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Abstract
With machine learning applications now spanning a variety of computational tasks, multi-user shared computing facilities are 
devoting a rapidly increasing proportion of their resources to such algorithms. Graph neural networks (GNNs), for example, 
have provided astounding improvements in extracting complex signatures from data and are now widely used in a variety of 
applications, such as particle jet classification in high energy physics (HEP). However, GNNs also come with an enormous 
computational penalty that requires the use of GPUs to maintain reasonable throughput. At shared computing facilities, such 
as those used by physicists at Fermi National Accelerator Laboratory (Fermilab), methodical resource allocation and high 
throughput at the many-user scale are key to ensuring that resources are being used as efficiently as possible. These facilities, 
however, primarily provide CPU-only nodes, which proves detrimental to time-to-insight and computational throughput for 
workflows that include machine learning inference. In this work, we describe how a shared computing facility can use the 
NVIDIA Triton Inference Server to optimize its resource allocation and computing structure, recovering high throughput 
while scaling out to multiple users by massively parallelizing their machine learning inference. To demonstrate the effective-
ness of this system in a realistic multi-user environment, we use the Fermilab Elastic Analysis Facility augmented with the 
Triton Inference Server to provide scalable and high-throughput access to a HEP-specific GNN and report on the outcome.

Keywords  Machine learning · Inference-as-a-service · Particle physics · Distributed computing · Heterogeneous 
computing · Graph neural network

Introduction

Machine learning (ML) is a continually growing field, gain-
ing traction across disciplines as new applications are found 
and tested. In high energy physics (HEP), for example, ML 
frequently outperforms traditional algorithms, leading to 

adoption for a wide variety of tasks, now encompassing 
the reconstruction and classification of physics objects and 
events recorded by particle detectors such as those at the 
Large Hadron Collider (LHC) [1, 2]. The most powerful 
ML techniques, such as graph neural networks (GNNs), are 
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more complex and correspondingly require more computing 
power and time [3, 4].

Computing power can be expensive and is not readily 
available to everyone. Therefore, many turn towards shared 
computing facilities that give users access to otherwise 
unaffordable computational resources [5]. In general, these 
facilities provide a variety of different platforms and pro-
cessors to users, such as CPUs and GPUs, but tend to be 
optimized for conventional tasks requiring minimal com-
putational power per user. Facilities like the LHC Physics 
Center [6] at Fermi National Accelerator Laboratory (Fermi-
lab), which serves Large Hadron Collider (LHC) physicists 
from the CMS experiment, provide resources to hundreds 
of HEP researchers per year, but now struggle to meet com-
putational demands efficiently because of growing machine 
learning enthusiasm.

This work aims to reconfigure shared computing facili-
ties to allow for more efficient machine learning inference 
from their numerous users. In Sect. "Fermilab Triton Server 
Application", we use the Fermilab shared facilities to show 
how an NVIDIA Triton Inference Server can be deployed 
and used to optimize machine learning inference when 
scaled to multiple users running parallel computing jobs. 
Section "Benchmarking Tests" then shows the computational 
gain and the effect of optimizing such a configuration at 
Fermilab. All results are specific to the Fermilab facility, but 
the tests and trends are reproducible by all similar multi-user 
facilities and are anticipated to show similar results.

Background

In this section, we define shared computing facilities and 
distinguish the different machine learning processors that are 
typically made available to users. We then briefly discuss the 
NVIDIA Triton Inference Server and how it interacts with 
the different processors.

Shared Computing Facilities

Computing facilities are widely used around the world to 
share computing resources among users [5]. As computa-
tional tasks become more complex and computationally 
expensive, shared facilities hold great value by allowing 
users to access powerful machines that are expensive to 
own individually. A few companies offer services that give 
the public access to their computing clusters for a fee, such 
as Microsoft Azure, Amazon Web Services, Google Cloud 
Platform, and IBM Cloud. Other companies, universities, 
research collaborations, and federal laboratories maintain 
private computing facilities to enable their researchers and 
employees to perform cutting-edge computations with a 

scope far outstripping the resources that can be dedicated 
to typical individuals.

Within HEP, researchers need the capability to process 
data in the terabyte (TB) to petabyte (PB) range, which may 
represent the sum of collected information for billions of 
particle physics collisions or years of continuous data collec-
tion. Subsets and variations of the data analysis processing 
may be repeated thousands of times each year. For the LHC 
experiments [7, 8], data processing is typically facilitated by 
large CPU-centric computing clusters like the LHC Physics 
Center (LPC) [6].

