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Abstract
Sensory adaptation enables organisms to adjust their perception in a changing environment. A
paradigm is bacterial chemotaxis, where the output activity of chemoreceptors is adapted to
different baseline concentrations via receptor methylation. The range of internal receptor states
limits the stimulus magnitude to which these systems can adapt. Here, we employ a highly
idealized, Langevin-equation based model to study how the finite range of state variables affects the
adaptation accuracy and the energy dissipation in individual and coupled systems. Maintaining an
adaptive state requires constant energy dissipation. We show that the steady-state dissipation rate
increases approximately linearly with the adaptation accuracy for varying stimulus magnitudes in
the so-called perfect adaptation limit. This result complements the well-known logarithmic
cost-accuracy relationship for varying chemical driving. Next, we study linearly coupled pairs of
sensory units. We find that the interaction reduces the dissipation rate per unit and affects the
overall cost-accuracy relationship. A coupling of the slow methylation variables results in a better
accuracy than a coupling of activities. Overall, the findings highlight the significance of both the
working range and collective operation mode as crucial design factors that impact the accuracy and
energy expenditure of molecular adaptation networks.

1. Introduction

The surroundings of all living organisms constantly change and diverse mechanical, electrical, and chemical
signaling pathways enable organisms to continuously detect these changes [1–4]. Reliable detection of
changes in different signal backgrounds requires the adjustment of the sensitivity, which is called sensory
adaptation [5]. A paradigm of sensory adaptation is chemotaxis of the bacterium Escherichia coli (E. coli) [6].
Chemotaxis allows E. coli to navigate up or down chemical concentration gradients, e.g. to find an
environment with higher sugar concentrations. Chemotactic movement is a result of a stochastic control of
the rotation direction of the flagella that drive bacterial swimming [3]. E. coli swims in a pattern that
comprises of successive straight runs and tumble phases, during which it reorients. As the bacterium moves
towards higher concentrations of a chemoattractant, the tumbling frequency is reduced, which leads to
increasingly long runs that take the cell in the direction of higher concentration. Conversely, the tumbling
frequency is increased as the bacterium swims away from a repellent.

The presence of ligands is sensed by transmembrane receptors that are called methyl-accepting
chemotaxis proteins. Depending on ligand binding, receptors can either be in an active or an inactive state.
Chemoattractant binding inhibits receptor activity, which suppresses tumbling by lowering the
phosphorylation state of a response regulator CheY [7]. Simultaneously, an adaptation of the receptors to the
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ligand concentration occurs via methylation or demethylation of their four to five glutamate residues with
the help of the methyltransferase CheR and the methylesterase CheB, respectively [8, 9]. CheR preferentially
methylates inactive receptors and increases receptor activity through methylation if receptor activity is
reduced by an attractant. CheB preferentially demethylates active receptors and thereby lowers activity upon
removal of attractants. Consequently, adaptation restores the receptor activities to their original value after
an initial response to a ligand concentration change [5]. This feedback mechanism can in principle ensure a
precise and robust detection of concentration gradients, regardless of the ambient background concentration
of ligands. However, experiments also revealed a limited working range of adaptation with imprecise
adaptation to very high concentrations of attractants [10–12]. This limitation most likely results from a
saturation of available methylation sites [13]. While the impact of a limited working range on the sensory
performance has been studied theoretically [11, 13], it is less well-understood how the energetic cost of
adaptation depends on the working range of the mechanisms. Chemosensory adaptation that is realized by a
finite number of receptor methylation sites can be idealized as a dynamical process with a bounded range of
internal variables. How such a bounded internal phase space affects the energetics of nonlinear biological
processes is generally an open question. This issue motivates our study of sensory adaptation with a highly
idealized model where the interplay of phase-space boundaries of internal variables, energetics, and adaptive
performance can be studied.

Chemotaxis receptor molecules form clusters at the cell membrane [14, 15], where individual molecules
form homodimers and three such homodimers form a trimer [16–18]. A receptor core complex, the minimal
unit of signaling, contains two trimers and shows a non-linear dose-response [19]. Assemblies of multiple
chemoreceptors work in a cooperative manner to enhance the sensitivity of the response to subtle
concentration gradients [20–22]. On a molecular level, cooperativity can result from enzymes that change
the methylation state of the dimer they are bound to as well as the methylation state of neighboring dimers,
e.g. CheR and CheB [23, 24]. The molecular mechanisms of receptor cooperativity, as well as its functional
advantages, e.g. to achieve optimal signal-to-noise ratios, have been studied extensively. However, the impact
of receptor cooperativity on the energy consumption required for adaptation is hardly explored and warrants
further theoretical research.

A variety of models for sensory adaptation in chemotaxis have been proposed over the past
decades [25–31]. Idealized feedback systems can be represented by only a few coupled differential
equations [32, 33]. However, chemosensory adaptation is usually modeled as a stochastic process since the
number of molecules constituting a sensory apparatus in individual cells is typically quite small and thermal
noise and active processes result in noisy signals. This noise affects the reliability of information transmission
between an input signal and the output [34–36] and thereby determines the precision of the cellular
response. However, fluctuations are also intimately connected with the energetic cost of adaptation. From an
information-theoretic viewpoint, sensory adaptation always entails a thermodynamic cost since it implies an
irreversible erasure of stored information along with a measurement [37]. Moreover, the two fundamental
models of noisy cellular adaptation, namely the negative feedback mechanism in chemotaxis and the
incoherent type-1 feed-forward mechanism, only show adaptation if the systems’ states are held in
non-equilibrium [38, 39]. The energetic cost of maintaining a non-equilibrium state required for adaptation
can be related to sensory performance by an energy-speed-accuracy relation [38], which states that the
dissipation rate is proportional to the negative logarithm of the adaptation error, both measured in steady
state after application of a constant stimulus.

