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Abstract: The most common scientific analysis of archaeological ceramics aims to determine the raw 
material source and/or production technology. Scientists and archaeologists widely use XRF-based 
techniques as a tool in a provenance study. After conducting XRF analysis, the results are often 
analyzed using multivariate analysis in addition to interpretation and conclusions. Various multi-
variate techniques have already been applied in archaeological ceramics provenance studies to re-
veal different raw material sources, identify imported pieces, or determine different production rec-
ipes. This study aims to evaluate the results of multivariate analysis in the provenance study of 
ceramics that belong to three cultures that settled in the same area during various prehistoric peri-
ods. Portable energy-dispersive X-ray fluorescence spectrometry (pEDXRF) was used to determine 
the elemental composition of the ceramic material. The ceramic material was prepared in two dif-
ferent ways. The ceramic body material was ground into powder, homogenized, and then pressed 
into tablets. After that, the same fragments are polished in suitable places. Quantitative and quali-
tative analyses were performed on the tablets and polished pieces. The results were subjected to 
both unsupervised and supervised multivariate analysis. Based on the results, it was concluded that 
qualitative analysis of the well-prepared shards’ surface using EDXRF spectrometry could be uti-
lized in provenance studies, even when the ceramic assemblages were made of similar raw materi-
als. 
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1. Introduction 
The production of ceramic in prehistory can be considered state-of-the-art technol-

ogy. Understanding this process provides valuable insights into the skills of the manufac-
turers, trading patterns, and overall development of early civilizations [1]. Since ceramics 
do not change over time, analyzing the materials provides reliable conclusions about 
whether they were made from local raw materials or resulted from trade with others. Sci-
entific examining archaeological ceramics usually involves various analytical techniques 
to reveal their chemical and/or mineralogical composition [2–5]. Nowadays, these anal-
yses can be conducted either by sampling the ceramic materials or in a non-invasive man-
ner [6,7]. Moreover, provenance studies can be performed using both quantitative and 
qualitative analytical results [8–10]. 

Many documented provenance studies have focused on differentiating between ce-
ramic assemblages or identifying imported ceramics. Different material characteristics, 
such as elemental, chemical, or mineralogical composition, were analyzed using pattern 
recognition techniques to draw conclusions about variations in raw materials and/or pro-
duction technology among ceramic findings. The present study aims to evaluate the 
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effectiveness of various pattern recognition techniques used for the provenance study of 
archaeological ceramics from different prehistoric cultures that were made of similar raw 
materials. For that purpose, archaeologists carefully selected and grouped the ceramic 
fragments according to stratigraphy, typology, and dating. They chose a suitable site 
where three cultures settled in prehistory for a relatively short period. The Bubanj archae-
ological site is in the southern Pomoravlje region, in the central part of the Niš Valley, 
approximately 7 km southeast of the confluence of the Nišava and South Morava rivers 
(today’s Serbia, Figure 1a). Early excavations in this area (which started in the 1930s) re-
vealed multilayered stratigraphy. This site was inhabited in the Middle Neolithic period, 
with the earliest findings associated with the Starcevo culture (in the first half of the 6th 
millennium BC). The Eneolithic and early Bronze Age layers follow mentioned cultural 
layers, dated to the Middle Neolithic [11]. The first cultural layer in this study belongs to 
the so-called Bubanj Hum I culture, corresponding to the Early Eneolithic and being a 
regional representative of the widely spread Bubanj–Salcuţa–Krivodol cultural complex. 
The findings from the upper layer, from the Middle Eneolithic, belong to Cernavoda III, 
with elements of Baden and Boleraz cultures. The latest group included in this study is 
from the Late Eneolithic period and belongs to the Coţofeni–Kostolac cultural layer. All 
three layers were well dated to the corresponding period and cultures [12]. The ceramic 
assemblages were formed from fragments that belong to each cultural layer. According to 
archaeologists, Bubanj Hum I culture settled on this site for the longest time, implying 
that local raw materials were used for ceramic production. The Cernavoda III settled the 
site long after Bubanj Hum I culture; therefore, they could not take over previous 
knowledge but rather found local clay sources nearby the site. Only the fragments from 
the Coţofeni–Kostolac cultural layer might have been brought to the site during the settle-
ment. Those archaeological assumptions were tested in this study to evaluate analytical 
and multivariate protocols for the provenience study. 

