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ABSTRACT

Head movement detection is an essential part of human-computer interaction systems, which rely on control signals to control
various assistive and augmented technologies, such as wheel chairs for Quadriplegics’ patients, virtual/augmented reality
and assistive driving. Driver drowsiness detection and alert systems aided by head movement detection can prevent major
accidents and save lives. Wearable devices, such as MagTrack consist of magnetic tags and magnetic eyeglasses clips and
are intrusive. Vision-based systems suffer from ambient lighting, line of sight, and privacy issues. Contactless sensing has
become an essential part of next-generation sensing and detection technologies. Wi-Fi and radar provide contactless sensing,
however, in assistive driving they need to be inside enclosures or dashboards, which for all practical purposes in this paper
have been considered as through walls. In this work, we propose contactless human head movement detection system for
classifying head position with and without walls using ultra wide-band (UWB)-radar and Wi-Fi signals, utilising machine and
deep learning techniques. Our work, considers six most common head gestures, including Up, Down, Right90, Left90, Right45,
and Left45 movements. A high classification accuracy of 83.33% and 91.8% is achieved overall with the feature fusion of
VGG16 and InceptionV3 models with and without walls.

Introduction

Head movements1, carry important information related to human behavior. Head motions are an integral part of non-verbal
communication and have a wide range of applications for human-computer interaction, such as assistive technologies, virtual
and augmented reality, and assistive driving systems. Head movement detection has been widely utilised for assistive driving of
wheelchairs for patients suffering from paralysis, driver drowsiness detection and alert systems. Intelligent assistive driving
systems can reduce the number of road accidents by monitoring driver’s behavior through head movements and generate alerts
accordingly. Mental tiredness impairs focus when driving and has major safety implications2, 3. Poor sleep and tiredness
are major causes of poor driving performance, steering mistakes, loss of vehicle control, and deadly accidents4–7. Driving
assistance systems rely heavily on the detection of driver attentiveness. The orientation of the driver’s head may reflect his
degree of attention. Head movement is getting high popularity in assistive driving since an estimated 1,560 reported road deaths
in 2021 in the UK8. In recent years, there has been an increase in assistive technologies in healthcare and many other domains
that benefit from smart technology concepts. Head movement detection has proven to be effective in many applications such
as the detection of driver’s fatigue9, human visual focus10, behavior recognition11, vitals monitoring12, healthcare cognitive
assistance13, in figuring out the human head kinematics14 to estimate and predict possible head collision injuries in athletes,
and in clinical depression monitoring15 etc. Real-time head movements estimation techniques are also being integrated with
mobile devices which can assist in multiple healthcare applications. Thread-based sensors are also used along with machine
learning algorithms to classify various head movements16. This research16 describes a method for tracking and classifying
head movements using flexible strain-sensing threads attached to the neck of an individual. A data processing technique
for motion recognition quantifies head location in near real-time. For location prediction, a collection of characteristics is
retrieved from each data segment and used as input to nine classifiers, including Support Vector Machine, Naive Bayes, and
KNN. Several other techniques to estimate head position are surveyed in17. Using multi-primitive closed-loop face analysis



in video arrays,18 developed a computational framework for robust face identification and posture estimation.19 used facial
symmetry and anthropometric measurements to compute head orientation. The head’s Y-Z coordinates were calculated using
eye distances and camera focal length. Face anthropometry was used to estimate head X-axis orientation. This method was
tested on actual photos.20 presented a real-time head movement estimation approach based on the video camera as a way
of communication between the individual and the device. The suggested solution is made up of numerous computer-vision
algorithms that have been carefully tuned to work in a specific environment, as well as a head posture estimation based on
rolling/yaw, and pitching movement calculations. Experiments were carried out using 363 videos of 27 individuals in various
settings. Also, camera-based and wearable devices were used to recognize head movements, which were discussed in the
literature for identifying human behavior while listening, talking, and in driving assistance applications. These techniques
have limitations, such as the obligation to record the target, which restricts their practical uses due to privacy concerns. The
legal implications of such aids may restrict their wider use in public and private settings; for example, video-in-head motions
may be viewed as photographing someone without their consent, which is illegal in many countries. The main drawbacks of
existing camera-based and wearable-based technology include serious privacy concerns, poor lighting, obstructions to the line
of sight, training difficulties with longer video sequence data, and computational complexities, and wearable devices disrupt
daily routines.

