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Highlights

▪ Bluetooth Low Energy (BLE) presents opportunities for animal monitoring.
▪ Purpose built devices were calibrated alongside commercial BLE beacons. 
▪ Distance using BLE signal strength was estimated with prediction equations.
▪ Device height and animal behaviour will impact on Bluetooth Low Energy 

range. 
▪ Two methods of sheep localisation were trialled successfully using BLE 

beacons. 

Abstract

Monitoring animal location and proximity can provide useful information on behaviour 
and activity, which can act as a health and welfare indicator. However, tools such as 
global navigation satellite systems (GNSS) can be costly, power hungry and often 
heavy, thus not viable for commercial uptake in small ruminant systems. Although, 
developments in Bluetooth Low Energy (BLE) could offer another option for animal 
monitoring, BLE signal strength can be variable, and further information is needed to 
understand the relationship between signal strength and distance in an outdoor 
environment and assess factors which might affect its interpretation in on-animal 
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scenarios. A calibration of a purpose-built device containing a BLE reader, alongside 
commercial BLE beacons, was conducted in a field environment to explore how 
signal strength changed with distance and investigate whether this was affected by 
device height, and thus animal behaviour. From this calibration, distance prediction 
equations were developed whereby beacon distance from a reader could be 
estimated based on signal strength. BLE as a means of localisation was then trialled, 
firstly using a multilateration approach to locate 16 static beacons within an ~5 400 
m² section of paddock using 6 BLE readers, followed by an on-sheep validation 
where two localisation approaches were trialled in the localisation of a weaned lamb 
within ~1.4 ha of adjoining paddocks, surrounded by 9 BLE readers. Validation was 
conducted using one days’ worth of data from a lamb fitted with both a BLE beacon 
and separate GNSS device. The calibration showed a decline in signal strength with 
increasing beacon distance from a reader, with a reduced range and earlier decline 
in the proportion of beacons reported at lower reader and beacon heights. The 
distance prediction equations indicated a mean underestimation of 12.13 m within 
the static study, and mean underestimation of 1.59 m within the on-sheep validation. 
In the static beacon localisation study, the multilateration method produced a mean 
localisation error of 22.02 m, whilst in the on-sheep validation similar mean 
localisation errors were produced by both methods – 19.00 m using the midpoint and 
23.77 m using the multilateration method. Our studies demonstrate the technical 
feasibility of localising sheep in an outdoor environment using BLE technology, 
however, potential commercial application of such a system would require 
improvements in BLE range and accuracy. 

Keywords: Precision livestock farming, Sensors, Livestock, Multilateration, 
Localisation.

Implications

Animal location and proximity data can provide valuable information on behaviour 
and activity, however many of the technologies available are difficult to implement 
within extensive sheep systems. This study investigated Bluetooth Low Energy 
devices, which could act as a less-power intensive monitoring tool. The study found 
that the height of both the Bluetooth Low Energy reader and beacon impacted on the 
reported signal strength and proportion of beacons reported. Thus, within an on-
sheep system, sheep behaviour and posture could influence the effective Bluetooth 
Low Energy range, and translation of signal strength into an estimated distance and 
proximity. 

Introduction

Increased demand for animal products from a declining number of farmers producing 
livestock, is resulting in fewer but larger farms holding increasing numbers of 
livestock (Berckmans, 2014). Consequently, there may be less time for individual 
monitoring, making it more challenging to manage animals and their welfare as 
effectively. However, precision livestock farming (PLF) technologies have developed 



substantially in recent decades (Aquilani et al., 2022), and tools providing real-time 
or near real-time monitoring are becoming increasingly available, allowing farmers to 
make more informed and targeted decisions whereby animals can be managed at 
the individual level (Wathes et al., 2008). Whilst a range of PLF tools have been 
developed and incorporated into more intensive farming systems (Buller, 2020; 
Aquilani et al., 2022), application in more extensive systems, and for species 
considered to have a lower economic value, such as sheep and goats, has been 
much slower (Bahlo et al., 2019). Within extensive systems there are additional 
challenges in transmitting information, and requirements for devices to withstand 
variable climate and weather conditions (Bahlo et al., 2019). However, there has 
been growing interest in exploring the use of sensors and other technologies to 
assist with animal management in extensive grazing systems (Fogarty et al., 2021).

Monitoring animal location and proximity can provide useful information regarding 
landscape and resource use, social contacts, and animal behaviour (Maroto-Molina 
et al., 2019). Over time this can also provide information on animal activity, which 
can be a useful indicator of health and welfare status (Liu et al., 2018; Nikodem, 
2021). However, many of the technologies available tend to be impractical for use 
within grazing systems. Given the low value of individual animals and the often large 
flock sizes, the cost of PLF tools will be a factor in the uptake and use of such 
technologies within small ruminant sectors (Umstätter et al., 2008; Maroto-Molina et 
al., 2019). The introduction of the Internet of Things (IoT) and low power wide area 
(LPWA) networks has enhanced connectivity options, and along with advancements 
in technology such as Bluetooth Low Energy (BLE), presents opportunities for 
development of real-time monitoring within extensive systems. Whilst global 
navigation satellite systems (GNSS) have been one of the most employed sensors 
within sheep research (Fogarty et al., 2018), BLE could offer a less power-intensive 
means of monitoring both novel animal proximity and animal location. Several 
studies have already begun to explore the use of BLE within livestock monitoring 
(Maroto-Molina et al., 2019; Lee et al., 2022, Maxa et al., 2023), both in combination 
with other technologies, as a means of localisation within indoor systems (Tøgersen 
et al, 2010; Bloch and Pastell, 2020; Szyc et al, 2023), and within sheep systems to 
investigate the ewe-lamb relationship (Waterhouse et al., 2019), particularly as a 
means of establishing maternal pedigree (Sohi et al., 2017; Paganoni et al., 2021). 
However, BLE signal strength is known to be a noisy measure of proximity (Lovett et 
al., 2020), and whilst there have been several studies exploring BLE signal strength 
and range within indoor environments, there have been few in outdoor systems.  
There has however been a growing development and application of BLE within other 
sectors, such as for contact tracing, asset tracking, health monitoring, and to provide 
proximity-based services or proximity marketing (Spachos and Plataniotis, 2020; 
Yang et al., 2020), demonstrating potential for this type of technology to be applied 
within animal monitoring. There were two main aims to this study, the first being the 
characterisation of the relationship between BLE signal strength and distance in an 
outdoor environment, using a purpose-built device containing a BLE reader 
alongside commercial BLE proximity beacons. The second aim was to assess the 
use of BLE for the location of grazing sheep. Localisation was trialled in a field 
environment, firstly in a static beacon localisation study, and then an on-sheep 
validation, where a weaned lamb was fitted with a BLE beacon. 

Material and methods



Device design

A multi-sensor device was developed, commissioned from CENSIS: Scotland's 
Innovation Centre for sensing, imaging and Internet of Things (IoT) technologies. 
This wearable integrated sensor platform device (WISP) consisted of an IP65 
enclosure containing a BLE reader, GNSS receiver, and accelerometer, as well as a 
long range wide area network (LoRaWAN) communication module (a category of 
LPWA technologies, which transmits data using a wireless modulation technique, 
LoRa - referring to long range) and 8 MB flash memory drive (Supplementary Figure 
S1.a). WISPs weighed 333 g and were designed for use as either / both a static BLE 
reader and wearable on-animal device. Alongside the WISP, commercial BLE 5.0 
beacons weighing 14g (Supplementary Figure S1.b) were used throughout the 
series of studies. These had a reported operating distance of up to 130 m and 
received signal strength indicator (RSSI) range of 0 to ~ -127 decibels per milliwatt 
(dBm) (Shenzhen Feasycom Technology Co., Ltd). 

The system operated most simply as a beacon which transmitted (called advertising) 
a unique ID, and BLE readers which received and reported these IDs along with the 
beacon’s RSSI. Beacons were pre-programmed with an identity number and set to 
an advertising interval of 1 285 ms. The WISPs reported data on a 5-minute duty 
cycle, both in real-time via LoRa (where gateway coverage was available) and to the 
flash drive. The BLE reader within the WISP (operating on BLE 4.2) was 
programmed to report the identity and RSSI of 16 beacons with the strongest signal 
for that duty cycle. These were the 16 beacons with the highest average RSSI, 
where RSSI values within the range of -35 to -45 dBm were considered high values, 
and those within the range of -85 to -95 dBm considered low values. Readers 
operated by scanning for 30 s then idling for 30 s, where during each scanning 
window the RSSI of any beacon seen was added to that of any previous adverts. At 
the end of each duty cycle beacons were sorted based on their average RSSI (Total 
Power (sum of beacon RSSI) / No. of adverts (No. of times beacon seen by the 
reader)), and timestamp, beacon ID and single RSSI values were transmitted by 
LoRa and saved to the WISP flash drive (Supplementary Figure S2), along with a 
single WISP GNSS location (based on the average from a minimum of 10 fixes). 

Calibration study

Study design

The WISPs and beacons were calibrated within a field environment to evaluate the 
relationship between a beacon’s reported RSSI and its distance from a BLE reader 
(within a WISP), in order to assess the BLE signal range, and to develop a prediction 
equation whereby beacon distance from a WISP could be estimated based on its 
reported RSSI (Fig. 1). Five WISPs were attached to a plastic electric-fence post 
located at a central point within the field. Eight beacons attached to posts were 
rotationally located at log intervals at distances of 1 – 128 m from WISPs, measured 
using a measuring wheel (Voche, Surveyors metric folding distance measuring 
wheel). Beacons were located at each of these measured distances for 29-minutes 
to allow opportunity for WISPs to obtain five possible RSSI readings per distance for 
each WISP-beacon pair. To determine whether WISP or beacon height impacted the 
likelihood of a beacon being received by the reader, or the RSSI values reported, 



both device types were tested at multiple heights. Beacons were tested at heights of 
0.3 m (representing approximate ewe lying or lamb height) and 0.7 m (representing 
approximate ewe standing height), whilst WISPs were tested at 0.3, 0.7 and 2 m 
(Supplementary Figure S3).