 
Figure 1. (a) Location of the site of Bubanj, Serbia (drawing: A. Bulatović); (b) Representative ce-
ramic fragments from the Bubanj Hum I (A), Cernavoda III (B) and Coţofeni–Kostolac (C) culture. 

The ceramic material was analyzed using EDXRF spectrometry. The quantitative and 
qualitative analytical results were subjected to dimension reduction to evaluate suitability 
for classification. The most-used unsupervised and supervised techniques were chosen 
for the evaluation [13–15]. These techniques were evaluated based on several parameters 
to measure their efficiency in reducing dimensions and their ability to separate different 
classes, which is crucial for designing classifiers. The classification’s effectiveness was 
evaluated by considering its recognition ability and its rate of misclassification. 
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This study aims to examine how the method of preparing archaeological ceramics for 
analysis affects classification efficiency. For this purpose, samples were taken from the 
material of the selected fragments from which tablets were made. Their elemental compo-
sition was quantified using standard reference material (CRM). The elemental composi-
tion was also determined for the analyses performed on well-polished places on the frag-
ments. The qualitative and quantitative results obtained in this way are classified using 
different dimension reduction techniques. The selection of ceramic materials from differ-
ent archaeological stratigraphies, made from similar raw materials, is such that it does not 
prejudice an effective classification. Based on the achieved results, qualitative analytical 
results can be used in provenience studies as effectively as quantitative ones. 

2. Materials and Methods 
2.1. Sample Description 

The ceramic fragments are grouped according to the stratigraphy layers in which 
they were found, and special attention was paid to selecting the fragments from reliable 
archaeological contexts corresponding to each cultural layer with certainty. The first 
group, labeled BI, contains 18 fragments belonging to the so-called Bubanj Hum I culture 
and comes from a structure (pit) marked as 69. The second one, denoted as CV, contains 
18 pottery vessel shards (structure 108-pit) from the upper layer, considered Cernavoda 
III. The last group, labeled as KK, is formed of the 13 shards that belong to the Cot ̧ofeni–
Kostolac cultural layer. These shards were taken from the oldest (first) phase found on the 
house floor (structure 15), which can be considered brought in during settlement. Macro-
scopic archaeological analysis indicates similarities between the findings from the BI and 
CV ceramic fragments but differences with the KK group (Figure 1b). 

The ceramic fragments were prepared for analysis in two different ways. Small 
amounts of the ceramic material were powdered by grinding the ceramic body from its 
various parts. A handy sander equipped with a diamond blade was used. The fragments 
were cleaned before grinding. The obtained ceramic powder was fine for tableting, which 
was performed without prior sieving. The homogenized material was then pressed into 
large tablets, each 3 cm in diameter, containing an equal amount of the material. After 
that, suitable parts of the fragments were polished and cleaned. Each fragment was ana-
lyzed at three points, and the average values were used for further analysis [16]. To quan-
tify the chemical composition, the IAEA PT ancient Chinese ceramic certificated reference 
material (CRM, [17]) was tableted in the same manner as the ceramic samples and ana-
lyzed under the same conditions. Three clay samples from nearby clay pits were also an-
alyzed under the same conditions as the ceramic material to test the assumption about 
local raw material sources. The nearest clay pit, Crepana, is about 800 m west–southwest 
of Bubanj. This pit was used until the 1940s. Today, it is closed but easily accessible for 
sampling. The Tri Bresta clay pit is 2 km from the site in the same direction, which also 
worked until the middle of the last century. The farthest clay deposit, Crepana near 
Lalinac, is located 2.6 km west of the Bubanj site and remains active. All three clay deposits 
are located at a 15–35 min walk from the site on flat surroundings, so the probability of 
their exploitation in the Eneolithic is high. 

