
Vol.:(0123456789)

Computing and Software for Big Science (2024) 8:14
https://doi.org/10.1007/s41781-024-00123-2

RESEARCH

Optimizing High‑Throughput Inference on Graph Neural Networks
at Shared Computing Facilities with the NVIDIA Triton Inference Server

Claire Savard1 · Nicholas Manganelli1 · Burt Holzman2 · Lindsey Gray2 · Alexx Perloff1,3 · Kevin Pedro2 ·
Kevin Stenson1 · Keith Ulmer1

Received: 8 December 2023 / Accepted: 27 June 2024
© The Author(s) 2024

Abstract
With machine learning applications now spanning a variety of computational tasks, multi-user shared computing facilities are
devoting a rapidly increasing proportion of their resources to such algorithms. Graph neural networks (GNNs), for example,
have provided astounding improvements in extracting complex signatures from data and are now widely used in a variety of
applications, such as particle jet classification in high energy physics (HEP). However, GNNs also come with an enormous
computational penalty that requires the use of GPUs to maintain reasonable throughput. At shared computing facilities, such
as those used by physicists at Fermi National Accelerator Laboratory (Fermilab), methodical resource allocation and high
throughput at the many-user scale are key to ensuring that resources are being used as efficiently as possible. These facilities,
however, primarily provide CPU-only nodes, which proves detrimental to time-to-insight and computational throughput for
workflows that include machine learning inference. In this work, we describe how a shared computing facility can use the
NVIDIA Triton Inference Server to optimize its resource allocation and computing structure, recovering high throughput
while scaling out to multiple users by massively parallelizing their machine learning inference. To demonstrate the effective-
ness of this system in a realistic multi-user environment, we use the Fermilab Elastic Analysis Facility augmented with the
Triton Inference Server to provide scalable and high-throughput access to a HEP-specific GNN and report on the outcome.

Keywords  Machine learning · Inference-as-a-service · Particle physics · Distributed computing · Heterogeneous
computing · Graph neural network

Introduction

Machine learning (ML) is a continually growing field, gain-
ing traction across disciplines as new applications are found
and tested. In high energy physics (HEP), for example, ML
frequently outperforms traditional algorithms, leading to

adoption for a wide variety of tasks, now encompassing
the reconstruction and classification of physics objects and
events recorded by particle detectors such as those at the
Large Hadron Collider (LHC) [1, 2]. The most powerful
ML techniques, such as graph neural networks (GNNs), are

 *	 Claire Savard
	 Claire.Savard@colorado.edu

	 Nicholas Manganelli
	 Nicholas.James.Manganelli@cern.ch

	 Burt Holzman
	 burt@fnal.gov

	 Lindsey Gray
	 Lindsey.Gray@cern.ch

	 Alexx Perloff
	 perloff1@llnl.gov

	 Kevin Pedro
	 pedrok@fnal.gov

	 Kevin Stenson
	 Kevin.Stenson@colorado.edu

	 Keith Ulmer
	 Keith.Ulmer@colorado.edu

1	 Department of Physics, University of Colorado, Boulder,
390 UCB, Boulder, CO 80309, USA

2	 Fermi National Accelerator Laboratory, Wilson Street and
Kirk Road, Batavia, IL 60510, USA

3	 Lawrence Livermore National Laboratory, 7000 East Avenue,
Livermore, CA 94550, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-024-00123-2&domain=pdf

	 Computing and Software for Big Science (2024) 8:14 14   Page 2 of 14

more complex and correspondingly require more computing
power and time [3, 4].

Computing power can be expensive and is not readily
available to everyone. Therefore, many turn towards shared
computing facilities that give users access to otherwise
unaffordable computational resources [5]. In general, these
facilities provide a variety of different platforms and pro-
cessors to users, such as CPUs and GPUs, but tend to be
optimized for conventional tasks requiring minimal com-
putational power per user. Facilities like the LHC Physics
Center [6] at Fermi National Accelerator Laboratory (Fermi-
lab), which serves Large Hadron Collider (LHC) physicists
from the CMS experiment, provide resources to hundreds
of HEP researchers per year, but now struggle to meet com-
putational demands efficiently because of growing machine
learning enthusiasm.

This work aims to reconfigure shared computing facili-
ties to allow for more efficient machine learning inference
from their numerous users. In Sect. "Fermilab Triton Server
Application", we use the Fermilab shared facilities to show
how an NVIDIA Triton Inference Server can be deployed
and used to optimize machine learning inference when
scaled to multiple users running parallel computing jobs.
Section "Benchmarking Tests" then shows the computational
gain and the effect of optimizing such a configuration at
Fermilab. All results are specific to the Fermilab facility, but
the tests and trends are reproducible by all similar multi-user
facilities and are anticipated to show similar results.

Background

In this section, we define shared computing facilities and
distinguish the different machine learning processors that are
typically made available to users. We then briefly discuss the
NVIDIA Triton Inference Server and how it interacts with
the different processors.

Shared Computing Facilities

Computing facilities are widely used around the world to
share computing resources among users [5]. As computa-
tional tasks become more complex and computationally
expensive, shared facilities hold great value by allowing
users to access powerful machines that are expensive to
own individually. A few companies offer services that give
the public access to their computing clusters for a fee, such
as Microsoft Azure, Amazon Web Services, Google Cloud
Platform, and IBM Cloud. Other companies, universities,
research collaborations, and federal laboratories maintain
private computing facilities to enable their researchers and
employees to perform cutting-edge computations with a

scope far outstripping the resources that can be dedicated
to typical individuals.

Within HEP, researchers need the capability to process
data in the terabyte (TB) to petabyte (PB) range, which may
represent the sum of collected information for billions of
particle physics collisions or years of continuous data collec-
tion. Subsets and variations of the data analysis processing
may be repeated thousands of times each year. For the LHC
experiments [7, 8], data processing is typically facilitated by
large CPU-centric computing clusters like the LHC Physics
Center (LPC) [6].