Radio frequency (RF) head movement sensors, on the other hand, can fulfill the demand for next-generation technologies.
By recognizing head motions using RF sensing, machine learning (ML), and deep learning (DL) techniques, various applications
can benefit from very accurate cues. Moreover, unlike vision-based systems, RF sensing-based head movements are unaffected
by opaque barriers or walls separating the target and the transponder. RF signals can pass through walls to detect visual cues,
such as head and lip movements. Head movements provide additional functionality for the next generation of multimodal
hearing aid devices for understanding the behavior of people. In this study, we designed, developed, and tested an RF sensing-
based method for detecting head motions with and without a wall. Activity monitoring through walls or barriers via Wi-Fi and
radar devices is a great breakthrough in the field. Since cameras are limited to line-of-sight visuals and they can not detect/sense
any object or humans through walls/barriers. Therefore in this work, we introduced a radar and Wi-Fi-based novel system
which can perform head-movements monitoring through walls and other opaque barriers.

The advantages and challenges of radar-based driving assistance systems are presented in21. For the automotive-radar
industries, the main system requirements are to achieve high-resolution, low-cost hardware and size compactness. The major
strength of using automotive-Radars in driving-assistance systems is the higher angular resolutions attained even with a small
number of antennas being used. The authors also discussed the high-resolution angle-finding techniques that are computationally
effective for automotive-radar applications. In another work,22, four human activity recognition such as (a) box (punch forward
three times), (b) pick (squat down and pick something up), (c) foot (four steps in place), and (d) zombie (raise a hand like
a zombie) were performed through the wall using radar and achieves 97.6% accuracy. Similarly, the authors in23 presented
human activity (walking, sitting, and falling) detection system using Wi-Fi signals. In this work, the transmitter and receiver
were separated by the wall and activities were performed on both sides of the transmitter and receiver side.

Our work focuses on recognizing different head movements and collecting data using micro-Doppler signatures and CSI
amplitude using a radar sensor and Wi-Fi signals. The existing dataset is diverse in nature that includes samples from a wide
variety of subjects (ages and genders) and a diverse number of classes that cover all essential aspects of head movements. Head
up, Head down, Right 90, Left 90, Right 45, and Left 45 are the six types of Doppler signatures and CSI data considered for this
work. These types of movements include dynamic gestures in which mobility or head are used to represent various movements.
The dataset was recorded using two separate methods i.e. using a Radar sensor and Wi-Fi signals with and without a wall.
These features make the dataset a better option for the training and assessment of ML and DL algorithms for the recognition of
head movements. In order to visualize the recorded data, spectrograms and CSI amplitudes were used.

The following presents the main contributions of our research work in the field:

• We proposed a contact-less head recognition system that automatically recognizes and translates head movements with
and without a wall in between the target and transponder setup.

• In addition, we collect a dataset of 2400 samples from 6 different types of head movements captured at 0.50 centimeters
distance away from the target. Furthermore, the data samples are collected using 2 different techniques (Radar sensor
and Wi-Fi signals) with and without a wall. To ensure diversity, data was collected from four participants (two males and
two females) ranging in age from 20 to 40 years.

