview videos uploaded to YouTube.

VoxCeleb has about 2000 hours of speech. VoxCeleb is gender balanced in

which 55% of speakers are male and selected from a wide range of different

ethnicity, accents, professions, and ages.

TED-LIUM is a corpus that contains audio transcriptions of TED talks.

TED-LIUM is presented in 3 different versions which are TED-LIUM Re-

lease 1 [213], TED-LIUM Release 2 [26] and TED-LIUM Release 3 [25].
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TED-LIUM Release 3 contains 2351 audio talks in NIST sphere format

(SPH) and includes talks from TED-LIUM Release 2 and 452 hours of

audio.

Common Voice (CV) [214] is an open-source dataset that aims to pro-

vide a diverse collection of speech recordings from speakers of different

ages, genders, and accents, in order to support the development of more

inclusive and accurate speech recognition systems. As of version 7.0, the

Common Voice corpus contains approximately 11,000 hours of audio in

76 different languages. The dataset is constantly growing, as new record-

ings are contributed by volunteers. In addition to the audio recordings,

the Common Voice corpus also includes metadata about the recordings,

such as the speaker’s age, gender, and accent, as well as information about

the recording environment and any background noise that may be present.

This metadata can be useful for training and evaluating speech recognition

models, particularly those that aim to be robust to variations in speaker

and acoustic conditions.

3.1.2 Datasets for LRE ASR Task

A low-resource speech recognition dataset refers to a collection of speech

data that is limited in size, quality, or diversity, making it challenging to

train robust speech recognition models. Low-resource speech recognition

datasets are particularly challenging for ASR systems because they may

lack sufficient examples of rare or out-of-vocabulary words or may contain

significant amounts of noise or speaker variation, which can lead to poor

recognition performance.

TORGO [215] is a low-resource dataset which contains approximately three
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hours of speech. TORGO consists of aligned acoustic recordings from 15

speakers, including 7 control speakers without any disorder and 8 speakers

with different levels of dysarthria. Speakers were asked to read single words

or sentences and describe the content of some photos. A total of, 5980

and 2762 utterances were recorded from healthy and dysarthric speakers,

respectively.

Nemours [216] database is a low-resource speech collection of 74 short sen-

tences spoken by 11 speakers with varying degrees of dysarthria, resulting

in a total number of 814 recordings. Furthermore, Nemours contains two

connected speech paragraphs, which are produced by each of the 11 speak-

ers.

UASpeech [217] database is the largest corpus of dysarthric speech in Amer-

ican English. It is a collection of 541 read speech recordings from 19 indi-

viduals with cerebral palsy. The prompt words include three repetitions of

the first ten digits, three repetitions of 26 radio alphabet letters, three rep-

etitions of 19 computer commands, common words from the ’Grandfather

Passage’, and uncommon words from phonetically balanced sentences one

time each.

3.1.3 I-CUBE: a Human-Robot Interaction Dataset

I-CUBE is a Human-Robot collaboration dataset which collected during

the first experimental phase of the I-CUBE project (Industrial Co-Bots

Understanding Behavior). In this experimental phase, participants were

asked to interact using natural language, such as speech, facial expressions,

and gestures, with an actor who posed as a robot. They had to instruct and

ultimately teach this robot how to sort different garments into four baskets
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as if they were sorting their own laundry. During the experiments, the

robot would also respond to the participant’s actions with its own actions

or speech. Video recordings of each session were collected, resulting in

a total of 42 videos, which is more than 300 minutes of video footage,

including audio.

3.2 Experiments

In this section, we describe the series of comprehensive experimental eval-

uations we carried out to sufficiently investigate the performance of state-

of-the-art HRE approaches in ASR systems in low-resource environments.

Section 3.2.1 describes the methodology used to evaluate the different mod-

els. Evaluation metrics are presented in Section 3.2.2.

3.2.1 Evaluation Protocol

Our evaluation protocol was designed to obtain evidence on the two ques-

tions we present at the beginning of our study. Namely, given a low-resource

environment:

• What is the performance achieved by training models using only high-

resource benchmark data and testing on low-resource datasets?

• What is performance benefit achievable by pre-training with high-

resource benchmark data and fine-tuning the trained model with low-

resource data?

We selected two well-known benchmark datasets for pre-training of different

ASR methods: Libripeech [27] and WSJ [30]. These datasets are two com-
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mon for the evaluation of the high-resource ASR systems. Both datasets

have similar characteristics: multiple speakers, clean read speech (sourced

from texts) recorded at a sampling rate of 16 kHz [218]. To analyse differ-

ent models in low-resource task, we selected I-CUBE and UASpeech which

used to test models after pre-training them on Librispeech and WSJ. The

UASpeech dataset can be considered a low-resource dataset due to its lim-

ited size and specificity. In terms of models, we chose different network ar-

chitectures that have obtained state-of-the-art results in the last few years.

In terms of LSTM-based networks, we trained and tested LSTM, BLSTM,

ltLSTM [82], cltLSTM [22] and Residual LSTM [79, 80] networks. For

each of these methods, we trained each network with 2, 4, 6, and 8 layers.

Furthermore, different structures of the concatenated 2-layer LSTM and

fully connected feedforward neural network are examined to show their

performance. The composition of convolutional neural networks and 2-

layer LSTM and 2-layer GRU has also been examined to present in detail

the possibility of such architectures for low-resource ASR systems. Fur-

thermore, We selected the basic model of the Transformer with 6 Encoders

and 6 Decoders to examine it in the low-resource environment. Finally, we

have selected QuartzNet, wav2vec 2.0 and HuBERT models which showed

promising results in ASR tasks.

We consider two training scenarios:

• Train all models from scratch using Librispeech and WSJ separately.

Test on the relevant dataset, UASpeech and I-CUBE.

• Pre-train all models from scratch using Librispeech and WSJ sepa-

rately. Fine-tune with the UASpeech and I-CUBE datasets. Finally,

test on UASpeech and I-CUBE.
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In both scenarios, we applied 10-fold cross-validation during training, and

reported average results with standard deviations. For the pre-training

scenario, we split the I-CUBE and UASpeech datasets into ten folds and,

in each iteration, nine folds were used as the fine-tuning data for the trained

model and the remaining fold as the test set. To ensure that all folds are

tested, ten iterations are performed. The output alphabet of the target

text consisted of 31 classes and 26 lowercase letters.

Since we also wanted to focus on the role of the amount of data during

training and its effects, we trained all models in both scenarios with 10%,

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of training data in

both datasets (LibriSpeech and WSJ).

Finally, to focus on verifying the models with a fair comparison, for all

methods which are based on stacked LSTM layers, we use 1024 hidden

units, and the output of each LSTM layer is reduced to 512 using a lin-

ear projection layer. Furthermore, to examine the FNN methods, we use

tanh(.) as the activation function for the hidden layer and the softmax

function for the output layer. As a pre-processing step, we compute Mel

Spectrograms to convert the input raw audio into the ASR model. we use

a frame length of 25 ms, a hop length of 10 ms, target a frequency range

up to 16 kHz, apply 80 mel filters. We use the AdamW optimizer [219]

as a hyperparameter setting with an initial learning rate of 0.001. Dif-

ferent models will be trained to predict the probability distribution of all

characters in the alphabet by using CTC loss function.

3.2.2 Metrics

We present the results according to two metrics:
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Word Error Rate (WER) : WER is a standard metric for measuring

ASR performance. WER is a word-level measure which takes the predicted

transcription of the model and the ground truth transcription, and mea-

sures the Levenshtein distance. Levenshtein distance is a minimal number

of insertions, deletions, and substitutions of words for the conversion of a

hypothesis to a reference [220]. This metric is calculated as follows:

WER = SubstitutionError + InsertionError + DeletionError

SubstitutionError =
Numberofsubstitutionerrors

Numberofgroundtruthwords

InsertionError =
Numberofinsertionerrors

Numberofgroundtruthwords

DeletionError =
Numberofdeletionerrors

Numberofgroundtruthwords

(3.1)

WER is normally reported as a percentage. [220].

Character Error Rate (CER) : CER is an important metric in ASR

system evaluation. CER measures the error of the characters between the

predicted transcription of the model and the ground-truth transcription.

The calculation of the CER is similar to the WER, but it is a character-level

measure.

As we carried out cross-validation during our evaluation, we report on av-

erage WER and CER across all folds, along with their associated standard

deviation.
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3.3 Evaluating Pre-trained ASR Models on

Low-Resource Speech Datasets

In this section, we present the results obtained by examining different ASR

methods on Librispeech and WSJ. We pre-train different models with dif-

ferent percentage of data and then test with low-resource I-CUBE and

UASpeech data. The best WERs obtained from each model trained on

Librispeech and WSJ, and tested on I-CUBE are summarized in Table 3.1.

Complete results based on different numbers of layers and percentage of

data are explicitly listed in Appendix A.

Among LSTM with different numbers of layers (refer to Appendix A for

complete comparison), the 6-layer LSTM model performs the best when

trained with 100% of the data, achieving WERs of 24.28% and 24.17% on

WSJ and Librispeech, respectively. The WER of the model trained with

10% of the WSJ dataset is, 45.79% while it is 45.23 for the Librispeech.

When the amount of data increases from 10% to 20%, WERs decrease

5.61% for the WSJ and 4.06% for Librispeech. A significant improvement

in WER of 10.15% occurrs when the amount of the data increases from

30% to 40% in WSJ while this improvement is 8.64% for Librispeech.

The 6-layer ResLSTM outperforms other configurations in terms of the

number of layers (see Appendix A for complete comparison) achieving

WERs of 25.13%, 24.14% when trained with 100% of WSJ and Librispeech

datasets, respectively. Increasing the amount of pre-trained WSJ data

from 40% to 50% results in a significant improvement, reducing the WER

by 10.07%, while the WER for LibriSpeech is improved by 9.84%.

The 6-layer ltLSTM model outperformed other layer configurations in ltL-

STM, as well as the previous two models (see Appendix A for the complete
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

6-layer LSTM WSJ 45.79 43.22 40.38 36.28 32.61 31.48 29.12 27.86 25.53 24.28
LibriSpeech 45.23 43.39 41.18 37.62 34.21 32.78 30.67 27.49 25.31 24.17

6-layer ResLSTM WSJ 45.91 43.87 40.92 37.42 33.65 32.71 29.83 28.29 26.94 25.13
LibriSpeech 45.68 43.62 41.34 37.57 33.87 32.15 30.18 27.13 24.91 24.14

6-layer ltLSTM WSJ 45.83 43.51 39.41 35.94 32.35 30.52 28.97 27.18 25.09 24.11
LibriSpeech 45.39 43.53 40.91 37.29 33.62 31.87 28.73 26.42 24.68 24.08

6-layer cltLSTM WSJ 45.69 43.19 39.27 35.67 32.14 30.27 28.59 26.76 24.71 23.91
LibriSpeech 45.28 43.27 39.17 36.73 33.41 31.69 30.42 28.03 26.13 26.18

FNN+2-layer LSTM WSJ 51.38 49.71 46.13 43.19 41.58 39.75 37.13 35.81 34.69 33.97
LibriSpeech 50.39 49.13 45.48 42.61 40.13 38.79 35.41 33.29 31.63 29.34

2-layer LSTM+FNN+ WSJ 51.69 50.37 47.62 44.51 41.85 40.19 38.61 37.61 35.82 34.88
2-layer LSTM LibriSpeech 50.73 50.21 46.73 43.67 41.76 40.08 38.19 35.83 33.12 30.39
2-layer LSTM+FNN+ WSJ 51.53 50.18 47.27 44.23 41.31 39.87 37.63 35.47 34.81 33.92
FNN LibriSpeech 50.47 49.89 46.91 43.39 41.23 39.72 37.21 34.37 32.59 29.18
2-layer BLSTM WSJ 44.74 42.21 40.28 36.93 33.81 31.12 29.89 28.31 26.83 26.07

LibriSpeech 44.58 41.98 40.19 37.28 34.93 33.96 30.38 29.13 28.07 27.18
1-D CNN+2-layer BLSTM WSJ 44.92 42.53 40.63 37.61 34.28 31.57 30.31 28.91 27.12 26.19

LibriSpeech 45.12 42.39 40.51 37.59 35.42 34.21 30.82 29.89 28.69 27.63
1-D CNN+2-layer LSTM WSJ 47.38 45.61 43.12 41.17 38.62 35.58 33.62 31.92 29.71 27.22

LibriSpeech 48.17 46.21 43.69 41.58 39.27 36.21 34.87 33.47 30.19 28.78
1-D CNN+2-layer GRU WSJ 47.69 46.13 44.33 41.89 39.58 36.71 33.89 31.29 29.48 27.13

LibriSpeech 48.81 47.21 45.31 42.43 39.81 36.32 33.51 31.87 29.64 28.63
QuartzNet WSJ 44.27 42.18 38.85 35.39 31.98 30.11 28.11 25.98 23.89 22.85

LibriSpeech 44.11 41.53 38.32 35.79 31.72 29.93 27.98 25.65 23.51 22.13
Transformer WSJ 43.78 41.28 38.31 34.97 31.52 29.92 27.71 25.61 23.46 22.32

LibriSpeech 42.19 40.87 37.92 35.32 31.49 29.67 27.43 25.29 23.19 21.27
wav2vec 2.0 WSJ 38.15 36.92 34.15 31.18 29.15 27.34 25.83 24.91 22.74 21.65

LibriSpeech 36.83 35.13 33.98 30.29 28.51 26.12 24.13 23.28 21.29 20.41
HuBERT WSJ 38.49 36.87 34.11 30.92 29.05 27.10 25.51 24.70 22.62 21.52

LibriSpeech 36.95 35.05 33.58 30.13 28.17 25.93 24.03 23.12 21.30 20.15

Table 3.1: Best WER results for each model when pre-training on WSJ
and Librispeech and testing on I-CUBE. The columns of the table denote
the percentage of pre-training data used.

comparison). This model achieved WERs of 24.11% and 24.08% when

trained with 100% of the data from both datasets. The WER improved

by 9.98% when the data increased from 40% to 50% on WSJ. Although

a slight improvement of 2.43% occurred in Librispeech when the model

received 10% more data from 90% to 100%. The same layer configura-

tion in cltLSTM outperforms all other stack LSTM structures. This model

achieved a WER of 23.91% and 26.18% based on the 6 number of layers in

its structure on WSJ and Librispeech datasets, respectively. Interestingly,

this improved WER in cltLSTM is related to the use of future context

frames.

In our results, we evaluate three different configurations of the 2-layer

LSTM and the fully connected feedforward neural network. The first struc-

ture, called FNN-LSTM, is created by cascading 2-layer LSTM after FNN.
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This model achieved WERs of 33.97% and 29.34% when trained on WSJ

and Librispeech. This model achieved a WER of 51.38% when it received

10%5 of the WSJ data and improved by 19.07% when increasing the data

amount to 50%. Meanwhile, increasing the amount of data from 60% to

70%, the WER got 8.71%better.

In the second configuration, we insert a FNN layer between two 2-layers of

LSTMs, called LSTM-FNN-LSTM, to present another architecture for the

combination of the LSTM and FNN. This structure obtained 34.01% and

30.39% WERs on WSJ and Librispeech, respectively. Finally, we create a

different model by cascading two FNN layers after one 2-layer LSTM, called

LSTM-FNN-FNN, which achieved WERs of 33.92% and 29.18% on WSJ

and Librispeech, respectively. The LSTM-FNN-FNN structure achieved

7.63% WER improvement when its data increased from 70% to 80%. In

combination of the LSTM and FNN layers, the LSTM-FNN-FNN structure

obtained a better WER than the other models.

We evaluated the performance of 2-layer BLSTM on Librispeech and WSJ

and achieved 27.18% and 26.07% WERs, respectively. The BLSTM starts

with WER 44.74% in the WSJ and 44.65% in the Librispeech datasets.

The 2-layer BLSTM is close to the 2-layer LSTM in terms of WERs and

gets better performance. By inserting a 1-D CNN layer before the 2-layer

BLSTM, WER increased and achieved 26.19% and 27.63% in WSJ and

Librispeech, respectively. The WER of the 1-D CNN and 2-layer BLSTM

are 44.92% and 45.12%, respectively. Based on 10% of the data, by adding

a 1-D CNN layer before 2-layer BLSTM, WER decreased by 0.4%. Fur-

thermore, cascading 1-D CNN before 2-layer LSTM, due to increased WER

on this model, we obtained WERs of 27.22% and 28.78% on WSJ and Lib-

rispeech. We see that a hybrid model by combining the 1-D CNN and

2-layer LSTM has similar performance. In addition, we added a 2-layer
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GRU after 1-D CNN and achieve WERs of 27.13% and 28.63% on those

two datasets. What is interested in this type of hybrid model is that the

combination of the CNN with BLSTM outperforms of the other CNN com-

binations.

In addition, to investigate the effects of utilizing a large amount of pre-

training data on the Transformer model in a low-resource environment,

we examined the base model of the Transformer with 6 Encoders and 6

Decoders. This model achieved WERs of 22.32% and 21.27% when trained

on WSJ and Librispeech, respectively. In this model, by increasing the

Librispeech data amount from 40% to 50%, WER improved by 8.89%,

while this improvement on WSJ was 7.75%. Compared with other previous

models, Transformer achieves a large margin improvement.

Finally, we examine the same strategy for pre-training for QuartzNet,

wav2vec 2.0 and HuBERT models. wav2vec 2.0 and HuBERT have similar

WERs and outperform QuartzNet. HuBERT obtained 21.52% and 20.15%

WERs on WSJ and Librispeech, respectively. While wav2vec 2.0 achieved

21.65% WER on WSJ and 20.14% WER on Librispeech.

Similar results are presented in Table 3.2 when the same pre-trained models

are tested on the UASpeech dataset.

Figure 3.1, 3.2 shows the obtained CER on after training different models

on WSJ and Librispeech datasets and testing with I-CUBE and UASpeech,

respectively. On both datasets, Transformer obtained the best results and

at each stage the CER is improved by increasing the amount of training

data.