Range of devices

The maximum measured distance at which a beacon’s signal was reported by a 
WISP was used to assess the BLE range at different WISP and beacon heights. As 
the precise distance at which a beacon’s signal could no longer be reported by a 
WISP occurred at an unknown distance between two actual measured distances, the 
calibration data from each individual WISP-beacon height group was structured as 
interval-censored data sets, whereby for each WISP-beacon pairing the lower bound 
was the greatest measured distance at which the beacon was reported by the WISP, 
and the upper bound the subsequent measured distance, from which point the WISP 
failed to report the beacon. The “survreg” and “surv” functions from the survival 
package in R (version 3.5-5; Therneau, 2023) were applied to the data set to fit a 
Weibull accelerated failure time model. This model was considered to encompass 
the features required to describe the signal strength and is often employed to model 
reliability and survival. The “predict” function (version 4.2.2; R Core Team, 2022) was 
then applied to generate survival curves of the probability of a beacon being reported 
with increasing distance from the WISP for each of the WISP and beacon height 
combinations.

Development of the distance prediction model

A distance prediction equation was developed from the RSSI values obtained at 
each measured distance during the calibration by applying the “lm” function in R 
(version 4.2.2; R Core Team, 2022) to fit a regression. This was conducted for three 
models: linear, natural log, and inverse square, applied to both the full data set 
collectively, and for each individual WISP-beacon height group. The inverse function 
from the regression (generated for each group) was then applied along with the 
“predict” function to generate predicted distances for given RSSI values of -45 to -90 
dBm. The three models were assessed based on their CV and R² results to select 
the most appropriate prediction equation for the WISP-beacon heights used within 
each study stage.

Static beacon localisation study

Study design

A localisation study was conducted on static beacons within a ~60 x 90 m area to 
determine whether beacons could be located based on their RSSI from multiple 
WISPs. The objectives of this study were to assess the error associated with the 
RSSI and distance prediction equation, and to test a multilateration approach as a 
means of localisation, the process for which is outlined in Fig 2. Six WISPs 
(numbered 1 – 6) were attached to fence posts at a height of 0.7 m; two located 
along the width of the paddocks (~60 m) at the 15 and 45 m mark, whilst four WISPs 
were located along a partial length of the outer fence line at distances of 
approximately 30, 50, 70, and 90 m. This resulted in an average WISP-WISP 



distance of 50.75 m. Sixteen beacons (labelled Beacon A – P) were attached to 
posts (0.7 m height) and laid out in a grid-like array within the paddock (Fig. 3). As 
WISPs could report a maximum of 16 unique beacon identities within a duty cycle, 
there was no risk of competition between beacons for recording by any of the 
WISPs. WISPs and beacons were located at their designated position for a 2-hour 
period to provide a possible 24 RSSI readings per WISP-beacon pair. Locations of 
each WISP were based on the mean (of 17-24) GNSS coordinates from the on-
board GNSS receiver, recorded during the data capture window. There was a mean 
difference of 1.02 – 3.03 m between single and mean WISP-GNSS coordinates of 
individual WISPs. GNSS locations for the beacons were obtained using the Android 
app “GPS Logger” (version 3.2.1, Basic Air Data). A separate study was conducted 
to assess the error associated with this app using 2 mobile phones to obtain 12 
GNSS coordinates per phone for 2 locations. There was a mean difference of 0.93 m 
(SD = 0.57) between individual and mean coordinates for Phone 1 (used within the 
static beacon study), and 1.73 m (SD = 1.13) for Phone 2. Coordinates obtained by 
each phone had a mean difference of 2.14 m. 

Statistical analysis

Flash drive data (selected as the most complete data set) from each WISP was 
downloaded and combined, and the relevant 2-hour window of data selected for 
analysis. Data was reviewed to determine which WISPs had reported which beacons 
and compare variation in RSSI over time. Distances between each of the six WISPs 
(using mean GNSS coordinates), and between each WISP and beacon were 
calculated using the “disthaversine” function from the “geosphere” package in R 
(Version 1.5-18; Hijmans, 2022). BLE based WISP-beacon distances (for each 
possible WISP-beacon pairing) were calculated by applying the RSSI of each 
beacon reading obtained to the distance prediction equation, and then calculating 
the mean of these estimated distances. These were then compared with the WISP-
GNSS based distance estimates. To then calculate beacon locations, GNSS 
coordinates of WISPs were first converted from longitude and latitude (WGS84 / 
EPSG: 4 326) to that of the British National Grid (EPSG: 27 700) using the 
“st_transform” function from the “sf” package in R (Version 1.0-14; Pebesma and 
Bivand, 2023). Final estimated beacon locations were calculated using a 
multilateration approach (Zhou et al., 2012; Luomala and Hakala, 2022) described 
below. Field boundaries for the study area were calculated based on the GNSS 
coordinates of corner and mid-paddock fence posts.

Multilateration localisation method: Applying the multilateration approach, the 
beacon’s predicted distance was plotted as the radius of a circle around the reporting 
WISP, given by:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 =  (𝑥 ― 𝑊𝐼𝑆𝑃 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒)2 + (𝑦 ― 𝑊𝐼𝑆𝑃 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒)2(1)

Where beacons were reported by multiple WISPs, the intersection of the resulting 
circles was solved to generate potential beacon locations:



𝐵𝑒𝑎𝑐𝑜𝑛 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒1,2 =
(𝑎 + 𝑐)

2 +  
(𝑐 ― 𝑎)(𝑟0

2 ―  𝑟1
2)

2𝐷2 ±  2
(b – d)

D2  ∂

𝐵𝑒𝑎𝑐𝑜𝑛 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒1,2 =
(𝑏 + 𝑑)

2 +  
(𝑑 ― 𝑏)(𝑟0

2 ―  𝑟1
2)

2𝐷2 ∓  2
(a – c)

D2  ∂

𝑎𝑛𝑑 ∂ =
1
4 (𝐷 + 𝑟0 + 𝑟1)(𝐷 + 𝑟0 ― 𝑟1)(𝐷 ― 𝑟0 + 𝑟1)( ―𝐷 + 𝑟0 + 𝑟1)(2)

where: a = 1st WISP longitude; b = 1st WISP latitude; c = 2nd WISP longitude;                       
d = 2nd WISP latitude; D = distance between 1st and 2nd WISP;                                                   
r0 = beacon predicted distance from WISP 1; r1 = beacon predicted distance from WISP 2;
and ∂ = area of a triangle with edge lengths r0, r1, and D.                                                                 

These points were filtered to remove those which fell outside the paddock boundary. 
The final estimated beacon location was calculated as the mean of the potential 
beacon locations falling within the paddock boundary, and the resulting coordinates 
were compared with the beacons GNSS based location. An example of the 
multilateration process for one of the beacons (Beacon E) is shown in Fig. 4.

On-sheep validation

Study design

Localisation and proximity distance using BLE was then validated in an on-sheep 
scenario, using data from a larger study where 24 weaned lambs (Texel x Mule) 
were fitted with collars containing a BLE beacon, 12 of which also had separate 
GNSS devices (i-gotU 200 or i-gotU 600, Mobile Action Technology). Lambs were all 
released into two adjoining paddocks (~1.4 ha) with connecting open gateway, which 
were surrounded by nine WISPs (Fig. 5). The WISPs were located at a height of 2 
m, attached to canes along the fence line. Four WISPs were staggered along the 
length of both outer fence lines (~240 m), whilst one was located at the open 
gateway between paddocks (indicated by W5 within Fig. 5).

Statistical analysis

The analysis presented here examines a sample of data (24 h) from one lamb, 
wearing both a BLE beacon and i-gotU 200, as a validation of the developed 
distance prediction equation for both proximity monitoring and illustration of the use 
of BLE as a means of localisation in an on-animal scenario. As the most complete 
data set, WISP data was gathered from WISP flash drives for the selected day (8 
September 2021) and combined into a single .csv file. For each data point, the 
reported RSSI was applied to the prediction equation to estimate the beacons, and 
hence lamb’s distance from the reporting WISP.  

Similarly, the lamb’s GNSS data was downloaded from the i-got-u and filtered using 
a similar approach to Hromada et al. (2023), where locations with outlying altitude 
data (< 210 m and > 240 m) were removed from the data set (~1%). A new variable, 
“movement”, was derived: lambs were classed as being stationary or moving 
depending upon whether lamb coordinates remained consistent – moving 0 m 
(stationary), or there was a change in GNSS coordinates (moving) between the 
timestamp of interest and the preceding 5-minutes. Similarly, a variable “distance 
travelled” was calculated using the “disthaversine” function from the “geosphere” 



package in R (Version 1.5-18; Hijmans, 2022) to calculate the total distance travelled 
between the corresponding GNSS coordinates for the reporting timestamp and each 
of the coordinates over the preceding 5-minutes.  A “distance travelled group” was 
assigned based on the “distance travelled”, where 0 m = none, > 0-10 m = very low, 
10-20 m = low, 20-40 m = mid, and > 40 m = high. GNSS coordinates were then 
transformed from longitude and latitude to British National Grid as described 
previously. 

