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Abstract

The inconvenient nature of non-ideal charging characteristics is demonstrated from a
power system point of view. A new adaptive charging algorithm that accounts for non-
ideal charging characteristics is introduced. The proposed algorithm increases the local
network capacity utilization rate and reduces charging times. The first unique element of
the charging algorithm is exploitation of the measured charging currents instead of ideal
or predefined values. The second novelty is the introduction of a short-term memory
called expected charging currents. This makes the algorithm capable of adapting to the
unique charging characteristics of each vehicle individually without the necessity to obtain
any information from the vehicle or the user. The proposed algorithm caters to various
non-idealities, such as phase unbalances or the offset between the current set point and
the real charging current but is still relatively simple and computationally light. The al-
gorithm is compatible with charging standard IEC 61851 and is validated under different
test cases with commercial electric vehicles.

Open access funding enabled and organized by
Projekt DEAL.

1 | INTRODUCTION

Because of the increasing popularity of electric vehicles (EVs),
charging them is expected to have a notable impact on the
power distribution network [1, 2]. To avoid overinvestment in
network components, charging management will become a
necessity in the future [3]. Insufficient charging infrastructure
and long charging times are regarded as obstacles for EVs [4-0].
That is why capacity-efficiency and reduced charging times
should be relevant considerations when designing a charging
algorithm. With a more efficient algorithm, the charging system
operator can minimize the idle capacity of the power network,
which leads to shorter charging times and a higher-quality
charging service. To the authors’ knowledge, this efficiency is
not considered under realistic conditions in the charging algo-
rithms that have been presented in the research literature.

By network capacity, we refer to the capacity of the power
network at the charging site. Usually, this is part of the electricity
network at the real estate (parking hall etc.). Several algorithms
for EV charging management are offered in the scientific
literature. However, the shortage of most is that they do not

focus on the efficient use of network capacity, with the result
that many of these proposed solutions may lead to low usage
rates in real life. In addition, most available algorithms atre
tested only through computer simulations, which may not
guarantee that they work as efficiently in reality as in the simu-
lation. In reality, there are significant differences in the behav-
iour of EVs that in the worst case could jeopardize the correct
functioning of a charging algorithm or reduce its efficiency.
The work presented in [7] focuses on developing an online
charging algorithm and testing it with a fleet of 55 real charging
stations. A time step of 5 min is used for the operation of the
algorithm. A distinguishing aspect of the work is that it con-
siders real-life constraints such as a non-ideal charging cutve,
unbalanced phase conductors, and unknown state-of-charge
(SoC) of the EV battery. The charging current is measured at
the charging station, but it is not used for control purposes.
The batteries are charged according to a predefined two-stage
model. First, a constant current is allowed up to 80% of the
SoC followed by a decreasing current model. A benefit of this
approach is that it is closer to the real load curve of most EVs
than a completely constant load curve. However, each EV
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model has a different load curve, which means that applying
the same load model for all EVs will inevitably decrease the
efficiency of the charging algorithm. The great advantage of
this paper in comparison with [7] is that it handles each EV
separately in real time without relying on predefined models,
which makes it more adaptive and reliable.

In [8], an adaptive charging algorithm is presented. The
work also considers unbalanced charging and is able to carry
out phase balancing, The algorithm is run every 10 min. Unlike
this paper, the studies in [8] are based on simulations and the
compatibility with the standards is not discussed. It is not
cleatly explained, how the currents are measured and how they
are applied in the charging management. In [9], an adaptive
charging algorithm with the objective of peak-load manage-
ment is introduced. The major lacks in [9] are that unbalanced
charging is not considered and the actual charging currents are
not used as an input to the algorithm. The operation of the
algorithm is validated through simulations and no dynamic
charging characteristics of the EVs are mentioned, which
makes the work much less detailed than this paper.

In [10, 11], a charging management algorithm to cope with
fluctuating available power is presented. It also considers
vatious user groups through prioritization. The algorithm does
not consider different phases or the fact that EVs may not
charge according to the current value used as a set point. The
algorithm is tested in a hardware-in-the-loop simulation using
three electronic loads that mimic EVs but not with real EVs or
charging hardware. Neither does the work discuss its suitability
on practical applications or compatibility with current charging
standards.

The article [12] tackles a similar problem of EV charging
under changing power capacity. The algorithm is tested through
simulations with a time step of 10 min. Herein, the different
phases are not taken into account. The charging stations used
have a maximum charging power of 50 kW, which means the
algorithm is oriented towards DC charging stations.

Another algorithm that uses predefined load curves to
control the charging algorithm is presented in [13]. A neural
network—based algorithm is trained with a dataset that consists
of data from more than 10,000 charging session and includes
18 different EV models. The algorithm performs well, but the
drawbacks are the large amount of data and computationally
heavy data processing. Data from all EV models has to be
available so that the neural network model can be trained to
accommodate all EVs, which may not be realistic in a practical
setting. The SoC is used in the algorithm and is estimated
based on the dataset. The algorithm does not account for
different phases separately as the work done here. In contrast
to our work, the algorithm presented in [13] can be compu-
tationally burdensome and prone to errors in real life.

