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Abstract. Hybrid perovskites are a rapidly growing research area, having
reached photovoltaic power conversion efficiencies of over 25 %. There is a
increasing consensus that the structures of these materials, and hence their
electronic structures, can not be understood purely from the time and space
averaged crystal structures observable by conventional methods. We apply a
symmetry-motivated analysis method to analyse X-ray pair distribution function
data of the cubic phases of the hybrid perovskites MAPbX3 (X = I, Br, Cl). We
demonstrate that, even in the cubic phase, the local structure of the inorganic
components of MAPbX3 (X = I, Br, Cl), are dominated by scissoring type
deformations of the PbX6 octahedra. We find these modes to have a larger
amplitude than equivalent distortions in the A-site deficient perovskite ScF3

and demonstrate that they show a significant departure from the harmonic
approximation. Calculations performed on an inorganic perovskite analogue,
FrPbBr3, show that the large amplitudes of the scissoring modes are coupled
to a dynamic opening of the electronic band gap. Finally, we use density
functional theory calculations to show that the organic MA cations reorientate to
accommodate the large amplitude scissoring modes.
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1. Introduction

Molecular perovskites, also known as hybrid per-
ovskites, are a fast growing research area in photo-
voltaics, due to their low cost to make and rapid in-
crease in efficiency (from 3.9 % in 2009[1] to > 26 %
today[2, 3, 4, 5, 6]). These materials have the famil-
iar topology, connectivity and chemical formula of tra-
ditional perovskites (ABX3), but where they differ is
that the A site cation is organic. The most frequently
studied of this class of materials are the methylam-
monium (MA) lead halides, which have the general
formula CH3NH3PbX3 (X = I, Br, Cl), commonly
abbreviated to MAPbX3. In addition to their high
conversion efficiency, this class of hybrid perovskites
have other desirable photovoltaic properties, such as
long charge carrier lifetimes[7], mobility[8] and diffu-
sion lengths[9], a high absorption coefficient[10], and a
direct band gap[1]. These properties couple together
to create a device that has a high density of charge
carriers with a strong barrier against recombination,
all whilst needing much less material than traditional
solar cell materials, and without the need for a high
energy input manufacturing process[11].

Whilst perovskite oxides are a well studied class of
materials due to the wide range of desirable properties
exhibited by them, less is understood about the
structure-property relationship in halide perovskites,
particularly the hybrid perovskite family. Having a
methylammonium ion rather than a metal ion at the
A site results in the A site possessing an electric dipole
moment rather than a point charge, so the dynamics
of these ions are the focus of a lot of research in
these hybrid perovskites. In the higher temperature
tetragonal and cubic phases, the alignment of the
ions appears to be disordered[12, 13, 14, 15], however
they could form small domains below the length scale
required for coherent diffraction where the molecules
are aligned. The dynamics of their rotations, and
any local order, could have a large contribution to the
properties of the material. For example, the interaction
between phonons and the rotational degrees of freedom
of the MA cations has been shown to have an impact on
thermal conductivity[16]. The changes in dynamics are
thought to be closely linked to the structural changes of
the material with temperature, and it is still unknown
how the dynamics affect the properties of this material
as a photovoltaic. Another question that has still
not been fully solved is whether the configuration of
the MA cations lead to this class of materials being
ferroelectric[12, 17, 18, 19, 20, 21, 22].

Use of X-ray single crystal and powder diffraction
has led to a good understanding of the different
structural phases of these materials. Similarly to a
large number of perovskites, all of the single-halide
MAPbX3 materials have cubic symmetry at high