• For the radar dataset, VGG16, VGG19, InceptionV3, and SqueezeNet were applied on the individual subject, combined
dataset of four subjects VGG16 outperformed as compared to another algorithm with 80% Accuracy with the wall and
79.2% without the wall.
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• For the Wi-Fi dataset, VGG16, VGG19, InceptionV3, SqueezeNet, Neural network pattern recognition, Tree(Medium
Tree), and Ensemble(Boosted Tree) was applied on the individual subject, a combined dataset of four subjects InceptionV3
outperformed as compared to another algorithm 80% Accuracy with the wall and 89% without the wall.

• The fusion of features for different deep learning models was tested. The highest accuracy values of 91% without the wall
were achieved with feature fusion of VGG16 and InceptionV3 deep learning models. Furthermore, the highest accuracy
of 83.33% was achieved through the walls with the feature fusion of VGG16 and InceptionV3 deep learning models.

• In this work, we presented the experimental results from several state-of-the-art DL and ML models applied to our
benchmark dataset, which can serve as a foundation for future research in the domain of detecting head movements
through walls.

This research proposes novel head movement gestures using micro-doppler signatures using radar-sensor with and without
walls. Five different gestures are considered Head 45L, Head 45R, Head 90L, Head 90R, and Head Down. An ultra-wideband
radar, XeThru X4M03 is used to record experimental data. The received data is represented in the form of spectrograms while
spatiotemporal features were extracted using fusion of two different models. We achieved 91.8% of classification accuracy
without a wall. The possible use cases of the proposed technology are illustrated in Fig.1. The whole setup, data collection, DL
and ML algorithms, and experimental results are presented in the following sections.

Radar based setup
The experimental setup and configuration parameters for the radar-based head movement system are given in Fig.2a. The
detection range of this sensor is approximately 9.6 meters. The ultra-wide-wide (UWB) radar sensor - Xethru-X4M03, with a
built-in transmitter (Tx) and receiver (Rx) antennas. The features utilized for the Radar are obtained from the short-time Fourier
transform (STFT) of the radar signal which provides the spectrograms of radar Doppler shift due to head movements. The
study of the spectrograms indicated that different head movements led to distinct spectrograms for different heads.

Scenario 1 - Line-of-sight: With no wall in between target and transponder setup
The sensor was placed in front of the participants/subject at around half-meter distance. The experimental data recording
activity for head movements was carried out by placing the radar 0.5 meters away from the subject sitting on a chair. The only
movements performed here by the subjects were the head movements with slight shoulder movements which naturally arises
while talking. The rest of the body was in a normal sitting position. Each activity was performed in a 4 seconds time frame. In
these 4 seconds, the RF signal was transmitted and received back by the radar. The data collection and processing using UWB
radar setup are shown in Fig. 3a.

Scenario 2 -Non-line-of-sight: With wall/opaque barrier in between target and transponder setup
The sensor was placed in the line of sight of the participants/subject at around half-meter distance. A plasterboard/drywall wall
was placed between the target and the radar. The experimental data recording activity for each head movement was carried out
for 4 seconds and during these four seconds, the radar sent and received the RF signals. The subject was sitting on the chair in a
normal position while performing head movements activity. The data collection and processing using UWB radar setup are
shown in Fig. 3b.

Wi-Fi based setup
The second set of experiments was performed using Wi-Fi. The experimental setup and parameter configuration for Wi-Fi based
head movement system is given in Fig.2b. The main equipment of this setup is USRP-X300 with a single transmitter antenna
(directional) and two antennas at the receiver side which are (directional) in nature. On the transmitter side, the Rx antenna
UWB 1.35GHz-9.5GHz Log-Periodic Directional was used as a transmitter whereas two monopole antennas (VERT2450)
optimized at an operating frequency of 5.5 GHz were used as a receiver. The gain of both the Tx/Rx antennas was configured to
35 dB. The USRP and desktop were connected using an Intel(R)-Core(TM) i7-7700 3.60 GHz processor having a RAM of
16GB. A virtual machine running Ubuntu 16.04 was utilized to establish communication between the USRP and GNU radio.
To send and receive data from USRP-X300, a Python script was written. Experiments were done at the Wi-Fi frequency band
of 5.5 GHz.