Most work on the energy-speed-accuracy relationship is based on a discrete description of receptor states
using master equations [38], for which the original relationship can be generalized [40]. Here, one assumes
two discrete states for the fast receptor activity and four to five discrete states that represent the slowly
changing methylation level that acts as a a negative control element in E. coli chemotaxis. Alternatively, the
receptor states can be represented in a continuum picture using Langevin equations for both the response
and the control variables. Based on simulation results for such a model, the generality of the
energy-speed-accuracy relation has been questioned [41]. The Langevin-equation based model is highly
idealized and not as directly applicable to chemotaxis as the discrete model. However, it has the advantage
that the adaptation process and the associated fluxes of probability can be clearly visualized in a
two-dimensional phase space. This facilitates an intuitive understanding of the adaptation process. In
principle, one may even study a hybrid model where the states of the control variable of the receptor are
discrete and the response variable is continuous, although the technical advantage of such an approach is not
obvious.

In this article, we take advantage of the clear representation offered by the Langevin-equation approach
to study the relationships between adaptation, working range, and energetic cost for individual and coupled
systems. Unlike earlier studies [38, 40], we directly simulate the Langevin dynamics, taking into account the
phase-space boundaries. Plotting the adaptation error against the dissipation rate for varying input signals,
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we find that the finite working range results in a linear cost-accuracy relation, which highlights the
importance of the finite working range of the internal variables on the performance and the cost of
adaptation. This result complements the well-known logarithmic energy-speed-accuracy relation [38]. Also,
to underpin our numerical findings, we derive an analytical expression for the energetic cost of adaptation as
a function of input stimulus strength. Furthermore, motivated by the discovery that receptor clusters consist
of minimal sensory units with a non-linear response [19], we consider pairs of receptors in the spirit of [42]
and ask how a linear coupling of the sensor states affects the overall cost-accuracy relationship. To this end,
we study two examples of coupled systems and find that, in general, a linear coupling reduces the cost of
adaptation without affecting its accuracy.

2. A single sensory system

2.1. Model introduction
An idealized model of bacterial adaptation can be built from a three-node network with a negative feedback.
We focus on a Langevin-type model suggested in [38], where all variables are assumed to have non-negative,
real values. The model comprises of a variable a for the rapidly changing receptor activity and a slowly
changing control variablem, representing the receptor methylation state. The activity a responds to changes
in an input stimulus s and also represents the output of the system.

Following a stimulus, a change in the activity a drives a slow compensatory change in the control variable
m, which ultimately brings a back to the stimulus-independent setpoint a0, see figures 1(a) and (b). The
dynamics of the activity and the control (methylation) variables is described by a pair of coupled Langevin
equations as

ȧ= Fa (a,m, s)+ ηa (t) ; ṁ= Fm (a,m, s)+ ηm (t) . (1)

Here, ηa(t) and ηm(t) both represent white noise. Denoting expectation values as ⟨. . .⟩, the noise satisfies
⟨ηi(t)ηj(t ′)⟩= 2∆iδijδ(t ′ − t) where the indices i and j represent a orm. The functions Fa and Fm provide a
lumped description of the nonlinear biochemical reactions that govern the dynamics of fast response and
slow adaptation, respectively [38].

The Fokker–Planck equation (FPE) that corresponds to the Langevin equations (1) describes the
evolution of the phase-space probability distribution function (PDF) P≡ P(a,m, t) as

∂tP=−∂aJa − ∂mJm, (2)

where Ja ≡ FaP−∆a∂aP and Jm ≡ FmP−∆m∂mP are the components of the probability current J.
It can be shown that the system must obey the following condition to satisfy detailed-balance

∆m∂mFa =∆a∂aFm, (3)

which is also derived in the supplementary material. This detailed-balance condition for the negative
feedback control mechanism implies that adaptation cannot be realized in equilibrium and is inherently
dissipative [43].

We specify the functional form of the forces driving the dynamics of a andm as

Fa (a,m, s) =−ωa [a−G(s,m)] (4)

and

Fm (a,m, s) =−ωm (a− a0) [β− (1−β)C∂mG(s,m)] , (5)

where

C≡ ∆m/ωm

∆a/ωa
(6)

is assumed to be a constant and β ∈ [0,1] is a parameter that determines whether the system is in
equilibrium, β= 0, or out-of-equilibrium, β > 0. The rate of the response and adaptation processes are
determined in equations (4) and (5) by the constants ωa and ωm, respectively. We assume that

ωa ≫ ωm, (7)

such that the time scales of response and adaptation are well-separated.
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Figure 1. (a) A minimal three-node network with a negative feedback loop. (b) Following a change of the stimulus s, the
instantaneous response of the activity a is cancelled by a gradual change in the control variablem. The adaptation error is defined
as the deviation of the expectation value of a from its setpoint a0 in the stationary limit. (c) Phase portrait of the dynamics in the
absence of noise. For β= 1, the fixed point of the deterministic dynamics (a0,m∗) is stable and represents the adaptive state of
the system. (d) Steady-state probability distribution of the system variables in the presence of noise. The deterministic fixed point
lies at the center of the probability distribution, that is, (⟨a⟩ss,⟨m⟩ss) = (a0,m∗). (e) For β= 0, the chemical driving vanishes and
the fixed point (a0,m∗) is an unstable saddle node. (f) In the presence of noise, the state of the non-adaptive system is driven to
the corners of the phase space. Simulation parameters: s= 20, ωa = 50,ωm = 5,T= 0.01. For (f), we chose s= 3 to illustrate that
the state localizes in both corners of the phase space.

The function G(s,m) is chosen to be a Hill equation in the Michaelis–Menten limit, i.e. with Hill
coefficient H= 1 as

G(s,m) =
(
1+ s/

(
K0e

2m
)H)−1

, (8)

where we set K0 = 1. The functional form chosen in equation (8) ensures that ∂mG> 0 and ∂sG< 0, which is
required for the negative feedback mechanism [38].

In a deterministic setting, for any β, there exists a fixed point where the two nullclines of the
deterministic system intersect. Consequently, there is a value of the control variablem=m∗ that satisfies

G(s,m∗) = a0. (9)

Moreover, there exists a βc such that the fixed point is stable only if β > βc, where 0< βc < 1 [38]. Thus,
stable adaptation is only achieved if β > βc. Phase portraits of the system with stable fixed points for β= 1
and unstable fixed points for β= 0 are shown in figures 1(c) and (e), respectively. The corresponding
probability distributions are presented in figures 1(d) and (f). Throughout this article, we focus for simplicity
on the case of β= 1, which is called the fully adaptative state and represents the perfect adaptation limit.