2.2. Analytical Technique and Datasets Forming 
The EDXRF spectrometry was employed for quantitative and qualitative elemental 

analysis of the ceramic material using an in-house-developed milli-beam spot instrument. 
The spectrometer consists of an air-cooled X-ray tube (Oxford Instruments, Scotts Valley, 
CA, USA, Rh anode, maximum voltage 50 kV, maximum current 1 mA) with a pin-hole 
collimator and a Si-PIN X-ray detector (6 mm2/500 m, Be window 12.5 m thickness, with 
energy resolution of 160 eV at 5.89 keV), associated with a DSP (X123, Amptek Inc, Bed-
ford, MA, USA.) for spectra acquisition. Two laser pointers were used for the accurate 
sample, and tablet positioning. ADMCA software (Amptek Inc., version 1, 0, 0, 16)) was 
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used for spectra acquisition and processing. The following parameters: X-ray tube voltage 
of 35 kV and 800 µA current, without filter, were kept constant during all measurements 
and measuring time of 120 s. 

An original MATLAB code was developed to align the EDXRF spectra using the 
peaks balancing procedure to minimize any experimental setup contributions. All EDXRF 
spectra were aligned before further analysis. The dimension reduction procedure was per-
formed on raw spectra containing overall spectral information along with the datasets 
containing characteristic elemental composition. This was done to examine the influence 
of the feature selection process, which involves potentially losing some information about 
the dataset structure. The feature selection was performed by quantifying the chemical 
composition using CRM and using a radial-basis neural network (RBNN) procedure. The 
EDXRF results were quantified using the Net Peak Area parameter. This parameter was 
determined by ADMCA software by marking the peak area. For each EDXRF spectrum, 
the Net Peak Area parameter was calculated for nine peaks, corresponding to the elements 
determined in the CRM. These nine values can be considered as selected features, and 
their informativeness for classification purposes will be evaluated in this study. The data 
selection using RBNN was performed as another suitable feature selection method. The 
detailed procedure is described in [18]. The RBNN was designed and trained to reach 
maximal reconstruction of the initial EDXRF spectrum using normal distribution func-
tions. The maximal height parameter of the nine functions was utilized to characterize 
ceramic fragment material. The procedure is used because it is much faster and more re-
liable than calculating the Net Peak Area parameter, so it is suitable for testing. 

2.3. Pattern Recognition Techniques 
Principal component analysis (PCA) was selected among unsupervised dimension 

reduction techniques as it is widely used in analyzing cultural heritage objects [19,20]. 
PCA creates a reduced space of maximal variance, where the first few components account 
for most of the variation in the original datasets. Based on the above definition, applying 
PCA to the provenience studies of ceramic materials made from different raw materials 
will result in considerable classification possibilities. In this study, the classification pos-
sibilities of the PCA will be evaluated for the dataset of ceramics made of the same or 
similar raw material. 

PCA may not be able to accurately represent the dataset’s group membership due to 
the small variance expected. Therefore, a supervised method called scattering matrices-
based dimension reduction was tested, aiming to preserve group coherence as much as 
possible during dimension reduction. More mathematical details about PCA and scatter-
ing matrices-based dimension reduction can be found in [21,22]. 