Scenario 1 - Line-of-sight: With no wall in between target and transponder setup
The Tx and Rx antennas were positioned around 0.50 meters away from the subject. Each activity was performed for a duration
of 4 seconds for each head movement. The data collection and processing using Wi-Fi setup are shown in Fig. 3c. Notably,
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Figure 1. Conceptual illustration of the proposed methodology for head movements.
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S4 (Female) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
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Parameter Value

Platform Xetru radar X4MO3
Instrumental range 9.6 meters
Subject and Radar distance 0.50 meters
Frequency of operation 7.29GHz
Tx power 6.3dBm
Activity duration 4 seconds
Collected samples in each class 25

2

Figure 2. Head movements activity with their representation in Wi-Fi and radar signal. (a) The configuration parameters of
radar software and hardware without and with through the wall experiment. (b) The configuration parameters of Wi-Fi software
and hardware with and without the-wall experiment. (c) An overview of the data collected, the number of subjects and the
activities performed.
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Figure 3. Head movements activity with their representation in Wi-Fi and radar signal. (a) An experimental setup of the radar
signal without wall. (b) An experimental setup of radar signal through a wall. (c) An experimental setup of Wi-Fi signal
without wall. (d) An experimental setup of Wi-Fi signal through wall.
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Wi-Fi signals were evaluated using a variety of characteristics, including time-frequency maps, etc. In contrast to radar signals,
where frequency shift was a primary differentiating feature, Wi-Fi CSI values worked best when CSI amplitudes varied. The
variations in one-dimensional CSI amplitude exhibited head movement patterns.

Scenario 2 - Non-line-of-sight: With wall/opaque barrier in between target and transponder setup
The Tx and Rx antennas were positioned around 0.50 meters away from the subject. Plasterboard or drywall was placed
between Tx, Rx, and target. The experimental data recording activity for each head movement was carried out for 4 seconds
and during these four seconds, the Tx signal hit the target and was received back to the receiver. The subject was sitting on the
chair in a normal position while performing head movements activity. The data collection and processing using Wi-Fi setup are
shown in Fig. 3d.

Methods
The main illustration of head movement activity is shown in Fig.4a. In the case of Wi-Fi, 2000 packets were transmitted within
four seconds, where each data instance represented the CSI amplitudes. The CSI patterns (amplitude) of considered head
movements, namely, Head down, Head up, Head left 90, Head Right 90, Head Right 45, and Head Left 45, are depicted in
Fig.4b without wall and Fig.4d with wall experiments. In each figure, the 51 subcarriers of the OFDM signal are represented by
different colors. The amplitude of the subcarriers is represented on the y-axis of each sub-figure, while the number of received
packets is displayed on the x-axis. In the radar scenario, The same approach was used for data collection with total of 600 data
samples, four subjects participated including two males and two females, with 25 data samples in each class. Data is in the
form of a spectrogram, which is shown in Fig.4c without wall and Fig.4e with wall experiments. Each figure’s different colors
represent a change in frequency. In each spectrogram y-axis represents the Doppler shift (Hz), while the x-axis represents time.

Radar data Processing
The xethru X4m03 radar chip was configured using XEP interface and X4driver. Data were recorded at 500 frames per second
(FPS) as float message data. The data file was read using a loop, and the values were then saved into a DataStream variable,
which was mapped into a complex range-time-intensity matrix. Thereafter, generating a Doppler range map the moving target
indication (MTI) filter was used. For generating the spectrogram the following parameter overlap percentage, window length as
128, fast Fourier transform (FFT), and padding factor as 16, and second MTI as a Butterworth 4th order filter was used. Each
chirp was first transformed into an FFT, which was then used to produce a range profile. Then, a second FFT is performed on
a certain number of chirps in a sequence for each range bin. Also, spectrograms were made with STFT because the Fourier
transform gives information about both time and frequency24. This is achieved by segmenting the data and then applying
the Fourier transform to each segment. The temporal and frequency resolutions are changed meanwhile window lengths are
changed in opposite directions. The doppler information in radar data is dependent on the hardware sampling rate. In radar, the
highest unambiguous Doppler frequency is Fd,max = f rac12tc, where tc is the chirp time.