2.2. Assumptions & definitions
2.2.1. Phase space & adaptation error
For the model described in equations (1), the activity a and control statem are stochastic variables that lie in
a phase space denoted as Ω≡ [0,1]× [0,m0], withm0 corresponding, e.g. to the maximum number of
methylation sites in a receptor. To solve the FPE, equation (2), on the interior of the phase space,
Ω ≡ Ω \ ∂Ω, a set of well-defined boundary conditions is required. For this model, we impose reflective
boundary conditions, which state that the current vector obeys

n · J= 0 for (a,m)
T ∈ ∂Ω, (10)
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where n is the outward-pointing vector normal to the boundary ∂Ω.
The setpoint for the activity a0 is assumed to be a constant. Since the function Fm is designed to be

proportional to (a− a0), the generalized force driving methylation changes vanishes at the setpoint. The
integral feedback mechanism ensures that the statistical average of the activity

⟨a(t)⟩=
¨

Ω

aP(a,m, t) dadm (11)

approaches a0 in the steady state [38]. Denoting the steady-state average as ⟨. . .⟩ss, the adaptation error

ϵ≡ |1−⟨a⟩ss/a0| (12)

quantifies the accuracy of adaptation in the stationary limit after the decay of transient responses to a signal.

2.2.2. Effective temperature & energy dissipation rate
In equilibrium, the fluctuation-dissipation theorem can be used to relate the temperature of the system to the
noise amplitude and the damping in the system [44]. In the following, we set the Boltzmann constant to
unity, kB ≡ 1, and define the effective temperatures pertaining to the stochastic variables of the system in
equation (1) as follows

Teff(a) ≡
∆a

ωa
, Teff(m) ≡

∆m

ωm
. (13)

We assume that the response and adaptation processes described in equation (1) are coupled to the same
heat bath. Therefore, the effective temperatures are equal Teff(m) = Teff(a) = T, which entails that C= 1.

Since the product of temperature and the entropy production rate equals the dissipation rate in a
stationary, isothermal setting, see [45], the stationary dissipation rate can be expressed as

Ẇdiss = T

¨
Ω

[
J2a

∆aP
+

J2m
∆mP

]
dadm. (14)

This equation for the dissipation rate is only valid for a system with single heat bath and temperature T. For a
system with multiple heat baths, additional terms must be included in equation (14) to account for the heat
flux between reservoirs [46, 47].

An analytical approximation for the dissipation rate was given in [38], where equation (7) and Laplace’s
integral method were used to estimate the integrals in equation (14), leading to the following expression

Ẇdiss ≈ Ẇa
diss =

ωmT

C
(1+C∂mG(s,m))

2 ∣∣
m=m∗

= ωmT(1+ ∂mG(s,m))
2 ∣∣

m=m∗ ,
(15)

where C= 1, the superscript ‘a’ stands for the analytical approximation proposed in [38], andm∗ is the
m-coordinate of the fixed point of the deterministic system i.e. it satisfies equation (9).

Also, employing the framework of stochastic thermodynamics [45, 46], the dissipation rate for an
individual trajectory ‘t’ of the system can be expressed as

Ẇt = T
(
∆−1

a Fa ◦ ȧ+∆−1
m Fm ◦ ṁ

)
, (16)

where ◦ indicates a product in the Stratonovich sense [46]. For an ensemble of trajectories, we take the
statistical average of equation (16) to obtain an expression for the dissipation rate in stationary state as

Ẇdiss =
〈
T
(
∆−1

a Fa ◦ ȧ+∆−1
m Fm ◦ ṁ

)〉
ss
. (17)

In contrast to equations (14) and (17) can be straight-forwardly evaluated using the trajectories generated by
simulations of the stochastic dynamics.
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2.3. Simulationmethods
To simulate the system of Langevin equations (1), we employ an explicit first-order method as described in
[48], where the boundary conditions can be accounted for by adding a term that ensures normal reflections
at the boundary [49]. However, to make the effect of the boundaries explicit in analytical calculations of the
dissipation rate, we mostly employ smooth potentials that approximate the no-flux boundary conditions of
the system. The potentials are

V(a,m)≡ 1

ωa
Vb (a,amax)+

1

ωm
Vb (m,mmax) , (18)

where (a,m) ∈ Ω and the function Vb with arguments a orm is given by

Vb (r, rmax) = V0

[
exp

(
−r

σ

)
+ exp

(
r− rmax

σ

)]
. (19)

The potential Vb is a superposition of exponential functions which approximate hard, reflecting walls in the
limit of small σ> 0. Non-zero values of σ ensure that the potential is smooth and bounded for r ∈ (0, rmax).
To test if the finite range of the wall potentials affects the simulation results, we also perform simulations
using ‘reflection operators’, the details of which can be found in the supplementary material. The results of
computations using the reflection operators are also presented in the supplementary material (figure S2) and
agree with results that were obtained from computations that make use of the boundary potentials.

2.4. Analytical and numerical results
In this section, we study how the finite variable-range in a fully adaptive system leads to a non-zero
adaptation error that increases with the magnitude of the stimulus. Concomitantly, the boundaries reduce
dissipation, which results in a novel functional form of the cost-accuracy trade-off.

2.4.1. Simulation results: dependence of adaptation error on system variables
Since the system consists of fluctuating state variables, understanding its adaptive performance requires a
consideration of the probability distribution of the variables. The probability distribution is affected by the
presence of phase-space boundaries that determine the range of the system variables. We define the bulk of
the phase space, denoted by B ⊆ Ω⊂ Ω, as the largest subset of the phase space in which the
boundary-induced changes of the probability distribution do not result in measurable changes in adaptation
error.