The timestamps of both the WISP (BLE) and i-got-u (GNSS) data sets were then 
rounded to the nearest minute and joined based on the rounded time. To estimate 
lamb locations, data was grouped to find occasions where multiple WISPs reported 
the lamb’s beacon within any independent 5-minute interval (i.e. 00:00:00–00:04:59, 
00:01:00–00:05:59) over the course of the day, giving a total possible 1436 intervals. 
As all WISPs operated on independent time intervals, grouped data included 
instances where WISP reporting periods overlapped from between 1-5 minutes. 
Where independent intervals resulted in the same groupings of WISPs with the same 
reporting timestamp, any duplicates were removed. Overall “movement” and 
“distance travelled group” categorisations were therefore assigned for each interval – 
where movement was assigned if listed for any of the reporting WISPs, and the 
highest “distance travelled group” from any of the reporting WISPs assigned overall. 

Two BLE localisation methods were then evaluated to calculate lamb locations for 
each possible 5-minute interval. For each time interval, a single new BLE timestamp 
was generated by calculating the mean timestamp of all reporting WISPs. Similarly, 
a new GNSS timestamp and coordinates were calculated by finding the mean of the 
GNSS data points within the corresponding interval. The first localisation method 
followed the multilateration approach described previously (Fig 2). However, in this 
instance intersecting points which fell outside the field boundary were not filtered out, 
and the final estimated lamb location was based on all potential locations generated.

Midpoint localisation method: The second localisation approach was based on 
calculating the midpoint (mean) between estimated coordinates on the straight-line 
distance between reporting WISP pairs. This was conducted for every possible 
WISP pairing within the time interval. Initial beacon coordinates were calculated from 
each WISP within a pair by plotting the predicted distance along the straight line 
between the two respective WISPs; calculated as follows: 

𝐵𝑒𝑎𝑐𝑜𝑛 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒1 = 𝑥1 +
𝑑1
𝐷  ×  (𝑥2 ― 𝑥1)

𝐵𝑒𝑎𝑐𝑜𝑛 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒1 = 𝑦1 +
𝑑1
𝐷  ×  (𝑦2 ― 𝑦1)

𝑎𝑛𝑑

𝐵𝑒𝑎𝑐𝑜𝑛 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒2 = 𝑥2 +
𝑑2
𝐷  ×  (𝑥1 ― 𝑥2)

𝐵𝑒𝑎𝑐𝑜𝑛 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒2 = 𝑦2 +
𝑑2
𝐷  ×  (𝑦1 ― 𝑦2) (3)

where: x1 = 1st WISP longitude; y1 = 1st WISP latitude; x2 = 2nd WISP longitude;                      
y2 = 2nd WISP latitude; d1 = beacon predicted distance from WISP 1;                                              
𝑑2 =  𝑏𝑒𝑎𝑐𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑊𝐼𝑆𝑃 2; 𝐷 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1𝑠𝑡 𝑎𝑛𝑑 2𝑛𝑑 𝑊𝐼𝑆𝑃.



For that pairing, the estimated beacon location was taken as the mean of these two 
points along the WISP-WISP distance. The final lamb location for each time interval 
was calculated by finding the mean of the estimated locations from all pairings of the 
reporting WISPs. To examine opportunities to scale up, lamb trajectories were 
generated from both BLE localisation methods and compared with that of the original 
GNSS locations reporting every 1 min. Trajectories were produced using the “ltraj” 
function in the adehabitatLT package in R (version 0.3.27; Calenge et al., 2023) both 
for the full 24-hour study period and per hour.

Results

Calibration study

The relationship between WISP-beacon distance and RSSI was examined firstly as 
one data set, regardless of WISP or beacon height. Although there was an overall 
decline in RSSI with increasing beacon distance, there was a wide range in the RSSI 
values reported per distance and these values also overlapped between distances 
(Supplementary Figure S4). However, individual WISP-beacon pairs produced 
similar RSSI values across repetitions, typically reporting a consistent RSSI or 
varying by 1-2 dBm. Apart from three instances out of 1 463 data points, where there 
was a difference of 8, 9, and 16 dBm (all at distances of 1 and 2 m) pairings varied 
by no more than 5 dBm. Where beacons were reported by a WISP, they were 
generally reported in all five repetitions, particularly at shorter distances of 1-16 m, 
whilst at distances of 32 and 64 m there were more instances of the beacon only 
being reported during some repetitions. 

Range of devices

The proportion of beacons reported per distance differed between WISP-beacon 
height groups (Supplementary Figure S5). At 16 m all groups reported ≥ 92.5% of 
beacons, however by 32 m this had fallen to 18.5% where both devices were at a 
height of 0.3 m. The total number of beacon readings per WISP and beacon for each 
distance is summarised in Tables 1 and 2. The Weibull accelerated failure time 
model indicated that the BLE signal range differed according to the height at which 
the WISPs and beacons were located. WISP and beacon heights were both found to 
be significant factors within the model (Table 3), with higher device heights resulting 
in a longer signal range. The interaction between WISP and beacon heights was 
also found to be significant at a WISP height of 2 m and beacon height of 0.7 m. The 
probability of a beacon being reported declined at much shorter distances when both 
devices were located at a height of 0.3 m, declining to a 0 % probability at distances 
beyond ~ 60 m. In comparison, WISPs at a height of 2 m and beacon height of 0.7 m 
had > 80% probability of reporting beacons beyond 60 m, reaching a ~ 0 % 
probability by ~ 120 m (Fig. 6). Setting a 95 % probability threshold the WISP-
beacon range would therefore be between ~ 8 to 44 m depending upon both the 
WISP and beacon heights, whilst a 75 % probability threshold would give a range of 
~ 17 to 66 m.

Development of the distance prediction model



Three prediction models (linear, natural log, and inverse square) were then applied 
to the obtained RSSI values for both the full calibration study data set and 
individually for each WISP-beacon height group. Comparison of the models, with the 
resulting SDs, CVs, and upper and lower confidence intervals of mean predicted 
distances, for each measured distance is provided within the supplementary 
materials (Supplementary Table S1), along with each models adjusted R2. Of the 
three models tested, the natural log model resulted in the highest adjusted R² values 
across all WISP and beacon height combinations and was selected for use in the 
distance prediction equation. As the BLE range and proportion of beacons reported 
varied with WISP and beacon height, the prediction equations applied within the 
static beacon localisation study and on-sheep validation corresponded to the WISP 
and beacon heights used in each scenario. We therefore report on two distance 
prediction equations, the first applies to the static beacon localisation study, and is 
based on a WISP and beacon height of 0.7 m (prediction equation 1), and the 
second prediction equation is based on a WISP height of 2 m and combined beacon 
heights of 0.3 and 0.7 m (to equate to sheep both lying and standing) which was 
applied to the on-sheep validation (prediction equation 2). For prediction equation 1, 
the regression resulted in a distance prediction equation of:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑒―7.468966 ― (0.126271 × 𝑅𝑆𝑆𝐼)(4)

(R² Adjusted = 0.7517, F(1, 1 290) = 3 910, P < .0001). Whilst for prediction equation 
2, the regression gave a distance prediction equation of:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑒―9.501993 ― (0.151980 × 𝑅𝑆𝑆𝐼)(5)

(R² Adjusted = 0.695, F(1, 2 645) = 6 031, P < .0001).

The prediction equations generated for each of the WISP-beacon height groups, and 
the relationship between RSSI and distance are shown in Fig. 7. All prediction 
equations resulted in similar distance estimations for RSSI values of ~ -45 to -75 
dBm, covering an estimated distance range of ~0 – 8 m, after which point the 
prediction equations began to diverge in their estimations. At lower RSSI values of -
80 to -90 dBm there was much greater variation in the distances estimated by the 
different prediction equations, and a greater change in distance estimation between 
RSSI values where WISPs and beacons were located at higher heights. For 
example, at a WISP and beacon height of 0.3 m a change in RSSI from -89 to -90 
resulted in a difference in distance estimation of 2.24 m, whilst at a WISP height of 2 
m and beacon height of 0.7 m there was a difference of 11.45 m. In terms of the on-
sheep validation, this means that a lower RSSI value is likely to be reported by 
lambs lying down vs standing at the same distance. 

Static beacon localisation study

Received signal strength indicator and distance prediction equation

During the static beacon study, WISPs reported a large proportion of messages via 
LoRa, 141 of a possible 144 messages (98%), however flash drive data was 
selected for analysis being the most complete data set. Fifteen of the 16 beacons 
were reported by at least one WISP during the study period, with individual WISPs 
reporting between 6 – 13 beacons, thus generating at least one RSSI reading for 54 



of 96 possible WISP-beacon pairings (56%). The total number of beacons reported 
per WISP, and corresponding number of RSSI readings is summarised in Table 4. 
WISP-beacon distances ranged from 1.93 to 97.77 m, and whilst RSSI readings 
were reported for 38 of the 44 WISP-beacon pairings (86%) located <63 m apart, 
RSSI readings were obtained for only 16 of 52 WISP-beacon pairings (31%) when 
>63 m apart. However, this was the distance at which the Weibull survival analysis 
estimated a 50% probability of a beacon being reported beyond. 

Where multiple RSSI readings for a WISP-beacon pair were obtained across the 2-
hour data collection period, reported RSSI values had a maximum difference of 6 
dBm and mean difference of 2.21 dBm. Estimated beacon distances from WISPs 
were calculated by applying the reported RSSI values to prediction equation 1, as 
this used the 0.7 m height settings. The final estimated beacon distance was classed 
as the mean predicted distance generated from all RSSI values for that pairing (Fig. 
8).  Overall, there was a mean underestimation of 12.13 m (SD = 15.97) by the 
prediction equation in comparison with the WISP-GNSS estimated beacon 
distances. Of the 54 WISP-beacon pairings for which a distance was obtained, 21 
beacons (39%) were estimated to within 10 m of the GNSS distance, and 41 
beacons (76%) to within 20 m.  The largest differences between GNSS and BLE 
distance estimations occurred at distances over 64 m, which was beyond that of the 
calibration data, and the 50% probability of being reported.