Head movements recognition at a distance D(t) from a specified location such as the head is the focus of this paper.T s is the
transmitted signal, while V (t) is the target position in front of the RADAR,

Ts(t) = E cos(2π f t). (1)

The signal received is provided by Rs(t),

Rs(t) = É cos(2π f (t − 2D(t)
c

)), (2)

where the speed of light is c and E is the reflection coefficient. The signal that is reflected off the target points at an angle theta
to the direction of the RADAR and is denoted by the symbol Rs(t).

Rs(t) = É cos(2π f (1+
2v(t)

c
)(t − 4πD(θ)

c
)). (3)

The corresponding Doppler shift can be expressed as,

fd = f
2v(t)

c
. (4)

The signal that is received back is composed of a number of moving parts, including the head and other small motions of the
body. Each component moves with its own acceleration and speed. The received signal can be written as if i were the various
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moving parts of the head. We can write as

Rs(t) =
N

∑
k

Ak cos(2π f (1+
2vk(t)

c
)(t − 4πDk(0)

c
)). (5)

The Doppler shift is the result of a complex interaction of multiple Doppler shifts due to various head movements. The feature
of doppler signatures depends on the detection of head movements. After getting the spectrogram of different subjects, It
was divided into two datasets: (i) DataTraining and (ii) Data Testing. The spectrogram fed into the proposed pre-trained DL
classification algorithm for the classification of the head movements dataset.

Wi-Fi Data Processing
The data was transmitted using OFDM symbols with 52 subcarriers that were tightly spaced. As shown by Eq. 6, data were
collected in a matrix form having frequency responses of subcarriers N=51.

H = [H1( f ),H2( f ), · · · ,HM( f )]K , (6)

Here, the Hl-frequency subcarrier can be expressed as

Hl ( f ) = |Hl ( f ) |el∠Hl( f ), (7)

where, amplitude |Hl( f )| and phase ∠Hl( f ) are responses of the lth subcarrier. All subcarrier responses correlated with system
input and output as shown in Eq. 8,

Hk( f ) =
Yl( f )
Xl( f )

, (8)

where input and output Fourier transformations are denoted by Xl( f ) and Y l( f ), respectively. The received CSI data have
environmental noise so, the gathered data are denoised by removing the mean received power for each subcarrier from each
sample. To observe the maximum variation due to head movements, the subcarrier with the highest variance was identified for
feature extraction. These 10 features were extracted from the dataset namely minimum, median, variance, eight peaks, standard
deviation, high order moments, mode, skewness, kurtosis, and moments. After taking features which were in comma-separated
form (CSV) file, which was used to train various machine learning algorithms that are described in other section. After that, to
accurately classify the head movement classes, training and testing were carried out using the test-train split evaluation method.

Evaluation Metrics of Classification Models
The performance of DL and ML models was evaluated through true positive rate (TPR), false positive rate (FPR), and accuracy
using the head movements dataset. Equations 9 and 10 are used to determine TPR and FPR, respectively. Additionally, accuracy
was calculated using the equation, which is one of the most commonly used metrics in the literature for classification 11.

