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Abstract 

In contemporary real-time applications, diminutive devices are increasingly employing a greater 

portion of the spectrum to transmit data despite the relatively small size of said data. The demand 

for big data in cloud storage networks is on the rise, as cognitive networks can enable intelligent 

decision-making with minimal spectrum utilization. The introduction of cognitive networks has 

facilitated the provision of a novel channel that enables the allocation of low power resources 

while minimizing path loss. The proposed method involves the integration of three algorithms to 

examine the process of big data. Whenever big data applications are examined then distance 

measurement, decisions mechanism and learning techniques from past data is much importance 

thus algorithms are chosen according to the requirements of big data and cloud storage networks. 

Further the effect of integration process is examined with three case studies that considers low 

resource, path loss and weight functions where optimized outcome is achieved in all defined case 

studies as compared to existing approach.  

Keywords: Big data; Cloud storage; Cognitive channel; Intelligent decisions 

1. Introduction 

In the context of burgeoning industrial advancements, it is imperative to conduct a thorough 

analysis of each data set that is transmitted through discrete channels. The increasing volume of 

data across various industrial sectors necessitates the processing of diverse data types to their 

respective destinations. The primary requirement for various forms of data is the ability to 

compare current and past operational states, and to identify and rectify any changes that may be 

present. The proposed approach involves generating big data representations that can be applied 
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to real-time industrial applications, which are critical for making significant decisions. It is 

imperative to store data according to their designated types as big data is being processed. 

Therefore, the utilization of cloud computing storage methodology is employed to accommodate 

larger quantities of data with enhanced security measures. The outcome of employing this 

storage methodology is to make informed decisions by effectively utilizing all available data and 

resources. In order to enhance the efficacy of the necessary measures, it is imperative to 

transform them into an intelligent format. To achieve this, a cognitive intelligent technique has 

been incorporated into the designed cognitive channel. In the context of business product 

development, it is imperative to make informed decisions by conducting a comparative analysis 

of current and past stored values. In such instances, the suggested approach confers significant 

benefits by enabling the development of a novel methodology that exhibits superior operational 

efficacy. The combination of big data and cloud computing techniques can be considered a time-

saving process.  

 

 

 

 

 

 

Figure 1 Block diagram of big data representations 

However, it is imperative that a structured pattern be defined promptly to ensure the efficacy of 

this process.  The block diagram depicted in Figure 1 illustrates the process of big data and cloud 

computing, incorporating a cognitive intelligent decision making system. The block diagram 

representations for big data are constructed in Figure 1 by generating data knowledge for diverse 

types of data. After the creation of knowledge representations, the data set is collected in a 

manner that is individualized, with a focus on representing structured data formats. Upon 

collection of a dataset, it is necessary to eliminate duplicate values that are present throughout 
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the entire dataset in a manner that ensures appropriate allocation of storage space. Therefore, a 

comparison is made between the current and previous state values, and only the system with a 

low error factor is permitted to interact with the cloud storage device. Following the comparison 

of various values, all valid data is systematically organized and allocated uniform storage space. 

Following this, the data that has been stored will undergo analysis, aggregation, and evaluation 

in order to facilitate the making of intelligent decisions based on cognitive processes. 

1.1 Background and related works 

This section delves into the relevant literature pertaining to the utilization of big data and cloud 

computing for the purpose of making informed decisions. The literature review offers insight 

into the procedural aspects of implementing big data and its storage methodology through cloud 

networks. Therefore, many contemporary patterns have been identified and the limitations 

associated with parametric configuration have been addressed through various learning 

methodologies. The fundamental requirements for implementing data flows, as outlined in [1], 

are associated with a cost-effective model. This allows for the reuse of all big data processed 

across multiple applications, utilizing various deployment models. Furthermore, it has been 

observed that when resources are reused, identical outputs are generated, leading to decreased 

processing efficiency and increased storage complexity. Furthermore, the dynamic mode of big 

data operations involves multiple migration activities, which facilitates the estimation of unique 

psychological features [2]. One of the primary challenges encountered during cloud computing 

migration is the limited utilization ratio, which restricts the extent to which certain segments can 

be leveraged. Consequently, other segments may only be utilized at a discounted rate. To 

enhance the efficacy of big data storage in conjunction with cognitive intelligent decision-

making systems, a decentralized offloading technique is implemented through various algorithms 

[3]. The computational offloading process necessitates the big data to operate in a collaborative 

manner by utilizing wireless and multiple computing resources, thereby accomplishing an 

equitable allocation policy. However, the challenge of distributing resources equally among all 

data in the network persists as a daunting task that is considerably challenging to accomplish.  