temperatures and undergo symmetry-lowering phase
transitions to tetragonal and orthorhombic structures
at lower temperatures[23]. Most experimental studies
agree that there are 3 structural phases for MAPbI3
and MAPbCl3, however there is a 4th phase for
MAPbBr3 which is preferred for a small temperature
range (ca. 150-155 K), commonly thought to be an
incommensurate phase[24]. In the cubic phase, the
MA cation is thought be fully disordered, with recent
advances made using techniques such as NMR and
quasi-elastic neutron scattering showing that the MA
cation is close to having the orientational freedom of a
free MA cation[25, 26]. As the inorganic framework
undergoes structural phase transitions, lowering the
average symmetry from cubic Pm3̄m, the orientational
freedom of the MA cation is restricted, becoming fully
ordered in the orthorhombic phases[27, 14]. This shows
that the organic molecular and inorganic framework
dynamics in MAPbX3 are inherently linked[28, 29].
In addition to experimental studies, computational
methods have seen a lot of use in this, and other,
areas of research in hybrid perovskites[30, 31, 32,
33, 34]. Both classical molecular dynamics and
Density Functional Theory (DFT) simulations have
demonstrated a link between the different phases of
MAPbI3 and the preferred orientations of the MA
cations[35]. Work from Quarti et al has demonstrated
that the configuration of the MA cations has a
significant effect on the properties of the material, such
as its electronic band structure[36, 37]. This underlines
why it is important to fully understand the structure-
property relationship in these materials. Despite the
knowledge that the organic molecular and inorganic
framework dynamics are linked via hydrogen bonding
interactions, it is currently unclear how this interaction
affects the dynamics as a whole.

The bands forming the top of the valence bands
and the bottom of the conduction band in the
electronic structure of the methylammonium lead
halides will be dominated by Pb and X (X = I,
Br, Cl) electrons[38, 29]. It has been demonstrated
that phonons involving distortions of bonds between
these elements interact with electrons and holes in
the band edges, leading to effects such as ultrafast
intraband charge carrier relaxation[39, 40]. Therefore,
regardless of the role of the MA cation in stabilising
particular distortions, it is necessary to establish
good models for the dynamic distortions in the PbX3

framework. In this work, we aim to probe the dynamics
of the inorganic framework of the cubic phases of
the three single-halide MAPbX3 materials. We have
recently demonstrated how by using a symmetry
motivated approach to analysing pair distribution
function (PDF) data we can gain extra information
on disorder and dynamics within a system. Our
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Figure 1. Pair distribution functions of MAPbBr3 are shown
in three different phases (orthorhomic, tetragonal and cubic,
shown top to bottom). Each PDF is shown with a offset of
4 between them. Similar plots for X = I and Cl are given in the
Supplemental information.

study on BaTiO3 has shown that this method is very
sensitive to primary order parameters and is a powerful
tool to analyse order-disorder phase transitions[41,
42]. Both this study and our more recent work
on the negative thermal expansion materials ScF3,
CaZrF6[43] and ReO3[44] has demonstrated that this
method is also sensitive to soft phonon modes and
has also revealed substantial deviations from the
crystallographic average structure in these materials.
Here, we use X-ray total scattering data, which is
much more sensitive to the inorganic framework than
the molecular cations, to probe the characters of
the low lying excitations of the cubic phases of the
methylammonium lead halides.

2. Experimental Details and Data Analysis

MAPbI3 was prepared using the inverse temperature
crystallisation method[45]. Briefly, equal molar
amounts of MAI and PbI2 were dissolved in a solvent
(γ-butyrolactone) at room temperature. Then the
obtained MAPbI3 solution was heated to 110 ◦C for
the crystal growth. Powder samples of MAPbBr3 were
prepared by the reaction of stoichiometric amounts
of lead acetate and methylamine hydrobromide in
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Figure 2. For each compound, the best individual fitting
statistic is plotted for each irrep at each temperature. The R-
factor is shown relative to the R-factor for the refinement with no
symmetry adapted displacement modes active in the refinement,
such that a more negative value corresponds to an increased
quality of fit. The temperature shown is relative to the cubic
phase transition (T1) as reported in the literature, such that the
measurement temperature T = T1+∆T . T1 for each compound
is indicated on the plot. The irreps are labelled as follows:
colour denotes the k-point of the irrep, with blue referring to
the M-point, green to X, pink to R and yellow to Γ; marker
shape denotes the irrep number, with a circle referring to 1, an
upward-pointed triangle to 2, a star to 3, a square to 4 and a
downward-pointed triangle to 5; linestyle denotes the parity of
the irrep, with a solid line referring to a “+” irrep, and a dashed
line referring to a “-” irrep.

hydrobromic acid. The excess acid was then
evaporated to leave an orange colored product which
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was washed with diethyl ether. Powder samples
of MAPbCl3 were prepared out of a solution of
methylamine hydrochloride and lead acetate dissolved
in hydrochloric acid. An excess of an approximately
8-10 molar ratio of methylamine hydrochloride was
required to obtain these phase pure samples. The
resulting powder was washed with diethyl ether.

