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Abstract   It has been forecasted that a quarter of the world’s energy usage will be 

supplied from Offshore Wind (OSW) by 2050 (Smith 2023). Given that up to one 

third of Levelised Cost of Energy (LCOE) arises from Operations and Maintenance 

(O&M), the motive for cost reduction is enormous. In typical OSW farms hundreds 

of alarms occur within a single day, making manual O&M planning without auto-

mated systems costly and difficult. Increased pressure to ensure safety and high 

reliability in progressively harsher environments motivates the exploration of Arti-

ficial Intelligence (AI) and Machine Learning (ML) systems as aids to the task. We 

recently introduced a specialised conversational agent trained to interpret alarm 

sequences from Supervisory Control and Data Acquisition (SCADA) and recom-

mend comprehensible repair actions (Walker et al. 2023). Building on recent ad-

vancements on Large Language Models (LLMs), we expand on this earlier work, 

fine tuning LLAMA (Touvron 2018), using available maintenance records from 

EDF Energy. An issue presented by LLMs is the risk of responses containing unsafe 

actions, or irrelevant hallucinated procedures. This paper proposes a novel frame-

work for safety monitoring of OSW, combining previous work with additional safety 

layers. Generated responses of this agent are being filtered to prevent raw re-

sponses endangering personnel and the environment. The algorithm represents 

such responses in embedding space to quantify dissimilarity to pre-defined unsafe 

concepts using the Empirical Cumulative Distribution Function (ECDF). A second 

layer identifies hallucination in responses by exploiting probability distributions to 

analyse against stochastically generated sentences. Combining these layers, the ap-

proach finetunes individual safety thresholds based on categorised concepts, 

providing a unique safety filter. The proposed framework has potential to utilise the 

O&M planning for OSW farms using state-of-the-art LLMs as well as equipping 

them with safety monitoring that can increase technology acceptance within the 

industry. 

Keywords: Large Language Model, Safety Assurance, AI Safety, Statistical Distance Measure, 

SafeML, Safe Machine Learning, SafeLLM 
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1 Introduction 

As the Offshore Wind (OSW) sector grows to meet demand for renewable energy 

in line with net-zero targets, it is estimated that OSW will supply 1150 GW, or 25% 

of global electricity usage by 2050 (Smith, 2023). In the OSW sector, approximately 

one third of the Levelised Cost of Electricity (LCOE) arises from Operations and 

Maintenance (O&M), which includes inspections, routine maintenance, and repairs. 

As wind turbines have grown larger and more complex, and wind farms have 

moved further from shore, increasing emphasis has been placed on Condition-Based 

Maintenance (CBM). Current wind turbines include a wide range of embedded sen-

sors in their Supervisory Control and Data Acquisition (SCADA) systems and in-

creasing amounts of research have focused on the diagnosis of faults from this live 

data. 

When in operation, wind farms generate large volumes of data, so nuisance 

alarms are an increasingly pressing issue. Nuisance alarms may include false alarms 

and chattering alarms that repeat in quick succession (Wei et al. 2023). Reports exist 

of up to 500 alarms in a 24-hour period at the Teesside wind farm, corresponding 

to an alarm roughly every 3 minutes on average (Walker et al. 2022). This compli-

cates the accurate diagnosis of faults and the recommendation of required repair 

actions, increasing lead times on maintenance operations. 

Whilst Large Language Models (LLMs) continue to become accepted as tools in 

the workplace, it is crucial that they are reliable and trustworthy, especially in 

safety-critical applications. Issues have been identified with hallucinations (Huang 

et al. 2023) and unsafe recommendations (Inan et al. 2023), which must be mitigated 

before LLM-based tools can be relied upon fully. While safety measures against 

high-risk inputs and outputs are recommended by developers (Meta 2023), it has 

been found that they can be bypassed with relative ease (Rando et al. 2022). 

