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BACKGROUND Global longitudinal strain (GLS) is reported to be more reproducible and prognostic than ejection

fraction. Automated, transparent methods may increase trust and uptake.

OBJECTIVES The authors developed open machine-learning–based GLS methodology and validate it using multiexpert

consensus from the Unity UK Echocardiography AI Collaborative.

METHODS We trained a multi-image neural network (Unity-GLS) to identify annulus, apex, and endocardial curve on

6,819 apical 4-, 2-, and 3-chamber images. The external validation dataset comprised those 3 views from 100 echo-

cardiograms. End-systolic and -diastolic frames were each labelled by 11 experts to form consensus tracings and points.

They also ordered the echocardiograms by visual grading of longitudinal function. One expert calculated global strain

using 2 proprietary packages.

RESULTS The median GLS, averaged across the 11 individual experts, was �16.1 (IQR: �19.3 to �12.5). Using each case’s

expert consensus measurement as the reference standard, individual expert measurements had a median absolute error

of 2.00 GLS units. In comparison, the errors of the machine methods were: Unity-GLS 1.3, proprietary A 2.5, proprietary B

2.2. The correlations with the expert consensus values were for individual experts 0.85, Unity-GLS 0.91, proprietary A

0.73, proprietary B 0.79. Using the multiexpert visual ranking as the reference, individual expert strain measurements

found a median rank correlation of 0.72, Unity-GLS 0.77, proprietary A 0.70, and proprietary B 0.74.

CONCLUSIONS Our open-source approach to calculating GLS agrees with experts’ consensus as strongly as the

individual expert measurements and proprietary machine solutions. The training data, code, and trained networks

are freely available online. (J Am Coll Cardiol Img 2024;-:-–-) © 2024 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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G lobal longitudinal strain (GLS) of
the left ventricle is known to detect
subtle reductions of left ventricular

(LV) function across a spectrum of diseases,
such as valvular heart disease,1 chemotoxic-
ity,2 and ischaemia.3,4 There are many
methods of measuring this strain, with the
commonest being speckle tracking using a proprie-
tary system provided by the ultrasound vendor.5

Clinicians want measurement protocols to be
designed and debated openly by their representative
expert bodies. This allows protocols to be refined over
the years, based on peer-reviewed published
research. Clinicians train and are tested to match this
expert consensus methodology as a part of their cer-
tification and revalidation processes. Proprietary
systems do not have the advantages of open devel-
opment by practicing clinicians, and of explicit
methodology, that can be found to be incorrect and
then improved. One reason for the lack of clinical
uptake of GLS6 is the absence of this same clinical
grounding that gives clinicians confidence in their
other measures.

We set out to solve these problems so that GLS can
deliver in clinical practice its potential to increase the
accuracy, reproducibility, and time efficiency of the
assessment of LV systolic function. We applied 3
principles.

First, we assembled an expert reference group of
practicing clinical echocardiographers, who provided
not only the gold standard (by their consensus), but
also an indication of the degree of divergence from
expert consensus that is clinically acceptable for an
expert.

Second, we designed an open GLS measurement
system that does not rely on tracking individual
speckles. The openness of the system permits clinical
researchers to find and improve weaknesses. The
nonreliance on speckle tracking allows it to operate
successfully even when image quality and framerate
does not permit following of a speckle from frame to
frame.

Third, we used an image dataset from consecutive
echocardiograms from our clinical service, not
selected for image quality.
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In this article, we present an approach to using
supervised machine learning to deliver: 1) a 4,948-
case, publicly accessible and representative video
dataset for system development; 2) expert labelling of
the endocardial border for 6,819 frames (3,218 apical
4-chamber, 1,164 apical 2-chamber, 2,437 apical
3-chamber) drawn from these 4,948 videos; 3) a
separate 100-case video dataset for external valida-
tion, with each case having, for an end systolic and
end-diastolic frame, 11 independent, mutually blin-
ded expert tracings of the endocardial borders;
4) conventional measurements of GLS on the external
validation dataset using 2 commercial proprietary
software packages; 5) the trained neural networks
and associated source code for this task; and 6) the
results of the performance of the machine learning
methods against the expert consensus gold standard,
but with the individual expert opinions available to
provide a context of how much variation from the
consensus is acceptable for an expert.