This study provides an analysis of big data and cloud computing networks in the context of 

intelligent decision-making processes, wherein cognitive nodes generate large volumes of data 

[4]. Evidently, cognitive decisions are executed in consideration of distinct resource allocation 



systems, whereby the service role is predicated on a platform-based work model. The reference 

roles in cloud services have a significant impact on the paradigm shift, resulting in scalable 

analysis within the designated network. In the field of big data analysis, the scalability of a 

system is a crucial factor. When dealing with large and varying data sets, processing them using 

identical segments can prove to be challenging. Thus, it is recommended to represent the data set 

with a unique size at the initial stage. This approach can significantly reduce the complexity of 

the subsequent processing steps. In the aforementioned case, an analysis was conducted on the 

performance of cognitive networks in order to make informed decisions and attain self-sustaining 

data operations through the use of statistical values [5]. Given the ability of cloud computing 

networks to maintain functionality across diverse operating conditions, it is imperative that they 

be allocated equivalent spectrum bandwidth for optimal performance. However, it should be 

noted that data transmitted in a specific sequence through a cloud network using the same 

spectrum bandwidth may not necessarily result in intelligent decision-making. Furthermore, 

certain real-time observations necessitate the use of wide area networks due to the extensive 

spectrum ranges that the transmitted large data must encompass [6]. When transmitting data over 

long distances, it is necessary for the receiver to choose an appropriate signaling rate for the 

transmission, as the actual rate may be lower than anticipated. It is imperative to analyze the 

signaling rate of big data without any feature extraction, as the dynamic characteristics of such 

data cannot be altered even if it is clustered with multiple classification values.  

The process of feature extraction involves the mapping of parameters onto representations of big 

data, and the measurement of index values through learning modes [7]. The storage of data in 

low complexity states with time-varying data properties becomes essential as big data facilitates 

specific data indexing. During the aforementioned examination process, many cognitive systems 

are unable to make informed decisions due to the fluctuation of data over time. Moreover, in the 

realm of big data operations, it is highly probable that the primary user may surpass decision 

threshold values for data limit if cognitive intelligent decisions are implemented [8]. When the 

parametric values of power and voltage are significantly elevated, it is plausible that external 

noise factors may affect the transmission of large data through a specific channel. If the channels 

are employed with appropriate functionalities, it is feasible to utilize the complete spectrum 

without any interference. On the other hand, decisions regarding scheduling tasks can also be 

applied to representations of large data sets, which necessitate a suitable time frame for 



transmission, as stated in reference [9]. The creation of a schedule is contingent upon the 

examination of other cognitive nodes within the entire network, as individual time periods are 

provided. When examining individual nodes in relation to time periods, the sequence of data can 

facilitate appropriate delivery and storage. However, if the sequence of the entire data is altered, 

achieving both storage and delivery becomes significantly more challenging. Hence, a technique 

for integrating data across diverse industrial stations within manufacturing systems can be 

offered [10]. In the context of manufacturing systems, it is imperative to ensure that cloud units 

are provided with consistent data, and in the event that duplicate data is detected, it must be 

promptly eliminated from the system. The abstraction of data units leads to an improvement in 

the response of data functions and integration procedures. Table 1 presents a comparative 

analysis between the proposed methodology and prior research in the field. 

Table 1 Existing vs Proposed 

Reference Methods/Algorithm 
Objectives 

A B C D 

[11] Deep reinforcement learning with computational offloading     

[12] Fading channel representations     

[13] Cognitive channel sensing with reinforcement algorithm     

[14] Square law integrated energy detection for big data analysis     

[15] Explainable artificial intelligence for clustered big data     

[16] Multitask neural network for industrial applications     

[17] Black box artificial intelligence for interpretability analysis     

[18] Prototype design for big data with sensing techniques     

Proposed 
Trifold algorithm for big data and cloud computing with 

intelligent decisions 

    

A: Minimization of power; B: Minimization of resources; C: Path loss reduction; D: Individual 

weight functions for big data 

 

1.2 Research gap and motivation 

As stated in the background and related literature, numerous methods have been developed to 

ensure the effective operation of big data and cloud computing technologies. However, the 

incorporation of multi-objective optimization within established network configurations has not 

been addressed in any of the current models. Despite the availability of appropriate protocols for 

managing large datasets, certain astute decisions are not executed within the designated 

timeframe, resulting in diminished efficacy of storage infrastructures. At a later point in time, 



even if determinations have been made, certain data is replicated during each service interval, 

which is regarded as a significant limitation in all established approaches. In addition, the 

utilization of big data approximations is implemented within the specified cognitive channel, 

resulting in a reduction of input power across all big data representations.  

Therefore, in order to address the aforementioned limitations, the proposed approach 

incorporates multi-objective parametric representations that encompass a cognitive channel 

framework. The cognitive framework facilitates the making of intelligent decisions during the 

transmission phase of big data, thereby ensuring the implementation of a distinctive storage 

technique. The system model incorporates a trifold algorithm comprising K-nearest neighbor, 

decision tree, and deep Q-learning algorithm in conjunction with parametric evaluations. This 

algorithm is designed to store all big data representations of industrial processes in cloud 

computing systems.  

1.3 Major contributions 

The major objective of proposed method on big data and cloud computing with cognitive based 

intelligent decisions is to provide a unique framework for data representations. Therefore the 

parametric objective functions for determined big data functions are as follows. 

• To develop a unique cognitive channel that reduces the power consumed from big data 

and storage networks. 

• To provide low resource for transmitting big data thus reducing cognitive spectrum 

allocation for allocated time periods. 

• To minimize the path loss and weight functions of every data that is present in the system 

before storing as trifold algorithms are integrated. 

1.4 Paper organization 

The rest of the section in the paper is organized as follows: Section 2 provides mathematical 

representations of big data and cloud computing networks for taking intelligent decisions. 

