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Abstract

Compressed Sensing for Atomic Force Microscopy is a newer imaging mode that requires the piezo stage be driven
rapidly between measurement locations. In contrast to raster scanning applications, this translates to a setpoint tracking
problem. This paper considers the setpoint tracking performance of a piezo nano-positioning stage subject to rate-of-
change limitations on the control signal, which is derived from the current limit of the power amplifier. To compensate
the vibrational dynamics of the stage, a model predictive control scheme (MPC) and a linear quadratic Gaussian (LQG)
controller which saturates the control increment are considered. In both cases, hysteresis and drift are compensated via
dynamic inversion. To design the weighting matrices required by the MPC and linear feedback designs, an extension to
classic reciprocal root locus ideas is proposed. The robustness of both schemes using classical methods like gain margin,
phase margin, and gain of the sensitivity function at low frequencies is analyzed. The overall settle times achieved by
both controllers (in both simulation and experiment) across a range of control weights where the reference input is a
sequence of step inputs of varying amplitudes are compared. The results show that the best simulation settle time is
achieved by MPC using the smallest control weight. However under experimental conditions, the best settle time is
achieved by a much larger control weight and the performance of MPC becomes comparable with that of saturated
linear feedback. This result is explained by showing that robustness increases with larger control weights.
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1. Introduction

The Atomic Force Microscope (AFM) is a nano-scale
imaging instrument which acquires an image of the surface
topography of a specimen by mechanically interrogating it
with an atomically-sharp probe [1, 2]. Typically, the probe
is scanned across a specimen in a raster pattern, sequen-
tially acquiring pixels in an image. Although this process
gives the AFM excellent spatial resolution, the serial acqui-
sition of pixels limits the speed of any given instrument,
yielding image acquisition rates on the order of minutes
per frame for many commercially available instruments.

For static specimens, while slow imaging yields accu-
rate images, the long imaging times are inconvenient.
For dynamic specimens, however, slow imaging precludes
the ability to capture the dynamics of such specimens;
while faster imaging has the potential to allow for the
study of the specimen dynamics. Many methods have
been proposed to increase AFM frame rates, including
better mechanical design [3, 4], using advanced control
methods [5, 6, 7, 8], and alternative scanning methods
[9, 10, 11, 12, 13, 14].

One newer alternative to raster scanning, and which is of
interest here, is the application of Compressive Sensing to
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AFM [15, 16, 17]. The central idea of compressive-sensing-
based imaging is to leverage the redundancy present in
most interesting images such that the number of pixels to
be acquired is reduced. For good guarantees on reconstruc-
tion quality, measurements in compressive-sensing-based
imaging need to be randomly distributed across the spec-
imen. Each measurement might acquire a single pixel [16]
or short string of adjacent pixels in a micro-scan [18, 19].
Once a measurement is completed, the AFM probe is re-
tracted from the specimen surface, moved in the XY plane
to the next measurement location, and finally re-engaged
with the specimen surface before the next measurement is
acquired. Details of implementations of this approach can
be found in [18, 20].

In this paper, we are concerned with the point-to-point
movement in the XY plane between measurement loca-
tions. Because the probe is not in contact with the speci-
men during this operation, it is desirable to minimize the
time to move between measurement locations. Thus, in
contrast to standard raster scanning where the control goal
is to minimize overall tracking error to a triangular refer-
ence, the goal here is to minimize the settle time to a step
input. Point-to-point movements by AFM are also of inter-
est in other areas like viscoelastic property mapping [21].

One of the primary constraints in setpoint tracking with
our piezo stage is the current limit of the power amplifier,
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which roughly translates to a slew-rate limitation on the
power amplifier output voltage. In principle, minimizing
the settle time of such point-to-point motions is a classic
time-optimal control problem. However, for stages with
dynamics more complex than a second-order system, in-
cluding the stage in our own lab, closed-form solutions to
the minimum-time problem are intractable.

An enticing alternative to explicitly handle the slew-rate
constraint is MPC with a purely quadratic cost. Given
a discrete-time state-space system {A,B,C, 0} with state
xk, and control input uk, such an MPC scheme solves, at
each time step, the optimal control problem

min
v

z
T

N
PzN +

N�1X

i=0

z
T

i
Qzi + 2zT

i
Svi + v

T

i
Rvi (1a)

s.t. zi+1 = Azi +Bvi (1b)

z0 = xk, (1c)

vi 2 U (1d)

where N is the control horizon, U is a polyhedron, P solves
the Discrete Algebraic Riccati Equation (DARE), and Q,
R, and S are the state, control, and cross weights. Q and
R are symmetric matrices, and the triple (Q,R, S) satisfies

R > 0 (2)

Q� SR
�1

S
T � 0. (3)

In this paper, U is restricted to model actuator con-
straints (e.g., saturation). The solution to the quadratic
program (QP) (1) results in a sequence of optimal controls
v0 . . . vN�1. One sets uk = v0 and repeats the process at
the next time step. If one eliminates the constraint (1d),
then the control action reduces to linear state feedback.
That is, v0 = �Kxk where

K = (BT
PB +R)�1(BT

PA+ S
T ), (4)

is the solution to the infinite horizon LQR problem asso-
ciated with Q, R, and S.

Historically, one of the challenges of applying MPC
to systems with fast dynamics is the computational de-
mand needed to solve a QP within a small sample period.
However, advances in both computing hardware and algo-
rithms have mitigated this issue. For example, [22] shows
that when U is a simple box (i.e., a saturating constraint),
sample rates of up to 1 MHz can be achieved with high-end
FPGAs using the Fast Gradient Method (FGM).

In recent work, we applied the FGM formulation of [22]
to our piezo stage and showed that, given a particular
set of weighting matrices, we could increase the stabiliz-
able range of setpoints compared to simply saturating an
equivalent linear feedback [23]. Others have also applied
MPC to similar systems [24, 25, 11, 26]. In all these cases,
little insight is given into how the cost function was tuned,
an issue that is considered here in further depth.

