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ABSTRACT 

Coumarins are well-known for their antioxidant effect and aromatic property, thus, they are one of ingredients 
commonly added in cosmetics and personal care products. Quantitative structure-activity relationships (QSAR) 
modeling is an in silico method widely used to facilitate rational design and structural optimization of novel drugs. 
Herein, QSAR modeling was used to elucidate key properties governing antioxidant activity of a series of the 
reported coumarin-based antioxidant agents (1-28). Several types of descriptors (calculated from 4 softwares i.e., 
Gaussian 09, Dragon, PaDEL and Mold2 softwares) were used to generate three multiple linear regression (MLR) 
models with preferable predictive performance (Q2

LOO-CV = 0.813-0.908; RMSELOO-CV = 0.150-0.210; Q2
Ext = 0.875-

0.952; RMSEExt = 0.104-0.166). QSAR analysis indicated that number of secondary amines (nArNHR), polariza-
bility (G2p), electronegativity (D467, D580, SpMin2_Bhe, and MATS8e), van der Waals volume (D491 and 
D461), and H-bond potential (SHBint4) are important properties governing antioxidant activity. The constructed 
models were also applied to guide in silico rational design of an additional set of 69 structurally modified couma-
rins with improved antioxidant activity. Finally, a set of 9 promising newly design compounds were highlighted 
for further development. Structure-activity analysis also revealed key features required for potent activity which 
would be useful for guiding the future rational design. In overview, our findings demonstrated that QSAR model-
ing could possibly be a facilitating tool to enhance successful development of bioactive compounds for health and 
cosmetic applications.  
 
Keywords: Coumarin, antioxidant activity, rational design, QSAR, MLR 
 
 
 

INTRODUCTION 

Free radicals (or oxidants) are highly re-
active molecules containing an unpaired elec-
tron, which are generated as by-products of 
physiological processes and intracellular 

pathways (Valko et al., 2007; Winyard et al., 
2005). These oxidants are well-known for 
their harmful potential and deleterious effects 
in cellular components (i.e., DNA, proteins 
and lipids). In normal condition, these radi-
cals are scavenged/neutralized by antioxidant 
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defense mechanism (i.e., endogenous antiox-
idant molecules and antioxidant enzymes) to 
prevent cellular oxidative damages. However, 
the shift of oxidative balance occurs in a con-
dition whereby radicals are overproduced or 
antioxidant defense mechanism is depleted. 
This situation leads to excessive accumula-
tion of free radicals and oxidative stress. Oxi-
dative damage involves in pathogenesis and 
progression of many chronic and aging dis-
eases (i.e., cancer, diabetes mellitus, neuro-
degenerative diseases, and cardiovascular dis-
eases) (Valko et al., 2007; Winyard et al., 
2005). Furthermore, free radicals have been 
recognized as one of the factors contributing 
to aging skin (Bogdan Allemann and Bau-
mann, 2008). Antioxidant compounds have 
been well-recognized for their wide-ranging 
health applications, especially in cosmeceuti-
cal area. Currently, an addition of antioxi-
dants as active ingredients in cosmetics and 
personal care products has been widely docu-
mented (Kusumawati and Indrayanto, 2013; 
Lupo, 2001). Therefore, discovery of novel 
potent antioxidant compounds, both from 
chemical synthesis (Prachayasittikul et al., 
2009a; Subramanyam et al., 2017; 
Worachartcheewan et al., 2012) and natural-
derived sources (Elansary et al., 2018; Krish-
naiah et al., 2011; Prachayasittikul et al., 
2008, 2009b, 2013; Wongsawatkul et al., 
2008), has been noted to be an attractive re-
search area, especially in cosmetic applica-
tions (Kusumawati and Indrayanto, 2013; 
Lupo, 2001).  

Coumarins, known as benzopyrones, are 
natural secondary metabolites bearing fused 
benzene and α-pyrone rings (Witaicenis et al., 
2014). Natural-derived coumarins are found 
in a wide range of plants (Lee et al., 2007; 
Rodríguez-Hernández et al., 2019; Saleem et 
al., 2019; Venditti et al., 2019). Coumarins 
displayed a variety of biological activities in-
cluding antimicrobial (Arshad et al., 2011), 
antioxidant (Erzincan et al., 2015), anticancer 
(Nasr et al., 2014), and anti-inflammatory 
(Witaicenis et al., 2014) activities. Although 
synthetic coumarins were banned for oral 
products due to their potential toxicities, they 

are attractive for topical uses due to their high 
skin penetrating property (Stiefel et al., 2017). 
Additionally, coumarins are widely used as 
fragrance ingredient in cosmetics and per-
sonal care products because of their sweet 
herbaceous scent (Ma et al., 2015; Stiefel et 
al., 2017). Antioxidant property and protec-
tive effects against skin photo-aging of cou-
marins have also been remarked in cosmetic 
area (Kostova et al, 2011; Lee et al., 2007). 
Previously, a set of synthesized coumarin de-
rivatives containing 2-methylbenzothia-
zolines, sulphonamides, and amides were re-
ported to exhibit antioxidant activity with IC50 
values range of 0.024-2.888 mM (Khoobi et 
al., 2011; Saeedi et al., 2014). However, 
deeper understanding of structure-activity re-
lationships (SAR) and mechanism of action is 
still necessary for an effective rational design 
of coumarin-based antioxidant agents (Kos-
tova et al., 2011).  

Computational approaches have been 
widely recognized to facilitate and increase 
success rate of drug development (Nanta-
senamat and Prachayasittikul, 2015; Pracha-
yasittikul et al., 2015a). Quantitative struc-
ture-activity relationship (QSAR) modeling is 
an in silico method to reveal  the  relationship  
between chemical structures of the com-
pounds and their biological activities. QSAR 
modeling provides useful findings such as key 
features, properties, or moieties that are re-
quired for potent activity, which would bene-
fit further rational design of the related com-
pounds. Currently, success stories of QSAR-
driven rational design of several classes of 
promising lead compounds have been docu-
mented for anticancer agents (Prachayasit-
tikul et al., 2015b), aromatase inhibitors (Pra-
chayasittikul et al., 2017), and sirtuin-1 acti-
vators (Pratiwi et al., 2019). In cosmetic area, 
QSAR modeling has been employed to im-
prove understanding towards SAR of tyrosi-
nase inhibitors (Gao, 2018; Khan, 2012).  