Section 3 integrates a trifold algorithm with defined system model using pseudo code 

implementation. Section 4 focuses on experimental outcomes with different scenarios that are 

based on individual parameters. Finally, Section 5 concludes the proposed method with 

directions on future work. 



2. Proposed system model 

The proposed methodology involves the development of a system model utilizing a cognitive 

intelligent framework. This approach is necessary to effectively manage spectrum utilization in 

various industries that transmit large volumes of data for storage in the cloud. The system model 

being presented comprises several parameters that require thorough examination prior to the 

integration of the intelligent framework into the design, thereby ensuring optimal utilization of 

the framework. Therefore, the cognitive framework's channel model can be precisely defined 

through the utilization of Equation (1) in the subsequent manner. 

   𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑚𝑖𝑛 ∑
𝑃1+..+𝑃𝑖

𝑃𝑗

𝑛
𝑖=1 + 𝐺𝑛(𝑖)          (1) 

Where, 

𝑃1+. . +𝑃𝑖 indicates power of cognitive source of each data 

𝑃𝑗 denotes total power of input cognitive systems 

𝐺𝑛(𝑖) represents the gain of transmitting data 

The first equation elucidates the crucial importance of individual data power in large-scale 

industrial applications of big data. In such contexts, the absence of even a single data point 

within a given time period can significantly complicate the monitoring process. Therefore, the 

average input power can be expressed in the following manner. 

    𝑃𝑖𝑛𝑝𝑢𝑡 = 𝑚𝑖𝑛 ∑
𝛿𝑖𝐼𝑖𝑛

𝜎𝑖

𝑛
𝑖=1             (2) 

Where, 

𝛿𝑖 denotes modification of power in transmitted data  

𝐼𝑖𝑛 represents interference that is present in big data 

𝜎𝑖 indicates the mean value of transmitted data 

Equation (2) stipulates that in order to establish appropriate links for cloud storage, it is 

imperative that total input functions with data exhibit minimal interference, even in the presence 



of high data volumes. Furthermore, the utilization of fog devices enables the complete 

implementation of cloud storage, incorporating channel functions. The transmission capacity can 

be mathematically represented by Equation (3). 

     𝑇𝑐 = 𝑚𝑎𝑥 ∑ 𝐶𝑖𝑤𝑖
𝑛
𝑖=1             (3) 

Where, 

𝐶𝑖 indicates individual cognitive channel capacity 

𝑤𝑖  denotes total allocated load to each cognitive nodes 

According to Equation (3), it is imperative in industrial settings to augment the load of individual 

nodes to ensure efficient transmission of data without any spectrum wastage. The allocation of 

resources plays a crucial role in determining spectrum utilization in cognitive intelligent systems. 

To represent the total number of allocated resources, Equation (4) is employed. 

     𝑅𝑖 = 𝑚𝑖𝑛 ∑
𝑤𝑖

𝑅1+..+𝑅𝑛

𝑛
𝑖=1            (4) 

Where, 

𝑅1+. . +𝑅𝑛 denotes total number of data resources that are provided to cloud 

According to Equation (4), the optimal allocation of resources in service functions can lead to a 

reduction in total workload. Therefore, the calculation of resource demand can be achieved by 

utilizing individual weight functions, as denoted in Equation (5). 

   𝐷𝑟(𝑖) = 𝑚𝑖𝑛 ∑ (𝛼1+. . +𝛼𝑖) × (𝑅𝑖 − 𝑢𝑡𝑖)𝑛
𝑖=1                       (5) 

Where, 

𝛼1+. . +𝛼𝑖 represents weight function of individual data 

𝑢𝑡𝑖 denotes cognitive data utility functions 

According to Equation (5), the weight functions of each data must be minimized in order to 

maintain a low total utility function. Thus, the expression for the data detection threshold is 

denoted by Equation (6) in the following manner. 



   𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑑𝑎𝑡𝑎 = 𝑚𝑖𝑛 ∑ 𝜌𝑖𝑛 − 𝐺𝑛
𝑛
𝑖=1                    (6) 

Where, 

𝜌𝑖𝑛 denotes detection device threshold value 

According to Equation (6), the minimization of data threshold values is necessary in order to 

ensure the optimal utilization of spectrum for demand purposes. Furthermore, it is imperative to 

minimize the total path loss by reducing the delay in spectrum utilization, as specified in 

Equation (7). 

    𝐿𝑝 = 𝑚𝑖𝑛 ∑
𝑑𝑖𝑠𝑡1+..+𝑑𝑖𝑠𝑡𝑖

𝑑𝑖𝑠𝑡𝑡

𝑛
𝑖=1             (7) 

Where, 

𝑑𝑖𝑠𝑡1+. . +𝑑𝑖𝑠𝑡𝑖 denotes distance of individual data 

𝑑𝑖𝑠𝑡𝑡 indicates total distance 

According to Equation (7), the provision of separate distance measurements in cloud networks 

can result in complete reduction of path loss. Since a cognitive channel model is designed for 

industrial applications the parametric changes for processing big data must be represented with 

composite objective functions. Hence Equations (8) and (9) is formulated as follows. 

