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Abstract—Curtailment control of inverter-based
variable generation sources –such as wind and solar–
is showing massive economic and operational advan-
tages for future ancillary service utility providers. In
this paper, we present a highly precise curtailment
control algorithm that uses a statistically optimized
hierarchy of controllers to perform effective curtailment
of power electronic inverters. Through a case study of
one-second resolution solar irradiance data, we have
compared the results of our hierarchical curtailment
controller design to that of a newly operational group-
ing control algorithm. These results show that our
hierarchical control algorithm is the more functional
and reliable method for a utility meeting load demands
and ancillary RegD signals with solar photovoltaics.
Additionally, hierarchical control has suitable appli-
cation to curtailed wind power plants, and presents
the possibility of “smart-grid" control at a broader,
systematic level.

Index Terms—IEEE, IEEEtran, journal, LATEX, pa-
per, template.

I. Introduction

NATIONAL power grids are vast and multifaceted
interconnections of an abundance of technology, but

traditional generation systems (such as coal, natural gas,
nuclear, and hydro power) and power grid operations have
remained stagnant compared to the innovation of other
technological industries. However, in recent years the call
for renewable and net-zero energy emissions has caused
a massive shift towards modernizing national power grids
with new power electronic generation devices (e.g. solar
photovoltaics, wind turbines, and battery storage) [1].

Already, some smaller-scale national power systems with
overwhelming amounts of renewable resources are ap-
proaching zero-emission power grids. For example, Iceland
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has essentially hit zero emissions using a combination of
geothermal and hydro power generation. Norway (97%),
Costa Rica (93%), and Canada (62%) are also quickly
approaching this 100% renewable and/or zero emission
goal [2]. Larger power systems without an overwhelming
amount of geothermal or hydro power resources are be-
ginning to integrate increasing amounts wind and solar
photovoltaics. According to the EIA’s most recent 2019
annual report, about 10% of the US’s energy comes from
wind and solar photovoltaics, and they have forecasted
that over 30% of generation will be wind and solar by 2050
[3]. Similarly, the National Renewable Energy Laboratory
(NREL) claims that the aggregation of wind, solar, hydro
power, nuclear, and geothermal energies may have the
2050 US power grid operating over 80% net-zero emission
generators [4].
Wind and solar are considered variable renewable energy

(VRE) sources because of the intermittent and unreliable
nature of wind speed and solar irradiance. As VRE be-
comes the dominant generation source to reduce grid emis-
sions, these national power systems will require “smart-
grid" technologies to control and mitigate instabilities that
are inherited from these technologies. Without smart-grid
technology, wind and solar are only allowed to participate
in day-ahead energy markets, yet the most reliable and eas-
ily controlled generation technologies (currently natural
gas and coal thermal plants) are tasked to compensate for
unpredictable losses and spikes in solar or wind generation
through real-time ancillary markets. Recent orders from
the US Federal Energy Regulatory Commission (such as
order 1000 [5] and 841 [6]) have opened the door for
utility-scale wind, solar, and storage to provide ancillary
services, so the next step is to develop the necessary smart
software and control algorithms to give VRE technologies
the functionality required to bid into real-time markets.
Some recent research publications have began setting

the stage for this technology to become a reality. Math-
ematical derivations and analysis into how smart-grid,
renewable technology can systematically provide ancil-
lary support in fast frequency response and over-voltage
support are laid out in [7], [8]. Other works such as [9]
assume the mathematical and software abilities to control
power electronic generation are complete, and focus on
the hardware blueprint of building an inverter-interfaced
controller. You can find related research with applications
to wind power plants in [10]–[15].
Control algorithms developed in [16]–[19] tackle the pin-



PREPRINT DRAFT, APRIL 23, 2021 2

nacle question of: How will a utility-scale solar plant decide
what precise control levels to operate each of its internal
components to satisfy a requested power level without
being thrown off by changing cloud coverage? Hybrid
control systems [19] that contain solar, diesel generators,
and/or battery storage are commonly practiced solutions
today, but they still require carbon emissions and fuel costs
from the operators. The method developed in [18] is an
internal forecasting method that would allow a solar power
plant to forecast cloud coverage and adjust accordingly.
This approach is intriguing, but comes with the inherent
error of probabilistic forecasting and does not provide
any direct algorithm that could be easily constructed into
an operational software. The real-time, grouping control
method developed in [16], [17] provides a control algorithm
that can react to changes in cloud coverage at second and
minute time resolutions. This is the algorithm that has
recently been integrated onto a 141MW Chilean power
plant, which is the first entirely solar power plant that
is able to bid entirely into ancillary markets.