Accordingly, this study aims to construct 
QSAR models to elucidate SAR of a set of an-
tioxidant coumarin derivatives (1-28, Figure 
1) originally reported by Khoobi et al. (2011) 
and Saeedi et al. (2014). Herein, QSAR mod-
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Figure 1: Molecular structures of coumarin derivatives (1-28) 

 
 

els were constructed using multiple linear re-
gression (MLR) algorithm to clearly demon-

strate the linear relationship along with in-
sight SAR analysis. In an attempt to find a ro-
bust and validating QSAR models, chemical 
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descriptors were generated using different 
four softwares (i.e., Gaussian 09, Dragon, 
PaDEL and Mold2 softwares) to increase a va-
riety of represented physicochemical proper-
ties. Consequently, an additional set of struc-
turally modified compounds were rationally 
designed based on key findings of the con-
structed models, and their antioxidant activi-
ties were predicted to reveal the promising 
ones with potential for further synthesis and 
development.  

 
MATERIALS AND METHODS 

Data set  
A data set of twenty-eight coumarin-

based antioxidants (1-28, Figure 1) was re-
trieved from the literature (Khoobi et al., 
2011; Saeedi et al., 2014), in which their anti-
oxidant activities are presented in Table 1. All 

tested compounds were evaluated by 1,1-di-
phenyl-2-picryhydrazyl (DPPH) assay (de-
tailed methodology is provided in original lit-
eratures (Khoobi et al., 2011; Saeedi et al., 
2014)). The activity was denoted as an IC50 
value (mM) which indicates concentration of 
the compound which can inhibit 50 % of the 
generated DPPH radicals in experimental set-
ting. As a part of data pre-processing, the unit 
of IC50 values was converted from mM to M, 
and the IC50 values were further transformed 
into pIC50 (−log IC50) by taking the negative 
logarithm to base 10 as shown in Table 1. The 
compound with high pIC50 (low IC50) repre-
sented the high antioxidant activity. A sche-
matic workflow of QSAR model develop-
ment is provided in Figure 2. 

 

 

Table 1: Experimental and predicted antioxidant activities (pIC50) of coumarin derivatives (1-28) using 
multiple linear regression method 

Compound Experimental activity  Predicted activity (pIC50) 
IC50 (mM)  pIC50  Model 1 Model 2 Model 3 

1 0.130 3.887  3.917 3.961 3.893 
2 0.466 3.332  3.825 3.863 3.454 
3 0.099 4.003  3.789 4.006 3.990 
4 0.106 3.973  3.967 3.883 4.120 
5 0.024 4.612  4.217 4.530 4.450 
6 2.888 2.539  2.746 2.711 2.776 
7 2.382 2.623  2.898 2.581 2.670 
8 0.681 3.167  2.944 3.195 3.023 
9 2.560 2.592  2.362 2.487 2.268 
10 1.570 2.804  2.756 2.943 2.934 
11 0.660 3.180  3.010 2.936 3.006 
12 1.230 2.910  3.100 3.230 2.823 
13 0.950 3.022  3.091 2.994 2.959 
14 1.750 2.757  2.998 2.647 2.937 
15 1.150 2.939  2.916 2.978 2.959 
16 0.810 3.092  3.249 3.036 2.818 
17 1.080 2.967  2.826 2.942 3.027 
18 0.550 3.260  3.217 3.336 3.201 
19 2.290 2.640  2.812 2.636 2.853 
20 1.140 2.943  2.732 2.685 2.769 
21 0.940 3.027  2.930 2.748 2.817 
22 1.110 2.955  2.779 2.859 2.879 
23 1.230 2.910  3.100 3.004 2.823 
24 2.070 2.684  2.976 2.744 2.863 
25 2.080 2.682  2.680 2.892 2.798 
26 1.680 2.775  2.789 2.886 2.830 
27 1.860 2.730  2.715 2.903 2.921 
28 0.980 3.009  2.841 2.990 2.858 

Compounds 1, 6, 15, 21 and 27 were used as external set. Models 1, 2 and 3 were obtained by Eqs. 2, 3 and 4, respectively.  
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Figure 2: Schematic workflow of QSAR models 

 
 
 

Molecular structure optimization 
Molecular structures of the coumarin de-

rivatives were constructed by GaussView 
(Dennington et al., 2003), which were sub-
jected to geometrical optimization by Gauss-
ian 09 (Revision A.02) (Frisch et al., 2009) at 
the semi-empirical level using Austin Model 
1 (AM1) followed by density functional the-
ory (DFT) calculation using Becke’s three-
parameter hybrid method and the Lee–Yang–
Parr correlation functional (B3LYP) together 
with the 6–31 g(d) basis. 
 

Descriptor calculation and feature selection 
The physicochemical properties (i.e., 

quantum chemical and molecular descriptors) 
were generated by different calculating soft-
wares including Gaussian 09, Dragon, version 
5.5. (Talete, 2007), PaDEL, version 2.20 
(Yap, 2011) and Mold2, version 2.0 (Hong et 
al., 2008) softwares. The calculated de-
scriptors as numerical values could be used to 
represent properties of the compounds, and 
were further used as predictors (X variables) 
for QSAR model construction. List of calcu-
lated descriptors are shown as follows. 
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Quantum chemical descriptors calculation 
obtained by low energy conformers from the 
geometrical optimization using Gaussian 09 
composed of the total energy (Etotal) of the 
molecule, the highest occupied molecular or-
bital energy (EHOMO), the lowest unoccupied 
molecular orbital energy (ELUMO), the total di-
pole moment () of the molecule, the electron 
affinity (EA), the ionization potential (IP), the 
energy difference of HOMO and LUMO 
(HOMO–LUMOGap), Mulliken electronega-
tivity (), hardness (), softness (S), electro-
philicity (), electrophilic index (i), and the 
mean absolute atomic charge (Qm) 
(Worachartcheewan et al., 2014). Further-
more, the output files from geometrical opti-
mization of Gaussian 09 were used as the in-
put data for calculating a set of 3,224 molec-
ular descriptors using Dragon software. The 
calculated descriptors included 22 classes 
comprising 48 constitutional descriptors, 119 
topological descriptors, 47 walk and path 
counts, 33 connectivity indices, 47 infor-
mation indices, 96 2D autocorrelation, 107 
edge adjacency indices, 64 burden eigenval-
ues, 21 topological charge indices, 44 eigen-
value based indices, 41 randic molecular pro-
files, 74 geometrical descriptors, 150 RDF de-
scriptors, 160 3D-MoRSE descriptors, 99 
WHIM descriptors, 197 GETAWAY de-
scriptors, 154 functional group counts, 120 
atom centered fragments, 14 charge de-
scriptors, 29 molecular properties, 780 2D bi-
nary fingerprints, and 780 2D frequency fin-
gerprints. 

