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Abstract

Metabolomics is an expanding field of medical diagnostics due to metabolic
reprogramming alteration caused through diseases. Additionally, studying
metabolomics offers an insight into the molecular mechanisms of diseases. The
dynamicity of biological cells causes alteration in the chemical and biochemical
characteristics of structural profiles of biological fluids and tissues. Therefore, the
role of metabolic profiling in discovering biological fingerprints of diseases, and
their evolution, as well as the cellular pathway of different biological or chemical
stimuli 1s most significant.

Two-dimensional nuclear magnetic resonance (2D NMR) is one of the
fundamental and strong analytical instruments for metabolic profiling. Though,
total correlation spectroscopy (2D NMR 'H -'"H TOCSY) can be used to improve
spectral overlap of 1D NMR, strong peak shift, signal overlap, spectral crowding
and matrix effects in complex biological mixtures are extremely challenging in
2D NMR analysis. Thus, in this work, we introduce an automated metabolic
deconvolution and assignment based on TOCSY of real breast cancer tissue and
of adipose tissue-derived human Mesenchymal Stem cells. A major alternative
to the common approaches in NMR based machine learning where images of the
spectra are used as an input. In the new suggested approach, metabolic
assignment is based only on the vertical and horizontal frequencies of the
metabolites in the '"H-"H TOCSY.

A set of 27 metabolites were deduced from the TOCSY of a breast cancer sample
and the classifiers: Kernel Null Foley—-Sammon Transform, support vector
machines, and third- and fourth-degree polynomial classifiers have been
customized and extended under the semi-supervised learning scheme. The
classifiers’ performance was evaluated by comparing the conventional human-
based methodology and automatic assignments under different initial training
sizes settings.

Most metabolic profiling approaches focus only on identifying pre-known
metabolites on 'H-'"H TOCSY spectrum using configured parameters. However,
there is a lack of research dealing with automating the detection of new
metabolites that might appear during the dynamic evolution of biological cells.
Novelty detection is a category of machine learning that is used to identify data
that emerge during the test phase and were not considered during the training
phase. We propose a novelty detection system for detecting novel metabolites in
the 2D NMR 'H-"H TOCSY spectrum of a breast cancer-tissue sample. We build
one- and multi-class recognition systems using different classifiers such as Kernel
Null Foley-Sammon Transform, Kernel Density Estimation, and Support Vector
Data Description. The training models were constructed based on different sizes
of training data and are used in the novelty detection procedure. Multiple
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evaluation measures were applied to test the performance of the novelty detection
methods. The results of our novel metabolic profiling method demonstrate its
suitability, robustness, and speed in automated metabolic research.
Furthermore, machine learning is applied on real-time 2D 'H-'H TOCSY to
monitor the dynamic evolution of adipose tissue-derived human Mesenchymal
Stem cells (AT-derived hMSCs) cultivated in basal culture media or in the
presence of adipogenic or osteogenic differentiation media for a duration of
fourteen days. Multi-class classification in addition to novelty detection of
metabolites were established based on the profile of control hMSCs sample at
four days cultivation and successively detect the absence and the abundance of
metabolites after fourteen days of cultivation, adiobocytes and osteocytes
differentiation. Kernel Null Foley-Sammon Transform und Kernel Density
Estimation were successfully able to reveal metabolic changes that accompany
MSCs cellular evolution starting from the undifferentiated status to their
prolonged cultivation and differentiation into adipocytes and osteocytes. The
results show high performances of the proposed algorithms and are compatible
with the proved scientific analysis in stem cells differentiation studies.
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1.3, TRESIS OULIIIIC. ... e e et e e 4

1.1. MOTIVATION

Metabolomics is defined as the “the quantitative measurement of the multi-parametric
metabolic response of living systems to pathophysiological stimuli or genetic
modification” [1]. In organisms, metabolites are in dynamic interaction within body cells,
tissues, and environment. As a result, any biological alteration in the regular cellular
process in the body will be revealed in an alteration of biofluid composition. These
alterations are considered as biomarkers or biological signature that could expose the
characteristics of the biochemical status [1, 2]. Altered metabolism, sometimes called
‘metabolic reprogramming,’ caused by diseases offers an insight into the molecular
mechanisms of diseases. This provides a sound basis for the identification of diagnostic
and prognostic biomarkers, tracking diseases development and treatment outcomes as
well as for rational drug design [3]. Even at initial stages, tumors have been found to
modify the metabolic profiles of biofluids like e.g., blood and urine, as well as of tissues,
resulting in fluctuations of the concentrations of already existing markers or in the
generation of new ones. Consequently, metabolomics and metabolic profiling are
considered a promising area that involve the detection and the identification of the
biomarkers related to prognosis and diagnosis of biological abnormalities [4].