Common Machine Learning Processors

Revolutionary advancements in the past decade have ena-
bled machine learning to become a ubiquitous feature in 
modern research and commercial environments. As the field 
continues to develop, many of the resulting algorithms take 
increasingly larger proportions of the available computing 
power and runtime. GNNs, notable for their ability to pro-
cess irregularly structured graph-like data, are an example of 
an ML model that can be rather complex and consequently 
poses a computational burden when processing large sets 
of data. GNNs also represent a transformative paradigm 
shift for HEP, which naturally deals with events contain-
ing diverse and irregularly shaped inputs, often without an 
intrinsic ordering. Until their advent, HEP data needed to 
be heavily pre-processed for ML models having regular 
input shapes, with significant feature engineering involved, 
to attain high performance; GNNs have enabled similar or 
better performance with fewer input features, which is very 
desirable for HEP data. It is imperative for facilities like 
those employed in HEP to evolve and adapt to accommo-
date multiple users running complex machine learning algo-
rithms, in order to avoid decreased computational efficiency 
and increased costs to researchers both in terms of money 
and time.

The two most common processing hardware classes 
seen at shared computing facilities, the CPU and GPU, 
have different trade-offs for running machine learning 
algorithms. CPUs can be faster in data transfer and stor-
age, with better branch prediction and shorter pipelines, 
all of which are suited to general-purpose workflows. 
However, they are limited in parallelism and therefore 
computational throughput. Commercial GPUs, being 
designed for highly parallel paradigms like single instruc-
tion multiple data (SIMD) workloads [9], are particularly 
well-suited to accelerating ML training and inference [3]. 
By trading the more complex branch-prediction hardware 
and low pipeline latencies of CPUs for more vectorized 
compute capability, these devices gain considerable 
advantage in total FLOPS and compute/watt. GPUs are 
more expensive than CPUs (an individual NVIDIA H100 
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costs around $35,000, whereas a 32-core AMD EPYC 
7543 is approximately $2350 in 2023), but have O(10) 
better performance per watt, which closes the cost gap. In 
combination with lower general-purpose utility and need 
for specialized programming paradigms and code, GPUs 
are less frequently employed in HEP computing centers. 
Multi-user computing facilities are obliged to allocate 
such expensive resources efficiently for the increasing 
fraction of researchers using ML techniques.

A concept frequently considered in HEP is the time-to-
insight, which is the amount of time it takes for a new idea 
to be proposed, implemented, validated, and analyzed on 
TB to PB data quantities. Being able to provide a short, 
large burst of resources to an analysis has significant ben-
efits to users. However, while minimizing analysis latency 
is paramount, it must be balanced with achieving high 
computational efficiency in shared facilities. The NVIDIA 
Triton Inference Server [10] supports both of these goals 
when paired with GPUs to augment multi-user computing 
facilities.

NVIDIA Triton Inference Server

One way to minimize cost while providing high burst 
capability is to provide GPUs as centralized resources for 
offloading ML computations, while general-purpose calcu-
lations are distributed across CPU-only servers. The GPUs 
are then accessed on-demand, with usage requests satisfied 
on the order of seconds, rather than minutes or hours, as is 
typical when requesting dedicated GPUs at HEP comput-
ing clusters. This paradigm, known as Inference-as-a-Ser-
vice (IaaS), can be accomplished using the NVIDIA Triton 
Inference Server [10], which is open-source software that 
allows users to send inference requests from any frame-
work to any CPU- or GPU-based platform. With this tool, 
shared computing facility users can run all of their code on 
CPUs except for the ML inference, which will take place 
on a GPU. A Triton server can simultaneously handle ML 
inference requests from multiple users, for multiple mod-
els, using multiple ML frameworks such as PyTorch and 
TensorFlow [11, 12].

With the Triton server set up on a cluster of GPUs, mul-
tiple models can be accessed in a device-agnostic way. All 
server instances connect to an object store where ML mod-
els are uploaded, and any server can dynamically load any 
model that a client requests. Additionally, dynamic batching 
can concatenate inference requests with sub-optimal batch 
sizes, perform the inference with near-peak efficiency by 
filling the GPU registers, then split and return the results to 
separate clients [13]. An individual client is not constrained 
by how many models can fit into device memory locally, and 
so may address dozens of models in fast succession, taking 

advantage of a one-to-many client-to-server connection via 
one unified interface [14].

Fermilab Triton Server Application

In this section, we discuss examples of shared computing 
facilities at Fermilab and how the NVIDIA Triton Infer-
ence Server is deployed.

Computing Facility Statistics

Fermilab is a national laboratory in the United States 
which specializes in particle physics research. It is the host 
laboratory of the US CMS Collaboration, which studies 
the fundamental particles of the universe using the CMS 
detector located at CERN in Geneva, Switzerland [8]. As 
such, Fermilab has several computing clusters accessible 
to US CMS researchers for all their computing needs.