The key contributions of this paper are: 

1. We propose SafeLLM, a method for the recommendation of repair actions based

around LLAMA, with a safety layer implemented to detect unsafe recommenda-

tions, using Wasserstein distance.

2. We fine-tune the safety layer to an OSW task, using thresholds based on safety

standards from industry, demonstrating our approach in a specialised task.

We present up to date literature on alarm and repair prediction and safety in LLMs 

in the Literature Review, define key concepts for this work in the Project Defini-

tions, present our approach in the Proposed Methodology, then test on an OSW task 

in the Results section, and present our findings in the Discussion section.  
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2 Literature Review 

Recent work in the OSW sector has focused on diagnosis of faults from alarm 

data, the prediction of subsequent alarms based on previous alarms, and the reduc-

tion of chattering alarms leading to alarm overload. Gonzalez et al. (2016) present 

an approach for categorisation of alarms, to reduce confusion arising from large 

amounts of data, highlighting the relationship between faults in a range of compo-

nents and environmental conditions. Zhang and Yang (2023) present a Long Short-

term Memory (LSTM) based Variational Autoencoder Wasserstein Generational 

Adversarial Network (VAE-WGAN) for anomaly detection on wind turbines, using 

Wasserstein distance to compare the model fit and true distributions. 

Work has also been proposed which aims to predict the required maintenance 

actions from alarm sequences, supporting human decision making in O&M plan-

ning. Chatterjee and Dethlefs (2020) present a transformer-based system for data-

totext generation, predicting faults and required maintenance for wind turbines 

based on SCADA data, showing good performance for both alarms and repair ac-

tions. 

Walker et al. (2022) proposes a system based around LSTMs and Bi-directional 

LSTMs (BiLSTMs) for prediction of repair actions from sequences of alarms in the 

OSW domain, differing from previous works which aim to predict subsequent faults 

as opposed to the required action. This work also proposes adding a HITL layer to 

an LSTM based system, harnessing the knowledge base of experienced O&M staff 

for RL. 

Wei et al. (2023a) apply word embeddings and Siamese convolutional neural 

networks to diagnosis of faults based on alarm sequences and validate their ap-

proach on alarm data from an operating wind farm. Similarly, Wei et al (2023b) 

proposes the use of domain knowledge-fused Word2Vec to transform alarms into 

numeric representations and uses an improved K-means clustering to group alarm 

sequences. Word2Vec (Mikolov et al. 2013) and word embeddings are techniques 

borrowed from Natural Language Processing (NLP), treating alarms in a sequence 

as analogous to words in a sentence.  

Wasserstein distance has been shown useful as a metric for comparison of prob-

ability distributions in a range of tasks (Panaretos et al. 2018), including in Machine 

Learning (ML) and fault detection. Li and Martinez (2021) present a methodology 

for attack detection in cyber-physical systems, using Wasserstein distance to detect 

faults which lie outside of the distribution of expected noise in the system, and seek 

to determine the impact of “stealthy” attacks which lie within this distribution. 

In recent years, progress on LLMs has been rapid, leading to wide interest in 

their adoption for a range of tasks.  Zhao et al. (2023) survey recent progress on 

LLMs, considering pre-training, adaptation tuning, utilisation, and capacity evalu-

ation. Open AI’s Chat GPT (Open AI, 2022) is the most famous such example, 

based on GPT-3 (Brown et al., 2020). GPT 4 (OpenAI, 2023) is the most recent 

development in this family and has been reported to shown human-level capabilities 



4      Connor Walker, Callum Rothon, Koorosh Aslansefat, Yiannis Papadopoulos, Nina Dethlefs 

 

in a range of tasks, although the definition of “human-level” is highly subjective 

and situational. 

Touvron et al. (2023) present LLAMA, a set of LLMs with a range of parameter 

sizes trained on publicly available data, which was released to the research commu-

nity. Models included in LLAMA have been shown to be competitive with the state 

of the art, so are considered a valuable resource. Carta et al. (2023) use an LLM as 

a policy which is updated via Reinforcement Learning, to remedy the current lack 

of grounding between LLMs and the environments in which they are applied. 