For MAPbBr3, synchrotron radiation X-ray
total scattering experiments were conducted at the
synchrotron facility PETRA III (beamline P02.1[46])
at DESY, Hamburg. A wavelength λ = 0.2070 Å
was used to collect data. Data were collected
at temperatures of 125, 140, 147, 152 K and
at intervals of 25 K from 175 to 450 K. For
MAPbI3 and MAPbCl3, Synchrotron radiation X-ray
total scattering experiments were conducted at the
synchrotron facility Diamond Light Source (beamline
I15-1). A wavelength of λ = 0.161 669 Å was used to
collect data. Data were collected at 20 K intervals
over the temperature ranges 100 - 460 K (MAPbCl3)
and 100 - 560 K (MAPbI3). The obtained 2D
images were masked and radially integrated using
the DAWN[47] software. G(r) and D(r) functions
were computed using GudrunX[48], using Qmax values

of 21, 30 and 28 Å
−1

for MAPbBr3, MAPbCl3 and
MAPbI3 respectively. GudrunX was also used to
perform background subtraction, sample absorption
and fluorescence corrections.

Analysis of the pair distribution functions was
carried out using the symmetry-adapted PDF analysis
(SAPA) method described in ref. [49] and implemented
in our work on the local structures of BaTiO3 [41],
ScF3 [43] and ReO3 [44]. We consider only PDF
data in which MAPbX3 (X = I, Br, Cl) have cubic
average symmetry in the following analysis. For each
sample, a 2 × 2 × 2 P1 supercell of the Pm3̄m
aristotype PbX3 with Pb at (0.5, 0.5, 0.5) and X
at (0.5, 0.5, 0) was generated and parameterised
in terms of symmetry adapted displacements using
the ISODISTORT software[50]. The generated mode
listings were output in .cif format and then converted
to the .inp format of the TOPAS Academic software
v6 using the Jedit macros[51] and Python code[49].
In total, there were 96 modes which transformed
according to one of 19 irreducible representations
(irreps). The physical characters associated with
the irreducible representations, with respect cubic
perovskite structure, are detailed in [52]. The
supercells were generated without the organic A-
site cation included, since the contribution of pairs
involving the organic components of the structure will
have a negligible contribution to the overall PDF due to
their comparatively weak scattering power for X-rays.
This lack of sensitivity of X-ray total scattering to the
organic elements of hybrid perovskites can be seen by

comparing recent publications by Malavasi et al [53, 54,
55]. For each irreducible representation (irrep) at each
temperature, refinements of the corresponding modes
were started from random starting mode amplitudes.
This was repeated 500 times. For all samples, the
refinements were carried out with a fitting range of
1.7 to 20 Å. This starting value for the fitting range
was chosen to exclude any contribution from the intra-
atomic peaks of the MA cations. Refinements were also
tested using a fitting range with a maximum of 10 Å
and found to be broadly similar. When reported, mode
amplitudes use the supercell normalised amplitude as
defined by ISODISTORT. This amplitude for a given
irrep is the square root of the sum of squares of
the normalised mode amplitudes for all distortions
transforming as that irrep.

The DFT calculations were performed using the
Vienna Ab Initio Simulation Package (VASP)[56, 57,
58, 59], version 5.4.4. We employed the optB86b-
vdW exchange correlation potential[60] which includes
VdW corrections previously found to suit hybrid
perovskites[29]. Projector augmented-wave (PAW)
pseudopotentials[61, 57] were utilised, as supplied
within the VASP package. A plane wave basis set with
a 1100 eV energy cutoff and a 4 × 4 × 4 Monkhorst-
Pack k-point mesh with respect to the parent cubic
primitive cell (scaled accordingly for other supercells)
were found suitable. The energy landscape of the
various modes in the hybrid system were studied by
fixing the halide framework while allowing for Pb and
MA to relax until the forces were less than 5 meV/Å.
Results were compared with FrPbBr3, which we used
as a hypothetical inorganic analogue to the hybrid
perovskite, since Fr best matches the ionic radii of
MA[29].