The capacity of a system to adapt after a change in stimulus s is limited by the phase-space boundaries
that determine the maximum and minimum values of system variables [50, 51]. In the present model, this
claim can be proven by separating the adaptation error, equation (12), into three contributions,

ϵ= |ϵ1 − ϵ2 + ϵ3|, (20)

with

ϵ1 =
1

βωma0

ˆ 1

0
da∆mP(a,0) , (21a)

ϵ2 =
1

βωma0

ˆ 1

0
da∆mP(a,m0) , (21b)

ϵ3 =
1−β

βa0

¨
Ω

dadm P(a,m)∂mG(s,m)(a− a0) , (21c)

which are obtained using the time-scale separation of adaptation and response. In equation (20), ϵ1 and ϵ2
are contributions due to the phase-space boundaries, while ϵ3 accounts for the error in the bulk. For perfect
adaptation, β= 1, the bulk contribution vanishes [38]. Therefore, in a fully adaptive state, any error in the
stationary value of the adapted state results from the limited range of the internal variables.

Since in a perfectly adaptive state the adaptation error is only non-zero near the boundaries, the
adaptation error for a large stimulus s depends on the maximum value that the methylation variable can
assume. This maximum value is determined bym0. Results from numerical computations displayed in
figure 2(a) show that the dependence of the adaptation error onm0 can be fitted by a Fermi–Dirac-like
function as

ϵ̃(s,m0) :=
1

c1 + ec2(m0−c3)
=

1

c1 + ẽc2 k̂(m0−c3)/s
, (22)
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Figure 2. (a) Dependence of the adaptation error on the range of the control (methylation) variablem ∈ [0,m0], with k̂= 104.
For largem0, the error vanishes for a fully adaptive system since the state rarely encounters the boundary atm0. Simulation results
can be fitted with an exponential form, see equation (22). Vertical lines show values ofm0 at which the corresponding
deterministic systems produce an error of 5%. (b) Adaptation error as a function of stimulus strength at fixed system size with
m0 = 4. (c) The dissipation rate Ẇdiss of the adaptive system decreases with reduced system size if the state encounters the
phase-space boundary. For small stimuli, s= 102, the state remains in the center of the space and the dissipation is independent
of system size. (d, e) The function ∂mG(s,m)|m=⟨m⟩ss and the dissipation rate are roughly quadratic functions of the setpoint
distance from the neutral state a0 = 0.5, which lies in between the active state (a= 1) and the inactive state (a= 0) of the system.
(f) Dissipation rate as a function of the stimulus strength s. Simulation results Ẇdiss are compared with an analytical
approximation Ẇa

diss and an empirical formulaW(s,λ). The three quantities agree for small stimuli s< s0. Otherwise, Ẇa
diss

differs from the simulation results due to the breakdown of the analytical approximation at the boundaries.

where c1, c2 = c̃2
k̂
s ,and c3 are fit parameters and k̂= 104 is a constant scale factor. In figure 2(a), the values of

m0 are shown at which the analytical solution of the deterministic system predicts an error of 5% for
different s. These values indicate the points where the boundary effects start to become significant for a given
stimulus. Figure 2(b) illustrates that the adaptation error also depends on the setpoint a0. A larger setpoint
results in an increased adaptation error.

2.4.2. Simulation results: dissipation rate
If the stimulus magnitude s exceeds a threshold s0, the solution of equation (9) yields a fixed pointm∗ >m0

that lies outside the variable domain,m∗ ̸∈ Ω. Then, the steady-state expectation value ⟨m⟩ss deviates from
m∗. To compute the dissipation rate Ẇa

diss, see equation (15), outside the bulk B, we replacem∗ with ⟨m⟩ss. A
comparison ofm∗ and ⟨m⟩ss as a function of the stimulus s can be found in the supplementary material,
figure S3.

The interaction of state trajectories with phase-space boundaries reduces the system’s energy dissipation
rate in the stationary state. As shown in figure 2(c), for a small value of the input stimulus, s= 102, the
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dissipation rate of the system remains constant for varyingm0. However, for larger s the dissipation of the
system starts to decrease when the probability distribution touches the boundary atm0. Furthermore, when s
is fixed, changing the setpoint a0 of the activity variable also affects the energy cost, as moving the
distribution along the a−axis introduces effects of the boundaries at a= 0 or a= 1. The plot in figure 2(e)
shows that the dissipation rate decreases symmetrically as a0 is moved away from the center at a0 = 0.5.

2.4.3. Breakdown of approximation for the dissipation rate and empirical formula
Comparison of the dissipation rate in simulations, Ẇdiss, with the approximate expression Ẇa

diss,
equation (15), shows that the latter only holds if the setpoint is close to the center of the phase space,
a0 = 0.5, see figure 2(e). Thus, the analytical approximation holds only if the effect of the boundaries is very
small whereas Ẇdiss ⩽ Ẇa

diss otherwise.
The behavior of the dissipation rate Ẇdiss can be further analyzed by defining a threshold value s0 for the

input stimulus. Above this threshold, the probability distribution is sufficiently altered by the boundary at
m=m0 to change the dissipation rate by more than some fixed percentage. For a0 ∈ (0.3,0.7), see
figure 2(e), and a large enough value of s such thatm∗ ̸≈ 0, we conjecture the following expression for the
dissipation rate

Wdiss :=

{
Ẇa

diss s< s0

K0e−λ(s−s0) + ϵ0
(
1− e−λ(s−s0)

)
s⩾ s0

(23)

where K0 ≡ Ẇa
diss

∣∣
s=s0

is the dissipation coefficient and ϵ0 ≡ min
s∈(0,∞)

Ẇdiss. Results from the empirical

expressionWdiss and Ẇdiss are shown in figure 2(f). The expression in equation (23) describes the numerical
data well, while the approximation Ẇa

diss fails.

2.4.4. Cost-accuracy relation
What is the energetic cost of accurate adaptation? A well-known energy-speed-accuracy relation, proven in
[38], asserts a monotonous increase of the dissipation rate with adaptation accuracy for varying chemical
driving force. More precisely, the energy-speed-accuracy relationship states that the dissipation rate is
proportional to the negative logarithm of the error. See the supplementary material (figure S4) for a
recapitulation of this result in our simulations where the chemical driving is controlled by the value of β.
Optimal accuracy is reached in the limit of perfect adaptation where the dissipation is maximal.