An additional set of molecular descriptors 
was calculated by PaDEL software to give 
1,444 1D and 2D descriptors, and Mold2 soft-
ware to generate 777 descriptors by encoding 
the 2D chemical structure information. Before 
the calculation, the molecular structures were 
saved to *.smi and then converted to *.mol 
files using OpenBabel version 2.3.2 (The 
Open Babel Package 2015). The *.mol files 
were used as the input data for calculation by 
PaDEL and Mold2 softwares.  

Descriptors selection was performed to 
filter a set of important informative de-

scriptors from a whole set of descriptors. Fea-
ture selection was initially performed by step-
wise multiple linear regression (MLR) using 
SPSS statistics 18.0 (SPSS Inc., USA) fol-
lowed by determination of intercorrelation us-
ing Pearson’s correlation coefficient using 
cutoff value of |r| ≥ 0.9. Any pairs of de-
scriptors with |r| ≥ 0.9 were defined as highly 
correlated predictors, and one of them was ex-
cluded. 
 
Data splitting  

The data set of coumarin derivatives (1-
28) was randomly selected, in which 85 % 
(23 compounds) of the original data set was 
used as the training and the leave one-out 
cross-validation (LOO-CV) sets, and 15 % 
(5 compounds) was used as the external set. 
The training set was employed to generate the 
QSAR models, whereas LOO-CV and exter-
nal sets were used to evaluate the models. 
LOO-CV method was performed for internal 
validation by excluding one sample out from 
the whole data set to be used as the testing set 
while the remaining N−1 samples were used 
as the training set (Prachayasittikul et al., 
2014). This sampling process was repeated it-
eratively until every sample in the data set 
was used as the testing set. The external sets 
were used to validate the models.  
 
Multivariate analysis 

QSAR models were generated using the 
MLR according to the equation 1. 

nXnBBY  0  (1) 
where Y is the antioxidant activity (pIC50), 

B0 is the intercept, and nB are the regression 
coefficients of the descriptors nX . The MLR 
method was performed using Waikato Envi-
ronment for Knowledge Analysis (Weka), 
version 3.4.5 (Witten et al., 2011).  
 
Models evaluation 

Statistical parameters were used to evalu-
ate predictive performance of the constructed 
QSAR models. The calculated parameters in-
cluded correlation coefficient (R2), root mean 
squared error (RMSE), predictivity (Q2), vari-
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ance ratio (F ratio), adjusted correlation coef-
ficient (R2

Adj), standard deviation (s) and pre-
dicted residual sum of squares (PRESS) (Sa-
ghaie et al., 2013; Worachartcheewan et al., 
2013). 
 

RESULTS AND DISCUSSION 

Molecular descriptors selection 
Chemical structures of the compounds 

and their antioxidant activities (Table 1) were 
used for construction of predictive models. 
The compounds were geometrically opti-
mized with semi-empirical method AM1 fol-
lowed by DFT/B3LYP/6–31 g(d) basis using 
Gaussian 09 to obtain lower-energy conform-
ers. The optimized compounds were extracted 
to obtain 13 quantum chemical descriptors. 
These compounds were subsequently used as 
input files for calculating an additional set of 
3,224 molecular descriptors (0D-3D) using 
Dragon software. The calculated descriptors 
with constant values and multi-collinearity 
were determined and removed to give a final 

set of 1,489 descriptors. In addition, original 
molecular structures of compounds were 
saved as *.smi file format and were converted 
into *.mol files using OpenBabel version 
2.3.2. These *.mol files then were used as in-
put files for descriptors calculation using 
Mold2 and PaDEL softwares to obtain sets of 
777 Mold2 2D descriptors and 1,444 PaDEL 
0D-2D descriptors, respectively. Conse-
quently, feature selection was performed to 
select a set of informative descriptors for the 
whole calculated set. Descriptors showing 
significant correlation with their bioactivities 
were selected using stepwise MLR. A set of 
14 informative descriptors included 4 Dragon 
descriptors (i.e., nArNHR, ISH, B04[O-O] 
and G2p), 6 Mold2 descriptors (i.e., D467, 
D278, D491, D384, D580 and D461), 4 
PaDEL descriptors (i.e., SHBint4, 
SpMin2_Bhe, MATS8e and SssCH2) were 
obtained. Definition and numerical values of 
important descriptors are shown in Tables 2 
and 3, respectively. Furthermore, the intercor- 

 
 
Table 2: Definition of descriptors in QSAR models (1-3) 

Symbol Descriptor Class 
nArNHR Number of secondary amines (aromatic) Functional group counts 
ISH Standardized information content on the leverage equality GETAWAY descriptors 
B04[O-O] Presence/absence of O - O at topological distance 4 2D Atom Pairs 
G2p 2nd component symmetry directional WHIM index / 

weighted by polarizability 
WHIM descriptors 

D467 Geary topological structure autocorrelation length-5 
weighted by atomic Sanderson electronegativities 

2D  descriptors 

D278 Total information content order-3 index 2D  descriptors 
D491 
 

Moran topological structure autocorrelation length-5 
weighted by atomic van der Waals volumes 

2D  descriptors 

D384 Sum of topological distance between the vertices S and 
Cl 

2D  descriptors 

D580 Highest eigenvalue from Burden matrix weighted by elec-
tronegativities Sanderson-Scale order-1 

2D  descriptors 

D461 Geary topological structure autocorrelation length-7 
weighted by atomic van der Waals volumes 