Two shared computing facilities at Fermilab used in 
this work are the LHC Physics Center (LPC) and the Elas-
tic Analysis Facility (EAF). The LPC is reserved for US 
CMS-affiliated researchers and has 240 cores available for 
interactive use (via 60 virtual machines) and another 4500 
cores for batch submission. Each LPC batch node has a 
10 Gb/s ethernet connection. The LPC currently has hun-
dreds of users and is predominantly used for data analy-
sis. The EAF is also designed for physics analysis, but is 
accessible to any Fermilab affiliate, intended to provide 
industry-standard data science frameworks and toolkits for 
low-latency analyses. It is built on the OKD [15] frame-
work (the community-supported distribution of Red Hat 
OpenShift [16]), which provides scalable, reliable, multi-
tenant Kubernetes [17]. The EAF consists of 12 machines 
with 286 CPU cores and 1643 GiB of memory, along with 
8 NVIDIA A100 80 GB GPUs. It can also submit large 
workloads to the LPC batch system.

Typical User Workflow

Users at the LPC and EAF typically use these computing 
facilities for data analysis. Upon connecting to one of these 
facilities, the user will be assigned to a node with access 
to communal software and storage areas. The collaborator 
then processes things in two ways: either locally on the 
login CPU node, or by distributing units of work to multi-
ple CPUs/GPUs through a job scheduler. Figure 1 shows 
this typical user workflow as a schematic.

Physics analyses generally entail running the same code 
over billions of physics events. The analysis code is struc-
tured for immense parallel processing over the many data 
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files storing all of these events. Therefore, users generally 
package a copy of their code to send to each CPU/GPU 
along with different subsets of the data to analyze so that 
total processing time is minimized. There are a number 
of tools that are used to scale the code out within large 
computing clusters, such as HTCondor [18], CRAB3 [19], 
and Dask [20].

Machine learning algorithms are becoming more com-
monly used by physics data analysts for a variety of tasks, 
such as event reconstruction and object classification [1]. 
When running analysis code on CPUs, machine learning 
inference generally takes up a significant amount of the 
full processing time, depending on the model. Utilizing 
GPUs to process the entire analysis would speed up the 
inference time, but is not efficient as significant portions of 
analysis code are not adapted for GPU usage. Optimizing 
this efficiency is imperative when the demand for GPUs 

exceeds what is available, as is the case in many comput-
ing facilities.

Triton Server Implementation

Instead of running uniquely on a CPU or GPU, the Triton 
server allows these two processors to work together. GPU 
resources are allocated to the server, which uniquely iden-
tifies each available model and dynamically loads needed 
models so that CPU clients can communicate inference 
requests. The researchers then send copies of their code to 
CPUs that compute everything locally except for the ML 
inference, which is processed by the GPUs on the Triton 
server. This implementation allows for fast GPU ML infer-
ence shared among multiple users.

A diagram of the current implementation is shown in 
Fig. 2. It includes two inference machines, each with 4 

Fig. 1   A schematic of a typical 
user workflow at a shared multi-
user computing facility. This 
example is based on the LPC 
facility

Fig. 2   The Triton server implementation at the EAF showing the path of an ML inference request as it is created by the user and processed by 
the servers



Computing and Software for Big Science            (2024) 8:14 	 Page 5 of 14     14 

NVIDIA A100 80 GB GPUs and 2 AMD Epyc 7543 32-core 
CPUs. The Ampere architecture’s Multi-Instance GPU 
(MIG) capability is utilized to partition the GPU resources 
into multiple virtualized resources, and Triton Inference 
Server instances are deployed on MIG slices with 20 GB 
of RAM and 14 Streaming Multiprocessor (SM) cores. In 
Sect. "Multi-model Scaling", we also deploy MIG slices 
with 40 GB of RAM and 28 SM cores.

The A100 architecture has 1935 GB/s of bandwidth to 
the High Bandwidth Memory attached to the die, and 6912 
CUDA cores, providing up to 19.5 TFLOPS of compute on 
FP32 data and 9.7 TFLOPS for double precision FP64. Each 
MIG slice has dedicated L2 caches, DRAM bandwidth, and 
memory controller allocations, helping ensure consistent 
performance regardless of the usage of neighboring MIG 
slices. Each Triton server periodically polls a MinIO [21] 
object store where all the models are stored.

Inference requests originate from worker nodes on the 
LPC batch system. Users send requests via TLS-wrapped 
gRPC [22] to a haproxy [23] service built into OKD (not 
pictured), which are then immediately passed through to an 
nginx [24] service. The nginx service unwraps the gRPC 
request and sends it to a Triton Inference Server, using 
Kubernetes load-balancing. The Triton Inference service is 
configured to automatically scale up and down the number 
of server instances based on the average queue time for an 
inference request (called “auto-scaling”). Each inference 
machine is connected via 100 Gbps ethernet; however, the 
nginx and haproxy servers are only connected to the fabric 
of the LPC batch system at 100 Gbps. This connection could 
be a bottleneck when numerous LPC batch workers are mak-
ing inference requests.

The Prometheus open-source monitoring system [25] 
built into OKD is used to collect inference metrics every 
15 s from the Triton application via Kubernetes podmoni-
tor objects, as well as machine characteristics such as core/
memory utilization. The metrics are written to a Grafana 
Mimir [26] server for long-term storage, accessed via the 
REST API, and displayed via Grafana monitoring. The met-
rics collected by Prometheus are used to analyze the perfor-
mance of the system in Sect. "Benchmarking Tests".

