
 

 
 
 
 
 

Zhang, P., Tian, D., Zhou, J., Chang, M., Duan, X., Zhao, D. , Cao, D. and Leung, V. 
C.M. (2024) Robust car-following control of connected and autonomous vehicles: 
a Stochastic Model Predictive Control approach. IEEE Transactions on Intelligent 
Vehicles, (doi: 10.1109/tiv.2024.3379730)  
 

 

 
   

 

The University of Glasgow has an agreement with IEEE which allows all University 
of Glasgow authors to self-archive accepted manuscripts submitted to any of the 
subscription-based (hybrid) IEEE journals, magazines, or conference proceedings. 
Authors can immediately self-archive accepted manuscripts in an institutional or 
subject based repository with a self-attributed CC BY license. The agreement 
covers all original research and review articles. 
 
 
Copyright © 2024 IEEE. Reproduced under a Creative Commons Attribution 4.0 
International License.  
 
 
 

https://eprints.gla.ac.uk/323559/  
      

 
 
 
 
 

 
Deposited on: 24 July 2024 

 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
https://eprints.gla.ac.uk  

  

http://eprints.gla.ac.uk/view/author/60417.html
https://doi.org/10.1109/tiv.2024.3379730
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://eprints.gla.ac.uk/323559/
https://eprints.gla.ac.uk/
https://creativecommons.org/licenses/by/4.0/


1

Robust Car-Following Control of Connected and
Autonomous Vehicles: A Stochastic Model

Predictive Control Approach
Peiyu Zhang, Daxin Tian, Senior Member, IEEE, Jianshan Zhou, Mai Chang, Xuting Duan, Dezong Zhao, Senior

Member, IEEE, Dongpu Cao, Senior Member, IEEE, and Vicor C.M. Leung, Fellow, IEEE

Abstract—Vehicle platooning has attracted growing attention
for its potential to enhance traffic capacity and road safety.
This paper proposes an innovative distributed Stochastic Model
Predictive Control (SMPC) for a vehicle platoon system to
enhance the robustness and safety of the vehicles in uncertain
traffic environments. In particular, considering the similarity be-
tween the acceleration or deceleration behaviour of neighbouring
vehicles and the spring-scale properties, we use a two-mass spring
system for the first time to construct an uncertain dynamic
model of a formation system. In the presence of uncertain
perturbations with known distributional attributes (expectation,
variance), we propose an objective function in the form of expec-
tation along with probabilistic chance constraints. Subsequently,
a state feedback control mechanism is devised accordingly. Under
the cumulative probability distribution function of stochastic
perturbations, we theoretically derive a computationally tractable
equivalent of the SMPC model. Finally, simulation experiments
are designed to validate the control performance of the SMPC
platoon controllers, along with an analysis of the stability per-
formance under varying probabilities. The experimental findings
demonstrate that the model can be efficiently solved in real-time
with appropriately chosen prediction horizon lengths, ensuring
robust and safe longitudinal vehicle formation control.

Index Terms—vehicle platooning, stochastic optimisation,
model predictive control, chance constraints, uncertain pertur-
bation

I. INTRODUCTION

Over the past two decades, there has been a substantial
escalation in vehicular presence on roadways due to rapid
urbanization and heightened demands for mobility. This surge
has posed significant implications for congestion, safety pro-
tocols, parking availability, and emissions within the domain
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of road transport systems, warranting scholarly attention and
investigation [1], [2]. Vehicle platooning has garnered signif-
icant interest due to its advantages of optimizing road space
and enhancing safety [3]–[5]. The key objectives in designing
the formation controller are to coordinate and maintain a close
formation of vehicles, aiming to ensure improved safety [6],
facilitate smoother traffic flow [7], and maintain a consistent
distance and speed [8]. The design of the controller is crucial
for vehicle platooning. A well-crafted controller design en-
ables adaptability for vehicle platooning across various road
conditions and environments, ensuring consistent and efficient
performance in diverse situations. Therefore, Model Predictive
Control (MPC) has become a widely adopted approach [9],
[10]. MPC constitutes a control methodology founded upon
the mathematical modelling of a system. Its core principle
resides in the anticipation of the future behavior of the system,
coupled with the resolution of an optimization problem aimed
at producing an optimal sequence of control inputs.

MPC is tailored for systems characterized by multiple
variables, constraints, and dynamic behavior, as exemplified
in scenarios such as vehicle platooning. However, uncertainty
in platooning is inherent due to the challenge of obtaining
precise data for numerous vehicles and the constantly changing
environmental factors. This uncertainty not only degrades
the performance of individual vehicles but also propagates
along the vehicle chain, potentially leading to accidents [11].
Accounting for uncertainty is crucial in designing controllers
to ensure guaranteed performance in successful platooning
[12]. In addressing the challenge posed by external uncer-
tainties in platoon control systems, we introduce an SMPC
method to improve the robustness of the system. Our focus
is on countering uncertain disturbance parameters within the
formation control system, particularly those characterized by
randomly distributed information. The importance of such ad-
vancements lies in not only enhancing platooning performance
but also ensuring adherence to physical constraints despite
the presence of external uncertainties. By introducing the
SMPC method, we aimed to fortify the platoon control system,
providing resilience against disturbances with unpredictable
and randomly distributed characteristics.

II. RELATED WORK

Several studies have shown that MPC is a suitable option
for platoon control. For example, [13] addressed a platoon
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control problem in a discrete-time system through an MPC
approach. Additionally, the proposed approach is applicable to
various topology structures. In the context of multi-lane roads
and highways, a distributed MPC strategy is developed in [14]
to address the longitudinal platoon control and a classical PI
lateral control algorithm is designed for each vehicle. Another
work by [15] proposed an MPC strategy to facilitate robust
control in the face of external disturbances within a vehicle
platooning system. In [16], a distributed MPC algorithm for
connected vehicle platoons under abnormal communication
conditions is introduced. [17] introduced an MPC method
that can adapt to various mixed traffic conditions in a pla-
tooning system. Considering the complex nonlinear dynamics
of vehicle platooning systems, Nonlinear MPC emerges as
a more effective strategy [18]. In [19], a secure distributed
nonlinear MPC algorithm is proposed, comprising detection
and mitigation phases, capable of ensuring formation control
performance despite diverse communication topologies. [20]
presented an ecological MPC control strategy for CAV platoon
under V2V topological communication, this proposed scheme
minimizes energy consumption by optimizing the speed error,
distance deviation, and fuel consumption in the cost function.