Different phases and the problem of phase unbalance is
considered in [14]. The problem is solved by using a phase
switcher at each charging station. The approach is verified
through simulations with a time step of 15 min. The work does
not include tests on real EVs. The results lack the real measured
charging curves that would likely impact the results significantly.
The work in [15] introduces a new EV charging algorithm with

the main objective to reduce losses in the low voltage distribution
network and considers phase balancing for domestic single-
phase chargers. In addition, the impact of loss minimization,
load flattening, and phase balancing on the increased charging
times is not included in the work. Likewise, compatibility with
common charging standards is not mentioned.

As seen in the state of the art, there are no algorithms that
use the actual measured current as feedback to the algorithm
and are compatible with the commercial charging standards as
well as validated with real EVs. The non-idealities considered
by the algorithm presented include the following:

® At three-phase charging stations, a customer can charge by
using one, two, or three phases.

® The charging phase(s) can be any, or any combination, of
the three phases.

® Charging can be unbalanced—different currents drawn
from different phases.

® The charging system operator does not know beforehand
which phases the EV uses for charging.

® The current drawn by the EV is altered during a charging
session.

® The EV can use any current for charging below the
maximum current limit, or set point, at the charging station.

® There is always an offset (positive or negative) between the
current set point and the real charging current.

® There is always a time delay from the moment the current
set point is changed to the moment that the desired charging
current is reached.

Accounting for the above non-idealities will improve the
efficiency of any adaptive charging algorithm. To the knowl-
edge of the authors, no paper considering all of the above non-
idealities in charging management can be found in the litera-
ture. This is the major difference between this work and the
previous works. The aim of this work is to provide a strategy
for how the non-idealities of EV charging can be accounted
for to make each charging process more capacity efficient. The
algorithm presented can be used with a fixed maximum current
for the charging site. In addition, the algorithm can be used
with any other strategy that determines the maximum current
of the charging site according to an external signal, such as the
price of electricity. That is to say, the algorithm of this work
does not replace, but complements, other charging algorithms.
Thus, this paper addresses this previously unstudied topic, and
the proposed algorithm answers different questions from those
of most other research on EV charging algorithms. The main
contributions of this paper are the following:

® Demonstrate that non-idealities exist in EV charging that
have not been considered in previous research.

® Identify the impact of these non-idealities on EV charging
management.

® Provide a novel strategy how the non-idealities can be
handled in a commercial EV charging application.

® The strategy considers the above-mentioned factors and
improves the use rate of network capacity at the charging
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site significantly in comparison with the previously sug-
gested algorithms.

® The strategy is tested using commercial EVs and charging
infrastructure.

The remaining parts of this paper are organized as follows.
Section 2 describes the experimental setup used. Section 3
introduces the proposed charging algorithm. Section 4 presents
the experimental results. Section 5 discusses the obtained re-
sults. Finally, Section 6 presents the conclusion and suggests
ideas for future work.

2 | EXPERIMENTAL SETUP

This section covers the descriptions of the experimental labo-
ratory setups. The first subsection describes the organization of
the current set point response test. The second subsection de-
scribes the experimental setup of the algorithm validation by
using two real EVs. The third subsection covers the experimental
testing of the proposed algorithm under a real test case. All
laboratory tests are carried out at TU Dortmund University [106].

2.1 | Current set point response test

The purpose of the current set point response test is to
measure how quickly popular commercial EV models react
when the current set point is changed at a charging station. In
addition to the time delays, the offsets between different cut-
rent set points and the real charging currents are observed. The
measurements are coordinated by a Python script that sends
the current set points to the charging station and reads the
current measurement. The communication is carried out by
using Modbus TCP/IP protocol. The used chatging station is
an RWE eStation equipped with a Phoenix Contact Advanced
EV Chatge Controller. The controller supports the standard
IEC 61851-1. The currents are measured at the charging sta-
tion once per second with a KoCoS EPPE PX power quality
analyzer and KoCoS ACP 300 current probes.

During the first 10 s of the test, the charging is disabled. At
the beginning of the 11™ second, the charging process is
enabled, and the current set point is set to 6 A. At the
beginning of the 21* second, the current is set to 7 A. The
current set point is increased every 10 s until it reaches 16 A.
After that, it is again reduced by 1 A every 10 s until it reaches
6 A and finally the charging is disabled. The used charging
controller supports integer values with a minimum resolution
of 1 A when controlling the charging current. Thus, steps
smaller than 1 A are not possible. That is why a current step of
1 A is used thorough in all experiments and in the presented
charging algorithm. For additional clarification, the idea of
current set point response test is to assess the behaviour of the
EVs at all possible current set points that a commercial
charging controller can have between 0 and 16 A.