Parameter Optimization

Multiple free parameters must be chosen when deploying 
the Triton server, which affects how quickly and efficiently 
models can be processed given the resources allocated. The 
parameters associated with the EAF Triton implementation 
mentioned above are all based on a standard GNN model 
used frequently for HEP applications, ParticleNet [27]. The 
ParticleNet GNN applies dynamic graph convolutional neu-
ral networks and edge convolution techniques to variable-
dimensioned, unordered “point cloud” data. This model 

(exact model parameters given in Appendix B) will be used 
as the demonstration model in Sect. "Benchmarking Tests" 
and is a fair representation of the ML models being used in 
HEP today.

The size of the MIG slice (20 GB) for a server instance 
was chosen based on the RAM required to execute infer-
ence requests on the ParticleNet model. Section "Multi-
model Scaling" will discuss how performance changes as 
this parameter varies.

The queue time per inference request is sampled every 
15 s. If the average queue time exceeds 400 ms for four 
consecutive samples and it has been at least 3 min since 
the last scale up, an additional server is deployed. Con-
versely, if the average queue time is less than 400 ms for 
40 consecutive samples and it has been at least 1 min since 
the last scale down, a server is shut down. These settings 
are collectively referred to as Scaling Parameters 2 (SP2). 
The pre-optimized scaling parameters (Scaling Parameters 
1, SP1) used a 100 ms threshold on the average over all 
models and different windows for scaling up and down. 
See Appendix A for more scaling parameter information.

Figure  3 depicts the throughput of the ParticleNet 
model at the EAF for SP1 and SP2. The naive expectation 
is linear scaling of the maxima as a function of instances. 
With pre-optimized parameters SP1, the servers are under-
utilized, with unused inference capacity the majority of 
time. Post-optimization gives the performance seen by 
SP2, demonstrating larger throughput and more consist-
ent scaling with respect to Triton instances, which better 
maximizes the per-GPU throughput with the ParticleNet 
model. This indicates the importance of proper parameter 
selection.

Fig. 3   The violin plots show the net inference rate (inferences/s) as a 
function of the active Triton instances for two different sets of scaling 
parameters. Each violin shows the minimum, maximum, and (through 
the width of the shaded band) the frequency of time samples (120 s 
long). For SP2, the server scaling skips from 8 to 10 instances as 
additional GPU resources became free
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Benchmarking Tests

In order to understand the benefits of setting up an NVIDIA 
Triton Inference Server at a shared computing facility, a few 
metrics are computed and analyzed. The timing and com-
putational efficiency for the setup described in Sect. "Fer-
milab Triton Server Application" are assessed. While all 
of the results shown in the subsections below are specific 
to the LPC and EAF Triton server setup at Fermilab, these 
tests can also be used as benchmarks for other Triton server 
deployments (code is publicly available at https://​github.​
com/​cgsav​ard/​triton_​multi​user_​bench​marks).

Timing Comparison

At the LPC, users typically run their ML models on the CPU 
nodes readily available to everyone. As discussed previously 
in Sect. "Common Machine Learning Processors", CPUs 
are not as efficient for machine learning inference as GPUs. 
The Triton server setup, which allows users to execute their 
inference on a GPU, therefore greatly reduces the overall 
computing time. For this test, we compared the processing 
time for inference on a local CPU instance of the ParticleNet 
model to a Triton instance of the model hosted on GPUs.

Figure 4 shows a significant speed-up of O(50) when 
processing 10,000 inputs (called “jets” for the ParticleNet 
model), motivating the use of the Triton server. The time 
elapsed starts when the full dataset is passed to the model 
and ends when all of the inference results are available, 
including data batching and pre-processing into the proper 
format for the selected model. Each data point on the plot 
represents the time elapsed (cumulative) after processing the 
indicated number of jets, with the batch size set to 1024. To 
minimize noise, which causes small timing fluctuations, the 
time elapsed is averaged over 10 trials for the local model 
and 100 trials for the Triton model. The fluctuations for the 
Triton model are larger than for the local model because of 

the network connection between the LPC CPUs and the EAF 
GPUs, which acts as an additional source of noise.

It is important to note that different machine learning 
models will achieve different speed-ups, or even slow-
downs, when using a Triton server for GPU inference. 
In Fig. 5, we can see a speed-up of O(6) for a ResNet50 
model [28, 29] when using the same Triton set up described 
in Sect. "Fermilab Triton Server Application". ResNet50 has 
approximately 12 times more parameters and 7 times more 
FLOPS than ParticleNet [27], as well as approximately 47 
times larger inputs. Thus, the inputs of ResNet50 are a lot 
larger relative to the size of the neural network in compari-
son with ParticleNet. This causes the input processing step 
of the Triton inference to be a much larger fraction of the 
total inference time, about 10% compared to < 1% . There-
fore, the speed-up for GPU inference is smaller, as the input 
processing is less efficient than inference computation on 
the GPU.