2D   descriptors 

SHBint4 Sum of E-state descriptors of strength for potential hydro-
gen bonds of path length 4 

2D (Atom type electrotop-
ological state) 

SpMin2_
Bhe 

Smallest absolute eigenvalue of Burden modified matrix - 
n 2 / weighted by relative Sanderson electronegativities 

2D (Burden modified ei-
genvalues) 

MATS8e Moran autocorrelation - lag 8 / weighted by Sanderson 
electronegativities 

2D (Autocorrelation) 

SssCH2 Sum of atom-type E-State: -CH2- 2D (Atom type electrotop-
ological state) 
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Table 3: Values of significant molecular descriptors for QSAR models (1-3) 

Compound nArNHR ISH B04[O-O] G2p D467 D278 D491 D384 D580 D461 SHBint4 SpMin2_Bhe MATS8e SssCH2 

1 1 0.832 0 0.164 0.773 0.460 0.518 0 5.406 0.465 4.3184 1.8130 -0.1379 0.0000 

2 1 0.898 0 0.164 0.708 0.489 0.588 4 5.410 0.494 4.0816 1.8175 0.3169 0.0000 

3 1 0.878 0 0.180 0.722 0.489 0.544 0 5.416 0.463 4.2075 1.8130 -0.2709 0.0000 

4 1 0.839 0 0.174 0.774 0.462 0.54 0 5.440 0.356 4.4229 1.8130 -0.2951 0.0000 

5 1 0.850 1 0.193 0.805 0.506 0.471 0 5.420 0.186 7.5875 1.8130 0.0848 0.0000 

6 0 0.829 0 0.169 0.646 0.426 0.805 0 5.419 0.520 0.0000 1.8187 -0.1210 0.0000 

7 0 0.891 1 0.170 0.556 0.427 0.831 0 5.434 0.315 0.0000 1.8187 -0.0071 0.0000 

8 0 0.879 1 0.173 0.656 0.423 0.649 0 5.436 0.320 0.0000 1.8212 0.0229 1.4684 

9 0 0.914 0 0.179 0.501 0.528 0.933 0 5.390 1.249 3.8389 1.5636 0.1182 2.3687 

10 0 0.896 1 0.158 0.515 0.488 0.754 0 5.538 0.403 0.0000 1.8952 0.1915 -0.2690 

11 0 0.864 1 0.173 0.479 0.49 0.688 0 5.538 0.544 0.0000 1.9109 0.1872 -0.2700 

12 0 0.869 1 0.183 0.652 0.488 0.756 0 5.538 0.316 0.0000 1.8950 0.1419 -0.3336 

13 0 0.828 1 0.161 0.503 0.468 0.604 0 5.586 0.515 0.0000 1.8955 0.1400 -0.2867 

14 0 0.839 1 0.151 0.493 0.481 0.821 0 5.538 0.373 0.0000 1.9068 0.3121 -0.2161 

15 0 0.847 1 0.151 0.544 0.481 0.744 0 5.538 0.326 0.0000 1.9068 0.2481 -0.2215 

16 0 0.795 1 0.159 0.553 0.459 0.664 0 5.539 0.329 0.0000 1.9191 0.1378 -1.0815 

17 0 0.869 1 0.154 0.595 0.457 0.714 0 5.538 0.355 0.0000 1.9192 0.0588 -0.8724 

18 0 0.788 0 0.209 0.501 0.413 0.472 0 5.429 0.471 0.0000 1.8586 -0.2830 0.0000 

19 0 0.959 1 0.193 0.509 0.433 0.794 0 5.371 0.619 0.0000 1.8339 -0.1138 -0.1275 

20 0 0.923 1 0.171 0.502 0.462 0.827 0 5.371 0.633 0.0000 1.8379 -0.0275 -0.1183 

21 0 0.923 1 0.193 0.489 0.462 0.82 0 5.371 0.612 0.0000 1.8395 -0.0511 -0.1139 

22 0 0.898 1 0.163 0.652 0.433 0.789 0 5.395 0.484 0.0000 1.8340 -0.1900 -0.1921 

23 0 0.897 1 0.179 0.656 0.462 0.826 0 5.395 0.501 0.0000 1.8380 -0.0987 -0.1829 

24 0 0.942 1 0.200 0.473 0.440 0.719 0 5.392 0.730 0.0000 1.8342 -0.1244 -0.1285 
25 0 0.945 1 0.174 0.465 0.465 0.736 0 5.393 0.726 0.0000 1.8381 -0.0346 -0.1193 

26 0 0.945 1 0.187 0.457 0.465 0.731 0 5.393 0.712 0.0000 1.8398 -0.0595 -0.1149 

27 0 0.920 1 0.165 0.640 0.383 0.598 0 5.418 0.612 0.0000 1.8350 -0.2016 -0.1498 
28 0 0.909 1 0.176 0.647 0.406 0.624 0 5.418 0.629 0.0000 1.8390 -0.1186 -0.1406 
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relation matrix between pair of molecular de-
scriptors was performed using Pearson’s cor-
relation coefficient (r) (Supplementary Ta-
bles 1-3). Cutoff value of |r| ≥ 0.9 was used to 
determine the intercorrelation. The results 
showed that there was no intercorrelation 
within a set of selected descriptors as dis-
played by low |r| values  0.9, which sug-
gested that each descriptor was independent 
from other descriptors. Finally, a set of 14 se-
lected descriptors was further employed to 
construct 3 QSAR models (according to types 
of software used to calculate descriptor val-
ues) for predicting antioxidant activity of the 
coumarin derivatives. 
 