A Modbus signal is registered and sent to the charging station
once it is executed by the Python programme. However, there

TABLE 1 Characteristics of the used electric vehicles

Vehicle model Charging phase Max. charging current Connector

Nissan Leaf Phase A 16 A Type 1
BMW i3 3-phase 16 A (‘max.’) Type 2
BMW i3 3-phase 16 A (‘teduced’) Type 2
BMW i3 3-phase 16 A (low’) Type 2

TABLE 2 The differences between the different charging modes of
BMW i3 according to the manufacturer [17]

Current set point ‘Maximum’ mode ‘Reduced’ mode ‘Low’ mode

8 A 8 A 6 A 6 A
10 A 10 A 75 A 6 A
12 A 12 A 9A 6 A
15 A 15 A 11.25 A 75 A

are communication delays before the signal reaches the EV, such
as the mechanical movement of the contactor at the charging
station, when enabling and disabling the charging, causes an
additional time delay. Thus, these delays are in the range of 2—4 s
and are included in the delays seen in the measurement results.
The used EV models are shown in Table 1.

A charging controller at a charging station sets the current
set point, but an EV can charge with any current below that set
point. It should be noticed that an EV can have charging
modes or settings. The purpose of the different charging
modes may be to increase the energy efficiency or safety. For
example, the BMW i3 has three charging modes for AC
charging: low’, ‘reduced’ and ‘maximum’ mode [17]. These
modes cannot be changed from the charging station. The
current is measured only at the charging phases: for the Nissan
Leaf phase A and BMW i3 phases A, B, and C.

Table 2 shows the differences between the different
charging modes of the BMW i3 [17]. The settings are country-
specific and vary between different areas [17].

2.2 | Validation of the charging algorithm

Here the experimental setup of the second test is explained.
The objective is to validate the algorithm in a laboratory
environment by using two real EVs so that the behaviour of
the EVs is easy to observe. Moreover, this test proves that the
algorithm is compatible with the standard IEC 61851.

The laboratory setting is similar to the one of the current
set point response test with the exception that now both
charging sockets are measured with KoCoS EPPE PX power
quality analyzers that communicate with the controlling com-
putet via Modbus TCP/IP. The control algorithm is written in
Python and runs on a computer in the laboratory. In the al-
gorithm, measured current less than 1 A is considered as noise
and set to 0. This is to prevent a noise-originated malfunction
of the algorithm. Even if the algorithm runs in the time steps
of 1 min, the current measurements ate taken every 20 s. The
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scheme of the experimental setup is illustrated in Figure 1. The
setup with the charging station, the measurement equipment
and the used EVs can be seen in Figure 2.

To understand the details of the following Tests 1, 2, and 3,
the uncontrolled charging curves of the Nissan Leaf and BMW
i3 are presented in Figures 3 and 4.

In Figures 3 and 4, not the complete charging curve, but
the part of decreasing current is presented. The starting SoC of
the Nissan Leaf is 92% and the SoC of the BMW i3 is 87%.
The current measurement is taken every 10 s. The BMW i3 is
in ‘maximum’ mode. It is important to point out that by using
two EVs, the details of the functioning of the proposed al-
gorithm are distinguishable. The common purpose of the tests
is to demonstrate in a detailed manner that the algorithm
works with real hardware.

In continuation, the used three test cases are presented.
The tests are selected so that the performance of the proposed
charging algorithm can be observed in detail under challenging

Time (min)

FIGURE 4 Decreasing-current part of the uncontrolled charging
curve of BMW i3

circumstances. In each test case, a limit for the total current
(current drawn by the Nissan Leaf summed by current drawn
by the BMW 1i3) is set. This is the total current that the
charging site uses to supply EVs. In Tests 1 and 3, the limit is
20 A, and in Test 2, it is 15 A. In reality, this limit would be
defined by a selected electro-technical limit, such as the rating
of the fuses, cables or a transformer. In the following tests, two
EVs are used, so the limit is set lower than it would be in a
reality to increase the complexity of the test cases and to verify
the operation of the algorithm.

221 | Test1

The purpose of this test is to demonstrate the dynamic per-
formance of the charging algorithm. In this test, the BMW i3 is
set to low’ mode to see the functioning of the algorithm as
evidently as possible. This is because in this mode, the BMW i3
has fewer current steps than in other modes, and as a conse-
quence, the offset between the current set point at a charging
station and the real charging current is larger and thus better
observable. Before the start of the test, the initial SoC of the
Nissan Leaf is 50% and the SoC of the BMW i3 is 85%. In this
test, the maximum limit for both EVs is selected as 20 A,
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which means that both EVs cannot charge at full current
simultaneously and the algorithm has to limit the charging

222 | Test?2

This test shows the performance of the algorithm in another
situation with a lower current limit and with different starting
SoCs of the EVs than in Test 1. In addition, the BMW i3 is in a
different charging mode. The total limit of the current is set to
15 A, which means that any of the two EVs is not able
to charge with maximum current. The BMW i3 is set to
‘maximum’ mode. The starting SoC of the BMW i3 is 73% and
of the Nissan Leaf is 90%.