METHODS

DATASETS. We created 2 datasets, 1 for model
development and 1 for external validation. The model
development dataset was used for training and in-
ternal validation. It consisted of 4,948 video loops
covering the apical 4-chamber, apical 2-chamber, and
apical 3-chamber views, from a range of manufac-
turers and machines.

The external validation dataset consisted of the
apical 4-, 2-, and 3-chamber view of 100 patients ac-
quired clinically over 3 consecutive working days
outside of the time interval of the model develop-
ment dataset (Table 1).

LABELLING KEY POINTS AND ENDOCARDIAL

BORDER ON IMAGES. Each of the 6,819 model
development images was labelled once. This was
done by a pool of 36 experts, using the Unity UK
Online Interface, which we have reported previ-
ously.7 This web-based, interactive, real-time plat-
form (Figure 1) allows experts to label the key points
(septal and lateral mitral hinges, and endocardial
apex) and the endocardial border. Details are given in
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TABLE 1 Image Sources for Datasets

Dataset 1: Training, Tuning, and Internal Validation Test Set Dataset 2: External Validation Test Set

Dataset size 3,218 apical 4-chamber images from 2,162 video
loops, 1,164 apical 2-chamber images from 387 video
loops, and 2,437 apical 3-chamber images from
2,399 video loops were annotated by experts.

100 apical 4-chamber, 100 apical 2-chamber, 100
apical 3-chamber videos of which 11 experts
labelled the 600 end-systolic and end-diastolic
frames. The LV longitudinal function was also
visually ranked.

Dataset source Random selection of images from a 2-year period from 7
laboratories during 2015 and 2016

Sequential echocardiograms conducted over 3 days
in 2019

Sex Male: 401 (32.8%); female: 753 (61.5%); unspecified:
70 (5.7%)

Male: 47 (47%); female: 53 (53%)

Age, y Median: 67 (IQR: 48-78) Median: 60 (IQR: 48.5-73.0)

Year collected 2015 and 2016 2019

Manufacturer and model

Philips iE33: 297 Single manufacturer compatible with proprietary
software A and BAffinity 70C: 243

Epic 7C: 158

Affinity 50G: 32

CX50: 13

GE Vivid i: 317

Vivid q: 145

Vivid S70: 12

Vivid S6: 4

Vivid E9: 2

Vivid 7: 1

LV¼ left ventricular.
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the Supplemental Methods, and a demonstration is
available at the project website.8

For the external validation dataset, in contrast, a
smaller group of 11 validator experts each labelled all
100 end-systolic and 100 end-diastolic images for
each of the 3 apical views, mutually blinded to the
labels of the others.

DEVELOPING AND TRAINING THE NEURAL

NETWORK. The single-frame neural network was
developed using the 6,819 model-development im-
ages. Approximately 70% of the images were used for
training, 15% for tuning, and 15% for internal
validation.

Neural networks can process images from videos
through 2 broad approaches: examining only the
frame of interest or having additional access to a few
frames before and after.

The Unity-GLS is based on the convolutional neural
network architecture, Higher HRnet-W32, which is
designed to preserve fine spatial detail, having first
been introduced for estimating poses from photo-
graphs of people. As an input it received the frame of
interest plus 6 additional frames: at frame
numbers �9, �3, �1, þ1, þ3, and þ9. Where additional
frames were missing (eg, at the beginnings and ends
of videos), blank frames were substituted. A single
network was trained for all 3 views: apical 4-, 3-, and
2-chamber.

All training images, labels, and associated code are
available at the project website.8

VALIDATING THE NEURAL NETWORK. Both the ex-
perts and the neural networks drew the LV endocar-
dial contour. For each video, the end-systolic and
end-diastolic frames were drawn by a single expert
in advance. The endocardial curve length of the left
ventricle was taken from the septal mitral annular
hinge point, via the LV endocardial apex, to the
lateral mitral annular hinge point, following
the endocardial contour. GLS was then calculated as
the change in endocardial curve length from diastole
to systole, expressed as a percentage of the end-
diastolic curve length.