In the investigation of vehicle platooning systems, Deter-
ministic Model Predictive Control (DMPC) or nominal models
are commonly employed. Nonetheless, these models often
neglect uncertainties, including measurement errors, sensor
errors, and external noise. Such uncertainties are prevalent
in real-world scenarios and have the potential to significantly
influence the stability and safety of the system [21], [22]. In
particular, random perturbations may lead to the system state
surpassing safety thresholds, thereby increasing the potential
risk of chain collisions among formation vehicles. Hence, the
development of robust formation controllers is crucial to ensur-
ing the stability and safety of the system. In recent years, many
scholars have explored the vehicle formation planning and
control problem based on reinforcement learning-based control
methods, robust bounded control methods, robust tube control
methods, and stochastic optimization methods. [23] presented
a Deep Neural Network (DNN) control scheme for vehicle
parking manoeuvres. They designed a multi-layer optimised
structure for this solution. The first layer uses a desensitised
trajectory optimisation method to establish the optimal parking
trajectory. The second layer uses pre-planned trajectory data
to train DNNs to learn the relationship between system states
and control actions. [24] introduced a fusion of deep reinforce-
ment learning and genetic algorithms for intelligent formation
control, addressing the dynamically evolving challenges in
cooperative driving for self-driving vehicles. [25] presented an
optimization algorithm for communication proximity policies,
targeting the complex multi-agent body problem in fleet con-
trol. The algorithm incorporates a parameter sharing structure
to accommodate diverse vehicle dynamics, mitigating collision
risks through the implementation of communication protocols
and course learning. Although reinforcement learning-based
vehicle formation control methods have potential advantages
in achieving collaborative behaviour, they also have some
limitations, such as the lack of visual embodiment of the
model, and possible training and computational complexity

when dealing with large-scale vehicle platoons.
In addition, the Robust Bounded MPC (RBMPC) method

focuses on addressing parameter uncertainties or deterministic
disturbances within known bounds. It aims to design con-
trollers that ensure system robustness against these specified
uncertainties [26]. Typically employing deterministic models,
RBMPC designs robust controllers to handle known vari-
ations or disturbances within established ranges, ensuring
system stability and performance [27]–[29]. For example,
[30] introduced an RBMPC algorithm for cooperative control
of connected vehicle platoons under parameter uncertainty.
The algorithm, tolerant to certain parameter uncertainties,
establishes stability conditions in the form of linear matrix
inequalities. Another work [31] introduced a centralized ro-
bust model predictive control algorithm for reentry vehicles,
ensuring robust constraint satisfaction amid uncertainties. In
summary, RBMPC is commonly employed to deal with deter-
ministic uncertainties within known ranges [32]. However, if
the considered probability distribution of uncertain disturbance
has infinite support, such as Gaussian distribution or Uniform
distribution, there is no fixed upper bound on the disturbance
realizations. This limitation restricts the applicability of the
RBMPC method [33]–[35].

In contrast to RBMPC, Robust Tube MPC (RTMPC) in-
tegrates point parameter estimation and a method based on
pipe structure to address parameter uncertainties and additional
disturbances [36]. By employing feedback and feedforward
control laws, nominal and error states are obtained separately,
dynamically adjusting the actual vehicle tracking error to
ensure it stays within the boundaries set by the tube. Feng
et al. introduced a robust formation control framework based
on a tube-based MPC model, specifically addressing the
collaborative adaptive cruise control problem within mixed
traffic flow [37]. This method dynamically mitigates prediction
uncertainties by constraining them within a defined range, en-
abling the planning of a tube sequence. Through the activation
of feedforward control, the actual trajectories of CAVs are
restricted. In a related study, Luo et al. investigated the impact
of disturbances and modelling errors on the control system
[38]. They employed an unknown input proportional multiple
integral observers to estimate centralized disturbances, concur-
rently estimating the vehicle tracking error state. Subsequently,
a tube-based RMPC method was implemented, demonstrating
that the deviation between the actual system and the nominal
system is confined within a robust positively invariant set.
Using the RTMPC, certain potential advantages, such as
improved robustness and guaranteed stability, are likely to be
achieved. However, applying this strategy directly to the track-
ing control problem under consideration may pose challenges
due to the asymmetrical nature of actual disturbances. The
method may assume symmetry in the effects of disturbances
in positive and negative directions, but real-world disturbances
might exhibit non-symmetrical characteristics. Consequently,
this discrepancy between the assumed and actual disturbance
properties can impact the performance of the RTMPC method,
especially when dealing with disturbances that deviate signif-
icantly from symmetrical behaviour.

Compared to the above methods, the SMPC method mainly
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copes with random perturbations in the system for which
characteristic information about the probability distribution
(expectation and variance) of these perturbations is known.
Therefore, SMPC is a promising method for solving the
vehicle platoon control problem in uncertain environments due
to its ability to handle unbounded or asymmetric disturbances
[39], [40]. Based on the characteristics of stochastic distur-
bances, the corresponding probabilistic chance constraints and
expected objective functions are constructed, and then the pre-
diction model is proposed to predict future control behaviour
with robustness. In each control period, the proposed SMPC
model minimises the expected objective of the platoon system
under the system dynamic update and chance constraints [41].
Several scholars have applied stochastic optimisation ideas to
vehicle control systems [42], [43]. For example, [44] designed
an economic traffic signal control method under a speed
management framework, this model includes fuel consumption
and emission objectives and is implemented through the MPC
framework. [45] designed SMPC control for a hybrid vehicle
platoon system consisting of human-driven and autonomous
trucks, aiming to ensure platoon feasibility, robustness and
safety. [46] proposed a discrete hybrid stochastic model for
efficient traffic management through connected and automated
vehicle platooning, with a focus on ensuring safety through
an emergency braking system. [47] introduced an efficient
trajectory planning framework for automated vehicles, com-
bining SMPC for optimized trajectories with a safety-oriented
backup trajectory planning using reachable sets. Thus, SMPC
is an effective method to handle the vehicle control problem
in uncertain traffic environments [48].