As greater reliance is placed on ML-based systems with limited human over-

sight, it is vital that measures are put in place to reduce safety risks. Hawkins et al. 

(2021) present Assurance of ML in Autonomous Systems (AMLAS) and follow this 

with Safety Assurance of Autonomous Systems in Complex Environments (SACE) 

(Hawkins et al., 2022). AMLAS contains safety case patterns and processes for in-

tegrating safety into the development of ML components and justifying the accepta-

ble safety of said components. SACE extends this work to full autonomous systems. 

Rando et al. (2022) finds that safety filters on stable diffusion image-generation 

models can be relatively easily bypassed and argues for a community-based ap-

proach to safety measures in generative AI. 

A significant issue encountered with LLMs is that they can make non-factual 

statements, known as hallucinations. Huang et al. (2023) present a survey of hallu-

cination in LLMs, including a taxonomy of hallucinations and identification of 

causes. Detection of hallucinations has been a field of rapid development, in tandem 

with the rise of LLMs. Manakul et al. (2023) present SelfCheckGPT, a hallucination 

detection algorithm, which is capable of fact-checking outputs from LLMs without 

external resources by comparing stochastically sampled responses. The offline ap-

proach proposed is effective in many applications but can fail if hallucinations are 

present in all sampled sentences. Rateike et al. (2023) proposes a method for detec-

tion of hallucinations in LLM activations from pre-trained models. 

Inan et al. (2023) present Llama guard, a safeguarding model built around mod-

els in LLAMA using a safety risk taxonomy to classify prompts and responses. This 

work presents a taxonomy of safety risks that may arise when interacting with an 

Artificial Intelligent (AI) agent, including violence and hate speech, sexual content, 

and criminal planning. Llama guard takes this taxonomy as input and classifies user 

inputs (prompts) and agent outputs as encouraged (safe) and discouraged (unsafe) 

using a single model. By using a different taxonomy, the model can be fine-tuned 

using zero-shot and few-shot methods.  

3 Problem Definitions 

Developing a system focused on safety specific to the OSW domain requires a clear 

proposal of what the term refers to. Section 3.1 therefore refines the generic safety 

definition to clearly determine the meaning of safety within SafeLLM. Section 3.2 

then identifies the problem definition in which we propose to address. 
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3.1 LLM Safety Definition for OSW O&M Applications 

Safety is defined: “the freedom from unacceptable risk of physical injury or of 

damage to the health of people, either directly or indirectly as a result of damage to 

property or to the environment” (International Electrotechnical Commission 2018). 

Safety of a system is then subject to, “Interactions with its environment and other 

systems also have an effect on the Safety of the system.” (UK MOD 2018). 

Hawkins et al. (2021) states that it is not possible to make any claim regarding 

safety of an ML component for all possible systems and environmental contexts. It 

is therefore essential that the term safety is defined within the scope of the work 

proposed in this paper. Furthermore, Hawkins et al. (2022) adopts the commonly 

used definition of a safety case; “structured argument, supported by a body of evi-

dence that provides a compelling, comprehensible and valid case that a system is 

safe for a given application in a given operating environment.” (UK MOD 2018).  

In the context of OSW maintenance, safety has a wide scope of meaning, both in 

the physical environment and safety of personnel. Working in harsh offshore envi-

ronments harbours its own safety risks. For the application of SafeLLM, we refine 

the above definitions of safety to the protection of maintenance personnel’s expo-

sure to risk, danger, or injury resulting directly from responses generated by the 

conversational agent. Further, protecting the environment from unnecessary harm 

caused by unsafe practices. Our aim is therefore to eliminate any additional risks 

that exceed acceptable levels currently in the OSW industry. 