In this paper, we have developed a hierarchical control
system and algorithm for utility-scale solar photovoltaic
power plant, and compared this algorithm to the grouping
control method recently implemented in Chile [16]. By
using a hierarchy of control layers, our algorithm has
the ability to simultaneously give specified control signals
to each individual inverter as well as analyze and make
decisions for the entire system of inverters. In combina-
tion with a statistically optimized controller layout, this
allows portions of a utility-scale solar array to dynamically
overcompensate for any parts of the array that are effected
by temporal cloud movements, which effectively allows the
power plant to accurately and reliably satisfy an ancillary
service control signal. To highlight the effectiveness of
this hierarchical approach, we show case-study simulations
using solar irradiance data from Oahu, Hawaii to com-
pare the controllablity of hierarchical control vs. group-
ing control [16]. The hierarchical nature of our proposed
algorithm allows for higher control precision, faster fre-
quency response and ancillary support, and can be easily
expanded to have multiple power plants across a power
grid autonomously working together for system-wide sta-
bility. Integrating this smart-grid technology into utility
scale wind, solar, and storage operations is necessary for
developing a reliable power grid that operates entirely on
renewable and zero-emission generation sources and will
coincidentally drop the price of electricity dramatically
[20] [21].

The contribution of this work is to develop a modular
control system for VRE, which has yet to be matured or
implemented at a large scale. By advancing the state of
the art mathematical software and algorithms for efficient
control of networked and modular control of solar power
plants, we are advancing the capabilities of smart-grid
technology to a stage closer to design and implementation.

The rest of this paper will proceed as follows: We begin
by introducing the fundamentals behind control of solar
photovoltaic power plants by defining key terms such

as curtailment control, headroom, and maximum power
point. Next, the mathematical formulation behind the
algorithm of grouping control is laid out, and we point out
the key “averaging" error that our hierarchical algorithm
is designed to eliminate. This leads to a thorough expla-
nation of the hierarchical control algorithm including a
general description of the layers of hierarchy, mathematical
formulation of the algorithms being processed within each
hierarchical layer, and some useful visuals of the final
product. Finally, we show simulation results of applying
and simulating our hierarchical design to a case study from
1-second resolution irradiance data from Oahu, Hawaii.
This allows our results to spell out exactly how effective
the proposed hierarchical method of control is in relation
to the existing grouping control.

II. Fundamentals of Curtailment Control and
Existing Technology

Curtailment control [22] will allow utility operators to
maintain a constant power output, meet load forecast
with precision, perform real-time ancillary adjustments
and support, or any combination of these while remaining
mostly unaffected by changing weather conditions or cloud
coverage. This section presents the fundamentals of solar
curtailment control and reviews the existing technology
that has been developed by The National Renewable En-
ergy Laboratory (NREL) for real-time curtailment control
method [16]. This technology relies on grouping solar
inverters by similar power potentials (similar solar avail-
ability) and making signaling operational efficiencies to
each group as a whole as illustrated in ??.

A. Curtailing from Maximum Power Point
Curtailing a generation plant means reducing its power

output to a specified fraction of its maximum power
potential (MPP). Figure 1 outlines how the ratio of current
(I) and voltage (V ) can be adjusted to control the inverter
output efficiency of a solar array. By initializing the op-
erational efficiency of the inverter to a fractional value
of it’s maximum potential, we have now given enough
headroom to ramp the inverter efficiency up and down in
order to counter-act any solar resource fluctuations and
variability at the power plant. This will allow a PV plant to
perform a combination of maintaining a flat power output
(regardless of changing cloud cover) and instantaneously
ramp generation power to meet ancillary service signals.
Adjusting generation headroom is performed by increasing
the voltage across the circuit. By increasing this voltage,
the ratio between current and voltage falls to a sub-
optimal level and the inverter power output is curtailed
from the MPP for the desired headroom [24].
MPP acts as a necessary starting point for curtailment

control methods to determine how much power needs to
be curtailed [25]. Once the desired power reduction is set,
the algorithm can then compute the efficiency at which it
will correspondingly run its inverter components.
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Fig. 1: IV Power curve showing relationships between
voltage, current, and MPP for an individual inverter.
Taken from [23].