Due to the increased cost and complexity of implement-
ing MPC, it is crucial to characterize how MPC compares

to linear feedback. In some cases, no comparison to lin-
ear control is given [11, 26]. In many cases where MPC is
compared to a linear feedback law [24, 25], including in our
own prior work [23], de-rating the linear feedback to limit
constraint violation is never considered. Thus, an impor-
tant question we seek to answer in this paper is “how much
performance is sacrificed by using a de-rated linear feed-
back compared to MPC?”. In Section 6, we show that, in
contrast to simulation results, experiments with de-rated
(i.e., large) control weights have better performance for
both MPC and linear feedback. For control weights where
the best experimental performance is attained, linear feed-
back and MPC yield similar performance.
This somewhat surprising result is explained in Sec-

tion 6.1 by showing that robustness of the control laws
increases as the control weight increases. While many au-
thors have considered robustness in MPC, many of these
results assume direct measurements of the state vector
[27, 28, 29], which is often impractical. However, as we
indicated in (4), it is a well known, though perhaps under
exploited, result that when the control trajectory gener-
ated by (1) is within the interior of U, the control action
is equivalent to an LQR-based linear feedback law. In
the setpoint tracking application considered here, where
the constraint limits the rate of change on the control,
this will always be the case as the system nears a given
setpoint. Thus, within some region around any setpoint,
classical ideas like gain and phase margin or the sensitivity
function gain are directly applicable. We show that (up
to a point) de-rating the design improves those metrics.
Thus, the nominal performance gains achieved when us-
ing a more aggressive MPC (due to constraint handling)
are o↵set by the concomitant decrease in robustness. As
we are not aware of publications that have applied these
classical metrics in the context of MPC, we present our
analysis and results in this paper to provide a useful way
to understand and compare the performance of MPC rel-
ative to a more classical control approach.
Another related limitation of [23] is that we did not

consider the e↵ects of drift and hysteresis and only con-
sidered tracking a single setpoint with the stage starting
at rest. Other studies also ignore hysteresis and only con-
sider a limited size of inputs [24, 25]. Yet, when tracking
a sequence of random setpoints across the range of the
stage, the e↵ects of hysteresis become much more promi-
nent. Thus, in this paper, we employ inverse drift and
hysteresis compensation and test the control laws with a
random sequence of steps. Since these inversions are not
perfect, good robustness is needed.
The main contributions of this paper are thus to

• Give explicit details on how the cost function is tuned
(Sections 5 and 6).

• Compare the experimental performance of MPC to
saturated linear feedback (SLF) across a range of con-
trol weights varying from aggressive to highly de-rated
(Section 6).
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Figure 1: The overall plant model consists of a hysteresis model F [·], a drift model Gd, and a vibrational model Gvib. The e↵ects of drift
and hysteresis are compensated for via dynamic inversion.

• Show that for the chosen state weighting schemes,
closed-loop robustness plays a more prominent role
in ultimate experimental performance than explicitly
handling constraints (Section 6.1).

The overall control structure considered in this paper is
illustrated in the block diagram in Fig. 1. The plant is
considered to be a cascaded model of hysteresis (F), drift
(Gd), and vibrational dynamics (Gvib). Modeling these
three systems is the subject of Sections 3.3, 3.2, and 3.1,
respectively. Section 4 develops the control structure and
associated closed-loop equations. Section 5 explores two
schemes to design the weighting matrices. The designs are
evaluated in simulation and experiment in Section 6, and
conclusions are given in Section 7.

2. Experimental Testbed

The AFM in our lab consists of an Agilent 5400 that has
been retrofitted with an nPoint NPXY100A piezo stage,
which provides lateral movement of the specimen. The
NPXY100A, which is the focus of this paper, is driven
by an nPoint C300. The C300 amplifies the low voltage
(± 10 volts) control inputs to a high voltage signal which
drives the piezo actuators and provides signal conditioning
for the capacitive position sensors in the stage. Although
the C300 can implement a basic PID controller, in this
work the C300 is always operated in open-loop mode. Un-
fortunately, even in open-loop mode, signals in the C300
still run through an internal DSP, which introduces around
360 µs of delay. Nominally, the NPXY100A has a range
of 100 µm, though in practice the usable range is about
67.5 µm when operated in open-loop mode.

All control logic is programmed into a Xilinx Spartan-6
LX150 FPGA in a cRIO 9082 from National Instruments.
A sampling frequency of 25 kHz is used, which is based on
the system dynamics (see Fig. 2 in Section 3.1). With a
25 kHz sampling frequency, the 360 µs of delay translates
to 9 samples.

In characterizing the limitations of this system, it is
helpful to have a direct measurement of the power am-
plifier current, IX , of the C300. This measurement is

obtained by re-routing the C300 drive signal through a
low-side current sensing resistor (Rsense = 0.1⌦).

3. System Modeling

Since there is little coupling between the X and Y di-
rections in our AFM [20] and imaging results have been
separately presented in [18, 20], the point-to-point motion
discussion and analysis in this paper is focused on the X
direction. The overall plant for the X-direction is modeled
as three cascaded systems: F which models the hysteresis
of the piezo, a drift model Gd, and a vibrational model
Gvib. This cascaded structure, suggested in [7, 30], is
shown in Fig. 1. In general, the e↵ects of hysteresis are
most noticeable when moving across wide ranges. Thus,
by using relatively small input signals, the drift and vi-
brational dynamics can be identified separately from the
hysteresis [30]. Here, we model both Gvib and Gd as lin-
ear, time-invariant discrete-time systems. The dynamics
of drift are predominantly low frequency while vibrational
aspects on the other hand are fast by comparison, which
allows the two systems to be easily separated in the iden-
tification. Modeling these three components is the subject
of the next three subsections.

3.1. Modeling Gvib

To obtain an experimental frequency response of Gvib,
we use a stepped-sines method (single frequency at a time).
The amplitude of the driving sinusoid is chosen to be small
enough that the e↵ects of hysteresis are minimized. After
the system reaches steady-state, the input and output sig-
nals are demodulated into their first (complex) Fourier co-
e�cients, the ratio of which yields the frequency response
at that frequency. Fig. 2 shows the resulting experimental
frequency response function (FRF) as the solid red curve.
Obtaining a parametric model of Gvib for control de-

sign involves two steps. A preliminary model using an
Eigenspace Realization Algorithm (ERA) [31] is obtained.
In general, the ERA does not produce a model with poles
at z = 0, which is what is needed in order to model the
delay. Thus, the delay in the frequency response is divided
out of the FRF before passing it to the ERA algorithm.
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Figure 2: The solid red curve is the frequency response from control
input to stage position output in the X direction. The dashed-black
curve is the vibrational model, Ĝvib.

The second step uses the model generated by the ERA
as the initial guess to a non-linear least squares prob-
lem which minimizes the logarithm of the ratio of the ex-
perimental frequency response to that of the model [32].
Though [32] develops the idea for continuous-time mod-
els, their strategy is easily adapted to fit a discrete-time
model. In this scenario, the optimization is given by

min
✓

MX

i=1

��log(Gvib(e
j!iTs))� log(Ĝvib(e

j!iTs |✓))
��2 (5)

where !i is each frequency in the experimental frequency
response and Ĝvib(ej!iTs |✓) is the model parameterized by
the vector ✓. The model Ĝvib(z|✓) is composed of first- and
second-order factors

Ĝvib(z|✓) = K
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where nrz and ncz (resp., nrp and ncp) are the number of
real and complex zeros (resp., poles) in the model gener-
ated by the ERA. The parameter vector ✓ is given by

✓ =[br0 . . . b
r

nrz�1
, b

c

0 . . . b
c

2ncz�1, a
r

0 . . . a
r

nrp�1
, a

c

0 . . . a
c

2ncp�1,

K, ⇢].