3.2 Maintenance Planning for OSW Farms 

As identified in our previous work, operators face more than 500 simultaneous 

alarms in a single day (Walker et al. 2022). This will potentially overwhelm staff – 

alongside pressures applied by windfarm operators and energy companies – result-

ing in irrational decisions being made in the interest of reducing downtime. Allevi-

ating this pressure, in turn would improve overall safety throughout the maintenance 

process.  

Currently, it is expected that maintenance crews have the knowledge and expe-

rience to understand and diagnose faults. The alarm notes, such as “WTG1A HV 

MAINTENANCE”, also being ambiguous in definition presents further difficulties 

in implementation of suggested actions.  

OSW, in its nature, is progressively exploring into deeper waters with the intro-

duction of floating turbine structures. These introduce further maintenance com-

plexities as the distance from shore increases from a current average of 44 km to 

consented farms more than 200 km (Interreg Europe, 2018). As the distance from 

shore increases, harsher conditions are present, shortening weather windows for 

safe transfer and maintenance. Where onsite alarm fault diagnosis is apparent, this 

results in a reduction in time to complete repairs, leading to either multiple days of 
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maintenance scheduling, or, more critically, reduction in safety awareness of crews 

to complete tasks.  

As such, we look to address the issue of reduced safety critical awareness, stem-

ming from pressures applied by the drive to reduce turbine downtime. Through fil-

tering our trained conversational agents’ responses, we can eliminate unsafe prac-

tices, whilst maintaining concise yet intelligible actions. Section 4 introduces the 

methodology proposed to achieve SafeLLM within OSW maintenance scheduling.  

4 Proposed Methodology 

We address the defined problems by developing and integrating safety layers, aimed 

to capture unsafe concepts generated by the conversational agent. Existing models 

utilise Cosine Similarity of both word and sentence embeddings. Exploiting the text 

embeddings creates inputs for various Empirical Cumulative Distribution Function 

(ECDF) statistical distance measures. 

Embedding this into our wider work, the sentence input becomes the response 

generated by the LLM. To benchmark our results against existing methodologies, 

each sentence is tested on both measures: Cosine Similarity and Wasserstein Dis-

tance. These are defined and discussed in detail in sections 4.4 and 4.5 respectively. 

Figure 1 shows a block diagram of a process flow using a SafeLLM: Fine-tuned 

LLM within a safety-critical system, in the domain of OSW turbine O&M. The 

process can be addressed in the following steps: 

1- Input Prompt: The process begins with the input prompt, which contains 

alarm sequences from a SCADA system. These alarms may include various error 

messages or status reports such as "Grd. Inv. Communication error," "Converter 

tripped, waiting," "GenInv: 38 D1 volt high," etc. 

2- Obtain LLM’s Embeddings: The input prompt is fed into a fine-tuned LLM 

in which LLAMA 2 has been used. The LLM processes the input and produces 

embeddings, which are high-dimensional vector representations capturing the se-

mantic and syntactic features of the input data. 

3- Pre-defined Embeddings for Unsafe Concepts: The diagram shows a radar 

chart representing the embedding space. This space is pre-defined with embeddings 

for unsafe concepts associated with turbine operation, e.g. "No Power Isolation". 

The LLM’s embeddings are compared against these to calculate a distance metric 

(WD_Dist), using the Wasserstein distance or a similar metric. 

4- Context: A sidebar lists unsafe contexts or practices in the turbine operation, 

such as "Ignoring Weather Conditions" and "Skipping Regular Inspections." These 

contexts may be used to inform or adjust the model's understanding and evaluation 

of safety. 

5- SafeML Score and Threshold Decision: The system uses SafeML (Aslanse-

fat 2020, Aslansefat 2021), a framework for measuring statistical similarity between 

the LLM's embeddings and unsafe concepts, to produce a SafeML score. If the score 

is below a certain threshold, it indicates potential safety issues, and the system 
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proceeds to "Verify the Outcome." If the score is above the threshold, the process 

moves to "Filtering the Results and regenerating a new one." 