    𝑓1(𝑥) = 𝑚𝑖𝑛 ∑ 𝐷𝑟 , 𝑅𝑖 , 𝐿𝑝
𝑛
𝑖=1                    (8) 

    𝑓2(𝑥) = 𝑚𝑎𝑥 ∑ 𝑇𝑐
𝑛
𝑖=1                      (9) 

The combined case for integrating with trifold algorithms for analysing data mapping procedures 

can be formulated using Equation (10) as follows. 

    𝑜𝑏𝑗𝑡 = 𝑓1(𝑥) + 𝑓2(𝑥)                (10) 

The optimization objective is to minimize demand, resources, and path loss while maximizing 

big data transmission capacity, based on a min-max criterion. The attainment of objective 

functions necessitates their integration into an optimization algorithm. Consequently, a trifold 

algorithm has been selected and incorporated to facilitate the realization of optimal outcomes. 



3. Methods/Optimization algorithms 

The optimization algorithm is implemented in a three-fold manner in this section, whereby the 

proposed system model is integrated into each step's functions. Furthermore, all three algorithms 

incorporate the parameters that facilitate the system's operation. The optimization of spectrum 

utilization is a crucial aspect in cognitive radio, with the aim of efficiently transmitting and 

storing the vast amount of available data within the network. Hence, the K-nearest algorithm, 

utilized for distance measurement, has been selected. Given that data is partitioned for multiple 

decisions, it is imperative to introduce certain data branches, thereby necessitating the use of a 

decision tree. The integration of triple data authentication has become a standard practice for 

ensuring proper authentication of big data stored in the cloud. The integration of the proposed 

model and optimization algorithms is imperative due to the ability to define an approximation 

function with a collection of data maps [15-17]. This results in the transmission of data following 

cognitive actions and a dedicated path, thereby enabling the mapping of both input and output 

functions. If optimization algorithms are not incorporated into the proposed model, the accuracy 

and speed of operation of cognitive intelligent systems during the big data training phase may be 

compromised. Therefore, effective routing mechanisms are utilized to manage all issues related 

to big data and cloud storage. Furthermore, in the process of optimization, a clearly defined 

dataset that is oriented towards the future is established, ensuring that each datum originates 

from a predetermined feasible point. The following is a comprehensive exposition of trifold 

algorithms. 

 

3.1 K-nearest neighbor 

A data proximity procedure is necessary in cognitive intelligent big data handling networks for 

industries, thus the K-nearest algorithm has been incorporated into the system model. In 

industrial settings where the goal is to monitor the behavior of each device through the 

transmission of large amounts of data, it is necessary to group individual data points [19]. This 

approach enables the utilization of storage techniques that can effectively separate the data while 

maintaining a high level of privacy. The utilization of big data for cognitive purposes in various 

industries is commonly categorized as either classification or regression. To achieve this, the K-



Nearest Neighbor (KNN) algorithm is employed to assign identical data points to the nearest 

cognitive nodes. Subsequently, the cognitive intelligent system proceeds to eliminate the given 

information and subsequently establishes a mapping of alternative information to facilitate 

further data processing, without any intervening disruptions. If any issues arise with data 

classification following the utilization of the spectrum, it is possible to establish a set of labels to 

aid in spectrum identification. The classification challenges of big data in cloud storage, as stated 

above, are applicable solely to discrete scenarios. In contrast, regression can be appropriately 

defined for continuous cases through adequate training procedures. The major advantage of 

KNN in big data and cloud storage applications is that assumption of data is not made and 

decisions are made only during action period. Hence most of the time that is allocated for data 

training is saved where new data points are established at high security. The proposed method 

incorporates cognitive intelligent decision-making during each transmission period, as opposed 

to neglecting training errors for data. The calculation of the distance for each data node can be 

performed by utilizing Equation (11) in the following manner. 

    𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐾𝑁𝑁 = 𝑚𝑎𝑥 ∑ (𝑢𝑖 − 𝑣𝑖)
2𝑛

𝑖=1                    (11) 

Where, 

𝑢𝑖, 𝑣𝑖 indicates individual data points 

According to Equation (11), it is necessary for all data points to exhibit distinct differences, 

thereby enabling the establishment of new data points with equivalent distances. Equation (12) 

outlines two necessary conditions for determining points in the context of big data. 

    𝜗𝑖 = {
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐾𝑁𝑁 = 0 𝑓𝑜𝑟 𝑢 = 𝑣
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐾𝑁𝑁 = 1 𝑓𝑜𝑟 𝑢 ≠ 𝑣

         (12) 

The constraints specified in Equation (11) imply that the introduction of new data points is 

precluded when the distances between existing points are equalized. In the absence of 

equalization of points, it is possible to elevate data points without any cognitive intervention. 

Equation (13) provides a functional representation of KNN. 

     𝑧𝑖 = ∑ 𝑓(𝑎𝑖)
𝑛
𝑖=1           (13) 

Where, 



𝑎𝑖 represents neighboring functions 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 KNN for big data and cognitive intelligent networks 

Equation (13) describes that the main function 𝑧𝑖 is followed by close neighbors which are 

indicates with 𝑎𝑖. Hence the sum of overall neighboring sequence can be represented using 

Equation (14) as follows. 