223 | Test3

The objective of this test is to show how the algorithm
detects that two EVs charge at different phases, so charging
current does not need to be limited. The total current limit
is 20 A. On the side of the BMW i3, phase A and phase C
are disconnected at the charging station, so the BMW i3 can
only charge using phase B. The Nissan Leaf is charged at
phase A as in all tests. The BMW i3 is set to ‘maximum’
mode. The initial SoC of Nissan Leaf is 85%, while the
BMW i3 has 70%.

3 | CHARGING ALGORITHM

Before the description of the algorithm, it is important to
underline that the objective is to form a set of practices that
create a basis for other charging management algorithms. The
proposed algorithm is illustrated in Figure 5. The algorithm is
executed in 1 min time steps.

The algorithm is divided into two parts. Firstly, the 3-phase
capacity is divided evenly between all EVs in state C or D,
meaning that they are ready to receive energy (see Table 3). An
even division of the 3-phase charging capacity means that total
charging capacity (in amperes) is divided by the number of
active charging sessions. The decimals of the division are
eliminated, and the remaining natural number is given as a set
point to all active charging sessions. Secondly, the remaining
capacity is divided between 1-phase EVs, repeating phases A,
B, and C (phase p). This means that the 1-phase charging
sessions may receive higher allowed current. However, 3-phase
charging sessions are still likely to receive higher charging
powers.

When an EV is connected, the algorithm supposes that
the EV charges at three phases. The algorithm gives one-time
step to the EV to react. During this time, the algorithm
memorizes which phase(s) the EV uses for charging. Because
some EVs react slowly, one time step is required to avoid a
malfunction.

A core feature of the algorithm is that it learns the
behaviour of the EV that is currently charging through the

| Start

v
Update Expected Charging
Currents

!

Count the number of active
charging sessions

!

Distribute 3-ph. charging
capacity evenly

!

Calculate Expected 3-ph.
Charging Currents

Repeat for each phase (p)

Determine which charging
sessions use only phase p

A

Distribute 1-ph. charging
capacity evenly for phase p

Divide the remaining
capacity between 1-ph. EVs

FIGURE 5 Flowchart of proposed charging algorithm

TABLE 3 Simplified charging states according to IEC 61851

State Message
A EV not connected
B EV or Electric Vehicle Supply Equipment

not ready to receive energy
EV is charging
Charging is possible. EV requires charging area ventilation.

Error

T m g o

Fault

Abbreviation: EV, electric vehicle.

use of expected charging currents. For clarity, this is
described in an own subsection. Simplified explanations of
the charging states according to the standard IEC 61851 are
explained in Table 3. It is important to notice that even
though each EV is modelled separately by means of ex-
pected charging currents, the algorithm is computationally
light, which makes it easily scalable to cover large charging
sites.
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TABLE 4 Expected charging currents during the first time step of the

algorithm for every charging station. All values in amperes

Set point Phase A Phase B Phase C
6 6.0 6.0 6.0

7 7.0 7.0 7.0

8 8.0 8.0 8.0

9 9.0 9.0 9.0

32 32.0 32.0 32.0

TABLE 5 Expected charging currents during second time step of the
algorithm for BMW i3 after updating first-row values. All values in amperes

Set point Phase A Phase B Phase C

6 6.3 5.8 5.7

7 7.0 7.0 7.0

8 8.0 8.0 8.0

9 9.0 9.0 9.0

32 32.0 32.0 32.0
3.1 | Expected charging currents

The idea of expected charging currents is to make the algorithm
capable of memorizing the unique charging characteristics of a
charging session without the need for obtaining any information
from the vehicle. Expected charging currents keeps track on each
EV of which phases are being used and how much current is
drawn from each phase. It is important to underline that ex-
pected charging currents are not calculated, but they are direct
measurements of phases A, B, and C at the charging station.

When an EV is connected to a charging station and
changes from state A to state B, the behaviour of the EV is
expected to be ‘ideal’ and three-phase connected. This means
that the EV draws exactly the current indicated by the current
set point at each phase. Expected charging currents of each
charging session are updated every time the algorithm is
executed. An update means that the three-phase currents at the
given current set point are added to expected charging cur-
rents. An illustration of how expected charging currents are
structured and updated as illustrated in Tables 4 and 5. During
the very first time step of the algorithm, the EV is expected to
be ‘ideal’. In this case, expected charging currents for any
charging station are as presented in Table 4.

During the second execution of the algorithm, expected
charging currents is updated according to the measured cur-
rent. The measured current values are stored in the columns
labelled according to the phases as A, B, and C. In the case of
the BMW i3, for example, the expected charging currents after
the first update are presented in Table 5.