4- Repair Action: On the right side of the diagram, there is a potential outcome 

where a repair action is suggested. For example, if the SafeML score is above the 

threshold, it may be recommended to filter the outcome and generate a new one. 

5- Turbine Knowledge Graph: In the background, there's an OSW Turbine do-

main-specific knowledge graph that is used to consider interconnected concepts and 

entities relevant to turbine O&M and improve the accuracy of the LLM results. 

In the following subsections, we discuss the procedures involved in the imple-

mentation of SafeLLM in detail. 

4.1 Data Gathering and Pre-processing 

Due to restricted availability of domain specific maintenance data, we were able to 

generate datasets from ChatGPT 4.0 to use for testing prior to validation. As a foun-

dation for what should be deemed as an unsafe practice, we asked ChatGPT to pro-

vide multiple datasets. 

The first dataset generated consists of 2400 sentences generalised to maintenance 

tasks and considerations within OSW. The sentences have not been validated for 

accuracy of application to the industry. Each sentence also has a Boolean of safe/un-

safe determined by ChatGPT’s safety filter. The unsafe sentence data was then split 

20:80; 20 % creating an ‘unsafe dictionary’ to compare against, and 80% for testing. 

All safe sentences were used for testing. 

A second dataset has also been generated to analyse on category specific thresh-

olds. This dataset consists of the sentence, safe/unsafe Boolean, and an assigned 

maintenance category.  

 

 

 

Figure 1: Diagram showing the overall procedure of SafeLLM. 
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Categories 1-10 are defined as:  

• Procedural Compliance 

• Emergency Procedures  

• Personal Protective Equipment (PPE) 

• Risk Assessment 

• Communication Protocols 

• Environmental Awareness 

• Equipment Handling 

• Training and Certification 

• Regulatory Compliance 

• Incident Reporting 

Once sentence embeddings had been extracted from each sentence, these were 

stored dynamically in a data-frame, each instance containing the sentence, embed-

dings, safety category (undefined for the large dataset), list of Wasserstein distances 

and cosine similarities; each initialised as 0 prior to calculating. Finally, a list of 

data-frames is created for each category of sentences: Unsafe Dictionary, Unsafe 

Test Sentences, and Safe Test Sentences. 

4.2 Latent Space of LLMs 

LLMs, such as LLAMA2, utilise deep learning architectures to encode linguistic 

information into a high-dimensional latent space. This latent space, or embedding 

space, is critical for representing the complex semantic and syntactic structures of 

language. 

Consider language model with L layers, where each layer transforms its input to 

a higher level of abstraction. Latent space at layer 𝑙 for a given input sequence 

𝑓(𝑥) = (𝑥1, 𝑥2…𝑥𝑛) can be represented as: 

 

 

 

In this equation, 𝐸𝑚𝑏𝑒𝑑(… ) is the initial embedding function mapping the input 

sequence to the first latent representation ℎ0. Each 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑙(… ) signifies the 

transformation at layer 𝑙, which may involve self-attention and feed-forward neural 

networks in transformer-based models. The final latent representation ℎ𝐿  encapsu-

lates the contextualised embeddings, utilised for various downstream tasks, includ-

ing text generation, classification, or summarisation.  

The latent space dimensionality, typically ranging in the hundreds to thousands, 

allows the model to capture a wide range of linguistic nuances. Methodology for 

representing the datasets is further discussed in the following section. 
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4.3 Sentence Embeddings 

Sentence embedding is defined as the numerical representation of a sentence, cap-

turing both semantic meaning and context (Helwan 2023). Using the Universal Sen-

tence Encoder (USE) model from Google Research (Cer et al. 2018), we can easily 

extract these for analysis.  

Vaswani et al. (2017) present framework to compute context aware word repre-

sentations; considering both the ordering and identity of all other words within a 

sentence. Figure 2 shows the transformer model architecture.  