Figure 6 shows an example of a model that takes more 
time for inference on the Triton server GPUs than on the 
local CPUs. This model is a small boosted decision tree 

Fig. 4   Comparison of the time it takes to process batches of data 
using a local CPU model vs. a Triton model instance on a GPU for 
ParticleNet

Fig. 5   Comparison of the time it takes to process batches of data 
using a local CPU model vs. a Triton model instance on a GPU for 
ResNet50. 5000 inputs were processed in batches of 256. Results are 
averaged over 5 trials

Fig. 6   Comparison of the time it takes to process batches of data 
using a local CPU model vs. a Triton model instance on a GPU for 
the BDT. 10 M inputs were processed in batches of 10000. Results 
are averaged over 5 trials

https://github.com/cgsavard/triton_multiuser_benchmarks
https://github.com/cgsavard/triton_multiuser_benchmarks
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(BDT) with 20 input features and 100 trees, trained using 
XGBoost  [30]. BDTs are machine learning models that 
already run very efficiently on CPUs because the inference 
computation is dominated by simple logical operations. 
When using the Triton model, there is overhead that stems 
from data transfer and the packaging/unpackaging of the 
data. In this case, we see that the overhead from the Triton 
server masks any speed-up from accelerated GPU comput-
ing. Therefore, it is a bad choice to implement the BDT on 
the server, as it wastes the valuable GPU resources. Users of 
the server should always test their models to make sure that 
it is actually beneficial to use the Triton server. More tests 
comparing ParticleNet, ResNet50, and the boosted decision 
tree can be found in Appendix C.

Increasing Workers

Now, we examine how the Triton server performs as a user 
runs inference in parallel on multiple workers to speed up 
the total inference time. For this test, we spawn varying 
numbers of workers that make parallel inference requests 
and see how this affects the inference time with the Triton 
server auto-scaling (as described in Sect. "Triton Server 
Implementation").

The Triton instances as a function of the workers can be 
seen in Fig. 7. The increase in instances is steady, deter-
mined by the server scale-out rate and queue time thresh-
old, which then remains constant at 8 servers at around 28 
workers. As the GPUs on the EAF are a shared resource, 
no additional MIG slices were available to expand further. 
Additional MIG slices were freed by other users around the 
time the benchmark reached 70 workers, and two additional 
servers were spawned. Figure 7 shows how the resources can 

be reallocated for the Triton server efficiently as more GPUs 
become available.

Figure 8 shows how the auto-scaling affects the queue 
time of the requests as a function of the number of work-
ers. A new instance is spawned when the queue time per 
inference request surpasses the thresholds described in 
Sect. "Parameter Optimization". If the number of instances 
increases, there are more servers capable of processing 
requests and therefore the queue time decreases. When the 
maximum number of instances is reached, the queue will 
continually increase as more workers send requests and can 
only decrease when more resources become available to 
share the load. If the queue time becomes unmanageable 
because of GPU resource limitations, it may no longer be 
beneficial to spawn up more workers from the client side.

The throughput of the Triton server is defined as the rate 
at which inference requests are processed. As the number of 
Triton instances increases, more inference requests can be 
processed in parallel and therefore the throughput increases, 
as can be seen in Fig. 9. We may expect the throughput to 
remain constant so long as the number of servers stays the 
same, but we actually see a slight increase as more requests 
fill the queue. The throughput increases as a function of 
the number of workers because the queuing and processing 
pipeline becomes more efficient. As the number of instances 
increases, the processing pipeline stabilizes and the through-
put grows more steadily with increases in workers.

Multi‑model Scaling

In the previous subsection, we looked at the performance 
of an individual machine learning model using the Triton 
server for inference. In shared multi-user computing facili-
ties, we expect to have multiple models running inference 

Fig. 7   As the number of workers which make parallel requests to the 
Triton server increases, the number of Triton instances increases to 
parallelize the request processing

Fig. 8   The relationship between the number of workers and the queue 
time per inference requests, showing the effects of the Triton instance 
auto-scaling
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concurrently. When this occurs, the performance of a sin-
gle model (“demo model”) can change due to the additional 
stress put on the Triton server.

The Triton server loads every model on every server 
instance running by default. This means that the 20 GB MIG 
slice hosting an instance is split among the different models 
and therefore the throughput for a single model decreases. In 
order to test performance when inference occurs for different 
models at the same time, we created “background models”: 
copies of the demo ParticleNet model, but labeled in such 
a way that the server would treat them distinctly. Figure 10 
shows the relationship between the throughput of all models 
and throughput of a single model as a function of the number 
of background models for 20 and 40 GB slices.