To determine which dimension reduction technique is more effective for provenance 
studies, it is important to understand how much of the initial dataset structure is pre-
served during the dimension reduction transformation. The effectiveness of PCA trans-
formation to lower dimensional space is quantified by the percentage of the dataset’s total 
variance preserved along the projection axes [23]. The amount of information lost during 
dimension reduction is measured by the index of informativeness, a parameter defined 
as: 
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where λi—eigenvalues of the covariance matrix, set in descending order, d—dimension of 
reduced space, and n—dimension of initial space. The higher value of this parameter in-
dicates that dimension reduction was performed in a way that minimized information 
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loss. The Bhattacharyya distance µ(1/2) (a measure of separability between groups in the 
space of reduced dimensions) is defined as [24]: 
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where M1 and M2 denote expected vectors and Σ1 and Σ2 denote covariance matrices. A 
larger parameter value indicates that two classes are separable, and a space between them 
is large enough for classifier design. The µ(1/2) parameter value will be discussed accord-
ing to the possibility of linear classifier design. The recognition ability parameter (defined 
as the percentage of correctly classified dataset members and mathematically represented 
by the ratio of correctly classified and the total number of dataset members) was calculated 
to evaluate the linear classification effectiveness, together with the percentage of the mis-
classified results. 

3. Results and Discussion 
3.1. EDXRF Spectrometry Analysis 

According to the collected EDXRF spectra (Figure 2a), Si, K, Ca, Ti, Mn, Fe, Rb, Sr, 
and Zr were detected in both the tablets and ceramic fragments. The same chemical com-
position contains the tablet of the CRM, which was used to quantify ceramics’ chemical 
composition. The raw EDXRF spectral data collected for both tablets and ceramic frag-
ments, aligned prior, were reduced to exclude non-informative channels before Si and 
after Zr. The data were organized in a matrix with the dimensions 36 × 1700, denoted as 
RT and RF, for tablets and fragments, respectively. Further, RBNN was employed for fea-
ture selection from raw spectra. A comparison of the original and RBNN reconstructed 
spectra is presented in Figure 2b. The reconstruction enabled total superposition of the 
spectra and high confidence in the data selection. The RBNN was used to extract the max-
imum value of the most distinctive peak for the same nine chemical elements from the 
EDXRF spectra. Using the described procedure, two more datasets were organized as a 
matrix with the dimension of 36 × 9 for both fragments (denoted as NF) and tablets (de-
noted as NT). The Net Peak Area parameter was used to quantify the tablets’ elemental 
composition; the results are presented in Table 1. The dataset organized in the matrix with 
dimensions of 36 × 9 was denoted as QT. 

 
Figure 2. (a) EDXRF spectra aligned using original spectra alignment procedure; (b) Radial basis 
neural network spectra reconstruction for feature selection. 
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All the experimental data subjected to PCA and SMB dimension reduction were au-
toscaled before analysis. 

Table 1. Chemical composition of the ceramic materials from BI and CV ensemble. 

  SiO2, % K2O, % CaO, % TiO2, % MnO, % Fe2O3, % Rb, ppm Sr, ppm Zr, ppm 
BI1 86.82 3.98 1.29 0.86 0.05 5.30 50.22 94.51 153.59 
BI2 69.51 3.29 2.56 0.79 0.04 5.48 66.84 95.19 169.15 
BI3 78.77 3.42 2.11 0.96 0.05 5.11 65.82 60.53 144.78 
BI4 90.31 3.26 2.12 0.80 0.05 4.95 80.41 113.33 152.69 
BI5 71.66 3.54 8.73 0.52 0.03 3.63 72.47 111.26 170.44 
BI6 79.44 2.65 12.21 0.45 0.03 3.11 63.24 128.71 109.27 
BI7 71.39 3.31 2.10 0.76 0.06 5.67 52.53 107.67 128.58 
BI8 54.35 2.85 11.11 0.43 0.04 2.96 88.07 97.80 159.04 
BI9 67.77 3.61 9.30 0.52 0.03 3.67 50.59 102.62 104.73 