QSAR models 

Descriptors obtained from these softwares 
have been demonstrated for their successful 
QSAR modeling such as antioxidant (Alisi et 
al., 2018; Rastija et al., 2018), antimicrobial 
(Alyar et al., 2009; Basic et al., 2014; Podu-
navac-Kuzmanović et al., 2009), anticancer 
(Sławiński et al., 2017; Suvannang et al., 
2018) and antiviral (Duchowicz et al., 2018; 
Saavedra et al., 2018; Worachartcheewan et 
al., 2019) activities. Herein, three models 
were separately constructed based on the 
types of key descriptors (i.e., model 1 Dragon 
descriptors, model 2 Mold2 descriptors, and 
model 3 PaDEL descriptors). A set of 14 se-
lected informative descriptors (as independ-
ent variables, Table 2) and antioxidant activi-
ties (pIC50 values as dependent variables) of 
the studied compounds were included in the 
data sets for construction of QSAR models 
using Eq. (1). Before building the models, the 
data set of coumarin derivatives (1-28) was 
split into training, LOO-CV, and external 
sets. The training set was used to construct the 
model using MLR algorithm whereas both 
LOO-CV and external sets were utilized for 
validating the constructed models. Com-
pounds 1, 6, 15, 21 and 27 were randomly se-
lected to be used as external sets, while the 
remaining 23 compounds in the data sets (i.e., 
2-5, 7-14, 16-20, 22-26 and 28) were em-
ployed as training set. As a result, three 

QSAR models (models 1-3) were success-
fully constructed for predicting antioxidant 
activities (pIC50 values) of the studied couma-
rin analogs.  
 
Model 1 (Dragon descriptors) 
 
pIC50  = 1.2245(nArNHR)  4.3187(ISH)  
                 + 0.3944(B04[O-O])  
                 + 8.1471(G2p) + 4.9498 (2) 
 
NTr = 23, R2

Tr = 0.901, R2
Adj = 0.885, RMSETr 

= 0.154 
NLOO-CV = 23, Q2

LOO-CV = 0.813, RMSELOO-CV = 
0.210, s = 0.238, F ratio = 13.043, PRESS = 
1.019 
NExt = 5, Q2

Ext = 0.952, RMSEExt = 0.104 
 

where NTr, NLOO-CV and NExt are the number 
of compounds of training, LOO-CV and ex-
ternal sets. R2

Adj is the adjusted R2. 
 

Four molecular descriptors calculated 
from Dragon software were used as predictors 
to construct QSAR model 1 as shown in Eq. 
(2). Statistical parameters indicating predic-
tive performance of the model are summa-
rized in Table 4. Training set showed R2

Tr = 
0.901, RMSETr = 0.154, while the LOO-CV 
set displayed the Q2

LOO-CV = 0.813, RMSELOO-

CV = 0.210, and the external set with Q2
Ext = 

0.952, RMSEExt = 0.104. Comparative plot of 
experimental versus predicted antioxidant ac-
tivities (pIC50) is shown in Figure 3a. Resid-
ual values were calculated as a difference be-
tween experimental and predicted pIC50 val-
ues. Small residual values indicated the preci-
sion of model prediction. Plot of the residual 
values is shown in Figure 3b. 

 
Model 2 (Mold2 descriptors) 
 
pIC50  = 1.4575(D467) + 7.1429(D278)  
                    2.6745(D491)  0.1328(D384)  
                    2.0251(D580)  0.5180(D461)  
                   + 12.1227 (3) 
 
 

https://www.excli.de/vol19/Worachartcheewan_26022020_supplementary_information.pdf
https://www.excli.de/vol19/Worachartcheewan_26022020_supplementary_information.pdf
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NTr = 23, R2
Tr = 0.958, R2

Adj = 0.946, RMSETr 

= 0.099 
NLOO-CV = 23, Q2

LOO-CV = 0.888, RMSELOO-CV = 
0.169, s = 0.203, F ratio = 21.122, PRESS = 
0.659 
NExt = 5, Q2

Ext = 0.875, RMSEExt = 0.170 
 

Six important descriptors obtained from 
the Mold2 software were used to generate the 
model 2 as shown in Eq. (3). Statistical anal-
ysis of the model is given in Table 4. It was 
observed that the model provided statistical 
R2

Tr = 0.958, RMSETr = 0.099 for the training 
set, Q2

LOO-CV = 0.888, RMSELOO-CV = 0.169 for 
the LOO-CV set, and Q2

Ext = 0.875, RMSEExt 

= 0.170 for the external set. The experimental 
versus the predicted antioxidant activities of 
the model 2 were graphically plotted (Figure 
3c), while Figure 3d was the plot of residual 
values.  

 
Model 3 (PaDEL descriptors) 
 
pIC50  = 0.2638(SHBint4)  
             + 6.9792(SpMin2_Bhe)  
              0.9768(MATS8e)  
             + 0.3238(SssCH2)  
              10.0346 (4) 
 
NTr = 23, R2

Tr = 0.950, R2
Adj = 0.942, RMSETr 

= 0.109 
NLOO-CV = 23, Q2

LOO-CV = 0.908, RMSELOO-CV = 
0.150, s = 0.170, F ratio = 44.52, PRESS = 
0.518 
NExt = 5, Q2

Ext = 0.885, RMSEExt = 0.166 
 

Model 3 of Eq. (4) was built using 4 sig-
nificant descriptors generated by PaDEL soft-
ware. Statistical evaluation of the model is 
shown in Table 4. The results showed that the 
QSAR model displayed R2

Tr = 0.950, RMSETr 

= 0.109 for the training set, Q2
LOO-CV = 0.908, 

RMSELOO-CV = 0.150 for the LOO-CV set, and 
Q2

Ext = 0.885, RMSEExt = 0.166 for the exter-
nal set. Comparison of experimental and the 
predicted antioxidant activities of model 3 are 
outlined in Figure 3e, while residual values 
were displayed in Figure 3f.  