Inspired by the stochastic optimization theory, this paper
formulates a distributed SMPC model tailored for vehicle
platooning systems in uncertain environments. The primary
objective is to ensure vehicle safety and enhance the system’s
robustness to disturbances. In contrast to conventional models,
this study pioneers the construction of kinematic equations
for the platoon system using a two-mass spring structure.
Within this SMPC model, vehicles in a platoon are repre-
sented as mass blocks interconnected by springs (Figure 2).
Consequently, attractive or repulsive forces, stemming from
these springs between adjacent vehicles, ensure velocity con-
sistency and maintain an ideal spacing between the vehicles.
Building upon this structural innovation, the paper proposes
a distributed SMPC platoon control method grounded in a
two-mass spring structure, incorporating probabilistic chance
constraints and a specified objective function. Utilizing the
distributional information of random perturbations, the study
derives a computable counterpart model for the SMPC model
under the cumulative distribution function. The proposed
model’s effectiveness in terms of platoon safety and resistance
to perturbations is then rigorously evaluated through simula-
tion tests, including parametric analysis and comparative tests.
In summary, the key contributions of this paper are:

• We introduce a novel distributed SMPC framework for
platooning systems, with a primary focus on ensuring
safety and robustness. Our key innovation involves incor-
porating a two-mass spring structure to accurately repre-
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Fig. 1: The system scenario and implementation framework of
the SMPC method.

sent the dynamic state of each vehicle in the platoon. This
distinctive modelling approach enables the formulation of
an error equation for the platoon system, offering a unique
perspective on the interaction dynamics among vehicles.

• We derive a counterpart model for the SMPC model,
leveraging the cumulative probability distribution func-
tion. Through the utilization of information on the prob-
ability distribution of the random variable, encompassing
its expectation and a fixed distribution, we theoreti-
cally formulate a deterministic representation for both
the expectation objective and the associated probability
constraint. This formulation is computationally feasible.

• To validate the practical efficacy of our proposed SMPC
method, we conduct simulation experiments to demon-
strate the effectiveness of the SMPC method in real-world
applications. Additionally, we perform some comparative
experiments to illustrate that our method excels over other
approaches in terms of platoon safety, anti-interference
and computational efficiency.

The organization of the remaining sections in this paper
is as follows. In Section III, we propose the SMPC platoon
control model under stochastic disturbances. In Section IV, we
derive the deterministic equivalent form of the SMPC model,
and in Section V, we conduct experimental validation and
comparative experiments, illustrating the computational real-
time performance of the method. In Section VI, we summarize
the full paper and elaborate on future research directions.

III. OVERVIEW OF SMPC PLATOON SYSTEM

A. Vehicle Platoon Dynamics based on Two-mass Spring
Structure

In this section, we present an SMPC model designed for
vehicular platoon systems to mitigate the impact of random
perturbations and ensure the resilience of the system. The
interaction dynamics between two adjacent vehicles are en-
capsulated through a two-mass spring structure, depicted in
Figure 2. Each vehicle is interconnected with its neighbouring
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Fig. 2: The sketch of two-mass spring system.

counterparts through a spring structure, and the attractive or
repulsive forces arising from these springs aim to uphold
the desired distance and speed between the vehicles. The
stiffness of the spring, denoted as ks, reflects the spring’s
rigidity [49]. This coefficient is tailored based on the disparity
between the current vehicle spacing and the ideal vehicle
spacing: the greater the difference, the higher the coefficient,
resulting in a more robust corrective force (control signal)
being generated. This approach enhances the system’s ability
to resist disturbances and ensures its stability.

Figure 2 shows the sketch of the two-mass spring system.
Inspired by literature [50], we construct the dynamic equations
for the controlled vehicle i:

ṗi−1 = vi−1,

ṗi = vi, v̇i = ai,

Fi−1 = Mi−1p̈i−1 = −ks (pi−1 − pi −D) + w1,

Fi = Mip̈i = ks (pi−1 − pi −D) +Miui + w2,

(1)

among that Mi−1 and Mi are the masses of the vehicles i−1
and i. pi−1 and vi−1 are the position and speed of vehicle
i− 1, pi and vi are the position and speed of vehicle i. ai is
the real acceleration of the controlled vehicle i. D is the ideal
spacing between two vehicles. Fi−1 simulates the spring force
on the vehicle i− 1 and Fi is the real force on the controlled
vehicle i, which is composed of spring force Fs and robust
force FR. Thus, ui is the control signal generated by the robust
force, and the true acceleration of the vehicle is determined
by Fi, that is Fi = Miai. In addition, ks is a constant of the
two-mass spring structure. vehicle i − 1 is not a controlled
object in this system, and its acceleration is obtained from the
previous pair of spring systems [51]. w1 and w2 are stochastic
disturbances of state system.

Remark 1: 1) In the dynamic equation (1), the stochastic
disturbances mainly refer to measurement errors caused by
sensor non-coordination and the influence of vehicle dynamic
characteristics on distance perception. These uncertain distur-
bances are randomly generated, and they have certain charac-
teristic information [52], [53]. 2) In this paper, we explore a
robust car-following control method with the two-mass spring
structure and build an SMPC model for the uncertain traffic
environment. We assume that inter-vehicle communication
adopts the leader-follower topology, thus we consider the force
exerted by the spring between the two vehicles.

The state error vector can be defined as x = [e1,i, e2,i]
T,

where e1,i = pi−1 − pi −D, e2,i = vi−1 − vi. Thus, the i−th

platooning error system is[
ė1,i
ė2,i

]
=

[
0 1

− ks

Mi−1
− ks

Mi
0

] [
e1,i
e2,i

]
+

[
0
−1

]
ui +

[
0 0
1

Mi−1
− 1

Mi

] [
w1

w2

]
. (2)

In a proper sampling time slot τ , we can obtain the following
state equation based on Euler’s approximation approach:

xi(k + 1) = Axi(k) + Bui(k) + Gwi(k), (3)

where A =

[
1 τ

ks(− τ
Mi−1

− τ
Mi

) 1

]
; B =

[
0
−τ

]
; G =[

0 0
τ

Mi−1
− τ

Mi

]
. In Equation (3), wi = [w1, w2]

T is stochastic

perturbation caused by the measurement error of the sen-
sor and uncertainty noise. In our settings, the characteristic
information of stochastic perturbation wi are known, i.e.,
E[wi] = 0. Thus, the nominal state equation is:

xi(k + 1) = Axi(k) + Bui(k). (4)

Next, we will conduct the probability chance constraint and
the expectation objective of the platoon control model.