BI10 60.12 3.58 2.45 0.83 0.04 5.12 61.12 101.93 111.60 
BI11 72.47 4.41 1.91 0.72 0.04 4.64 61.21 116.85 111.86 
BI12 75.95 3.35 1.98 0.76 0.04 5.43 66.38 68.34 182.37 
BI13 85.62 3.13 1.39 0.72 0.05 4.66 95.92 80.20 142.19 
BI14 68.71 3.56 2.21 0.83 0.05 5.33 80.60 98.87 132.60 
BI15 77.70 2.84 1.91 1.14 0.05 6.12 72.84 64.51 202.07 
BI16 88.30 3.56 2.04 0.70 0.04 4.58 73.21 74.69 167.85 
BI17 55.96 1.14 6.57 0.54 0.06 7.12 45.98 68.11 91.77 
BI18 84.01 3.78 1.19 0.80 0.13 5.31 90.20 61.22 215.03 
CV1 78.91 3.84 2.16 0.83 0.03 5.59 63.89 108.66 152.95 
CV2 69.51 4.97 2.44 0.94 0.07 6.50 73.39 76.06 152.17 
CV3 88.84 4.14 2.51 0.70 0.10 5.19 78.38 97.41 203.50 
CV4 97.56 4.68 2.49 0.96 0.07 6.13 84.38 87.31 149.84 
CV5 80.11 4.25 2.27 0.81 0.08 5.56 87.70 100.63 145.69 
CV6 83.47 3.84 3.48 0.85 0.05 4.34 81.61 92.90 197.02 
CV7 73.67 4.24 2.20 0.86 0.06 6.02 77.73 92.29 121.19 
CV8 86.02 4.34 2.21 0.81 0.07 5.10 58.53 109.58 142.84 
CV9 85.48 3.90 2.17 0.88 0.07 5.30 71.18 66.42 143.74 

CV10 75.95 3.84 1.96 0.71 0.05 4.82 61.39 91.75 120.67 
CV11 72.20 4.31 2.61 0.72 0.11 4.88 68.69 89.53 147.89 
CV12 70.05 3.59 1.83 0.83 0.03 4.58 64.07 64.05 197.02 
CV13 87.09 4.07 7.95 0.71 0.04 5.10 63.52 80.50 146.34 
CV14 53.54 4.38 2.21 0.66 0.06 5.64 78.93 92.98 114.19 
CV15 75.42 3.02 2.09 0.70 0.05 5.27 82.35 99.86 117.17 
CV16 58.91 3.80 3.35 0.65 0.08 5.15 75.43 88.23 150.09 
CV17 87.50 4.41 3.37 0.69 0.09 5.88 59.64 97.34 100.58 
CV18 69.92 3.72 1.72 1.08 0.05 5.25 98.14 87.62 277.12 

SRM-CC 67.50 2.30 0.62 0.95 0.03 2.70 113.00 103.00 337.00 

3.2. Dimension Reduction and Classification Results 
The dimension reduction results of a dataset containing elemental composition quan-

tified values (QT) can be considered the reference because the analysis was performed on 
homogenized material, and the exact composition is determined. The results of the PCA 
dimension reduction of the QT dataset are presented in Figure 3a. As can be seen, the 
between-class distance and group coherence are small, with 52.88% of the total variance 
preserved. The Bhattacharya distance value is 0.31. Nevertheless, the linear classifier is 
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designed with a recognition ability of nearly 36% for the BI dataset and 33% for the CV. 
The classification enabled the misclassification of 28% of BI and 33% of CV samples. The 
supervised SMB dimension reduction of the same datasets achieved slightly higher be-
tween-class distance, with the Bhattacharya distance value of 0.39. At the same time, group 
coherence remained small in the new y1–y2 space (Figure 3b). The linear classification 
parameters (together with errors given in brackets) are shown in Table 2. Supervised SMB 
dimension reduction enables only 11% of BI and 22% of CV samples to be misclassified 

 
Figure 3. (a) PCA dimension reduction of the tablet’s quantified elemental composition (QT dataset); 
(b) SMB dimension reduction of the tablet’s quantified elemental composition (QT dataset). 