T PR =
T P

T P+FN
(9)

FPR =
FP

FP+T N
(10)

Accuracy =
(T P+T N)

(T P+FP+T N +FN)
(11)

where True Positive, which indicates that both the actual and predicted values are positive. False negative refers to situations in
which the actual is positive but the predicted is negative.
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Figure 4. Wi-Fi and radar signal representation of head movement activity. (a) A visual representation of head movements
from various angles. (b) Wi-Fi data samples representing various classes of head movements without wall. (c) Radar data
samples representing various Head movement classes without the wall. (d) Wi-Fi data samples representing various classes of
head movements with walls. (e) Radar data samples representing various Head movement classes with a wall.
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Figure 5. Overall system overview and the results. (a) The comparative result of radar-based system with and without wall
using Deep Learning models. (b) The comparative result of Wi-Fi-based system with and without wall using Deep and
Machine Learning models. (c) The data fusion result of Wi-Fi and radar data without wall using deep learning models. (d) The
data fusion result of Wi-Fi and radar data through the wall using deep learning models.
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Figure 6. Feature fusion of radar and Wi-Fi time-frequency maps.
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Parameter Settings of the ML and DL Algorithms
The presented head movements classification approach was divided into two parts: (i) system training and (ii) system testing:
For Wi-Fi dataset ML algorithms such as NN( Neural network pattern) recognition, Tree( Medium tree), and Ensemble(Boosted
trees) were applied. while on radar data, the VGG16, VGG19, InceptionV3, and SqueezeNet. DL pre-trained models were
applied to the radar data-generated spectrogram images.
The ML and DL model parameter settings are shown in the table. 1.
VGG16 Model: Data were passed into VGG16 convolution layers that had rectified linear unit (ReLU) activation function and
3×3 kernel sizes. Each convolution layer was followed by a max-pooling layer with 2×2 kernel sizes. The final layer consisted
of three fully connected layers (FC). The convolution layer and FC hold the training weight, allowing them to determine the
number of parameters.
VGG19 Model: The data was passed through a different layer which consists of 3×3 filters with five stages of convolutional
layers, five pooling layers, and three fully connected layers to get image information. The convolution kernel depth has been
increased from 64 to 512 of the VGG16 network for better image feature vector extraction. Every stage of convolutional layers
was followed by pooling layers which have the size and step size of 2×2.
InceptionV3 Model: The 48-layered DL model InceptionV3 was applied to the dataset. The structure of the layer was followed
as three convolution layers, a max pooling layer, two additional convolution layers, and another max pooling layer. The
spectrograms were fed into various convolutions and convoluted the spectrograms with various filters and repeated the process
several times throughout entire the networks for the classification of images.
SqueezeNet Model: SqueezeNet is an 18-layer deep convolutional neural network. Spectrograms of the input were sent to the
layers. The last convolution layers were added as follows the dropout layer was set to 50%, convolution layers with stride, Relu
as activation function, Global average pooling, and softmax layer were added before the classification output layer.
NN (Neural Network Pattern Recognition) Model: Neural network pattern recognition consists of two-layer feed-forward
networks that have sigmoid hidden neurons, SoftMax output neurons, and scaled conjugate gradient backpropagation, through
these layers datasets were passed. In the meanwhile, the weight and bias values are updated using the scaled conjugate gradient
approach. Afterward, data were divided into training, validation, and testing. Using cross-entropy and misclassification errors,
the performance of the network was evaluated.
Tree (Medium Tree) Model: Data were fed to decision trees, classification trees, and regression trees for classification. It
followed the decisions in the trees down to a leaf node in order to forecast a reaction. The response was located in the leaf node.
Classification trees provided nominal answers, such as "true" or "false".
Ensemble (Boosted Tree) Model: The classifier has the ability to combine the results of multiple low-quality learners into a
single high-quality model. The data were input to the booting ensemble algorithm, which identified the highest breakpoints or
branch points to handle the depth of tree learners. The experimental setup achieved improved precision with a learning rate of
0.1.