Cer et al. (2018) then processes the outputs by computing the element-wise sum 

at each work position, before dividing by the square root of the sentence length. The 

final output is given as a 512-dimensional sentence embedding. 

4.4 Cosine Similarity 

As mentioned, Cosine Similarity is utilised as a benchmark for accuracy of the pro-

posed Wasserstein Distance methodology. This is defined as:  

 

 

 

Where A and B are the input vectors, or sentence embeddings, of the two sentences 

being compared; θ is the angle between the input vectors. A∙B is the dot product of 

A and B. ||A|| and ||B|| are the magnitude of vector A and B respectively. 

 

Figure 2: Transformer Model Architecture (Vaswani et al. 2017) 
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Comparing the sentence embeddings for Cosine Similarity of three example sen-

tences, and visually representing them gives the result shown in Figure 3 below.  

As can be seen in Figure 3, Sentence 1 has low similarity to Sentence 2 with Cos 

θ = 0.11579657. Changing one word between Sentence 2 and Sentence 3, keeping 

word order the same has a much higher similarity: Cos θ = 0.80871284. 

• Sentence 1: “Complete maintenance on the wind turbine.” 

• Sentence 2: “Follow safe practices.” 

• Sentence 3: “Ignore safe practices.” 

4.5 Wasserstein Distance 

Optimal Transport Theory (OTT) provides a baseline foundation for Wasserstein 

Distance. Therefore, we define this first. OTT provides a framework for moving a 

mass distribution into another in the most efficient way possible (Kim et al. 2021). 

Given C as the cost – cost defined as the mass and distance moved – it is required 

to associate each data point ‘x’ in X with exactly one ‘y’ in Y, where X and Y are 

the sentence embeddings. C is therefore defined simply as 𝐶(𝑥, 𝑦) = |𝑥 − 𝑦|, with 

N! possibilities, where N is the number of data points within an embedding (Kim et 

al. 2021).  

OT can be formulated both using the Monge (practical) and Kantorovich (theo-

retical) formulations (Thorpe 2018); we discuss only Monge formulation. Thorpe 

defines transporting one measure to another as: 

 

 

 

Cost is therefore again determined as transporting one unit from x ∈ X to y ∈ 

Y. With this, the aim being to transport from μ to ν whilst reducing C. Monge For-

mulation is further defined as: 

 

 

 

 

Figure 3: Visualised Cosine Similarity 
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Limitations to the above are presented where no optimal transport map (OTM) 

exists. This is reliant on both P and Q having densities, where the above 
𝑖𝑛𝑓

𝑇
 is 

𝑇#𝑃 = 𝑄 measuring the distance moved from P to Q. Without a density in both, no 

OTM exists. 

To resolve this, Wasserstein Distance allows the mass at x to be moved to mul-

tiple locations, defined as: 

 

 

 

𝑗(𝑃, 𝑄) denotes all joint distributions 𝐽 for (𝑋, 𝑌) with marginals 𝑃  and 𝑄 . In 

scenarios where 𝑝 = 1, this can also be referred to as Earth Mover Distance (EMD). 

𝐽 is then called the Optimal Transport Plan (OTP). Where Wasserstein Distance is 

used and an OTM exists, 𝐽 is a singular measure. 

Calculating 𝑃 and 𝑄 as the Cumulative Distribution Function (CDF) of 𝑝 and 𝑞 

respectively as: 
 

 
 

 

Wasserstein Distance is then commonly simplified to: 

 

 

4.6 Defining Safety Threshold Ranges 

Cosine Similarity is limited to the range of 0 – 1, meaning increments between the 

two can be tested for accuracy of safe and unsafe sentences. For the large dataset, 

increments were reduced to be in range of 0.6 – 1 determined by the results gained. 

Where no change of accuracy happened on either safe or unsafe sentences, the in-

crements were then reduced further. This allowed us to identify the highest accuracy 

of both combined, with increments reducing as far as 0.0005. Within the small, cat-

egorised dataset, a uniform increment of 0.05 across the full range 0 – 1 was used 

to find the limits of accuracy on all categories.  