Due to the logarithms in (5) and the multiplicative struc-
ture (6), the Jacobian of log(Ĝvib(z|✓)) is surprisingly easy
to calculate. Details can be found in [32], though some
modifications are required for the discrete-time case.
The model structure (6) includes a fractional delay z

�⇢.
This allows including the delay as a term in the decision
variable as an alternative to optimizing over integers. This
is beneficial since it is not guaranteed that the latency from

Table 1: Pole and zero locations of Ĝvib. The graphic to the right
shows their location (excluding the nine poles at z = 0 and the non-
minimum phase zero) in the Z-plane.

pole zero
0.8113±0.1832 0.9647 ± 0.2509
0.9625±0.2584 0.9753 ± 0.2101
0.9718±0.2136 0.9945 ± 0.0933
0.9786±0.1626 0.9942 ± 0.0969
0.9946±0.0912 –
0.9942±0.0968 –

0.9047 -1.55
(9) 0 0.8368

input to output is an exact integer multiple of the sample
period, and a fractional delay allows the optimization to
more accurately match the phase. In the final model, ⇢
is rounded to the nearest integer, (8 in this case), which
gives a sum squared error in the phase match of 0.196. If
the optimization was instead performed with ⇢ fixed at 8,
the sum squared phase error is 3.98. In this work, modes
above 1100 Hz are not modeled. Thus, the optimization
(5) is only done over frequency up to 1100 Hz. The final
pole and zero locations for Ĝvib are listed in Table 1.

3.2. Drift Modeling

Drift is modeled as the transfer function

Ĝd(z|✓) = ✓5
(z � ✓1)(z � ✓2)

(z � ✓3)(z � ✓4)
,

which is equivalent to the model structure used in [30]. An
LTI drift model can achieve a better fit than both loga-
rithmic and fractional derivative models [33]. Due to the
comparatively slow dynamics of drift, it is more attractive
to identify the drift model in the time domain rather than
the frequency domain. The stage is given a step input
with relatively small amplitude (to minimize the e↵ects of
hysteresis). The stage response is shown as the solid-blue
curve in Fig. 3, while the simulated response of the vi-
brational model is shown as the dotted-black curve. The
piezo drift is evident in the slow increase of stage position
after the vibrational dynamics have decayed.
Let Yexp be the step response data collected from the

stage and Yvib the response of the model Ĝvib to the same
input. The goal is to solve the non-linear least squares
problem

min
✓

����ĝd(k|✓) ⇤ Yvib � Yexp

����
2

(7)

where ĝd(k|✓) is the impulse response corresponding to
Ĝd(z|✓), ‘⇤’ represents the convolution operator, and
✓ = [✓1 . . . ✓5] is the vector of parameters. To the extent
that Gvib accurately models the vibrational dynamics, the
inclusion of Yvib in (7) e↵ectively nullifies the vibrational
aspects in the optimization. This is possible because, since
the system is SISO, Gvib and Gd commute. The non-
linear optimization problem (7) is solved with MATLAB’s
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Figure 3: A 1.0 volt amplitude step input (dash-dotted black) is given
to the stage, yielding the solid blue output trajectory. The response
of the combined Gvib and Gd models is shown as the dashed red,
while that of the vibrational model alone is the dotted black curve.

lsqnonlin and results in the red curve in Fig. 3, which
shows the simulated step response of ĜdĜvib. Validating
for other small amplitude step inputs indicates that the
obtained Ĝd is similarly accurate as shown in Fig. 3.

3.3. Hysteresis Modeling

In typical raster scanning applications, hysteresis mani-
fests as a bowing of the trajectory as the stage tries to track
the linear ramps in a triangle wave (see, e.g., Fig. 3 of [7]).
To motivate the need for hysteresis compensation in a step
tracking application, consider Fig. 4, which shows an in-
put signal of various filtered steps applied open-loop to the
stage. The solid black curve is the stage response, while
the dotted-black curve is the input (scaled by the nominal
DC-gain of GdGvib), which shows good agreement for the
first step, but much worse agreement with the later steps,
particularly those with large amplitudes. E↵ectively, the
gain of the system depends on the control history.

There are many models for hysteresis [30, 34, 35]. Here,
the simple (and computationally fast) Modified Prandtl-
Ishlinksi Hysteresis model from [36] is used. This hystere-
sis model is composed of a linear combination of satura-
tion operators cascaded with a linear combination of clas-
sic hysteretic play1 operators. The overall input-output
relationship of the modified hysteresis operator F [·] is

F(uX) = w
T

s
S
⇥
w

T

H
H[uX , z]

⇤

where S and H are vectors of elementary saturation and
play operators, respectively, and where ws and wH are
vectors of weights. The ith elementary play operator with
associated threshold d

i

H
, output ⇠i

k
, and input ⌫k is defined

by the recursive relationship

⇠
i

k
= H

i(⌫k| diH) = max{⇠i
k�1 � d

i

H
,min{⇠i

k�1 + d
i

H
, ⌫k}}.

Figure 4: The stage is driven by a sequence of filtered step inputs
shown in the dotted black curve. The resulting stage response is the
solid black curve, showing good agreement at the first step, but much
worse agreement for later steady-state values. The same steady-
state input does not produce the same steady-state output, which
can be seen, e.g., by comparing the step centered at 4.3 s to the step
centered at 4.95 s. The dashed red curve is the response of the overall
combined model of Ĝvib, Ĝd, and the complex hysteresis model F .

In contrast, the saturation operator has no memory.
The input-output relationship of the ith elementary satu-
ration operator with associated threshold d

i

S
is

µk = S
i(pk|diS) =

8
><

>:

max{pk � d
i

S
, 0} d

i

S
> 0

pk d
i

S
= 0

min{pk � d
i

S
, 0}, d

i

S
< 0.

for an input pk and output µk.
If the thresholds di

H
and d

i

S
are pre-defined, it is possible

to solve for the weights wS and wH from a quadratic pro-
gram [36]. Using the input and output data from Fig. 4,
the weights wH and wS are fit to a model with 7 satura-
tion and 7 hysteresis operators. Details on model order
selection can be found in [36]. The resulting fit is shown
in Fig. 4 as the dashed red curve (which also includes the
drift and vibrational models). Again, validating for other
sequences of filtered step inputs shows that the obtained
drift model yields similar accuracies as shown in Fig. 4.