     𝑆𝑁𝑖 = 𝑎𝑟𝑔 ∑ 𝑝𝑟𝑜𝑏𝑑(𝑖)𝑛
𝑖=1          (14) 

Where, 

𝑝𝑟𝑜𝑏𝑑(𝑖) indicates probability of data samples 

The block representations of KNN are illustrated in Figure 2 and the pseudo code for 

implementation is as follows. 

Algorithm 1 K-nearest neighbors 

Begin PROCEDURE KNN 

Set of individual 

data points 
Classification 

of data points 

Neighboring 

functional point 

representation 

Probability of 

data samples 

Distance separation of (u,v) 

Equal distance 

representation of 

neighboring nodes 

Check for maximized 

distance and data points 

Unequal distance 

representations  

Representation of 

attribute functions 

Selecting new 

neighboring points 

Measurement of 

probability values 



          Given 

            𝑢𝑖,𝑣𝑖: Individual data points 

            𝑎𝑖: Total number of neighboring cognitive nodes 

          for i=1:n do 

1. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐾𝑁𝑁 for measuring the distance of big data separation 

2. 𝑎𝑖 for choosing appropriate neighboring nodes 

          end  

          else 

          for all i=1:n do 

3. 𝑝𝑟𝑜𝑏𝑑 for observing the probability of data samples 

          end 

end PROCEDURE 

According to Equation (14), the probability of embedding in cognitive space is contingent upon 

the establishment of data value attributes. It is necessary to decrease the intricacy of adjacent 

nodes by employing Equation (15) in the following manner. 

    𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖 = 𝑚𝑖𝑛 ∑ 𝑠𝑑(𝑖) × 2𝑛
𝑖=1          (15) 

3.2 Decision tree 

Given the increasing volume of data being transmitted and stored in the cloud, it is imperative to 

adopt a multi-faceted approach to decision-making. Specifically, it is advisable to select 

individual decision mechanisms based on the branches of each tree segment. The decision tree 

algorithm, akin to KNN, follows a two-step procedure. The first step involves data classification, 

while the second step involves the degradation of individual data that is transmitted through 

multiple paths. The decision tree algorithm employs three distinct data node representations, 

namely internal, external, and root nodes. In a decision tree, each internal node serves as an 



independent testing mechanism, ensuring that each data point is evaluated using appropriate 

measurements [20]. Nevertheless, the determination is not made by any internal node, thereby 

enabling sub-branches to make the storage decision, as denoted by class labels. The major 

advantage of decision tree algorithm is that no prior knowledge about individual attributes are 

needed thus every data will learn using past sample values. In decision tree algorithm only 

graphical representations of nodes are present therefore it is much easier for external user to 

provide a particular decision. In the decision tree, two distinct types of gain values are observed, 

namely purity and impurity of data, which are transmitted instantaneously. Moreover, the 

intricacies pertaining to error measurements are ascertained in the suggested approach through 

the utilization of the decision tree algorithm. Equation (16) can be utilized to express the 

mathematical representation of unadulterated data in cloud storage networks through the 

implementation of cognitive intelligent systems. 

    𝐺𝑎𝑖𝑛𝑖 = 𝑚𝑎𝑥 ∑ 𝐸𝑛𝑡𝑤𝑎 − 𝐸𝑛𝑡𝑓
𝑛
𝑖=1          (16) 

Where, 

𝐸𝑛𝑡𝑤𝑎 represents entropy of data weights 

𝐸𝑛𝑡𝑓 indicates entropy of feature set data 

According to Equation (16), in order to optimize the gain of big data representations, it is 

necessary to carefully analyze the individual data weights within each branch. Equation (17) can 

be utilized to express the decisions based on weighted averages. 

     𝐸𝑛𝑡𝑤𝑎 = 𝑃(𝑦𝑖) × 𝑃(𝑛𝑖)         (17) 

Where, 

𝑦𝑖, 𝑛𝑖 represents decision factor with affirmative and non-affirmative values 

If Equation (17) contains a greater number of non-affirmative values, then the weighted average 

of the output functions will be multiplied by two. The quantification of impurities in large 

datasets is carried out as a means of mitigating such occurrences. 

    𝐷𝑖𝑚𝑝𝑢𝑟𝑒 = 1 − 𝑚𝑖𝑛 ∑ 𝐵𝑆𝑖
𝑛
𝑖=1                     (18) 



Where, 

𝐵𝑆𝑖 denotes binary data separations 

 

 

  

 

 

 

 

 

 

Figure 3 Decision tree for big data and cognitive intelligent networks 

According to Equation (18), it is necessary to decrease the distance between binary values, which 

results in the direct reduction of impure data. Nevertheless, certain terminal nodes that are 

directly linked to primary branches may encounter some degree of impurity, denoted by 

Equation (19) in the subsequent manner. 