To understand how the finite range of internal variables affects the relationship between dissipation and
accuracy, we vary here the magnitude of the external stimulus s. We focus on the limit of a fully adaptive
model, i.e. β= 1. As shown in figure 3(a), the adaptation error obtained in simulations decreases linearly
with a growing dissipation rate. In other words, the accuracy increases with the energetic cost also if the error
solely results from a finite variable range. This relationship is thus qualitatively similar to the
energy-speed-accuracy relation, but the functional forms and implications are different.

To buttress our numerical result for the cost-accuracy relation, we next perform analytical calculations of
the dissipation rate. As illustrated in figures 2(e) and (f), the validity of the approximate expression Ẇa

diss

breaks down when significant adaptation errors occur close to phase-space boundaries. Thus, we derive a
new equation for the dissipation rate by explicitly taking into account the boundaries of the variable domain.
We consider the system of Langevin equations with any smooth respulsive boundary potential V as

ȧ= Fa (a,m, s)−ωa∂aV+ ηa, (24a)

ṁ= Fm (a,m, s)−ωm∂mV+ ηm. (24b)

These equations are linearized around any point near the phase-space boundary (ac,mc) of their
deterministic counterparts. Using equations (4) and (5) with β= 1, we obtain

ȧ=−ωa (a− ac)
[
1+ ∂2

aV
∣∣
a=ac

]
+ωa∂mG(s,m)

∣∣
m=mc (m−mc)+ ηa, (25a)

ṁ=−ωm (a− ac)−ωm∂
2
mV

∣∣
m=mc (m−mc)+ ηm, (25b)

where the higher order terms of the expansion are ignored and the leading terms in the Langevin equations
drop out, as we define the fixed point (ac,mc) to satisfy,
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Figure 3. (a) Cost-accuracy relation for varying stimulus strength. The adaptation error ϵ is linearly related to the the dissipation
rate Ẇdiss at different values of s. Analytical results Ẇe

diss estimating the dissipation rate at weak and strong stimuli, s< s0 and

s≫ s0, agree with the simulation data. The steepest decent approximation used for Ẇa
diss breaks down for strong stimuli.

(b) Steady-state probability distribution after application of a weak stimulus, s= 103 < s0. The distribution resembles a Gaussian
and the averages co-localize with the solution of equations (26a) and (26b), (ac,mc). (c) State probability distribution after
application of a strong stimulus, s= 5 · 104 > s0. The distribution is skewed and the averages do not co-localize with the
maximum of the distribution (ac,mc). Simulation parameters: V0 = 1/2, ωm = 5, ωa = 50,σ = 0.01, T= 0.01.

G(s,mc)− ∂aV
∣∣
a=ac

− ac = 0, (26a)

(ac − a0)+ ∂mV
∣∣
m=mc = 0. (26b)

The above two equations represent a modified version of equation (9). The boundary potentials ensure that
the solutionmc exists for all values of the input and thatmc =m∗ for s< s0.

The fixed point (ac,mc) corresponds to the point of maximum likelihood - the point in the phase space
where the probability density function reaches its maximum value, see figures 3(b) and (c). The FPE
corresponding to the linearized equations (26a) and (26b) is solved by a Gaussian ansatz. Substitution of the
solution into the expression for the dissipation rate, equation (14), yields

Ẇe
diss = Teff

(1+ ∂mG(s,m))
2
ωaωm

ωa +ωm∂2
mV+ωa∂2

aV

∣∣∣∣
a=ac

m=mc

. (27)

Here, ∂2
aV and ∂2

mV are both non-negative due to the choice of boundary potentials. The superscript ‘e’ in
Ẇe

diss indicates that this expression arises from a linear expansion of the governing equations of the system.
The approximation in equation (27) is only valid when either s< s0 or s→∞ because the state

probability distribution can be approximated by a Gaussian distribution only for such values of s, see
figure 3(b). For other values of s, the distribution is skewed and an expansion around the point of maximum
likelihood results in larger errors.

As illustrated in the supplementary material, simulations with the chosen exponential boundary
potentials yield very similar results to simulations employing a reflection operator with very small timesteps.
Thus, the results are expected to also hold for reflective boundaries. Also, a master-equation based
chemotaxis receptor model with discrete molecule states yields qualitatively the same cost-accuracy relation
for varying stimulus strength as shown for the Langevin-equation based model in this section, see
supplementary material.
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2.5. Discussion of results for a single sensory system
Using a minimal Langevin-equation-based model for adaptation [38], we analyze how a limited range of
internal variables affects adaptation accuracy and energetic cost. The model consists of a stochastic variable a
called activity, a slow, stochastic control variablem, and an externally controlled stimulus s. In this work, the
adaptation error ϵ is defined as the systematic, relative deviation of the activity a from its setpoint a0, see
equation (12). The adaptation process can be visualized by following the motion of the system state (a,m) in
the rectangular variable domain Ω with a ∈ [0,1] andm ∈ [0,m0]. For the fully adaptive model considered
here, the adaptation error solely results from the limited range of the internal variables a andm. To explain
the onset of the error ϵ, consider the state to be initially at its setpoint with ⟨a⟩= a0. After a sudden increase
of the stimulus s, ⟨m⟩ slowly shifts to higher values to bring ⟨a⟩ back to its setpoint. However, if s becomes
larger than a certain input-threshold s0, such that the control variable approaches its upper limitm0, the
reflective boundaries alter the probability distribution, see figures 3(c) and 1(d). Then the control variable
cannot increase sufficiently to counteract the effect of the external stimulus on the activity a and the perfect
adaptability of the system is compromised. Unlike the error due to the limited range of the control variable,
which results from the deterministic dynamics of the system, the error resulting from finite domain of a is a
consequence of the finite, non-zero variance of the noise in the system. Also, as shown in figure 2(a), the
adaptation error saturates for very large stimulus s to a maximum value lims→∞ ϵ≡ ϵmax < 1. ϵmax is
independent of both the setpoint and the system size as long asm0 is finite. The limit on the maximum error
results from the skewness of the probability distribution.