B. Probabilistic Chance Constraint

In this section, we subsequently incorporate chance con-
straints for the platoon system. The body of the chance
constraints are:

ep,min ≤ e1,i(k) ≤ ep,max, (5)

where ep,min and ep,max are the minimum and maximum
values of the position error.

ev,min ≤ e2,i(k) ≤ ev,max, (6)

where ev,min and ev,max are the minimum and maximum
values of the speed error.

umin ≤ ui(k) ≤ umax, (7)

where umin and umax are the minimum and maximum values
of the control signal for the vehicle i.

Combing the spacing error (6) and velocity error (7) be-
tween vehicle i − 1 and i, we can obtain the error state
constraint:

xmin ≤ xi(k) ≤ xmax, (8)

where xmin = [ep,min, ep,min]
T and xmax = [ev,max, ev,max]

T.
Furthermore, all constraints of the vehicle platoon system

at time k are summarised as:{
Hxi(k) ≤ h;

Dui(k) ≤ d,
(9)

where

H =

[
I 0
0 −I

]
;h =

[
xmin

xmax

]
;D =

[
1 0
0 1

]
;d =

[
umin

umax

]
.
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The above constraint is impacted by random perturbations, al-
lowing it to be formulated as a probabilistic chance constraint{

Prk{Hjxi(k) ≤ hj} ≥ 1− εx,j , j = 1, . . . , nx; (10)
Prk{Djui(k) ≤ dj} ≥ 1− εu,j , j = 1, . . . , nu, (11)

where the value of j represents the jth row of the overall
constraint. Based on the characteristic information about the
probability distribution of the stochastic perturbations, we
construct chance constraints in the form of constraints (10) and
(11). In constraint (10), the probability that body Hjxi(k) ≤
hj holds must be greater than/equal to 1− εx,j , where εx,j is
the violation probability and εx,j ∈ [0, 1]. In constraint (11),
the probability that body Djui(k) ≤ dj holds must be greater
than/equal to 1− εu,j , where εu,j is the violation probability
and εu,j ∈ [0, 1]. The construction of these chance constraints
is based on the stochastic optimization concept, which is the
key to dealing with stochastic perturbations.

C. Objective Function in Expectation Form

In this section, we propose the objective function of the
distributed SMPC platoon controllers, aiming to achieve the
objectives limk→∞ |xi(k)| = 0 in an uncertain traffic envi-
ronment. According to Literature [54], we use model predic-
tion for this process-based control approach, which performs
optimal control only in the current prediction intervals, then
transitions to the next prediction time interval and applies real-
time control. Based on the constructed probabilistic stochastic
constraints (10) and (11) and the expectation objective, we pro-
pose the SMPC model for vehicle platoon systems. Assuming
the prediction horizon is Np, xi(k + h|k), ui(k + h|k), and
wi(k+h|k) signify the predicted state, predictive control, and
random perturbation at the time k + h. The initial error state
is xi(k|k), respectively. Consequently, the objective function
at time k is:

J(k) =

Np−1∑
h=0

(
xTi (k + h|k)Sxi(k + h|k)

)
+ ui(k + h|k)Rui(k + h|k) + Φ(xi(k +Np|k))

]
,

(12)

where S and R are the positive definite diagonal matrices.
Φ(xi(k + Np|k)) is the terminal function and Φ(xi(k +
Np|k)) = xTi (k+Np|k)QNp

xi(k+Np|k). Based on stochastic
optimisation concepts, we proposed the expected objective of
cost function (12):

E[J(k)] =

Np−1∑
h=0

(
xTi (k + h|k)Qxi(k + h|k)

+ui(k + h|k)Rui(k + h|k)) + Φ(xi(k +Np|k)

]
.

(13)

D. Closed Loop SMPC Model for Vehicle Platoon

In this section, we derive a compact form of constraints
(10) and (11) under stochastic perturbations in the predicted
time horizon. In addition, we incorporate a feedback control
strategy into the construction of the SMPC model. Thus, in all
predicted time horizon Np, we define the following vector: Xi = col{xi(k + 1|k), xi(k + 2|k), . . . , xi(k +Np|k)};

Ui = col{ui(k|k), ui(k + 1|k), . . . , ui(k +Np − 1|k)};
Wi = col{wi(k|k),wi(k + 1|k), . . . ,wi(k +Np − 1|k)}.

(14)
In addition, the state error equation (3) in all prediction

horizon Np has the following form:

Xi = MAxi(k|k) + MBUi + MwWi, (15)

where MA, MB and Mw are given by

MA = diag
{

A1,A2, . . . ,ANp
}
,

MB =


B 0 0 · · · 0 0

AB B 0 · · · 0 0
A2B AB B · · · 0 0

...
...

... · · ·
...

...
ANp−1B ANp−2B ANp−3B · · · AB B

 ,

Mw =


G 0 0 · · · 0 0

AG G 0 · · · 0 0
A2G AG G · · · 0 0

...
...

... . . .
...

...
ANp−1G ANp−2G ANp−3G · · · AG G

 .

(16)
Since the expected information of the random perturbation is
E[Wi] = 0, the nominal state equation is

Xi = MAxi(k|k) + MBUi, (17)

Thus, the open-loop SMPC model M1 for the vehicle
platoon system has the following form

M1 : min
Ui

E[J(k)]

s.t. Xi = MAxi(k|k) + MBUi + MwWi,

Xi = MAxi(k|k) + MBUi,

Pr{QjXi ≤ qj} ≥ 1− εx,j , j = 1, . . . , nx,

Pr{PjUi ≤ pj} ≥ 1− εu,j , j = 1, . . . , nu,

xi(k +Np|k) ∈ ΨNp .

(18)

To guarantee system stability, we present a linear feedback
control strategy that calculates future controls by linearly
combining the system state [55], [56], that is

ui(k + h|k) = kxi(k + h|k) + unew
i (k + h|k), (19)

where unew
i (k+h|k) is the new control signal and k is control

gain which can be obtained offline. Based on the state equation
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(3) and the feedback control strategy (19), a new state update
equation can be derived as

xi(k + h+ 1|k)
= Axi(k + h|k) + Bui(k + h|k) + Gwi(k + h|k)
= (A + Bk)xi(k + h|k) + Bunew

i (k + h|k) + Gwi(k + h|k)
= φxi(k + h|k) + Bunew

i (k + h|k) + Gwi(k + h|k).
(20)

Thus, we can derive the compact form of the state equation
in all prediction horizons Np

Xi = Gφxi(k|k) + GBUnew
i + MwWi, (21)

where Gφ and GB are given by

Gφ = diag
{
φ1,φ2, . . . ,φNp

}
,

GB =


B 0 0 · · · 0
φB B 0 · · · 0
φ2B φB B · · · 0

...
...