These experiments showed that increasing the amount of data can improve

the performance of the ASR system in different architectures, however the
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Figure 3.1: CER in percentage for models trained with WSJ and Librispeech and tested with I-CUBE.
1: 6-layer LSTM, 2: 6-layer ResLSTM, 3: 6-layer ltLSTM, 4: 6-layer cltLSTM, 5: FNN+2-layer LSTM,
6: 2-layer LSTM+FNN+2-layer LSTM, 7: 2-layer LSTM+FNN+FNN, 8: BLSTM, 9: CNN+2-layer
BLSTM, 10: CNN+2-layer LSTM, 11:CNN+2-layer GRU, 12: Transformer, 13:QuartzNet, 14:wav2vec
2.0, 15:HuBERT.

Figure 3.2: CER in percentage for models trained with WSJ and Librispeech and tested with UASpeech.
1: 6-layer LSTM, 2: 6-layer ResLSTM, 3: 6-layer ltLSTM, 4: 6-layer cltLSTM, 5: FNN+2-layer LSTM,
6: 2-layer LSTM+FNN+2-layer LSTM, 7: 2-layer LSTM+FNN+FNN, 8: BLSTM, 9: CNN+2-layer
BLSTM, 10: CNN+2-layer LSTM, 11:CNN+2-layer GRU, 12: Transformer, 13:QuartzNet, 14:wav2vec
2.0, 15:HuBERT.

WERs tend to be improved when models are tested on LRE datasets.

Our second series of experiments aims demonstrate the performance of the

models when the training and testing data are from the same domain.

Therefore, we use LibriSpeech and WSJ datasets to train and test the

models. The best results based on the number of layers and the percentage

of data in each model are presented in Table 3.3. The complete results are

listed in the Appendix A.

The performance of the 6-layer LSTM improved in terms of WERs by

13.77% on WSJ and 13.41% on LibriSpeech when the amount of data

increased from 10% to 20%. The improvements are 17.65% and 12.37%
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

6-layer LSTM WSJ 65.71 59.83 54.48 50.11 47.45 44.51 41.19 39.32 37.12 36.27
LibriSpeech 63.39 58.72 52.21 49.39 47.35 43.52 39.74 37.89 36.28 35.94

6-layer ResLSTM WSJ 64.15 59.98 65.51 52.39 48.18 43.37 42.71 40.28 38.51 38.19
LibriSpeech 63.57 59.38 55.32 51.49 48.61 42.58 41.39 39.15 38.93 37.17

6-layer ltLSTM WSJ 64.89 59.13 54.23 50.17 47.13 43.78 40.85 38.87 36.57 36.15
LibriSpeech 63.29 59.10 52.87 49.31 46.93 43.12 38.87 37.12 36.08 35.29

6-layer cltLSTM WSJ 64.21 59.43 54.21 50.08 47.21 43.27 40.92 38.68 36.19 35.83
LibriSpeech 63.82 58.39 52.47 48.89 46.39 42.27 38.23 36.89 35.91 35.07

FNN+2-layer LSTM WSJ 69.77 65.18 62.21 58.63 54.21 50.18 49.51 47.21 45.38 42.39
LibriSpeech 68.21 64.33 61.79 58.27 53.97 49.87 48.93 47.15 45.31 41.75

2-layer LSTM+FNN+ WSJ 69.31 65.39 62.89 58.71 54.39 50.48 49.75 47.53 45.42 42.61
2-layer LSTM LibriSpeech 68.57 64.69 61.72 58.33 54.12 50.27 49.11 47.28 45.52 42.25
2-layer LSTM+FNN+ WSJ 69.15 64.98 62.21 58.17 53.97 49.37 48.83 46.93 45.21 41.87
FNN LibriSpeech 68.78 63.51 60.15 57.34 53.28 48.78 47.51 46.22 44.89 41.53
2-layer BLSTM WSJ 65.93 59.71 54.68 50.39 47.58 44.12 41.28 39.21 36.83 36.39

LibriSpeech 64.28 59.41 53.17 49.53 47.12 43.67 39.17 37.65 36.47 35.57
1-D CNN+2-layer BLSTM WSJ 65.83 59.69 54.83 50.89 48.13 44.28 41.51 39.35 37.05 36.57

LibriSpeech 63.91 58.98 53.39 49.88 47.78 44.29 39.28 38.12 36.58 36.02
1-D CNN+2-layer LSTM WSJ 66.78 61.93 55.18 51.12 48.83 44.87 42.18 41.53 37.71 36.98

LibriSpeech 64.89 59.65 54.12 50.87 47.79 45.17 40.54 38.93 37.62 36.58
1-D CNN+2-layer GRU WSJ 66.65 61.83 55.28 52.87 48.93 45.91 42.31 41.87 38.12 37.85

LibriSpeech 64.51 59.95 54.39 51.09 48.08 45.83 40.97 39.51 36.98 36.83
QuartzNet WSJ 60.12 55.58 50.49 47.21 44.89 40.28 37.39 35.27 33.95 32.83

LibriSpeech 58.83 54.39 49.87 46.95 43.18 39.28 36.33 34.87 32.28 31.98
Transformer WSJ 58.39 54.37 49.31 46.98 42.57 39.83 36.41 34.12 32.74 31.29

LibriSpeech 57.64 52.97 48.51 45.21 41.28 36.95 34.19 33.75 30.83 30.48
wav2vec 2.0 WSJ 51.75 47.28 45.35 43.65 40.81 37.63 35.49 33.71 30.28 28.23

LibriSpeech 50.29 48.78 44.83 42.92 39.61 36.53 34.74 32.89 29.71 27.65
HuBERT WSJ 51.78 47.20 45.29 43.60 40.72 37.60 33.45 31.65 30.21 28.18

LibriSpeech 50.13 48.75 44.70 42.91 39.55 35.15 33.17 32.15 29.58 27.51

Table 3.2: Best WER results for each model when pre-training on WSJ
and Librispeech and testing on UASpeech.

respectively in WSJ and Librispeech when the training data amount is

increased by 10 percent from 30% to 40%. Almost the same amount of im-

provement is seen in other models. The most interesting result obtained is

when the percentage of the data is increased from 90% to 100%, where the

rate of improvement is 3.88%5 and 6.26% on WSJ and Librispeech, respec-

tively. The obtained results by Transformer in terms of WER is 14.21%

in WSJ and 13.73% in Librispeech, while QuartzNet, wav2vec 2.0 and Hu-

BERT achieved 14.38%, 6.21, 6.13% WERs on Librispeech, respectively.

These results emphasize the importance of the volume of the training data

and the relevance of training and test data.

In the third series of our experiments, we aimed to tackle the issue of do-

main difference in training and testing data for LREs by introducing a

fine-tuning step after pre-training the model with HRE datasets. Here,

the trained models are fine-tuned by in-domain LRE data to improve the
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

6-layer LSTM WSJ 45.31 39.07 34.72 29.48 25.97 22.98 21.93 20.28 18.79 18.06
LibriSpeech 40.67 37.08 30.18 27.32 24.89 22.53 21.23 20.28 18.53 17.61

6-layer ResLSTM WSJ 45.43 39.19 35.19 29.91 26.31 23.30 22.39 20.53 19.21 18.27
LibriSpeech 40.97 36.41 30.28 26.61 24.13 21.98 20.78 20.23 18.73 17.51

6-layer ltLSTM WSJ 45.12 38.89 34.51 29.27 25.62 22.43 21.32 20.02 18.53 17.91
LibriSpeech 40.17 34.89 30.03 35.97 23.51 21.58 20.33 19.61 17.28 16.47

6-layer cltLSTM WSJ 44.96 38.71 34.39 29.16 25.48 22.29 21.19 19.94 18.28 17.41
LibriSpeech 39.96 34.32 29.91 25.83 22.42 20.52 19.71 18.63 16.97 15.61

FNN+2-layer LSTM WSJ 47.21 41.83 34.28 30.42 27.53 25.19 23.61 21.49 20.32 19.18
LibriSpeech 45.63 40.68 33.78 29.81 26.41 24.79 22.58 20.49 19.27 18.63

2-layer LSTM+FNN+ WSJ 47.93 42.87 36.21 32.49 29.78 27.52 25.18 22.83 21.59 19.97
2-layer LSTM LibriSpeech 46.27 41.29 34.79 31.19 26.83 25.27 22.91 20.81 19.57 18.87
2-layer LSTM+FNN+ WSJ 47.39 41.58 34.32 30.27 27.21 24.97 23.17 21.28 20.12 18.93
FNN LibriSpeech 45.59 40.37 33.45 29.37 26.15 24.45 22.31 20.29 19.13 18.42
2-layer BLSTM WSJ 46.51 40.32 33.79 29.51 26.89 24.62 23.08 20.95 19.89 18.57

LibriSpeech 44.83 39.65 33.12 28.36 25.62 23.71 21.78 19.83 18.86 18.21
1-D CNN+2-layer BLSTM WSJ 46.39 40.12 32.87 28.32 25.69 24.17 22.77 20.51 19.32 18.05

LibriSpeech 44.65 39.58 32.92 28.17 25.43 23.58 21.48 19.49 18.73 17.98
1-D CNN+2-layer LSTM WSJ 45.83 39.98 32.48 27.89 25.21 23.72 22.13 20.18 18.91 17.65

LibriSpeech 44.53 39.47 32.71 28.07 25.28 23.36 21.31 19.27 18.61 17.83
1-D CNN+2-layer GRU WSJ 46.23 40.18 32.69 28.13 25.62 23.92 22.56 20.39 19.11 17.92

LibriSpeech 44.68 39.55 32.78 28.18 25.48 23.68 21.53 19.39 18.87 18.08
QuartzNet WSJ 43.79 38.51 32.13 28.04 24.93 21.53 18.39 17.71 16.39 15.19

LibriSpeech 41.38 35.21 30.82 26.62 23.95 21.83 19.61 17.38 15.51 14.38
Transformer WSJ 42.15 37.62 31.35 27.17 23.69 21.18 18.72 16.53 15.28 14.21

LibriSpeech 39.17 34.72 29.48 25.75 22.49 20.23 17.83 16.19 14.69 13.73
wav2vec 2.0 WSJ 29.81 26.65 22.93 19.23 17.65 14.29 12.55 10.48 8.93 7.78

LibriSpeech 27.39 23.38 21.58 18.78 14.28 13.92 11.39 9.31 8.75 6.21
HuBERT WSJ 29.75 25.31 22.73 19.10 17.21 13.91 12.15 10.13 8.70 7.53

LibriSpeech 27.19 23.18 21.27 18.35 16.13 13.51 11.12 9.08 8.49 6.13

Table 3.3: Best WER results for each model when trained and tested on
WSJ and Librispeech datasets.

performance of the ASR task. Therefore, we pre-trained the different mod-

els on Librispeech and WSJ datasets and then fine-tuned the models us-

ing LRE data (I-CUBE or UASpeech) to explore these effects. Table 3.4

presents the results obtained from the pre-training of the different mod-

els on WSJ and Librispeech and fine-tuning on I-CUBE. The 6-layer model

outperforms all other numbers of layers for LSTM, ResLSTM, ltLSTM and

cltLSTM. By applying the fine-tuning over LSTM, the WER achieved by

the model improved by 0.13% on WSJ, using 10% of data. In 6-layer LSTM,

increasing the pre-training data from 40% to 50% enhanced the WER to

9.06% but after fine-tuning WER improved to 9.11% on WSJ data. The

6-layer ResLSTM on Librispeech improved WER by 0.26% while enhancing

the WER by 0.19% on Librispeech. The ResLSTM achieved 3.91% WER

improvement on Librispeech after fine-tuning with I-CUBE data. The 2-

layer ltLSTM got 1.29% improvement after receiving 10% of Librispeech

76



3.4. DISCUSSION

dataset, while 6-layer ltLSTM model achieved near one percent improve-

ment on WSJ. Furthermore, 8-layer cltLSTM can improve WER by 3.81%

on Librispeech dataset.

All 2-layer LSTM and FNN configurations after fine-tuning got better

WERs in different percentages of the train data on both datasets. After

fine-tuning with I-CUBE data, LSTM after 2 layers of the FNN outper-

form the other similar structures. The 2-layer BLSTM model improved

WER by 1.72% with Librispeech, which outperforms all the combination

of the LSTMs and FNNs. By fine-tuning the models, which are a combi-

nation of the 1-D CNN with 2-layer BLSTM, LSTM, and GRU, all them

got better WER compared with just pre-training. Transformer achieved a

WER of 22.01% and 20.87% on WSJ and Librispeech datasets, respectively,

which got 1.25% and 1.88% improvement after fine-tuning. In this scenario,

Quartzet obtained 22.78% and 22.08% WERs on WSJ and Librispeech

while wav2vec 2.0 achieved 20.21% on Librispeech. HuBERT model ob-

tained 20.03% WER on Librispeech dataset which outperforms all models.

Similar trends can be seen when the models are fine-tuned with UASpeech

data, as shown in Table 3.5.

3.4 Discussion

This Thesis is set out with the aim of assessing the importance of data

size for pre-training and fine-tuning an ASR model in low-resource envi-

ronment. The large volume of data in pre-training and fine-tuning phases

are the most important parameters for the low-resource ASR. By compar-

ing the obtained results from Table 3.3, we can conclude that increasing

the amount of the related training data has a strong relationship with the
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

6-layer LSTM WSJ 45.73 43.17 40.31 36.21 32.55 31.41 28.95 27.74 25.44 24.17
LibriSpeech 45.16 43.31 41.12 37.54 34.12 32.68 30.55 27.37 25.19 23.94

6-layer ResLSTM WSJ 45.83 43.75 40.81 37.21 33.42 32.49 29.66 27.81 26.18 24.11
LibriSpeech 45.59 43.54 41.26 37.48 33.75 31.98 30.05 26.97 24.79 23.98

6-layer ltLSTM WSJ 45.76 43.46 39.34 35.83 32.27 30.38 28.83 27.03 24.93 23.87
LibriSpeech 45.31 43.46 40.82 37.18 33.51 31.73 28.62 26.29 24.51 23.63

6-layer cltLSTM WSJ 45.62 43.11 39.15 35.58 31.97 30.08 28.44 26.59 24.58 23.67
LibriSpeech 45.18 43.21 39.11 36.62 33.23 31.54 30.29 27.89 25.94 25.83

FNN+2-layer LSTM WSJ 51.29 49.62 45.97 43.08 41.47 39.58 36.88 35.69 34.57 33.84
LibriSpeech 50.31 49.03 45.38 42.53 39.94 38.65 35.28 33.18 31.51 29.25

2-layer LSTM+FNN+ WSJ 51.61 50.28 47.53 44.42 41.73 40.08 38.49 37.48 35.71 33.91
2-layer LSTM LibriSpeech 50.67 50.14 46.64 43.53 41.64 39.91 38.04 35.71 32.97 30.27
2-layer LSTM+FNN+ WSJ 51.46 50.11 47.18 44.11 41.17 39.73 37.51 35.34 34.42 33.74
FNN LibriSpeech 50.39 49.78 46.79 43.27 41.12 39.61 37.12 34.26 32.48 28.89
2-layer BLSTM WSJ 44.71 42.17 40.21 36.82 33.69 31.01 29.78 28.15 26.65 25.87

LibriSpeech 44.51 41.87 40.04 37.07 34.75 33.67 30.23 28.91 27.87 26.71
1-D CNN+2-layer BLSTM WSJ 44.87 42.48 40.53 37.49 34.17 31.46 30.23 28.83 26.98 26.08

LibriSpeech 45.06 42.32 40.41 37.47 35.29 34.14 30.73 29.74 28.57 27.51
1-D CNN+2-layer LSTM WSJ 47.31 45.55 43.05 41.08 38.51 35.47 33.52 31.81 29.57 27.13

LibriSpeech 48.11 46.15 43.59 41.46 39.19 36.14 34.73 33.32 30.07 28.61
1-D CNN+2-layer GRU WSJ 47.62 46.06 44.24 41.78 39.48 36.62 33.78 31.19 29.12 26.98

LibriSpeech 48.75 47.17 45.22 42.31 39.73 36.19 33.38 31.68 29.49 28.52
QuartzNet WSJ 44.06 42.01 38.79 35.30 31.91 30.04 28.03 25.91 23.81 22.78

LibriSpeech 43.93 41.39 38.25 35.69 31.64 29.86 27.91 25.57 23.47 22.08
Transformer WSJ 43.69 41.15 38.17 34.77 31.44 29.81 27.57 25.38 23.21 22.01

LibriSpeech 42.11 40.63 37.78 35.15 31.38 29.53 27.21 25.03 22.91 20.87
wav2vec 2.0 WSJ 38.03 36.71 33.98 31.03 29.02 27.21 25.68 24.71 22.50 21.48

LibriSpeech 36.71 34.99 33.71 30.19 28.42 26.03 23.97 23.12 21.07 20.21
HuBERT WSJ 38.30 36.75 33.92 30.89 28.89 26.91 25.30 24.49 22.42 21.32

LibriSpeech 36.81 34.91 33.39 30.01 28.05 25.78 23.88 22.91 21.17 20.03

Table 3.4: Best WER results for each model when pre-training on WSJ
and Librispeech, and Fine-Tuning and test on I-CUBE.

performance of the ASR system. As training and test data are from the

same domain, in each step of increasing the percentage of the training data,

the WER of the system increased. Therefore, these significant differences

in the improvement rate indicate a relatively good correlation between the

WER and data from the related domain for training the ASR system.