3.4. Power Amplifier Characterization and Limitations

The high voltage output of the C300 is current limited
to 100 mA. The solid black curve in Fig. 5 shows the trans-
fer function, GIX ,uX (z), from the low voltage input uX of
the C300 to the current IX flowing through the stage. The
current is measured via the sensing resistor mentioned in

1The term “play” is derived from the operator’s use in modeling
mechanical slop.
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Figure 5: The solid curve is the transfer function, GIX ,uX
(z), from

low voltage control to power amplifier output current, which is upper-
bounded by the dotted and dashed curves, representing a pure dis-
crete derivative multiplied by the bounds (11) and (12), respectively.

Section 2. Because the piezo actuators are highly capaci-
tive, at frequencies below about 600 Hz, GIX ,uX (z) looks
like a pure derivative. To derive a box constraint on the
control increment �ux(z), we first factor GIX ,uX (z) as

IX(z) = GIX ,uX (z)uX(z) (8)

= (z � 1)Go(z)uX(z)

= Go(z)�uX(z). (9)

Ideally, the current limit is enforced via a state-like con-
straint using (8) and a parametric model of GIX ,uX (z).
While it is likely possible to solve such a problem with
a high-end FPGA using, e.g., the Alternating Direction
Method of Multipliers [22], it is not possible to solve that
problem on our hardware. Instead, we approximate Go(z)
as a constant, which leads to a box constraint on �uX .
Thus, we need a bound (�uX)max such that

|�uXk | < (�uX)max =) |IXk | < Imax. (10)

It is easy to show that such a bound is given by

(�uX)max =
Imax

||go||1
(11)

where go is the impulse response of Go(z) and
||go||1 =

P1
k=0 |go(k)|. The frequency response of this

bound the dotted-black curve in Fig. 5. In practice, this
bound is conservative, and an alternative is to choose2

(�uX)max = ||Go(z)||1 ⇡ 0.1980, (12)

which results in the dashed-black curve in Fig. 5. Although
(12) is only su�cient to guarantee (10) for sinusoidal in-
puts, in practice we find that enforcing (12) does lead to
the current staying under 100 mA.

2For an arbitrary transfer matrix G(z), we follow [37] and define
||G(z)||1 , sup�2[0, 2⇡] �̄(G(ej�)), where �̄(·) yields the maximum
singular value of its argument.

Finally, the slew-rate limit used in the MPC/linear feed-
back controller must be discounted from (12) to account
for the inverse drift compensator. This adjustment for the
inverse drift operator follows essentially the same argu-
ment as above. We have

(�u)max  (�uX)max

||G�1
d

(z)||1
⇡ 0.167 (13)

4. Control Setup

The constraint (13) can be remodeled as a pure saturat-
ing constraint if an incremental form of Gvib is used that
has as its input �uk := uk � uk�1, rather than uk. This
not only allows us to directly penalize the rate of change
in the optimal control problem but also renders the con-
straint (13) as a box constraint on �u, enabling the use
of the computationally e�cient FGM. Details on the form
of the FGM we use can be found in [22, 38] while specifics
about our implementation are discussed in [23].

4.1. The Incremental Form

To develop the required incremental form, the dynamics
of Ĝvib = {A,B,C, 0} are augmented with a state xuk :

xuk = uk�1.

It follows that

x̄k+1 =


A B

0 1

�
x̄k +


B

1

�
�uk (14a)

yk =
⇥
C 0

⇤
x̄k (14b)

x̄k :=


xk

xuk

�
. (14c)

We call this system Ḡ = {Ā, B̄, C̄, 0}, which has n̄s = 23
states, 9 of which model delay. To solve the setpoint track-
ing problem, we work in the error coordinates of Ḡ. For a
constant reference rss, in steady state we have �uss = 0
and x̄ss = Nx̄rss where Nx̄ 2 Rn̄s is found by solving


Nx̄

Nu

�
=


I � Ā �B̄

C̄ 0

��1 
0
I

�
, (15)

which, due to the augmented pole at z = 1, will give
Nu ⌘ 0. The error state, x̄ek = x̄k � x̄ss has dynamics

x̄ek+1 = Āx̄k + B̄�uk � x̄ss

= Āx̄ek + B̄�uk

because x̄ss is in the nullspace of (I � Ā).

4.2. Observer Design

To achieve zero-o↵set tracking (to constant distur-
bances), a disturbance estimator [39] is employed. The
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disturbance dynamics are modeled as a pure integrating
disturbance. The estimator dynamics are then given by


x̂k+1

d̂k+1

�
= Am


x̂k

d̂k

�
+Bmuk + Lm(yk � ŷk) (16)

ŷk = Cm


x̂k

d̂k

�
(17)

where x̂ is the estimate of xk (not x̄k), d̂k is the disturbance
estimate, and

Am =


A Bd

0 1

�
, Bm =


B

0

�

Cm =
⇥
C Cd

⇤
, Lm =


Lx

Ld

�
. (18)

It is shown in [39] that the gains Lx and Ld may be de-
signed separately such that the closed-loop poles Am �
LmCm are the same as �(A � LxC) [ �(1 � LdCd). Lx

is set equal to the steady-state solution of the discrete
LQR problem applied to the dual of Ĝvib, where R = 1,
Q = ↵BB

T and ↵ is a tuning parameter. Ld is designed
such that the disturbance pole is placed at z = 0.8.

To achieve zero-o↵set tracking, disturbance estimators
re-compute the steady-state target x̄ss at each time step.
Here, an output disturbance model is used, so Bd = 0 and
Cd = I, and the reference is adjusted by subtracting d̂k.
In other words, at each time step, we need to compute

x̄e =


x̂k

xuk

�
�Nx̄(rk � d̂k).

This is simpler than the case for an input disturbance
model (Cd = 0 and Bd 6= 0), which involves an additional
vector-scalar multiplication and a vector-vector addition
(see (21) in [39]). It is shown in [39] that output dis-
turbance and input disturbance estimators are equivalent
provided 1 is not an eigenvalue of A, which is the case here,
because the state xu is not estimated. Thus, the output
disturbance formulation is used for computational savings.