There is a demanding necessity of developing distinctive bioinformatics methods for
metabolic identification due to the following challenges in metabolomics. First, the
diversity, dynamicity and the complexity of the metabolites that can be found in a living
system introduces an extra complication in metabolic analysis. In addition, absorption,
synthesis, degradation and interaction with the environment are continuous processes
that cause instant changes of the metabolism [5, 6]. Consequently, a distinct
metabolomics profile that reveals the state of disease and the essential organism
characteristics can be recognized, enabling further improvements in the diagnostic and
prognostic methods ,and the detections of abnormal metabolic connection [7]. Moreover,
metabolomics studies different types of chemical pathways, such as acids or lipids which
further complicates the analysis process [6, 8]. Furthermore, metabolites have strong
correlations between variables and in NMR one metabolite can contribute to multiple
signals and different metabolites are connected through physiological pathways which
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adds to the complexity of metabolites identification [9]. Additionally, metabolomics
concentrate on downstream outcomes of organisms [6]; thus, the metabolome reflects the
true dynamic functional state of cells and acts as explicit signatures of biochemical
interactions and responses to genetic or environmental changes [7, 10]. Therefore, it is
vital to choose analytical methods for the purpose of identification of diagnostic
biomarkers allowing for further processing and analysis of the biological samples.

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for the
identification of the components of complex mixtures of small molecules, e.g.,
metabolites. NMR has proven its vital and powerful role as an analytical technique in
metabolomics. The non-destructiveness and the reproducibility of NMR results lead to
enabling high-throughput identification and quantitative accuracy of the metabolic
concentration in biological mixtures [3, 11]. However, due to the low sensitivity and
resolution in NMR, obtaining metabolic profiling data from NMR spectra is one of the
main challenges in analyzing complex biological mixtures. Low sensitivity and resolution
in NMR lead to signal overlapping in a '"H NMR spectrum and metabolites are effected
by peak shift due to pH and ionic strength variations of the biological matrix of the
measured samples [3, 12, 13]. Therefore, consistent metabolic identification in biological
fluids such as blood and urine or tissue [11] from the 1D NMR spectra is one of the
significant challenges since it requires deconvolution of the NMR spectrum to overcome
the spectral superposition of several metabolites [13, 14]. In principle, metabolic
identification might be achieved by separating the mixture components by physical
means, followed by NMR measurements of each component. In this approach, the
overall NMR spectrum is assumed to correspond to a weighted sum of individual
metabolite spectra measured individually or taken from an available reference dataset.
Accordingly, concurrent metabolic identification by accurately matching the measured
metabolites in the sample with the peak positions of the reference spectra can be achieved
[14]. This approach is performed manually and involves considerable experience in NMR
spectroscopy, metabolic assignment, sample type and chemical structure and is prone to
operator bias [13, 14]. Moreover, this procedure is not only time-consuming, labor-
intensive, and impractical but might also be invasive since some metabolites may lose
their activity during separation [6]. Therefore, samples are measured without chemical
separation into individual metabolites, and afterward, the deconvolution of the resulting
NMR spectrum is performed based on specific approaches such as "targeted metabolite
fitting” [14-16]. Fortunately, in many cases, peaks that overlap in 1D NMR spectra can
be resolved in 2D NMR spectra due to their higher spectral dispersion [11, 17]. Therefore,
'H-'H TOCSY (total correlation spectroscopy) is well suited for spectral dispersion.
Consequently, metabolomics assignments can be achieved as the signals of each
metabolite occur on a single line (1D cross-sections (row) in the TOCSY spectrum). This
approach eases the task of assignment as well as computational analysis. Nevertheless,
automatically analyzing metabolites contained in biological mixtures using TOCSY
spectra is currently limited [11]. Although many existing methods can decompose the
mixed-signal spectrum into the individual spectra of the constituent metabolites, they
cannot cope with the presence of spectral components induced by chemical shifts and
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overlapping of metabolites. Therefore, the above-mentioned issues faced during
analyzing 1D NMR are valid for 2D NMR. Concisely, the manual analysis of biological
applications is considered a major challenge for high-throughput experiments, due to
complexity of the experimental results [18] and the shortage of experts [19]. NMR
chemical shift automatic assignment boosted by the ability of detecting new unexpected
metabolites will offer a comprehensive characterization of the dynamic changes of
metabolites, and the functional relationship in the metabolic pathways [20]. Machine
learning and pattern recognition have been recognized as an important method for
automation the drug discovery [21], analysis of bio systems such as enzymes, pathways,
and cells biology [22, 23], in addition to structural and system biology [24].