B. Formulation of Grouping Control
The existing technology for solar curtailment is grouping

method developed at NREL [16] and its principle of
operation is to choose reference inverters to constantly
operate at MPP, without curtailment, to have real-time
understanding of MPP values. All other inverters, called
non-reference inverters, are grouped with a reference in-
verter that has similar solar availability. This subsection
reviews this technology as an algorithm and formalism.

Once reference inverters and their corresponding non-
reference inverter groups have been established for the
instant, [16]’s method computes the following series of
calculations to determine the desired final output of each
curtailed (non-reference) inverter.

The estimated power output capacity (P est
max) for each

group (i) is calculated by multiplying the number of
inverters associated in the group (Ninv,i) with the MPP
value (Pmpp,i) from the reference inverter.

P est
max =

Ngroups∑
i=1

Ninv,i · Pmpp,i (1)

Using this estimated power capacity (in Watts), the al-
gorithm then calculates the power (Pset,i) to reduce each
group to (in Watts) after curtailment (∆P ).

Pset,i = (1−∆P ) · P est
max,i (2)

Finally, the power for every curtailable inverter (non-
reference inverter) in each group (Pinv,i) is found by reduc-
ing curtailable inverters beyond the desired headroom level
to compensate for the reference inverter always operating
at MPP.

Pinv,i = Pset,i − Pmpp,i

Ninv − 1 (3)

A simple sanity check can be done by plugging in our
resulting curtailment from Equation 3 into Equation 4 for
the curtailed power output of the group (Pgroup,i).

Pgroup,i =Pmpp,i + (Ninv − 1) · Pinv,i

=Pmpp,i + Pset,i − Pmpp,i

=Pset,i

(4)

For more detail on this similarity grouping control method,
reference [16].

To evaluate the performance of this technology, we
implemented the algorithm described in [16] and simulated
a full day with the 17 irradinace field measurements across
a site in Hawaii, (the site is described in detail in Section
IV) under the simple case of maintaining a constant 20%
headroom (operating at 80%) in Figure 2.

Fig. 2: Simulation results of maintaining 20% headroom
for 1 partially cloudy day with grouping method.

In Figure 2, we immediately notice that there is a
substantial amount of error between the theoretical cur-
tailment performance, and the actual curtailment of our
Oahu solar array. Such error could lead to inaccurate op-
erations or problematic violations of physical constraints
that exist in the hardware of the system. The paper [16]
does explain that grouping the solar array with higher
resolution (adding more reference inverters operating at
MPP and thus reducing the range of curtailment) will
reduce the error in this algorithm enough to be opera-
tional. Nonetheless, the existence of this computational
error leaves room for improvement as seen in our results
of Figure 9.
The source of the error in the grouping control method

[16] comes from the fact that a solar panel cannot produce
more power than its solar availability will allow. By using
their grouping technique, all inverters of a group are
assumed to have the exact amount of generation potential
as their reference inverter, thus causing averaging errors.
Our proposed hierarchical control solves this issue through
dynamic interdependence amongst inverters.

III. Proposed Hierarchical Control Algorithm

A hierarchical control structure allows a system to be
coordinated by more than one decision-making center.
Necessary information is available to each controller at dif-
ferent time frames and at different rates. In the proposed
case of implementing hierarchical curtailment control for
solar photovoltaic power plants, multiple layers of deci-
sion making will ultimately allow un-shaded inverters to
communicate and help other shaded inverters that cannot
produce the desired curtailment value as exemplified in
Figure 3b.
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(a) Hardware layout of a hierarchical controller of power electronic inverters.

(b) “Unravelled" software layout with a signal process for the recursive algorithm of hierarchical control.

Fig. 3: Hierarchical control example with 6 inverter controllers, 3 supervisor controllers, and one central controller.