However, by examining the results in Tables 3.1 and 3.2, which were ob-

tained by testing different models on I-CUBE and UASpeech, only a slight

improvement was observed in each step by increasing the percentage of the

training data for all models. These results provide further support for the

claim that data from an irrelevant domain is unable to improve significantly

the performance of the ASR systems. Accordingly, a significant increase

in the amount of training data from another domain can not significantly

improve the ASR system performance.
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

6-layer LSTM WSJ 65.39 59.70 54.21 49.83 47.21 44.30 40.93 39.11 37.01 36.15
LibriSpeech 63.21 58.50 51.97 49.21 47.15 43.35 39.61 37.62 36.11 35.73

6-layer ResLSTM WSJ 63.97 59.73 56.21 52.13 47.93 43.17 42.61 40.07 38.23 37.97
LibriSpeech 63.38 59.17 55.08 51.13 48.33 42.27 41.65 38.92 38.65 37.01

6-layer ltLSTM WSJ 64.60 58.87 53.98 50.01 46.87 43.61 40.68 38.57 36.29 35.91
LibriSpeech 63.06 58.81 52.57 49.10 46.61 42.91 38.58 36.98 35.88 35.01

6-layer cltLSTM WSJ 63.98 59.17 53.93 49.81 46.93 43.01 40.63 38.39 35.97 35.61
LibriSpeech 63.51 58.11 52.21 48.59 46.11 42.03 37.93 36.57 35.69 34.83

FNN+2-layer LSTM WSJ 69.28 64.87 62.17 58.41 53.91 49.89 49.23 46.98 45.09 42.04
LibriSpeech 68.02 64.07 61.48 58.03 53.62 49.68 48.69 46.83 45.17 41.31

2-layer LSTM+FNN+ WSJ 69.05 65.07 62.51 58.32 54.12 50.28 49.33 47.21 45.19 42.33
2-layer LSTM LibriSpeech 68.28 64.31 61.48 58.08 53.83 50.03 48.33 47.05 45.31 41.92
2-layer LSTM+FNN+ WSJ 68.87 64.52 61.97 57.83 53.62 49.08 48.61 46.62 45.02 41.55
FNN LibriSpeech 68.33 63.28 59.93 56.91 53.01 48.52 47.21 65.93 44.62 41.18
2-layer BLSTM WSJ 65.71 59.38 54.37 50.11 47.21 43.79 40.98 38.85 36.57 36.09

LibriSpeech 64.03 59.20 52.88 49.27 46.82 43.42 38.33 37.49 36.15 35.17
1-D CNN+2-layer BLSTM WSJ 65.53 59.31 54.57 50.51 47.83 43.98 41.17 39.04 36.83 36.21

LibriSpeech 63.75 58.62 53.11 49.47 47.45 44.08 39.05 37.79 36.17 35.78
1-D CNN+2-layer LSTM WSJ 66.43 61.65 54.93 50.83 48.52 44.51 41.89 41.21 37.31 36.67

LibriSpeech 64.57 59.36 53.71 50.51 47.31 46.83 40.17 38.65 37.28 36.23
1-D CNN+2-layer GRU WSJ 66.28 61.57 55.03 52.46 48.69 46.62 42.05 41.51 37.73 37.51

LibriSpeech 64.31 59.68 54.11 50.83 47.79 45.49 40.63 39.13 36.61 36.41
QuartzNet WSJ 59.81 55.29 50.17 46.93 44.53 39.97 37.02 34.92 33.61 32.51

LibriSpeech 58.62 54.07 49.51 46.63 42.78 38.88 36.02 34.57 31.89 31.63
Transformer WSJ 58.07 54.08 48.97 46.61 42.31 39.51 36.11 33.78 32.51 30.97

LibriSpeech 57.31 52.67 48.28 44.83 40.93 36.64 33.83 33.41 30.51 30.13
wav2vec 2.0 WSJ 51.63 47.13 45.17 43.48 40.65 37.49 35.20 33.58 30.15 28.03

LibriSpeech 50.11 48.51 44.67 42.71 39.45 36.21 34.45 32.60 29.51 27.39
HuBERT WSJ 51.61 47.03 45.09 43.39 40.51 36.39 33.28 31.39 30.12 28.05

LibriSpeech 49.98 48.61 44.58 42.69 39.28 35.01 32.98 32.51 29.31 27.32

Table 3.5: Best WER results for each model when pre-training on WSJ
and Librispeech, and Fine-Tuning and Testing on UASpeech

Increasing the amount of pre-train data improves the performance of the

stack LSTM models in different number of layers. By increasing the train-

ing data on WSJ from 10% to 100%, the performance of the 2-layer LSTM

model has improved by 41.68%, while this increase for the Librispeech

dataset is 38.92%. The 4, 6, and 8-layer LSTM models have 43.03%,

46.97%, and 39.21% WER improvements on the WSJ dataset, respectively.

This is the same model with the same number of layers on the Librispeech

dataset, which has improved performance by 40.47%, 46.56% and 35.87%,

respectively. When increasing the amount of data from 10% to 100%,

we observed a considerable accuracy improvement, while increasing the

number of model layers has led to WERs degradation. The ResLSTM,

ltLSTM, and cltLSTM models have consistent improvements by increasing

the amount of data to 100% in both the WSJ and Librispeech datasets.

The cltLSTM got better WERs on both WSJ and Librispeech and this is
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because of the future context frames, which provide more valuable infor-

mation for this model. The stack LSTM layer got better results in terms

of WER by receiving more amount of data and in each percentage. Thus,

stacked LSTM structures are powerful when we access a sufficient amount

of relevant data to train the ASR system.

All stack LSTM layer models got better WERs by applying fine-tuning

on low-resource data. The results make it clear that domain-related data

does play a strong role in training a model for a particular ASR task. The

6-layer ResLSTM got 4.05% improvement when fine-tuned with I-CUBE

on WSJ in terms of WER which is the greatest among the other models,

while ltLSTM and cltLSTM is close to one percent enhancement. The

same number of layers for cltLSTM got a better WER improvement when

fine-tuned with I-CUBE on Librispeech, which is 1.33%. These results

make it clear that there was a significant positive correlation between the

amount of domain-related data and the performance of the low-resource

ASR system. Another important finding was that pre-training on a high

resource data and then fine-tuning on a relevant domain data is the best

structure to deal with low-resource environments.

The results of this study indicate a positive correlation between the size

of the data and model structure. FNN-LSTM is a model in which FNN

helps the model detect the factors of variation through inputs; therefore,

LSTM can learn temporal correlations [95]. The most obvious finding from

the results is that, such functionality is possible in a high resource data

environment, and this topology does not enhance WER of the ASR in the

low-resource environment. Similar architectures (combination of LSTMs

and FNNs) have had the same performance in such environments. With

successive increases in the intensity of the pre-training data in these ar-

chitectures, the WER improved. Following the addition of domain-related
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data, a significant increase in the WER was recorded.

The Transformer model achieved 40.01% and 49.58% WER improvements

over WSJ and Librispeech, respectively. In each step, increasing the amount

of data improved the WER to show that neural networks are extremely

data hungry. After fine-tuning the Transformer, WER raised by 1.25%

and 1.88% for WSJ and Librispeech, respectively. The most striking result

from the fine-tuning results is that pre-training followed by fine-tuning on

the domain-specific data can develop ASR results on the specific domain.

In this Chapter, we explored a detailed examination of various neural net-

work architectures, analyzed their performance and adaptability in the con-

text of low-resource environments. As we move forward to Chapter 4, we

will introduce ScoutWav, a novel approach that merges context-based word

boundary with the advanced self-supervised learning mechanism of wav2vec

2.0 to enhance wav2vec 2.0 for low-resource tasks. Our methodology in-

volves an initial phase of pre-training on high-resource datasets to obtain a

rich representations which are used for two-step of fine-tuning phase within

low-resource scenarios. This fine-tuning process, focused on leveraging con-

textually informed word boundaries, aims to improve the model’s ability

to accurately capture and interpret spoken language.
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Chapter 4

Two-Step Fine-Tuning on

Self-Supervised Learning

Recent ASR advances have achieved remarkable results, but challenges per-

sist in low-resource environments where training data is limited or unrepre-

sentative. In this chapter, we present ScoutWav, a novel low-resource ASR

model that integrates context-based word boundaries with self-supervised

learning (wav2vec 2.0). Our approach involves pre-training on high-resource

datasets to derive context-based word boundaries. These boundaries are

then used to fine-tune a pre-trained and iteratively refined wav2vec 2.0

model for the downstream LRE task. To optimize wav2vec 2.0 for the

LRE, we employ Canonical Correlation Analysis (CCA) to dynamically

identify the layers requiring the next step of the fine-tuning. This targeted

refinement enables wav2vec 2.0 to learn more descriptive LRE-specific rep-

resentations. Finally, the representations learned through this two-step

fine-tuning process are applied to downstream LRE tasks. Experiments on

I-CUBE and UASpeech datasets demonstrate that ScoutWav, leveraging

target domain word boundaries and automatic layer analysis, achieves up
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to a 12% WER reduction in LRE settings.
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4.1 Introduction

Recent advancements in the end-to-end (E2E) ASR systems have demon-

strated significant improvements. These systems require large amounts of

labeled speech data to achieve high performance, a requirement that may

not be feasible across all applications [31]. A low-resource environment

(LRE) refers to scenarios where training data and associated labels are

scarce and challenging to obtain. Examples of LREs include newly emerg-

ing languages (e.g., Kyrgyz) [221] or specific speaker groups with diverse

accents [31]. Given the impressive accuracy achieved by E2E ASR mod-

els trained on abundant labeled data, there arises a compelling need to

leverage unlabeled data during the development of ASR models for LREs.

Recent advancements in self-supervised learning (SSL) have demonstrated

its potential to extract meaningful representations from unlabeled data,

leading to improved performance in ASR across both low and high resource

settings [222, 223]. The core principle of SSL involves leveraging large

volumes of unlabeled data to learn generalizable representations, which

are subsequently fine-tuned for specific downstream tasks using smaller

amounts of labeled data [222]. Recently, wav2vec 2.0 [46] has emerged as

a powerful layer-based SSL model built upon the Transformer architecture

[47]. While SSL models show promise in achieving high-quality represen-

tations for ASR tasks and improved performance through fine-tuning on

in-domain data, the current paradigm often relies on a single fine-tuning

step, potentially limiting the model’s ability to fully adapt to the specific

demands of the downstream task. This limitation contributes to a remain-

ing performance gap, necessitating further exploration of more effective

fine-tuning approaches.

Recently, Wang et al. [224] have introduced a new low-latency E2E model,
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called the scout network (SN), which showed state-of-the-art results in HRE

ASR systems. Their model is based on the prioritizing word-specific con-

textual information for output token prediction. The model employs two

distinct components: the SN to detect the word boundary word bound-

aries and a separate recognition network (RN) that leverages context from

preceding frames for sub-word detection. While this method performs well

for HRE, the lack of global context information within the SN architec-

ture could potentially limit its performance. We propose an enhanced

approach that builds upon the strengths of the SN while addressing its

potential shortcomings. By integrating global context information along-

side word-specific boundaries, we aim to improve by integrating global con-

text information alongside word-specific boundaries, we aim to improve the

performance of the model.

In this chapter, we demonstrate the use of out-of-domain large-scale corpora

to boost the performance of low-resource (LR) ASR tasks. To address the

training data bottleneck, our model, ScoutWav integrates an SSL model

with context-based word boundaries to obtain a high-performance ASR

model for LREs. ScoutWav incorporates an enhanced Scout Network (SN)

equipped with a context vector embedding mechanism. This mechanism

captures both local acoustic features and global context attributes, lead-

ing to the generation of high-quality word boundary data for a two-stage

fine-tuning process. Firstly, we pre-train a wav2vec 2.0 model on a high-

resource (HR) dataset. This pre-trained model is subsequently fine-tuned

on the LR data to adapt it to the target domain. Since different layers

in Transformer architectures can capture different linguistic information

[222], we employ a wav2vec 2.0 layer analysis. This analysis identifies

layers poorly capturing acoustic-linguistic features. To enhance these lay-

ers, we implement a second fine-tuning step utilizing context-based word
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boundary data, effectively embedding global context into ScoutWav.

4.2 Proposed Approach

ScoutWav is an end-to-end ASR model which integrates context-based word

boundary with a layer analysis module to efficiently adapt a wav2vec 2.0

pre-trained model to a target downstream ASR task in a low-resource en-

vironment. The overall ScoutWav training procedure is shown in Figure

4.1. Obtaining context-based representations is the main aim of the Scout-

Wav approach to increase the performance of the high-resource ASR model

in low-resource environments. Context-based representations enhance the

robustness of ScoutWav by providing a deeper understanding of semantic

and syntactic language structures, leading to more accurate speech inter-

pretation and transcription. The proposed model consists of two modules:

a) building context-based word boundaries and b) layer analysis-based fine-

tuning. In the first module, we pre-train an SN on high-resource data and

then fine-tune the model with low-resource (LR) data to achieve context-

based word boundaries for the target task. In the second module, we

pre-train wav2vec 2.0 with the high-resource (HR) dataset and fine-tune

with the LR dataset to adapt the model for the target LR task. After fine-

tuning wav2vec 2.0, we apply a layer analysis to detect the poor layers.

These poor layers are then improved by a second stage of fine-tuning using

the context-based word boundary data to enhance and adapt those layers

to the low-resource target ASR task.
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Figure 4.1: ScoutWav structure and training procedure

4.2.1 Build Context-Based Word Boundary

In this section, we summarize how a high-resource ASR model can be

adapted for an LR task by capturing the most valuable global and lo-

cal contextual information. The most valuable contextual information for

preparing the annotated output text can be obtained from the speech seg-

ment that is related to the target word [224]. Therefore, a look-ahead-based

SN model is used to detect the word boundary in the speech segment to

identify where a word starts and ends. The SN is focused on identifying

boundaries corresponding to the specific word being generated. There-

fore, this is more targeted than general embeddings that provide broader

linguistic relationships. Look-ahead approaches in data processing, partic-

ularly within speech and audio analysis, offer significant advantages over

chunk-based methods. By incorporating immediate future information,

they enable seamless real-time processing, enhanced contextual awareness,

and more accurate predictions or recognitions. This dynamic integration
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of past and imminent data improves the handling of overlapping in speech

input and provides better adaptability to task target task requirements.

SN consists of CNN layers for pre-processing of the input sequence, fol-

lowed by Ns self-attention layers. Then, a combination of the linear layer

and a sigmoid layer is used to detect the probability of the boundary pi.

The output of the current frame depends on the previous one. To train the

model, the following cross-entropy loss is minimized to optimize the model

for the word-boundary structure:

Loss =
∑

bilog(pi) =
∑

bilog(Sigmoid(Whs
i )) ,

where bi ∈ 0, 1, hi, and W are the ground truth of the word boundary, the

output of the hidden sequence, and the trainable matrices, respectively.

The SN is a neural component that learns to detect the most important

contextual information. This adaptation is different from the static nature

of most embeddings. In LREs, the context information at each boundary

should be adapted to the LR task to have reasonable performance in the

target environment. An SN does not capture global contextual informa-

tion when detecting the word boundary, reducing the overall performance

of the ASR model in both high- and low-resource settings. In contrast,

ScoutWav utilizes two sets of context vectors in each self-attention layer,

that are calculated through all previous frames to capture not only local

acoustic information, but also global context features. This allows Scout-

Wav to adapt reasonably well to the LR downstream task. The first set of

the context vectors are calculated in each layer of each block and fed into

the upper layer of the current layers. The second vector is obtained by con-

catenating all vectors in the current layer to share the global characteristics,

speaker, and linguistic between the layers to enhance the adaptation proce-
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dure of the model into the LRE. We calculate the multihead self-attention

as follows:

MHD(Qn, Kn, V n) = Concat(head1, · · · , headm)W n
O

headi = Attention(QnW n
Q,i, K

nW n
K,i, V

nW n
V,i) ,

where W represents trainable matrices. In the first layer, Q1, K1, and V 1

are represented as a feature matrix which include block input and context

vector. This context vector is initialized using rearranged positional en-

coding for each layer, utilizing only the output of each encoder layer. In

subsequent layers, we enhance Q, K, and V with two additional context

vectors: one from each encoder of the previous layer, and a summarized

context vector from all encoders in the current layer. Integrating this con-

textual information into our Scout Network (SN) yields an improved model

capable of more accurate word boundary detection. To adapt the improved

SN to low-resource tasks, we first pre-train it on high-resource data and

then fine-tune it with the LR dataset.

4.2.2 Layer Analysis-Based Fine-tuning

In this section, we summarise how we adapt the wav2vec 2.0 approach by in-

tegrating layer analysis of the model and two-step fine-tuning mechanism to

achieve a higher performance for LREs. The wav2vec 2.0 framework maps

the raw audio sequence into a high-level contextual representation through

a set of convolutional layers followed by self-attention layers, which are

trained with a contrastive objective. Investigating the Transformer layers

of the BERT model in natural language processing indicated that differ-

ent blocks behave differently and capture different levels of information;
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the earlier blocks represent syntactic information, while the high-level ones

present high-level semantic information [221]. Therefore, such a layer anal-

ysis over wav2vec 2.0 helps to have a better insight of layers behavior to

enhance and fit the model for the low-resource ASR setting. To get a bet-

ter understanding of layer behavior, we use Canonical Correlation Analysis

(CCA) [225] inspired by [226] over different layers of wav2vec 2.0 and de-

tect poor layers, which may not be well suited for the LR target ASR task.

Then the context-based word boundaries obtained from the previous sec-

tion are used for the second stage of the model fine-tuning to improve the

performance of the poor layers.

We use Canonical Correlation Analysis (CCA) [225] as a measure to detect

which layer of the wav2vec 2.0 model may not be well suited for the target

low-resource ASR task. CCA is a statistical approach for finding maximum

correlations between linear combinations of two continuous-value vectors.

It can be used to calculate the similarity between layer representations and

the acoustic feature vector, evaluating how well different model layers adapt

to the downstream task. CCA takes n pairs of vectors (x1, y1), · · · , (xn, yn)

as input and return a correlation score as a similarity measure between

two vectors. In ScoutWav, we use Deep CCA (DCCA) [227] to explore the

complex relationship between data by passing it through a deep network.

The output of the network is then fed into CCA to measure the similarity.

The DCCA solution can be defined as follows:

arg max
W1,W2

ρ = tr(W ′
1f1(X

1)f2(X
2)′W2)

s.t.


W ′

1(f1(X
1)f1(X

1)′ + r1I)W1 = I

W ′
2(f2(X

2)f2(X
2)′ + r2I)W2 = I

(4.1)
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where f1 and f2 are two DNN networks, f1(X
1) and f2(X

2) are DNN

outputs which are interpreted by CCA to calculate the similarity score.

The tr calculates the total correlation; W1 and W2 are corresponding weight

matrix embedded; r1 and r2 are regularization constants. The similarity

score is between 0 and 1, where 1 is the maximum similarity.

This stage involves three key steps. First, we pre-train the wav2vec 2.0

model on high-resource data. Then, we fine-tune the model specifically on

the low-resource target data. Our layer analysis procedure then system-

atically examines each layer using a word embedding vector to detect the

poor layers. Finally, we employ context-based word boundaries for a second

stage of fine-tuning. This targeted refinement focuses on the poor layers,

adapting them for the target task and ultimately enhancing the model’s

overall performance in the low-resource setting.