The considered energetic cost of adaptation is the steady-state dissipation rate after a change of the input
signal. Perpetual dissipation in the adaptive system results from the non-equilibrium forces that maintain the
state (a,m) close to a fixed point in the presence of fluctuations. The fluctuations drive the state away from its
fixed point and work is required to bring it back. Upon strong stimulation, the probability distribution for
(a,m) moves to the vicinity of the boundaries. Intuitively, the effect of boundaries can be interpreted here as
passive forces that also maintain the state at a fixed point. More formally, equation (10) ensures that the
normal component of the fluxes at the boundary vanishes, thereby reducing the contribution of these fluxes
to the integrand in equation (14). Consequently, the dissipation rate decreases at the boundary, see
figure 2(f).

A plot of adaptation error against dissipation rate as a function of stimulus strength yields a linear
cost-accuracy relationship as a result of the limited range of internal variables. Thus, our result pertain to the
behavior of a sensory system in a regime where its internal variables reach their physical limits. In that case,
we see that the system is unable to adapt, but it also reduces the energy it uses for adaptation in a linear
fashion. By contrast, variation of the chemical driving force yields a logarithmic cost-accuracy relationship,
called the energy-speed-accuracy relation [38]. Thus, the functional form of cost-accuracy relations depends
on the nature of the internal constraints imposed on the adaptation process. We emphasize, however, that the
energy-speed-accuracy relation can directly imply a design trade-off for cells since the adaptive performance
can be improved by investing more energy. This is not the case for the cost-accuracy relationship studied
here, which depends on the range of internal variables and the external stimulus. In order to turn our results
into a proper trade-off relationship, one would need to determine how the cost of enlarging the state space,
i.e. to generate molecules with more methylation sites in the case of chemotaxis, improves chemotaxis.

3. Interacting systems

We now shift the focus from single sensory units to pairs of interacting sensory units as illustrated in
figures 4(a).(i) and (b).(i). The state of a sensory unit with index i ∈ {1,2} is described by the variables
(ai,mi) that represent the activity and the control (methylation), respectively. The four-dimensional phase
space is denoted as Ω= [0,1]2 × [0,m0]

2.

3.1. Overall adaptation error
Before specifying how the units interact, we introduce the adaptation accuracy of a combined system
generically. For the coupled pair of systems, the overall activity a and overall error ϵ are defined as

a≡ (a1 + a2)/2, (28)

ϵ≡ |1−⟨a⟩ss/a0| , (29)

where ⟨a⟩ss represents the stationary-state average of the overall activity and a0 is the setpoint value, which is
assumed to be the same for both units. By employing the definition of overall activity, equation (28), and the
sub-additivity of the norm, we can establish an upper bound on the overall adaptation error for the
interacting system
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Figure 4. ((a).(i), (b).(i)) Composite systems consisting of two sensory units, where each realizes an adaptive feedback loop. The
units are linearly coupled either via their activity or their control (methylation) variables. The overall activity a of the system is the
average of the individual activities a1 and a2. ((a).(ii)–(v)) Steady-state probability distribution P visualized on two-dimensional
planes in the phase space for coupled activities. A large coupling constant ω12 > ωa{1,2} leads to a strong correlation of the rapidly
changing activities a1 and a2. The control variablesm1 andm2 are also strongly correlated. As a result, the distributions on the
ai −mi planes for the individual units are also altered. ((b).(ii)–(v)) State probability distribution P visualized on
two-dimensional planes in the phase space for coupled control variables. Due to the slow dynamics of the control variables in the
individual units determined by ωa{1,2} ≫ ωm{1,2} , the variances of them{1,2} are smaller than the variances of the a{1,2}. As a
result, even if a large coupling constant enforces a strong correlation ofm1 andm2, the activities are only weakly correlated as seen
by the almost radially symmetric distribution in the a1 − a2 plane. Consequently, the probability distributions for the individual
units shown in ((b).(ii)–(iii)) have largely the same shape as in absence of coupling, see figure 1(d). Simulation parameters:
k= 2000, s= 100, ωa{1,2} = 50, ωm{1,2} = 5, T= 0.01, m0 = 4.

ϵ=

∣∣∣∣∣ ⟨a1⟩ss − a0
2a0

+
⟨a2⟩ss − a0

2a0

∣∣∣∣∣⩽ 1

2

∣∣∣∣∣ ⟨a1⟩ss − a0
a0

∣∣∣∣∣+ 1

2

∣∣∣∣∣ ⟨a2⟩ss − a0
a0

∣∣∣∣∣= 1

2
(ϵ1 + ϵ2) . (30)

Here, ϵ1 and ϵ2 are the errors of the individual units, which are calculated with respect to the joint probability
distribution of the interacting system. The upper bound (30) can be generalized to a system comprising of an
arbitrary finite number of sensory units.

3.2. Coupled activities
The first interacting system we investigate involves coupling of the activities of two units. Coupling is
assumed to be linear in the variables with symmetric coefficients.