    𝐿𝑖𝑚𝑝𝑢𝑟𝑒 = 𝑚𝑖𝑛 ∑
𝐺𝑎𝑖𝑛𝑖

𝐸𝑛𝑡𝑤𝑎

𝑛
𝑖=1           (19) 

The pseudo code of decision tree is follows and block representations are illustrated in Figure 3. 
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Algorithm 2 Decision tree 

Begin PROCEDURE DT 

          Given 

            𝐸𝑛𝑡𝑤𝑎,𝐸𝑛𝑡𝑓: Input entropy functions 

            𝑃(𝑦𝑖), 𝑃(𝑛𝑖): Probability of primitive and non-primitive nodes 

          for i=1:n do 

1. 𝐷𝑖𝑚𝑝𝑢𝑟𝑒  for measuring the impure data 

2. 𝐿𝑖𝑚𝑝𝑢𝑟𝑒 for observing additional branch impure segments 

          end  

          else 

          for all i=1:n do 

3. 𝐺𝑎𝑖𝑛𝑖 for measuring total information gain 

          end 

end PROCEDURE 

3.3 Deep Q-learning 

As previously stated, the utilization of reward functions in big data operations enables a user to 

make intelligent decisions during transmission and reception scenarios. The introduction of the 

deep Q-learning model aims to assess environmental scenarios and communicate appropriate 

actions to various stakeholders for the storage of specific data [21]. This Q-learning model 

incorporates both states and actions to amalgamate data from similar cases. To facilitate the 

process of making critical cognitive decisions, it is imperative to construct a Q-table that updates 

both the state and actions upon the transmission of each piece of data to the receiver. At the onset 

of a data sequence, the determination of the data state is contingent upon discrete agents. In the 

event of an overload, the storage system is promptly altered. The positive and negative states of a 



user determine all consequential actions that must be taken. Hence, it can be observed that 

maximizing the strength of data leads to a positive impact on data transmission, without any 

alteration in storage values. The initial time period is used to verify the data estimates for both 

the current and optimal states, which allows for the attainment of expected values in the 

cognitive decision-making process. The major advantage of deep Q-learning model is that it is 

completely based on error and trial method therefore every data that is transmitted to cognitive 

nodes will have some error and it is rectified at later stage. In addition the nature of environment 

in cognitive intelligent decisions are based on stochastic process more amount of data rewards 

can be achieved. The mathematical formulation of deep Q-learning algorithms can be expressed 

as follows. 

    𝑄(𝛽, 𝛾) = 𝑚𝑎𝑥 ∑ 𝑅𝑒𝑤𝑎𝑟𝑑𝑖(𝛽, 𝛾)𝑛
𝑖=1               (20) 

Where, 

𝛽, 𝛾 indicates reward factors of every data 

 

 

 

 

 

 

 

 

 

 

Figure 4 Deep Q-learning for big data and cognitive intelligent networks 

The block representation of deep Q-learning is depicted in Figure 4 and the pseudo code 

representations are as follows. 
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Algorithm 2 Deep Q-learning 

Begin PROCEDURE DQL 

          Given 

            𝛽,𝛾: Big data functions 

            𝑅𝑒𝑤𝑎𝑟𝑑𝑖: Reward functions for input data representations 

          for i=1:n do 

1. 𝑢𝑡𝑖 for providing utility data functions 

2. 𝑑𝑖𝑠𝑓 for assigning maximum discount factor 

          end  

          else 

          for all i=1:n do 

3. 𝑉𝑐(𝑖) for providing maximum control voltage 

          end 

end PROCEDURE 

According to Equation (20), it is necessary to maximize the reward functions of each data, which 

subsequently results in the derivation of a personalized discount factor. Therefore, the discount 

factor is expressed in the following manner. 

    𝑑𝑖𝑠𝑓 = ∑ 𝑢𝑡𝑖(𝛽, 𝛾)𝑛
𝑖=1                 (21) 

Where, 

𝑢𝑡𝑖 describes data utility functions 

In order to represent utility functions, it is necessary to provide control voltage as outlined in 

Equation (22), as follows. 



     𝑢𝑡𝑖 = 𝑚𝑖𝑛 ∑ 𝑉𝑐(𝑖)𝑛
𝑖=1           (22) 

Where, 

𝑉𝑐(𝑖) represents control voltage for data functions 

4. Results  

This section presents the simulation and description of the real-time examination results for a 

proposed system model that integrates a trifold algorithm. The aim is to comprehend the impact 

of cognitive systems in facilitating intelligent decision-making. The proposed methodology 

establishes a relationship between the impact of the system model and parametric testing, 

resulting in outcomes that are solely dependent on the cognitive channel that has been developed. 

The attainment of desired results involves the utilization of a dataset comprising a 1400-bit 

sequence. This dataset interfaces with seven distinct cloud systems to facilitate optimal storage 

while ensuring a high level of security. After identifying the dataset, potential strategies for 

integrating it with the established channel while operating under low power conditions are 

established. At the outset, it is observed that certain errors are elevated owing to the presence of 

undefined data sets. Consequently, in subsequent processing stages, all undefined data sets are 

eliminated. Furthermore, a comparison is conducted with prior state outputs, thereby enabling 

the determination of the current operational state with minimal impact. The rationale for 

selecting a 1400-bit sequence is based on the channel's design limitations, which can only 

accommodate a maximum of 1600 bits. Therefore, to prevent data congestion, the proposed 

method employs a dataset of this size. The resources allocated are designed to be uniform across 

all datasets, ensuring equitable decision-making within a specified threshold. Three case studies 

have been selected to examine the impact of parametric variables based on the defined objective 

function. The significance of these case studies is presented in Table 2. 