Results and Discussion
Two RF sensing technologies were used in two different experiments with and without a wall, i.e., Wi-Fi and radar. Six head
movements Head up, Head down, Head Right 90, Head Left 90, Head Right 45, and Head Left 45 were collected, where subjects
were not moving at all, and the body was in a normal position. For both experiments (radar and Wi-Fi), four participants,
two males, and two females participated in the data collection process to make the dataset more realistic. A total of 2400
data samples were collected from both experiments using radar and Wi-Fi, with and without a wall for six classes namely
Head up, Head down, Head Right 90, Head Left 90, Head Right 45, and Head Left 45 which is shown in Fig 2c. In each
experiment with wall and without wall using radar, a total of 600 data samples were collected from four participants, where
25 samples were taken from each class. Specifically, each participant repeated each head movement activity 25 times with
the radar. Likewise, the same number of data was acquired from USRP using the same strategy. The University of Glasgow’s
Research Ethics Committee granted ethical approval for these experiments (approval no.: 300200232, 300190109). In the case
of radar dataset with and without a wall, the evaluation results of the considered DL algorithms (VGG16, VGG19, SqueezeNet,
and InceptionV3) are presented in Fig.5a. It is observed that all algorithms produced comparable results with VGG16 slightly
outperforming in both cases with wall and without a wall on a combined dataset in terms of accuracy. Using VGG16, the
classification accuracy of 80.0% is observed on the combined dataset without a wall, which is reduced to a promising accuracy
of 79.2% with the wall.

For Wi-Fi signals with and without a wall, the evaluation results of the considered DL and ML algorithms (VGG16,
VGG19, SqueezeNet, InceptionV3, Neural network pattern recognition, Tree( Medium Tree), and Ensemble( Boosted Tree))
are presented in Fig.5b on combined dataset. It can be noted from the Graph that the InceptionV3 algorithm outperforms on
combined dataset. Using InceptionV3 algorithm, the classification accuracy of 89.0% is observed without a wall, while the
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DL/ML Model Parameters Settings

VGG16

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

16
0.0001
16
Adam
Cross entropy
25

VGG19

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

19
0.0001
16
Adam
Cross entropy
25

InceptionV3

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number epochs

48
0.0001
16
Adam
Cross entropy
25

SqueezeNet

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

18
0.0001
16
Adam
Cross entropy
25

NN

Number of Layers
Training Function
Number of epochs
Loss function

10
Scaled conjugate Gradient Backpropagation
20
Cross entropy

Tree (Medium Tree)

SplitCriterion
MaxNumSplits
Surrogate
KFold
Loss Function

gdi
20
off
5
Classiferror

Ensemble

Learner type
Ensemble Method
Loss Function
Learning rate
Number of learners
Maximum Number of splits

Decision Tree
AdaBoost
Classiferror
0.1
30
20

Table 1. Parameter settings for the selected Deep and Machine learning models
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same algorithm gives 80.0% classification accuracy with the wall.
The fusion of different deep learning models was tested which is illustrated in Fig. 6 . The highest accuracy values of 91%

without the wall were achieved with feature fusion at the fully connected layers of VGG16 and InceptionV3 deep learning
models shown in Fig.5c. Furthermore, the highest accuracy of 83.33% was achieved through the walls with the feature fusion
of VGG16 and InceptionV3 deep learning models shown in Fig.5d.

Conclusion
In this work, an RF sensing-based head movement recognition system is proposed using Wi-Fi and radar, and state-of-the-art
deep and machine learning algorithms. All directions of head movements were covered, such as Head up, Head down, Head
left 90, Head right 90, Head left 45, and Head right 45. Wi-Fi data was passed to the InceptionV3 model and radar data to
VGG16 models and the features of the two models were fused for the highest performance results of 91.85% without the walls
and 83.33% accuracy was achieved through the walls. The proposed work is promising for many critical applications, such as
fatigue detection and drowsiness for automated pilot monitoring systems and assistive car driving and alert systems, including
wheel chair control for paralysis patients. Furthermore, the proposed system preserves the privacy concerns of users, which
may exist in vision based systems.
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