We calculated the GLS separately for each view and
defined the GLS as the mean of the 3. For the expert
consensus, we averaged 11 expert GLSs.

Strain analysis of the 100 patient studies was car-
ried out by a single expert (CS), trained by the
manufacturer representative. This was done sepa-
rately using 2 proprietary software packages for GLS
(Supplemental Methods).

Additional external validation was performed us-
ing visual longitudinal function. For this, the 11

https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017


FIGURE 1 The Unity Web-Based Interface

The Unity online platform allows experts across the UK to easily and rapidly annotate medical images (identities on the leader board have been removed for

publication). Experts use the platform to label key points and curves such as the endocardial border shown above. Details are given in the Supplemental Methods, and a

demonstration is available online https://data.unityimaging.net.
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experts worked as a team on each of the 3 sets of 100
external validation video loops, 1 set for each view.
They ranked the videos of each view into order of
subjective longitudinal function. The global rank was
calculated as the average of the rank of the 3 views
(Supplemental Methods).

STATISTICAL ANALYSIS. The primary statistical an-
alyses were of single interpretations (from an expert,
from a proprietary algorithm, or from each of the
trained networks) against the consensus of experts.
The consensus of experts was constructed from the
median of the independent assessments made by
the 11 experts of each of the 100 patient studies of the
external validation dataset.

We define the error as the absolute difference be-
tween a single measurement of strain (either by an
individual expert or a machine algorithm) and the
value derived from the 11 experts. We present the
pooled error of all 11 experts and the individual errors
of the 4 machine algorithms. We also present the 50th
(median), 75th, 80th, and 90th centiles of the error
distribution. A study-wise comparison of median ab-
solute errors was performed with the Mann-Whitney
U test. For key point localization, the error is
defined as the Euclidean distance between the
individual’s positioning and the consensus. For fa-
miliarity among clinicians, we also perform the
equivalent of the Bland-Altman analysis, that is,
separated the error into a bias component (the mean
of the signed differences) and the residual noise
component (the SD of the signed differences).

We present scatter plots of the assessments by each
individual (expert or machine) against the expert
consensus as a reference, and Spearman’s correlation
coefficient. Comparisons of dependent correlations
were performed using the ”cocor” statistical package9

and Hotelling’s T2.10 The intraclass correlation be-
tween the 11 validator experts was calculating using
the patient and residual variance derived from a
model with study as a random-effect. Analyses were
performed using the statistical language and envi-
ronment R.11

DATA AVAILABILITY. The complete training dataset
consisting of images and annotations, as well as the
code for the neural networks and trained models, are
available online8 and with additional information and

https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017
https://data.unityimaging.net
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the PRIME (Proposed Requirements for Cardiovascu-
lar Imaging-Related Machine Learning Evaluation)
checklist12 in the Supplemental Methods.

ETHICAL APPROVAL. Ethical approval was obtained
from the South Central–Oxford C Research Ethics
Committee (20/SC/0386).

RESULTS

DATASETS. We created 2 separate, nonoverlapping,
expert-annotated datasets. The first was for the
development process (primarily training the neural
network). The second was for the external validation
process (Table 1). Each image in the development
dataset was labelled by a member of the pool of 36
experts. The external validation dataset comprised
100 consecutive studies conducted over 3 working
days in 2019, several years away from the develop-
ment dataset.

Each frame was then labelled by each of the
11 validator experts producing 6,600 potentially
labelled frames. Overall, on 24 occasions the expert
felt the image was of insufficient quality to label, so
there were 6,576 labelled frames (99.6%). No image
was refused by all experts.

Videos from 1 patient were unable to be analyzed
using the proprietary methods. To present compre-
hensive measurements on a consistent patient group,
we eliminated the videos of that patient and so the
external validation results are based on 99 patients.

EXTERNAL VALIDATION: KEY POINT LOCATION AND

ENDOCARDIAL BORDER LENGTH. For the external
validation dataset, the consensus (median) of 11 ex-
perts provided the reference standard. Against this,
we tested the individual experts and each of the 4
machine methods. We assessed the performance of
each step of the process in calculating the GLS.