1.2. CONTRIBUTIONS

Machine learning appears as a compelling development in NMR spectroscopic metabolic
profiling. We establish automated metabolic assignment systems based on the spectral
deconvolution of 2D TOCSY NMR by employing machine learning models. Multiple
classifiers are built and optimized for automatic metabolite assignment of different
biological samples under different training dataset sizes. Moreover, a database of
metabolites was constructed through utilizing the horizontal and vertical frequencies of
the TOCSY spectra. This metabolic database has been used in our system and can be
further employed and updated for future metabolic assignment tasks. The results of the
automated procedures are compared to manual analysis by experts. The contributions of
this work are:

1. Semi-Supervised Learning (SSL) in metabolomics employing 2D TOCSY Spectra:
SSL is implemented to assign labels to the different peaks in the TOCSY spectrum.
SSL is helpful in cases where shortage of already existing training labeled data is
encountered. SSL uses a combination of the already labeled data and the unlabeled
data to assign the peaks to specific metabolites. The quality of the automated
labelling is tested using an independent data set.

2. Novelty Detection (ND) in metabolomics employing 2D TOCSY Spectra: Due to
the dynamic nature of biological cells and the variability and multifaceted
corresponding biochemical responses, discovery of unexpected novel biomarker
which may emerge due to an internal or external stimuli is substantial.
Distinguishing these biomarkers is essential in drug design, personalized therapy
and understanding the biological pathway and the biochemical mechanisms of
recovery and degeneration.

3. Automated monitoring of metabolic changes accompanying the differentiation of
Adipose tissue-derived human mesenchymal stem cells (AT-derived hMSCs)
employing 'H-'"H TOCSY NMR: a real monitoring of the differentiation of AT-
derived hMSCs to identify the metabolic pathways through different types of
differentiations and long cultivation is studied and compared to established studies
related to stem cells differentiation.

Most of the modern automated tools that are employed to analyze TOCSY spectra use
images of the spectrum as an input to neural networks or use multivariate statistical
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analysis, such as Principal Component Analysis (PCA) and least squares method for the
purpose of classification [25]. On the other hand, a significant emphasize in the methods
described in this work is incorporating the frequencies of the TOCSY spectra in the
assignment process. The usage of frequencies instead of images has the following
advantages. Frequencies are directly related to the chemical shift values (ppm) values.
PPM is a representation of characteristic frequency of the NMR device with respect to
standard reference point and is independent from the spectrometer frequency, therefore,
they can be adapted according to the frequency of the NMR spectrometer. These values
acts like a fingerprint of a nuclei in biological components [26]. Moreover, ppm values
are easily accessible, are standardized in unified databases, and are consistent and
reproducible under predefined protocols [11, 27]. On the other hand, images of TOCSY
spectra are inherently noisy as can be seen in Figure 1.1 [28] and are dependent on the
measurement resolution and sensitivity. Our Noise Suppression procedure is discussed
in Chapter 5.

1]

bt S Sy w1
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Figure 1.1: A noisy 2D NMR spectrum. Especially for samples with low intensity, NMR signal is
contaminated by noise which appears as random fluctuating streaks in 2D NM resulting in reduced
spectrum quality [28].