The throughput of the individual models scale as 1/n 
when n models are perfectly sharing the GPU slice, as long 
as there is enough memory for each model to run in parallel. 
As the number of background models increases, however, 
the models begin to compete for the instance resources and 
the throughput decreases faster than 1/n. This degradation 
of performance can be due to models loading and unload-
ing on the server or models remaining idle until memory for 
inference is made available (called “thrashing”). Figure 10 
shows that this thrashing occurs after 2 models on a 20 GB 
slice and 5 models on a 40 GB, indicating that the demo 
model requires around 7 to 8 GB minimum in order to run 
inference efficiently.

Fig. 9   The throughput as a function of the number of workers in the full Triton server system (left) and a single server instance on average 
(right)

Fig. 10   The throughput for all models aggregated (left) and the demo 
model (right) as a function of the number of additional background 
models running in parallel with the demo model on a single Triton 

server. Perfect slice sharing leads to a 1/n decrease in throughput with 
the number of background models n. Each model has four workers 
sending inference requests in parallel
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Since all models are loaded onto each Triton instance by 
default, adding more instances does not fix the thrashing 
that occurs on a single instance. Instead, it is more efficient 
to make use of the multiple GPU slices available to pro-
cess each model on a unique instance. Figure 11 shows the 
difference in throughput when all models are sharing each 
instance versus each instance holding only one model.

The constant throughput of the demo model for uniquely 
assigned instances when other models are running in the 
background shows that processing performance of one 
model will not affect any other model at a multi-user facility 
as long as enough GPU resources are available. When GPU 
resources are constrained, the instances will have to begin 
splitting among the models carefully to avoid the thrashing 
seen in Fig. 10. Such model orchestration is not a feature of 
the current default Triton deployment and therefore must 
be implemented manually. NVIDIA’s Triton Management 
Service (TMS), part of their AI Enterprise product, adver-
tises that it “allocates models to individual GPUs/CPUs, and 
efficiently collocates models by frameworks”. Unfortunately, 
TMS is not currently available to test at the EAF.

Limitations

All results mentioned in Sect. "Benchmarking Tests" are 
specific to the Triton server implementation at Fermi-
lab described in Sect. "Fermilab Triton Server Applica-
tion". Other facilities may require a different configura-
tion based on the resources available and design of the 
facility. Similarly, the Triton server parameters optimized 
in Sect. "Parameter Optimization" are tuned on a model 

architecture frequently used in HEP research at the Fermi-
lab facility. These parameters were only optimized on one 
variant of the model architecture and may need re-tuning as 
the collection of models used in the multi-user computing 
facility change or when the Triton server is implemented at 
a new facility with different network and compute resources.

The benefits of this work, mainly the exploitation of 
GPUs for quick bursts of resources resulting in high infer-
ence throughput and fast turnaround, may be less obvious 
at a shared computing facility with fewer users or more 
GPUs. This work also does not explore implementations of 
inference-as-a-service on different coprocessor architectures 
such as Tensor Processing Units and FPGAs. These may pro-
vide complementary benefits through their performance [4, 
31], and are an interesting area for additional study and 
comparison.

These results do not study the potential impact of insuf-
ficient GPU resources in detail, leading to over-subscription 
and untenable latency for the pool of users, nor potential 
fallbacks in the event that the GPU resources become una-
vailable for long periods of time.

Conclusion

In this work, we explore the usage and optimization of 
NVIDIA Triton Inference Servers at a shared multi-user 
facility aimed at maximizing throughput when scaling com-
putational resources out to hundreds of users each paral-
lelizing computing jobs. The Fermilab computing facilities 
have these large-scale computing requirements and are used 

Fig. 11   The throughput for all models aggregated (left) and the demo 
model (right) as a function of the number of background models 
running in parallel with the demo model with Triton instance auto-
scaling. The distributions show differences in performance when each 

model is hosted on a unique instance versus the models sharing each 
instance. Each model has four workers sending inference requests in 
parallel to it
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to demonstrate the performance of model inference-as-a-
service under such intense conditions.

The timing comparisons shown in Sect. "Timing Compar-
ison" motivate using the Triton server to process inference 
requests on GPUs with a speed-up of ∼50 compared to CPU-
only processing for the ParticleNet model. Sections "Increas-
ing Workers" and "Multi-model Scaling" show how machine 
learning inference performance on the Triton server changes 
as parallel requests and active background models increase. 
Both of these results show that high throughput can be main-
tained as more stress is placed on the Triton service when 
the server GPU resources are divided efficiently among the 
models to maintain a reasonable queue time and minimize 
competition for resources.

As machine learning becomes more established and ubiq-
uitous in a variety of fields, it is more and more important to 
ensure that computing centers are capable of handling the 
increased load from machine learning inference. At shared 
computing facilities, resources must be allocated to users 
efficiently, and high throughput is important so that allocated 
resources can be freed up quickly for use by other users, and 
the time to insight can be minimized. Triton servers have 
been shown to efficiently allocate GPU resources for high-
throughput computing, making this work a leading example 
of how other multi-user computing facilities can alter their 
systems to optimize efficiency for new machine learning 
demands.