4.3 Experiments

4.3.1 Datasets

We examine the performance of ScoutWav on two low-resource datasets,

I-CUBE and UASpeech, to demonstrate its effectiveness in low-resource

environments.

4.3.2 Experiment Setup

For the WSJ, the models were trained on the SI-284 set and evaluated on

the eval92 set. We trained the models with LibriSpeech, by using 960 hours

of training data, and evaluated with data from both clean and contaminated
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testsets. Finally, for TED and CV datasets, we used 10-fold cross-validation

and reported average and standard deviation WER across all folds. The

input acoustic features were extracted by employing 80-dim log Mel-filter

bank features with 3-dim pitch features and with a hop size of 10 ms and a

window size of 25 ms, which were normalized with the mean and variance.

For the WSJ setup, the number of output classes was 52, including the 26

letters of the alphabet, space, noise, symbols such as period, an unknown

marker. To predict the probability distribution of all characters in the

alphabet, we use the CTC loss function and use AdamW optimizer [228]

as a hyperparameter setting with an initial learning rate of 0.001. The text

is tokenized using SentencePiece [229] and we set the vocabulary size to

5000. We run the second-stage fine-tuning stage for 20 epochs. We also

use beam width K = 10, boundary decision threshold σ = 0.0005, language

model weight α = 0.5 and length penalty β = 2.0. We use Montreal forced

aligner [230] to define phone and word segment. Finally, we pre-train and

fine-tune wav2vec 2.0 in two different settings; Base setting and Large

setting. For the Base setting, we replicated the architecture from [231]

with the following parameters: dmodel = 512, dff = 2048, dh = 4, Ne = 12

and Nd = 6 for a fair comparison to previous works. For the Large setting,

we used the architecture from [232] with Ne = 24 and Nd = 12 and for

both settings, the down-sampling rate r is 4.

4.3.3 Results

We carried out a WER comparison on different datasets to evaluate our

proposed context-based word boundary detection model in ScoutWav with

SN and a chunk-based model. In ScoutWav, we pre-train each model with

HR data and then fine-tune with the target LR in-domain data. The
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results are summarized in Table 4.1, which shows that ScoutWav outper-

forms other models for both the I-CUBE and UASpeech datasets. The

best performance is achieved after pre-training with LibriSpeech. This

indicates a correlation between the model performance and the amount of

pre-training data. As the amount of pre-training data increases, model per-

formance tends to improve due to a more comprehensive representation of

linguistic and acoustic variability, enabling the model to learn more robust

and generalizable features. In summary, ScoutWav’s integration of contex-

tual information to extract local and global features significantly enhances

its word boundary detection capabilities compared to Scout Network and

chunk-based methods. This contextual awareness allows ScoutWav to dis-

cern subtle linguistic and acoustic cues that simpler models overlook. The

result is more precise identification of word boundaries within continuous

speech, minimizing transcription errors and demonstrating the value of

comprehensive contextual analysis in word boundary detection for speech

recognition systems.

High-Resource Data

Model
LR
Data

Libri WSJ TED CV

SN
I-CUBE 16.41 18.83 17.39 20.17

UASpeech 28.87 30.12 29.73 33.48
Chunk- I-CUBE 19.81 21.35 20.93 22.87
Based UASpeech 31.18 33.98 32.35 34.11

ScoutWav
I-CUBE 14.29 16.37 17.28 19.87

UASpeech 25.93 28.17 26.53 30.13

Table 4.1: WER for detecting context-based word boundary on different datasets with different models.

In the second stage of our experiments, we investigated how different layers

within the pre-trained and fine-tuned wav2vec 2.0 model process various

acoustic attributes of the input. Figure 4.2 compares results after pre-

training wav2vec 2.0 on four high-resource datasets, followed by fine-tuning

with I-CUBE data and a second stage of fine-tuning using context-based
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Figure 4.2: Layer analysis of wav2vec 2.0 with different pre-training and fine-tuning with I-CUBE data.

word boundaries. To measure layer-to-input similarity, we used DCCA

scores for the Base setting (12 layers). Similar DCCA trends were observed

for the Large setting. Our analysis reveals that the first (1-3) and last (9-12)

layers diverge from the input, suggesting they learn less directly relevant

representations. Conversely, middle layers (5-8) demonstrate greater sim-

ilarity to the input data, indicating their suitability for the final target

task. Importantly, after the second fine-tuning stage focused on poor lay-

ers using word boundaries, we observed improvement in the final layers.

This highlights the effectiveness of our approach in refining wav2vec 2.0’s

internal representations. Interestingly, we found a correlation between the

accuracy of context-based word boundaries and the degree of layer improve-

ment: the CV dataset, where word boundary accuracy was lowest, showed

a correspondingly less significant improvement rate. This finding under-

scores the importance of accurate word boundary detection for maximizing

the benefits of our layer-targeted fine-tuning strategy.

We further analyzed the large setting of the model (24 layers), measuring

DCCA scores as presented in Figures 4.3 (LibriSpeech dataset) and 4.4
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Figure 4.3: Layer analysis of wav2vec 2.0 for large setting after pre-training on LibriSpeech and fine-
tuning with I-CUBE data.

Figure 4.4: Layer analysis of wav2vec 2.0 for large setting after pre-training on TED and fine-tuning
with I-CUBE data.

(TED dataset). Consistent with our previous findings, the first, and last

layers of the model exhibited divergence from the input speech, indicat-

ing less suitable representations. After applying our secondary fine-tuning

strategy targeting these poor layers using word boundaries, we observed

substantial enhancements, particularly within the final layers. This result

shows the effectiveness of our approach in refining wav2vec 2.0 for better

alignment with the target task, even within a larger model architecture.

The analysis of the wav2vec 2.0 layers with the UASpeech dataset are

shown in Figure 4.5. Similar to the results achieved with I-CUBE, the

second step fine-tuning with obtained word boundaries helps the model to

extract more contextual information from the first and last layers of the

model that lead to improve the performance of the ASR model in the LRE.

Figure 4.2 and Figure 4.5 indicate that the last layers of the model have
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Figure 4.5: Layer analysis of wav2vec 2.0 with different pre-training and fine-tuning with UASpeech
data.

the largest improvement after the second fine-tuning step, which indicates

that that the pre-trained and fine-tuned model is significantly improved

by the context-based word boundary fine-tuning to embed task-specific

information.

We further analyzed the representational capabilities of the large model

(24 layers) by measuring DCCA scores after pre-training on LibriSpeech

and TED datasets (Figures 4.6 and 4.7, respectively. Similar to fine-tuning

the model on I-CUBE data, the first, and last Transformer layers exhib-

ited divergence from the input speech, suggesting less suitable representa-

tions. However, upon applying our secondary fine-tuning strategy using

word boundaries, we observed significant improvement, particularly within

the final layers. This finding demonstrates the robustness of our approach:

even across diverse pre-training datasets and a larger model architecture,

targeted fine-tuning with word boundaries effectively enhances wav2vec

2.0’s representations for the target task.

Table 4.2 demonstrates the superiority of ScoutWav in low-resource sce-

narios. After the second fine-tuning step on the pre-trained and fine-
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Figure 4.6: Layer analysis of wav2vec 2.0 for large setting after pre-training on LibriSpeech and fine-
tuning with UASpeech data.

Figure 4.7: Layer analysis of wav2vec 2.0 for large setting after pre-training on TED and fine-tuning
with UASpeech data.

tuned model, ScoutWav significantly outperforms both wav2vec 2.0 and

QuartzNet [103]. Specifically, the Large ScoutWav model achieves impres-

sive WERs of 10.14% on I-CUBE and 13.32% on UASpeech, representing

improvements of 12% and 6.7%, respectively, over the next-best scores

from Large wav2vec 2.0. This advantage extends across different datasets

and settings: Base ScoutWav outperforms Base wav2vec 2.0 by 0.7% on

I-CUBE and a substantial 7.7% on UASpeech. Furthermore, ScoutWav

consistently surpasses QuartzNet by a considerable margin. These results

highlight the effectiveness of our approach in refining speech representations

for low-resource ASR tasks.
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LRE Method Libri WSJ TED CV

I-CUBE

ScoutWav
Base

15.32 16.73 15.21 17.89

ScoutWav
Large

10.14 13.98 12.57 17.78

wav2vec 2.0
Base

17.38 16.61 15.45 18.42

wav2vec 2.0
Large

11.61 14.73 13.64 17.22

QuartzNet 26.51 29.75 28.39 31.53

UASpeech

ScoutWav
Base

18.46 22.21 19.38 24.55

ScoutWav
Large

13.32 15.29 14.93 18.35

wav2vec 2.0
Base

19.07 23.94 21.31 25.18

wav2vec 2.0
Large

14.28 16.23 15.19 18.87

QuartzNet 29.15 34.93 31.79 36.79

Table 4.2: WER results for different methods in two LREs. Best performing models are highlighted.

4.4 Chapter Summary

In this chapter, we introduce ScoutWav, an end-to-end ASR model specif-

ically designed for low-resource environments. It employs a two-step fine-

tuning process to adapt a high-resource ASR model to the LR target do-

main. Our novel context-based word boundary mechanism, capturing both

global and local acoustic patterns, enables ScoutWav to accurately detect

word boundaries within LRE data. Additionally, a layer analysis mod-

ule identifies underperforming model layers. By targeting the second fine-

tuning step on these layers using context-based word boundaries, ScoutWav

achieves significant performance improvements over established ASR mod-

els. In the next chapter, we’ll explore how combining data selection criteria

with layer analysis can further mitigate the training data bottleneck in LRE

ASR.
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Chapter 5

Combination of Local

Aggregation and

Self-Supervised Learning for

Detecting Speech Hidden

Units

Advances in deep learning have led to impressive results in ASR systems.

However, ASR performance in Low-Resource Environments remains a chal-

lenge due to the limited training data available for specific domains. We

propose that careful data sampling criteria, focused on selecting the most

informative speech samples, can be crucial for overcoming this training data

bottleneck. Our proposed method, Local Aggregation BERT (LABERT),

combines an active learning model with an adapted local aggregation metric

for self-supervised speech representation learning. Active learning identi-

fies the most informative speech units, while the aggregation metric en-
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courages the model to cluster similar data points in the latent space and

separate dissimilar ones. This approach assists in uncovering hidden pat-

terns within LRE tasks. We evaluate LABERT’s performance on two LRE

datasets, I-CUBE and UASpeech, to explore its effectiveness within LRE

ASR problems.
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5.1 Introduction

End-to-end (E2E) automatic speech recognition (ASR) systems have made

significant progress by the availability of vast amounts of labeled speech

data. However, these systems struggle in low-resource environments (LREs),

where representative training data is limited – such as for lesser-known lan-

guages like Kyrgyz [221] or among speakers with diverse accents [31]. This

scarcity of data and labels poses a significant challenge for LREs [31]. One

key bottleneck in LREs is selecting the most informative training samples.

To address this, LABERT combines active learning, which prioritizes in-

formative speech samples, with self-supervised learning. By incorporating

the Local Aggregation function, LABERT effectively identifies and groups

similar speech patterns within hidden layers, aiming to improve speech

recognition performance in these challenging scenarios.

Self-Supervised Learning (SSL) models have emerged as a pivotal approach

in deriving data representations from unlabeled samples, which are then

fine-tuned on labeled data [46]. wav2vec is an SSL model [191], which em-

ploys the Contrastive Predictive Coding (CPC) methodology. This method

emphasizes pre-training speech representations by predicting subsequent

acoustic frames within a sequence. A noteworthy evolution in this domain

is the vq-wav2vec model [195], a synthesis of the foundational wav2vec

with the BERT model. This integration is designed to extract BERT-style

speech representations through a two-stage training. Building upon the

aforementioned architecture, the DiscreteBERT model [233] enhances the

capabilities of vq-wav2vec by integrating a pre-trained BERT model and

subsequently fine-tuning it for downstream ASR applications. The W2v-

BERT [142] advances self-supervised speech pre-training by introducing a

hybrid framework that merges the strengths of contrastive learning and
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masked language modeling. Inspired by wav2vec 2.0 [46], it utilizes con-

trastive learning to distinguish true future speech segments from distrac-

tors, enhancing the understanding of temporal dependencies. Simultane-

ously, it employs a BERT-style masked prediction task on quantized repre-

sentations to foster learning of contextual representations at a fine-grained

level. The paper demonstrates that this dual approach of contrastive learn-

ing and masked prediction outperforms models that rely on either technique

alone, resulting in more robust speech representations that excel in down-

stream speech recognition tasks. In contrast, the BEST-RQ [149] presents

a novel self-supervised learning approach for speech recognition leveraging

a random-projection quantizer. The method projects speech input fea-

tures onto a randomly initialized matrix and uses a randomly-initialized

codebook for discretization. This quantizer simplifies computation and

preserves the original structure of speech data. The model is trained to

predict masked parts of the speech signal, learning from the context of

unmasked segments. Experiments on the LibriSpeech dataset demonstrate

the approach’s effectiveness, achieving reduced word error rates compared

to other SSL baselines.

DeLoRes model [234] introduces a novel self-supervised learning framework

for audio representation learning, specifically designed for low-resource sce-

narios. The core idea focused on decorrelating latent spaces to promote the

learning of diverse and non-redundant information within audio samples.

To achieve this, DeLoRes measures the cross-correlation matrix between

outputs of two identical networks fed with distorted versions of the same

audio. Inspired by the Barlow Twins objective, it aims to produce em-

beddings that are invariant to distortions while maximizing informational

richness. The authors demonstrate DeLoRes’s effectiveness on downstream

tasks, showcasing its ability to learn robust representations even with lim-
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ited training data and computational resources. TERA [146] introduces a

self-supervised speech pre-training approach using Transformer Encoders.

Unlike prior approaches that rely on a single auxiliary objective, TERA uti-

lizes alterations along three axes (time, frequency, and magnitude) to train

a Transformer Encoder on unlabeled speech data. This allows the model to

learn robust representations through reconstructing acoustic frames from

their altered versions. TERA can be employed for either speech represen-

tation extraction or fine-tuning with downstream models, achieving strong

performance on various tasks like phoneme classification, keyword spot-

ting, speaker recognition, and speech recognition. The study also explores

the influence of different alteration techniques, the amount of pre-training

data, and the type of features used for pre-training.

In the ASR literature, clustering approaches are also employed as a method

to obtain pseudo-labels for SSL. Deep Cluster [172] uses k-means algorithm

to group similar instances and optimizing an encoder network through a

classification loss. Hidden unit BERT (HuBERT) [47] introduces a novel

self-supervised framework for learning robust speech representations. The

model addresses issues common in prior self-supervised speech represen-

tation techniques by using k-means clustering to generate more reliable

pseudo-labels. HuBERT masks portions of the input audio and then trains

a transformer-based model to predict the masked targets. This masked pre-

diction approach, inspired by BERT’s success in NLP, forces the model to

extract contextually relevant speech representations. SwAV [41] introduces

a novel unsupervised learning technique for training convolutional networks

used in computer vision. SwAV addresses shortcomings of conventional

contrastive learning methods, which often rely on computationally expen-

sive pairwise feature comparisons. Instead, SwAV compares ’codes’ (cluster

assignments) generated from multiple augmented views of the same image.
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SwAV enforces consistency between these cluster assignments, leading to

robust feature representations. The method’s efficiency and scalability,

along with its performance on downstream tasks, demonstrate its effec-

tiveness in learning meaningful visual representations without the need for

explicit labels. However, many clustering algorithms suffer from the seed

selection problem, resulting with noisy clustering results, which would neg-

atively affect the learning process in the LRE ASR task. Our approach,

Local Aggregation BERT (LABERT), draws inspiration from Local Ag-

gregation (LA) [152], and applies a local non-parametric aggregation in

a latent feature space instead of within the global clustering algorithm.

LABERT selects more informative speech units and feeds them into the

LA function, which enables it to address the noisy and arbitrary clustering

process and to model the interrelation similarity more accurately in the

latent spaces for the LRE ASR system.

LABERT (Local Aggregation with BERT) is a novel self-supervised rep-

resentation learning model for learning speech representations, especially

for low-resource ASR tasks. Drawing inspiration from HuBERT, LABERT

uses an offline hidden unit detection module to give noisy labels to a BERT-

like pre-training model. Uniquely, LABERT employs non-parametric ag-

gregation in a latent space for visual embedding [152], rather than relying

on a global clustering technique to detect hidden units to learn speech

representations. To tackle the limited training data issue in LREs, we in-

corporate a committee-driven active learning approach combined with an

LA function to detect more valuable speech samples in the latent space.

This works by enhancing the LA’s ability to spot close neighbours within

the latent space around given speech samples. By continuously improving

and fine-tuning the active learning model during training, LABERT effec-

tively identifies speech units with similar characteristics in the latent space
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and allowing them to be grouped together into the same clusters. As a re-

sult, this procedure allows LABERT to detect an informative and diverse

subset of the data to train a model, and obtain more accurate speech units

to achieve performance comparable to the full dataset to address the data

bottleneck and model a well-suited representation for the downstream LRE

ASR task.

5.2 Proposed Approach

LABERT is an end-to-end ASR model which explores how to effectively use

speech-only data to improve the performance of the speech recognition sys-

tem in a low-resource environment. As illustrated in Figure 5.1, LABERT

comprises two core components, which consists of: a) hidden unit discov-

ery with local aggregation function and b) masked target unit prediction.

To extract meaningful representations from raw audio in the first module,

LABERT employs the Local Aggregation function. This function moves

similar audio units together in the embedding space, while enabling dissim-

ilar units to separate from each other. To mitigate noisy clustering issues,

LABERT incorporates a committee-based active learning approach for se-

lecting more informative initial unit seeds [152]. Crucially, the clustering

process leverages an iterative strategy: the first iteration uses MFCCs fea-

tures, while subsequent iterations utilize carefully selected representations

generated by a Canonical Correlation Analysis (CCA) module [225]. In the

second module, inspired by the success of BERT [235], LABERT employs

a masked language modeling objective to predict hidden units. The model

calculates cosine similarity scores between context vectors and every hid-

den unit embedding from all available hidden units. Finally, cross-entropy

loss is used for the prediction process.
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Figure 5.1: The structure of LABERT model.