Localisation: static beacons

Applying the predicted distances to the multilateration method (with a minimum of 2 
intersecting WISPs reporting a given beacon) allowed locations for 11 of the 16 
beacons to be generated (Table 5). The localisation error was classed as the 
distance between final estimated beacon locations and their respective GNSS 
coordinates. The error ranged from 5.34 – 37.34 m, with a mean distance of 22.02 m 
(SD = 9.77). Where beacons were unable to be located using the multilateration 
approach, this was either the result of not being reported by the required number of 
WISPs (Beacons C and L), or the predicted distances resulted in circles which did 
not intersect (Beacons D, I, J). 

On-sheep validation

Received signal strength indicator and distance prediction equation

Of the 24 lambs within the study, data from a single lamb was selected as a proof of 
concept and illustration of the system. The lamb selected for analysis had a total 
beacon count of 323 of a possible 2 592 messages (12.46%) reported for the chosen 
study day. This was considered typical with beacon counts obtained for other lambs, 
which ranged from 197 – 454, with a mean beacon count of 280. This averaged at 
1.12 WISP readers reporting the selected lamb’s beacon in each 5-minute interval, 
however, distribution in time and space was very varied. Individual WISPs reported 
between 17 (5.90%) and 64 (22.22%) RSSI readings, of a maximum 288. This was 
not unexpected as the paddock was ~236 m in length, which was beyond the WISP- 
beacon range, and therefore not possible for every WISP to report on every 
occasion. However, the staggering of WISPs around the paddock resulted in a 
maximum distance of 73 m between WISPs along each paddock length, and 77 m 



between WISPs located on the opposite fence line. The maximum distance of a 
lamb’s beacon from at least one WISP at any given time would therefore be ~39 m, a 
distance at which the Weibull accelerated failure time model indicated that >90 % of 
beacons would be reported beyond.

In comparison with the WISP-beacon mean GNSS estimated distances, the 
corresponding BLE predicted distances resulted in an error ranging from an 
underestimation of 104.22 m to an overestimation of 70.72 m, and mean 
underestimation of 1.59 m (SD = 18.52) (Fig. 9). Overall, prediction equation 2 
underestimated beacon distance, however mean errors by individual WISPs varied 
from an underestimation of 9.09 m to an overestimation of 7.69 m. Instances where 
the lamb was considered stationary resulted in a mean underestimation of 0.40 m 
(SD = 17.72) and moving points in a mean underestimation of 2.80 m (SD = 19.23); t 
(1 638.9) = -2.64, p = 0.008. A one-way ANOVA also found a difference in prediction 
error between “distance travelled group”, (F(4, 1 651) = 16.24, p = 4.74 × 10-13), with 
Tukey’s HSD post hoc tests indicating a higher prediction error in “low” vs “high” 
levels of movement (p = 0.043) and “low” vs “mid” levels of movement (p = 0.093).

Localisation: on-sheep

The lamb’s beacon was reported by a maximum of 4 of 9 WISPs during any given 
independent 5-minute interval (i.e. 00:00:00–00:04:59, 00:01:00–00:05:59). In most 
cases the lamb was reported by a single WISP, whilst reported by two or more 
WISPs in 26% of intervals (Table 6). There were also periods during which the lamb 
was not observed by any WISP, the longest of which was a period of 1 h 8 min. Both 
localisation methods were then applied and filtered to ensure unique groupings of 
reporting WISPs across intervals. The midpoint method generated a greater number 
of lamb locations, primarily where there were just two reporting WISPs (Table 7).

When the resulting lamb locations were compared with the lamb’s mean GNSS 
coordinates for the corresponding interval, the distance between locations (the 
localisation error), ranged from 1.39 – 74.67 m using the multilateration method, and 
0.87 – 71.58 m using the midpoint method (Fig.10). The multilateration method 
resulted in a slightly higher localisation error with a mean of 23.77 m (SD = 12.49), 
whilst the midpoint method resulted in a mean of 19.00 m (SD = 11.00); t (205.38) = 
3.15, p = .002. There was also a greater proportion of locations estimated to within 
10 and 20 m of the GNSS location using the midpoint method, with 26 of 150 
locations (17.33%) within 10 m and 89 of 150 locations (59.33%) within 20 m. In 
comparison, the multilateration method estimated 9 of 105 locations (8.57%) to 
within 10 m, and 44 of 105 locations (41.90%) to within 20 m. The midpoint method 
appeared to generate similar mean localisation errors for both 2, 3, and 4 reporting 
WISPs, of 19.20, 18.05, and 19.76 m, respectively. Mean localisation errors 
appeared marginally higher with an increased number of reporting WISPs for the 
multilateration method, with mean localisation errors of 22.55, 25.42, and 28.19 m. 
However, due to the low number of observations where there were 4 reporting 
WISPs, this was not analysed further. 

A two-way ANOVA showed no statistically significant interaction between the 
localisation method and movement variable - lamb moving vs stationary (F(1, 251) = 
0.90, P = 0.34), however simple main effects analysis indicated that both localisation 
method (p = 0.001) and movement (p = 0.043) had an effect on the localisation error. 



There was very little difference in mean localisation error however between moving 
and stationary points within both localisation methods. The multilateration method 
resulted in a mean localisation error of 21.01 m (SD = 12.02) for stationary and 25.68 
m (SD = 12.54) for moving points; t (92.876) = 1.92, p = 0.058, whilst the midpoint 
method resulted in slightly lower mean localisation errors of 17.90 (SD = 10.16) for 
stationary points and 19.72 (SD = 11.51) for moving points; t (134.6) = 1.01, p = 
0.31. When compared based on the lamb’s “distance travelled group”, instances 
where the lamb had a very low level of movement resulted in the highest mean 
localisation errors, using both the multilateration and midpoint methods (Fig. 11). A 
one-way ANOVA indicated that there was a difference in localisation error between 
“distance travelled group” within both the multilateration (F(4, 100) = 2.70, p = 0.035) 
and midpoint methods (F(4, 145) = 2.86, p = 0.026). Tukey’s HSD post hoc tests 
found that for the multilateration method the mean localisation error was higher in 
instances where the lamb had a “very low” level of movement compared with both 
“mid” (p = 0.097) and “none” (p = 0.037). Whilst for the midpoint method there was a 
higher mean localisation error for “very low” compared with a “mid” level of 
movement (p = 0.065). 

Lamb trajectories

Given the low total number of lamb locations generated by both localisation 
methods, the trajectories produced from the BLE were based on much fewer data 
points than the full GNSS data. When split into hourly trajectories there were six 
hours for which the multilateration method, and three hours for which the midpoint 
method failed to produce a single location. During hours in which trajectories were 
generated, these were based on a maximum of 14 (multilateration) and 16 (midpoint) 
locations. The GNSS was set to report every 1-minute, however, some locations 
were given more frequently, and as a result hourly trajectories contained between 58 
and 71 lamb locations. An example trajectory from 0100 h - 0200 h is displayed in 
Fig. 12; chosen as this period contained the greatest number of data points from 
both BLE localisation methods, as well as 59 GNSS locations. Whilst having similar 
start and end points for the hour, the trajectories generated by both BLE methods 
show greater movement patterns and changes in direction than displayed by the 
GNSS trajectory, which indicated that lamb travelled ~40 m during this period. This 
pattern was similarly observed across hourly trajectories, including those where the 
GNSS indicated that the lamb was stationary throughout.

Discussion

Received signal strength indicator: distance, device height, and range

One of the aims of this study was to characterise RSSI in terms of beacon distance 
from the BLE reader within the WISP and investigate the potential range and 
limitations of the BLE devices in an outdoor environment. As observed from the 
overall pattern of the calibration study, there is a natural decrease in the strength of a 
radio wave over distance, known as the path loss (Nyholm, 2020). This trend of 
RSSI declining with increasing beacon distance from the WISP was observed across 
all WISP-beacon height groups. However, within each of the measured distances 
there was a large range in the RSSI values reported, and these values would often 
overlap between distances. RSSI is known to be a noisy measure of proximity, and 



this overlap in RSSI values being reported across a range of distances has also 
been found within a barn system (Nikodem, 2021) and other indoor environments 
(Vanheel et al., 2011). However, whilst there was a large overall range per distance, 
there was in-fact very little variation in signal strength of individual WISP-beacon 
pairings across repetitions, with most pairings differing by 2 dBm or less. This was 
the case across distances, although at 32 m and 64 m, there were fewer overall 
instances of beacons being reported, and more occasions where beacons were 
reported by WISPs during only some repetitions. The ranges in RSSI per distance, 
even within WISP-beacon height groups, therefore indicate that a proportion of the 
variation observed is a result of the specific devices used, and differences arising 
between individual WISP and beacon pairings. This was particularly evident at a 
WISP and beacon height of 0.3 m, where only one of the five WISPs reported 
beacons at distances of 32 and 64 m. As a result, this could make standardising a 
distance prediction equation for a large number of devices more challenging. 

As indicated by the Weibull accelerated failure time model (Fig. 6), depending on the 
threshold set as an acceptable proportion of beacons being reported, the functional 
range of the BLE devices will be reduced at lower WISP and beacon heights. 
Triguero‑Ocaña et al. (2019) similarly found a decreased probability of devices being 
received with increasing distance (up to 20 m) in proximity loggers, and a decreased 
signal strength when devices were located at a height of 0 m compared to 1 m. The 
presence of vegetation was also found to decrease the signal strength, with a 
greater impact at further distances. Whilst conducted across much shorter distances 
of 2 m, Kirkpatrick et al. (2021) also report an increased device range in proximity 
loggers when the receiving devices were located at a higher height, and that mean 
RSSI values were lower in long grass compared to cut grass, indicating that 
vegetation was also likely influencing the signal strength. 