... · · ·
...

φNp−1B φNp−2B φNp−3B · · · B

 . (22)

In addition, the compact form of (19) in all prediction horizons
has the following form:

Ui = KXi + Vi. (23)

where the new decision Vi in all prediction horizon Np is
Vi = col{unew

i (k|k), unew
i (k+1|k), . . . , unew

i (k+Np−1|k)}.
Similarly, we can deduce the compact form of probability
constraints (10) and (11) under all prediction horizons:{

Pr{QjXi ≤ qj} ≥ 1− εx,j , j = 1, . . . , nx; (24)
Pr{PjUi ≤ pj} ≥ 1− εu,j , j = 1, . . . , nu, (25)

where Q = diag{H, h = 1, . . . , Np}, q = diag{h, h =
1, . . . , Np}, P = diag{D, h = 1, . . . , Np} and p =
diag{d, h = 1, . . . , Np}. Besides, j is the row index of all
matrices, nx is the row index to the matrices Q and nu is the
row index to the matrices p. In all predicted time domains, the
objective function (13) can be rewritten as:

E[J(Xi,Vi)] = E[XT
i SxXi + UT

i RuUi], (26)

where 
Sx = diag{S, . . . ,S︸ ︷︷ ︸

Np−1

,SNp
},

Ru = diag{R, . . . ,R︸ ︷︷ ︸
Np

}, (27)

Combining the state equation (15), constraints (24), (25) and
objective (26) of the platoon system, we propose the closed
loop SMPC model M2:

M2 : min
Vi,K

E[J(Xi,Vi)]

s.t. Xi = Gφxi(k|k) + GBVi + MwWi,

Xi = Gφxi(k|k) + GBVi,

Ui = KXi + Vi,

Pr{QjXi ≤ qj} ≥ 1− εx,j , j = 1, . . . , nx,

Pr{PjUi ≤ pj} ≥ 1− εu,j , j = 1, . . . , nu,

xi(k +Np|k) ∈ ΨNp
.

(28)

where ΨNp
is terminal constraint set.

IV. MODEL REFORMULATION

In this section, we theoretically derive the computationally
tractable equivalent form of the SMPC with the cumulative dis-
tribution function of the stochastic perturbation. Based on the
mean and variance information of the stochastic perturbation,
we obtain a deterministic form of the expectation objective
(26):

E[J(Xi,Vi)] = XT
i (Sx + KTRuK)Xi + VT

i RuVi + 2(KXi)
TRuVi.

(29)

In the following, we obtain the equivalent forms of state
chance constraints and control chance constraints by using
Theorem 1 and Theorem 2.

Theorem 1: For the close loop SMPC model, the state prob-
ability constraint Pr{QjXi ≤ qj} ≥ 1 − εx,j , j = 1, . . . , nx

has the following equivalent form:

QjXi ≤ −F−1

QX̃−q
(1− εx,j), j = 1, . . . , nx, (30)

among that F−1

QX̃−q
is cumulative distribution function (CDF)

of the disturbance term QX̃ − q.
Proof: The error equation (15) can be divided into nom-

inal term Xi and perturbation term X̃i, i.e.,

Xi = Gφxi(k|k) + GBUi︸ ︷︷ ︸
Xi

+MwWi︸ ︷︷ ︸
X̃i

. (31)

Thus, the state chance constraints can be written as

Pr
{

Qj(Xi + X̃i) ≤ qj

}
≥ 1− εx,j , j = 1, . . . , nx,

⇒Pr
{

QjXi ≤ qj − QjX̃i

}
≥ 1− εx,j , j = 1, . . . , nx.

(32)

By introducing a new upper boundary Yi, we can compute
the nominal term QjXi ≤ Yi, and the (32) can be rewritten
as:

Pr{Yi ≤ qj − QjX̃i} ≥ 1− εx,j , j = 1, . . . , nx. (33)

Rearrangement Equation (33), we can obtain

Pr{QjX̃i − qj ≤ −Yi} ≥ 1− εx,j , j = 1, . . . , nx. (34)

Assumed that Wi belongs to a known probability distribution,
thus the CDF of perturbation term QjX̃i−qj can be obtained,
and the equivalent equation of state chance constraint (34) is

FQX̃−q(−Yi) ≥ (1− εx,j) . (35)

We can calculate the value of Yi by computing F−1

QX̃−q
with

probability 1− εx,j

Yi = −F−1

QX̃−q
(1− εx,j). (36)

Thus, the equivalent form of state chance constraint (34) is

QjXi ≤ −F−1

QX̃−q
(1− εx,j). (37)

■
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Theorem 2: For the close loop SMPC model of vehicle i,
the control chance constraints Pr{PjUi ≤ pj} ≥ 1−εu,j , j =
1, . . . , nu has the following deterministic equivalent:

Pj(KXi + Vi) ≤ −F−1

PX̃−p
(1− εu,j), j = 1, . . . , nu, (38)

where F−1

PX̃−p
is the cumulative distribution function of the dis-

turbance term PX̃− p, different from the one used previously.
Proof: For the body of control chance constraint

PjUi ≤ pj , we have

PjUi ≤ pj

⇒Pj(KXi + Vi) ≤ pj
⇒Pj [K(Xi + X̃i) + Vi] ≤ pj
⇒Pj(KXi + Vi) ≤ pj − PjX̃i.

(39)

Therefore, the control probability constraint can be reformu-
lated as

Pr{Pj(KXi + Vi) ≤ pj − PjX̃i} ≥ 1− εu,j , j = 1, . . . , nu

(40)
Similarly, a new up bound Zi is introduced, which can be
computed from Pj(KXi + Vi) ≤ Zi, we can have

Pr{Zi ≤ pj − PjX̃i} ≥ 1− εu,j , j = 1, . . . , nu. (41)

Equation (41) can be rearranged as follows

Pr{PjX̃i − pj ≤ −Zi} ≥ 1− εu,j , j = 1, . . . , nu. (42)

Under the same assumption, the CDF of perturbation term
PjX̃i − pj can be obtained. Accordingly, the equivalent ex-
pression of Equation (42) is

FPX̃−p(−Zi) ≥ (1− εu,j) . (43)

Likewise, Zi can be calculated by computing F−1

PX̃−p
with

probability 1− εu,j

Zi = −F−1

PX̃−p
(1− εu,j). (44)