Common Machine Learning Processors

Revolutionary advancements in the past decade have ena-
bled machine learning to become a ubiquitous feature in
modern research and commercial environments. As the field
continues to develop, many of the resulting algorithms take
increasingly larger proportions of the available computing
power and runtime. GNNs, notable for their ability to pro-
cess irregularly structured graph-like data, are an example of
an ML model that can be rather complex and consequently
poses a computational burden when processing large sets
of data. GNNs also represent a transformative paradigm
shift for HEP, which naturally deals with events contain-
ing diverse and irregularly shaped inputs, often without an
intrinsic ordering. Until their advent, HEP data needed to
be heavily pre-processed for ML models having regular
input shapes, with significant feature engineering involved,
to attain high performance; GNNs have enabled similar or
better performance with fewer input features, which is very
desirable for HEP data. It is imperative for facilities like
those employed in HEP to evolve and adapt to accommo-
date multiple users running complex machine learning algo-
rithms, in order to avoid decreased computational efficiency
and increased costs to researchers both in terms of money
and time.

The two most common processing hardware classes
seen at shared computing facilities, the CPU and GPU,
have different trade-offs for running machine learning
algorithms. CPUs can be faster in data transfer and stor-
age, with better branch prediction and shorter pipelines,
all of which are suited to general-purpose workflows.
However, they are limited in parallelism and therefore
computational throughput. Commercial GPUs, being
designed for highly parallel paradigms like single instruc-
tion multiple data (SIMD) workloads [9], are particularly
well-suited to accelerating ML training and inference [3].
By trading the more complex branch-prediction hardware
and low pipeline latencies of CPUs for more vectorized
compute capability, these devices gain considerable
advantage in total FLOPS and compute/watt. GPUs are
more expensive than CPUs (an individual NVIDIA H100

Computing and Software for Big Science (2024) 8:14 	 Page 3 of 14  14

costs around $35,000, whereas a 32-core AMD EPYC
7543 is approximately $2350 in 2023), but have O(10)
better performance per watt, which closes the cost gap. In
combination with lower general-purpose utility and need
for specialized programming paradigms and code, GPUs
are less frequently employed in HEP computing centers.
Multi-user computing facilities are obliged to allocate
such expensive resources efficiently for the increasing
fraction of researchers using ML techniques.

A concept frequently considered in HEP is the time-to-
insight, which is the amount of time it takes for a new idea
to be proposed, implemented, validated, and analyzed on
TB to PB data quantities. Being able to provide a short,
large burst of resources to an analysis has significant ben-
efits to users. However, while minimizing analysis latency
is paramount, it must be balanced with achieving high
computational efficiency in shared facilities. The NVIDIA
Triton Inference Server [10] supports both of these goals
when paired with GPUs to augment multi-user computing
facilities.

NVIDIA Triton Inference Server

One way to minimize cost while providing high burst
capability is to provide GPUs as centralized resources for
offloading ML computations, while general-purpose calcu-
lations are distributed across CPU-only servers. The GPUs
are then accessed on-demand, with usage requests satisfied
on the order of seconds, rather than minutes or hours, as is
typical when requesting dedicated GPUs at HEP comput-
ing clusters. This paradigm, known as Inference-as-a-Ser-
vice (IaaS), can be accomplished using the NVIDIA Triton
Inference Server [10], which is open-source software that
allows users to send inference requests from any frame-
work to any CPU- or GPU-based platform. With this tool,
shared computing facility users can run all of their code on
CPUs except for the ML inference, which will take place
on a GPU. A Triton server can simultaneously handle ML
inference requests from multiple users, for multiple mod-
els, using multiple ML frameworks such as PyTorch and
TensorFlow [11, 12].

With the Triton server set up on a cluster of GPUs, mul-
tiple models can be accessed in a device-agnostic way. All
server instances connect to an object store where ML mod-
els are uploaded, and any server can dynamically load any
model that a client requests. Additionally, dynamic batching
can concatenate inference requests with sub-optimal batch
sizes, perform the inference with near-peak efficiency by
filling the GPU registers, then split and return the results to
separate clients [13]. An individual client is not constrained
by how many models can fit into device memory locally, and
so may address dozens of models in fast succession, taking

advantage of a one-to-many client-to-server connection via
one unified interface [14].

Fermilab Triton Server Application

In this section, we discuss examples of shared computing
facilities at Fermilab and how the NVIDIA Triton Infer-
ence Server is deployed.

Computing Facility Statistics

Fermilab is a national laboratory in the United States
which specializes in particle physics research. It is the host
laboratory of the US CMS Collaboration, which studies
the fundamental particles of the universe using the CMS
detector located at CERN in Geneva, Switzerland [8]. As
such, Fermilab has several computing clusters accessible
to US CMS researchers for all their computing needs.

Two shared computing facilities at Fermilab used in
this work are the LHC Physics Center (LPC) and the Elas-
tic Analysis Facility (EAF). The LPC is reserved for US
CMS-affiliated researchers and has 240 cores available for
interactive use (via 60 virtual machines) and another 4500
cores for batch submission. Each LPC batch node has a
10 Gb/s ethernet connection. The LPC currently has hun-
dreds of users and is predominantly used for data analy-
sis. The EAF is also designed for physics analysis, but is
accessible to any Fermilab affiliate, intended to provide
industry-standard data science frameworks and toolkits for
low-latency analyses. It is built on the OKD [15] frame-
work (the community-supported distribution of Red Hat
OpenShift [16]), which provides scalable, reliable, multi-
tenant Kubernetes [17]. The EAF consists of 12 machines
with 286 CPU cores and 1643 GiB of memory, along with
8 NVIDIA A100 80 GB GPUs. It can also submit large
workloads to the LPC batch system.

Typical User Workflow

Users at the LPC and EAF typically use these computing
facilities for data analysis. Upon connecting to one of these
facilities, the user will be assigned to a node with access
to communal software and storage areas. The collaborator
then processes things in two ways: either locally on the
login CPU node, or by distributing units of work to multi-
ple CPUs/GPUs through a job scheduler. Figure 1 shows
this typical user workflow as a schematic.