The BMW i3 charges at 3 X 6 A, but in reality, offsets in
the phase currents exist. This procedure is continued through

16 —F~ —— Phase A
14 o L. Set point
12 ; =

<10 -

5

g5 —

= A

O 6 - =
4 | |
2 4 |
0 20 40 60 80 100 120 140 160 180 200 ZéO

Time (s)

FIGURE 6 Measured current of Nissan Leaf and current set point

the whole charging process. If the algorithm detects that cur-
rent flows only during one phase (a single-phase EV), the
values of the other phases ate set to 0. Allowing each EV to
start charging with 6 A means that the algorithm allows tem-
porary overload of maximum 6 A per EV. However, this
overload will last 1 min as maximum. In case of a failure when
reading a current measurement, the algorithm uses the previ-
ously measured value. This alleviates the impacts of short
communication failures while still allowing the algorithm to
operate on each control cycle.

4 | RESULTS

This section first presents the results of the current set point
response test. Subsequently, the results of the algorithm vali-
dation are introduced.

4.1 | Current set point response test

The results of the current set point response test of the EVs in
Table 1 are presented in Figures 6-9. The current of phase A
of the Nissan Leaf and the current set point are illustrated in
Figure 2.

In Figure 6, it is observed that the Nissan Leaf starts to
react within 2 s after the charging is enabled. It takes 10 s to
reach 6 A charging current from the disabled position. Once
the charging is enabled, the next charging current is reached
within the maximum time of 2 s. Similar time delays are seen
thorough the increasing part (0 to 110 s) as well as the
decreasing part (110 to 220 s) of the test.

The current offset is higher with a higher charging current.
When the current set point is 7 A, the maximum measured
current is 7.24 A. The largest offset is measured when the
current set point is at 16 A, in this case the current is 16.84 A.
According to the standard IEC 61851, the maximum current
drawn by the EV does not include inrush or leakage currents.
The currents of phases A, B, and C of the BMW i3 under
different charging modes and the current set point are shown
in Figures 7 (low’ mode), 8 (‘teduced” mode), and 9
(‘maximum’ mode).
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FIGURE 7 Measured current of BMW i3 (‘low’ mode) and current set
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FIGURE 9 Measuted current of BMW i3 (‘maximum’ mode) and
current set point

Through all three charging modes, phase C has the shortest
response time. When the BMW i3 is on the ‘low’ mode, five
levels of charging currents are measured at phase C with the
following set points: 6, 7, 8, 9 and 16 A. In ‘reduced’ mode,
different current levels are measured with the set points 6, 7, 8,
9,10, 11, 12, 13 and 16 A.

Most of the time, current at phase A has the most elevated
values. In ‘low’ mode, the largest measured difference of the
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N
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—_
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(=]

Current (A)

5 \\\
O 6 12 18 24 30 36 42 48 54 60
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FIGURE 10 Sum of the measured phase currents of both electric
vehicles and the limit in Test 1

current between phase A and phase C is 2.3 A. In ‘reduced’
mode it is 3.3 A and in ‘maximum’ mode, it is 2.3 A. However,
these values are measured during the transient times when the
current is changing from one set point to another one. Most of
the time, the current difference between phase A and phase C
is around 1 A.

In Tow’ mode, the differences between the measured phase
currents and the current set point is the largest. At steady state,
the largest measured offset between phase C and the set point
is 7.96 A at the time step 124 s (in Figure 7). In ‘reduced’
mode, the measured currents are closer to the set point
(Figure 8) and in ‘maximum’ mode, even more (Figure 9).
However, it is crucial to consider that at low’ and ‘reduced’
modes, the EV is not designed to charge at the set point
current but has its internal limitations [17]. These limitations
cannot be changed by the charging controller at the charging
station.

When the Nissan Leaf mostly draws current that is higher
than the set point, in the case of the BMW i3, it depends on the
phase. On the ‘maximum’ mode, during the time when the
charging is enabled, phase A has an average bias of 0.93 A,
phase B 0.73 A and phase C 1.03 A from the set point.
Therefore, once the current has reached the desired level,
phase B follows the set point most accurately.

4.2 | Validation of charging algorithm

The results of Tests 1, 2, and 3 are presented in the
following three subsections to validate the correct func-
tioning of the algorithm with real EVs. The results from
Figure 10 onwards are shown in corresponding order. Only
the phase currents where the EVs draw energy are illus-
trated. The solid lines present currents and the non-solid
lines present the limit (light blue) or the corresponding
current set point (grey).

To increase the readability, each test is divided into steps
(@), (b), (c) etc. and highlighted by a grey or white back-
ground colour, all of which is clarified in detail following the
figures.
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FIGURE 12 Measurements of BMW i3 in Test 1

421 | Test1
Results of Test 1 are observed in Figures 10 (the sum of the
currents), 11 (Nissan Leaf), and 12 (BMW i3).

(a) At the beginning, no EV is connected. At about 3.5 min,
the BMW is connected. The algorithm allows the BMW to
charge with 6 A using all three phases. During this minute,
the algorithm verifies how much free charging capacity the
charging site has. Because no other vehicles are connected,
the algorithm gives 20 A to the BMW. Thus, BWM in-
creases the charging current to full capacity (~16 A). The
measured ripple at phase A between 6 and 9 min
(Figures 10 and 12) is characteristic behaviour of the BMW
i3 and is not caused by the algorithm.