The results achieved using nine peak maximum values determined for tablets by the 
RBNN selection procedure (NT dataset, Figure 4) are shown in Table 2. The PCA dimen-
sion reduction showed that linear classification is impossible, even though 43.82% of the 
total variance was preserved. The group coherence is also small, which can be explained 
by the fact that some grouping information was lost by data selection. The SMB dimension 
reduction of the same dataset enabled linear classification with the highest value of the 
Bhattacharya distance (Table 2) and the smallest percentage of the misclassified samples, 
11% for both groups. For comparison, the PCA and SMB dimension reduction results for 
the RBNN-selected data for the ceramic fragments (NF dataset) are shown in Figure 5. For 
both cases, linear classification is possible. The PCA achieved the highest value of the total 
variance preserved (58.24%) with a relatively small value of the Bhattacharya distance 
(0.16). 

The designed classifier enabled misclassification of 17% of BI and 50% of CV samples. 
The SMB dimension reduction achieved a slightly higher misclassification of 17% for BI 
and 22% for CV samples compared to the results for the tablet’s dataset. The comparison 
of SMB techniques on the two datasets with selected features favors the NT dataset over 
the QT dataset (µ(1/2): 0.39 vs. 0.70, RA: 44% for BI and both techniques and 39% vs. 44% 
for CV, MC: 11% for BI and both techniques and 22% vs. 11% for CV). This is because part 
of the information about the dataset structure is lost during the quantification process, 
likely due to feature selection and an ancient porcelain standard. The results of the PCA 
dimension reduction of the raw EDXRF spectral data for tablets (RT dataset) and ceramic 
fragments (RF dataset) are shown in Figure 6. 
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Figure 4. (a) PCA dimension reduction of the tablet’s RBNN selected elemental composition (NT 
dataset); (b) SMB dimension reduction of the tablet’s RBNN selected elemental composition (NT 
dataset). 

 
Figure 5. (a) PCA dimension reduction of the ceramic fragment’s RBNN selected elemental compo-
sition (NF dataset); (b) SMB dimension reduction of the ceramic fragment’s RBNN selected ele-
mental composition (NF dataset). 

Table 2. Dimension reduction and classification parameters. 

Material 
Dimension 
Reduction Dataset ld/n (%) μ(1/2) 

BI Samples CV Samples 
RA * MC * RA MC 

Tablets 

PCA 

Quantified (QT) 52.88 (2.37) 0.31 (0.007) 36 28 33 33 
RBNN feature se-

lection (NT) 
43.82 (2.54) 0.08 (0.003) * * * * 

Full spectra (RT) 14.54 (0.86) 0.33 (0.009) 39 22 36 28 

SMB 
Quantified (QT) 100 (0.81) 0.39 (0.022) 44 11 39 22 

RBNN feature se-
lection (NT) 100 (0.72) 0.70 (0.006) 44 11 44 11 

Fragments 
PCA 

RBNN feature se-
lection (NF) 58.24 (2.97) 0.16 (0.008) 42 17 25 50 

Full spectra (RF) 43.12 (1.08) 0.25 (0.007) 39 22 36 28 

SMB 
RBNN feature se-

lection (NF) 100 (0.95) 0.35 (0.003) 42 17 39 22 

* RA—Recognition ability (%), MC—Misclassification (%). 
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Figure 6. PCA dimension reduction of the raw EDXRF spectral data for (a) tablets (RT dataset) and 
(b) ceramic fragments (RF dataset). 

The linear classification is possible using raw spectral data even if the ld/n parameter 
values are small (Table 2). More confident results are achieved for the fragments dataset 
in the PCA space, where less structural data were lost during the dimension reduction. 
Group coherence is smaller for the fragments dataset, resulting in a smaller Bhattacharya 
distance value. The classification parameters have the same values (Table 2). This result is 
highly significant as it shows that the dimension reduction of the dataset containing the 
qualitative results of the fragment analysis achieves classification results comparable to 
those of quantitative results on the homogenized tablets. This implies that a provenance 
study based on qualitative EDXRF results can be conducted with high reliability. 