Thus, the equivalent inequality of the constraints (42) is

Pj(KXi + Vi) ≤ −F−1

PX̃−p
(1− εu,j). (45)

■
Combining Theorem 1 and Theorem 2, the equivalent model

M3 of the SMPC model M2 can be deduced as:

M3 : min
Vi

E[J(Xi,Ui)]

s.t. Xi = MAxi(k|k) + MBUi + MwWi,

Xi = MAxi(k|k) + MBUi,

Ui = KXi + Vi,

QjXi ≤ −F−1

QX̃−q
(1− εx,j), j = 1, . . . , nx,

Pj(KXi + Vi) ≤ −F−1

PX̃−p
(1− εu,j), j = 1, . . . , nu,

xi(k +Np|k) ∈ ΨNp .
(46)

V. PERFORMANCE EVALUATION

In this section, simulation experiments are conducted in
MATLAB to confirm the effectiveness of our proposed SMPC
model for designated platoon systems. We explore the setup
details of the simulation simulation experiment and showcase
the safety, control performance and robustness of the SMPC
method. In the experimental setting, a formation system of five
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Fig. 3: The control signal, acceleration, velocity, position, velocity error and position error of all vehicles in the platoon.
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Fig. 5: The acceleration, velocity error and position error of platooning CAVs under different probabilities.

vehicles is defined, where the lead vehicle has a predetermined
trajectory travelling at a constant speed. All vehicles are
indexed as 0, 1, . . . , 4. Table I shows the fundamental pa-
rameter configurations. Moreover, the probability distribution
information of uncertain perturbation Wi are Wi ∼ (0,Σw)
where Σw = 0.1. All perturbations are randomly generated
within each prediction time domain in the Matlab function
toolbox. In addition, the elastic constant ks between two
adjacent vehicles is set to ks = 1.25. The initial state are set
to x1(0|0) = [0.5, 0.5], x2(0|0) = [0.6, 0.3], x3(0|0) = [0, 0.2]
and x4(0|0) = [1, 0.3]. To ensure the real-time performance
of the proposed model, we define the prediction horizon
as Np = 6 and the simulation time is NTs = 100 sam-
pling. Additionally, all simulations are executed using the
Matlab/Simulink-based solver version R2020 on a 2.8-GHz
64-bit Core i7-8400U CPU machine running Windows 10
Professional.

A. Experimental results

In this section, we analyse the control performance of
the proposed SMPC model. Specifically, the control input,
acceleration, velocity, position, velocity error and spacing error

TABLE I: Parameters settings

Parameter Value Parameter Value
εx,j 0.1 εu,j 0.1

Mi 1500Kg Ts 0.1 s

ep,min −1m ep,max +3m

ev,min −3m/s ev,min +3m/s

amin −4m/s2 amax +4m/s2

S diag{1, 1} R 1

of the vehicles in the platoon system are shown in Figure 3.
The subfigure 3(c) demonstrates that even if all vehicles have
different initial states all following vehicles can achieve the
same velocity as the lead vehicle and travel at a steady velocity
of 15 m/s. In addition, all the vehicles forming a longitudinal
platoon travelling at a stable spacing D = 10m, and there is
no risk of chain collision [Subfigure 3(d)]. The experimental
results show that even in a traffic environment with random
disturbances, each following vehicle is guaranteed to have
consistent velocity and to travel in formation with stable
spacing under the regulation of the proposed SMPC model,
which guarantees the safety of the vehicles and improves the
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Fig. 7: The average spacing error and velocity error under four platoon configurations.

robustness of the controller.
Furthermore, Figures 3(e) and 3(f) depict the velocity error

and position error between adjacent vehicles in the platoon,
respectively. In Figure 3(c), it is evident that the velocity
error of the vehicle undergoes fluctuations within a narrow
range due to initial conditions and stochastic perturbations,
which is reasonable. However, the sustained application of
the SMPC consistently diminishes the velocity error over
time. This convergence signifies the accurate alignment of
the followers with the velocity of the leading vehicle, un-
derscoring the controller’s efficacy in maintaining a uniform
velocity across the platoon. Similarly, Figure 3(f) illustrates
the evolution of spacing errors between consecutive vehicles.
Despite the initial state of every vehicle is different, the SMPC
model effectively regulates the acceleration and velocity of
each vehicle, ensuring the necessary inter-vehicle distance.
Ultimately, vehicles can uphold uniform distances from one

another, thereby minimizing collision risks and ensuring the
compactness and stability of the platoon.

B. Parametric Analysis

1) The control performance under different violation prob-
ability: We explore the control performance of the proposed
SMPC model under varying violation probabilities εx,j and
εu,j in the chance constraints. It can be observed that the
values of εx,j and εu,j determine the feasible region for
the solution of model M3. Specifically, as εx,j and εu,j
increase, the probability of constraints Prx{·} ≥ 1− εx,j and
Pra{·} ≥ 1 − εu,j being satisfied decreases. Consequently,
this relaxation of constraints places a less stringent demand on
the system, leading to a greater number of feasible solutions
and an expansion of the feasible region. For instance, under
a probability of 0.9, the feasible region is smaller than that
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under a probability of 0.8, given the former’s more stringent
limitation on the potential solution space.

To verify the reasonability of the theoretical analyses, we
perform simulation experiments for four cases:

Case 1: εx,j = εu,j = 0.01; Case 2: εx,j = εu,j = 0.10;
Case 3: εx,j = εu,j = 0.15; Case 4: εx,j = εu,j = 0.20.
Figure 4 illustrates the feasible zone in four cases with dif-

ferent probabilities. Meanwhile, Figure 5 presents the spacing
error and velocity error of platooning vehicles under varying
probabilities. The figure reveals that a higher probability of the
chance constraint holding (smaller εx,j and εu,j) corresponds
to increased stability of the controlled vehicle. Despite the ve-
locity errors and spacing errors satisfying boundary constraints
in the four scenarios, an elevated probability of violation
diminishes the vehicles’ resilience to stochastic perturbations.
Consequently, significant fluctuations in vehicle spacing er-
ror and velocity errors are observed (Subfigures 5(a)-5(h)).
Hence, the experimental results confirm the alignment with
theoretical analysis. The choice of the violation probability
significantly influences the stability and safety of the platoon
controller. These experimental findings offer practical insights
for decision-makers in selecting an appropriate probability of
chance constraint violation. In the following experiment, εx,j
and εu,j take the value of 0.01.