Figure 3a is a basic schematic of how the controller
hardware would be implemented on a system of 6 inverters.
Section 3.5 (Statistical Topology) further discusses why
the structure of control signals (in red and black) follow
independent paths from the power flow (in blue). Figure
3b focuses on the progression of logical decisions that the
computation of the algorithm will follow to solve for a
more accurate headroom request for each inverter.

The 3-layer hierarchical controller consists of an adap-
tive layer (central controller), supervisor layer (supervi-
sor controllers), and a direct control layer (inverter con-
trollers). Although, only three layers of control are used
in this paper, one large benefit of hierarchical control is
the mathematical simplicity in adding more supervisor
layers (e.g. a super-supervisor layer) in order to effectively
expand smart-grid control to a micro or macro sized
virtual power system.

The Direct Control Layer: This hierarchical control
setup extends all the way down to the the inverter level

for each photovoltaic array. The direct control layer is
the least central set of controllers, and is responsible
for directly curtailing the voltage and the power output
of each solar inverter. This layer initially computes the
estimated maximum power potential (MPP) of an inverter
and then determines if this MPP is above the requested
power output. If the inverter cannot produce the requested
power output, it will ask for “help" from its supervisor
controller as seen in Figure 3b.

The Supervisor Layer: The supervisor control layer
works as the “middle-man" of control. Supervisors first
survey the performance their “children" (corresponding
direct controllers). If any one of the children controllers
has been flagged for needing “help", then the supervisor
attempts to solve the missing amount of power generation
by finding another child or children to overcompensate
thier power production. If all the supervisor’s children
are operating at MPP and the branch is still under-
producing power, the supervisor signals to the above layer
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Fig. 4: General responsibilities for each hierarchical layer
of control.

(adaptive central controller) that it needs support from
other supervisor branches. Once the entire system has
found a working solution, the supervisor signals the final
curtailment requests down to each of its children.

The Adaptive Layer: The adaptive layer is at the top
of the control hierarchy. It consists of one centralized
controller that is only used to find solutions to under-
producing supervisor control branches. If a supervisor
branch is unable to produce enough power to satisfy the fi-
nal demand, the adaptive layer finds alternative supervisor
controllers that are reporting plenty of extra power poten-
tial within their branches. If system-wide MPP estimations
are accurate, all underproduction should be resolved after
reaching the adaptive layer. Final curtailment requests
then flow back down from the adaptive layer, to the
supervisor layer, to the direct controllers respectively as
seen in Figure 4.

The following sections serve as a formulaic explanation
of the chronological decision making followed by the hier-
archical curtailment control algorithm. The computation
is iterative and has been simulated to loop through this
process once every second, however it is likely that any
computational hardware could handle even higher itera-
tion frequencies.

A. Step 1: Estimate System MPP
For any curtailment control algorithm, the maximum

power penitential (MPP) must either be measured or ap-
proximated to determine a reference value for curtailment.
In this method, we re-compute the MPP of each inverter
after the previous iteration and use this value as the
MPP estimate for the current iteration. The algorithm
is continuously iterating at computational speeds much
faster than solar availability is changing, so there is very
little variation in MPP between iterations, which greatly
reduces the error in MPP tracking from grouping control

[16]. MPP tracking computations are handeled at the
direct control layer.

Formulation: To re-evaluate the MPP of an inverter (i)
after the previous iteration (P t−1

mpp,i), the algorithm must
take in the desired fractional curtailment level (αt−1

i ) and
final (after curtailment) inverter power output (P t−1

final,i)
of the previous iteration (t − 1) as arguments. Thus the
formula to estimate current MPP (P t

mpp,i) at iteration t is

P t
mpp,i = P t−1

mpp,i

=
P t−1

final,i

αt−1
i

.
(5)

The total system MPP is found by simply summing
across all N inverters.

P t
mpp,system =

N∑
i=1

P t
mpp,i (6)

B. Step 2: Compute Headroom for Controllers

Headroom is the difference between MPP and the op-
erational level of a solar inverter after curtailment. After
MPP is estimated, a uniform operational power output
is requested of all inverters. Then, the difference between
MPP and requested operational power (ie headroom) is
computed and assigned to each inverter and each super-
visor controller. This headroom value can be negative or
positive, which allows it to be used as a metric of “need
for assistance."