Identification of the apex and mitral hinge points is
the first step. For the individual experts (using the
consensus of experts as the reference standard), for
the apical 4-chamber view, the median absolute error
of positioning was 0.41 cm for the apex, 0.34 cm for
the lateral hinge, and 0.31 cm for the septal hinge. For
Unity-GLS they were 0.25 cm, 0.30 cm, and 0.32 cm,
respectively. Full data for all 3 views are shown in
Supplemental Tables 1 and 2.

The length of the endocardial curve through those
points is the second step. For the individual experts,
the median absolute was error was 0.76 cm in the
apical 4-chamber view, 1.05 cm in the 2-chamber
view, and 0.74 cm in the 3-chamber view. For Unity-
GLS they were 0.47 cm, 1.80 cm, and 1.78 cm,
respectively. Full data for all 3 views are shown in
Supplemental Table 3.

EXTERNAL VALIDATION: GLS. For each of the study
videos, the expert consensus manual GLS was defined
as the average of the strain values calculated from
each of the individual experts’ labelling of the curve
and points of the end-diastolic and end-systolic
images.

The median expert consensus global strain of the
validation dataset was �16.1% (IQR: �19.3%
to �12.5%). The values of the 3 individual views and
of the 3 machine methods are shown Supplemental
Figure 1 and Supplemental Table 4.

Each individual expert’s manually measured strain
correlated with the expert consensus GLS, with a
median correlation coefficient of 0.85 (IQR: 0.80-
0.88) (Figure 2).

Each of the 3 machine methods of measuring strain
correlated with the expert consensus strain: correla-
tions 0.73 for proprietary A, 0.79 for proprietary B,
and 0.91 for Unity-GLS (Figure 2). Unity-GLS had a
higher correlation than all other methods (P < 0.001
for each comparison against Unity-GLS). The corre-
lation between the 2 proprietary methods was 0.77.

The individual expert global strain measurements
had a median absolute error of 2.0 GLS percentage
units from the expert consensus global strain. The
intraclass correlation within the 11 experts was 0.65.
Of the machine methods, Unity-GLS performed best
(median absolute error: 1.3), with the proprietary
methods showing larger errors: proprietary A 2.5
(P < 0.0001) and proprietary B 2.2 (P ¼ 0.0001).

Unity-GLS performed better (P < 0.0001) than the
individual expert measurements, even though the
reference standard was the consensus derived from
those same expert measurements.

A Bland and Altman analysis and quantiles of ab-
solute errors is shown in Table 2.

SEPARATE VALIDATION USING EYEBALL RANKING

OF LONGITUDINAL FUNCTION. Strain measure-
ments are a formalization of the observation from
experts that different hearts show different amounts
of longitudinal function. To test whether the machine
methods had not drifted too far from this conceptual
basis, the experts ranked the 100 cases for each view
into the order of perceived longitudinal function, by
sorting the individual views using the online system
as described in the Supplemental Methods.

The individual expert GLS measurements showed a
correlation with the consensus visual longitudinal

https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017
https://doi.org/10.1016/j.jcmg.2024.04.017


FIGURE 2 Strength of Relationship Between Individual Experts or Individual Machine Methods, and the Consensus of Experts
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(E1 to E11) Relationships between individual expert assessments of GLS (y-axis) and the consensus of experts (x-axis). Performance of the 3 machine methods (pro-

prietary A, proprietary B, and Unity-GLS) are also shown on the y-axis. The Spearman rank correlations range from 0.67 to 0.89 for the individual experts and 0.73 to

0.91 for the machine methods. All P < 0.001. GLS ¼ global longitudinal strain.
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function rating of 0.72 (IQR: 0.68-0.75). The machine
strains showed correlations of 0.77 for Unity-GLS,
0.70 for proprietary A, and 0.74 for proprietary B.
These correlations were not significantly different
from each other (Figure 3).

ORIGIN OF DISAGREEMENTS IN GLS MEASUREMENTS.