Physics analyses generally entail running the same code
over billions of physics events. The analysis code is struc-
tured for immense parallel processing over the many data

	 Computing and Software for Big Science (2024) 8:14 14   Page 4 of 14

files storing all of these events. Therefore, users generally
package a copy of their code to send to each CPU/GPU
along with different subsets of the data to analyze so that
total processing time is minimized. There are a number
of tools that are used to scale the code out within large
computing clusters, such as HTCondor [18], CRAB3 [19],
and Dask [20].

Machine learning algorithms are becoming more com-
monly used by physics data analysts for a variety of tasks,
such as event reconstruction and object classification [1].
When running analysis code on CPUs, machine learning
inference generally takes up a significant amount of the
full processing time, depending on the model. Utilizing
GPUs to process the entire analysis would speed up the
inference time, but is not efficient as significant portions of
analysis code are not adapted for GPU usage. Optimizing
this efficiency is imperative when the demand for GPUs

exceeds what is available, as is the case in many comput-
ing facilities.

Triton Server Implementation

Instead of running uniquely on a CPU or GPU, the Triton
server allows these two processors to work together. GPU
resources are allocated to the server, which uniquely iden-
tifies each available model and dynamically loads needed
models so that CPU clients can communicate inference
requests. The researchers then send copies of their code to
CPUs that compute everything locally except for the ML
inference, which is processed by the GPUs on the Triton
server. This implementation allows for fast GPU ML infer-
ence shared among multiple users.

A diagram of the current implementation is shown in
Fig. 2. It includes two inference machines, each with 4

Fig. 1   A schematic of a typical
user workflow at a shared multi-
user computing facility. This
example is based on the LPC
facility

Fig. 2   The Triton server implementation at the EAF showing the path of an ML inference request as it is created by the user and processed by
the servers

Computing and Software for Big Science (2024) 8:14 	 Page 5 of 14  14

NVIDIA A100 80 GB GPUs and 2 AMD Epyc 7543 32-core
CPUs. The Ampere architecture’s Multi-Instance GPU
(MIG) capability is utilized to partition the GPU resources
into multiple virtualized resources, and Triton Inference
Server instances are deployed on MIG slices with 20 GB
of RAM and 14 Streaming Multiprocessor (SM) cores. In
Sect. "Multi-model Scaling", we also deploy MIG slices
with 40 GB of RAM and 28 SM cores.

The A100 architecture has 1935 GB/s of bandwidth to
the High Bandwidth Memory attached to the die, and 6912
CUDA cores, providing up to 19.5 TFLOPS of compute on
FP32 data and 9.7 TFLOPS for double precision FP64. Each
MIG slice has dedicated L2 caches, DRAM bandwidth, and
memory controller allocations, helping ensure consistent
performance regardless of the usage of neighboring MIG
slices. Each Triton server periodically polls a MinIO [21]
object store where all the models are stored.

Inference requests originate from worker nodes on the
LPC batch system. Users send requests via TLS-wrapped
gRPC [22] to a haproxy [23] service built into OKD (not
pictured), which are then immediately passed through to an
nginx [24] service. The nginx service unwraps the gRPC
request and sends it to a Triton Inference Server, using
Kubernetes load-balancing. The Triton Inference service is
configured to automatically scale up and down the number
of server instances based on the average queue time for an
inference request (called “auto-scaling”). Each inference
machine is connected via 100 Gbps ethernet; however, the
nginx and haproxy servers are only connected to the fabric
of the LPC batch system at 100 Gbps. This connection could
be a bottleneck when numerous LPC batch workers are mak-
ing inference requests.

The Prometheus open-source monitoring system [25]
built into OKD is used to collect inference metrics every
15 s from the Triton application via Kubernetes podmoni-
tor objects, as well as machine characteristics such as core/
memory utilization. The metrics are written to a Grafana
Mimir [26] server for long-term storage, accessed via the
REST API, and displayed via Grafana monitoring. The met-
rics collected by Prometheus are used to analyze the perfor-
mance of the system in Sect. "Benchmarking Tests".

Parameter Optimization

Multiple free parameters must be chosen when deploying
the Triton server, which affects how quickly and efficiently
models can be processed given the resources allocated. The
parameters associated with the EAF Triton implementation
mentioned above are all based on a standard GNN model
used frequently for HEP applications, ParticleNet [27]. The
ParticleNet GNN applies dynamic graph convolutional neu-
ral networks and edge convolution techniques to variable-
dimensioned, unordered “point cloud” data. This model

(exact model parameters given in Appendix B) will be used
as the demonstration model in Sect. "Benchmarking Tests"
and is a fair representation of the ML models being used in
HEP today.

The size of the MIG slice (20 GB) for a server instance
was chosen based on the RAM required to execute infer-
ence requests on the ParticleNet model. Section "Multi-
model Scaling" will discuss how performance changes as
this parameter varies.

The queue time per inference request is sampled every
15 s. If the average queue time exceeds 400 ms for four
consecutive samples and it has been at least 3 min since
the last scale up, an additional server is deployed. Con-
versely, if the average queue time is less than 400 ms for
40 consecutive samples and it has been at least 1 min since
the last scale down, a server is shut down. These settings
are collectively referred to as Scaling Parameters 2 (SP2).
The pre-optimized scaling parameters (Scaling Parameters
1, SP1) used a 100 ms threshold on the average over all
models and different windows for scaling up and down.
See Appendix A for more scaling parameter information.

Figure 3 depicts the throughput of the ParticleNet
model at the EAF for SP1 and SP2. The naive expectation
is linear scaling of the maxima as a function of instances.
With pre-optimized parameters SP1, the servers are under-
utilized, with unused inference capacity the majority of
time. Post-optimization gives the performance seen by
SP2, demonstrating larger throughput and more consist-
ent scaling with respect to Triton instances, which better
maximizes the per-GPU throughput with the ParticleNet
model. This indicates the importance of proper parameter
selection.