3.2.1. Model description
The system is described by a set of two Langevin equations for each unit, denoted with the indices
i, j ∈ {1,2}. For unit i and with neighboring unit j ̸= i the equations are given by

ȧi = F̃ai
(
ai,aj,mi, s

)
+ ηai ,

ṁi = Fmi (ai,mi, s)+ ηmi ,
(31)

where η{mi,ai} is Gaussian white noise as in equation (1) and all η... with subindices {a1,a2,m1,m2}, are
statistically independent of each other. The generalized force F̃ai that appears in equations (31) is defined as

F̃ai
(
ai,aj,mi, s

)
≡ Fai (ai,mi, s)−ωij

(
ai − aj

)
. (32)
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As the interaction between the two units is assumed to be symmetric, we have ω12 = ω21. In equation (32) we
set

Fai =−ωai [ai −Gi (s,mi)] , (33)

which represents the driving forces that depend on the input signal s through Gi(s,mi) = (1+ s/e2mi)−1.
The time evolution of the joint PDF P ≡ P(a1,m1,a2,m2, t) is governed by a FPE. Conditions for

detailed balance in absence of driving can be derived analogously to the non-interacting case, see
supplementary material. These conditions are consistent with the assumption of one effective temperature
for the two units with identical friction and noise strength coefficients. To control the interaction strength,
we introduce a tuning parameter k such that

ω12 = k(ωa1T) = ω21 = k(ωa2T) , (34)

where 0⩽ k<∞ and ωa1 = ωa2 .
Furthermore, the detailed-balance conditions require that Fmi is independent of aj for i ̸= j and

i, j ∈ {1,2}. Integration of the detailed-balance conditions allows one to systematically construct an
expression for Fmi as

Fmi = ωmi(ai − a0)

[
β +(1−β)

∆mi

∆ai

ωai

ωmi

∂miGi (s,mi)

]
(35)

where 0⩽ β ⩽ 1 and
∆mi
∆ai

ωai
ωmi

= 1 since the effective temperatures are assumed to be equal. We take β= 1

unless specified otherwise.
The boundary conditions for the system in equation (31) are similar to equation (10), but the probability

flux is now a four-dimensional vector denoted by J= (Ja1 , Ja2 , Jm1 , Jm2)
T. The boundary potential is re-defined

accordingly.
The dissipation rate for the interacting system can be obtained from the dissipation rate integral of the

system, analogous to equation (14). For system consisting of a pair of sensory units we obtain

Ẇ= T
∑

i∈{1,2}

〈(
∆−1

ai F̃ai ◦ ȧi +∆−1
mi

Fmi ◦ ṁi

)〉
ss
. (36)

3.2.2. Numerical results for coupled activities
The set of Langevin equations (31) are solved numerically with the Euler–Maruyama method, as for the
non-interacting system. Results are shown in figures 4(a).(ii)–(v) and 5(a).

The PDF P has four dimensions and plotting the distribution requires a selection of two-dimensional
planes in the phase space as shown in figures 4(a).(ii)–(v). Figures 4(a).(ii) and (iii) display distributions for
two sensory units with strong coupling, i.e. k≫ 1. Comparison with results for a single unit, see figure 1(d),
shows that the coupling distorts the probability distributions since it introduces a correlation between the
two activity variables. Consequently, the probability distribution on the a1 − a2 plane aligns along the line
a1 = a2 and the distributions in the two a−m planes also exhibit a stretched variance along them−axis.

Figure 5(a).(i) illustrates the relationship between the overall adaptation error and the dissipation rate for
different stimulus magnitudes s. As for single sensory units, see figure 3(a), the cost-accuracy relation
resulting from the numerical solution of equation (31) is linear. For vanishing interaction strength, k= 0, the
pair of units together have the same adaptation accuracy as an individual system, albeit with twice the
dissipation rate. As k is increased, the slope of the linear relation becomes more negative, implying that
interaction reduces the dissipation rate. Figure 5(a).(iii) illustrates that a linear coupling of the activities
reduces accuracy of the system. However, the overall adaptation error increases only slightly while the
dissipation is strongly affected by the coupling.

3.3. Coupled methylation
After studying coupled activities, we next consider a coupling of the control (methylation) variables. Again,
the interaction is assumed to be linear and symmetric.
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Figure 5. Cost-accuracy relation for composite systems consisting of pairs of linearly coupled sensory units. ((a).(i)) Adaptation
error vs. dissipation rate for varying stimulus magnitude s in systems with linearly coupled activities. As for a single,
non-interacting unit, the cost-accuracy relation is linear. The parameter k controls the coupling strength. When k= 0, the units
do not interact and the overall dissipation rate is twice the dissipation rate of a single unit. As the coupling strength k increases,
less work is required to achieve the same accuracy as without coupling. ((a).(ii) and (iii)) Dissipation rate and overall adaptation
error as a function of the stimulus magnitude for different coupling strengths k. With increasing coupling strengths, the
dissipation rate decreases while the adaptation error increases slightly when activities are coupled. ((b).(i)) Adaptation error vs.
dissipation rate for varying stimulus strength s in systems with linearly coupled control (methylation) variables. For strong
coupling, k ⩾ 20k0, the overall dissipation rate nearly equals that of a single non-interacting system. ((b).(ii) and (iii)) Dissipation
rate and overall adaptation error as a function of the stimulus magnitude for different coupling strengths k. With increasing
coupling strength, the dissipation rate decreases while the adaptation error remains unchanged. Linear coupling of the slow
control variables thus reduces the energetic cost of adaptation per unit without compromising the adaptive performance. ((c).(i)
and (ii)) The adaptation error is consistently lower if control variablesmi are coupled, rather than activity variables ai, for
otherwise identical systems. Dots are simulation results, dashed lines show data trend. Simulation parameters: k0 = 100,
ωa{1,2} = 50, ωm{1,2} = 5, T= 0.01, σ = 0.01, V0 = 1/2.

3.3.1. Model description
In analogy to equation (31), the dynamics of a pair of sensory units labeled with the indices i, j ∈ {1,2} and
with coupled variablesm1 andm2 is described by Langevin equations. For unit i and with neighboring unit
j ̸= i the equations are given by

ȧi = Fai (ai,mi, s)+ ηai ,

ṁi = Fmi (ai,mi, s)−ωij

(
mi −mj

)
+ ηmi ,

(37)

where the white noises η{ai,mi} are again pairwise independent of each other. The generalized forces Fai are
the same as in equation (33). To guarantee detailed balance in equilibrium, the system must satisfy six
constraints as shown in the supplementary material. These constraints are used to construct Fmi , resulting in
the same expression as given in equation (35). The coupling constants are scaled with the effective
temperature T as

ω12 = k(ωm1T) = ω21 = k(ωm2T) , (38)
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where the parameter 0⩽ k<∞ is again used to tune the interaction strength. Lastly, as the interaction
strength is symmetric and linear, the dissipation rate can be again computed using equation (36).