In overview, three constructed models 
provided satisfactory results as indicated by 
their statistical parameters such as R2, Q2, 
RMSE, F ratio and PRESS values. The R2 and 
Q2 of the obtained QSAR models were con-
sidered as acceptable values when R2>0.6 and 
Q2>0.5 (Golbraikh and Tropsha, 2002; 
Nantasenamat et al., 2010). These parameters 
of all constructed models were in acceptable 
range (model 1: R2

Tr = 0.901, Q2
LOO-CV = 0.813 

and Q2
Ext = 0.952, model 2: R2

Tr = 0.958, 
Q2

LOO-CV = 0.888 and Q2
Ext = 0.875, model 3: 

R2
Tr = 0.945, Q2

LOO-CV = 0.908 and Q2
Ext = 

0.885. In addition, low values of RMSE, s and 
PRESS, but high value of F ratio indicated 
that the models were significant (RMSETr = 
0.154, RMSELOO-CV = 0.210, RMSEExt = 0.104, 
s = 0.238, PRESS = 1.019 and F ratio = 
13.043 in model 1, RMSETr = 0.099, 
RMSELOO-CV = 0.169, RMSEExt = 0.170, s = 
0.203, PRESS = 0.659 and F ratio = 21.122 
in model 2, and RMSETr = 0.109, RMSELOO-CV 

= 0.151, RMSEExt = 0.164, s = 0.170, PRESS 
= 0.518 and F ratio = 44.52 and  in model 3) 
(Frimayanti et al., 2011; Rastija et al., 2018). 
The statistical (Table 4) and graphical (Figure 
3) results showed that the QSAR models 
(models 1-3) gave a reliable agreement of the 
experimental and the predicted antioxidant 
values. Furthermore, the plots of experi-
mental activity and residual values (Figures 
3b, 3d and 3f) displayed the distribution of re-
siduals on both sides of the zero values indi-
cating that there are no systemic error in the 
models (Jalali-Heravi and Kyani, 2004). 
Therefore, the QSAR models 1-3 could be 
possibly used and reliable for predicting the 
antioxidant activity of coumarin derivatives. 
Considering the correlation coefficient (Q2) 
of external set, it was shown that the Dragon 
descriptors gave the highest quality of the pre-
diction for external test set (model 1: Q2

Ext = 
0.952) followed by the PaDEL descriptors 
(model 3: Q2

Ext = 0.885) and the Mold2 de-
scriptors (model 2: Q2

Ext = 0.875).  
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Table 4: Summary of statistical results in predicting antioxidant activity of coumarin derivatives (1-28) 

Model Training set LOO-CV set External set 

R2
Tr

 RMSETr Q2
LOO-CV RMSELOO-CV F Q2

Ext     RMSEExt 

1 0.901 0.154 0.813 0.210 19.564 0.952 0.104 

2 0.958 0.099 0.888 0.169 21.122 0.875 0.170 

3 0.950 0.109 0.908 0.150 44.520 0.885 0.166 

 

 
Figure 3: Plots of the experimental and the predicted activities of model 1 (3a), model 2 (3c), and model 
3 (3e) for the training set (□; regression line is represented as solid line), the leave-one out cross-vali-
dated (■; regression line is represented as dotted line), and the external () sets. Distribution of the 
experimental activity and residual values (the difference between experimental and predicted activities) 
of model 1 (3b), model 2 (3d) and model 3 (3f)
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Structure-activity relationship (SAR) 
Regression coefficient values of the key 

descriptors (as independent variables) in 
QSAR models define the degree or weight of 
their influence on dependent variables (anti-
oxidant activity: pIC50 values). According to 
the linear QSAR equations, high values of de-
scriptors with positive regression coefficient 
and low values of descriptors with negative 
regression coefficient are required for potent 
antioxidant activity (high pIC50 values). 

The descriptors in model 1 including 
nArNHR, B04[O-O] and G2p displayed posi-
tive values of regression coefficient involved 
in the increased antioxidant activity as a pos-
itive effect, while ISH descriptor having neg-
ative value of regression coefficient involved 
in the decreased activity as a negative effect. 
The important descriptors are ranked accord-
ing to their regression coefficient values as 
G2p>nArNHR>B04[O-O]>ISH with cor-
responding values of 8.1471, 1.2245, 0.3944, 
and -4.3187, respectively. The descriptors in 
model 2 including D467 and D278 with posi-
tive regression coefficient values displayed 
the positive effect, whereas D491, D384, 
D580 and D461 descriptors exerted the nega-
tive effect on the bioactivity. The order of de-
scriptors are D278>D467>D384>D461> 
D580>D491 with corresponding values of 
7.1429, 1.4575, -0.1328, -0.5180, -2.0251, 
and -2.6745, respectively. For model 3, 
SHBint4, SpMin2_Bhe and SssCH2 de-
scriptors showed the positive effect on activ-
ity, but MATS8e descriptor displayed the 
negative effect. The order of important de-
scriptors are SpMin2_Bhe>SssCH2> SHBint 
>MATS8e with values of 6.9792, 0.3238, 
0.2638 and -0.9768, respectively.  

To gain insights into SAR, coumarin de-
rivatives (1-28, Figure 1) are categorized into 
3 groups according to their core structures 
(i.e., thiazole group I (1-9 and 18), sulfona-
mides group II (10-17) and amides group III 
(19-28) for effective SAR analysis. Thiazoles 
group I (1-9 and 18) showed antioxidant ac-
tivity (Table 1) with pIC50 range of 2.539-
4.612. The most potent and the least potent 
compounds of benzothiazoles group I were 5 

(pIC50 = 4.612) and 6 (pIC50 = 2.539), respec-
tively. Among group II compounds (10-17), 
compound 11 was the most active (pIC50 = 
3.180), and 14 was the least active compound.  
For group III of amides 19-28, compound 21 
displayed the most potent activity (pIC50 = 
3.027) and compound 19 exhibited the lowest 
activity with pIC50 of 2.640.  

It should be noted that coumarins substi-
tuted by thiazole at 3-position displayed better 
activity when compared with those substi-
tuted by sulfonamides and amides at 7- or 4- 
or 6- position (group II and III). The antioxi-
dant activity (Table 1) is shown as the follow-
ing trend: group I 5>3>4>1>2>18>8>7>9>6; 
group II 11>16>13>17>15>12>10>14; group 
III 21>28>22>20>23>26>27>24>25>19. 

According to the significant descriptors in 
models 1-3, secondary (sec-) amine, polariza-
bility, electronegativity and H-bond displayed 
positive effect in the antioxidant activity. This 
is noted in the most potent coumarin 5 bearing 
sec-amine (part of aromatic thiazole), and 7-
OH group (on the coumarin ring) with H-
bond and polarizability properties. On the 
other hand, tertiary (tert-) amine 6 without 7-
OH group exerted the lowest activity among 
the coumarin derivatives 1-28. This could be 
implied that the sec-amine (-NH-) and OH as 
H-bond and polarizing group are important 
for the better activity.  