The operating range of BLE devices and the signal strength reported will be 
influenced by the transmission power as well as the transmitting and receiving 
antennas design and location (Townsend et al., 2014), all of which will differ to some 
degree between individual beacons and WISPs. The operating environment of the 
devices will also impact on the signal strength (Townsend et al., 2014), and 
obstacles located between the transmitter and receiver, may result in absorption, 
reflection or scattering of the signal (Goldsmith, 2005). This could act to alter the 
reported RSSI from that if there had been a clear line of sight between devices, or in 
some cases prevent the beacon from being reported. These factors make the 
translation of RSSI values into a corresponding distance challenging in an outdoor 
environment, where obstacles within the field (i.e., fences, water troughs, and 
vegetation), as well as the field topography, weather conditions, and the animals 
themselves all have the potential to interfere with the signal. When using the BLE 
beacons on sheep, the placement of the beacons, as well as their behaviour, 
posture, and orientation to the reporting WISP at a given time could therefore 
influence both the likelihood of the beacon being received by the reader, and on the 
RSSI value which is reported. Instances where the lamb is lying down, or grazing 
(and the beacon is in a lowered position) are therefore likely to have a reduce 
probability of being reported, in comparison with a lamb standing or actively walking 
with head and neck erect at the same distance, particularly as that distance 
increases.



Distance prediction equations

As both WISP and beacon height was found to influence the potential range of the 
BLE signal, multiple distance prediction equations were developed from the 
calibration data to correspond to the WISP and beacon heights used within each of 
the studies, rather than applying one single equation. Prediction equation 1, used 
within the static study, had an overall tendency to underestimate the WISP-beacon 
distance, with a mean underestimation of 12.13 m. However, the prediction equation 
was able to estimate 76% of the beacons to within 20 m of the WISP-GNSS 
estimated beacon distance, and 39% to within 10 m. Beacons located at distances 
over 60 m resulted in the largest underestimations compared with WISP-GNSS 
distances, and tended to have multiple beacons located between them and the 
reporting WISP. At these greater distances, variations in RSSI had potential to have 
a greater impact on the predicted distance. Small changes in RSSI resulting in large 
changes in distance estimation have been found within other radio frequency 
transceivers (Mukhopadhyay et al., 2015). However, some of the differences 
observed between the predicted and WISP-GNSS estimated distances will also 
include error associated with both the WISPs GNSS receiver and the GPS logger 
app used to obtain the beacon coordinates. Typically, GNSS systems are considered 
accurate in a range of 5 – 30 m (Maroto-Molina et al., 2019). Within this study, the 
WISPs had a grand mean error of 1.69 m between individual and mean GNSS 
coordinates, whilst the GPS logger app had a mean difference of 0.93 m, both of 
which will contribute to some of the variation between estimations.

The on-sheep validation presented different challenges in terms of estimating the 
beacon’s and therefore the lamb’s distance from any given WISP, given the potential 
distance which a lamb could move over the recording period. Johnson et al. (2021) 
reports an average of 3.4 km (± 0.89) travelled by sheep over the course of the day, 
resulting in a mean of 11.81 m within a 5-minute period. Within the study the lamb 
under observation was found to travel a maximum estimated distance of 81.24 m 
and mean of 9.50 m during a 5-minute interval. When compared with the mean 
GNSS location for the corresponding interval, prediction equation 2 resulted in a 
close mean underestimation of 1.59 m, however, there were also some extreme 
values produced where the estimated distance differed from the WISP-GNSS 
distance by as much as 104 m. Despite some of these larger errors, a large 
proportion of the lamb’s beacon readings were estimated to within 20 m of the WISP-
GNSS estimated distance (254 of 332 – 77%), and 156 (47%) to within 10 m. Whilst 
the prediction equation resulted in a slightly closer mean distance estimation for 
stationary compared with moving points, instances where the lamb had travelled 
furthest over the interval did not produce the largest errors. Instead, instances where 
the lamb was classed as having a “very low” level of movement resulted in the 
greatest differences between the predicted and mean WISP-GNSS distance for the 
interval. 

Some of the error observed between these estimates may be due to the 
configuration of the WISPs and the way in which they operate. The WISPs report a 
single figure, the mean RSSI, for a 5-minute interval, however, during this time the 
lamb could move beyond the range of the reporting WISP, even if only moving a 
short distance. In addition, the lamb’s behaviour and posture may also change over 
the interval and could be within the WISPs range when standing, but not if lying 



down. These estimations also do not consider the presence of other sheep or 
obstacles which may impact on the signal strength over the course of the reporting 
interval, which may act to prevent the focal lamb’s beacon being received by the 
WISP, or to reduce the signal strength reported. As the readers scan on a 30 s on / 
30 s off, the mean RSSI value reported could also be based on readings from as 
little as a 30 s period when the lamb was within range, resulting in a higher than 
expected RSSI and therefore a closer distance estimation by the prediction equation. 
This is a potential limitation of the system, where in the current configuration a 
lamb’s beacon reported only once, but with a high RSSI could be reported over a 
lamb with multiple readings but lower average RSSI. Whilst we found very few 
instances in this study where all 16 beacon positions for a WISP were filled (16 of 
2585 – 0.62%), and so few opportunities for this to have occurred, this could be a 
larger issue where a greater number of sheep are present. In such instances, sheep 
consistently located towards the edge of a WISPs range, and therefore with a lower 
average RSSI may be missed by WISPs. As the lamb’s behaviour and posture for a 
given interval was unknown, prediction equation 2 was developed based on 
combined calibration data from a WISP height of 2 m and beacon heights of both 0.3 
and 0.7 m. However, individual prediction equations (Fig. 7) developed for each 
beacon height indicate that as the RSSI value decreases there is a greater 
difference in distance estimates, with a beacon height of 0.3 m producing a shorter 
distance than those located at 0.7 m. Lamb behaviour and posture are therefore 
likely to have a greater impact on the prediction equation when located further from 
the reporting WISP. The GNSS locations used to estimate the beacon distances are 
themselves also subject to error. Duncan et al. (2013) reported a mean error of 19.6 
m ± 30.9 m and a circular error of 10.8 m using the i-gotU GT-600, which will also 
contribute to the differences observed between GNSS and BLE estimated beacon 
distances.

Distance estimation errors based on RSSI will vary depending upon the devices 
used, the conditions in which they are applied, and the methods used to translate 
RSSI to distance. Previous studies have reported very low mean distance estimation 
errors of 0.41 m (Thaljaoui et al., 2015) and 0.98 m (Adewumi et al., 2013) in an 
indoor environment, and 0.88 m in an outdoor environment (Adewumi et al., 2013). 
However, these studies tested RSSI at small distances ranges of between 0.25 – 3.5 
m (Thaljaoui et al., 2015) and 1 – 10 m (Adewumi et al., 2013). Whilst variability in 
RSSI between WISP-beacon pairs, combined with effects of lamb movement on 
contact success and number of RSSI readings reported during each window resulted 
in a level of noise within the estimated distance from the prediction equation, an 
average mean underestimation of 1.59 m within the context of the ~1.4 ha paddock 
is relatively small. 

Localisation

The static beacon localisation study aimed to locate beacons within an ~5 400 m² 
area based on data obtained over a 2-hour period. Using the multilateration 
approach, locations were generated for 11 of the 16 beacons, all of which were 
estimated to within 37.34 m of their estimated GNSS location, resulting in a mean 
difference of 22.02 m. The beacon with the largest localisation error, Beacon H, was 
the beacon which had both the greatest over and underestimation by the prediction 
equation. This resulted in circles intersecting at different areas within the paddock, 



hence the mean estimated location was much further from that of the GNSS. In 
comparison, Beacon B was reported by the same number of WISPs (five), however, 
four of these WISPs all intersected at very similar points, with a larger 
underestimation from just one WISP, therefore resulting in a closer mean estimate, 
with a localisation error of 5.34 m. Highlighted during the static beacon study was 
that the multilateration method was reliant on RSSI values generating predicted 
distances which produced intersecting circles, where under ideal circumstances the 
method would generate a cluster of points which intersected at the same (or close to 
the same) position. However, whilst occurring for some beacons, this was not in the 
case in all instances, and hence the mean of estimated points was instead applied to 
generate the final estimated location. Nonetheless, in some instances beacons were 
not able to be located despite having been reported by multiple WISPs. 

The on-sheep validation therefore investigated both the multilateration and a 
midpoint localisation method, which did not require distance estimations to intersect. 
However, both methods still required a minimum of two WISPs reporting within an 
overlapping 5-minute interval to estimate the lamb’s location. Given the length of the 
paddocks (~236 m) it was expected that each individual WISP would not report on 
every occasion, as there would be times when the lamb was beyond a WISPs range, 
particularly those located at either end of the paddocks. The lamb’s beacon was 
most frequently reported by only a single WISP during any given 5-minute interval, 
giving an indication of proximity to the reporting WISP but not a definitive location. 
However, over time, this could still give an indication of the lamb’s activity throughout 
the paddock. There were also periods during which the lamb was not reported by 
any WISP, the longest of which was between 1120 h and 1228 h, when the 
corresponding GNSS suggests that the lamb was stationary. If lying down, this would 
reduce the chance of the lamb’s beacon being reported and more likely that the lamb 
was beyond the effective range of any WISP, as the beacon would be located closer 
to the ground. 