In Supplemental Figure 2, we present all 594 frames
from the 99 included patients of the validation data-
set with the tracings from the 11 individual experts
TABLE 2 Performance of the Individual Experts, Proprietary Method

Measuring LV GLS in the External Validation Dataset

Strain (Absolute %)

Bland-Altman Analysis

Mean Difference (95% CI)
P value SD of Diffe

Individual experts �0.15 (�0.35 to 0.05)
P ¼ 0.15

3.49

Proprietary A �1.86 (�2.54 to �1.18)
P < 0.0001

3.40

Proprietary B 0.54 (�0.07 to 1.17)
P ¼ 0.09

3.12

Unity-GLS 0.19 (�0.28 to 0.67)
P ¼ 0.19

2.39

Performance of the 3 machine methods and individual experts against the 11-expert co
individual was treated as a separate data point.

GLS ¼ global longitudinal strain.
and from the Unity-GLS neural network (1 patient was
excluded owing to incompatibility with the pro-
prietary strain software).

A summary of representation of the best, worst,
and average cases is given in Figure 4. There are 3
cases with best performance by Unity-GLS (top),
median performance (middle), and worst (bottom)
performances. Notably, the images in which Unity-
GLS performed poorly were also images in which the
experts disagreed with each other.
s, and Unity-GLS as Compared With the 11-Expert Consensus for

Quantile of Absolute Error From Expert Consensus

rence 50% (Median) 75% 80% 90%

2.0 3.49 3.94 5.21

2.53 4.00 4.40 6.36

2.16 3.76 4.09 5.19

1.33 2.23 2.48 3.45

nsensus. For the Bland-Altman analysis of individual experts, every value by every

https://doi.org/10.1016/j.jcmg.2024.04.017


FIGURE 3 How Individual GLS Assessments Relate to Expert Consensus of a Visual Rating of Longitudinal Function
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The pool of the 11 validator experts jointly ranked the videos by visually estimated left ventricular longitudinal function. Each panel shows how a single measurement of

GLS (y-axis) correlates with that consensus visual rating (x-axis). The individual expert GLS assessments (E1 to E11) showed correlations with the consensus visual

rating ranging from 0.49 to 0.80. The machine methods (proprietary A, proprietary B, and Unity-GLS) showed correlations from 0.70 to 0.77. The strongest rela-

tionship was between the expert consensus GLS and the expert consensus visual rating (0.83). All P < 0.001. Abbreviation as in Figure 2.
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DISCUSSION

Clinical experts have been reticent to accept artificial
intelligence (AI) in their workflows. One reason is
that, unlike fellow clinical experts, neural networks
do not have a clinically respected standard of training
or ongoing open quality control. The Unity Collabo-
rative was set up to tackle this in the UK by estab-
lishing a consortium of recognized experts to work
together both to teach the neural network and to set
the standards by which it is judged. A previous paper
from the Unity Imaging Collaborative applied this
process to automating the key clinically relevant
measurements in the parasternal long axis view.7 The
present study applies the process to global LV strain.

A key principle of our process for the separate
external validation dataset is that the reference
standard against which the machine methods were
tested was not the opinion of a single expert, but the
consensus across 11 experts who evaluated each im-
age blinded to the evaluations of others (Central
Illustration).

Having this multiexpert consensus allowed us to
test the performance of all the machine methods
against the performance of individual experts. This
strategy showed the machine methods performed
adequately in this task.
DIRECT MEASUREMENTS OF STRAIN WITHOUT

SPECKLE TRACKING. Current technology for strain is
reported by manufacturers to operate by tracking the
motion of image speckles frame by frame, and then
integrating the resulting velocities to derive the
change in length. However, clinicians have not trus-
ted this process enough to adopt it universally. For
example, sometimes the fiducial points marked by
the proprietary algorithms are seen to move in 1 di-
rection, whereas the speckles seem to the naked eye
to be moving in the opposite direction.

Because strain is ultimately a shortening of the LV
border length,13 it can in principle be measured
directly from the end-systolic and end-diastolic
frames without tracking speckles over the inter-
vening frames. Direct measurements of strain have
the advantage of being verifiable by human experts. It
also allows for the potential of like-for-like compari-
sons. Clinicians can focus on the important task of
identifying which cases it finds difficult and correct-
ing its behavior, just as they do with human trainees.