Appendix A: Triton Server Parameters

Several scaling parameters must be set to determine how 
the Triton server will create new instances, as discussed in 
Sect. "Parameter Optimization". The parameters are care-
fully tuned to ensure that the instances are scaling out in a 
stable and efficient manner, as shown in Fig. 3. These param-
eters will be described below, along with a brief explanation 
of how we chose the parameters for the FNAL Triton server 
implementation.

Each parameter is set uniformly for all models running on 
the server. These are not configurable on a per-user basis, as 
any change will affect all users and models using the same 
Triton server deployment.

Metric Collection and Analysis Parameters

There are several time-related parameters for the inference 
server metrics.

•	 Metric collection interval: the default Triton server set-
tings are used, such that statistics for model inference are 
collected every 15 s

•	 Analysis time step: sets the interval between analyzed 
data points. For this analysis, the time step is set to the 
same value as the collection interval, 15 s.

•	 Data collection window: determines the typical num-
ber of metrics used as input for the calculation of rates, 
deltas, and averages. By selecting an interval of 30 s, 2 
consecutive measurements are used to compute an analy-
sis data point. When used in conjunction with a smaller 
analysis time step, the result is a sliding-window algo-
rithm. This is well suited to averages and queue times.

Some metrics, such as the integrated number of requests, 
must be computed on unique values, and in such a case, the 
analysis time step and data collection window should be 
set to the same value to avoid double-counting. Inference 
metrics, such as inference request rate and queue time, are 
calculated and used to determine the performance of the 
server and whether more instances should be launched or 
shut down.

Horizontal Pod Autoscaling Parameters

The Triton server is configured as a Horizontal Pod 
Autoscaler (HPA) in Kubernetes [32]. It is configured to 
scale based on an external metric, referred to as the “queue 
time”, which is the maximum of the approximate queue time 
per inference, averaged per model. This metric gives a meas-
ure of the latency for a single request to be processed in the 
inference queue. Our implementation chose a threshold of 
400 ms, which achieved a smooth scaling of MIG instances 
while maintaining a reasonable throughput of approximately 
5 inference requests per second per instance for the Parti-
cleNet demo model. Note that the throughput of a model 
is model-dependent and the threshold may need to be be 
adjusted to achieve reasonable throughput depending on the 
models being served.

Table 1   Scaling behavior parameters of Triton HPA

Parameter Value

scaleUp –
    stabilizationWindowSeconds 60
    selectPolicy Max
    policies.periodSeconds 180
    policies.type Pods
    policies.value 1

scaleDown  –
    stabilizationWindowSeconds 600
    selectPolicy Max
    policies.periodSeconds 60
    policies.type Pods
    policies.value 1
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The HPA scaling behavior parameters are summarized in 
Table 1. Given the relatively small amount of MIG instances 
available (10), policies.type and policies.value 
were set to “Pods” and “1”, respectively, to ensure that we 
would only start or stop a single server at a time.

The stabilization window for scale-up (scaleUp.sta-
bilizationWindowSeconds) was chosen to be one 
minute, or four measurements (15 s interval) collected by the 
server. This was found to be a long enough time to determine 
whether the queue time continuously passes the threshold, 
but short enough to scale up quickly if the number of infer-
ence requests increases suddenly.

There is a delay before the queue time responds to a new 
inference instance being spawned, as seen in Fig. 12. For this 
reason, the scaleUp.policies.periodSeconds 
should be larger than the stabilization window in order to 
allow the queue time to decrease and stabilize. We chose 
180 s, allowing the service two minutes for the queue time 
to stabilize and an additional minute to evaluate if an another 
instance should be spawned.

To avoid “flapping”—constantly starting and stopping 
instances as the queue time oscillates around the threshold—
we choose a longer stabilization window for scaling down 
(scaleDown.stabilizationWindowSeconds): 
600 s, or 40 consecutive measurements. This allows for 
long, uninterrupted processing time. Since HEP analyses 
tend to process millions of data events, the data are split 
into chunks, each generating batches of inference requests 
directed towards the Triton server. When processing begins 
for a chunk, a number of synchronous tasks unrelated to 
inference are performed which causes the number of infer-
ence requests to drop to zero until inference for that chunk 
finally begins, as shown in Fig. 13. We want to ensure that 
the stabilization window is long enough to avoid scaling 

down during this downtime, trading off a small inefficiency 
for a decrease in overall latency.

We set scaleDown.policies.periodSeconds 
to 60, ensuring that the servers can scale down rapidly once 
all inference requests have been processed, releasing the 
allocated resource so they can be used elsewhere. It is ben-
eficial for the scaleDown.policies.periodSec-
onds to be smaller than the stabilization window as we 
want stable, long processing times but should be quick to 
free resources once processing has finished.