A total of 105 locations were generated for the lamb over the course of the day using 
the multilateration method, whilst 150 locations were generated using the midpoint 
method. Although, similar localisation errors were generated by both methods, there 
was a slightly lower mean error using the midpoint method, and a greater proportion 
of locations were estimated to within 10 m of the GNSS. Instances where the lamb 
was classed as having a “low” level of movement resulted in the highest mean 
localisation error, however, there was no significant difference in mean localisation 
error between most of the “distance travelled group” classifications. The distance 
travelled was calculated based on the lamb’s GNSS locations reporting every 
minute, and so was subject to error from the i-gotU. In addition, the classification was 
based on the highest level of movement from any WISP, however as WISPs 
reported on independent intervals the proportion of the 5-minute interval for which 
each WISP reported could vary from between 1 to 5 minutes. Some of the errors 
arising in the localisation are therefore likely a result of the configuration of the WISP 
reporting intervals, where the movement classification and distance travelled may 
have differed between each of the reporting WISPs. Particularly using the 
multilateration method, the length of the overlapping period and difference in the 
distance travelled between recording periods of WISPs could impact on whether 
distance prediction estimates generated overlapping circles. 



The study investigated the range of BLE devices in an outdoor system, and the 
feasibility of applying BLE technology as a means of animal proximity and location 
monitoring within outdoor livestock systems and highlights some potential challenges 
for on-animal application. The calibration of the WISPs and beacons suggests that 
the species, their height and behaviour, as well as the beacon placement, and the 
environment of intended application will need to be taken into account when 
considering the effective BLE range within that particular scenario. In addition, 
variation in animal posture and the potential distance and speed at which they might 
travel over a recording interval will affect the likelihood of being reported, and the 
possible interpretation of BLE signal strength into distance. Whilst static BLE readers 
could offer a means of monitoring livestock proximity within range of known points 
within extensive systems, animal localisation, given the BLE ranges observed, would 
require many BLE readers. Hence a combination of BLE beacons and on-sheep 
roving readers, equipped with GNSS, may be more plausible. However, 
improvements in BLE range and accuracy would be required for practical application. 
In terms of real-time monitoring, whilst almost all data was transmitted during the 
static localisation study, data acquisition within extensive systems can be variable, 
with previous studies utilising LoRaWAN reporting data acquisition in the ranges of 
46% (McIntosh et al., 2023) to 82% (Ojo et al., 2022), hence data loss and its 
potential effect on the interpretation of results will also need to be considered. 
However, depending upon the intended purpose of monitoring, the time frame for a 
recording period will alter, and it may also not be necessary for animals to be 
recorded on every occasion. This poses several questions, namely: what proportion 
of beacon loss is acceptable in terms of livestock monitoring, and does this alter 
depending on purpose? And how close do proximity and localisation estimates need 
to be? - particularly in more extensive sheep systems where a lower degree of 
resolution may be acceptable given the potential scale of farms. 

Conclusion

The study reports on the calibration of BLE devices within outdoor systems, where 
BLE signal strength was found to decline with increasing beacon distance from a 
reader. As the height at which both the reader and beacon were located had an 
impact on the survival of BLE signals, when applied on-sheep, the functional BLE 
range will therefore be influenced by animal behaviour and posture. As proof of 
concept, the study then utilised developed distance prediction equations from RSSI 
values for the localisation of grazing sheep. Whilst not yet too practical given the 
range and number of readers (WISPs) which may be required in more extensive 
settings, this study demonstrates that the application of BLE as fixed readers for 
animal monitoring and localisation is possible. Continued advances in the range of 
BLE devices, along with opportunity for data to be received in real-time through 
developments in IoT technologies makes BLE a potential tool for future development 
in this sector.  

Ethics approval

Ethical approval for the farm trial was obtained through the Moredun Research 
Institute’s Animal Welfare and Ethical Review Body (ref: E20/21).

Data and model availability statement



None of the data were deposited in an official repository. Original data are available 
from the authors upon request. 

Declaration of generative AI and AI-assisted technologies in the writing 
process

The authors did not use any artificial intelligence assisted technologies in the writing 
process. 

Author ORCIDs

Walker, A.M. (https://orcid.org/0000-0002-0738-7768)

Jonsson, N.N. (https://orcid.org/0000-0003-3245-9783)

Waterhouse, A. (https://orcid.org/0000-0003-3666-6077)

Kenyon, F. (https://orcid.org/0000-0002-8073-0382)

McLaren, A. (https://orcid.org/0000-0001-8515-9974)

Morgan-Davies, C. (https://orcid.org/0000-0003-4243-837X)

Declaration of interest

None.

Acknowledgements

The authors would like to thank the team at CENSIS: Scotland’s Innovation Centre 
for sensing, imaging, and Internet of Things technologies, for their assistance in the 
development and construction of the wearable integrated sensor platform (WISP). 
The authors also wish to thank the farm and technical staff at SRUC Hill and 
Mountain Research Centre and Moredun Research Institute.

Financial support statement

This study is part of the TechCare Project which has received funding from the 
European Union’s Horizon 2020 research and innovation programme (grant number 
862050). F.K. also received support from the Scottish Government through the Rural 
and Environment Science and Analytical Services (RESAS) Strategic Research 
Programme “2021-2026”, project number “MRI-A3-1 Precision livestock tools to 
improve sheep welfare”.

References

Adewumi, O., Djouani, K., Kurien, A.M., 2013. RSSI Based Indoor and Outdoor Distance 
Estimation for Localization in WSN. Proceedings of the 2013 IEEE International 

https://orcid.org/0000-0002-0738-7768
https://orcid.org/0000-0003-3245-9783
https://orcid.org/0000-0003-3666-6077
https://orcid.org/0000-0002-8073-0382
https://orcid.org/0000-0001-8515-9974
https://orcid.org/0000-0003-4243-837X


Conference on Industrial Technology (ICIT), 25-28th February 2013, Cape Town, South 
Africa, pp. 1534-1539. doi:10.1109/ICIT.2013.6505900.

Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., Pugliese, C., 2022. Review: Precision 
Livestock Farming technologies in pasture-based livestock systems. Animal 16, 1-14. 
doi:10.1016/j.animal.2021.100429.

Bahlo, C., Dahlhaus, P., Thompson, H., Trotter, M., 2019. The role of interoperable data 
standards in precision livestock farming in extensive livestock systems: A review. 
Computers and Electronics in Agriculture 156, 459-466. 
doi:10.1016/j.compag.2018.12.007.

Berckmans, D., 2014. Precision livestock farming technologies for welfare management in 
intensive livestock systems. Scientific and Technical Review 33, 189-196. 
doi:10.20506/rst.33.1.2273. PMID: 25000791.

Bloch, V., Pastell, M., 2020. Monitoring of Cow Location in a Barn by an Open-Source, Low-
Cost, Low-Energy Bluetooth Tag System. Sensors 20, 3841. 
doi.org/10.3390/s20143841.

Buller, H., Blokhuis, H., Lokhorst, K., Silberberg, M., Veissier, I., 2020. Animal Welfare 
Management in a Digital World. Animals 10, 1779. doi:10.3390/ani10101779.

Calenge, C., Dray, C.F.S., Royer, M., 2023. adehabitatLT: Analysis of Animal Movements (R 
package version 0.3.27). Retrieved on 15 July 2024, from https://CRAN.R-
project.org/package=adehabitatLT. 

Duncan, S., Stewart, T.I., Oliver, M., Mavoa, S., MacRae, D., Badland, H.M., Duncan, M.J., 
2013. Portable Global Positioning System Receivers: Static Validity and Environmental 
Conditions. American Journal of Preventive Medicine, 44, e19-e29. 
doi:10.1016/j.amepre.2012.10.013.

Fogarty, E.S., Swain, D.L., Cronin, G., Trotter, M., 2018. Autonomous on-animal sensors in 
sheep research: A systematic review. Computers and Electronics in Agriculture 150, 
245-256. doi:10.1016/j.compag.2018.04.017.

Fogarty, E.S., Swain, D.L., Cronin, G.M., Moraes, L.E., Bailey, D.W. Trotter, M., 2021. 
Developing a Simulated Online Model That Integrates GNSS, Accelerometer and 
Weather Data to Detect Parturition Events in Grazing Sheep: A Machine Learning 
Approach. Animals 11, 303. doi:10.3390/ani11020303. 

Goldsmith, A., 2005. Wireless Communications. Cambridge University Press, Cambridge, 
UK.

Hijmans, R., 2022. Geosphere: Spherical Trigonometry (R package version 1.5-18). 
Retrieved on 15 July 2024, from https://CRAN.R-project.org/package=geosphere.  

Hromada, S.J., Esque, T.C., Vandergast, A.G., Drake, K.K., Chen, F., Gottsacker, B., Swart, 
J., Nussear, K.E., 2023. Linear and landscape disturbances alter Mojave desert 
tortoise movement behaviour. Frontiers in Ecology and Evolution 11, 971337. 
doi:10.3389/fevo.2023.971337.

Johnson, P.L., Cullen, N., Hickey, S.M., Knowler, K., Bryson, B., Hall, M., Pletnykov, P., 
2021. Preliminary investigations into genetic variation in distance travelled by young 
sheep. New Zealand Journal of Animal Science and Production, 81, 68-73. 

https://CRAN.R-project.org/package=adehabitatLT
https://CRAN.R-project.org/package=adehabitatLT
https://CRAN.R-project.org/package=geosphere


Kirkpatrick, L., Herrera-Olivares, I., Massawe, A., Sabuni, C., Leirs, H., Berkvens, R., Eens, 
M., Weyn, M., 2021. ProxLogs: Miniaturized proximity loggers for monitoring 
association behaviour in small animals. Hystrix, the Italian Journal of Mammalogy 32, 
165-175. doi:10.4404/hystrix-00430-2021.