Wasserstein distance can produce a range of 0 – N, having no discrete upper 

bound. Incrementing the threshold started as 1 × 10−5, reducing as far as 1 × 10−8 

at points of static accuracies. As with cosine similarity, on the smaller categorised 

data, we set a uniform increment of 0.0005 in range of 0.001 – 0.005.  
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5 Results 

A summary of main results is presented in this section, with a full discussion of 

results provided in section 6. Section 5.1 summarises the results using a single safety 

threshold on the large dataset; 5.2 summarises the results using 10 category-based 

thresholds on the smaller labelled dataset. 

5.1 Single Safety Threshold  

Table 1 and Table 2 provide summaries of accuracies achieved at varying thresholds 

for Cosine Similarity and Wasserstein Distance respectively. 

Table 1: Accuracies achieved at varying thresholds for Cosine Similarity. 

T
h

re
sh

o
ld

s 
(C

o
si

n
e 

S
im

il
ar

it
y

) 

 Accuracies (%) 

Safe Unsafe Overall 

0.6 77.25 86.125 84.35 

0.625 78.5 78 78.1 

0.6255 78.5 77.813 77.95 

0.626 78.5 77.75 77.9 

0.627 78.5 77.5 77.7 

0.6275 78.5 77.188 77.45 

0.63 78.75 75.938 76.5 

0.65 79.75 70.125 72.05 

0.7 91 51.688 59.55 

0.75 98.75 31 44.55 

 Table 2: Accuracies achieved at varying thresholds for Wasserstein Distance 

T
h

re
sh

o
ld

s 
(W

as
se

rs
te

in
 D

is
ta

n
ce

)  Accuracies (%) 

Safe Unsafe Overall 

0.001275 69.5 54.937 57.85 

0.00129 65.5 58.813 60.15 

0.001295 63.5 60.188 60.85 

0.0012975 63 60.425 61.1 

0.0012985 62.7499 60.75 61.15 

0.0012995 62.7499 60.938 61.3 

0.0012999 62.7499 61.063 61.4 

0.0013 62.7499 61.125 61.45 

0.001325 54.499 67.313 65.15 

0.00135 51.5 72.25 68.1 
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When considering the overall accuracies provided for both results, it’s important 

to acknowledge that the dataset was not balanced. Safe test sentences totalled 400, 

unsafe totalled 1600. The accuracy is defined by the number of sentences correctly 

categorised as safe and unsafe when compared to the Boolean provided by 

ChatGPT.  

5.2 Category Based Safety Thresholds 

Figure 4 below displays example confusion matrix heatmaps generated for 4 of the 

10 categories, demonstrating the relationship between correctly and incorrectly cat-

egorised sentences at each Wasserstein safety threshold for both unsafe and safe 

sentences. Each category contains 20 unsafe and safe sentences. 

 

 

Figure 4: Sample Wasserstein Distance Confusion Matrix 

Heatmaps 
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Figure 5 shows the false detection rate of cosine similarity for both unsafe and 

safe sentences combined at each safety threshold for all 10 categories. Figure 6 then 

shows a comparative plot for the combined failure rate of Wasserstein Distance. 

Where plot ranges differ for each category, it can be assumed that the accuracy 

remains the same when changing the safety threshold outside of these bounds. 

These points have been removed from the plots for clarity. 

 

Figures 7 and 8 below present the false detection rate of safe sentences for both 

Cosine Similarity and Wasserstein distance. False detection is determined by the 

number of safe sentences incorrectly categorised as unsafe during testing. When 

comparing these it is important to note that the scales for the two measures are mir-

rored; sentence similarity increases as the Wasserstein Distance shifts towards 0, 

whereas similarity decreases as the Cosine Similarity shifts toward 0. Therefore, it 

can be assumed that both plots follow the same trend and are comparable. 