Case study 1: Allocation of power and resources 

Case study 2: Path loss representations 

Case study 3: Determination of individual weight function  

 



Table 2 Significance of proposed case studies 

Case studies Importance/ Significance 

Allocation of power and resources 
Demonstrate the data in cognitive channel with identical 

allocation capacity 

Path loss representations Reduce the data loss in a particular path before storage 

Determination of individual weight 

function 

Utilize the data in a proper way before taking intelligent 

decision 

 

4.1 Discussions 

The aforementioned scenarios have been simulated using MATLAB software to facilitate a 

visual representation for enhanced comprehension. The graphical representations are processed 

using MATLAB, while the large data sets are processed using cognitive nodes in a network 

simulator. Subsequently, all values are determined. The comprehensive depiction of each case 

study is presented below. 

Case study 1: Allocation of power and resources 

It is imperative to allocate minimal power during the transmission phase for every large dataset 

that is being transmitted to the recipient. If the allocated power exceeds the necessary amount, it 

may lead to inefficiency, hence it is crucial to provide an appropriate amount of power to the 

relevant data segments. Furthermore, it is imperative to appropriately represent additional 

resources within the cognitive channel to prevent data transmission failure at various stages. 

Efficient allocation of resources for a given dataset enables informed decision-making within the 

designated framework. Hence, in the cognitive channel, power allocation is performed for all 

accessible data, which is segregated by the overall input power, and the gain of input cognitive 

systems can be evaluated. A higher gain in transmitted data suggests that sufficient resources 

have been allocated to ensure that each data transmission reaches the receiver without any 

external interference. Furthermore, the assigned data resources are depicted for each data, thus 

individual weight functions are also furnished. The simulation results pertaining to the allocation 

of resources are depicted in Figure 5. 

 



 

 

 

 

 

 

 

 

 

 

Figure 5 Maximum allocated power for big data transmission 

According to the findings presented in Figure 5, it is feasible to minimize the allocation of power 

and other resources in order to facilitate efficient transmission of large amounts of data. 

Additionally, the storage of such data can also be carried out using minimal resources. The 

cognitive channel representations for each data point, specifically 10, 20, 30, 40, and 50, were 

provided in order to investigate the impact of power allocation. According to the given dataset, 

the total number of allocated resources will be 4, 6, 7, 9, and 11, respectively. This is because 

each dataset requires a minimum of one-fourth of the resources for the given data set, as stated in 

reference [2]. Consequently, the allocation of power is facilitated through the provision of 

resources in a manner that enables cognitive channels to make informed decisions. The proposed 

method exhibits an allocated power of 2.14, 2.58, 3.22, 4.67, and 4.94, while the existing method 

allocates power for each data at transmission state with the same data set and resources, resulting 

in a maximized range of 4.58, 6.91, 7.02, 8.12, and 10.89. Therefore, by operating at lower 

power levels, it is possible to gather and retain large amounts of data in a cloud-based platform. 

 



Case study 2: Path loss representations 

The present case study delineates the path loss representations for transmitted data with cognitive 

channel, utilizing individual distance measurements. Consequently, distance values are measured 

for each datum and subsequently segregated from the total distance value, enabling the 

determination of individual path losses. Moreover, loss representations indicate that a specific set 

of data is relocated from one position to another, thereby impacting the current channel path. If a 

path loss occurs in cognitive intelligent decision making systems, the depletion of the allocated 

spectrum will ensue. In order to make informed decisions, it is imperative to minimize losses in 

specified pathways. This can be accomplished through the establishment of appropriate system 

models that are associated with distance measurements. The simulation results for path loss 

representations are presented in Figure 6. 

 

 

 

 

 

 

 

 

Figure 6 Measurement of path loss with total distance allocation 

The findings from Figure 6 demonstrate that the proposed method minimizes path loss 

representations in comparison to the existing approach, as it effectively maintains the appropriate 

distance between two data points. To ascertain the path loss distance, the data points are taken 

into account, specifically 2.88, 3.12, 3.65, 4.57, and 5.33, while ensuring that a minimum 

distance separation is maintained for each data point. The total distance separation for all data is 

deemed to be 15. The distance representation outlined above indicates that the proposed method 



exhibits path loss values of 19, 15, 12, 10, and 8. In contrast, the existing approach maintains 

path loss values of 26, 22, 18, 16, and 14. Furthermore, it should be noted that the path loss 

mentioned above is calculated solely prior to data storage, whereas the overall path loss may 

fluctuate during the transmission phase. Moreover, the reduction in path loss results in the 

attainment of balanced data types. This ensures stable operations for the entire big data through 

the use of trifold algorithms.  

Case study 3: Determination of individual weight function 

In order to efficiently store transmitted data, it is necessary to determine a weight function for 

each data set received. This weight function serves to reduce the demand for data retrieval. 

Therefore, in this particular case study, weight functions are computed for each data point and 

corresponding utility functions are subsequently aggregated. To determine suitable weight 

functions, individual data is incorporated and replicated using available resources. Therefore, 

based on the available resources, the level of utilization is decreased. This occurs when a low 

weight factor is employed, allowing for uninterrupted transmission of all data to the receiver. 