3. Results and Discussion

A key aspect of the local structure of the MAPbX3

(X= I, Br, Cl) family of hybrid perovskites is that
the first four peaks of the inorganic component of the
PDF do not change much beyond that expected for
simply changing the temperature, i.e a change in peak
width corresponding to a change in thermal energy, and
a change in peak position corresponding to thermal
expansion. For MAPbBr3 (Fig. 1) and MAPbCl3,
the peaks stay the same from the low temperature
orthorhombic phase into the high temperature cubic
phase[54, 53, 55]. For MAPbI3, there is a slight
change upon the transition between the tetragonal
and orthorhombic phases, but the peaks from the
tetragonal phase persist in the cubic phase[62] (see
Supplemental Information [?]). This has been taken to
imply that the cubic phase consists of local symmetry-
broken domains and there has been recent work to



Scissoring mode displacements coupled to band gap opening in MAPbX3 5

(a) (b) (c)

(d)

(f)

Temperature(K)

(e)

Figure 3. (a-c) A breakdown of the atomic basis that spans the X+
5 irrep. Shown in (d) is the structure resulting from a refinement

of the Pnma order parameter direction of the X+
5 irrep. (e) Mode energies with varying distortion mode amplitude for the Pnma

order parameter direction of FrPbBr3. Harmonic (2nd order) and anharmonic (2nd and 4th order) fits to the potential well are
shown. (f) Mean displacement values for the general X+

5 order parameter direction in the cubic phase of MAPbX3, obtained from
SAPA refinements against experimental data.

support this hypothesis[62]. This would suggest that
the distortions most responsible for the local structure
should be the rigid-unit modes (RUMs) that drive
these phase transitions.

To gain a more robust understanding of the
local structure of MAPbX3 (X= I, Br, Cl) in the
cubic phase, we perform symmetry-adapted PDF
analysis (SAPA)[43, 41] to elucidate the character of
the dominant lattice dynamics associated with the
inorganic cage. We note that we are insensitive
to the orientation and displacement modes of the
organic component in the present X-ray PDF study,
and so no attempt is made to model these against
the experimental data. The symmetry-adapted
displacements which show the most improvement in
the fitting statistic (Rw) for the models refined against
the PDFs, for all compositions and all temperatures,
are those which transform according to irreps that
permit a scissoring motion of the X anions, i.e., the
Br–Pb–Br bond angles are distorted away from 90◦

but the Pb–Br bond lengths remain undistorted. An
important additional note is that when the symmetry
analysis is extended to include the MA cations, these
scissoring modes also allow for multipolar ordering of
the cations[63]. This result of the SAPA analysis does
not imply that the RUMs are high energy modes,

it simply means that the majority of the motion of
the halide anions arise from these scissoring modes at
the temperatures studied. There is a likely entropic
origin to this observation; the scissoring modes occupy
a much larger volume in reciprocal space, as RUMs
are restricted to a single line. This is supported by
competitive two-phase refinements of the PDFs, in
which we allow the X+

5 scissoring-type displacements
to refine in one phase and the displacements for one of
the RUMs (R−

5 or M+
2 ) in the other. These refinements

show a preference for scissoring modes compared to
the RUMs for all 3 samples, as evident from the
refined scale factors of the two phases which show
an approximate scissoring:rotation ratio of 2.3:1 (see
the Supplemental Information [?] for more details).
For context, this ratio is approximately 4:1 in ScF3,
which is isostructural to the inorganic framework of
MAPbX3. The lower ratio compared to ScF3 reflects a
lower flexibility due to the presence of an A-site cation,
which can interact with the inorganic framework via
hydrogen bonding[28]. However, it is clear from our
results that the majority of the halide anion motion
in the cubic phase still arises from scissoring-type
deformations of the octahedra.