4.3. Closed-Loop Equations

When interpreting the experimental and simulation re-
sults in Section 6, it will be helpful to discuss the closed-
loop behavior in terms of various transfer functions. To
this end, the closed-loop equations are derived here for
the block diagram of Fig. 1 with the drift and hysteresis
operators set to the identity and with the controller given
by a partitioned feedback gain K = [Kx Ku]. Similarly,
the observer gain is partitioned as in (18). In closed-loop
xu is not estimated because it is perfectly known, and the
state-feedback portion of the control with d̂ is not com-
puted because the disturbance is uncontrollable from uk.
Equations (14), (16), and (17) yield

x̂k+1 = Ax̂k +Buk + Lx(yk � ŷk) (19)

d̂k+1 = d̂k + Ld(yk � ŷk) (20)

xuk+1 = xuk +�uk, (21)

where yk is the plant output. The control increment �uk

and control uk are given by

�uk = �
⇥
Kx Ku

⇤  x̂k

xuk

�
+ N̄(rk � d̂k). (22)

uk = �uk + xuk . (23)

In (22), N̄ , KNx̄ is the feedforward control gain, where
Nx̄ is defined by (15). Equations (19)-(23) can be written
as the combined state-space system

x̃k+1 = Ãx̃k + L̃yk + B̃N̄rk (24)

uk = �K̃x̃k + N̄rk (25)

where

Ã =

2

4
A�BKx � LxC B(1�Ku) �BN̄ � LxCd

�Kx 1�Ku �N̄

�LdC 0 1� LdCd

3

5

L̃ =

2

4
Lx

0
Ld

3

5 , B̃ =

2

4
B

1
0

3

5 , x̃k =

2

4
x̂k

xuk

d̂k

3

5 ,

K̃ =
⇥
Kx Ku � 1 N̄

⇤
.

Taking the Z-transform of (24) and (25) yields

u(z) =N̄(1� K̃(zI � Ã)�1
B̃)r(z)� K̃(zI � Ã)�1

L̃y(z).
(26)

If G(z) (which need not be the same as the model Gvib)
is the transfer function of the plant, then the Z-transform
of the output y subject to an output disturbance d and
control input u is y(z) = G(z)u(z)+ d(z). Combining this
expression with (26) yields

y(z) =
G(z)N̄(1�D2(z))

1 +G(z)D1(z)
r(z) +

1

1 +G(z)D1(z)
d(z)

(27)

where

D1(z) = K̃(zI � Ã)�1
L̃

D2(z) = K̃(zI � Ã)�1
B̃.

Thus, the loop gain is given by L(z) = G(z)D1(z) and the
sensitivity function is defined as

S(z) , 1

1 + L(z)
. (28)

Due to the disturbance estimator, S(z) will always have a
zero at z = 1 so that its DC-gain is zero. In Section 6, it
will be helpful to quantify how large the sensitivity func-
tion gain is at small but non-zero frequencies. To this end,
the “integrated sensitivity” is defined as

SI(z) , S(z) 1

z � 1
. (29)
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The DC-gain of SI(z) can then be used to quantify the
low-frequency gain of S(z).

Recall that the closed-loop poles are the transmission
zeros of 1 + L(z) and are the union of the controller and
observer poles, which can be seen through the separation
principle or manipulation of the matrix pencil describing
the transmission zeros. Moreover, in the first term of (27),
the observer poles are canceled by the transmission zeros of
(1�D2(z)). Of course, these properties only hold when the
observer uses a perfect model of the plant. The advantage
in representing the closed-loop dynamics as (27) is that (i)
it is valid when the observer and plant dynamics do not
match and (ii) it exposes how to analyze the robustness of
our designs in terms of using, e.g., the sensitivity function
S(z) and stability margins derived from the loop gain L(z).

5. Control Designs

Consider the optimal control problem

min
v

z
T

N
PzN +

N�1X

i=0

z
T

i
Qzi + 2zT

i
Svi + v

T

i
Rvi (30a)

s.t. zi+1 =Āzi + B̄vi (30b)

z0 =[x̂T

k
, x

T

uk
]T �Nx̄(rk � d̂k) (30c)

|vi| (�u)max. (30d)

where Q and R are symmetric matrices and the matrices
Q,R, S satisfy (2) and (3). The terminal cost P is the
solution of the DARE.
Two control strategies are considered based on (30):

Constrained Model Predictive Control (MPC): Here, one
solves (30a) online, which results in a sequence of N opti-
mal controls, {vi}N�1

i=0 . One then sets �uk = v0 and dis-
cards the remaining vi. The process is repeated at the next
time step. With MPC, the saturator in Fig. 1 is superflu-
ous because the optimal control satisfies the constraints by
design. The goal with MPC is to directly account for the
slew-rate constraint as part of the control law itself and
hope that this results in increased performance.
Saturated Linear state feedback (SLF): Here, the con-
straint (30d) is eliminated. Thus,

�uk = v0 = �Kz0

where K = (B̄T
PB̄ + R)�1(B̄T

PĀ + S
T ), which is the

LQR feedback gain associated with Q, R, and S. In con-
trast to MPC, with SLF, the saturator in Fig. 1 is nec-
essary to avoid exceeding the current limit. While this
scheme is much more computationally e�cient than MPC,
the fact that the constraint is not directly accounted for
typically means that the performance requirements must
be relaxed to maintain stability (e.g., by increasing the
control weight R), due to the saturator.

In the next two subsections, the problem of designing
the weighting matrices Q, R, and S is addressed.

5.1. Control Weight Selection

Both the MPC and SLF control schemes require the
selection of weighting matrices Q, R, and S. Here, we
propose a method which can produce well damped closed-
loop pole locations (to mitigate residual vibration) and is
also easily de-ratable. The method is a small extension
to classic symmetric root locus (SRL) or reciprocal root
locus (RRL) methods [40, 41]. Let Q = ff

T for some
vector f 2 Rn̄s , S = f , and R = 1 + � where � is a scalar
parameter. Consider the fictitious output

⌘k = f
T
x̄k + vk. (31)

Then the unconstrained version of (30a) can be written as

1X

i=0

⌘
T

i
⌘i + �v

T

i
vi. (32)

As the control weight � decreases, the closed-loop poles of
the unconstrained LQR move to the zeros of {A,B, f

T
, 1}.

In the standard RRL, S = 0 and there are at most n̄s � 1
finite zeros in the fictitious system and one zero at infinity.

Lemma 1. Let {A, B, f
T
, 1} represent a state-space

discrete-time system with n states. Let Q = ff
T , S = f

and R = 1 + � where f 2 Rn and � is a scalar. Let
K� = (BT

PB + R)�1(BT
PA + S

T ) solve the LQR prob-
lem associated with Q, R, S for a particular �, where P

solves the DARE

Q = P�A
T
PA�(AT

PB+S)(BT
PB+R)�1(BT

PA+S
T ).
(33)

Then as � approaches zero, the closed-loop eigenvalues of
A�BK� approach the zeros of {A,B, f

T
, 1}.