Formulation: The initial uniform power request to all
inverters (Prequest) is computed using the arguments of
desired system power output (Pdesired) and the number of
inverters (N).

Prequest = Pdesired

N
(7)

The available headroom (Hi) at an inverter (i) is the
difference between the inverter MPP value (Pmpp,i) from
equation 5 and the initial power request (Prequest).

Hi = Pmpp,i − Prequest (8)

Need of assistance for each inverter is binary:
Hi ≥ 0 −→No need of assistance
Hi < 0 −→In need of assistance

The headroom value of each supervisor (Hsup) is found
similarly by summing across Nchildren “child" inverters.

Hsup =
Nchildren∑

i=1
(Pmpp,i − Prequest) (9)

Need of assistance for each supervisor is binary:
Nchildren∑

i=1
Hi ≥ 0 −→No need of assistance

Nchildren∑
i=1

Hi < 0 −→In need of assistance
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C. Step 3: Solve & Reassign Curtailment Levels
By this stage, every controller should have a stored

value as their available headroom to indicate their need
for operational support. Starting at the supervisor level,
any controller(s) that needs help then notify the central
controller exactly how much support they need. Other
supervisor controllers with positive headroom values then
increase their power production assignment to compensate
for the negative magnitude of the struggling supervisor’s
headroom.

Once the power operation of each supervisor has been
assigned, the process is recursively called to assign individ-
ual power curtailment operation levels for every inverter
under each supervisor. Once this is complete, the algo-
rithm can settle on a final curtailment efficiency for each
inverter that will accurately achieve the desired power
plant output. The hardware of the system will adjust
inverter voltages accordingly.

Formulation: The amount of power (Phelp) that needs
to be overproduced is the cumulative sum of all headroom
magnitudes such that Hi < 0. As seen in Figure 3, the
algorithm then adjusts the desired production level of each
controller as long as it does not exceed MPP. Figure 4 is
the control logic used recursively at each level of control
throughout the hierarchical control algorithm to update
the operational level of the controller.

This process is followed throughout all levels of control
until equilibrium is met. Equilibrium is met when Hi ≥
0 for all i controllers. In the final state of this system,
it should be true that the desired system power output
(based on the estimated MPP) is exactly equal to the sum
of the final operation of each individual inverters (Pfinal,i).

The final step of the iteration is to solve for the curtail-
ment fractional efficiencies (αi) of each inverter i.

αi = Pfinal,i

Pmpp,i
(10)

This is used for the hardware to adjust voltage ratios, and
to begin the next iteration with equation 5.

P =
{
Pm ε ≥ 0
P ∗ ε < 0 (11)

D. Step 4: Repeat
Continuously repeat Steps 1-3 for the next iteration.

E. Step 0: Statistical Topology Optimization
An interesting aspect of the following case study in

Section 4, is the use of irradiance data to theoretically
optimize the power plant before building out the entire
system. Although the hierarchical control technique ap-
plies fantastically to already installed solar power plants,
the use of high resolution solar irradiance data for expan-
sion modelling may be a useful technique for future power
providers. This section outlines how the virtual signalling
network structure of our hierarchical control model as seen

in Figure 3 can be topologically optimized with sample
data.
The arrangement of all the controllers within a hier-

archical algorithms will greatly affect how “high up the
chain" inverters will have to ask for help. For example, geo-
graphically neighboring inverters will likely have very sim-
ilar solar fluctuation patterns because a passing cloud may
cover both of them simultaneously. A strong hierarchical
controller will chose virtual neighboring of controllers
that have uncorrelated –or (ideally) inversely correlated–
solar fluctuations. The term virtual neighboring is used to
suggest that the controllers are neighbors through the eyes
of the signalling hierarchy of the controller, but they not
physically neighboring as visualized in Figure 6. This will
make the borrowing process from Figure 3b much quicker
and less computationally expensive as most controllers will
find an equilibrium solution without needing to ask the
centralized controller on the adaptive layer.
In the following case study, we found that the best met-

ric to determine statistical correlation between all inverters
was to perform a basic statistical learning technique that
operates on a single year training set of 1 second irradiance
data. Using the training set, we were able to establish a
personalized n by n correlation matrix for the set of n
inverters in the area. Each inverter will have a per-unit
rating of their level of behavioral correlation to all the
other inverters at the plant. Each correlation coefficient C
is calculated by Pearson’s Linear Correlation Coefficient
where two time-series vectors X and Y are inputted to
the function:

C(X,Y ) =

t∑
i=1

(Xi −X)(Yi − Y )√
t∑

i=1
(Xi −X)2

t∑
i=1

(Yi − Y )2

(12)

This value of correlation (C) between two inverters, inv
and n, is placed into the n by n correlation matrix as seen
in Figure 5. Using the final statistical characterization of
the solar variation between power plant inverters through
from correlation matrix, hierarchical tiers with non-similar
or inversely correlated fluctuation patterns can be chosen
as virtual neighbors for optimal power output stability.

IV. Case Study Oahu, Hawaiian Airport
The control method developed in this project may apply

to any geographic setting with potential for lucrative solar
arrays. However, our simulation results were created by
applying our control algorithm to a SIMULINK controller
design that is simulated at the Oahu, Hawaii airport. The
data that we have available for this study has 1-second res-
olution irradiance measurements from 17 devices around
the airport. These irradiance meters measured starting at
5am and ending at 8pm, every day, April through October,
in both 2010 and 2011. In Figure 6, the layout of the
measured data is presented visually through a satellite
image with solar PV graphics marking the location of each
irradiance meter.
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Fig. 5: Correlation heat map for all 17 inverters for every hour of operation throughout the day. Blue signifies high
direct correlation, and red suggests inverse correlation. The blue diagonal is expected because each inverter should
have a correlation of 1 with itself.

A. Solar Irradiance Data to AC Power Formulation

Intuitively, the physical power output from any solar
array is dependent on the amount of solar irradiance that
the panels are exposed to. Using the PVLib python pack-
age from Sandia National Laboratories and “irradiance to
DC" and “DC to AC" classes within PVLib created by
the National Renewable Energy Lab [27], we were able to
convert our Oahu, Hawaii irradiance data into a time series
of potential AC power output from all 17 solar arrays. The
mathematical formulation behind these python classes is
as follows:

Pdc = Gpoaeff
Pdc0

1000(1 + γpdc(Tcell − Tref )) (13)

Equation 13 converts an irradiance value (Gpoaeff ) into
an equivalent DC wattage given the efficiency of the PV
panels (Pdc0

1000 ). It also includes the degradation of efficiency
(γpdc) over time that depends on the temperature sur-
rounding the panels, but for our theoretical and strictly
computational study, we have ignored all losses of panel
efficiency over time as this is not affected in the time

resolution of our interest.

η = ηnorm

ηref
(−0.0162ζ − 0.0059

ζ
+ 0.9858)

where ζ = Pdc

Pdc0
and Pdc0 = Pac0

ηnorm

(14)

In Equation 14, η denotes the AC power output, and
ηnorm (=0.96) and ηref (=0.9637) represent the nominal
and reference inverter efficiencies respectively. Plugging
the result from Equation 13 into Equation 14 will output
the theoretical AC power timeseries from each of the 17
locations around the Oahu airport.

V. Discussion and Results

The hierarchical control scheme that we have applied to
the 17 inverter case study in Figure 6, has been simulated
and assessed in its performances meeting a continuous load
demand as well as satisfying instantaneous ancillary RegD
signal requests. The need for this control system is high-
lighted in Figure 8, where the uncurtailed output of the
solar power plant has no regard for any real-time market

Pacific 
Ocean

Hawaii

Oahu

Fig. 6: Satellite image of the distribution of 17 solar irradiance measurement devices around an airport in Oahu,
Hawaii. Statistical controller neighboring is indicated by blue, green, and yellow indicators. [26]
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requests. Using this uncontrolled system to satisfy real-
time and ancillary generation needs would quickly result in
malfunctioning hardware, unreliable power, and blackouts
on the power grid. Since real-time and ancillary markets
require generation to have precise and reliable output,
this power plant will require either fossil fuel supporting
generation, energy storage, or the proposed smart control
capabilities to participate in ancillary markets.