3.3.2. Numerical results for coupled methylation
Results from simulations of the system described by equation (37) are shown in figures 4(b)(ii)–(v) and 5(b).
The former displays the histogram of trajectories for different variable combinations, representing the
probability distribution on different two-dimensional planes. The latter illustrates the cost-accuracy relation
of the interacting system for varying interaction strengths.

Typically, the range of the control variable is much larger than the amplitude of the noise,m0 ≫∆m.
Therefore, the probability distribution in them1 −m2 plane appears highly localized, see figure 4(b).(v).
Coupling the control elements reduces the spread of this distribution on them1 −m2 plane even more. The
two slow variables are strongly correlated. However, the two fast activities are almost independent of each
other and their joint distribution is only slightly elongated along the a1 = a2 axis, see figure 4(b).(iv).
Overall, the probability distribution on the a1 −m1 and a2 −m2 planes are very similar to the distributions
for a non-interacting system, figures 4(b).(ii) and (iii). Therefore, the distributions of the coupled units are
distorted after application of a stimulus almost the same way as for a non-interacting system. Adaptation
errors of the fully adaptive, interacting system are consequently almost the same as for a single sensory
system.

A coupling of the control variables reduces the overall dissipation rate both for trajectories that stay in
the phase space interior and for trajectories that interact with the boundaries. For a given coupling strength
k, the dissipation rate is slightly higher if themi are coupled, compared to coupled activities ai. Figure 5(b).(i)
shows a linear relationship between the adaptation error and the dissipation rate required for adaptation,
similar to figure 5(a).(i). Overall, coupling of the control variables reduces the dissipation rate and the
adaptation error appears to be independent of interaction strength for this coupling, see figure 5(b).(iii).

3.4. Discussion of interacting systems
To study the adaptive performance for an idealized system consisting of two sensory units, we define an
overall adaptation error in terms of the overall activity, see equations (28) and (29). These definitions result
in an upper bound for the overall adaptation error of the system in terms of the individual errors of the
interacting sensory units. If one measures the error of individual adaptive units, the overall error must be
smaller than or equal to the mean of the individual errors. This inequality is generic as it is robust to the type
of interaction between the units and is true even if the systems are not identical, provided they have the same
setpoint a0.

The first interacting system that we consider is one in which the activities ai are coupled, see
equation (31). For this system, we find that increasing the interaction strength leads to a reduction of the
dissipation rate and a slightly worse adaptation accuracy. This change of the system behavior is due to a
stretch of the probability distributions for the (ai,mi) along themi−axes. After an increase of the stimulus s,
the probability distributions shift to higher values of the control variablesmi. During this shift, the
distributions interact earlier with the boundaries of the phase space if they are stretched. Thus, boundary
conditions of the variables influence the behavior of activity-coupled units at smaller stimuli s than for the
corresponding non-interacting unit. Instead of coupling the fast activities, we next couple the slow control
variables, see equation (37). Similarly to the previous case, the linear, symmetric coupling of the control
variables reduces the dissipation rate. However, the state probability distributions for the individual units in
the system closely resemble the distribution for a single, uncoupled unit. Therefore, the adaptation accuracy
is not compromised by this coupling.

For both types of interacting systems, the finite range of internal variables is irrelevant for small stimulus
values s if the states (ai,mi) rarely assume their extreme values. In absence of such boundary effects, an
increase of the coupling constant reduces the overall dissipation from originally twice the dissipation rate of a
single unit down to almost the dissipation rate of only one unit. Thus, a linear interaction of sensory units in
the fully adaptive limit reduces the number of wasteful cycles and effectively lowers the energetic cost of
adaptation.

4. Conclusion

From bacterial chemosensors to yeast osmotic pressure sensors and mammalian light sensors, a wide variety
of systems in biology rely on biochemical feedback networks to enable sensory adaptation [2, 52, 53]. In the
case of E. coli chemotaxis, transmembrane receptors sense and adapt to the concentration of extracellular
ligands. This process is characterized by a rapid response in sensor activity following a change in ligand
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concentration and a slowly varying methylation that counteracts the effect of the stimulus and returns the
activity to a set point [32].

We employ an idealized model of bacterial adaptation to visualize how the working range affects the
accuracy and energetics of adaptation. First, we study the three-node model for adaptation of a single sensory
unit. Large stimuli drive the state of the modelled system to its physical limits, represented by boundary
conditions of the phase space of internal variables. We find that the adaptation error is a linear function of
the dissipation rate. As the strength of a stimulus is increased, the error increases while the dissipation rate
decreases. The results from simulations are supported with analytical approximations. Next, we investigate
the the same relationship for interacting systems. For pairs of sensory units, the overall adaptation error is
determined by the average activity of the two units. An interaction between the units is modelled in two ways.
Either by coupling the output activities of the two units or by coupling their control variables representing
the methylation state. We find that both types of interactions reduce the dissipation rate and therefore affect
the cost-accuracy relationship. Furthermore, the simulation results suggest that a coupling of the methylation
variables may be more advantageous than a coupling of the activities because, in this case, the interaction
reduces the energetic cost cost of powering multiple units without compromising the accuracy of adaptation.
Overall, a cooperative operation of many sensors amplifies sensitivity [21] and our models predict that the
amplification can be energy efficient since the dissipation rate per sensor is reduced by coupling.

Looking ahead, one can consider to study the energetics of larger systems of coupled units, as well as how
they behave in the regime of imperfect adaptation. Clearly, linear receptor arrays or randomly clustered
receptors with next-neighbor couplings may exhibit more complex collective energetics. From a more formal
point of view, it would also be interesting to study how different levels of noise in the different components
of the system would affect the adaptive performance while at the same time driving energy flows. Finally,
further theoretical and experimental work is needed to assess the biological relevance of a trade-off between
the benefit of a large working range and the energetic cost of generating sufficiently complex sensory systems.
The analysis of the scenarios involved is far from straightforward, but this work represents a step towards
understanding the energetic consequences of a limited working range in adaptation.
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