 

 

 

 

 

Figure 5: Categorised False Detection Rate for Cosine Similarity 

 

Figure 6: Categorised False Detection Rate for Wasserstein Distance 
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Figure 7: Categorised False Detection Rate of Safe Sentences (Cosine Similarity) 

 

Figure 8: Categorised False Detection Rate of Safe Sentences (Wasserstein Distance) 

Figure 9 and Figure 10 present the false detection rate of unsafe sentences, for 

Cosine Similarity and Wasserstein Distance respectively. False detection is deter-

mined by the percentage of unsafe sentences incorrectly categorised as safe during 

testing. As with the false detection of safe sentences, these plots are comparable and 

follow similar trends as the similarity shifts. 

 

Figure 9: False detection of unsafe sentences (Cosine Similarity)  
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Figure 10: False detection of unsafe sentences (Wasserstein Distance) 

Finally, Figure 11 presents the maximum overall accuracy of safe and unsafe sen-

tences for both Cosine Similarity and Wasserstein Distance.  

 

Figure 11: Overall category accuracy of Cosine Similarity and Wasserstein Distance. 

From this, categories 6, 7 and 10 provide higher accuracies from Wasserstein Dis-

tance. All other categories, excluding category 1 can be deemed within comparable 

ranges. Accuracies of Wasserstein Distance have a range of 50 % - 85 %; Cosine 

Similarity being 62.5 % - 92.5 %. 

6 Conclusion 

In this paper, we defined the Wasserstein Distance statistical distance measure as a 

framework to identify and eliminate unsafe concepts being suggested to mainte-

nance personnel through our previously proposed Conversational Maintenance 

Agent. The aim of this work is to improve the safety – as defined in section 3.1 – of 

maintenance scheduling and compliance through decreasing reliance pressure on 

maintenance personnel. These pressures include, but are not limited to, reducing 
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downtime of turbines, and reducing task completion time in already limited weather 

windows; determined by safe weather conditions. 

In most cases, it has been observed that Cosine Similarity outperforms Wasser-

stein Distance and provides better accuracy overall at this stage. However, Wasser-

stein Distance performs comparably, and in three categories outperforms Cosine 

Similarity, so cannot be ruled out as a valuable method as proposed in this paper. 

Where Cosine Similarity has proved more accurate, Wasserstein Distance follows 

the same trends across all results.  

The results presented are preliminary, with scope for further optimisation in fu-

ture. A foundation for using this framework has been developed with the results 

being comparable to current published work. Wasserstein Distance as a method is 

therefore believed to hold significant benefit in its application into the development 

of SafeLLM. 

Limited testing of the generated datasets has been conducted, with a limited 

range of threshold intervals tested. Parameterising these thresholds moving forward 

will therefore be implemented to further optimise and improve on accuracies.  

Results have been seen to be somewhat volatile, highly dependent on the dataset 

produced by ChatGPT, specifically when generating a dictionary of unsafe concepts 

to test against. This was presented as a limitation whilst asking ChatGPT to catego-

rise the large dataset to test on the category-based thresholds. As such, this dataset 

was only used for testing a single safety threshold. However, in future, it is hoped 

that we can use this to validate the categories by testing and manually analysing the 

results to determine accuracy. 

As highlighted, a significant limitation to achieving validation of results is 

caused by lack of OSW specific data. It is hoped that through discussions and fur-

ther development, we can validate the safety categories, as well as the unsafe con-

cepts within each. This will allow for the creation of a dictionary containing con-

cepts which align with current industry standards and processes. The data generated 

by ChatGPT can also then be validated by domain experts, with the availability of 

data increasing over time, leading to continuous improvement of the complete sys-

tem, as discussed in section 7 below. 

Code and Data Availability 

Regarding the research reproducibility, codes, generated data and functions sup-

porting this paper are published online at GitHub: Safe-LLM: A new approach for 

making LLM results Safe (github.com) 
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