In a series of compounds 1-28, only the 
sec-amines (1-5) had nArNHR = 1. The most 
potent compound 5 had higher values of 
nArNHR = 1, SHBint4 = 7.5875, G2p = 
0.193, D467 = 0.805, but lower values of van 
der Waals volume (D491 = 0.471 and D461 = 
0.186) when compared with the least potent 
compound 6 (nArNHR = 0, SHBint4 = 0.000, 
G2p = 0.169, D467 = 0.646, van der Waals 
volume: D491 = 0.805 and D461 = 0.520). 
Apparently, the tert-amines (6-8) and other 
amides, sulfonamides (10-28) as well as non-
aromatic sec-amine 9 had nArNHR = 0. 

Because each descriptor represents certain 
characteristic/property of the compound, 
QSAR equations are useful to guide effective 
rational molecular design of novel bioactive 
compounds with preferable activity (De et al., 
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2017; Mitra et al., 2011; Prachayasittikul et 
al., 2017; Pratiwi et al., 2019). To improve the 
antioxidant activity of these derivatives (1-
28), 8 compounds (i.e., 2, 3, 4, 5, 11, 13, 18 
and 21) were selected as parent compounds 
for structural modification. A series of novel 
analogs were rationally designed based on 
key influencing properties (which were re-
vealed by descriptors presented in models 1-
3). The modification was conducted by sub-
stitution of diverse types of functional groups 
with electronegativity, polarizability and H-
bond properties (i.e., electron donating and 
electron withdrawing groups such as OH, 
NH2, SH, OCH3, CN, CF3 and halogen) on 
various positions of the coumarin ring. The 
new structurally modified compounds are 
shown in Supplementary Table 4). Values of 
molecular descriptors of these compounds are 
provided in Supplementary Tables 5-7). The 
prediction showed that the most potent com-
pounds (pIC50) of each modified series were 
2b, 2e (4.503, 4.502), 3n (6.340), 4g (6.445), 
5h (7.016), 11a (4.526), 13d (4.356), 18c 
(4.197) and 21d (5.634) as shown in Figure 4. 
All highly potent modified compounds were 
ranked as 5h>4g>3n>21d>11a>2b= 
2e>13d>18c. The top three modified com-
pounds (ranked as 5h>4g>3n) shared a com-
mon feature of 4-amino coumarin moiety 

(Figure 4). This moiety involves in H-bond-
ing, polarizability, and electronegativity 
properties of the compounds which are essen-
tial for potent predicted activity. Apparently, 
these most potent compounds displayed the 
highest SHBint4 values of 16.903, 13.660, 
and 13.064 for 5h, 4g, and 3n, respectively. 

The following discussed compounds are 
shown in Supplementary Table 4. Compound 
2 (pIC50 = 3.332) was modified by substitu-
tion of R1 (6-position) and R2 (5-position) 
groups (H, F, Cl, CF3, CN, NO2) on the core 
structure to give a new series of compounds 
2a-2h with improved activity (pIC50 = 3.167-
4.503), except for compounds 2f and 2h. 
Compounds 2b (5-CF3, 6-H) and 2e (5-CF3, 
6-NO2) were the most potent compounds with 
comparable pIC50 values of 4.503 and 4.502, 
respectively. These could be due to the en-
hancing effect of 5-CF3 (R2) and 6-NO2 (R1) 
groups that provided high polarizability (G2p: 
2b = 0.1820, 2e = 0.1730), electronegativity 
(SpMin2_Bhe: 2b = 1.847, 2e = 1.847), and 
potential H-bond (SHBint4: 2b = 5.150, 2e 
=5.480), thus, improved antioxidant activity 
of the modified compounds comparing with 
their parent 2 (G2p = 0.164, SpMin2_Bhe = 
1.8175, SHBint4 = 4.0816). 

 

 
Figure 4: The most potent compounds in each rationally modified series

https://www.excli.de/vol19/Worachartcheewan_26022020_supplementary_information.pdf
https://www.excli.de/vol19/Worachartcheewan_26022020_supplementary_information.pdf
https://www.excli.de/vol19/Worachartcheewan_26022020_supplementary_information.pdf
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Similarly, modified compounds 3a-3p 
were obtained by substitution of R1, R2, R3 
at positions 7, 6, and 4 of the parent com-
pound 3 (R1 = H, OH, OCH3, NH2, N(CH3)2, 
SH, SC6H5; R2 = F, Cl, Br, CF3; R3 = H, OH, 
OCH3, NH2, N(CH3)2). Compound 3n (R1 = 
H, R2 = Br, R3 = NH2) was predicted as the 
most potent one with pIC50 value of 6.340. 
Compounds 3f-3p (pIC50 = 4.129-6.340) were 
mostly active than the parent compound 3 
(pIC50 = 4.003). It should be noted that these 
compounds (3f-3p) contained the same type 
of substituted R2 (Br) group as their parent 3 
(6-Br). Therefore, higher H-bonding potential 
(SHBint4 = 13.064) and electronegativity 
(D467 = 0.736) play an important role in im-
proving the activity of compound 3n when 
compared with its parent compound (3: 
SHBint4 = 4.2075, D467 = 0.722). The higher 
SHBint4 and D467 of 3n may result from the 
property of the substituted NH2 group in 
forming H-bond with the interacting species. 
In addition, the substitution with high electro-
negativity Br group (R2) at position 6 is re-
quired for improving activity of the com-
pounds as noted for compound 3f-3p and the 
parent compound 3. 

Structural modification improved activity 
of most of the compounds in series 4 (4a-4i: 
pIC50 = 4.033-6.445), except for compounds 
4d and 4h.The results showed that 4g (R1 = 
7-H, R2 = 4-NH2) was the most potent com-
pound (pIC50 = 6.445). Comparing with the 
parent compound 4 (pIC50 = 3.973, SHBint4 
= 4.442, G2p = 0.174), the most potent deriv-
ative 4g displayed higher potential H-bond 
(SHBint4 = 13.660) and higher polarizability 
(G2p = 1.960). It is reasonable to explain that 
4-NH2 (R2) of 4g participates in H-bond 
forming and polarization through a keto group 
of the coumarin ring as shown by the resonant 
ionic form (4A) in Figure 5. On the other 
hand, compound 4c (R1 = 7-NH2, R2 = 4-H) 
exerted lower activity with lower descriptors 
values (pIC50 = 0.4772, SHBint4 = 7.432, G2p 
= 0.1830) comparing with the most potent 
compound 4g. 