The above results are in line with a recent
reverse Monte Carlo (RMC) analysis of neutron PDFs
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of MAPbI3[64] between 10 and 400 K. This study
demonstrates that a bending of the Pb-I-Pb bond angle
dominates the local distortions of the PbI6 octahedra.
Our results show that the four best fitting modes all
have scissoring character, of which it is the X+

5 (Fig 3
(c&d)) that performs best across all three compositions
and temperatures. This could be due to the fact that
there are more degrees of freedom transforming as X+

5

(18) than for other irreps (12 for M−
5 and 6 for X−

5

and M+
5 ), but the improvement could arise from the

anti-polar Pb displacements that enter into the irrep
X+

5 , although this is unlikely since they only have a
small contribution to the overall displacements. The
three distortions that span this irrep are shown in Fig
3. We find the amplitudes of these scissoring modes
to be quite large; refinements of X+

5 and X−
5 in the

tetragonal phase of MAPbBr3 resulted in supercell-
normalised mode amplitudes of ≈ 1.35 Å. This is
close in magnitude to the equivalent amplitude of the
R−

5 distortion (≈ 1.65 Å) which is frozen into the
structure in the tetragonal phase. The domination
of these scissoring modes in the local structure of
MAPbX3 reflects the high occupation these modes
have. Experimental and computational work by
Giustino et al has demonstrated the significance these
scissoring types of modes have in determining the
optoelectronic properties of hybrid perovskites, in
particular limiting carrier mobility and increasing
polaron effective masses[39, 65].

Given how large the local deviations are from the
average cubic structure, it is reasonable to assume they
will have a substantial effect on the band structure. We
used DFT calculations to investigate the impact that
the scissoring modes could have on the electronic band
structure of the hybrid perovskites in the cubic phases.
We chose to analyse MAPbBr3, since it is cubic at
room temperature where experimental band gap values
have been reported, and to focus on the two X point
modes that do the best job at describing the deviations
away from local cubic symmetry, as evident in the PDF
data. For a completely unrestrained order parameter
direction transforming as X+

5 , there are a rather large
number of degrees of freedom (18 in total), so, to
make our results more robust, and to facilitate a direct
comparison to X−

5 , we take results from refinements
using higher symmetry OPDs with no more than
5 parameters. We use structures from refinements
against our data with X+

5 OPDs with Pnma and
Cmcm symmetry ((0, a; b, 0; 0, c) and (0, a; b, b; a, 0)
respectively) and the X−

5 OPD with C2/c symmetry
((a, b; c,−c;−b,−a)) as input to our band structure
calculations (See Supplemental information). For
the two X+

5 OPDs, only Br anion displacements
were refined when generating the CIFs for the band
structure calculations, although by symmetry, Pb

displacements also enter into the irrep. For X−
5 ,

Pb displacements are forbidden by symmetry. We
also sampled points of different overall distortion
amplitude along the X+

5 OPD with Pnma symmetry
and calculated the energy. These energy calculations
were performed for the FrPbBr3 structures used to
calculate the band structure.

In the undistorted cubic phase, the calculated
band gap was 1.717 eV, which is slightly higher
than other calculated band gaps for cubic MAPbBr3
(1.64 eV[66]) at the same level of theory, and is
direct. Previous work has shown that substitution
of Fr for MA opens up the band gap slightly in
orthorhombic MAPbI3[29]. For each tested distortion,
the band gap opens up significantly to values of
2.025, 2.138 and 2.162 eV for the C2/c, Cmcm and
Pnma distortions with an amplitude of 0.8× the
maximum amplitude refined from PDF data for the
X+

5 distortions and 1.1× the maximum amplitude for
X−

5 , respectively, and remains direct. These relative
amplitudes were chosen so all 3 distortions were at
similar mode amplitudes. These values are closer to the
experimentally determined band gaps for MAPbBr3 of
≈ 2.3 eV at room temperature[67], although this is
likely due to a cancellation of errors. The distortions
result in a reduced orbital overlap between Pb and
Br p-orbitals, leading to a lower band curvature and
therefore an increased effective mass in the distorted
band structures (Fig 4 and Supplemental Information).
The mobility of polarons is inversely proportional to
the electron band effective mass[68], and this increased
effective mass in the distorted structures may explain
the discrepancy between experimental and calculated
values[69].