Furthermore, in cases where weight functions exhibit significantly lower values for a specific 

dataset, it may be possible to optimize utility functions up to a certain degree. The utility 

functions require that all data transmitted and stored in a given block must be fully utilized 

without incurring any penalty. Provided that complete utility factors are utilized effectively, it is 

possible to furnish reward functions aimed at minimizing supplementary weight functions. The 

simulation output of individual weight functions allocated to each data is presented in Figure 7. 

The findings from Figure 7 demonstrate that the proposed method minimizes individual weight 

functions in comparison to the existing approach. This suggests that all transmitted data is 

effectively utilized. The utility of real-time outcomes data has been demonstrated through values 

of 56, 64, 70, 78, and 85, with the remaining data being utilized in a partial manner. The 

utilization function mentioned above involves the examination of individual weight functions. In 

the proposed method, these weight functions are found to be 821, 702, 589, 357, and 129. On the 

other hand, the existing method yields individual weight functions of 1278, 1156, 1028, 887, and 

543. Therefore, by utilizing weight functions that are allocated appropriately, it is possible to 

transmit the complete dataset with high reward functions. The reward factors are allocated to 

each data based on comprehensive resource utilization. Consequently, not all transmitted data is 



taken into account during the intelligent decision-making process. Only cognitive intelligent 

decision-making processes consider low data weight functions with high utilization factors. 

 

 

 

 

 

 

 

 

 

Figure 7 Data weight functions and utility values 

4.2 Performance analysis 

To analyse the best and worst case scenario on incorporating cognitive computations it is 

necessary to perform big data analysis with respect to input size. Since in industrial applications 

more amount of data is observed and stored in cloud the complexity of data will be much higher 

and in the proposed method scaling metrics is used for determining all three algorithmic cases. 

Further complete limiting behaviour of industrial applications is achieved in order to prevent the 

data from moving towards infinite solutions thus reduced complexities can be observed in this 

case. Moreover both upper and lower bounds for complete data is maintained thus a feasible 

point is determined at this case thereby boundary limitations of big data is also reduced. As a 

result of the boundary limitations robustness of all three algorithms are determined with best 

epoch which is indicated in Figure 8 where group of iterations is combined. 



 

 

 

 

 

 

 

 

Figure 8 Comparison of robustness for proposed and existing approaches 

From Figure 8 it is obvious that robustness of proposed approach is reduced using deep Q-

learning as compared to traditional optimizations that considers big data for industrial 

applications. The major reason for reductions in robustness is that individual cloud platforms are 

used for proper storage thereby with the help of cognitions it is possible to protect data in an 

individual way. To verify the outcome of robustness best epoch with 20 step variations are 

considered and reduced threshold for robustness conditions are observed. At initial state the 

robustness for considered data is reduced from 9,6,4,2 and 1% in case of proposed method 

whereas in existing approach [2] the robustness is observed to be 24,21,18,15 and 12% 

respectively. 

5. Conclusions and future work 

The significance of large-scale data and cloud-based storage networks lies in their ability to offer 

distinct identification of all ongoing activities across diverse industrial applications. The advent 

of big data has enabled the monitoring of timely activities without reliance on external factors. 

The proposed methodology involves the analysis of big data and cloud storage networks, 

wherein cognitive intelligent decisions are utilized to determine the transmission and reception of 

data. Additionally, the system model has been formulated to examine the various parameters of 

big data that are evident in the cognitive channels produced, while simultaneously minimizing 



resource allocation. The proposed method offers a primary advantage in the form of cloud 

networks, which enable the transmission and storage of monitored big data with minimized 

power and other resources. The level of path loss in big data is typically elevated, thus 

necessitating the integration of a trifold algorithm that comprises of shortest distance mapping, 

branch-based decisions, and deep Q-learning. The challenge of spectrum utilization for big data 

persists when cognitive networks make intelligent decisions. To address this issue, a proposed 

method incorporates a short distance mapping procedure to solve the spectrum utilization 

problem. Furthermore, a crucial feature of the proposed approach is the consideration of 

individual weight factors for each data point to facilitate maximum transmission distance. This 

implies that specific data networks can be assigned additional weights, while some pre-defined 

data may be excluded. The present study utilizes a system model and integrated trifold algorithm 

to investigate three case studies that demonstrate the efficacy of big data and cloud storage 

systems in conjunction with cognitive networks to make intelligent decisions. The results 

indicate a reduction in resource utilization by 60 percent when compared to existing methods. 

Furthermore, the proposed system exhibits a reduction in path loss by 75% in comparison to the 

current approach, resulting in a stable overall optimized performance of approximately 80%. In 

the future, it is possible to expand the proposed work by incorporating a greater number of 

parametric estimations utilizing advanced integration algorithms to ensure the provision of 

secure features. 

5.1 Policy implications 

If the proposed method is implemented in real time then industrialists will have the benefits of 

observing various data where time boundary decisions can be made. Further complete behaviour 

can be analysed with cognitive actions thereby solving all inconsistencies and missing data at 

high accuracy rates. Moreover, the identical industrial products can be observed by sorting entire 

data thus utilizing trifold algorithms for data cleaning functionalities. 
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