1.3. THESIS OUTLINE

The thesis is structured as follows. Consequent to the introduction, Chapter 2 introduces
basic machine learning principles, important terms and concepts of semi-supervised
learning and novelty detection are introduced, and a summary of different methods are
given. In Chapter 3, the general foundation of nuclear magnetic resonance (NMR)
spectroscopy and the principles of 1D and 2D NMR are presented. In Chapter 4 the
significant role of NMR in metabolic studies in addition to the importance of automating
the metabolic assignment in NMR analysis are discussed. Additionally, relevant
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contributions and related work that employ machine learning and NMR are covered. In
Chapter 5, NMR data acquisition, dataset construction and experimental setup are
discussed. Semi-supervised learning techniques are implemented using 2D NMR TOCSY
spectra of breast-cancer tissue samples in Chapter 6. While the assignment of known
metabolites is the topic of Chapter 6, the detection of novel metabolites in 2D NMR
TOCSY spectra is conducted in Chapter 7. An experiment that simulates the metabolic
changes in metabolism of breast-cancer tissue sample was designed to test the
performance of the classifiers. In Chapter 8, monitoring of metabolic pathways of
Adipose tissue-derived human MSCs (AT-derived hMSCs) cultivated in basal culture
media or in the presence of adipogenic or osteogenic differentiation media for a duration
of fourteen days was conducted. Chapter 9 concludes the thesis and offers potential future
research extension. Related data and results are presented in the Appendix.
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Metabolic profiling of NMR spectra of biofluid samples and tissues are affected by
extreme peaks shift and peaks overlap which lead to spectral crowding [13, 14]. Spectral
crowding hardens the process of peak identification, multiplicity and J-couplings
determination in addition to structural investigation [5]. Consequently, manual
assignment of NMR spectra of complex mixtures is a tedious, time and labor-intensive
task and depends extremely on expert knowledge [1, 29]. Developing an automatic
system for peaks assignment of NMR spectra is of significant importance [11]. In this
chapter, an overview of the machine learning methodologies used in this work is given.

2.1. INTRODUCTION

Machine learning has been defined by Tom Mitchell [30] as “A computer program is said
to learn from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks T, as measured by P, improves with experience E”.

The vital principle of machine learning is that it concentrates on the utilizing of
procedures that incorporates information related to training data (experience E) to
automatically estimate the model parameters, generalize to new data and make
predictions (tasks T) to increase accuracy of classification (performance measure P) [30].
Machine learning is offering innovative insights into our lives. Every day, individuals
interact with machine learning centered systems. For instance, voice recognition systems
in intelligent personal assistant like Alexa and Google Assistant; e-mail spam filtering;
image and face recognition in smart phones, security applications and social networks;
weather prediction; traffic and map applications and customer service in retail
applications. Machine learning is an emerging technology in many fields due to its
effectiveness and scalability across a suite of applications. Machine learning offers a
competitive advantage due to the high computational power of modern technology which
enables the use of high computational resources and the integrating, collecting and
organizing of large amount of data [31, 32].

In biology and medicine, machine learning is supporting scientists in prediction
evaluation, uncertainty estimation and model interpretation methods of medical images,
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including x-ray, MRI, and mammography images. Further applications in life science
include disease and patients categorization using molecular biomarkers; enabling the
utilizing of data from high-throughput 'omics' including genomics, proteomics, or
metabolomics; recommendation of treatment, predicting treatment results and the
development of new medications [33].

In general, a machine learning system uses three types of datasets: First dataset is the
training dataset which is the labeled training data used to build a generalization model.
The second dataset is the learning dataset which is the unlabeled data that is to be learned.
A third dataset, the validation dataset, is used to tune the parameters of the classifiers.
Importantly, all datasets must belong to the same distribution, but, the learning dataset is
still unknown to the classifier during the training phase [34, 35].

Murphy [35] has divided machine learning into two main categories, supervised and
unsupervised learning. These categories imply different amounts of supervision which is
reflected in how much information is shared from the human expert side. Equally, the
amount of information shared from the human expert side binds our choice of the chosen
machine-learning category. Supervised learning corresponds to finding a mapping using
the labeled training data for the purpose of assigning labels to unlabeled data. Usually,
labeled training data are labeled by humans and is available before starting the learning
procedure [35]. On the contrary, in unsupervised learning, classifiers receive a completely
unlabeled dataset. The machine learning system is supposed to create clusters or groups
based on similarities or a hidden structure in the training data [34, 36].