Spin-orbit coupling (SOC) interactions, which
play a large role in systems involving Pb, have not
been accounted for. Consequently, the exact shape of
the electron bands and size of the band gap won’t be
accurate, since inclusion of SOC has been shown to
lead to unconventional dispersion relations[70]. The
effects from SOC on band gap size in halide perovskites
tend to be cancelled out by full treatment of electron
Coulomb interactions beyond DFT[71, 72] and the
principle effect is a renormalisation of the band gap[73].
Therefore, the trends we detect due to the different
distortion modes will remain the same. In the two
X+

5 distortions, the degeneracy of the bands at the
conduction band minimum (CBM) at the Γpoint are
broken, leading to fewer available states at the CBM.
Contrastingly, the X+

5 Pnma distortion appears to
have the largest DOS at the valence band maximum
due to the reduced bandwidth. Fluctuations in the
band gap of hybrid perovskites due to their highly
dynamic structure has been previously predicted in
both hybrid[37] and all-inorganic halide perovskites[?],
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and is expected to assist the initial stages of charge
separation. In addition, an increase of the band gap
coinciding with a transverse displacement of I ions
in MAPbI3 due to an external strain field has been
reported[38].

Our refinements against the PDF data show that
all three models for the X+

5 displacements have a large
amplitude, with supercell-normalised mode amplitudes
of 1.84, 1.82 and 1.36 Å for OPDs with Pnma, Cmcm
and C2/c symmetries, respectively. These mode
amplitudes correspond to maximum Br displacements
of 0.486, 0.410 and 0.350 Å. Note that the refined
distortions correspond to a time-averaged view of the
structure, so these maximum Br displacements are a
factor of

√
2× greater, in the harmonic approximation,

than those found in the refined structures. As a
consequence of their large amplitudes, the distortions
would be expected to be anharmonic in nature, which
is supported by the potential energy well we calculate
for the X+

5 (0, a; b, 0; 0, c) OPD in FrPbBr3 (Fig 3 (f)),
which has a significant quartic component when fit
with a 4th order polynomial fit (∆E = 127x4 + 79.7x2

meV/f.u., where x is the distortion mode amplitude
relative to its maximum value at 400 K). The
significant degree of anharmonicity in this character
of distortion will contribute to the ultra-low thermal
conductivity observed in both hybrid and inorganic
halide perovskites[74, 75, 76, 77]. Despite the presence
of an A-site in these materials, the amplitude of
these scissoring modes are greater than those in ScF3,
suggesting the MA cations move to accommodate the
large-amplitude modes. The implication of this, then,
is that the band gap opening we detect as a response
to the scissoring modes is likely influenced by the
dynamics of the MA cations, although our refinements
are only sensitive to the inorganic framework.

To investigate the above hypothesis, we consider
the X+

5 OPD with Pnma symmetry. This breaks the
equivalency of the cubic < 100 > directions and leads
to two distinct A-site symmetries (see Supplemental
Information). Therefore, if the inorganic and organic
dynamics are coupled together, we would expect to
see the MA cations located at different points of
the unit cell to respond differently to the distortion
mode, to reflect the different local environments they
would experience. To test this, we relaxed the 8
MA cations in the 2×2×2 supercell from an initial
anti-polar configuration with the C-N bonds aligned
with the cubic [1 0 0] direction, in a structure with
a 0.8× X+

5 (0, a; b, 0; 0, c) distortion (relative to the
maximum amplitude at 400 K) frozen in. The MA
cations showed significant reorientation, with the 4
“edge” ((0.5, 0, 0) and equivalents) and 4 “corner”
((0, 0, 0)) cations rotating to include significant
components along c. There is a split amongst the

“face” cations, with two (at (0.5, 0.5, 0) and (0, 0.5,
0.5)) rotating to include smaller components along
the b- and c-axes. The remaining “face” cation
and the cation located at the centre of the supercell
both rotate to include a significant component along
c and a smaller component along b. In all, there
are 5 distinct C–N bond alignments, which coincides
with the 5 distinct Br sites resulting from the X+