Lee, G., Ogata, K., Kawasue, K., Sakamoto, S., Ieiri, S., 2022. Identifying-and-counting 
based monitoring scheme for pigs by integrating BLE tags and WBLCX antennas. 
Computers and Electronics in Agriculture 198, 107070. 
doi:10.1016/j.compag.2022.107070.

Liu, L., Ni, J.-Q., Zhao, R.-Q., Shen, M.-X, He. C.-L., Lu, M.-Z., 2018. Design and test of a 
low-power acceleration sensor with Bluetooth Low Energy on ear tags for sow 
behaviour monitoring. Biosystems Engineering 176, 162-171. 
doi:0.1016/j.biosystemseng.2018.10.011.

Lovett, T., Briers, M., Charalambides, M., Jersakova, R., Lomax, J., Holmes, C., 2020. 
Inferring proximity from Bluetooth Low Energy RSSI with Unscented Kalman 
Smoothers. ArXiv. doi:10.48550/arXiv.2007.05057.

Luomala, J., Hakala, I., 2022. Adaptive range-based localization algorithm based on 
trilateration and reference node selection for outdoor wireless sensor. Computer 
Networks 210, 108865. doi:10.1016/j.comnet.2022.108865.

Maroto-Molina, F., Navarro-García, J., Príncipe-Aguirre, K., Gómez-Maqueda, I., Guerrero-
Ginel, J.E., Garrido-Varo, A., Pérez-Marín, D.C., 2019. A Low-Cost IoT-Based System 
to Monitor the Location of a Whole Herd. Sensors 19, 2298. doi:10.3390/s19102298.

Maxa, J., Nicklas, D., Robert, J., Steuer, S., Thurner, S., 2023. Test of Bluetooth Low Energy 
localisation system for dairy cows in a barn. Book of Abstracts of the 74th Annual 
Meeting of the European Federation of Animal Science, 27-31 August 2023, Lyon, 
France, p. 776. 

McIntosh, M.M., Cibils, A.F., Nyamuryekung’e, S., Estell, R.E., Cox, A., Duni, D., Gong, Q., 
Waterhouse, T., Holland, J., Cao, H., Boucheron, L., Chen, H., Spiegal, S., Duff, G., 
Utsumi, S.A., 2023. Deployment of a LoRa-WAN near-real-time precision ranching 
system on extensive rangelands: What we have learned. Applied Animal Science 39, 
349-361. doi: 10.15232/aas.2023-02406.

Mukhopadhyay, B., Sarangi, S., Kar, S., 2015. Performance evaluation of localization 
techniques in wireless sensor networks using RSSI and LQI. Proceedings of the 
Twenty-First National Conference on Communications (NCC), 27 February 2015 – 1 
March 2015, Mumbai, India, pp. 1-6. doi:10.1109/NCC.2015.7084867.

Nikodem, M., 2021. Bluetooth Low Energy Livestock Positioning for Smart Farming 
Applications. In Lecture Notes in Computer Science 12745, International Conference 
on Computational Science (ed. M Paszynski, D Kranzlmüller, VV Krzhizhanovskaya, 
JJ Dongarra and PMA Sloot). Springer Nature Switzerland AG, Cham, Switzerland, pp. 
55-67. doi:10.1007/978-3-030-77970-2.

Nyholm, H., 2020. Localizing Sheep using a Bluetooth Low Energy enabled Unmanned Ariel 
Vehicle for Round-trip Time of Arrival-based Multilateration. Master’s Thesis, 
Norwegian University of Science and Technology, Trondheim, Norway.



Ojo, M.O., Viola, I., Baratta, M., Giordano, S., 2022. Practical Experiences of a Smart 
Livestock Location Monitoring System Leveraging GNSS, LoRaWAN and Cloud 
Services. Sensors 22, 273. doi: 10.3390/s22010273.

Paganoni, B., Burgel, A.V., Macleay, C., Scanlan, V., Thompson, A., 2021. Proximity 
sensors provide an accurate alternative for measuring pedigree of lambs in Australian 
sheep flocks under commercial conditions. Animal Production Science 61, 1951-1957. 
doi:10.1071/AN21190.

Pebesma, E., Bivand, R., 2023. Spatial Data Science: With Applications in R (R package 
version 1.0-14). Retrieved on 15 July 2024, from 
https://doi.org/10.1201/9780429459016 

R Core Team, 2022. R: A language and environment for statistical computing. R package 
version 4.2.2. https://www.R-project.org/.  R Foundation for Statistical Computing, 
Vienna, Austria. 

Shenzhen Feasycom Technology Co., Ltd. FeasyBeacon Mini FSC-BP103 Datasheet. 
Retrieved on 12 September 2023, from 
https://www.feasycom.net/Content/upload/pdf/202213049/FeasyBeacon-FSC-BP103-
Datasheet-V2.3.pdf.pdf?rnd=934. 

Sohi, R., Trompf, J., Marriott, H., Bervan, A., Godoy, B.I., Weerasinghe, M., Desai, A., Jois, 
M., 2017. Determination of maternal pedigree and ewe-lamb spatial relationships by 
application of Bluetooth technology in extensive farming systems. Journal of Animal 
Science 95, 5145-5150. doi:10.2527/jas2017.1887.

Spachos, P., Plataniotis, K., 2020. BLE Beacons in the Smart City: Applications, Challenges, 
and Research Opportunities. Internet of Things Magazine, 3, 14-18. 
doi:10.1109/IOTM.0001.1900073.

Szyc, K., Nikodem, M., Zdunek, M., 2023. Bluetooth low energy indoor localization for large 
industrial areas and limited infrastructure. Ad Hoc Networks 139, 103024. 
doi.org/10.1016/j.adhoc.2022.103024.

Thaljaoui, A., Val, T., Nasri, N., Brulin, D., 2015. BLE localization using RSSI measurements 
and iRingLA. Proceedings of the 2015 IEEE International Conference on Industrial 
Technology (ICIT), 17-19 March 2015, Seville, Spain, pp. 2178-2183. 
doi:10.1109/ICIT.2015.7125418.

Therneau, T., 2023. A Package for Survival Analysis in R (R package version 3.5-5). 
Retrieved on 15 July 2024, from https://CRAN.R-project.org/package=survival.  

Tøgersen, F.A., Skjøth, F., Munksgaard, l., Højsgaard, S., 2010. Wireless indoor tracking 
network based on Kalman filters with an application to monitoring dairy cows. 
Computers and Electronics in Agriculture 72, 119-126. 
doi.org/10.1016/j.compag.2010.03.006. 

Townsend, K., Cufí, C., Akiba, Davidson, R., 2014. Introduction. In Getting Started with 
Bluetooth Low Energy: Tools and Techniques for Low-Power Networking (ed. B 
Sawyer and M Loukides). O’Reilly Media, Inc., Sebastopol, CA, USA, pp. 1-14. 

Triguero‑Ocaña, R., Vicente, J., Acevedo, P., 2019. Performance of proximity loggers under 
controlled field conditions: an assessment from a wildlife ecological and 

https://www.R-project.org/
https://www.feasycom.net/Content/upload/pdf/202213049/FeasyBeacon-FSC-BP103-Datasheet-V2.3.pdf.pdf?rnd=934
https://www.feasycom.net/Content/upload/pdf/202213049/FeasyBeacon-FSC-BP103-Datasheet-V2.3.pdf.pdf?rnd=934
https://CRAN.R-project.org/package=survival


epidemiological perspective. Animal Biotelemetry, 7, 24. 
doi:10.1186/s40317‑019‑0186‑2.

Umstätter, C., Waterhouse, A., Holland, J., 2008. An automated senor-based method of 
simple behavioural classification of sheep in extensive systems. Computers and 
Electronics in Agriculture 64, 19-26. doi:10.1016/j.compag.2008.05.004.

Vanheel, F., Verhaevert, J., Laermans, E., Moerman, I., Demeester, P., 2011. Automated 
linear regression tools improve RSSI WSN localization in multipath indoor 
environment. Journal on Wireless Communications and Networking 2011, 38. 
doi:10.1186/1687-1499-2011-38.

Waterhouse, A., Holland, J.P., McLaren, A., Arthur, R., Duthie, C-A., Kodam, S., Wishart, 
H.M., 2019. Opportunities and challenges for real-time management (RTM) in 
extensive livestock systems. Proceedings of the 9th European Conference on 
Precision Livestock Farming (ed. B O’Brian, D Hennessy and L Shalloo), 26-29 August 
2019, Cork, Republic of Ireland, pp. 256-261.

Wathes, C.M., Kristensen, H.H., Aerts, J.-M., Berckmans, D., 2008. Is precision livestock 
farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s 
panacea or pitfall? Computers and Electronics in Agriculture 64, 2-10. 
doi:10.1016/j.compag.2008.05.005.

Yang, J., Poellabauer, C., Mitra, P., Neubecker C., 2020. Beyond beaconing: Emerging 
applications and challenges of BLE. Ad Hoc Networks 97, 102015. 
doi:10.1016/j.adhoc.2019.102015.

Zhou, Y., Li, J., Lamont, L., 2012. Multilateration Localization in the Presence of Anchor 
Location Uncertainties. Proceedings of the 2012 IEEE Global Communications 
Conference (GLOBECOM), 3-7 December 2012, Anaheim, CA, USA, pp. 309-314. 
doi:10.1109/GLOCOM.2012.6503131. 



Table 1

Off-sheep calibration study summary: total beacon readings reported per individual 
wearable integrated sensor platform (WISP).