Usually, experts assign labels manually; nevertheless, having a complete set of manually
labeled training data is a challenging task. The manual labelling process is time-
consuming, depends extremely on expert’s knowledge and is inflexible in cases of many
unlabeled data from high-throughput applications. In these situations, a third category of
machine learning that combines the previously mentioned categories is incorporated.
Semi-supervised learning uses few labeled and many unlabeled data to infer the learning
behavior and increase the classification performance. The labeled training data acts as
seeds to create an initial training model; then the training model and the unlabeled data
are used to update the initial training model [37].

Another emerging category is novelty detection. Novelty detection is defined as
distinguishing test samples that differ from the training data [38]. Novelty detection is
used when training data is incomplete or a particular class happens very rarely or in
abnormal situations [39]. A brief introduction of these categories is introduced in the
following sections.

2.2. SUPERVISED LEARNING

The goal of supervised learning is to learn the function that can predict the label of the
unlabeled unseen instance. Formally, we have a training dataset T = {(x;, y;)}}L, where
N is the number of training samples. Every input-output pair comprises a training input,
x; € X , where X is a D-dimensional vector that represents the features or the attributes of
the N training instance, together with its output label y;. In cases of continuous or real-
scaled label values, the prediction task is known as regression. On the other hand, in cases
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when the prediction output y € {1, ..., C} is assumed to be categorical or belong to discrete
classes C, the prediction task is termed as classification. Classification can be regarded as
a binary classification problem if C = 2 or as multi-class classification [35] if C > 2.
Supervised learning can be formulated as a generative or discriminative model. The
generative algorithms learn the joint probability distribution p(x,y) to model the class
distributions. On the other hand, discriminative models learn the boundary between
classes directly using the training data by estimating the posterior class probabilities
p(y|x) without modelling the underlying class distribution [35, 40] .

For metabolic assignment using supervised learning, a classifier must be trained over an
interval of possible shifted frequencies and over intervals of possible pH values,
concentrations, temperature, and any other effect that may affect the chemical shift.
Unfortunately, supervised learning cannot be used efficiently in NMR experiments due
to the inapplicability to capture all settings in the dynamic environment of metabolites.

2.3. UNSUPERVISED LEARNING

In unsupervised learning, no labelling information is available for the classifier and only
the unlabeled training data X is used during the training process. Unsupervised learning
1s used to create clusters or groups of structures based on the similarities between data. In
general, unsupervised learning is used to estimate the probability p(x;) under the
assumption that x; € X is independent and identically distributed [34].

Unsupervised learning will not be studied in this thesis.

2.4. SEMI-SUPERVISED LEARNING

One of the main problems in supervised learning is the unavailability of labeled training
data. The number of training data samples, which are sufficient to produce an acceptable
classification results, is directly related to the complexity of the classification problem
[41]. Conversely, manual labeling is an expensive and time-consuming process, which
needs a considerable amount of human supervision. In addition, in some context; the
output of labeling process varies depending on the experience of the expert and therefore
prone to error [37].

Semi-Supervised Learning (SSL) is a category that lies between supervised and
unsupervised learning. Some paradigms view SSL as an extension of supervised learning
with some extra information. This view is acceptable when the goal of the classification
process 1s assigning labels. SSL can also be viewed as extended unsupervised learning
with some constrains on the construction of clusters [41].

In SSL, a system is provided with a limited amount of labeled training data X);peleqd =
{x,..,x } and the associated labels Yzpeleq = {y1, .-y} drawn from p(x,y) and
unlabeled training data Xypnjabeled = {X1+1, --» X1 +u} from the marginal distribution p(x),
where we have L labeled data and u unlabeled data and u > L. SSL aims to use both
Xunlabeled aNd Xjapeleq t0 boost the performance of the supervised learning based only
on Xjapeled [37]. SSL is based on at least one of these assumptions [42, 43]:

e Smoothness Assumption: in SSL, smoothness is related to density on the decision
boundaries. Close instances in the input space are likely to belong to the same class,
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constructing a high-density area. Accordingly, two instances of different classes are
separated by low-density regions.

e Cluster Assumption or low-density assumption: decision boundary lies in low
density regions and encloses high-density areas.

e Manifold Assumption: high dimensional data can be embedded in low dimensional
area and can be handled in this low dimensional manifold. This assumption implies
that the high dimensional input space can be represented through collection of low-
dimensional manifolds that contains data instances and every manifold represents
similar classes [42, 43].