Proof: Using the same spectral factorization technique
as [42, pg. 135] and [41, pg. 97] (which both prove the
claim when S = 0), it can be shown that

B
T (z�1

I �A
T )�1

Q(zI �A)�1
B

+ S
T (zI �A)�1

B +B
T (z�1

I �A
T )S +R

= M +MK�(zI �A)�1
B +B

T (z�1
I �A

T )�1
K

T

�
M

+B
T (z�1

I �A
T )�1

K
T

�
MK�(zI �A)�1

B (34)

where M = B
T
PB + R. Define go(z) = f

T (zI � A)�1
B

and ḡo(z�1) = B
T (z�1

I � A
T )�1

f . Using this in (34)
yields

(ḡo(z
�1) + 1)(go(z) + 1) + � =

[1 +B
T (z�1

I �A
T )�1

K
T

�
]M [1 +K�(zI �A)�1

B].
(35)

The zeros of the right-hand side are the n stable poles
of the closed-loop system, together with their reflections
about the unit circle. As � approaches 0, the zeros of the
left-hand side approach the zeros of {A, B, f

T
, 1} (and

their reflections), which establishes the result. ⌅
8



(a) (b)

Figure 6: Root locus of closed-loop poles as a function of �. For clarity, the plant zeros are not shown. The ⇥’s denote the open-loop plant
poles. The �’s denote the fictitious zeros, which are at the desired pole locations. (a) Constant-� scheme with � = 0.9. (b) Chosen-⇣ scheme.

This behavior is illustrated in Fig. 6 for two di↵erent
f vectors (discussed below). Thus, pole-placement can be
achieved through proper design of f and by taking � to be
small. With this selection of Q and S, (3) becomes

ff
T

✓
1� 1

1 + �

◆
� 0 (36)

which holds for all � � 0. Numerical di�culties can arise
in computing P when � is too close to zero, though �

can usually be chosen small enough that the di↵erence be-
tween the desired pole locations and their actual locations
is negligible. The direct feedthrough in (31) leads to the
cross-weighting term S and is necessary to endow the fic-
titious system with n̄s zeros in order to place all n̄s poles.

Through elementary block row and column operations,
it is east to show that the zeros of {A,B, f

T
, 1} are the

same as the solutions of the generalized eigenvalue problem

(A�Bf

T ) 0
0 1

�
�

zI 0
0 0

�
= 0.

Thus, f may be found via pole placement techniques.
Two methods are considered to choose a set of de-

sired pole locations. The first method, called “constant-�”
(CS), moves all complex poles such that they are projected
radially inward to lie on a circle with a specified radius,
which endows them all with the same time constant. Here,
the radius is selected as � = 0.9. The continuous-time
equivalent (which may provide better intuition) would
move the poles onto a vertical line at 420 Hz, which is
slightly faster than the first open-loop mode at 350 Hz.

The second scheme, called “choose-⇣” (CZ), keeps the
natural frequency of each complex pole unchanged but
specifies a damping ratio ⇣. In order of increasing
natural frequency, the damping ratios are specified as
{0.85, 0.85, 0.7, 0.4, 0.4 0.4}, so that the slowest poles

have the highest damping. In the next section, this ap-
proach is shown to generally yield slower settle times
than the constant-� method; however it tends to result
in slightly smaller residual oscillations and is the same
scheme we considered in [43, 23], and is included here so
that results can be evaluated in light of our prior work.
For both cases, 8 of the 9 poles corresponding to delay

are placed at roots of unity with a radius chosen more or
less arbitrarily at � = 0.25, with the remaining pole left
at the origin. Fig. 6 shows root locus-like plots for each
scenario as a function of �. As � approaches zero, the
closed-loop poles approach the designed fictitious zeros,
which are indicated by black circles.
Clearly, there is room for variation on these two schemes.

For example, one could try to speed things up by decreas-
ing � (in CS) or by also increasing the natural frequencies
in the CZ scheme. However, given that the control horizon
is limited to N = 22 (due to hardware limitations), these
more aggressive strategies generally require much larger
control weights to achieve stability through the entire de-
sired operating range.
Certainly, in the case of the SLF state feedback con-

troller, one could use a pole-placement design to start
with. However, the method here has two advantages: (i)
it permits a straightforward comparison to the MPC de-
sign (which, in the present formulation, requires weighting
matrices, not pole locations) and (ii) the design becomes
parameterized by the scalar parameter �. Increasing �

increases the control penalty, which makes de-rating the
design easy. In contrast, with standard pole-placement, it
is less clear how to “back-o↵” the design in a systematic
way if the slew-rate constraint is violated to the extent
that instability results. Intuitively, one could e.g., try in-
creasing � in this situation. However, this could require
a di↵erent � for each pole (since the open-loop poles do
not all have the same �). It is also unclear if this method
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Figure 7: The sequence of step commands used to test the control
laws. The red circles indicate the 6th and 24th reference; responses
to these references are shown in closer detail in Figs. 10a and 10b.

guarantees a reduction in control action.

5.2. Selecting �

The choice of � has a significant e↵ect on system perfor-
mance, which di↵ers between simulation and experiment.
This aspect of the tuning is explored in the next section.

6. Simulated vs. Experimental Performance

and Dependence on �

The goal of this section is to explore how the simulation
and experimental performances of MPC and SLF (for both
pole placement schemes) depend on the control weight �

and to determine to what extent, if any, MPC provides
a benefit. In all simulations and experiments, the MPC
control horizon is N = 22.

The experimental and simulation performances of the
MPC and SLF control schemes were tested using a se-
quence of 24 reference commands. The first 20 refer-
ences were selected randomly within the range [�32.5 µm,
35µm]. The final four references were chosen as 0 µm,
35 µm, �32.5 µm, and 0 µm, to exercise the full usable
range of the stage.3 This sequence of references is shown
in Fig. 7. Using a sequence of randomly generated refer-
ences (rather than, e.g., a single reference or several ref-
erences beginning from rest) has several benefits: (i) it is
representative of the type of references seen in a compres-
sive sensing imaging scenario [18, 20]; (ii) it eliminates the
possibility of inadvertently picking reference values where
one control law does better; and (iii) using a sequence of
references will help to draw out the deleterious e↵ects of
imperfections in the hysteresis and drift inversion.