5.2.1 Hidden Unit Discovery through LA function

In LABERT, LA function is adapted to extract hidden speech units from

raw audio data. Our main objective is to train an embedding function

Y = f(X), which can effectively map the input speech X = [X1, ..., XT ]

to the corresponding features, Y = [Y1, ..., YT ], where similar units are

grouped together, and dissimilar ones are separated. To do this, we iden-

tify two sets of neighbors, close neighbors (Ci) and background neighbors

(Bi), dynamically during the training of the embedding function for Xi and

its embedding Yi [152]. Close neighbors are embeddings that are similar to

Yi, while background neighbors are employed to establish the distance scale

with respect to which the assessment of closeness is made. Within the con-

text of LREs, local aggregation metric enables the LABERT model to scale

the measurement for the target downstream task to obtain a better per-

formance in such environments. After detecting the close and background

neighbors, LABERT forces the current embedding toward close neighbors
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but far from background ones.

At each optimization step, the background neighbors for a given embedded

point Yi are defined as the k closest embedded points (denoted as gk(Yi))

within the embedding space Y . The distance between these neighbors is

evaluated by employing the cosine distance. The value of k, representing

the number of background neighbors is a hyperparameter for the algorithm.

To find the close neighbors, k-means clustering algorithm is applied to clus-

ter all embedding spaces in Y to cluster the representations into P groups

{1, ..., P}. To mitigate the impact of noisy clustering results, LABERT em-

ploys a committee-based active learning approach. This technique selects

more informative embeddings as initial clustering seeds for the k-means

algorithm. By providing higher quality seeds, LABERT achieves more ac-

curate hidden unit classification, which is crucial for downstream speech

recognition tasks. The number k of background neighbors and number P

of clusters are hyperparameters of the model.

Taking into account the definition of close and background neighbors, an

LA level is defined as L(Ci, Bi|Θ, Xi) for each speech unit Xi. Θ parameters

are tuned during the training to maximize the level of local aggregation.

In [152], the probability that a feature Y to be considered as the i-th unit

is defined as:

P (i|Y ) =
exp(Yi

TY/τ)∑T
j=1 exp(Yj

TY/τ)
(5.1)

where τ ∈ [0, 1] is a fixed hyperparameter.

The probability that a feature Y is classified as a unit in a speech frame T

is computed as:

P (T |Y ) =
∑
i∈T

P (i|Y ) (5.2)

The level of local aggregation is defined as the negative log-likelihood of Yi
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being a close neighbour (is in Ci), given that Yi is recognized as a back-

ground neighbour (is in Bi):

L(Ci, Bi|Θ, Xi) = −log
P (Ci

⋂
Bi|Yi)

P (Bi|Yi)
(5.3)

Finally, the loss to be minimized is:

Loss = L(Ci, Bi|Θ, Xi) + λ ∥Θ∥22 (5.4)

where λ is a regularization hyperparameter.

As explained earlier, LABERT employs a committee-based active learn-

ing approach to obtain more informative parts of speech data, considering

them as seeds for the local aggregation function. In contrast to traditional

committee-based active learning approaches, which relies on multiple struc-

turally distinct models to highlight model differences [236], LABERT lever-

ages a streamlined approach inspired by SMCA [236]. Instead of building

variant committee models through dropout, LABERT utilizes the R-Drop

model [237]. This approach addresses SMCA’s inconsistency between train-

ing and inference, which can hinder performance in both high- and low-

resource ASR scenarios. In R-Drop model, each speech input Xi passes

through the model twice during training, generating two outputs: ρω1 (li|xi)

and ρω2 (li|xi), where li is the transcribed text of xi. R-Drop then min-

imizes the bidirectional Kullback-Leibler (KL) divergence between these

distributions, promoting regularization:

108



5.2. PROPOSED APPROACH

Li
KL =

1

2

(
DKL

(
ρω1 (li|xi)||ρω2 (li|xi))

+ DKL(ρω2 (li|xi)||ρω1 (li|xi)
)) (5.5)

By applying the R-Drop method during the training step, the dropout hy-

potheses of the seed model may diverge significantly from the standard

hypotheses within the model. Specifically, we focus on the frame-level dif-

ferences between these hypotheses. This divergence considered as a crucial

data selection metric, allowing us to extract more informative speech units

from utterances. These selected units then utilize for the clustering pro-

cess within the local aggregation function. LABERT tackles the challenge

of noisy clustering by incorporating two essential criteria: informativeness

and diversity. LABERT prioritizes informative speech segments. By identi-

fying and retaining the most relevant units, we enhance the overall quality

of the clustering process. This step is critical for accurate downstream

tasks. To avoid redundancy and robustness, LABERT dynamically com-

putes diversity during the pre-training phase. We employ the Bi set, which

adapts to the specific context, that prevents the local aggregation function

from selecting data that is too similar to each other. This diversity-driven

approach ensures that LABERT produces more precise clusters of speech

units.

5.2.2 Masked Target Unit Prediction

In this section, we summarize the utilization of the BERT model and

explore strategies for selecting the high quality representations from the

learned layers to enhance the second iteration in the local aggregation
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function. BERT, a powerful language model, operates through a masked

prediction mechanism on extensive text data. Its pre-trained representa-

tions can effectively compensate for the scarcity of text data in low-resource

ASR problems. Inspired by approaches like HuBERT and wav2vec 2.0, our

LABERT method employs a similar mask generation strategy. However,

we selectively mask only a fraction (p%) of the chosen timesteps. This

deliberate choice ensures that the model receives real input, addressing

any inconsistencies between training and testing phases. Building upon in-

sights from the previous chapter (Chapter 4), we introduce a layer analysis

module to identify the most suitable layer within the model for our target

low-resource ASR task. We use CCA as our measuring tool. CCA quanti-

fies the maximum correlations between linear combinations of continuous

value vectors. By assessing the similarity between layer representations

and the acoustic feature vector, we detect how effectively different layers

adapt to the downstream LRE task. Our approach compels the LABERT

to learn task-specific representations from the downstream ASR context.

5.3 Experiments

5.3.1 Datasets

For unsupervised pre-training, we use the full 960 hours of LibriSpeech

(Libri) [27], full 81 hours of WSJ [30], 1k hours of Common Voice (CV) [238]

and 450 hours of TED-LIUM 3 (TED3) as our high-resource environment

datasets. We examine the performance of LABERT on two low-resource

datasets, ICUBE and UASpeech, to demonstrate its effectiveness in low-

resource environments.

110



5.3. EXPERIMENTS

5.3.2 Experiment Setup and Metrics

Our pre-trained models follow the wav2vec 2.0 architecture [46], compris-

ing a convolutional waveform encoder, a BERT encoder [176], a projection

layer, and a code embedding layer. We utilize two LABERT configura-

tions: BASE and LARGE. The first two closely follow the architectures

of wav2vec 2.0 BASE and LARGE, respectively. To demonstrate the effi-

ciency of our proposed method in utilizing low-quality cluster assignments,

we employ the k-means algorithm [239] for acoustic unit discovery. This

algorithm, known for its simplicity, models isotropic Gaussians with equal

scalar variances for each acoustic unit. For generating labels to initialize

LABERT training on the HRE datasets, we perform k-means clustering

with 50 and 100 clusters using 39-dimensional MFCC features. These fea-

tures consist of 13 base coefficients along with their first- and second-order

derivatives. In order to improve the quality of targets for subsequent iter-

ations, we apply k-means clustering to the latent features extracted from

the LABERT model. These latent features are obtained from the LABERT

model pre-trained in the previous iteration, specifically at an intermediate

transformer layer. Clustering is performed using the MiniBatchKMeans al-

gorithm from scikit-learn [240], which iteratively fits mini-batches of sam-

ples. For all LABERT configurations, we employ a mask span of l = 10.

Unless specified otherwise, a random p = 8% of waveform encoder output

frames are selected as mask start points. Optimization is performed using

the AdamW optimizer [219] to update the model with an initial learning

rate of 0.001. The learning rate undergoes a linear warmup for the initial

p = 8% of training steps, reaching a peak value before decaying linearly to

zero. Peak learning rates are set at 5e−4 for BASE and 1.5e−3 for LARGE

models. We set k = 4096 to compute Bi using the nearest neighbors pro-

cedure. In computing Ci, we run the k-means clustering algorithm with
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50 and 100 clusters on 39-dimensional MFCC features, to obtain labels for

LABERT pre-training over the HRE data sets. We considered 50 and 100

clusters on 100h, 300h and 500h of speech samples from LibriSpeech and

fine-tuned the model with I-CUBE for cluster quality analysis. The input

acoustic features are 80-dimensional filterbanks, extracted with a hop size

of 10 ms and a window size of 25 ms, which are normalized with the mean

and variance. For the WSJ setup, the number of output classes is 52, in-

cluding the 26 letters of the alphabet, space, noise, symbols such as period

and an unknown marker. The text is tokenized using SentencePiece [241]

and we set the vocabulary size to 5000.

Benchmarking results are presented for the pre-trained and fine-tuned wav2vec

2.0 and HuBERT models in Base and Large settings, as well as for QuartzNet

and DiscreteBert. The primary evaluation metric we used is the WER. We

also compute the Phone Purity and Phone-Normalized Mutual Informa-

tion (PNMI) to evaluate the quality of the obtained cluster assignments

from LA function in different layers: We obtain phonetic transcripts that

are aligned at the frame level to quantify the correlation between the LA

assignments and the underlying phonetic units.

Let [y1, ..., yt] and [f1, ..., ft] be frame-level and LA function labels, respec-

tively. The joint distribution of y and f is the normalized number of oc-

currences of the labels:

py,f (i, j) =

∑T
t=1[yt = i ∧ ft = j]

T
(5.6)

where i and j demonstrate the ith phoneme class and jth LA function

class label [47]. Phone Purity measures the frame-level phone accuracy

if we transcribe each LA function class with the most likely phone label.

It is defined as Epf (j)

[
py|f (y∗(j)|j)

]
, where py|f (y∗(j)|j) is the conditional
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probability of phone given a class label j and y∗(j) is the most likely phone

label for the j-th class. Higher purity indicates greater quality.

PNMI is an information-theoretic metric used to measure the similarity

between two clusterings of data. It measures the percentage of uncertainty

about the phone label y that is reduced after observing the class label f

and is defined as follows, where H(.) is the entropy:

I(y, f)

H(y)
= 1 − H(y|f)

H(y)
(5.7)

A higher value of PNMI in our analysis indicates that the quality of LA

clustering is better.

5.3.3 Results

Table 5.1 presents the ASR performance of LABERT in terms of the WER

when tested on I-CUBE and UASpeech LRE datasets, after being pre-

trained and fine-tuned on I-CUBE and UASpeech, respectively. Compar-

isons are reported for wav2vec 2.0 and HuBERT in Base and Large set-

tings, as well as DiscreteBERT [233] and QuartzNet[103]. We show that

the performance of LABERT is improved by increasing the amount of un-

labeled data during pre-training (see Section 6.3.1) which indicates the

scalability of the proposed model. In the Base setup, after fine-tuning on

I-CUBE, LABERT achieved WERs of 13.39%, 14.78%, 14.93% and 17.35%

when pre-trained on LibriSpeech, TED, WSJ and CV corpora, respectively,

which outperformed the other algorithms in the Base setting. LABERT

achieved even better results in the Large setting when tested on I-CUBE

dataset, with WER of 9.53%, 10.24%, 12.21% and 16.63% after pre-training

over LibriSpeech, TED, WSJ and CV, respectively. LABERT significantly
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LRE Method Libri TED WSJ CV

I-CUBE

LABERT – Base 13.39 14.78 14.93 17.35
LABERT – Large 9.53 10.24 12.21 16.63
wav2vec 2.0 – Base 17.38 15.45 16.61 18.42
wav2vec 2.0 – Large 11.61 13.64 14.73 17.22
HuBERT – Base 16.81 16.43 15.98 18.13
HuBERT – Large 11.28 12.71 14.39 16.81

QuartzNet 26.51 29.75 28.39 31.53
DiscreteBERT 27.93 31.35 29.48 33.38

UASpecch

LABERT – Base 17.28 18.65 21.13 23.91
LABERT – Large 11.27 12.28 15.11 17.93
wav2vec 2.0 – Base 19.07 21.31 23.94 25.18
wav2vec 2.0 – Large 14.28 15.91 16.23 18.87
HuBERT – Base 19.31 21.18 24.49 25.93
HuBERT – Large 14.93 15.58 16.39 18.98

QuartzNet 29.15 34.93 31.79 36.75
DiscreteBERT 31.48 36.75 32.19 37.21

Table 5.1: Word error rate (WER) results obtained with different methods
pretrained in HRE datasets (Libri, TED, WSJ and CV) and fine-tuned
in two LREs (I-CUBE and UASpeech). The best performing models in
corresponding settings are highlighted.

outperformed QuartzNet and DiscreteBERT as well. Similarly, after fine-

tuning over UASpeech on Base and Large settings, LABERT achieved best

results across all benchmark algorithms.

The PNMI results are shown in Table 5.2. These results demonstrate that

the PNMI increases with the amount of pre-training speech data, which

enhance the quality of the cluster results. A possible explanation for this

might be that by increasing the pre-training data, the committee-based

active learning approach can select more informative speech units for seed

initialization of the LA function, therefore LABERT can improve the qual-

ity of the clusters in LRE tasks.

Finally, we evaluate the quality of the local aggregation function for detect-

ing hidden units in each layer of LABERT. In this analysis, we considered

the first two iterations of the LABERT after pre-training the model on

LibriSpeech dataset and fine-tuning it with I-CUBE and UASpeech. The
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Feature Number of Clusters
PNMI

100h 300h 500h

MFCC
50 0.384 0.387 0.338
100 0.432 0.435 0.435

Selected Layer From CCA
50 0.631 0.633 0.633
100 0.785 0.787 0.787

Table 5.2: PNMI values for different cluster numbers and pre-training data
size. Fine-tuning is done using I-CUBE.

(a) I-CUBE (b) UASpeech

Figure 5.2: Phone purity of LABERT and HuBERT in Base configura-
tion after pre-training on LibriSpeech and fine-tuning over I-CUBE and
UASpeech for the first and second iteration.

results are compared with HuBERT since it achieved the next best WER

results in the earlier analysis. Phone Purity and PNMI are shown in Fig-

ures 5.2 and 5.4, for each layer of the model after pre-taining on LibriSpeech

dataset, respectively. We observe that the phone purity gradually increased

in the first layers after pre-training and fine-tuning with both I-CUBE and

UASpeech. The interesting finding is that in the last layers of both mod-

els, phone purity decreased. The same trend is observed in the PNMI after

fine-tuning the models with both I-CUBE and UASpeech. The middle

layers (7-9) of the LABERT, which were selected by the CCA module to

feed into the AL model for selecting initial seeds for hidden units detection

process, exhibited the highest PNMI. In both LRE settings, fine-tuning on

I-CUBE and UASpeech, significant phone purity and PNMI results were

observed at these middle layers, suggesting that they are well-suited for the

downstream LRE ASR task. In addition, Phone Purity and PNMI of the
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(a) I-CUBE (b) UASpeech

Figure 5.3: Phone purity of LABERT and HuBERT in Base configuration
after pre-training on TED and fine-tuning over I-CUBE and UASpeech for
the first and second iteration.

LABERT after pre-taning on TED dataset and fine-tuning on I-CUBE and

UASpeech are presented in Figures 5.3 and 5.5, respectively. It can be seen

the same trend in phone-purity and PNMI in LABERT after pre-taning

on TED and these results reflect the performance of the layer analysis in

LABERT to detect better layers in the model for second iteration of the

training. Notably, the phone purity and PNMI analysis revealed that the

LABERT model demonstrates more stable clusters, indicating that it per-

forms reasonably well for low-resource ASR tasks.

(a) I-CUBE (b) UASpeech

Figure 5.4: PNMI of LABERT and HuBERT in Base configuration after
pre-training on LibriSpeech and fine-tuning over I-CUBE and UASpeech
for the first and second iteration.

To better understand the properties of the discrete units learned by LABERT,

we focused on the fifth layer of the model and computed cluster purity,
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(a) I-CUBE (b) UASpeech

Figure 5.5: PNMI of LABERT and HuBERT in Base configuration after
pre-training on TED and fine-tuning over I-CUBE and UASpeech for the
first and second iteration.

Method Cluster purity Phone purity PNMI
MFCC 0.06 0.30 0.28

HuBERT-iter1 0.15 0.60 0.60
HuBERT-iter2 0.15 0.61 0.61

VQ-APC 0.08 0.24 0.19
LABERT-iter1 0.17 0.70 0.70
LABERT-iter2 0.17 0.72 0.71

Table 5.3: Discrete Unit Quality on LibriSpeech Dev Set. Fine-tuning is
done using I-CUBE.

phone purity, and phone-normalized mutual information (PNMI) and the

results are presented in Table 5.3. To calculate these metrics, we use forced

alignment to obtain the ground truth phone for each feature frame in the

LibriSpeech development clean and development other sets. We used the

MFCC clusters, which are used to train the first iteration of HuBERT,

as a baseline for purity and PNMI. The first and second iterations of Hu-

BERT, which served as the teacher in HuBERT’s iterative pre-training

procedure, showed a significant improvement over MFCCs. However, per-

forming LA function clustering on LABERT produced even better quality

clusters. Overall, LABERT achieved comparable phone purity and PNMI

to other methods, while being more efficient.
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5.4 Chapter Summary

In this chapter, we propose LABERT, a self-supervised speech representa-

tion learning model for ASR in low-resource environments. LABERT com-

bines a committee-based active learning model for informative speech unit

selection with a local aggregation function for hidden unit detection. The

local aggregation function learns feature embeddings that cluster similar

speech units while separating dissimilar ones. Pre-trained on four high-

resource datasets and fine-tuned on two LRE datasets, our model demon-

strates up to a 16.63% WER reduction on LR data, surpassing the perfor-

mance of state-of-the-art ASR models. This demonstrates that LABERT

generates representations highly effective for speech recognition tasks in

low-resource settings. In the following chapter, we explore the potential

benefits of using regularization terms to help the ASR model towards more

informative speech units and investigate the use of contrastive clustering

to enhance the quality of clusters derived from speech data.
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Chapter 6

Regularized Contrastive

Clustering for Detecting

Speech Hidden Units

To develop a reliable automatic speech recognition system, a substantial

amount of high-quality labeled data is needed. This becomes a challeng-

ing problem when dealing with speech recognition tasks that are resource-

limited. Nowadays, self-supervised contrastive learning is making signifi-

cant strides in such low-resource contexts. In this chapter, we introduce

RCCBERT (Regularized Contrastive Clustering BERT) method for self-

supervised speech representation learning. This method leverages a con-

trastive clustering step to generate aligned target labels for a BERT-like

prediction loss. RCCBERT relies primarily on the consistency of the con-

trastive clustering step rather than general purpose clustering model to

enhance the model to minimize the inter-cluster similarities to separate

different clusters. Given that speech variations are gradual and subtle over

a short span, this nuances the definition of negative samples in contrastive
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clustering. The approach of the definition of negative samples can ignore

the fact that samples from different parts of the same speech, may also

have the same pronunciation as the positive samples. To address this, we

incorporated regularization terms into the contrastive clustering process to

impose constraints on the features, aiming to achieve a more refined rep-

resentation in low-resource situations. This integration forces RCCBERT

to learn better speech representations and achieve superior results in low-

resource speech recognition tasks. We evaluate RCCBERT with two LRE

datasets: I-CUBE and UASpeech to explore the performance of our model

in the LRE ASR problems.
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6.1 Introduction

ASR systems facilitate the transcription of spoken language into text.