Fig. 8: Solar and load profiles for this case study

In addition to a reduction in fuel-costs and harmful
emissions, Figure 8 shows the potential for this 17 inverter
solar power plant to satisfy load demand and maintain a
calculated headroom to satisfy RegD frequency response
requests simultaneously. The available headroom of this
power plant, after curtailing to a continuous load demand,
is shown as the area between the solar plant output (in
green) and the load demand (in blue). In this simulation
this Ancillary Potential added up to be 661MWh from
the day. Any unused ancillary potential from curtailment

could either be sent to nearby storage, or dissipated and
remain on standby as an operational reserve for ancillary
signals like RegD. On today’s grid it is common practice
for fossil fuelled operational reserves to remain unused
until they receive an RegD request, so it is likely that
solar power plants will start to participate similarly (not
always producing 100% of their potential energy) as we
march foreword towards an entirely renewable power sys-
tem. Without requiring storage to every utility-scale solar
power plant, this algorithm will help operators save on
storage investment costs.
Utilities in the ancillary service market make money

by satisfying RegD signals in real-time. Therefore, their
power producing equipment must be fast, responsive, and
controlled with precision. In the following results sections
we evaluate the performance of our hierarchical control
algorithm in contrast to an uncontrolled solar power plant
and the newly operational grouping control algorithm in
Chile [16].

A. Inverter Signal Communication
Before analyzing the final results of our simulations,

we quickly investigate the performance of the signalling
and communication within our hierarchical controller for
further concept validation. In Figure 7 we witness the
output signalling and return signalling of two inverter
controllers (on the direct control layer) that have been
chosen as virtual neighbors because of their asimilar MPP
fluctuations in the hourly statistical analysis from Figure
5.
On both ends of the time interval depicted in Figure

7a we see a reasonably flat maximum power point (MPP)
potential from both inveters, which suggests little to no

(a) Output Signal: Inverter MPP
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(b) Return Signal: Efficiency for Curtailment

Fig. 7: Communication signalling results focused on only two virtually neighboring inverters over a 3 minute window
of daily operation.
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cloud coverage. However, throughout the middle of the
time interval there is a clear cloud-coverage event where
the inverters’ MPP potentials are being impacted. The
MPP status is approximated as explained in equation
5, and is the signal output from the current control
layer (in this case the direct control layer) to the above
supervisor/central control layer. As the shading crosses
the power plant area, the need for help is triggered by the
MPP levels falling below the expected power generation
ability per inverter (black dashed line), which is the load
demand split evenly amongst all 17 inverters.

Figure 7b shows the returned signal –from the supervi-
sor/central layer to the current layer– that communicates
the curtailment level the controller should be operating
at. At the direct inverter control layer, this can be easily
translated into the operational efficiency (equation 10) the
controller sets its voltage-current ratio. Although other
inverters and groups within this hierarchical controller are
influencing the return signal to the two inverters shown
in Figure 7b, it is evident that our statistical correlation
is being put to use because the efficiencies appear to be
peaking at alternating times.

Through the lens of headroom signalling for individual
inverters, Figure 10 brings further insight into how the
communications between all inverters work together dur-
ing the cloudy and non-cloudy periods of our simulation.
The not cloudy time interval, where sunlight is available
to all inverters, Figure 10a shows how all the inverters
with positive headroom availability after meeting a load
demand curve. Alternatively, Figure 10b expresses the
headroom communication signalling when the system is
interfacing with cloud coverage. The negative headroom
values signify to higher control levels that the inverter is

(a) Not Cloudy

(b) Cloudy

Fig. 10: Communication signalling results focused on only
two virtually neighboring inverters over a 3 minute window
of daily operation.

in need of help from other inverters. Throughout this these
time domains, the need for requesting help by the second
would strongly improve the precision of power output.

(a) Grouping control (reenacted from [16] to satisfy load demand).

(b) Hierarchical Control

Fig. 9: Hierarchical control example with 6 inverter controllers, 3 supervisor controllers, and one central controller.
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With all 17 inverters and 3 supervisor controllers operat-
ing under similar signalling and communication, the power
output of the system should be able to precisely follow a
dynamic load demand curve while managing headroom for
ancillary potential.