To explore performance dependence on �, a series of
experiments and simulations were run across a grid of �’s
from � = 10�5 to � = 400. Each simulation was run once
and each experiment was conducted 8 times. The settle
time is defined in an absolute sense: the settle boundary is
70
512 µm, corresponding to settling within one pixel of a 512

3For references larger than 35 µm, the control signal saturates;
for references smaller than -32.5 µm, the sensor saturates due to a
bias in the stage.

by 512 pixel image for the given range. Let tj
i
(�`) represent

the settle time of the ith reference for the jth experimental
run using the `th � in the grid. Then the total settle time
of the jth experiment is Tj =

P24
i=1 t

j

i
(�`). The sample

mean of the total settle times for a specific �` is

T̄ (�`) =
1

8

8X

j=1

Tj(�`). (37)

Fig. 8 plots the mean of the total experimental settle
times (i.e., T̄ (�`)) vs. � as the red (MPC) and black (SLF)
dots with error bars. The results of the CS and CZ schemes
are shown on the left and right, respectively. The simula-
tion settle times are shown in Fig. 9. The MPC simulations
are denoted by the red circles and the SLF simulations are
denoted by the black dots. For reference, the values of the
plotted data are given in Tables 2a and 2b.
Note that the � values used for CS and CZ di↵er. Simu-

lations indicated that, with a control horizon4 of N = 22,
the MPC would fail to stabilize the system for the largest
setpoints if � was taken much smaller than 10�3 (resp.,
10�5) for CS (resp., CZ). Similarly, due to saturating �uk,
the SLF control laws are unstable for � smaller than about
7.5 (resp., 3.5) for CS (resp., CZ). The � values 46.4 (for
CS) and 50.9 (for CZ) are discussed in Section 6.1.
For the smallest tested values of �, Fig. 10a shows

zoomed-in experimental trajectories of the four controllers
for references 6 and 24 (circled in Fig. 7). The fastest
experimental settle times occur for � = 100 for the CS
scheme and � = 25 for the CZ scheme. Zoomed-in ex-
perimental trajectories for these values of � are shown in
Fig.10b, also for references 6 and 24.
For all of the experimental trajectories, the largest mea-

sured power amplifier current was 98.5 mA, indicating suc-
cess in respecting the 100 mA current limit.

6.1. Discussion

In both simulation and experiment, MPC is able to uti-
lize a much smaller � than SLF. In the simulation results,
increasing � results in an increased total settle time. This
is as one would expect, because nominal closed-loop band-
width decreases as � increases, as shown by the solid black
curves in Fig. 9. Interestingly, this trend does not hold in
the experimental results. Up to about � = 100 for CS and
� = 25 for CZ, total settle time decreases as � increases in
the experimental results. When � = 10�5 in the CZ MPC
experiment, the total settle time is nearly 3 times slower
than the simulation; when � = 25 the experiment is only
1.3 times slower than simulation.
These trends can be explained by analyzing how robust-

ness depends on �. First, recall from Sections 3.2 and 3.3
that the overall control loop inverts imperfect models of

4
N = 22 is the largest control horizon our FPGA can sustain, and

the stabilized region generally improves with a larger N . See [44] for
a detailed discussion of the horizon length for this system.
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Table 2: Total settle times for (a) the constant-� and (b) choose-⇣ state weighting schemes. The second and third columns of each table are
the simulation results while the fourth and fifth columns are the average of 8 experimental runs. SLF was not run for the smallest � values,
as indicated by the dashes. All times are in milliseconds.

(a) Constant-�

� MPC-sim SLF-sim MPC-exp SLF-exp

10�3 112.6 – 252.6 –
10�2 112.7 – 254.2 –
10�1 112.7 – 252.4 –
1 113.3 – 250.3 –
7.5 116.5 118.6 243.5 242.4
10 117.6 119.2 242.4 241.7
25 129.4 130.2 237.5 236.6
46.4 138.2 138.2 232.3 232.7
75 151.0 151.1 229.2 229.3
100 159.2 159.3 228.4 227.9
200 186.5 186.6 243.3 242.1
300 215.2 216.1 256.9 257.3
400 236.8 237.0 268.5 268.3

(b) Choose-⇣

� MPC-sim SLF-sim MPC-exp SLF-exp

10�5 141.8 – 423.9 –
10�2 141.9 – 420.3 –
10�1 142.1 – 420.2 –
1 144.5 – 409.6 –
3.5 159.9 161.3 368.6 396.7
10 190.9 191.7 319.6 320.0
25 229.3 229.7 305.6 305.9
50.9 279.9 279.9 315.6 315.2
75 318.4 318.7 337.9 337.7
100 353.1 353.2 362.8 362.9
200 464.3 464.6 446.1 443.3
300 552.3 552.3 524.2 519.8
400 627.3 627.6 582.7 581.0

Figure 8: Experimental results, (left) constant-�, (right) choose-⇣: The red (MPC) and black (SLF) dots with error bars are the sample
means of the total settle times for di↵erent values of � and are plotted against the left axes. The error bars represent one standard deviation.
The solid black curve is the DC-gain of the integrated sensitivity function SI(1) evaluated at di↵erent values of �, plotted against the right
axes.

Figure 9: Simulation results, (left) constant-�, (right) choose-⇣: The red circles (MPC) and black dots (SLF) are the total simulated settle
times for di↵erent values of � and are plotted against the left axes. The solid black curve is the closed-loop 3 dB bandwidth evaluated for
di↵erent values of �, plotted against the right axes.

11



(a) (b)

Figure 10: Stage output (top row) and control increment (bottom row) experimental trajectories for references 6 and 24 (circled in Fig. 7).
The dotted black lines indicate the settle boundary. (a) Trajectories for the smallest tested values of �. (b) Trajectories for the values of �
resulting in the fastest total experimental settle time. As indicated in (12), (�uX)max = 0.1980.

hysteresis and drift. Errors in these inversions will show
up as model uncertainty at low frequencies. When the
gain of the sensitivity function at low frequencies is small,
then the e↵ect of these uncertainties will be reduced. To
quantify how the low-frequency gain of S (which is always
zero at DC) depends on �, the DC gain of the integrated
sensitivity function SI , defined in (29), is computed at a
grid of � values. The resulting parametric plot is shown
as the black curves in Fig. 8, which are plotted against
the right axes. The experiments using � = 46.4 (for CS)
and � = 50.9 (for CZ) correspond to the minimum of the
respective |SI(1)| curves. Although the decrease and sub-
sequent increase in total settle time roughly follows the
|SI(1)| vs. � curve, the fastest experimental settle times
do not exactly match to the minima of |SI(1)|.

A complementary analysis is to consider how the gain
margin (GM) and phase margin (PM) change with �.
Fig. 11 shows parametric plots of these metrics (computed
from the loop gain L(z)). For both pole-placement scenar-
ios, robustness in terms of GM and PM increases mono-
tonically with � and is quite poor for the smallest �’s.