FIGURE 4 9 Representative Apical 4-Chamber Cases Showing the Individual Experts, Expert Consensus, and the Output of Unity-GLS Tracing the LV Endocardium

The 3 cases with the best (top), median (middle), and worst (bottom) agreement between the expert consensus curve (thick white line) and Unity-GLS (red line) output

are shown. As a comparison, the individual experts’ labels are shown (thin white lines). Images in which Unity-GLS performed poorly were also images in which the

experts disagreed with each other. LV ¼ left ventricular; other abbreviation as in Figure 2.
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VALUE CONTRIBUTED BY OPEN RESEARCH.

Many recent advances in automated echocardiogram
interpretation have come from open research. Echo-
cardiographic images labelled by experts, specifically
for training neural networks, have been in short
supply. In 2017, Smistad et al14 introduced a method
of to overcome this data shortage by pretraining the
neural network on the output of an existing, non-
neural network model, before refining it with a
small amount of expert-labelled data. In 2019, Leclerc
et al15 applied a U-net to CAMUS, the then largest
publicly available dataset, which contains 500 cases.
The following year, Wei et al16 introduced simulta-
neous learning of both segmentation masks and mo-
tion fields so that each process strengthened the
performance of the other. Recently, Painchaud et al17

innovated the use of variational autoencoders to
automatically detect and improve the boundaries that
the original neural network had drawn implausibly.

Each study contributes an advancement that can
be built on by future workers. For example, Unity-
GLS shares the property of Wei et al16 of using mul-
tiple frames, although our use of the preceding and
subsequent frames is simply to supply collateral



CENTRAL ILLUSTRATION Multiexpert Consensus Defines the Reference Standard

GL
S

Reference

Acceptable deviation from reference

We use 11 expert opinions, in 2 ways:
 Their mean (white) is the expert consensus reference,
 Their individual variation defines how closely the AI (blue)
 must match the consensus, to be good enough.

P = 0.89

Expert 1

−30%

−30%

0%

0%

P = 0.86

Expert 2

−30% 0%

P = 0.72

Expert 3

−30% 0%

P = 0.73

Proprietary A

−30% 0%

P = 0.79

Proprietary B

−30% 0%

P = 0.91

Unity-GLS

−30% 0%

Expert Consensus GLS

Stowell CC, et al. J Am Coll Cardiol Img. 2024;-(-):-–-.

Individual expert opinions, and individual machine measurements can be compared with the expert consensus as the reference standard. Individual experts E1 to E11

showed correlations with the expert consensus ranging from 0.67 to 0.89. proprietary softwares showed correlations of 0.73 and 0.79. The UK Unity open-source

network showed correlation of 0.91. All P < 0.001. AI ¼ artificial intelligence; GLS ¼ global longitudinal strain.
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temporal information, which enabled an improve-
ment beyond our previous single-frame network ex-
periments. A common drive for many studies has
been starvation of expertly labelled data. Some
groups have tackled this issue by generating syn-
thetic images.18-21 Our study and associated data
should help to rectify this. It also provides apical 4-,
2-, and 3-chamber images, which are needed for GLS,
and covers a range of vendors.

PROPRIETARY MEASUREMENTS OF GLS VIA

SPECKLE TRACKING. Proprietary method B was
introduced as a replacement for proprietary method A
by the same vendor, presumably intended as an
improvement. The correlation between the 2 pro-
prietary measurements was 0.77. There was no evi-
dence in our study of a substantial improvement in
performance, either against the consensus of expert
GLS measurements or against their visual assess-
ments of longitudinal function. It is difficult for re-
searchers to ascertain what changed between the 2 or
how any aspect of their performance might be
improved because the steps in their processes are
confidential.

ESTABLISHING A GOLD STANDARD WHEN EXPERTS

ARE NOT UNANIMOUS. When training a clinician to
make measurements, it is recognized that there are
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some measurements for which all experts agree
closely: the trainee must answer similarly to be
considered competent. In contrast, there are other
measurements for which experts differ in their judg-
ment and the trainee may, therefore, be permitted a
wider range of permissible values.

We apply this principle in 3 ways in this study.
First, the reference standard comes from not a single
expert, but the consensus of several. This strategy
improves the precision of the reference standard.
Second, the spectrum of opinions of experts on each
individual image effectively defines both the position
and the size of the target the AI must hit. Third, cases
with a wide spectrum of expert opinion are auto-
matically identified as inherently difficult.