Fig. 3   The violin plots show the net inference rate (inferences/s) as a
function of the active Triton instances for two different sets of scaling
parameters. Each violin shows the minimum, maximum, and (through
the width of the shaded band) the frequency of time samples (120 s
long). For SP2, the server scaling skips from 8 to 10 instances as
additional GPU resources became free

	 Computing and Software for Big Science (2024) 8:14 14   Page 6 of 14

Benchmarking Tests

In order to understand the benefits of setting up an NVIDIA
Triton Inference Server at a shared computing facility, a few
metrics are computed and analyzed. The timing and com-
putational efficiency for the setup described in Sect. "Fer-
milab Triton Server Application" are assessed. While all
of the results shown in the subsections below are specific
to the LPC and EAF Triton server setup at Fermilab, these
tests can also be used as benchmarks for other Triton server
deployments (code is publicly available at https://​github.​
com/​cgsav​ard/​triton_​multi​user_​bench​marks).

Timing Comparison

At the LPC, users typically run their ML models on the CPU
nodes readily available to everyone. As discussed previously
in Sect. "Common Machine Learning Processors", CPUs
are not as efficient for machine learning inference as GPUs.
The Triton server setup, which allows users to execute their
inference on a GPU, therefore greatly reduces the overall
computing time. For this test, we compared the processing
time for inference on a local CPU instance of the ParticleNet
model to a Triton instance of the model hosted on GPUs.

Figure 4 shows a significant speed-up of O(50) when
processing 10,000 inputs (called “jets” for the ParticleNet
model), motivating the use of the Triton server. The time
elapsed starts when the full dataset is passed to the model
and ends when all of the inference results are available,
including data batching and pre-processing into the proper
format for the selected model. Each data point on the plot
represents the time elapsed (cumulative) after processing the
indicated number of jets, with the batch size set to 1024. To
minimize noise, which causes small timing fluctuations, the
time elapsed is averaged over 10 trials for the local model
and 100 trials for the Triton model. The fluctuations for the
Triton model are larger than for the local model because of

the network connection between the LPC CPUs and the EAF
GPUs, which acts as an additional source of noise.

It is important to note that different machine learning
models will achieve different speed-ups, or even slow-
downs, when using a Triton server for GPU inference.
In Fig. 5, we can see a speed-up of O(6) for a ResNet50
model [28, 29] when using the same Triton set up described
in Sect. "Fermilab Triton Server Application". ResNet50 has
approximately 12 times more parameters and 7 times more
FLOPS than ParticleNet [27], as well as approximately 47
times larger inputs. Thus, the inputs of ResNet50 are a lot
larger relative to the size of the neural network in compari-
son with ParticleNet. This causes the input processing step
of the Triton inference to be a much larger fraction of the
total inference time, about 10% compared to < 1% . There-
fore, the speed-up for GPU inference is smaller, as the input
processing is less efficient than inference computation on
the GPU.

Figure 6 shows an example of a model that takes more
time for inference on the Triton server GPUs than on the
local CPUs. This model is a small boosted decision tree

Fig. 4   Comparison of the time it takes to process batches of data
using a local CPU model vs. a Triton model instance on a GPU for
ParticleNet

Fig. 5   Comparison of the time it takes to process batches of data
using a local CPU model vs. a Triton model instance on a GPU for
ResNet50. 5000 inputs were processed in batches of 256. Results are
averaged over 5 trials

Fig. 6   Comparison of the time it takes to process batches of data
using a local CPU model vs. a Triton model instance on a GPU for
the BDT. 10 M inputs were processed in batches of 10000. Results
are averaged over 5 trials

https://github.com/cgsavard/triton_multiuser_benchmarks
https://github.com/cgsavard/triton_multiuser_benchmarks

Computing and Software for Big Science (2024) 8:14 	 Page 7 of 14  14

(BDT) with 20 input features and 100 trees, trained using
XGBoost [30]. BDTs are machine learning models that
already run very efficiently on CPUs because the inference
computation is dominated by simple logical operations.
When using the Triton model, there is overhead that stems
from data transfer and the packaging/unpackaging of the
data. In this case, we see that the overhead from the Triton
server masks any speed-up from accelerated GPU comput-
ing. Therefore, it is a bad choice to implement the BDT on
the server, as it wastes the valuable GPU resources. Users of
the server should always test their models to make sure that
it is actually beneficial to use the Triton server. More tests
comparing ParticleNet, ResNet50, and the boosted decision
tree can be found in Appendix C.

Increasing Workers

Now, we examine how the Triton server performs as a user
runs inference in parallel on multiple workers to speed up
the total inference time. For this test, we spawn varying
numbers of workers that make parallel inference requests
and see how this affects the inference time with the Triton
server auto-scaling (as described in Sect. "Triton Server
Implementation").

The Triton instances as a function of the workers can be
seen in Fig. 7. The increase in instances is steady, deter-
mined by the server scale-out rate and queue time thresh-
old, which then remains constant at 8 servers at around 28
workers. As the GPUs on the EAF are a shared resource,
no additional MIG slices were available to expand further.
Additional MIG slices were freed by other users around the
time the benchmark reached 70 workers, and two additional
servers were spawned. Figure 7 shows how the resources can

be reallocated for the Triton server efficiently as more GPUs
become available.

Figure 8 shows how the auto-scaling affects the queue
time of the requests as a function of the number of work-
ers. A new instance is spawned when the queue time per
inference request surpasses the thresholds described in
Sect. "Parameter Optimization". If the number of instances
increases, there are more servers capable of processing
requests and therefore the queue time decreases. When the
maximum number of instances is reached, the queue will
continually increase as more workers send requests and can
only decrease when more resources become available to
share the load. If the queue time becomes unmanageable
because of GPU resource limitations, it may no longer be
beneficial to spawn up more workers from the client side.

The throughput of the Triton server is defined as the rate
at which inference requests are processed. As the number of
Triton instances increases, more inference requests can be
processed in parallel and therefore the throughput increases,
as can be seen in Fig. 9. We may expect the throughput to
remain constant so long as the number of servers stays the
same, but we actually see a slight increase as more requests
fill the queue. The throughput increases as a function of
the number of workers because the queuing and processing
pipeline becomes more efficient. As the number of instances
increases, the processing pipeline stabilizes and the through-
put grows more steadily with increases in workers.