While traditional ASR approaches demonstrate efficacy, recent advance-

ments indicate superior performance from end-to-end frameworks [242].

Unlike traditional models, which necessitate distinct components for acous-

tic, pronunciation, and language modeling, end-to-end systems offer a more

integrated and streamlined training process [243]. However, a key challenge

with end-to-end models is their reliance on vast amounts of well-labeled

data. This poses a problem when dealing with low-resource tasks where

labeled speech data is limited. Therefore, finding ways to improve ASR

performance in these low-resource scenarios is a crucial research area.

Self-supervised learning methods have emerged as a popular solution for

training ASR systems in low-resource scenarios. Contrastive learning, a

prominent SSL technique which trains a network to discern similarities

and dissimilarities between data and enables the model to learn more in-

tricate representations, which allows the model to understand more com-

plex features [244]. The quality of representations learned through con-

trastive learning relays on the quality of negative samples – data point

pairs definitively classified as dissimilar. While image transformations fre-

quently generate negative samples in computer vision [245], strategies vary.

These include carefully selecting positive samples [246], filtering out ineffec-

tive negative samples [247], increasing negative sample volume [248], and

constructing more challenging negative examples [249]. Such techniques

have demonstrably enhanced the performance of contrastive learning mod-

els across various tasks.

Many contrastive learning models have been proposed for ASR tasks. Con-

trastive Predictive Coding (CPC) [177] is a popular self-supervised method
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which uses autoregressive model to predict future speech frames from the

current speech information. It utilizes an autoregressive approach com-

bined with noise-contrastive estimation, which helps the model to filter

out less relevant details and noise. wav2vec model [191] incorporates the

concepts from CPC to introduce a noise-contrast learning approach for

binary classification. This enables wav2vec to utilize vast amounts of unla-

beled data and subsequently enhance its performance in extracting features

for speech recognition tasks. vq-wav2vec [195] introduces a quantization

module to convert the feature space from being continuously infinite to

discretely finite. By merging with BERT, it enables the model to replace

the traditional acoustic features with speech representation. Wav2vec 2.0

model [46] introduces a novel self-supervised structure using contrastive

learning that integrates the Gumbel softmax quantization module with

BERT from vq-wav2vec into a single model. JUST [250] enhances the

wav2vec 2.0 framework by incorporating self-supervised techniques that

utilizes both contrastive loss and MLM loss approaches. It also employs

supervised RNN-T loss [251] for combined training, aiming for improved

accuracy in multilingual settings with limited resources. wav2vec-S [252]

is a semi-supervised pre-training approach based on wav2vec 2.0 that opti-

mizes the pre-training of the models in the low-resource speech recognition

scenarios.

Clustering techniques are utilized to generate pseudo-labels for SSL. Deep

Cluster model [172] employs the k-means algorithm to group similar sam-

ples and optimizing an encoder network through a classification loss. Hu-

BERT [47] incorporates an offline clustering phase to present noisy labels

for a BERT-like prediction loss. SwAV [41] applies an online clustering

process to create pseudo-labels within a mini-batch format, while JULE

[253] adopts an iterative approach, progressively combining data points
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and utilizing the resulting clusters to guide the learning of distinctive rep-

resentations. However, this learning strategy that transitions between rep-

resentation learning and clustering stages can lead to degrading clustering

quality. To address this challenge, Contrastive Clustering (CC) model [254]

is proposed, which is a one-stage online deep clustering method. CC em-

ploys a deep network to learn a feature matrix, in where the rows represent

instance representations and the columns present cluster representations.

Essentially, this method views the label as a special representation by map-

ping input instances into a specific space determined by the number of

clusters. The matrix’s rows can be seen as the likelihood of a particular

cluster assignment (or soft labels for instances), while the columns indicate

cluster distributions over instances (i.e., cluster representations).

While numerous contrastive learning models have emerged for low-resource

ASR tasks, the process of choosing negative speech samples has not been

addressed adequately. Since variations in speech are often subtle and con-

tinuous over short spans, designating negative samples from different seg-

ments of the same speech overlooks the possibility of them having identical

pronunciations to the positive samples. Recognizing these differences is

crucial in low-resource speech recognition. In this chapter, we proposed

RCCBERT (Regularized Contrastive Clustering BERT) model to lever-

age a contrastive clustering step to generate aligned target labels for a

BERT-like prediction loss. In this chapter, we utilized regularizing con-

straints to control the slow changes in the latent representations and op-

timize the corresponding loss function to eliminate the impact of negative

samples in contrastive clustering, which allows the model to learn better

speech representations in the low-resource ASR problems.
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6.2 Proposed Approach

RCCBERT is a speech representation model which proposed to enhance

speech recognition performance in LRE ASR scenarios, by making efficient

use of speech-only data. RCCBERT includes two main components: a) the

extraction of hidden units from raw audio using the Contrastive Clustering

(CC) module, and b) predicting masked target units. The CC function

clusters similar audio units closely in an embedding space and keeps dis-

similar ones apart. To overcome the issue of slow changes in speech data

to have a better negative sample selection within this function, we have

used regularization terms to force the model to minimize the inter-cluster

similarities to separate different clusters. Like LABERT model [151] in the

previous chapter, MFCCs are utilized for clustering. Later stages employ

chosen representations from the CCA module [225]. The second module

employs an MLM objective, similar to the approach in BERT [235], to

predict masked hidden units. It achieves this by calculating the cosine

similarity between context vectors and all hidden unit embeddings, with

predictions evaluated using cross-entropy loss.

6.2.1 Regularized Contrastive Clustering

In RCCBERT, Contrastive Clustering [254] method is adapted to speech

data to extract hidden speech units for low-resource scenario by adding

regularization constrains inspired from [255]. The CC module is composed

of three jointly learned components: Pair Construction Backbone (PCB),

an Instance-Level Contrastive Head (ICH), and a Cluster-Level Contrastive

Head (CCH). Essentially, PCB creates data pairings using data augmenta-

tions and derives features from these augmented samples. Following this,
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ICH and CCH apply contrastive learning to the rows and columns of the

feature matrix, respectively. Upon completion of the training, cluster can

be derived from the soft labels predicted by the CCH part. CC employs

data augmentations to form pairs of data. For a given data, xi, two ran-

dom transformations, T a and T b, from a consistent augmentation set are

used. This process produces two samples, represented as xa
i = T a(xi) and

xb
i = T b(xi). Previous research indicates the importance of selecting the

appropriate augmentation approach for optimal performance in subsequent

tasks and in CC model, five data enhancement techniques are utilized: Re-

sizedCrop, ColorJitter, Grayscale, HorizontalFlip, and GaussianBlur. One

shared deep neural network is used to extracted features from the aug-

mented samples via ha
i = f(xa

i ) and hb
i = f(xb

i).

Contrastive learning seeks to detect the similarities between positive pairs

and reduce them between negative pairs. In CC, due to the absence of pre-

existing labels for clustering, pairs, both positive and negative, are formed

at the instance level based on pseudo-labels created by data augmenta-

tions. Specifically, positive pairs are formed from samples augmented from

a single instance, while negative pairs are formed from different instances.

To counteract the data loss caused by the contrastive loss, CC does not

immediately apply contrastive learning to the feature matrix. Instead, a

two-layer nonlinear MLP is used to project the feature matrix into a sub-

space, represented as zai = MLP (ha
i ), where the instance-level contrastive

loss is used. The similarity between pairs is determined using the cosine

distance.

S(zk1i , zk2j ) =
(zk1i )(zk2j )T∥∥zk1i ∥∥∥∥zk2j ∥∥ (6.1)

in which k1, k2 ∈ a, b and i, j ∈ [1, N ]. In CC, the loss for a given data
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sample xa
i is:

lai = −log
exp(s(zai , z

b
i ))/τI)∑N

j=1[exp(s(zai , z
a
j ))/τI) + exp(s(zai , z

b
j))/τI)]

(6.2)

where τI is the instance-level temperature parameter. So, the instance-level

contrastive loss is computed as follows:

ιinstance =
1

2N

N∑
i=1

(lai + lbi ). (6.3)

Based on the concept of label as the representation, when a data sample

is mapped into a space with dimensions equal to the number of clusters,

the i-th component of its feature can be seen as its likelihood of being part

of the i-th cluster. Consequently, the feature vector signifies its soft label.

Therefore, consider Y a as the output from CCH for a mini-batch using the

first augmentation (with Y b being the result of the second augmentation).

The value Y a
n,m represents the probability of the n-th sample being assigned

to the m-th cluster, given that N is the batch size and M is the number of

clusters. Like the instance-level contrastive head, a two-layer MLP is used

to map the feature matrix into a M -dimensional space ya.

S(yk1i , yk2j ) =
(yk1i )(yk2j )T∥∥yk1i ∥∥∥∥yk2j ∥∥ (6.4)

where k1, k2 ∈ a, b and i, j ∈ [1,M ] and the loss function is calculated as

follows:

lai = −log
exp(s(yai , y

b
i ))/τC)∑M

j=1[exp(s(yai , y
a
j ))/τC) + exp(s(yai , y

b
j))/τC)]

(6.5)

where τC is the cluster-level temperature parameter. The cluster-level con-
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trastive loss is computed as follows:

ιcluster =
1

2M

M∑
i=1

(lai + lbi ) −H(Y ) (6.6)

where H(Y ) is the entropy of cluster assignment probabilities and com-

puted as follows:

H(Y ) =
M∑
i=1

[P (yai )logP (yai ) + P (ybi )logP (ybi )]. (6.7)

The optimization of ICH and CCH occurs in a single, unified step. Both

heads are optimized concurrently, and the overall goal combines both the

instance-level and cluster-level contrastive losses.

The multi-dimensional nature of audio data, encompassing spectral and

temporal characteristics, necessitates speech recognition models capable of

discriminating between subtle auditory variations. Contrastive learning

plays a crucial role in this domain, leverages both positive samples, which

exhibit similar speech patterns, and negative samples, characterized by

their dissimilarity, to train models in the discernment of fine-grained audi-

tory distinctions. The quality of the negative samples is a critical element

on contrastive learning to obtain an efficient model, where homogeneous or

redundant examples can constrain the performance of the model to capture

the broad spectrum of auditory differences in the speech data.

We implemented the Regularization for Negative Sample Diversity

approach to optimize negative sampling within our contrastive learning

framework, aiming to improve the model’s ability to discriminate between

speech patterns. This regularization encourages a diverse and varied set of

negative samples, ensuring that the model remains consistently exposed to
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a broad spectrum of contrasting auditory examples. The negative diversity

regularization is defined as follows:

ιnegative diversity = −V ar(di,j). (6.8)

where di,j denotes the distance between the embeddings of a pair of nega-

tive speech samples xi and xj. By maximizing the variance, V ar(dij), we

ensure that the distances between various pairs of negative samples cover

a wide range, thereby enhancing the diversity within the negative sample

space. Speech data is characterized by its temporal dynamics, nuances, and

variations across different speakers, accents, and phonemes. By ensuring

diversity in the negative samples, we improve the discriminative capabili-

ties of the RCCBERT model in LRE ASR scenarios. In our framework, the

regularization terms considered as an approach to prevent the overfitting of

the model to a limited set of contrasting examples. This is particularly crit-

ical in low-resource speech recognition, where audio data may significantly

differ from the training set.

Variance-Invariance-Covariance Regularization (VICReg) [255] is a self-

supervised method for training joint embedding architectures that empha-

sizes the preservation of information within embeddings. Its core principle

lies in a loss function comprising three terms:

• Variance Term: Maintains the variance of each embedding dimen-

sion above a threshold, preventing representational collapse.

• Invariance Term: Encourages similarity between embeddings de-

rived from different augmentations of the same input data.

• Covariance Term: Regularizes the covariance between embedding

dimensions, promoting decorrelation and ensuring the extraction of
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distinct features.

The covariance criterion in VICReg model aims to prevent informational

collapse caused by redundancy among embedding variables. It achieves

this by promoting decorrelation between embedding dimensions, ensuring

that each dimension captures distinct and non-overlapping aspects of the

input data. Inspired by VICreg, we define the covariance regularization

and the covariance matrix is defined as follows:

C(Z) =
1

n− 1

n∑
i=1

(zi − z̄)(zi − z̄)T (6.9)

where z̄ = 1
n

∑n
i=1 zi.

Then, the covariance regularization term c is defined as:

c(Z) =
1

d

∑
i ̸=j

[C(Z)]2i,j (6.10)

where 1
d

is a factor that scales the criterion as a function of the dimension.

Finally, the overall loss function is a weighted average of the instance-level

and cluster-level contrastive loss, negative sample diversity and covariance

terms:

l = αιinstance + βιcluster + γιnegative diversity + διcovariance (6.11)

where α, β, γ and δ are hyper-parameters controlling the importance of

each term in the loss.
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6.2.2 Masked Target Unit Prediction

In this section, we provide an overview of utilizing the BERT model [194]

and discuss how to select an optimal representation from BERT for the

second iteration of the CC module. Similar to the previous chapter, RC-

CBERT model adopts the masked prediction model for pretraining on a

large text corpus, mitigating the lack of text data in low-resource ASR

tasks. However, to address train-test inconsistencies, only a percentage

p% of selected timesteps are masked. Inspired by [150], RCCBERT incor-

porates a layer analysis module to identify the most suitable BERT layer

for the target LRE ASR task in the CC function’s second iteration. CCA

[225] measures the maximum correlations between linear combinations of

two continuous-value vectors. We apply CCA to assess the similarity be-

tween layer representations and acoustic feature vectors, determining the

degree of each layer’s adaptation to the downstream task. This strategy

forces the model to learn task-specific representations, potentially enhanc-

ing performance in the target domain.

6.3 Experiments

6.3.1 Datasets

For unsupervised pre-training, we employ a high-resource environment dataset

consisting of: 960 hours of LibriSpeech, 81 hours of Wall Street Journal

(WSJ), 1,000 hours of Common Voice (CV), and 450 hours of TED-LIUM

3 (TED3). We evaluate RCCBERT’s performance in low-resource environ-

ments using UASpeech and I-CUBE datasets.
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6.3.2 Experiment Setup and Metrics

During pre-training, RCCBERT is trained using the chosen HRE datasets

in two distinct settings: Base Setting: Utilizing a 12-layer encoder and

Large Setting: Employing a 24-layer encoder. For model configuration, we

set the mask span to l = 10 and p = 8% of the waveform encoder output

frames are randomly selected as the initial mask. We considered 50 and

100 clusters on 100h, 300h and 500h of speech samples from LibriSpeech

and fine-tuned the model with I-CUBE for cluster quality analysis. The

input acoustic features are 80-dimensional filterbanks, extracted with a hop

size of 10 ms and a window size of 25 ms, which are normalized with the

mean and variance. For the WSJ setup, the number of output classes is

52, including the 26 letters of the alphabet, space, noise, symbols such

as period and an unknown marker. To predict the probability distribu-

tion of all characters in the alphabet, we use the CTC loss function and

use AdamW optimizer [219] to update the model with an initial learning

rate of 0.001. The text is tokenized using SentencePiece [241] and we set

the vocabulary size to 500. Benchmarking results are presented for the

pre-trained and fine-tuned wav2vec 2.0 and HuBERT models in Base and

Large settings, as well as for QuartzNet and DiscreteBert. The primary

evaluation metric we used is the WER. We also compute the Phone Pu-

rity and Phone-Normalized Mutual Information (PNMI) to evaluate the

quality of the obtained cluster assignments from LA function in different

layers: We obtain phonetic transcripts that are aligned at the frame level

to quantify the correlation between the LA assignments and the underlying

phonetic units. Similar to the previous chapter, we employ Phone Purity

and PNMI metrics to measure the similarity between two clusterings of

speech data.
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6.3.3 Results

Table 6.1 demonstrates the ASR performance of RCCBERT after pre-

training and fine-tuning on the I-CUBE and UASpeech LRE datasets,

respectively. Results are presented in terms of WER and compared to base-

lines including wav2vec 2.0, HuBERT (Base and Large settings), Discrete-

BERT [1], and QuartzNet [2]. Notably, RCCBERT’s performance scales

with increased unlabeled data during pre-training. In the Base setting,

after I-CUBE fine-tuning, RCCBERT achieved WERs of 12.58%, 14.32%,

14.21% and 16.48% when pre-trained on LibriSpeech, TED, WSJ, and CV,

respectively – outperforming all other Base models. Enhanced results were

observed in the Large setting on the I-CUBE dataset, with WERs of 8.91%,

9.93%, 11.77% and 15.28%. RCCBERT also significantly outperformed

QuartzNet and DiscreteBERT. Similar superiority was observed after fine-

tuning on UASpeech, with RCCBERT achieving the lowest WERs on both

Base and Large settings across all benchmarks.

Table 6.2 demonstrates a positive correlation between the volume of pre-

training speech data and the PNMI metric, suggesting improved cluster-

ing performance. This trend likely stems from the regularized contrastive

learning method, which, with increased data, encourages the model to min-

imize inter-cluster similarities, leading to better cluster separation. Con-

sequently, RCCBERT demonstrates enhanced clustering quality in LRE

tasks.