(b) At minute 12, the Nissan Leaf is connected to the charging
station. Since the algorithm allows the Nissan to start
charging at ~6 A, and the BMW is using ~16 A at phase
A, the total current of the charging site at phase A in-
creases to ~22 A. In the next control cycle, the algorithm
notices that the current limit is exceeded and calculates
new current set points to both EVs. By design, the algo-
rithm aims at dividing the charging current as evenly as
possible between the EVs. Thus, it establishes a set point
of 10 A to both EVs. However, in low’ mode, BMW
charges at ~6.3 A (measured in Figure 7) with the set point

the set point and the charging current in Figure 11.

(¢) The Nissan charges at ~16.9 A. At minute 51, phase A
current of the BMW increases to ~5.7 A. This is charac-
teristic of the BMW i3, and the same phenomenon is
visible also in Figure 4. The increasing current of the
BMW can be seen as a peak of ~22.7 A in Figure 10. The
algorithm reacts to this by decreasing the set point of
the Nissan to 13 A. When the BMW naturally decreases
the charging current, more charging capacity is allocated
to the Nissan by increasing the set point of the Nissan to
14 A. When the BMW stops charging as a result of its fully
charged battery at minute 53, the whole charging capacity
of the charging site (20 A) is allocated to the Nissan.
However, the Nissan can charge at ~16.8 A, as measured
also in Figure 3.

422 | 'Test2

Results of Test 2 are presented in Figures 13, 14, and 15.

(@) At minute 0, no EV is connected. During minute 1, the
Nissan Leaf is connected to the charging station. Directly
when the Nissan is connected, 6 A is allocated to it.
During this minute, the algorithm calculates the capacity
that can be allocated to the Nissan. Since the limit of the
charging site is 15 A and there are no other EVs con-
nected, the algorithm allocates 15 A to the Nissan.
Consequently, the charging current of the Nissan in-
creases. However, with the set point of 15 A, the Nissan
Leaf actually charges at ~15.2 A, which would mean



RAUMA ET AL.

| 9

25
@ (b (© Limit d (e
—— Phase A
20 —— Phase B
- —— Phase C
<15 h
g
§1o
5
% 1o 20 30 40 50 60 70 80 90 100 110

Time (min)

FIGURE 13 Sum of the phase currents of both electric vehicles in
Test 2
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FIGURE 14 Measurements of Nissan Leaf in Test 2
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FIGURE 15 Measurements of BMW i3 in Test 2

~0.2 A ovetrload. This behaviour is also measured in
Figure 6. As a consequence, the algorithm reduces the set
point of the Nissan to 14 A, and the Nissan actually
charges at ~13.9 A. This is an inherent characteristic of the
algorithm to guarantee that the total current limit of the
charging site is not exceeded over several minutes.

(b) At minute 22, the BMW i3 is connected to the charging
station. Since the Nissan is already charging at ~14 A and
6 A is allocated to the BMW when connected, and the

BMW slowly increases its charging current, a maximum
peak of ~16.1 A is experienced at phase A. Other phases
are not overloaded. The algorithm corrects the overload
situation by dividing the charging capacity between both
EVs as evenly as possible. Thus, it allocates 7 A to the
Nissan and 8 A to BWM. Howevetr, it notices that with the
set point of 8 A, the BMW actually draws ~8.2 A and
the Nissan ~6.9 A, so the algorithm reduces the set point
of the BMW to 7 A and increases the set point of the
Nissan to 8 A. Then, the algorithm learns that the Nissan
charges ~7.9 A with the set point of 8 A and that the
BMW charges ~7.2 with the set point of 7 A, so it reduces
the set point of the Nissan to 7 A, resulting in a charging
current of ~6.9 A. Thus, the set point of both EVs is set
to 7 A with the total resulting charging current of ~14.1 A.

(c) Both EVs are charging with a constant charging current.

(d) During minute 91, the Nissan Leaf starts to reduce its
charging current because of the high SoC of the battery.
Throughout this time, the current oscillates. This is a
characteristic of the Nissan Leaf, which is seen also in
Figure 3. This causes stepwise increments and reductions
of the current set point of the BMW i3. During this time,
short overloading occur (Figure 13), with the highest peak
of ~21.1 A. At minute 102, the battery of the Nissan Leaf
is full and it stops charging.

(e) Since the Nissan Leaf does not charge anymore, the total
capacity (15 A) could be allocated to the BMW i3. How-
ever, during (d), the algorithm has memorized that with
the set point of 15 A, the BMW i3 charges slightly more
than 15 A at phase A. This has been registered in expected
charging currents of the BMW i3. Thus, the algorithm
fixes the set point of the BMW i3 to 14 A instead of 15 A
with the aim at avoiding a long-term overload. The BMW
i3 continues to charge with the set point at 14 A.