B. Satisfying a Load Demand
The current solutions for utility operators to manage

the unreliability and intermittency of solar power include
hybrid power plants –solar arrays that are paired with
storage or highly responsive combustion engines– and
energy storage. Technologies that have the ability to ramp
up and down as fast as cloud coverage changes will be
costly, often have far higher carbon footprints, and degrade
energy storage systems quickly. Reducing the amount of
fluctuations in the red line is what will allow utilities
to operate solar power plants without hybrid support
systems, which effectively will allow the power grid to
depend less on ramp-able fossil fuel technologies like coal
and natural gas.

Figure 9 shows the effectiveness of both grouping control
and hierarchical control in curtailing a solar power plant
to meet a dynamic load demand. Table I quantifies the
stability of hierarchical control over grouping control in
the simulation.

TABLE I: Summary of Ancillary Service (RegD) Simula-
tions

Control Scheme Mileage Regulation
Grouping Control 2.45 MW 80.89 MWh
Hierarchical Control 0.14 MW 4.35 MWh

Grouping control is effective in many ways (it was even
installed onto a real utility-scale plant in Chile), but the
algorithmic error does not allow the system to become
entirely independent of external power sources to meet its
load demand. In Table I, it is clear that hierarchical control
has resulted in far less mileage and regulation throughout
the simulation. Mileage is a metric used to measure the
instantaneous ramping that the solar power plant would
require of supportive generation and/or energy storage.
Regulation is the total amount of energy that was supplied
from generation sources other than the solar power plant
in order to maintain the load demand. These metrics
confirm to hierarchical control being around 18x more
stable than grouping control. Both mileage and regulation
are indicators to unstable that enhances the expensive
fuel-costs and carbon emissions that utility operators are
looking to eliminate.

C. Dispatching by RegD Signal
The ability for a utility-scale solar power plant to par-

ticipate in the ancillary service market by responding to
RegD signalling is the more economically incentivizing side
of developing a functional curtailment control algorithm.
In February 2021, prices in ERCOT’s ancillary service
markets jumped from around $8/MWh to $9,000/MWh

during a large system blackout. As we aspire to construct
net-zero emission power grids in the near future, it will
be profitable for both large power grid operators, as well
as smaller private generation oweners, to use solar power
plants to respond to RegD signals.
As previously mentioned, the simulated power plant

could either be used entirely as an operational reserve,
or could become multi-purpose by satisfying RegD signals
with any unused, curtailed power after meeting a load
demand.

TABLE II: Summary of Ancillary Service (RegD) Simula-
tions

Control Scheme Plant Response to RegD
Grouping Control 54.9%
Hierarchical Control 67.4%

Table II summarizes the success-rate of grouping control
and hierarchical control in satisfying positive RegD signals
(0 to 1) throughout a day. Hierarchical control satisfied
about 12% more of the RegD ancillary requests with solar
power, and was nearly 100% effective between sunrise and
sunset. Grouping control, still showed some evidence of
instability by requiring alternative, supporting generation
to fulfill nearly half of its RegD requests.
Through direct comparison to the already successful

grouping control, installed in a utility-scale Chilean power
plant, our simulation results have shown realistic oppor-
tunity for hierarchical curtailment control to unlock real-
time ancillary services for utilty-scale solar.

VI. Conclusion & Future Directions

The proposed hierarchical curtailment control algorithm
is simulating results that appear extremely competitive
to participate in both the day-ahead and ancillary en-
ergy markets (independently or simultaneously) for utility
power plant operators. Being able to participate in these
energy markets would mean the utility will be able to
undercut the bidding prices of fossil fuel-operators, and
eventually monopolize large portions of the market. Even-
tually, curtailment control technology may be a fundamen-
tal component of creating and operating zero-emission,
national power systems.
The following are some future directions that would

extend from this project.
• Case study application to controlled wind farms.
• Proof of concept with small scale prototype (rasp-

berry pi/ mini panels) in the lab
• Include forecasting methods in hierarchical controller
• Investigate how to expand hierarchical control to

a systematic, centralized “smart-grid". (Hierarchical
topology would probably not be physically connected
but instead remotely connected meaning different ar-
rays that are far apart geographically are compu-
tationally signalled as neighboring generators. Also
harder forecasting implementation.)
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• Stability analysis (more mathematical) discerning if
centralized/hierarchical control of the entire power
system is “better" than traditional decentralized dy-
namics. (Or at what level would you want to have
hierarchical control in action. Centralized per county?
Centralized per state? Etc.)
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