To evaluate the ability of the RCCBERT to detect hidden units within

different layer, we analyzed the first two iterations after pre-training on

LibriSpeech and fine-tuning on I-CUBE and UASpeech datasets. Results

were compared with HuBERT due to its strong performance in the previous

analysis. Figures 6.1 and 6.2 illustrate Phone Purity and PNMI metrics
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LRE Method Libri TED WSJ CV

I-CUBE

RCCBERT – Base 12.58 14.32 14.21 16.48
RCCBERT – Large 8.91 9.93 11.77 15.28
wav2vec 2.0 – Base 17.38 15.45 16.61 18.42
wav2vec 2.0 – Large 11.61 13.64 14.73 17.22
HuBERT – Base 16.81 16.43 15.98 18.13
HuBERT – Large 11.28 12.71 14.39 16.81

QuartzNet 26.51 29.75 28.39 31.53
DiscreteBERT 27.93 31.35 29.48 33.38

UASpecch

RCCBERT – Base 16.63 17.21 20.88 23.12
RCCBERT – Large 10.81 11.66 14.68 17.09
wav2vec 2.0 – Base 19.07 21.31 23.94 25.18
wav2vec 2.0 – Large 14.28 15.91 16.23 18.87
HuBERT – Base 19.31 21.18 24.49 25.93
HuBERT – Large 14.93 15.58 16.39 18.98

QuartzNet 29.15 34.93 31.79 36.75
DiscreteBERT 31.48 36.75 32.19 37.21

Table 6.1: Word error rate (WER) results obtained with different methods
pretrained in HRE datasets (Libri, TED, WSJ and CV) and fine-tuned
in two LREs (I-CUBE and UASpeech). The best performing models in
corresponding settings are highlighted.

Feature Number of Clusters
PNMI

100h 300h 500h

MFCC
50 0.386 0.393 0.41
100 0.446 0.449 0.452

Selected Layer From CCA
50 0.667 0.683 0.695
100 0.816 0.823 0.834

Table 6.2: PNMI values for different cluster numbers and pre-training data
size. Fine-tuning is done using I-CUBE.

for each model layers, respectively. Phone purity showed an initial increase

within the first layers after pre-training and fine-tuning on both datasets.

Interestingly, this metric decreased in the final layers of both models. Fine-

tuning on I-CUBE and UASpeech also revealed a similar trend in PNMI.

RCCBERT’s middle layers (7-9), selected by the CCA module, consistently

demonstrated the highest PNMI. Significant phone purity and PNMI within

these middle layers in both LRE settings suggest their suitability for the

downstream ASR task. Overall, this analysis indicates that RCCBERT

maintains stable clusters, demonstrating its effectiveness in low-resource
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(a) I-CUBE (b) UASpeech

Figure 6.1: Phone purity of RCCBERT and HuBERT in Base configura-
tion after pre-training on LibriSpeech and fine-tuning over I-CUBE and
UASpeech for the first and second iteration.

ASR scenarios.

(a) I-CUBE (b) UASpeech

Figure 6.2: PNMI of RCCBERT and HuBERT in Base configuration after
pre-training on LibriSpeech and fine-tuning over I-CUBE and UASpeech
for the first and second iteration.

6.4 Chapter Summary

In this chapter, we introduced RCCBERT, a self-supervised speech rep-

resentation model for ASR within low-resource environments. RCCBERT

combines regularization constrains with the Contrastive Clustering (CC)

approach for detecting hidden units. It employs a clustering-oriented reg-

ularized contrastive learning approach to force the model to minimize the

inter-cluster similarities to separate different speech units into different
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clusters. We initially train RCCBERT on four well-known high-resource

datasets, and then fine-tune it using two datasets from low-resource envi-

ronments. Ultimately, RCCBERT learns representations, which are useful

to a variety of speech recognition tasks in low-resource settings.
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Chapter 7

Conclusions

7.1 The Problem

This dissertation aims to answer the question: How can we effectively use

limited datasets to develop Acoustic Models for Automatic Speech Recog-

nition using self-supervised? We chose to focus on self-supervised learning

approaches because they do not require the collection of more in-domain

data. Consequently, the techniques explored in this study can be employed

on any speech recognition dataset.

7.2 Thesis Summary

This thesis explored the use of self-supervised learning to enhance auto-

matic speech recognition performance in low-resource environments. Chap-

ter 3 presents a rigorous analysis of deep learning architectures specifically

designed for this challenge. Understanding the importance of data in low-

resource settings, we systematically varied the available pre-training data
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from 10% to 100%. Evaluating model performance across these data seg-

ments revealed the impact of data availability on each architecture. This

approach allowed us to identify models demonstrating superior adaptabil-

ity and resilience, while also establishing performance thresholds linked to

varying data volumes within low-resource ASR tasks.

In Chapter 4, we explore how out-of-domain datasets can boost perfor-

mance within low-resource ASR. Our novel ScoutWav model integrates

self-supervised learning, context-sensitive word boundary detection, and

a two-stage fine-tuning process which proposed for low-resource environ-

ments ASR problems. Initially, we pre-train a wav2vec 2.0 model on a

high-resource dataset. Then, an SN network leverages context vector em-

bedding to extract both local acoustic and global context information for

high-quality word boundary data. This data drives the first fine-tuning

stage, adapting the model to the LR task. To further enhance perfor-

mance, we perform layer analysis on the stacked layers of the Transformer,

identifying layers with poor acoustic-linguistic representation. These lay-

ers considered for the second fine-tuning step using the context-driven word

boundary data, thereby reinforcing ScoutWav’s ability to understand global

context of the speech data, especially in low-resource scenarios.

In Chapter 5, we present LABERT, an innovative self-supervised learn-

ing model to obtain speech representations in LRE tasks. While drawing

inspiration from HuBERT, LABERT incorporates an offline hidden unit

detection module that provides noisy labels to a pre-training model sim-

ilar to BERT. Instead of relying on global clustering methods to detect

hidden units, LABERT employs a non-parametric approach within a la-

tent space for visual embedding. To tackle the scarcity of training data in

low-resource environments, we integrate a committee-centric active learn-

ing strategy alongside an LA function. This strategy enhances the LA’s
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ability to identify neighboring speech samples within the latent space. By

continuously improving and fine-tuning the active learning model during

training, LABERT effectively identifies speech units with similar charac-

teristics, allowing them to be grouped together into clusters.

Chapter 6 introduces Regularized Contrastive Clustering BERT (RCCBERT),

a model that combines contrastive clustering for target label generation

with a BERT-style predictive loss. To further enhance latent representa-

tions, we apply regularization techniques to modulate subtle variations.

This optimization of the loss function reduces the impact of negative sam-

ples during contrastive clustering. As a result, RCCBERT learns enhanced

speech representations, especially in the context of low-resource ASR chal-

lenges.

This thesis explores the use of self-supervised learning to improve ASR

performance in low-resource problems. Chapter 3 provides a crucial foun-

dation by systematically analyzing the impact of data volume on different

deep learning architectures designed for LREs. This analysis shoes how pre-

training data availability influences model adaptability and performance,

establishing benchmarks for subsequent chapters. Building on Chapter

3, Chapter 4 introduces ScoutWav, which strategically leverages out-of-

domain datasets to boost ASR performance in low-resource settings. Scout-

Wav integrates self-supervised learning with context-aware word boundary

detection and a two-stage fine-tuning process, demonstrating how high-

resource data can be effectively adapted to low-resource tasks. This chapter

advances the thesis by offering a novel, context-sensitive approach to model

refinement for low-resource ASR. In chapter 5, LABERT model uniquely

employs an offline hidden unit detection module and committee-based ac-

tive learning approach, which significantly improving upon prior methods

for LRE tasks. This chapter demonstrates a continued refinement of ASR
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strategies, building upon the foundational understanding established in

Chapter 3 and the model innovation showcased in Chapter 4. Chapter

6 presents Regularized Contrastive Clustering BERT (RCCBERT) which

synthesizes the insights gleaned from earlier chapters, focusing on refined

latent representations and the mitigation of negative sample impact. This

chapter showcases a comprehensive approach to low-resource ASR, demon-

strating the power of deep learning architectures, self-supervised learning

strategies, and innovative fine-tuning methods developed throughout this

work.

7.3 Thesis Contributions

The main contributions of this thesis are as follows:

• We conducted an extensive series of experiments to assess the perfor-

mance of ASR models, which are typically optimized for high-resource

environments, in resource-constrained scenarios. Our analysis reveals

that simply augmenting training data from diverse domains does not

necessarily improve the precision of ASR systems in low-resource set-

tings. Contrary to expectations, complex model architectures do not

yield significant improvement for low-resource environments, even if

they perform well with abundant training data. Instead, we em-

phasize a practical strategy: starting with pre-training on data-rich

language resources and subsequently fine-tuning using relevant in-

domain data. This approach ensures optimal performance in low-

resource ASR challenges.

• To address the challenges of ASR in low-resource settings, we present

ScoutWav, a novel model integrating self-supervised learning and
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context-aware word boundaries. ScoutWav leverages large, out-of-

domain datasets to overcome limited training data within low-resource

environments. Initially, a wav2vec 2.0 model is pre-trained on a high-

resource dataset. An enhanced SN network with context vector em-

bedding then extracts both local acoustic features and global context

information for high-quality word boundary data. Our approach in-

volves a two-stage fine-tuning process: First, we start by pre-training

a wav2vec 2.0 model on a high-resource dataset. Then, we fine-tune

the model using low-resource data, adapting it to the specific ASR

task. Additionally, we recognize that different layers within a Trans-

former architecture capture varying levels of linguistic information.

To address this, we perform a wav2vec 2.0 layer analysis to identify

underperforming layers that inadequately capture acoustic-linguistic

features. Subsequently, we enhance these layers through a second

fine-tuning step, incorporating context-based word boundary data to

imbue global context awareness into the ScoutWav model.

• We introduced LABERT, an innovative self-supervised speech rep-

resentation model specifically designed for low-resource ASR appli-

cations. Inspired by HuBERT, LABERT leverages a unique offline

hidden unit detection module. To address data scarcity, LABERT

integrates committee-based active learning, ensuring the selection of

informative speech units. LABERT utilizes non-parametric consoli-

dation within the latent space for greater adaptability and scalability.

We train LABERT to categorize speech units with shared statistical

structures into clusters. This facilitates the selection of a diverse and

representative data subset, optimizing the model’s ability to learn

robust representations for downstream LRE ASR tasks.

• We introduce RCCBERT, a novel low-resource ASR model that inte-
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grates Contrastive Clustering (CC) for informative hidden unit iden-

tification. CC is an online deep clustering method that operates in a

single stage. It employs a deep model to learn a feature matrix, where

each row corresponds to instance representations, and each column

corresponds to cluster representations. Essentially, CC interprets the

rows as the likelihood of specific cluster assignments (or soft labels

for instances) and the columns as the distributions of clusters over in-

stances (i.e., cluster representations). RCCBERT builds upon CC by

introducing regularizing constraints. These constraints enforce grad-

ual changes in the latent representations, enhancing stability. Addi-

tionally, RCCBERT addresses the challenge of negative samples by

overcoming their definition. By incorporating these improvements,

RCCBERT effectively tackles data limitations in low-resource ASR

scenarios. It learns well-suited representations for downstream tasks,

ensuring optimal performance in low-resource environments.

7.4 Future Directions

The findings of this doctoral research illuminate multiple avenues for future

exploration. A brief elaboration on some of these promising directions is

provided as follows:

• The scarcity of labeled data poses a significant challenge within low-

resource speech recognition. To address this limitation, constraint-

oriented clustering models offer a compelling solution. By incor-

porating domain-specific constraints, these models facilitate accu-

rate and meaningful clustering of speech data, even with limited

datasets. This allows for more effective relationship discovery be-
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tween speech segments, maximizing the utility of sparse data. Con-

sequently, constraint-oriented clustering enhances speech recognition

and understanding in low-resource scenarios. This approach holds

significant promise for future research, potentially overcoming the

challenges posed by data limitations in low-resource speech recogni-

tion.

• Modern speech generation systems, including text-to-speech synthe-

sis and speech-to-speech translation, often utilize a single deep neural

network. TTS converts text to speech waveforms, while S2S trans-

lates spoken utterances between languages. Generating high-quality,

natural-sounding speech in both tasks requires robust speech under-

standing and linguistic insights. This thesis demonstrates that our

self-supervised pre-training frameworks effectively initialize deep neu-

ral networks with strong acoustic representations. This initializa-

tion leads to superior performance when fine-tuned on both ASR and

speech-to-text translation tasks.

• Recently, neural network architectures and self-supervised pre-training

objectives have converged across different modalities, such as text,

speech, and vision. In particular, training large Transformer models

with masked language modeling-like objectives has become the domi-

nant pre-training paradigm for all three modalities. This convergence

makes it a natural and promising next step to build a single model

that can learn cross-modal speech representations. Previous work

on multi-modal pre-training of speech and text, as well as speech

and vision, has relied heavily on the use of parallel data for super-

vised learning of cross-modal alignments. However, parallel data is

more difficult to scale up than unpaired data. The fact that dif-

ferent modalities are now sharing similar neural architectures and
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self-supervised pre-training objectives could potentially alleviate the

models’ reliance on parallel data. While some initial efforts have been

made, there remains an extensive scope for further advancement and

refinement, especially in low-resource ASR tasks.
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Appendix A

Complete Results

Figure A.1 and Figure A.2 show the results obtained from the pre-training

different models based on the different number of layers and percentage of

the data on WSJ and Librispeech datasets, respectively. Furthermore, the

results of the pre-training and fine-tuning on ICUBE data are shown in

Figure A.3 for WSJ and Figure A.4 for Librispeech. In addition, the full

results after training and testing on WSJ and Librispeech are presented in

Figure A.5 and Figure A.6, respectively.
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2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 44.68 44.89 45.23 45.58 42.57 42.69 43.39 43.72 40.18 40.32 41.18 42.38 37.61 37.45 37.62 38.69 35.18 34.89 34.21 36.11

ResLSTM 44.84 44.97 45.68 45.73 42.93 43.18 43.62 43.92 40.78 40.91 41.34 42.57 38.12 38.19 37.57 39.12 35.63 35.21 33.87 37.91
ltLSTM 44.73 44.93 45.39 45.69 42.68 42.51 43.53 43.83 39.91 39.87 40.91 42.21 37.22 37.15 37.29 38.52 34.81 34.51 33.62 35.87
cltLSTM 44.65 44.76 45.28 45.48 41.93 41.86 43.27 43.68 39.68 39.37 39.17 41.88 37.06 36.92 36.73 37.86 34.27 34.19 33.41 34.92

FNN+LSTM 50.39 - - - 49.13 - - - 45.48 - - - 42.61 - - - 40.13 - - -
LSTM+FNN+LSTM 50.73 - - - 50.21 - - - 46.73 - - - 43.67 - - - 41.76 - - -
LSTM+FNN+FNN 50.47 - - - 49.89 - - - 46.91 - - - 43.39 - - - 41.23 - - -

BLSTM 44.58 - - - 41.98 - - - 40.19 - - - 37.28 - - - 34.93 - - -
1-D CNN+BLSTM 45.12 - - - 42.39 - - - 40.51 - - - 37.59 - - - 35.42 - - -
1-D CNN+LSTM 48.17 - - - 46.21 - - - 43.69 - - - 41.58 - - - 39.27 - - -
1-D CNN+GRU 48.81 - - - 47.21 - - - 45.31 - - - 42.43 - - - 39.81 - - -

QuartzNet 44.11 41.53 38.32 35.79 31.72
Transformer 42.19 40.87 37.92 35.32 31.49

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 34.12 33.21 32.78 34.28 32.48 32.12 30.67 33.65 29.75 28.73 27.49 31.19 28.43 27.13 25.31 30.27 27.29 26.72 24.17 29.23

ResLSTM 34.68 33.89 32.15 33.92 32.78 32.29 30.18 31.71 29.97 29.27 27.13 30.39 28.81 27.43 24.91 29.52 27.58 26.98 24.14 28.86
ltLSTM 33.47 32.95 31.87 33.17 31.62 31.47 28.73 31.22 29.12 28.47 26.42 29.98 28.07 26.81 24.68 28.75 27.18 25.13 24.08 28.14
cltLSTM 33.12 32.78 31.69 32.98 31.46 31.22 30.42 30.98 28.69 28.19 28.03 29.74 27.83 26.53 26.13 29.13 26.93 26.23 26.18 28.86

FNN+LSTM 38.79 - - - 35.41 - - - 33.29 - - - 31.63 - - - 29.34 - - -
LSTM+FNN+LSTM 40.08 - - - 38.19 - - - 35.83 - - - 33.12 - - - 30.39 - - -
LSTM+FNN+FNN 39.72 - - - 37.21 - - - 34.37 - - - 32.59 - - - 29.18 - - -

BLSTM 33.96 - - - 30.38 - - - 29.13 - - - 28.07 - - - 27.18 - - -
1-D CNN+BLSTM 34.21 - - - 30.82 - - - 29.89 - - - 28.69 - - - 27.63 - - -
1-D CNN+LSTM 36.21 - - - 34.87 - - - 33.47 - - - 30.19 - - - 28.78 - - -
1-D CNN+GRU 36.32 - - - 33.51 - - - 31.87 - - - 29.64 - - - 28.63 - - -

QuartzNet 29.93 27.98 25.65 23.51 22.13
Transformer 29.67 27.43 25.29 23.19 21.27

70% 80% 90% 100%

10% 20% 30% 40% 50%

60%

Figure A.1: Pre-train different models on WSJ and test on ICUBE

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 44.81 45.31 45.79 45.93 42.37 42.83 43.22 44.87 40.59 40.19 40.38 44.21 37.17 36.91 36.28 38.16 34.12 33.86 32.61 36.43

ResLSTM 44.93 45.59 45.91 46.11 42.61 43.48 43.87 44.93 41.18 41.29 40.92 41.59 37.89 37.51 37.42 37.75 34.58 34.12 33.65 36.18
ltLSTM 44.87 45.43 45.83 45.97 42.21 42.62 43.51 44.93 40.13 39.87 39.41 41.89 36.82 36.47 35.94 37.79 33.67 33.27 32.35 36.55
cltLSTM 44.79 44.83 45.69 45.91 42.18 42.38 43.19 44.71 39.95 39.71 39.27 41.28 36.29 36.28 35.67 37.22 33.48 32.98 32.14 36.19