Multi‑model Scaling

In the previous subsection, we looked at the performance
of an individual machine learning model using the Triton
server for inference. In shared multi-user computing facili-
ties, we expect to have multiple models running inference

Fig. 7   As the number of workers which make parallel requests to the
Triton server increases, the number of Triton instances increases to
parallelize the request processing

Fig. 8   The relationship between the number of workers and the queue
time per inference requests, showing the effects of the Triton instance
auto-scaling

	 Computing and Software for Big Science (2024) 8:14 14   Page 8 of 14

concurrently. When this occurs, the performance of a sin-
gle model (“demo model”) can change due to the additional
stress put on the Triton server.

The Triton server loads every model on every server
instance running by default. This means that the 20 GB MIG
slice hosting an instance is split among the different models
and therefore the throughput for a single model decreases. In
order to test performance when inference occurs for different
models at the same time, we created “background models”:
copies of the demo ParticleNet model, but labeled in such
a way that the server would treat them distinctly. Figure 10
shows the relationship between the throughput of all models
and throughput of a single model as a function of the number
of background models for 20 and 40 GB slices.

The throughput of the individual models scale as 1/n
when n models are perfectly sharing the GPU slice, as long
as there is enough memory for each model to run in parallel.
As the number of background models increases, however,
the models begin to compete for the instance resources and
the throughput decreases faster than 1/n. This degradation
of performance can be due to models loading and unload-
ing on the server or models remaining idle until memory for
inference is made available (called “thrashing”). Figure 10
shows that this thrashing occurs after 2 models on a 20 GB
slice and 5 models on a 40 GB, indicating that the demo
model requires around 7 to 8 GB minimum in order to run
inference efficiently.

Fig. 9   The throughput as a function of the number of workers in the full Triton server system (left) and a single server instance on average
(right)

Fig. 10   The throughput for all models aggregated (left) and the demo
model (right) as a function of the number of additional background
models running in parallel with the demo model on a single Triton

server. Perfect slice sharing leads to a 1/n decrease in throughput with
the number of background models n. Each model has four workers
sending inference requests in parallel

Computing and Software for Big Science (2024) 8:14 	 Page 9 of 14  14

Since all models are loaded onto each Triton instance by
default, adding more instances does not fix the thrashing
that occurs on a single instance. Instead, it is more efficient
to make use of the multiple GPU slices available to pro-
cess each model on a unique instance. Figure 11 shows the
difference in throughput when all models are sharing each
instance versus each instance holding only one model.

The constant throughput of the demo model for uniquely
assigned instances when other models are running in the
background shows that processing performance of one
model will not affect any other model at a multi-user facility
as long as enough GPU resources are available. When GPU
resources are constrained, the instances will have to begin
splitting among the models carefully to avoid the thrashing
seen in Fig. 10. Such model orchestration is not a feature of
the current default Triton deployment and therefore must
be implemented manually. NVIDIA’s Triton Management
Service (TMS), part of their AI Enterprise product, adver-
tises that it “allocates models to individual GPUs/CPUs, and
efficiently collocates models by frameworks”. Unfortunately,
TMS is not currently available to test at the EAF.

Limitations

All results mentioned in Sect. "Benchmarking Tests" are
specific to the Triton server implementation at Fermi-
lab described in Sect. "Fermilab Triton Server Applica-
tion". Other facilities may require a different configura-
tion based on the resources available and design of the
facility. Similarly, the Triton server parameters optimized
in Sect. "Parameter Optimization" are tuned on a model

architecture frequently used in HEP research at the Fermi-
lab facility. These parameters were only optimized on one
variant of the model architecture and may need re-tuning as
the collection of models used in the multi-user computing
facility change or when the Triton server is implemented at
a new facility with different network and compute resources.

The benefits of this work, mainly the exploitation of
GPUs for quick bursts of resources resulting in high infer-
ence throughput and fast turnaround, may be less obvious
at a shared computing facility with fewer users or more
GPUs. This work also does not explore implementations of
inference-as-a-service on different coprocessor architectures
such as Tensor Processing Units and FPGAs. These may pro-
vide complementary benefits through their performance [4,
31], and are an interesting area for additional study and
comparison.

These results do not study the potential impact of insuf-
ficient GPU resources in detail, leading to over-subscription
and untenable latency for the pool of users, nor potential
fallbacks in the event that the GPU resources become una-
vailable for long periods of time.

Conclusion

In this work, we explore the usage and optimization of
NVIDIA Triton Inference Servers at a shared multi-user
facility aimed at maximizing throughput when scaling com-
putational resources out to hundreds of users each paral-
lelizing computing jobs. The Fermilab computing facilities
have these large-scale computing requirements and are used

Fig. 11   The throughput for all models aggregated (left) and the demo
model (right) as a function of the number of background models
running in parallel with the demo model with Triton instance auto-
scaling. The distributions show differences in performance when each

model is hosted on a unique instance versus the models sharing each
instance. Each model has four workers sending inference requests in
parallel to it

	 Computing and Software for Big Science (2024) 8:14 14   Page 10 of 14

to demonstrate the performance of model inference-as-a-
service under such intense conditions.

The timing comparisons shown in Sect. "Timing Compar-
ison" motivate using the Triton server to process inference
requests on GPUs with a speed-up of ∼50 compared to CPU-
only processing for the ParticleNet model. Sections "Increas-
ing Workers" and "Multi-model Scaling" show how machine
learning inference performance on the Triton server changes
as parallel requests and active background models increase.
Both of these results show that high throughput can be main-
tained as more stress is placed on the Triton service when
the server GPU resources are divided efficiently among the
models to maintain a reasonable queue time and minimize
competition for resources.

As machine learning becomes more established and ubiq-
uitous in a variety of fields, it is more and more important to
ensure that computing centers are capable of handling the
increased load from machine learning inference. At shared
computing facilities, resources must be allocated to users
efficiently, and high throughput is important so that allocated
resources can be freed up quickly for use by other users, and
the time to insight can be minimized. Triton servers have
been shown to efficiently allocate GPU resources for high-
throughput computing, making this work a leading example
of how other multi-user computing facilities can alter their
systems to optimize efficiency for new machine learning
demands.