2) The control performance under different Spring systems:
In the SMPC model, we use a two-mass spring structure for the
kinematic states of neighbouring vehicles. Therefore, in this
section, we explore the adaptability of the proposed SMPC
method to heterogeneous platoons. Figure 6 shows the four
different platoon configurations, with the isomerization rate
increasing from the top to the bottom vehicle. For instance,
Configuration 1 exhibits 0% heterogeneity, while Configura-
tion 4 demonstrates 100% heterogeneity.

Figure 7 illustrates the average spacing and velocity error
across the four platoon configurations. In subfigure 7(a), a se-
quential decrease in average spacing error is observed for con-
figurations 1-4 at 40 s, suggesting that platoon configurations
with low heterogeneity exhibit higher safety and robustness.
Numerical results in Table II provide details on the average
spacing and velocity error for each platoon configuration.
Configuration 1 records the highest average spacing error at
0.194788 m, representing improvements of 10.99%, 33.06%,
and 31.25% compared to configurations 2-4, respectively.
These findings show that the proposed SMPC platoon control
method based on a two-mass spring system is also applicable
to heterogeneous platoons. Notably, platoon configurations
with low heterogeneity showcase enhanced robustness and
safety within the formation system.

C. Comparative Experiment
In this section, we contrast the safety, disturbance resistance

and computational efficiency of our proposed SMPC control
method with two other platoon control approaches under large-
scale disturbance. These three methods include:

Deterministic MPC(DMPC): This method is based on a
deterministic system modelling, which is not resistant to in-
terference. It relies on accurate system dynamics to formulate
control strategies.

TABLE II: The average spacing and velocity error of the four
platoon configuration in all time samples

Average Spacing Error Average Velocity Error

Configuration 1 0.194788m 0.088272m/s

Configuration 2 0.175491m 0.085134m/s

Configuration 3 0.146445m 0.076528m/s

Configuration 4 0.148404m 0.071568m/s

TABLE III: The mean and standard deviation of computation
time under three control methods

Computation Time
Avg. [s] Std. [s]

Deterministic MPC 1.344×10−3 2.317×10−4

Robust Bound MPC 2.632×10−3 2.515×10−4

Stochastic MPC(ours) 1.423×10−3 1.603×10−4

Robust Bound MPC(RBMPC): This method focuses on
handling bounded interval disturbances within a vehicle pla-
toon system and ensures safety and control performance under
worst-case scenarios.

Stochastic MPC(SMPC): The proposed method introduces
a probabilistic framework to accommodate randomness and
uncertainties in real-world scenarios. It provides flexibility by
considering the probabilistic nature of disturbances, enhancing
adaptability.

In comparative experiments across the three control meth-
ods, we analyse the control performance and computation
efficiency. In subfigures 8(a)-8(i), we present the error bands
of control input, velocity and spacing for all vehicles in the
platoon. It can be seen that the DMPC method lacks resilience
against stochastic disturbances, leading to unstable margins for
vehicle spacing errors. For example, the spacing error band of
the whole formation system increases in the [80,100] s interval,
which indicates the potential collision risk of vehicles under
the DMPC method (See the first column in Figure 8). Although
both RBMPC and SMPC have made efforts in disturbance
rejection, it is clear that the proposed SMPC method outper-
forms in maintaining velocity consistency. For example, when
k exceeds 61 s, the velocity error consistently hovers near zero,
indicating that the convoy vehicles maintain a consistent travel
velocity [subfigure 8(f)]. From the subfigures 8(h)-8(i), it is
evident that the SMPC method excels in the consistency of
inter-vehicle spacing compared to RBMPC and DMPC. For
instance, when k exceeds 42 s, the spacing error consistently
remains close to 0. This suggests that the platooning vehicles
are maintaining uniform spacing, and the error bands of the
SMPC method are fitting better than RBMPC.

In addition, we show the computation time under three
control methods in subfigures 8(j)-8(l) and Table III computes
the mean and standard deviation of computation time under
the proposed SMPC and other control methods. In comparison,
the DMPC method exhibits a lower average computation
time per control execution compared to SMPC and RMPC.
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Fig. 8: The control performance and computational efficiency of different control methods: First column (Deterministic MPC);
Second column (Robust Bound MPC); Third column (Stochastic MPC).
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This is reasonable, given that the computational complexity
in both SMPC and RBMPC is notably higher than that in
DMPC. Additionally, the computation time for the SMPC
method is lower than that for the RBMPC method, and the
computational efficiency of the SMPC method is improved by
43.95% compared with that of the RBMPC. This indicates
that the proposed control approach ensures algorithmic effi-
ciency while resisting random disturbances. In summary, the
NMPC method has limitations in effectively resisting random
disturbances, emphasizing the necessity of considering the
impact of such disturbances on platoon control. Although both
RMPC and SMPC control methods exhibit the ability to resist
uncertain disturbances, it is evident that under the SMPC
method (εx,j = εu,j = 0.01), there is a more pronounced
convergence of error margins. This clear observation indicates
that the SMPC method excels in controlling and mitigating
uncertainties, showcasing a superior performance in achieving
significant convergence of error margins and computational
efficiency.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a novel distributed SMPC method
for a vehicle formation system, focusing on resisting random
perturbations in the traffic environment and guaranteeing the
safety of the platoon system. First of all, we established a
vehicle motion state based on the two-mass spring principle.
We then constructed probabilistic chance constraints under
stochastic perturbations that are related to state and control
and constructed the controller’s objective in the form of the
expectation of the cost function. Theoretically, we derived a
computationally feasible deterministic version of the SMPC
platoon controller. Finally, we conducted simulation experi-
ments to validate the effectiveness of the proposed SMPC
method and analysed the security and robustness of the SMPC
model under different violation probabilities. Subsequently,
we compared it with two other control methods (DMPC
and RBMPC) in terms of perturbation resistance, safety, and
computational efficiency. The simulation test results show
that the control effect of the proposed SMPC is slightly
higher than that of the RBMPC method under relatively tight
probability, and the computational efficiency is improved by
43.95%. In the future, our research directions will expand
to include more complex strategies with multiple mass units
or other communication topology structures. In addition, we
aim to address challenges related to malicious attacks in V2V
communication and improve the fuel economy of the platoon.
This extension endeavours to bolster the reliability of platoon
formations, especially in complex environments.
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[21] E. González, J. Sanchis, S. Garcı́a-Nieto, and J. Salcedo, “A comparative
study of stochastic model predictive controllers,” Electronics, vol. 9,
no. 12, p. 2078, 2020.