Appendix B: ParticleNet Demo Model 
Parameters

The ParticleNet model used in this work to optimize the 
Triton server parameters and for benchmark testing is an 
exact replica of the model described in Ref. [27]. There 
are five input features, two coordinates, three EdgeConv 
Blocks using k = 16 nearest neighbors and C = (64, 64, 64) , 
(128, 128, 128), and (256, 256, 256) channels, and two fully 
connected layers with 256 nodes and 0.1 dropout rate to two 
nodes. A schematic of the exact structure can be found in 
Fig. 2a of Ref. [27].

This demo model was developed using the “Weaver” 
package (publicly available at https://​github.​com/​hqucms/​
weaver) and was left untrained with randomized weights 
as the application and performance of the model is unre-
lated to the performance of the Triton server implementation 
which we are studying. Similarly, the input data are pseudo-
randomized and arranged in the proper format required for 
inference. The structure of the demo model is based on a Fig. 12   When the Triton server starts up a new model instance, the 

queue time becomes noisy for a couple of collection intervals until 
stabilizing again

Fig. 13   Once a chunk of data is finished processing and while the 
next chunk is being pre-processed and undergoing non-inference 
computations, the server throughput drops

https://github.com/hqucms/weaver
https://github.com/hqucms/weaver
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ParticleNet model being used in an ongoing physics analysis 
at the LHC physics center at Fermilab [6].

The demo model was created using the PyTorch pack-
age [11] and converted using TorchScript to a version that 
can run on the Triton server. The Triton server reads in 
the converted file along with configuration files that tell 
the server how the model inputs and outputs are struc-
tured and how to partition the model on the server. In the 
configuration file, the following selections were made:

•	 Dynamic batching. The preferred batch size was set to 
1024, determined by testing different batch sizes and bal-
ancing the inference speed with memory required to run.

•	 Inputs and outputs. There are 3 different inputs for the 
ParticleNet: the features, coordinates, and mask. Each of 
these three, along with the output, was assigned FP32 
datatypes.

•	 Inference mode. This is set to True, letting the server 
know that the model is being used to run inference.

•	 Instance group. By default, a single model instance is 
created for each MIG spawned. This default is kept, as 
the demo model already requires 7–8 GB for inference 
and it is easier to test the Triton server implementation 
with a single model on each MIG. No specific GPU is 
targeted for the model as the GPUs available to the server 
are never fixed.

All other configurations are left to the default settings.

Appendix C: Nvidia Performance Analyzer

NVIDIA’s perf_analyzer is part of the suite of Triton tools, 
designed to generate test inference requests and aggregate 
metrics. The results may be analyzed to optimize model 
parameters for inference (see NVIDIA’s model_analyzer) 
and identify model characteristics.

For a single-instance Triton Server at the EAF, the three 
models included in this work (ParticleNet, ResNet50, and 
a boosted decision tree) were benchmarked over a range 
of concurrencies (the number of simultaneous randomly 
generated requests from the perf_analyzer, in synchro-
nous call mode) and batch sizes. The values scanned over 
can be found in Table 2. Figure 14 shows the results of 
these benchmark tests, comparing the normalized latency, 
inference time, and queue times between the 3 models. 
The time to send data between the client and the Triton 
server (network latency) is normalized by the number of 
32-bit floating point (FP32) inputs to the model, including 
the batch size. For example, a BDT with 25 FP32 inputs, 
batch size of 500, and a total network latency of 14, 800�s , 
would have a normalized value of 1.184�s . This same nor-
malization is applied to the inference and queue times. 

Table 2   Parameters for perf_
analyzer tests

Model Batch sizes Concurrencies Input shape Output shape

ParticleNet 128, 256, 512, 1024 1–4 8 * 100 2
ResNet50 32, 64, 128, 256 1–4 3 * 224 * 224 1000
BDT 10K, 40K, 160K, 640K, 2.56M 1–4 20 2

Fig. 14   The network latency (left), inference time (middle) and queue 
time (right) normalized to the number of (FP32) inputs to the model, 
accounting for batch size. The number of worker threads is how 
many parallel requests (concurrency) the perf_analyzer on the client 
machine synchronously sends to the server. The ratios show the frac-

tion of time attributed to each time measure (network latency, infer-
ence time, or queue time, respectively) to the total request time. The 
size of the marker corresponds to the batch size, via normalization of 
the batch size minima and maxima across models
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Each plot also contains the ratio of the respective non-
normalized time to the total inference request time (i.e., 
the fraction of time which is attributable to the network 
latency, inference time, or queue time, respectively). For 
the ResNet50 and BDT models, the total request time is 
dominated by the network latency. ParticleNet shows non-
negligible queue times as the number of worker threads 
increases, and spends approximately half the time in infer-
ence. Models which are more compute-dominated, such 
as ParticleNet, stand a greater chance of overcoming the 
network latency overhead of the Inference-as-a-Service 
model.
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