We have not attempted to use an alternative im-
aging modality method as the reference standard for
several reasons. First, there would inevitably be dif-
ferences in imaging plane between modalities
resulting in variation that would seem to be an error,
but was not. Second, we want the AI GLS to be
explainable, that is, with the intermediate step of
construction of endocardial curve from the echo im-
age open to inspection so that the source of errors can
be explored. Finally, we wanted the reference stan-
dard to mirror that of clinical trainees, in being the
expert consensus interpretation of that image, and
not a different image.

VALIDATION AGAINST THE EXPERT INTUITION OF

LONGITUDINAL FUNCTION. Having a panel of ex-
perts also allowed us to establish whether the GLS
measurements (human or machine) were indeed
related to the intuitive concept of longitudinal func-
tion. We chose a ranking process that consisted of
ranking each study multiple times against other
studies. This process provides a relative assessment
of LV function, which, with enough comparisons, can
provide a high precision. This method is advanta-
geous for several reasons. First, the granularity of
ranking is greater than choosing a small number of
categories with arbitrary distinctions (eg, mild vs
moderate). Second, high granularity ratings do not
require experts to assign values with unreasonable
precision (eg, an ejection fraction of 34.5%). Third,
because each assessment is done within a single
operator, there is no need for an elaborate prior cali-
bration process. Expert 1’s opinion of study 1 is never
directly compared against expert 2’s opinion of study
2; only the relative rankings of 2 studies by the same
expert are used.

STUDY LIMITATIONS. This study focused entirely on
GLS and not on other indices of LV function. GLS was
chosen because it could be applied across many forms
of echocardiography, from departmental, portable,
and even handheld devices.

This study did not test whether the GLS measure-
ments made by the individual experts, their
consensus, or the 3 machine methods predict clinical
outcomes such as mortality. Previous studies have
documented the prognostic power of LV GLS exten-
sively.22-24

The number of expert observers is only a small
proportion of the UK’s clinical staff conducting
echocardiograms. However, many are clinical leaders
within their departments and within their research
field generally, and are involved in guideline devel-
opment processes. The size of this group is already
much larger than that of any other multiexpert
assessment of GLS in the published reports.

When comparing the performance of machine
methods vs human experts, it should be remembered
that the human expert opinions contributed to the
expert consensus standard. Therefore, the individual
expert errors are biased to be slightly smaller, and
slightly biased toward the experts and against the
machine algorithms. Despite this factor, the machine
methods performed adequately.

Our method of calculating GLS works from the
length of the complete contour, and not from regional
tracking of speckles. This is because we want our
method to be verifiable at each step. A consequence
of our method is that it will not provide information
on regional strain, only global. Furthermore, because
neither the experts nor the AI were constrained to
ensure that the diastolic length was longer than the
systolic length, in a handful of cases where there was
very poor LV function and poor image quality, some
of the strain values were positive.

This study aimed to test performance against hu-
man experts in their optimized state, that is, with a
consistent single frame. The neural network similarly
focused on a single frame, although with surrounding
frames for context. However, future improvements
might include the evaluation of intermediate time-
steps seeking a temporally consistent curve of strain
against time.14

CONCLUSIONS

An AI algorithm can be trained by a nationwide panel
of experts to make clinical measurements fully auto-
matically to an acceptable standard, that is, per-
forming better than individual experts. A fully open
method, with reproducible training, and a public
validation process with full disclosure of graphical



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: GLS is an

important prognostic tool, reported to be more reproducible and

prognostic than ejection fraction. Despite this, it is not in wide-

spread clinical use. Greater transparency with open methods may

increase trust and uptake among clinicians and

echocardiographers.

TRANSLATIONAL OUTLOOK: We provide 2 open-source

trained algorithms that have been developed by a collaborative

group of clinicians. We invite international researchers to build

on our work, harnessing the code and data, which we provide

open-source and free for reuse.
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results, may be an advisable step to help clinicians
decide for themselves whether machine performance
in image interpretation is clinically adequate.
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APPENDIX For an expanded Methods section
as well as supplemental tables, figures, and
references, please see the online version of this
paper.
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