[22] R. Chai, H. Niu, J. Carrasco, F. Arvin, H. Yin, and B. Lennox,
“Design and experimental validation of deep reinforcement learning-
based fast trajectory planning and control for mobile robot in unknown
environment,” IEEE Trans. Neural. Netw. Learn. Syst., pp. 1–15, 2022.

[23] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. L. P. Chen,
“Design and implementation of deep neural network-based control for
automatic parking maneuver process,” IEEE Trans. Neural. Netw. Learn.
Syst., vol. 33, no. 4, pp. 1400–1413, 2022.



13

[24] S. B. Prathiba, G. Raja, K. Dev, N. Kumar, and M. Guizani, “A hybrid
deep reinforcement learning for autonomous vehicles smart-platooning,”
IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13 340–13 350, 2021.

[25] M. Li, Z. Cao, and Z. Li, “A reinforcement learning-based vehicle
platoon control strategy for reducing energy consumption in traffic
oscillations,” IEEE Trans. Neural. Netw. Learn. Syst., vol. 32, no. 12,
pp. 5309–5322, 2021.

[26] H. Peng, W. Wang, Q. An, C. Xiang, and L. Li, “Path tracking and
direct yaw moment coordinated control based on robust mpc with the
finite time horizon for autonomous independent-drive vehicles,” IEEE
Trans. Veh. Technol., vol. 69, no. 6, pp. 6053–6066, 2020.

[27] Y. Zheng, S. E. Li, K. Li, and W. Ren, “Platooning of connected
vehicles with undirected topologies: Robustness analysis and distributed
h-infinity controller synthesis,” IEEE Trans. Intell. Transp. Syst., vol. 19,
no. 5, pp. 1353–1364, 2017.

[28] S. Feng, Z. Song, Z. Li, Y. Zhang, and L. Li, “Robust platoon control in
mixed traffic flow based on tube model predictive control,” IEEE Trans.
Intell. Veh., vol. 6, no. 4, pp. 711–722, 2021.

[29] J. Song, G. Tao, Z. Zang, H. Dong, B. Wang, and J. Gong, “Isolating
trajectory tracking from motion control: A model predictive control and
robust control framework for unmanned ground vehicles,” IEEE Robot.
Autom. Lett., vol. 8, no. 3, pp. 1699–1706, 2023.

[30] H. Zeng, Z. Ye, and D. Zhang, “Robust model predictive control based
cooperative control of uncertain connected vehicle platoon systems,” in
Proc. IEEE 9th Int. Conf. Control Automat. Robot. (ICCAR), Beijing,
China, 2023, pp. 256–261.

[31] R. Chai, A. Tsourdos, H. Gao, S. Chai, and Y. Xia, “Attitude tracking
control for reentry vehicles using centralised robust model predictive
control,” Automatica, vol. 145, p. 110561, 2022.

[32] C. Massera Filho, M. H. Terra, and D. F. Wolf, “Safe optimization of
highway traffic with robust model predictive control-based cooperative
adaptive cruise control,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 11,
pp. 3193–3203, 2017.

[33] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Syst. Mag., vol. 36, no. 6,
pp. 30–44, 2016.

[34] M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed, “Model
predictive control with learned vehicle dynamics for autonomous vehicle
path tracking,” IEEE Access, vol. 9, pp. 128 233–128 249, 2021.

[35] A. Musa, M. Pipicelli, M. Spano, F. Tufano, F. De Nola, G. Di Blasio,
A. Gimelli, D. A. Misul, and G. Toscano, “A review of model predic-
tive controls applied to advanced driver-assistance systems,” Energies,
vol. 14, no. 23, p. 7974, 2021.

[36] E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys, “Robust tube-
based decentralized nonlinear model predictive control of an autonomous
tractor-trailer system,” IEEE/ASME Trans. Mechatron., vol. 20, no. 1,
pp. 447–456, 2014.

[37] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and
G. Rennen, “Robust solutions of optimization problems affected by
uncertain probabilities,” Manage. Sci., vol. 59, no. 2, pp. 341–357, 2013.

[38] Q. Luo, A.-T. Nguyen, J. Fleming, and H. Zhang, “Unknown input
observer based approach for distributed tube-based model predictive
control of heterogeneous vehicle platoons,” IEEE Trans. Veh. Technol.,
vol. 70, no. 4, pp. 2930–2944, 2021.

[39] L. Hewing and M. N. Zeilinger, “Stochastic model predictive control for
linear systems using probabilistic reachable sets,” in Proc. IEEE Conf.
Decision and Control (CDC), Miami, FL, USA, 2018, pp. 5182–5188.

[40] S. H. Nair, V. Govindarajan, T. Lin, C. Meissen, H. E. Tseng, and
F. Borrelli, “Stochastic mpc with multi-modal predictions for traffic
intersections,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Macau,
China, 2022, pp. 635–640.

[41] Y. Lu, Y. Yue, G. Li, and Z. Wang, “Adaptive fault tolerant control
for safe autonomous driving using learning-based model predictive
control,” in 2023 IEEE Int. Conf. Mechatronics Autom. (ICMA), Harbin,
Heilongjiang, China, 2023, pp. 2218–2223.

[42] D. Shen, J. Yin, X. Du, and L. Li, “Distributed nonlinear model
predictive control for heterogeneous vehicle platoons under uncertainty,”
in Proc. IEEE Int. Conf. Intell. Transp. Syst. (ITSC), Indianapolis, IN,
USA, 2021, pp. 3596–3603.

[43] Y. Lu, J. Liang, W. Zhuang, G. Yin, J. Feng, and C. Zhou, “Four-wheel
independent drive vehicle fault tolerant strategy using stochastic model
predictive control with model parameter uncertainties,” IEEE Trans. Veh.
Technol., 2023.

[44] I. Y. Byungkyu “Brian” Park and K. Ahn, “Stochastic optimization for
sustainable traffic signal control,” Int. J. Sustain. Transp., vol. 3, no. 4,
pp. 263–284, 2009.

[45] M. F. Ozkan and Y. Ma, “Distributed stochastic model predictive
control for human-leading heavy-duty truck platoon,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 9, pp. 16 059–16 071, 2022.

[46] S. Mosharafian and J. M. Velni, “A hybrid stochastic model predictive
design approach for cooperative adaptive cruise control in connected
vehicle applications,” Control Eng. Pract., vol. 130, p. 105383, 2023.
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