423 | Test3

Lastly, the results of Test 3 are presented in Figures 16, 17, and
18. It should be noticed that in this test, the BMW i3 uses only
phase B to charge because of the physical disconnection
of phase A and phase C. That is why only the measurements at
phase B of the BMW i3 are presented. The current limit of the
charging site is set to 20 A.

(a) At the beginning, no EV is connected to the charging
station. Before minute 2, the Nissan Leaf is connected.
During the first minute of connection, the algorithm has
set the set point of the Nissan Leaf to 6 A.

(b) Approximately at 2 min 20 s, the set point of the Nissan is
set to maximum of 20 A, since no other EVs are con-
nected to phase A. The Nissan continues charging with the
maximum current, which is measured at ~16.7 A. In
the moment of 5 min 20 s, the BMW i3 is connected to the
charging station. In this case, the BMW i3 is charging only
at phase B, but the algorithm does not have such
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FIGURE 18 Measurements of BMW i3 in Test 3

information, so it supposes that the BMW will charge in 3-
phase manner as explained in Section 4.1.

() The algorithm expects that the BMW i3 charges 3-phase and
divides the charging capacity evenly to both EVs. Thus, it
increases the set point of the BMW i3 from 6 to 10 A and
reduces the set point of the Nissan Leaf from 20 to 10 A.

(d) The algorithm learns that the BMW i3 charges only at
phase B. In addition it knows that the Nissan Leaf uses
only phase A. In addition, from expected charging

currents of the Nissan Leaf it knows that with the set point
at 20 A, the Nissan Leaf does not exceed 20 A. As a
consequence, it increases the set points of both vehicles to
the maximum of 20 A.

(e) Both EVs continue charging with the full capacity because
they are connected to different phases.

5 | DISCUSSION

The measurements demonstrate that the delays from a change
in the current set point to a steady state are mostly a matter of
a few seconds. Standard TEC 61851 defines 5 s as the time an
EV has to react to a new current limit, and during this time, the
charging controller shall not change the current limit. This sets
the absolute minimum limit for the time step that can be used
to execute the algorithm. To guarantee the correct functioning
of the charging algorithm, a time step shorter than 5 s should
not be used. Otherwise, not all EVs may have time to reach a
new current set point. The used communication technology,
the charging controller, and the charging station can have an
impact on delays.

In the current set point response test, the current set points
are changed in 1 A steps. The charging dynamics may be
different if, for instance, the set point is set from 6 to 16 A.
This should be verified in further development work. The
current set point test illustrates that there is always a difference
between the current set point and the real charging current.
With the measured EV models and charging modes, there is a
great variety of offset. The largest measured offset at a steady
state with the BMW i3 is 7.96 A, which was measured in the
‘low’ mode at the time step 124 s (in Figure 7) in phase C.
From the point of view of the EV, this is really not an offset,
because the EV is not even meant to be charged at the current
indicated by the set point. In this case, the EV is designed to
charge at 7.5 A [17] and in reality, it charges at 7.04 A in phase
C, while the algorithm would like it to charge at 15 A. The issue
is that the charging algorithm is not aware of the internal
limitations of the EV and does not know that by changing the
charging mode, a higher charging current can be used. Thus,
from the viewpoint of the EV, the offset is 0.46 A, and from
the viewpoint of the chatrging algorithm, the offset is 7.96 A.

Such an extreme offset can have a fundamental reducing
impact on the efficiency of a charging algorithm, especially,
when controlling several EVs at the same charging site.
Otherwise, when the difference between the current offset and
the measured current is, say, less than 1 A, it probably will not
have much impact small charging sites. Another story is in the
case of large sites with tens of simultaneous charging sessions.
In that case, even offsets of 1 A may accumulate up to tens of
amperes. If the charging current was not measured at all but
expected that the EVs charge exactly the current defined by the
set point, it could lead to ovetloading cables or a distribution
transformer.

In reality, the EV fleet consists of different models with
different load curves and offsets. This leads to a balancing
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effect at a large charging site and reduces the risk of mal-
function of the algorithm due to the accumulation of the
offsets at the same phase. For better general knowledge, the
current set point response test covering more EV models
should be repeated to see the variations between different EV
models in this regard. However, the proposed charging algo-
rithm takes the offsets into account.

The validation of the proposed algorithm through three
tests show that the algorithm works as intended with com-
mercial EVs, under various circumstances. The algorithm
adapts well in situations, where current drawn by EV or EVs
increases or decreases suddenly. The proposed algorithm
complies well with the charging standard IEC 61851.

EV models possess different characteristics with regard to
charging [18]. Even the same EV can behave in different ways
depending on its charging settings. The charging system
operator does not know what kind of charging curve the EV
connected to a charging station has. It is also possible that even
the EV driver is not aware of the charging settings. This poses
a potential reduction in efficiency of the charging management
algorithm applied by the charging operator. If the charging
management algorithm is unable to regulate the charging
current as intended or if the gap between the current set point
and the real charging current is overlooked, it is likely that there
is network capacity allocated to an EV that in reality is not used
completely. Perhaps this unused capacity could be allocated to
another EV. For instance, if 10 A is allocated to an EV, but it
charges with only 6 A, the resting 4 A could be used by another
vehicle.