WISP ID

Distance 1 2 3 4 5

1 240 (100%) 240 (100%) 240 (100%) 240 (100%) 240 (100%)

2 240 (100%) 240 (100%) 240 (100%) 240 (100%) 240 (100%)

4 240 (100%) 240 (100%) 240 (100%) 240 (100%) 239 (99.6%)

8 240 (100%) 240 (100%) 240 (100%) 240 (100%) 239 (99.6%)

16 236 (98.3%) 234 (97.5%) 240 (100%) 239 (99.6%) 230 (95.8%)

32 232 (96.7%) 148 (61.7%) 141 (58.8%) 130 (54.2%) 156 (65%)

64 158 (65.8%) 71 (29.6%) 33 (13.8%) 70 (29.2%) 90 (37.5%)

128 -- -- -- -- --

Total no. beacon 
readings

1586 
(82.6%)

1413 
(73.6%)

1374 
(71.6%)

1399 
(72.9%)

1434 
(74.7%)



Table 2

Off-sheep calibration study summary: total beacon readings reported per individual 
beacon. 

Beacon ID

Distance 1 2 3 4 5 6 7 8

1
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)

2
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)

4
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
149 

(99.3%)

8
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
149 

(99.3%)

16
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
150 

(100%)
129 

(86%)

32
105 

(70%)
100 

(66.7%)
92 

(61.3%)
105 

(70%)
101 

(67.3%)
88 

(58.6%)
123 

(82%)
93 

(62%)

64
50 

(33.3%)
46 

(30.7%)
49 

(32.7%)
63 

(42%)
45 

(30%)
49 

(32.7%)
92 

(61.3%)
28 

(18.7%)

128 -- -- -- -- -- -- -- --

Total no. 
beacon 
readings

905 
(75.4%)

896 
(74.7%)

891 
(74.3%)

918 
(76.5%)

896 
(74.7%)

887 
(73.9%)

965 
(80.4%)

848 
(70.7%)



Table 3

Summary of the Weibull accelerated failure time model of beacon distance to failure 
of being reported, based on wearable integrated sensor platform (WISP) and beacon 
height during the off-sheep calibration study.

Parameter Value SE z p-value

Intercept1 3.4234 0.0288 118.84 <2 × 10-16

WISP height

0.3 m Reference WISP height

0.7 m 0.4677 0.0409 11.45 <2 × 10-16

2 m 0.8669 0.0430 20.15 <2 × 10-16

Beacon height

0.3 m Reference beacon height

0.7 m 0.3039 0.0403 7.55 4.4 × 10-14

WISP height × Beacon height

WISP 0.3 m × Beacon 0.3 m Reference WISP × Beacon height

WISP 0.7 m × Beacon 0.7 m 0.0769 0.0592 1.30 0.194

WISP 2 m × Beacon 0.7 m -0.1235 0.0596 -2.07 0.038

Log (scale)2 -1.0414 0.0262 -39.76 <2 × 10-16

1 Intercept as given by the survreg function is the log of the standard paramaterisation of the weibull 
distribution scale parameter.

2 Log (scale) as given by the survreg function is the natural log of the scale parameter (Scale = 0.353, 
x2 = 662.06 (5), p = 7.8 x 10-141), where scale is the reciprocal of the standard paramaterisation of the 
weibull distribution shape (hence shape = 1/0.353 = 2.83).



Table 4

Total number of received signal strength indicator (RSSI) readings (out of a 
maximum possible 24) for each wearable integrated sensor platform (WISP)-beacon 
pairing during the off-sheep static beacon localisation study.

WISP ID

Beacon ID 1 2 3 4 5 6 Total no. of WISPs Reporting

A -- 14 -- 24 23 -- 3

B 8 14 21 23 23 5

C -- -- -- -- -- -- 0

D 1 -- -- -- 23 1 3

E 9 22 -- 24 23 24 5

F 24 4 24 24 -- -- 4

G 24 22 24 24 -- -- 4

H 1 2 -- 1 23 24 5

I 24 22 24 -- -- -- 3

J -- -- -- -- 23 24 2

K 24 22 24 -- -- -- 3

L 24 -- -- -- -- -- 1

M 24 -- -- -- 23 24 3

N 24 22 24 24 1 -- 5



O 24 -- -- 1 -- -- 2

P 24 22 24 24 23 8 6

Total no. of beacons reported 13 10 7 9 9 6 54



Table 5

Summary of the off-sheep static beacon localisation study, indicating the number of 
wearable integrated sensor platforms (WISPs) reporting each beacon, and the 
associated localisation error. 

Beacon 
ID

No. of reporting 
WISPs

No. of intersecting WISP 
pairs

Beacon localisation error 
(m)

A 3 1 28.11

B 5 8 5.34

C 0 -- --

D 3 0 --

E 5 4 24.13

F 4 3 32.42

G 4 2 11.57

H 5 6 37.34

I 3 0 --

J 2 0 --

K 3 1 23.83

L 1 -- --

M 3 1 22.77

N 5 3 14.00

O 2 1 28.89



P 6 4 13.81



Table 6

Summary of the on-sheep validation, indicating the number of wearable integrated 
sensor platforms (WISPs) reporting the lamb’s beacon within any independent 5-
minute interval. 

No. of reporting WISPs No. of intervals % of intervals

0 277 19.29

1 788 54.87

2 276 19.22

3 64 4.45

4 31 2.16

Total no. of Intervals for day 1436 100



Table 7

Summary of the number of lamb locations generated within the on-sheep validation, 
by localisation method. Abbreviations: WISPs = wearable integrated sensor 
platforms.

No. of lamb locations generated

No. of reporting WISPs Multilateration Method Midpoint Method

2 69 111

3 27 30

4 9 9

Total no. of locations 105 150



Figure captions

Fig. 1. Flow diagram indicating the process of analysis for the off-sheep calibration 
study. Abbreviations: RSSI = received signal strength indicator; WISP = wearable 
integrated sensor platform.

Fig. 2. Flow diagram indicating the process of analysis for beacon and lamb 
localisation, as conducted in the static beacon localisation and on-sheep validation 
studies. Abbreviations: BLE = Bluetooth low energy; GNSS = global navigation 
satellite systems; RSSI = received signal strength indicator; WISP = wearable 
integrated sensor platform.

Fig. 3. Off-sheep static beacon localisation study layout, indicating the 16 beacon 
global navigation satellite systems (GNSS) locations (A-P) within two adjacent 
paddocks, and the mean GNSS locations of wearable integrated sensor platforms 
(WISPs), labelled W1-6, along the paddock fence lines. 

Fig. 4. Example of the multilateration localisation method used within the static 
beacon localisation study and on-sheep validation, where: a) displays the predicted 
distances of beacon E, plotted as the radius of a circle from each wearable 
integrated sensor platform (WISP), denoted by W1-6, which reported the beacon, b) 
shows the estimated beacon locations - points where the circles intersected and 
which fell within the field boundary, c) shows the final Bluetooth Low Energy (BLE) 
estimated beacon location - the mean of points calculated in b, in comparison with 
the corresponding global navigation satellite systems (GNSS) estimated location. 

Fig. 5. Layout of the on-sheep validation showing the configuration of the two 
adjacent paddocks, and the mean global navigation satellite systems (GNSS) 
location of the 9 wearable integrated sensor platforms (WISPs) located along the 
surrounding fence lines. 

Fig. 6. Bluetooth Low Energy (BLE) signal survival curves generated from the off-
sheep calibration study. Where the y-axis indicates the probability of a beacon signal 
being reported by a wearable integrated sensor platform (WISP) beyond that 
distance. W0.3-B0.3 indicates a WISP and beacon height of 0.3 m, W0.3-B0.7 a 
WISP height of 0.3 m and beacon height of 0.7 m, W0.7-B0.3 a WISP height of 0.7 
m and beacon height of 0.3 m, W0.7-B0.7 a WISP and beacon height of 0.7 m, W2-
B0.3 a WISP height of 2 m and beacon height of 0.3 m, and W2-B0.7 a WISP height 
of 2 m and beacon height of 0.7 m.



Fig. 7. Comparison of the off-sheep calibration study regression lines of the 
estimated beacon distances calculated from received signal strength indicator 
(RSSI) for each of the WISP-beacon height group prediction equations. Where 
wearable integrated sensor platforms (WISPs) were tested at heights of 0.3, 0.7, and 
2 m, and beacons were tested at heights of 0.3 and 0.7 m.  

Fig. 8. Comparison of the estimated distances between each wearable integrated 
sensor platform (WISP) and beacon in the off-sheep static beacon localisation study, 
calculated using Bluetooth Low Energy (BLE) -based on the mean received signal 
strength indicator (RSSI) and applying prediction equation 1, vs distances calculated 
based on global navigation satellite systems (GNSS). 

Fig. 9. Comparison of estimated distances between wearable integrated sensor 
platforms (WISPs) and the lamb (beacon) during the on-sheep validation, calculated 
using Bluetooth Low Energy (BLE) – by applying prediction equation 2, vs distances 
calculated based on global navigation satellite systems (GNSS).

Fig. 10. Comparison of distance between Bluetooth Low Energy (BLE) estimated 
lamb locations and corresponding mean global navigation satellite systems (GNSS) 
lamb locations (the localisation error) for both localisation methods. Star indicates 
the mean localisation error.

Fig. 11. Comparison of distance between Bluetooth Low Energy (BLE) generated 
lamb locations and mean global navigation satellite systems (GNSS) lamb locations 
by the distance travelled group. Star indicates the mean distance (m).

Fig. 12. Lamb trajectories from 0100 h – 02:00 h comparing the full global navigation 
satellite systems (GNSS) data for the hour with Bluetooth Low Energy (BLE) 
trajectories using the multilateration and midpoint localisation methods. 


