Appendix A: Triton Server Parameters

Several scaling parameters must be set to determine how
the Triton server will create new instances, as discussed in
Sect. "Parameter Optimization". The parameters are care-
fully tuned to ensure that the instances are scaling out in a
stable and efficient manner, as shown in Fig. 3. These param-
eters will be described below, along with a brief explanation
of how we chose the parameters for the FNAL Triton server
implementation.

Each parameter is set uniformly for all models running on
the server. These are not configurable on a per-user basis, as
any change will affect all users and models using the same
Triton server deployment.

Metric Collection and Analysis Parameters

There are several time-related parameters for the inference
server metrics.

•	 Metric collection interval: the default Triton server set-
tings are used, such that statistics for model inference are
collected every 15 s

•	 Analysis time step: sets the interval between analyzed
data points. For this analysis, the time step is set to the
same value as the collection interval, 15 s.

•	 Data collection window: determines the typical num-
ber of metrics used as input for the calculation of rates,
deltas, and averages. By selecting an interval of 30 s, 2
consecutive measurements are used to compute an analy-
sis data point. When used in conjunction with a smaller
analysis time step, the result is a sliding-window algo-
rithm. This is well suited to averages and queue times.

Some metrics, such as the integrated number of requests,
must be computed on unique values, and in such a case, the
analysis time step and data collection window should be
set to the same value to avoid double-counting. Inference
metrics, such as inference request rate and queue time, are
calculated and used to determine the performance of the
server and whether more instances should be launched or
shut down.

Horizontal Pod Autoscaling Parameters

The Triton server is configured as a Horizontal Pod
Autoscaler (HPA) in Kubernetes [32]. It is configured to
scale based on an external metric, referred to as the “queue
time”, which is the maximum of the approximate queue time
per inference, averaged per model. This metric gives a meas-
ure of the latency for a single request to be processed in the
inference queue. Our implementation chose a threshold of
400 ms, which achieved a smooth scaling of MIG instances
while maintaining a reasonable throughput of approximately
5 inference requests per second per instance for the Parti-
cleNet demo model. Note that the throughput of a model
is model-dependent and the threshold may need to be be
adjusted to achieve reasonable throughput depending on the
models being served.

Table 1   Scaling behavior parameters of Triton HPA

Parameter Value

scaleUp –
 stabilizationWindowSeconds 60
 selectPolicy Max
 policies.periodSeconds 180
 policies.type Pods
 policies.value 1

scaleDown –
 stabilizationWindowSeconds 600
 selectPolicy Max
 policies.periodSeconds 60
 policies.type Pods
 policies.value 1

Computing and Software for Big Science (2024) 8:14 	 Page 11 of 14  14

The HPA scaling behavior parameters are summarized in
Table 1. Given the relatively small amount of MIG instances
available (10), policies.type and policies.value
were set to “Pods” and “1”, respectively, to ensure that we
would only start or stop a single server at a time.

The stabilization window for scale-up (scaleUp.sta-
bilizationWindowSeconds) was chosen to be one
minute, or four measurements (15 s interval) collected by the
server. This was found to be a long enough time to determine
whether the queue time continuously passes the threshold,
but short enough to scale up quickly if the number of infer-
ence requests increases suddenly.

There is a delay before the queue time responds to a new
inference instance being spawned, as seen in Fig. 12. For this
reason, the scaleUp.policies.periodSeconds
should be larger than the stabilization window in order to
allow the queue time to decrease and stabilize. We chose
180 s, allowing the service two minutes for the queue time
to stabilize and an additional minute to evaluate if an another
instance should be spawned.

To avoid “flapping”—constantly starting and stopping
instances as the queue time oscillates around the threshold—
we choose a longer stabilization window for scaling down
(scaleDown.stabilizationWindowSeconds):
600 s, or 40 consecutive measurements. This allows for
long, uninterrupted processing time. Since HEP analyses
tend to process millions of data events, the data are split
into chunks, each generating batches of inference requests
directed towards the Triton server. When processing begins
for a chunk, a number of synchronous tasks unrelated to
inference are performed which causes the number of infer-
ence requests to drop to zero until inference for that chunk
finally begins, as shown in Fig. 13. We want to ensure that
the stabilization window is long enough to avoid scaling

down during this downtime, trading off a small inefficiency
for a decrease in overall latency.

We set scaleDown.policies.periodSeconds
to 60, ensuring that the servers can scale down rapidly once
all inference requests have been processed, releasing the
allocated resource so they can be used elsewhere. It is ben-
eficial for the scaleDown.policies.periodSec-
onds to be smaller than the stabilization window as we
want stable, long processing times but should be quick to
free resources once processing has finished.

Appendix B: ParticleNet Demo Model
Parameters

The ParticleNet model used in this work to optimize the
Triton server parameters and for benchmark testing is an
exact replica of the model described in Ref. [27]. There
are five input features, two coordinates, three EdgeConv
Blocks using k = 16 nearest neighbors and C = (64, 64, 64) ,
(128, 128, 128), and (256, 256, 256) channels, and two fully
connected layers with 256 nodes and 0.1 dropout rate to two
nodes. A schematic of the exact structure can be found in
Fig. 2a of Ref. [27].

This demo model was developed using the “Weaver”
package (publicly available at https://​github.​com/​hqucms/​
weaver) and was left untrained with randomized weights
as the application and performance of the model is unre-
lated to the performance of the Triton server implementation
which we are studying. Similarly, the input data are pseudo-
randomized and arranged in the proper format required for
inference. The structure of the demo model is based on a Fig. 12   When the Triton server starts up a new model instance, the

queue time becomes noisy for a couple of collection intervals until
stabilizing again

Fig. 13   Once a chunk of data is finished processing and while the
next chunk is being pre-processed and undergoing non-inference
computations, the server throughput drops

https://github.com/hqucms/weaver
https://github.com/hqucms/weaver

	 Computing and Software for Big Science (2024) 8:14 14   Page 12 of 14

ParticleNet model being used in an ongoing physics analysis
at the LHC physics center at Fermilab [6].

The demo model was created using the PyTorch pack-
age [11] and converted using TorchScript to a version that
can run on the Triton server. The Triton server reads in
the converted file along with configuration files that tell
the server how the model inputs and outputs are struc-
tured and how to partition the model on the server. In the
configuration file, the following selections were made:

•	 Dynamic batching. The preferred batch size was set to
1024, determined by testing different batch sizes and bal-
ancing the inference speed with memory required to run.