While in the case of most EVs, the load curve starts to
decrease during the last 1%-3% of the SoC. Keeping in mind
the average daily distances, a large part of the time, the EVs are
charged during this decreasing phase [19]. As one EV releases
network capacity because of the decreasing current phase of
the charging process, this free capacity is reallocated to other
EVs. This is an inherent and efficient characteristic of using
measured currents in the charging algorithm. In this regard, the
efficiency of the proposed algorithm is assessed in Tests 1
and 2.

In essence, the less accurately the charging operator can
regulate the charging current of the charging EVs, the higher
is the inefficiency of the charging system as a whole because
the charging management algorithm does not perform as it
was designed to. The problem of phase imbalance can be
mitigated through phase swapping [20] at difference charging
stations. This helps to alleviate the problem but does not
guarantee that it will be eliminated. The algorithm handles
well sudden unbalances as seen in Test 1. In addition, it
operates even under a case of long-term unbalance as seen in
Test 3.

Even if the algorithm allows a temporal overload of
maximum 6 A per vehicle, in a real case, it is very unlikely that
it would pose a problem because of two reasons. Firstly, the
fuses of a charging site do not react immediately to small
ovetloads. For example, a widely used gG fuse must withstand
25% overcurrent at least 1 h, according to the standard IEC
60269. In addition, such short-term overcurrent does not have

time to overheat the network components. Secondly, it is un-
likely that many EVs are connected to the charging station
exactly within the same minute at the same charging site. The
performance of the algorithm under overloads is seen in Tests
1 and 2.

It can be argued that from the customer point of view, it
might be important that the charging process starts as soon as
possible when the EV is connected to the charging station. In
this way, a customer notices immediately that the EV starts
charging and does not worry that the EV will not charge
because of a malfunction, for example. This may improve the
user experience.

The proposed algorithm is especially suitable for large
charging sites with tens or hundreds of charging stations. This
is because it may not be economically feasible to size the
network of such site to be able to cover the peak demand.
Apart from that, many large charging sites, such as shopping
centres, have a high percentage of short charging sessions [19].
Thus, an efficient charging management is likely to be reflected
as higher SoCs of the batteries and improved customer
experience.

Even if the algorithm focuses on the network capacity at
the charging site, more efficient use of this capacity may be also
indirectly beneficial for the distribution network upstream.
With a view to practical applications, an advantage of the
proposed algorithm is that it is mathematically easy to under-
stand and computationally lightweight. It does not include
computationally demanding
networks.

algorithms, such as neural

6 | CONCLUSION AND FUTURE WORK

An original algorithm for EV charging management is pre-
sented. The proposed algorithm creates a basis for further
charging algorithms to become more efficient in real charging
solutions. The novelty of the algorithm is twofold.

Firstly, the proposed algorithm considers several non-ideal
charging behaviours of EVs in which no comprehensive so-
lutions have previously been proposed. These non-idealities
are the unknown charging phase or phases, the offset be-
tween the real charging current and the current set point at the
charging station, unbalanced charging, and the otherwise un-
known charging curve. The key to the algorithm is that it is
based on measurements of the actual charging current and
does not rely on predefined load curves. Thus, no modelling or
data about the EVs is necessary.

Secondly, the algorithm focusses on maximizing the
charging current within the capacity limits of the power
network or otherwise set limit. This leads to a high use rate for
the power network and a reduction in charging times.

According to the test with commercial EVs, the algorithm
is robust, straightforward, and computationally light. These are
positive aspects with a view towards practical applications. In
addition, the algorithm does not need any additional infor-
mation from the vehicle or user. The only requirement is that
the vehicle must fulfil charging standard IEC 61851. The
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algorithm is tested experimentally by using commercial EVs
and charging infrastructure. Consequently, the algorithm is
suitable for real applications and compatible with charging
standard IEC 61851. For communication amongst the algo-
rithm, charging controllers, and measurements devices, Mod-
bus TCP/IP is used, which is a well-established and robust
communication protocol.

To the best knowledge of the authors, no other algorithm
in the published research literature uses measured phase cur-
rents in the operation of charging management. Neither has
any other algorithm had the main objective to maximize used
network capacity to overcome the non-ideal behaviour of EVs.
Therefore, the presented work fills a gap in research
knowledge.

In the future, new strategies to improve expected charging
currents will be studied, and the algorithm will be improved
against oscillations. The performance of the algorithm will also
be compared with other charging management algorithms.
Additionally, the algorithm will be tested using a larger number
of real EVs and charging stations to prove its scale capabilities.
Lastly, the algorithm will be validated by a commercial charging
system operator in a field test.
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