 
Figure 5: The resonant ionic form of 4A 

 
The most potent coumarin 5 was modified 

to give derivatives 5a-5l, in which com-
pounds 5f-5i displayed the improved antioxi-
dant activity (pIC50 = 4.745-7.016). Com-
pound 5h was the most potent one (pIC50 = 
7.016) with higher H-bond potential 
(SHBint4 = 16.903), but lower electronega-
tivity (MATS8e = 0.063) when compared 
with its parent 5 (pIC50 = 4.612, SHBint4 = 
7.5875, MATS8e = 0.0848). 

The amides 11, 13, and 21 were structur-
ally modified by removing oxyketo group 
from the parent core structures to give sec-
amines. The amine derivatives 11a-11f with 
improved activity (pIC50 = 3.402-4.526) were 
achieved from compound 11 (pIC50 = 3.180). 
When compared with its parent (amide 11: 
nArNHR = 0, D467 = 0.479, SHBint4 = 
0.000, D491 = 0.688, D461 = 0.544 and 
MATS8e = 0.1872), improved activity of the 
most potent amine 11a (pIC50 = 4.526) was 
governed by its higher nArNHR = 1, electro-
negativity (D467 = 0.690), and H-bond 
(SHBint4 = 2.048), but lower van der Waals 
volume (D491 = 0.342 and D461 = 0.022) and 
electronegativity (MATS8e = -0.058). This 
could suggest that the improved activity of 
compounds requires a smaller size sec-amine 
(11a) with lower van der Waals volume but 
higher potential H-bonding. Similarly, a se-
ries of sec-amines 13a-13d (R1 = CH3, OH, 
OCH3, R2 = CH3, OCH3) were obtained 
(pIC50 = 3.341-4.356) from the amide 13 
(pIC50 = 3.022). Compound 13d (pIC50 = 
4.356) was the most potent amine with higher 
nArNHR = 1, D467 = 0.640, SHBint4 = 
4.368, but lower van der Waals volume D461 
= 0.455 and MATS8e = -0.125 comparing to 
its parent compound 13 (nArNHR = 0, D467 
= 0.503, SHBint4 = 0.000, D461 = 0.515 and 
MATS8e = 0.1400). The amide 21 (pIC50 = 
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3.027) was modified to give analogs with im-
proved antioxidant effect i.e., sec-amines an-
alogs 21a-21h (pIC50 = 3.549-5.634). The 
most potent modified amine 21d (pIC50 = 
5.634) displayed higher nArNHR = 1, electro-
negativity D467 = 0.657, H-bond SHBint4 = 
9.823, electronegativity SpMn2-Bhe = 1.843 
and SssCH2 = 0, but lower ISH = 0.869, van 
der Waals volume D491 = 0.350 and D461 = 
0.436, and MATS8e = -0.219 when compared 
with the parent 21 (nArNHR = 0, D467 = 
0.489, SHBint4 = 0.000, SpMin2-Bhe = 
1.8395, SssCH2 = -0.1139, ISH = 0.923, van 
der Waals volume D491 = 0.82 and D461 = 
0.612, and MATS8e = -0.0511). 

Benzothiazole coumarin 18 was structur-
ally modified to provide compounds 18a-18f 
(R1 = OH, OCH3, NH2, N(CH3)2, SH, SC6H5 
at position 7). Comparing with the parent 
compound 18 (pIC50 = 3.260), compounds 
18b-18e were more potent antioxidants (pIC50 
= 3.758-4.197). Improved activity of the most 
potent compound 18c (pIC50 = 4.197) was 
governed by higher electronegativity (D467 = 
0.595), total information content (D278 = 
0.473) and H-bond (SHBint4 = 2.894), but 
lower van der Waals volume (D491 = 
0.377and D461 = 0.299) when compared to 
parent compound 18 (D467 = 0.501, D278 = 
0.413, SHBint4 = 0.000, D491 = 0.472 and 
D461 = 0.471). 

It should be noted that the most potent 
modified compounds had higher values of H-
bonding descriptor (SHBint4 = 2.048-16.903, 
Supplementary Table 7) when compared with 
their parent compounds (SHBint4 = 0.000-
7.5875, Table 3). Thus, SHBint4 might be the 
important descriptor in governing the potent 
antioxidant activity. 

 
CONCLUSION 

Understanding SAR is important for im-
proving bioactivities and pharmacokinetic 
properties in development of potent and safe 
cosmetic products. Herein, a set of coumarin 
derivatives (1-28) with antioxidant activity 
was used to construct three QSAR models (1-
3) using three different descriptor types and 
MLR method. Results of statistical evaluation 

showed that three generated QSAR models 
provide good reliability and comparable pre-
dictive performance (Q2

LOO-CV = 0.813-0.908; 
RMSELOO-CV = 0.150-0.210; Q2

Ext = 0.875-
0.952; RMSE Ext = 0.104-0.166). In addition, 
good correlation obtained from model predic-
tion suggests that the selected significant de-
scriptors were shown to be good representa-
tives for revealing correlation between chem-
ical structures of the compounds (i.e., 
nArNHR, H-bonding, polarizability, van der 
Waals volume and electronegativity proper-
ties) and their antioxidant activities. An appli-
cation of the constructed models was demon-
strated by rationally designed an additional 
set of 69 structurally modified coumarins 
based on key descriptors, in which their anti-
oxidant activities were predicted using the ob-
tained QSAR models (1-3). Most of the ra-
tionally designed compounds displayed more 
improved antioxidant activity when com-
pared with their parents. Particularly, the top 
three newly designed compounds (5h, 4g and 
3n) showing high H-bonding (SHBint4) de-
scriptor values which may play part in gov-
erning the most improved antioxidant activ-
ity. Finally, a set of newly designed promising 
coumarin analogs were highlighted for their 
potential to be further developed as potent an-
tioxidants. Insights SAR findings also pro-
vided beneficial guidelines for the rational de-
sign of novel coumarin-based compounds 
with potent antioxidant effect for cosmetic ap-
plications. 
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