Ultimately, the fastest experimental settle time which
is achieved for either pole-placement scenario is a trade-
o↵ between the robustness metrics GM, PM, and |SI(1)|
and the decrease in nominal closed-loop bandwidth as �

increases. Determining the precise nature of this trade-o↵
would require precise knowledge of the model uncertainty,

which is unknown. However, qualitatively similar results
to those shown in Fig. 8 can be obtained by running sim-
ulations with small perturbations to the plant gain. This
is shown in Fig. 12 for the CZ scheme (the results for the
CS scheme are similar, but not shown for space reasons).
Even for the 2.5% plant perturbation, the best settle time
occurs at � = 10, rather than 10�5.
For the fastest experimental settle times (i.e., � = 100

for CS and � = 25 for CZ), the di↵erence in trajectories
and thus total settle times between MPC and SLF is neg-
ligible. The close correspondence of MPC and SLF trajec-
tories for large � is illustrated in Fig. 10b for references 6
and 24. The similarity in total settle times between MPC
and SLF holds for both simulation and experiment as can
be seen in the � = 100 row of Table 2a and the � = 25
row of Table 2b. We conclude that, under the present
state weighting schemes and our system with modeling
uncertainties, input constrained MPC does not reduce the
overall settle time compared to SLF. For systems with less
model uncertainty, the input constrained MPC may pro-
vide more advantages. Comparisons with robust MPC for-
mulations [45, 46], while outside the scope of the current
work, would be of interest to explore in the future.

6.2. Possible Objections

We envision three main criticisms to these results and
analysis. First, one might point out that both MPC and
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Figure 11: GM and PM dependence on �. PM is computed as the
smallest absolute di↵erence between \L(ej!Ts ) and 180� for ! such
that |L(ej!Ts )| = 1. Note that both loops are nominally stable:
negative PM means that a positive perturbation in phase larger than
|PM| at the crossover frequency will lead to instability.

SLF are in general, non-linear, making the classical met-
rics like GM, PM, and |SI(1)| not applicable. However,
for any setpoint, both SLF and MPC behave linearly in a
neighborhood around that setpoint. In other words, while
the beginning of a setpoint tracking maneuver may satu-
rate the SLF controller or put the MPC on its constraint
boundary, the latter part of that same maneuver will be
governed by linear dynamics. In that sense, the metrics
GM and PM and the DC gain of the integrated sensitivity
still provide insight, which we believe is manifested, e.g.,
in the correlation between overall settle time and |SI(1)|.

A related objection is that the relatively poor GMs and
PMs could be improved through a loop transfer recov-
ery (LTR) method. However, the classic method as pro-
posed in [47] does not translate directly to discrete-time.
Most e↵orts at obtaining LTR-like results for discrete-
time assume that (i) a current estimator is used and (ii)
CB 6= 0 [48, 49, 50]. When considering MPC, especially
at high sample rates, a prediction estimator must be used,
since computing the control action requires a significant
portion of the sample period. Also, for our system model,
CB = 0, because the relative degree is 12. These two fac-
tors preclude discrete-time LTR. Even if these issues could
be circumvented, in contrast to the continuous-time case,
the full-state feedback discrete-time LQR controller does
not have a guaranteed infinite gain margin nor a guaran-
teed phase margin greater than 60�. Rather, the guaran-
teed bounds for GM and PM depend on the DARE solu-
tion P [42, p. 136], which in turn depends on �.

Finally, one might argue that time-optimal MPC
(TOMPC) [51] might show some benefit over MPC with
a purely quadratic cost. Unfortunately, TOMPC requires
the solution of a sequence of optimal control problems with
long horizons at each time step [51]. Despite advances in
hardware and algorithms, such methods remain too slow
for systems with fast dynamics.

Figure 12: Total simulation settle times using the CZ control scheme
with perturbations to the plant gain as indicated by the legend.

7. Conclusions, Discussions, and Future Work

This paper has developed, compared, and analyzed set-
point tracking control laws for a piezo stage, subject to a
current limitation in the piezo power amplifier. Using an
incremental form with �uk as the control input and con-
servatively constraining �uk enabled the power amplifier
current to be kept within the 100 mA limitation. Model
predictive control (MPC) and saturated linear feedback
(SLF) control laws were developed, and two separate state
weighting schemes were outlined that allow the aggressive-
ness of the controllers to be easily adjusted. In agreement
with earlier work [23], the MPC controllers were able to
utilize more aggressive control weights.
The controllers were implemented and evaluated on our

piezo stage across a wide range of control weights in both
simulations and experiments. The experimental results
for both MPC and SLF generally yielded settle times sig-
nificantly slower than the simulations predicted, and the
most aggressive control weights did not yield the best ex-
perimental settle times. These results highlight the im-
portance of robustness in experimental performance. An-
alyzing both the MPC and SLF using the classical no-
tions of gain margin, phase margin, and gain of the sensi-
tivity function at low frequencies showed their usefulness
in assessing the robustness of the controllers as a func-
tion of the control weight. Given the model uncertainty
in the system, and the de-rating of both the MPC and
SLF controllers needed to improve robustness, the best
settle times achieved experimentally are comparable be-
tween the MPC and SLF approaches. Given the lower
computational cost of the SLF controller, it is the pre-
ferred method based upon the results and analysis in this
paper. Further exploration, development, and comparison
of classical robust controller formulations [52, 53] with ro-
bust MPC approaches [45, 46] are an area of future work.
Moreover, comparisons with other control approaches such
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as H1 [54, 55, 56, 57, 58], repetitive [59, 60, 61, 62], and
resonant [63, 64, 65, 66] controllers would provide even
greater understanding of the advantages and disadvan-
tages of these control approaches relative to one another
for piezo actuators in AFMs. The use of time-optimal
minimum jerk trajectories with a rate constraint, using
trajectory generation methods such as [67], with the lin-
ear LQG controller should also be further considered and
evaluated in the future.

MPC could possibly yield improved results if, rather
than constraining the slew rate of the low-voltage input,
the output of a power amplifier current model was con-
strained. Such an MPC problem could no longer be solved
with the FGM, though with a larger FPGA, it may be pos-
sible that the problem could be solved with the Alternat-
ing Direction Method of Multipliers (ADMM) [22]. Such a
formulation changes the constraints but not the cost func-
tion. Thus, the robustness properties explored here would
remain unchanged, though it is possible they would play
a smaller role. Since embedded platforms with FPGAs
capable of implementing the ADMM at the required sam-
ple rate are still expensive, while re-formulating MPC in
this way may improve performance over SLF, a holistic
systems-level optimization should weigh this improvement
against the cost of upgrading the power amplifier.
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