•	 Inputs and outputs. There are 3 different inputs for the
ParticleNet: the features, coordinates, and mask. Each of
these three, along with the output, was assigned FP32
datatypes.

•	 Inference mode. This is set to True, letting the server
know that the model is being used to run inference.

•	 Instance group. By default, a single model instance is
created for each MIG spawned. This default is kept, as
the demo model already requires 7–8 GB for inference
and it is easier to test the Triton server implementation
with a single model on each MIG. No specific GPU is
targeted for the model as the GPUs available to the server
are never fixed.

All other configurations are left to the default settings.

Appendix C: Nvidia Performance Analyzer

NVIDIA’s perf_analyzer is part of the suite of Triton tools,
designed to generate test inference requests and aggregate
metrics. The results may be analyzed to optimize model
parameters for inference (see NVIDIA’s model_analyzer)
and identify model characteristics.

For a single-instance Triton Server at the EAF, the three
models included in this work (ParticleNet, ResNet50, and
a boosted decision tree) were benchmarked over a range
of concurrencies (the number of simultaneous randomly
generated requests from the perf_analyzer, in synchro-
nous call mode) and batch sizes. The values scanned over
can be found in Table 2. Figure 14 shows the results of
these benchmark tests, comparing the normalized latency,
inference time, and queue times between the 3 models.
The time to send data between the client and the Triton
server (network latency) is normalized by the number of
32-bit floating point (FP32) inputs to the model, including
the batch size. For example, a BDT with 25 FP32 inputs,
batch size of 500, and a total network latency of 14, 800�s ,
would have a normalized value of 1.184�s . This same nor-
malization is applied to the inference and queue times.

Table 2   Parameters for perf_
analyzer tests

Model Batch sizes Concurrencies Input shape Output shape

ParticleNet 128, 256, 512, 1024 1–4 8 * 100 2
ResNet50 32, 64, 128, 256 1–4 3 * 224 * 224 1000
BDT 10K, 40K, 160K, 640K, 2.56M 1–4 20 2

Fig. 14   The network latency (left), inference time (middle) and queue
time (right) normalized to the number of (FP32) inputs to the model,
accounting for batch size. The number of worker threads is how
many parallel requests (concurrency) the perf_analyzer on the client
machine synchronously sends to the server. The ratios show the frac-

tion of time attributed to each time measure (network latency, infer-
ence time, or queue time, respectively) to the total request time. The
size of the marker corresponds to the batch size, via normalization of
the batch size minima and maxima across models

Computing and Software for Big Science (2024) 8:14 	 Page 13 of 14  14

Each plot also contains the ratio of the respective non-
normalized time to the total inference request time (i.e.,
the fraction of time which is attributable to the network
latency, inference time, or queue time, respectively). For
the ResNet50 and BDT models, the total request time is
dominated by the network latency. ParticleNet shows non-
negligible queue times as the number of worker threads
increases, and spends approximately half the time in infer-
ence. Models which are more compute-dominated, such
as ParticleNet, stand a greater chance of overcoming the
network latency overhead of the Inference-as-a-Service
model.

Acknowledgements  This work was performed with support of the U.S.
CMS Software and Computing Operations Program under the U.S.
CMS HL-LHC R &D Initiative. This work was partially supported by
Fermilab operated by Fermi Research Alliance, LLC under Contract
No. DE-AC02-07CH11359 with the Department of Energy, and by
the National Science Foundation under grant ACI-1450377 and Coop-
erative Agreement PHY-1120138. Additional support came from the
Department of Energy DE-SC0010005 grant.

Author Contributions  All authors agree with the following contribu-
tions; study concept and design was done by C.S., L.G., B.H., N.M.,
A.P., K.P., K.U., data collection was done by C.S. and N.M., analysis
and reinterpretation of results was done by C.S., N.M., K.U., K.S.,
L.G., B.H., and draft manuscript preparation was done by C.S., N.M.,
B.H., L.G. All authors have reviewed the results and approved the final
version of the manuscript.

Data Availability  No datasets were generated or analyzed during the
current study.

Declarations 

Competing Interests  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Albertsson K, Altoe P, Anderson D et al (2018) Machine learn-
ing in high energy physics community white paper. J Phys Conf
Ser 1085(2):022008. https://​doi.​org/​10.​1088/​1742-​6596/​1085/2/​
022008

	 2.	 Guest D, Cranmer K, Whiteson D (2018) Deep learning and its
application to LHC physics. Ann Rev Nucl Part Sci 68(1):161–
181. https://​doi.​org/​10.​1146/​annur​ev-​nucl-​101917-​021019

	 3.	 Buber E, Diri B (2018) Performance analysis and CPU vs GPU
comparison for deep learning. Int Conf Control Eng Inf Technol
Proc. https://​doi.​org/​10.​1109/​CEIT.​2018.​87519​30

	 4.	 Wang Y, Wei G-Y, Brooks D (2019) Benchmarking TPU, GPU,
and CPU platforms for deep learning. arXiv:​1907.​10701 [cs.LG]

	 5.	 Baker M, Fox GC, Yau HW (1995) Cluster computing review.
Northeast Parallel Architecture Center. 33

	 6.	 Bloch I (2008) The LHC physics center. Nucl Phys B Proc Suppl
177–178:261–262. https://​doi.​org/​10.​1016/j.​nuclp​hysbps.​2007.​
11.​121

	 7.	 ATLAS Collaboration (2008) The ATLAS experiment at the
CERN large hadron collider. JINST 3:08003. https://​doi.​org/​
10.​1088/​1748-​0221/3/​08/​S08003

	 8.	 CMS Collaboration (2008) The CMS experiment at the CERN
LHC. JINST 3:08004. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​
S08004

	 9.	 Marinescu DC (2023) Chapter 3-parallel processing and distrib-
uted computing. In: Cloud computing, 3rd edn. Morgan Kauf-
mann, Burlington, p 41–94. https://​doi.​org/​10.​1016/​B978-0-​32-​
385277-​7.​00010-5