The small group coherence and the Bhattacharya distance values can be explained by 
using the same/similar clay sources for ceramic production, resulting in a small variance 
between data (Figure S1 in Supplementary Materials). The linear classifier was still possi-
ble to design, likely due to changes in production technology, such as adding different 
tempering materials. 

The raw EDXRF spectral data obtained for Coţofeni–Kostolac ceramic fragments as-
semblages were organized in a matrix with a dimension of 13 × 1700. This dataset was 
subjected to PCA-based dimension reduction with Bubanj Hum I and Cernavoda III frag-
ments. The analysis was performed to compare the results of dimension reduction and 
classification between the sets of non-similar raw materials (Figures S2 and S3 in Supple-
mentary Materials). The results are shown in Figure 7. 

 
Figure 7. PCA dimension reduction of the raw EDXRF spectral data (a) for Bubanj Hum I and 
Cot ̧ofeni–Kostolac dataset; (b) for Cernavoda III and Coţofeni–Kostolac dataset. 
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The percentage of the total variance preserved in the PC1-PC2 space is 51.39% for the 
BI-KK and 44.75% for the CV-KK datasets. These results are comparable to those pre-
sented in Table 2. The Bhattacharya distance values are 20.37 and 27.27, respectively. These 
values suggest that classification can be performed without any misclassification. 

4. Conclusions 
The effectiveness of the two most-used dimension reduction techniques, PCA as an 

unsupervised method and SMB as a supervised method, was evaluated for the archaeo-
logical ceramic provenance study. In this evaluation, both quantitative and qualitative 
EDXRF analytical results were used. The chemical composition of the sampled ceramic 
materials, homogenized and pressed into tablets, was quantified using CRM and used as 
referent classification. An RBNN-based procedure was also used to determine the same 
chemical composition faster and more reliably to test the amount of lost information dur-
ing feature extraction. Qualitative analysis using EDXRF spectrometry conducted on tab-
lets and ceramic shards aimed to compare their effectiveness in the provenance study 
among themselves and with quantitative results. The dimension reduction was assessed 
based on the percentage of preserved total variance and the possibility of linear classifica-
tion. The Bhattacharya distance was calculated in the reduced space to measure between-
class separability as an indicator for effective classification. The recognition ability and 
percentage of misclassification were calculated for linear classification evaluation. 

The preserved total variance ranged from 14.5% to 58%, providing a less representa-
tive picture of the initial dataset structure in the reduced space. This result was followed 
by small group coherence in the reduced spaces and low values of the Bhattacharya dis-
tance. Even so, it was possible to design the linear classifier, and the classification results 
showed a small misclassification. The parameters used to evaluate the success of dimen-
sion reduction and classification have similar values for quantitative and qualitative re-
sults, which is the most important result (ld/n: 52.88% vs. 43.12%, µ(1/2): 0.31 vs. 0.25, RA: 
36% vs. 39% for BI and 33% vs. 36% for CV, MC: 28% vs. 22% for BI and 33% vs. 28% for 
CV). Although quantification leads to precise chemical composition, it was shown that it 
might not always be the most informative method for provenance study and comparison 
with other assemblages, as some important information may be lost during feature selec-
tion. The qualitative analysis of the well-prepared shards’ surface using EDXRF spectrom-
etry can be utilized in provenance studies, even when the ceramic assemblages were made 
of similar raw materials. The results indicate that qualitative EDXRF results can be used 
reliably for provenance studies of archaeological ceramics, similar to the quantitative 
ones. This method requires easier sample preparation, is much faster, and does not neces-
sitate the use of CRM. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/ma17153725/s1, Figure S1: PCA dimension reduction of the 
BI and CV ceramic fragments datasets using raw EDXRF spectral data. The clay material was clas-
sified using the linear classifier. Figure S2: PCA dimension reduction of the BI and KK ceramic frag-
ments datasets using raw EDXRF spectral data. The clay material was classified using the linear 
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