FNN+LSTM 51.38 - - - 49.71 - - - 46.13 - - - 43.19 - - - 41.58 - - -
LSTM+FNN+LSTM 51.69 - - - 50.37 - - - 47.62 - - - 44.51 - - - 41.85 - - -
LSTM+FNN+FNN 51.53 - - - 50.18 - - - 47.27 - - - 44.23 - - - 41.31 - - -

BLSTM 44.74 - - - 42.21 - - - 40.28 - - - 36.93 - - - 33.81 - - -
1-D CNN+BLSTM 44.92 - - - 42.53 - - - 40.63 - - - 37.61 - - - 34.28 - - -
1-D CNN+LSTM 47.38 - - - 45.61 - - - 43.12 - - - 41.17 - - - 38.62 - - -
1-D CNN+GRU 47.69 - - - 46.13 - - - 44.33 - - - 41.89 - - - 39.58 - - -

QuartzNet 44.27 42.18 38.85 35.39 31.98
Transformer 43.78 41.28 38.31 34.97 31.52

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 31.63 31.29 31.48 34.62 30.22 29.81 29.12 32.51 28.67 27.69 27.86 30.71 27.43 26.11 25.53 28.17 26.13 25.81 24.28 27.92

ResLSTM 32.41 32.28 32.71 33.61 30.45 30.12 29.83 31.48 29.15 28.61 28.29 29.31 27.68 27.31 26.94 28.42 26.28 26.12 25.13 27.88
ltLSTM 31.28 30.92 30.52 34.61 29.72 29.67 28.97 33.83 28.43 27.41 27.18 31.22 27.19 25.29 25.09 29.48 26.11 24.91 24.11 27.63
cltLSTM 30.97 30.51 30.27 33.86 29.48 29.18 28.59 32.46 28.21 27.29 26.76 30.92 26.73 25.07 24.71 28.75 25.98 24.73 23.91 26.33

FNN+LSTM 39.75 - - - 37.13 - - - 35.81 - - - 34.69 - - - 33.97 - - -
LSTM+FNN+LSTM 40.19 - - - 38.61 - - - 37.61 - - - 35.82 - - - 34.88 - - -
LSTM+FNN+FNN 39.87 - - - 37.63 - - - 35.47 - - - 34.81 - - - 33.92 - - -

BLSTM 31.12 - - - 29.89 - - - 28.31 - - - 26.83 - - - 26.07 - - -
1-D CNN+BLSTM 31.57 - - - 30.31 - - - 28.91 - - - 27.12 - - - 26.19 - - -
1-D CNN+LSTM 35.58 - - - 33.62 - - - 31.92 - - - 29.71 - - - 27.22 - - -
1-D CNN+GRU 36.71 - - - 33.89 - - - 31.29 - - - 29.48 - - - 27.13 - - -

QuartzNet 30.11 28.11 25.98 23.89 22.85
Transformer 29.92 27.71 25.61 23.46 22.32

60% 70% 80% 90% 100%

10% 20% 30% 40% 50%

Figure A.2: pre-train different models on Librispeech and test on ICUBE
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2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 44.77 45.27 45.73 45.88 42.31 42.78 43.17 44.81 40.53 40.13 40.31 44.17 37.13 36.86 36.21 38.12 34.06 33.79 32.55 36.35

ResLSTM 44.89 45.51 45.83 45.94 42.57 43.42 43.75 44.81 41.12 41.19 40.81 41.47 37.81 37.42 37.21 37.63 34.49 34.04 33.42 36.07
ltLSTM 44.81 45.37 45.76 45.89 42.18 42.56 43.46 44.83 40.07 39.76 39.34 41.78 36.73 36.38 35.83 37.71 33.59 33.18 32.27 36.47
cltLSTM 44.71 44.76 45.62 45.83 42.11 42.32 43.11 44.62 39.87 39.64 39.15 41.21 36.18 36.21 35.58 37.19 33.39 32.87 31.97 36.11

FNN+LSTM 51.29 - - - 49.62 - - - 45.97 - - - 43.08 - - - 41.47 - - -
LSTM+FNN+LSTM 51.61 - - - 50.28 - - - 47.53 - - - 44.42 - - - 41.73 - - -
LSTM+FNN+FNN 51.46 - - - 50.11 - - - 47.18 - - - 44.11 - - - 41.17 - - -

BLSTM 44.71 - - - 42.17 - - - 40.21 - - - 36.82 - - - 33.69 - - -
1-D CNN+BLSTM 44.87 - - - 42.48 - - - 40.53 - - - 37.49 - - - 34.17 - - -
1-D CNN+LSTM 47.31 - - - 45.55 - - - 43.05 - - - 41.08 - - - 38.51 - - -
1-D CNN+GRU 47.62 - - - 46.06 - - - 44.24 - - - 41.78 - - - 39.48 - - -

QuartzNet 44.06 42.01 38.79 35.3 31.91
Transformer 43.69 41.15 38.17 34.77 31.44

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 31.56 31.21 31.41 34.51 30.17 29.75 28.95 32.42 28.61 27.62 27.74 30.63 27.38 26.03 25.44 28.04 26.08 25.73 24.17 27.81

ResLSTM 32.33 32.18 32.49 33.47 34.36 29.98 29.66 31.24 29.06 28.49 27.81 28.79 27.59 27.19 26.18 27.91 26.19 25.98 24.11 27.29
ltLSTM 31.19 30.87 30.38 34.48 29.61 29.59 28.83 33.71 28.31 27.32 27.03 31.12 27.11 25.17 24.93 29.36 26.03 24.71 23.87 27.32
cltLSTM 30.86 30.43 30.08 33.54 29.37 29.08 28.44 32.29 28.19 27.16 26.59 30.74 26.64 24.91 24.58 28.62 25.91 24.61 23.67 26.24

FNN+LSTM 39.58 - - - 36.88 - - - 35.69 - - - 34.57 - - - 33.84 - - -
LSTM+FNN+LSTM 40.08 - - - 38.49 - - - 37.48 - - - 35.71 - - - 33.91 - - -
LSTM+FNN+FNN 39.73 - - - 37.51 - - - 35.34 - - - 34.42 - - - 33.74 - - -

BLSTM 31.01 - - - 29.78 - - - 28.15 - - - 26.65 - - - 25.87 - - -
1-D CNN+BLSTM 31.46 - - - 30.23 - - - 28.83 - - - 26.98 - - - 26.08 - - -
1-D CNN+LSTM 35.47 - - - 33.52 - - - 31.81 - - - 29.57 - - - 27.13 - - -
1-D CNN+GRU 36.62 - - - 33.78 - - - 31.19 - - - 29.12 - - - 26.98 - - -

QuartzNet 30.04 28.03 25.91 23.81 22.78
Transformer 29.81 27.57 25.38 23.21 22.01

70% 80% 90% 100%

10% 20% 30% 40% 50%

60%

Figure A.3: Pre-train different models on WSJ, Testing and Fine-tuning
on ICUBE

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 44.62 44.81 45.16 45.48 42.51 42.61 43.31 43.64 40.11 40.24 41.12 42.29 37.54 37.36 37.54 38.59 35.08 34.81 34.12 36.02

ResLSTM 44.78 44.89 45.59 45.65 42.86 43.11 43.54 43.82 40.71 40.82 41.26 42.48 37.98 38.11 37.48 38.99 35.52 35.09 33.75 37.79
ltLSTM 44.68 44.84 45.31 45.61 42.58 42.43 43.46 43.75 39.78 39.81 40.82 42.13 37.16 37.07 37.18 38.43 34.69 34.39 33.51 35.72
cltLSTM 44.57 44.68 45.18 45.41 41.84 41.74 43.21 43.62 39.57 39.26 39.11 41.79 36.96 36.81 36.62 37.76 34.17 34.09 32.33 34.79

FNN+LSTM 50.31 - - - 49.03 - - - 45.38 - - - 42.53 - - - 39.94 - - -
LSTM+FNN+LSTM 50.67 - - - 50.14 - - - 46.64 - - - 43.53 - - - 41.64 - - -
LSTM+FNN+FNN 50.39 - - - 49.78 - - - 46.79 - - - 43.27 - - - 41.12 - - -

BLSTM 44.51 - - - 41.87 - - - 40.04 - - - 37.07 - - - 34.75 - - -
1-D CNN+BLSTM 45.06 - - - 42.32 - - - 40.41 - - - 37.47 - - - 35.29 - - -
1-D CNN+LSTM 48.11 - - - 46.15 - - - 43.59 - - - 41.46 - - - 39.19 - - -
1-D CNN+GRU 48.75 - - - 47.17 - - - 45.22 - - - 42.31 - - - 39.73 - - -

QuartzNet 43.93 41.39 38.25 35.69 31.64
Transformer 42.11 40.63 37.78 35.15 31.38

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 34.03 33.12 32.68 34.21 32.31 32.02 30.55 33.54 29.65 28.61 27.37 31.11 28.33 26.98 25.19 30.18 27.18 26.58 23.94 29.14

ResLSTM 34.58 33.78 31.98 33.81 32.69 32.17 30.05 31.59 29.86 29.08 26.97 30.22 28.68 27.31 24.79 29.41 27.42 26.75 23.98 27.73
ltLSTM 33.36 32.82 31.73 33.02 31.51 31.34 28.62 31.11 29.03 28.38 26.29 29.72 27.98 26.69 24.51 28.62 27.12 24.89 23.63 27.51
cltLSTM 32.98 32.66 31.54 32.83 31.32 31.14 30.29 30.81 28.54 28.06 27.89 29.65 27.71 26.39 25.49 28.88 26.83 26.15 25.83 27.76

FNN+LSTM 38.65 - - - 35.28 - - - 33.18 - - - 31.51 - - - 29.25 - - -
LSTM+FNN+LSTM 39.91 - - - 38.04 - - - 35.71 - - - 32.97 - - - 30.27 - - -
LSTM+FNN+FNN 39.61 - - - 37.12 - - - 34.26 - - - 32.48 - - - 28.89 - - -

BLSTM 33.67 - - - 30.23 - - - 28.91 - - - 27.87 - - - 26.71 - - -
1-D CNN+BLSTM 34.14 - - - 30.73 - - - 29.74 - - - 28.57 - - - 27.51 - - -
1-D CNN+LSTM 36.14 - - - 34.73 - - - 33.32 - - - 30.07 - - - 28.61 - - -
1-D CNN+GRU 36.19 - - - 33.38 - - - 31.68 - - - 29.49 - - - 28.52 - - -

QuartzNet 29.86 27.91 25.57 23.47 22.08
Transformer 29.53 27.21 25.03 22.91 20.87

70% 80% 90% 100%

10% 20% 30% 40% 50%

60%

Figure A.4: Pre-train different models on Librispeech, Testing and Fine-
tuning on ICUBE
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2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 45.83 45.62 45.31 45.49 39.73 39.42 39.07 39.28 35.49 35.21 34.72 34.98 30.21 30.08 29.48 29.73 26.72 26.38 25.97 26.19

ResLSTM 45.91 45.83 45.43 45.52 39.89 39.68 39.19 39.21 35.61 35.43 35.19 34.48 30.62 30.41 29.91 29.58 26.93 26.68 26.31 26.09
ltLSTM 45.71 45.32 45.12 45.2 39.43 39.28 38.89 39.17 35.21 34.83 34.51 34.72 30.07 29.91 29.27 29.48 26.42 26.01 25.62 25.89
cltLSTM 45.62 45.19 44.96 45.27 39.28 39.15 38.71 39.29 35.12 34.65 34.39 34.43 29.91 29.68 29.16 29.57 26.28 25.87 25.48 25.71

FNN+LSTM 47.21 - - - 41.83 - - - 34.28 - - - 30.42 - - - 27.53 - - -
LSTM+FNN+LSTM 47.93 - - - 42.87 - - - 36.21 - - - 32.49 - - - 29.78 - - -
LSTM+FNN+FNN 47.39 - - - 41.58 - - - 34.32 - - - 30.27 - - - 27.21 - - -

BLSTM 46.51 - - - 40.32 - - - 33.79 - - - 29.51 - - - 26.89 - - -
1-D CNN+BLSTM 46.39 - - - 40.12 - - - 32.87 - - - 28.32 - - - 25.69 - - -
1-D CNN+LSTM 45.83 - - - 39.98 - - - 32.48 - - - 27.89 - - - 25.21 - - -
1-D CNN+GRU 45.23 - - - 40.18 - - - 32.69 - - - 28.13 - - - 25.62 - - -

QuartzNet 43.79 38.51 32.13 28.04 24.93
Transformer 42.15 37.62 31.35 27.17 23.69

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 23.47 23.26 22.89 23.08 22.68 22.41 21.93 22.13 20.93 20.69 20.28 20.51 19.61 19.28 18.79 18.93 18.53 18.27 18.06 18.13

ResLSTM 23.78 23.52 23.3 22.98 22.89 22.68 22.39 22.31 21.18 20.93 20.53 20.18 19.93 19.57 19.21 18.75 18.92 18.65 18.27 18.39
ltLSTM 23.26 22.78 22.43 22.61 22.51 21.62 21.32 21.49 20.62 20.13 20.02 20.12 19.47 18.89 18.53 18.72 18.17 18.21 17.91 18.13
cltLSTM 23.07 22.45 22.29 22.53 22.18 21.42 21.19 21.34 20.41 20.24 19.94 20.15 19.32 18.69 18.28 18.52 18.08 18.03 17.41 17.79

FNN+LSTM 25.19 - - - 23.61 - - - 21.49 - - - 20.32 - - - 19.18 - - -
LSTM+FNN+LSTM 27.52 - - - 25.18 - - - 22.83 - - - 21.59 - - - 19.97 - - -
LSTM+FNN+FNN 24.97 - - - 23.17 - - - 21.28 - - - 20.12 - - - 18.93 - - -

BLSTM 24.62 - - - 23.08 - - - 20.95 - - - 19.89 - - - 18.57 - - -
1-D CNN+BLSTM 24.17 - - - 22.77 - - - 20.51 - - - 19.32 - - - 18.05 - - -
1-D CNN+LSTM 23.72 - - - 22.13 - - - 20.18 - - - 18.91 - - - 17.65 - - -
1-D CNN+GRU 23.92 - - - 22.56 - - - 20.39 - - - 19.11 - - - 17.92 - - -

QuartzNet 21.53 18.39 17.71 16.39 15.19
Transformer 21.18 18.72 16.53 15.28 14.21

70% 80% 90% 100%

10% 20% 30% 40% 50%

60%

Figure A.5: Train and Test different models on WSJ

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 41.81 41.07 40.67 41.28 38.73 37.87 37.08 37.61 31.58 30.62 30.18 30.48 28.41 27.85 27.32 27.72 25.79 25.03 24.89 25.38

ResLSTM 42.19 41.39 40.97 41.21 38.08 37.21 36.41 36.92 31.92 30.97 30.28 30.35 28.19 27.83 26.61 26.78 25.09 24.38 24.13 24.51
ltLSTM 41.97 40.53 40.17 40.37 36.65 35.71 34.89 35.32 31.47 30.53 30.03 30.28 27.27 26.62 25.97 26.53 24.61 23.91 23.51 23.47
cltLSTM 41.75 40.21 39.96 40.11 36.58 35.64 34.32 34.71 31.18 30.41 29.91 30.35 26.19 26.59 25.83 26.29 23.47 22.73 22.42 22.83

FNN+LSTM 45.63 - - - 40.68 - - - 33.78 - - - 29.81 - - - 26.41 - - -
LSTM+FNN+LSTM 46.27 - - - 41.29 - - - 34.79 - - - 31.19 - - - 26.83 - - -
LSTM+FNN+FNN 45.59 - - - 40.37 - - - 33.45 - - - 29.37 - - - 26.15 - - -

BLSTM 44.83 - - - 39.65 - - - 33.12 - - - 28.36 - - - 25.62 - - -
1-D CNN+BLSTM 44.65 - - - 39.58 - - - 32.92 - - - 28.17 - - - 25.43 - - -
1-D CNN+LSTM 44.53 - - - 39.47 - - - 32.17 - - - 28.07 - - - 25.28 - - -
1-D CNN+GRU 44.68 - - - 39.55 - - - 32.78 - - - 28.18 - - - 25.48 - - -

QuartzNet 41.38 35.21 30.82 26.62 23.95
Transformer 39.17 34.72 29.48 25.75 22.49

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
LSTM 23.68 22.91 22.53 22.79 21.75 21.49 21.23 21.38 20.61 20.43 20.28 20.35 19.23 19.05 18.53 19.08 18.17 18.83 17.61 18.04

ResLSTM 22.89 22.17 21.98 22.28 21.97 21.21 20.78 21.93 20.89 20.45 20.23 20.37 19.48 19.32 18.73 19.98 18.49 18.18 17.51 18.01
ltLSTM 22.43 21.72 21.58 21.97 21.28 20.98 20.33 20.87 20.53 20.36 19.61 20.03 18.13 17.73 17.28 17.83 17.03 16.61 16.47 16.52
cltLSTM 21.28 20.68 20.52 20.61 20.51 20.18 19.71 20.02 19.18 19.03 18.63 18.95 17.93 17.39 16.97 17.21 16.39 15.97 15.61 15.78

FNN+LSTM 24.79 - - - 22.58 - - - 20.49 - - - 19.27 - - - 18.63 - - -
LSTM+FNN+LSTM 25.27 - - - 22.91 - - - 20.83 - - - 19.57 - - - 18.87 - - -
LSTM+FNN+FNN 24.45 - - - 22.31 - - - 20.29 - - - 19.13 - - - 18.42 - - -

BLSTM 23.17 - - - 21.78 - - - 19.83 - - - 18.86 - - - 18.21 - - -
1-D CNN+BLSTM 23.58 - - - 21.48 - - - 19.49 - - - 18.73 - - - 17.98 - - -
1-D CNN+LSTM 23.36 - - - 21.31 - - - 19.27 - - - 18.61 - - - 17.83 - - -
1-D CNN+GRU 23.68 - - - 21.53 - - - 19.39 - - - 18.87 - - - 18.08 - - -

QuartzNet 21.83 19.61 17.38 15.51 14.38
Transformer 20.23 17.83 16.19 14.69 13.73

70% 80% 90% 100%

10% 20% 30% 40% 50%

60%

Figure A.6: Train and Test different models on LibriSpeech
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