	10.	 NVIDIA Corporation. Triton inference server: an optimized
cloud and edge inferencing solution. https://​github.​com/​triton-​
infer​ence-​server. Accessed 8 Dec 2023

	11.	 Paszke A, Gross S, Massa F et al (2019) PyTorch: an imperative
style, high-performance deep learning library. In: Advances in
Neural Information Processing Systems, vol 32. Curran Asso-
ciates Inc., Red Hook, p 8024–8035. http://​papers.​neuri​ps.​cc/​
paper/​9015-​pytor​ch-​an-​imper​ative-​style-​high-​perfo​rmance-​
deep-​learn​ing-​libra​ry.​pdf. Accessed 8 Dec 2023

	12.	 Abadi M, Agarwal A, Barham P et al (2015) TensorFlow: large-
scale machine learning on heterogeneous systems. https://​www.​
tenso​rflow.​org/. Accessed 8 Dec 2023

	13.	 Inoue Y (2021) Queueing analysis of GPU-based inference
servers with dynamic batching: a closed-form characterization.
Perform Eval 147:102183. https://​doi.​org/​10.​1016/j.​peva.​2020.​
102183

	14.	 NVIDIA Corporation. Triton architecture. https://​docs.​nvidia.​
com/​deepl​earni​ng/​triton-​infer​ence-​server/​user-​guide/​docs/​user_​
guide/​archi​tectu​re.​html. Accessed 8 Dec 2023

	15.	 OKD. The community distribution of Kubernetes that powers Red
Hat OpenShift. https://​www.​okd.​io. Accessed 8 Dec 2023

	16.	 Red Hat OpenShift. https://​www.​redhat.​com/​en/​techn​ologi​es/​
cloud-​compu​ting/​opens​hift. Accessed 8 Dec 2023

	17.	 kubernetes. https://​kuber​netes.​io. Accessed 8 Dec 2023
	18.	 HTCondor Team (2005) Distributed computing in practice: the

Condor experience. Concurr Comput Pract Exp 17(2–4):323–356
	19.	 CRAB Server. https://​github.​com/​dmwm/​CRABS​erver. Accessed

8 Dec 2023
	20.	 Dask. https://​github.​com/​dask/​dask. Accessed 8 Dec 2023
	21.	 MinIO. High performance object storage for AI. https://​min.​io.

Accessed 8 Dec 2023
	22.	 gRPC, a high performance, open source universal RPC frame-

work. https://​grpc.​io. Accessed 8 Dec 2023
	23.	 HAProxy. The reliable high performance TCP/HTTP load bal-

ancer. https://​www.​hapro​xy.​org. Accessed 8 Dec 2023
	24.	 nginx. https://​nginx.​org/​en. Accessed 8 Dec 2023
	25.	 Prometheus monitoring system & time series database. https://​

prome​theus.​io. Accessed 8 Dec 2023
	26.	 Grafana Labs. https://​grafa​na.​com. Accessed 8 Dec 2023
	27.	 Qu H, Gouskos L (2020) ParticleNet: jet tagging via particle

clouds. Phys Rev D 101(5):056019. https://​doi.​org/​10.​1103/​PhysR​
evD.​101.​056019. arXiv:​1902.​08570 [hep-ph]

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1742-6596/1085/2/022008
https://doi.org/10.1088/1742-6596/1085/2/022008
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1109/CEIT.2018.8751930
http://arxiv.org/abs/1907.10701
https://doi.org/10.1016/j.nuclphysbps.2007.11.121
https://doi.org/10.1016/j.nuclphysbps.2007.11.121
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1016/B978-0-32-385277-7.00010-5
https://doi.org/10.1016/B978-0-32-385277-7.00010-5
https://github.com/triton-inference-server
https://github.com/triton-inference-server
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1016/j.peva.2020.102183
https://doi.org/10.1016/j.peva.2020.102183
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/architecture.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/architecture.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/architecture.html
https://www.okd.io
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://kubernetes.io
https://github.com/dmwm/CRABServer
https://github.com/dask/dask
https://min.io
https://grpc.io
https://www.haproxy.org
https://nginx.org/en
https://prometheus.io
https://prometheus.io
https://grafana.com
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
http://arxiv.org/abs/1902.08570

	 Computing and Software for Big Science (2024) 8:14 14   Page 14 of 14

	28.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning
for image recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), p 770–778. https://​doi.​
org/​10.​1109/​CVPR.​2016.​90

	29.	 Canziani A, Paszke A, Culurciello E (2017) An analysis of deep
neural network models for practical applications. arXiv:​1605.​
07678 [cs.CV]

	30.	 Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting
system. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16.
ACM, San Francisco. https://​doi.​org/​10.​1145/​29396​72.​29397​85

	31.	 Rankin DS et al (2020) FPGAs-as-a-service toolkit (FaaST).
In: 2020 IEEE/ACM International Workshop on Heterogeneous

High-performance Reconfigurable Computing (H2RC), p 38–47.
https://​doi.​org/​10.​1109/​H2RC5​1942.​2020.​00010

	32.	 Kubernetes. Horizontal pod autoscaling. https://​kuber​netes.​io/​
docs/​tasks/​run-​appli​cation/​horiz​ontal-​pod-​autos​cale/. Accessed
8 Dec 2023

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/H2RC51942.2020.00010
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

	Optimizing High-Throughput Inference on Graph Neural Networks at Shared Computing Facilities with the NVIDIA Triton Inference Server
	Abstract
	Introduction
	Background
	Shared Computing Facilities
	Common Machine Learning Processors
	NVIDIA Triton Inference Server

	Fermilab Triton Server Application
	Computing Facility Statistics
	Typical User Workflow
	Triton Server Implementation
	Parameter Optimization

	Benchmarking Tests
	Timing Comparison
	Increasing Workers
	Multi-model Scaling

	Limitations
	Conclusion
	Appendix A: Triton Server Parameters
	Metric Collection and Analysis Parameters
	Horizontal Pod Autoscaling Parameters

	Appendix B: ParticleNet Demo Model Parameters
	Appendix C: Nvidia Performance Analyzer
	Acknowledgements
	References