5

OPD with Pnma symmetry. In addition, all cations
show a slight displacement from the high-symmetry-
unique positions. Full details can be found in the
Supplemental Information. This demonstrates that
the MA cations can rotate to accommodate the
distortions of the inorganic framework, indicating that
the dynamics of the two components of the structure
are linked. This is further supported by a 4th

order polynomial fit to the potential well, which,
compared to the FrPbBr3 analogue, shows a much
reduced quartic component ((∆E = 60.0x4 + 106x2

meV/f.u., where x is the distortion mode amplitude
relative to its maximum value at 400 K). However,
it is important to note that our calculations are
effectively performed at 0 K, where the ground state
is the fully ordered orthorhombic phase. It is quite
possible that the configurational entropy associated
with the MA orderings may effectively act to decouple
these dynamics at higher temperatures in the cubic
phase. Indeed, there is evidence to suggest the
organic and inorganic dynamics are decoupled in
MAPbCl3[15]. Additionally, a similar computational
result in CsPbBr3 showing coupling between large
amplitude distortions of the Br ions and head-to-head
Cs motion[78] suggest this feature is not exclusive to
hybrid inorganic systems. We have also shown that
acoustic phonon lifetimes for the all-inorganic CsPbBr3
are very similar to those in MAPbCl3[79], further
supporting the idea that at high temperatures the MA
rotational modes may have little effect on the lattice
phonon modes.

There has been recent literature supporting the
idea that cubic halide perovskites, rather than be-
ing treated as a single repeating unit, should be
thought of as a network of polymorphs showing dif-
ferent symmetry-lowering deformations of the average
structure, such as varying degrees of octahedral tilting
or differing amplitudes of B-site displacement[80, 81].
The stereochemical behaviour of the Pb cation, in con-
junction with the coupling between organic cation and
inorganic framework dynamics, is likely to have a large
impact on the possible polymorphs the material ex-
hibits within this hypothesis of the nature of the struc-
ture of halide perovskites. However, our experimental
work finds that even on a length scale of 20 Å, the local
dynamic deviations from the cubic symmetry are dom-
inated by distortions of very specific character, namely
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Figure 4. The calculated electronic band structure of FrPbBr3
for the undistorted structure (a), the Pnma and Cmcm order
parameter directions of the X+

5 irrep (b and c, respectively) and

the C2/c order parameter direction of the X−
5 irrep (d). These

figures were created using sumo[85]. The wave vectors used are
described in detail in Supporting Information.

of the scissoring mode type. This likely arises due
to the low energy and thus high occupation of these
modes. There is a significant body of work suggesting
that the cubic phases of hybrid perovskites are formed
of dynamic domains of the lower symmetry structures
exhibited at lower temperatures[53, 62, 54, 55, 82].
Some further work may be required to reconcile these
two pictures, but the answer may lie in the significant
vibrational entropy that is no doubt associated with
the scissoring modes at non-zero temperatures. What
is clear is that the dynamics of these systems depart
significantly from the usual quasi-harmonic normal-
mode model typically used for crystalline solids[83, 84].

In summary, we have shown that large scissoring
modes of the halide ions describe the dominant
deviations from the average structure in the cubic
phases of the hybrid perovskites. These modes have a
similar amplitude to those of the static rigid unit modes
below the phase transition temperature (R−

5 (a,0,0)
for MAPbI3 and MAPbBr3, R−

5

⊕
M+

2 (a,0,0|0;b;0)
for MAPbCl3‡). These distortions have the effect of
opening up the band gap of the electronic structure
of the cubic phases. In addition, we have shown
that the organic cations move to accommodate the
large amplitude distortions of the inorganic framework,
suggesting that the dynamics of the two components
are inherently linked, and that the inorganic lattice

‡ Strictly speaking, the exact nature of the tetragonal phase of
MAPbCl3 is still disputed, so we have here provided the OPD
for the observed tilting pattern in the orthorhombic phase

is significantly distorted from the average at a local
level. Since the experimental probe used for this
study is not sensitive to the organic cations, we cannot
say anything concrete about the dynamics of the
MA cations. However, group theoretical treatment
of the scissoring mode distortions[63] identified in
the present work show that they would be expected
to couple to the dipole (X−

5 , M−
5 ) and quadrupole

(X+
5 , M+

5 ) moments of the MA cations, which is in
contrast to the octahedral tilting modes (R−

5 , M+
2 ),

providing a possible explanation as to why the former
dominate the dynamics observed in the present study.
These dynamic structures should be accounted for
in simulations performed on the hybrid perovskites,
since they have a significant effect on the calculated
properties.
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Jonathan Skelton, Federico Brivio, Xabier Rodŕıguez-
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