The smoothness and the cluster assumptions are closely related. Clusters are formed using
similar data, these data are grouped together to create a high-density area. The boundaries
between these clusters form low density regions, which distinguish or separate these
clusters [42]. The manifold assumption is a vital assumption in the dimensionality
reduction of high dimensional features. In real applications, finding a low dimensional
representation, which preserve the non-linear high dimensional information of the data,
is of interest [37, 44].

Most SSL algorithms are derived from one of the above-mentioned assumptions; in
correspondence to the underlying assumption, SSL is organized as follows [37, 41, 44,
45]:

2.4.1. Graph-based methods

In Graph-based SSL, labeled and unlabeled data form vertices, which are connected
through weighted edges. The edges are generally undirected and represent a similarity
measure between the two vertices. Labeled instances transmit information through the
graph with the goal of labeling unlabeled data [42].

Graph-based methods are based on two important assumptions. The first is the manifold
embedding of data into a lower dimensional space enabling the graph representation [42].
The second assumption considers the smoothness of the variation of the labels. Edges
with high weights are considered to belong to the same label. Heuristic approaches to
compute the weight is discussed in Zhu and Goldberg [41] as follows:

e Fully connected graph: All vertices are connected through a weight-distance
function. A function is the Euclidean distance||x; — x;||. Weight and distance have
a monotonic decreasing relation.

e kNN graph: A set of k neighbors’ vertices are defined for each vertex using the
Euclidean distance. For two vertices x;,x;, if x; is part of the k neighbours of x;, the
two vertices are connected through an edge with a constant (weight = 1) or the
weight can be computed using a distance function. If the two vertices are
unconnected, a constant (weight = 0) is assigned.

e eNN graph: Two vertices x;,x; are connected to each other if ||x; — x;||<e. The
weight will be set to the Euclidean distance if the vertices are connected and will
be set to zero if the vertices are unconnected.

Graph based methods have been applied in hyperspectral image classification [46] and
natural language understanding [47].
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2.4.2. Co-training method

Co-training involves using multiple supervised classifiers [43]. Co-training is based on
creating two disjoint subsets of a dataset, i.e., views, and using two classifiers for each
view; classifiers contribute to the performance by exchanging their predictions. Two
important conditions are assumed in co-training; first, the views are conditionally
independent and the second is that each view contains sufficient labeled examples for
training the classifiers. Let X, niaperea D€ an unlabeled dataset and X,peieq be a finite
labeled dataset Xjgperea = [x',, %] where x', and x?, are two independent views
on Xjgpeiea- TWo classifiers F = [f1, f?] are employed separately on each view and each
view is exposed only to one classifier, so f! and f?are trained only on x', and x?
respectively. After creating the training models, X,.apeiea 1 classified using each
classifier separately. The most confident label predictions of X,,iqpereq 1S €Xchanged by
classifiers and are added to the training data to the other view [41, 45, 48].

Co-training can be used as a wrapper method, which means that any classifiers can be
chosen under the Co-training framework. Co-training is used in many applications like e-
mail text classification [49], protein subcellular localization [50], classification of images
[51] and hyperspectral data from remote sensors [52].

2.4.3. Semi-supervised support vector machine

Semi-supervised support vector machine (S3VM) has been proposed by Vapnik [53] and
optimized by Bennett et al. [54]. S3VM was introduced, as an extension to the widely
used SVM, to handle the problem of partially labeled data. In traditional SVM, decision
boundaries are set to maximize the separation between X;,peeq Whereas S3VM extends
the setting to maximize the separation between X, ,iaperea- S3VM 1s a non-convex np-
hard optimization problem that uses the cluster assumption to find the optimal separation
employing both  X;,peiea and Xyniaperea through using additional constrains in the
optimization function of SVM[55]. Different ranges of implementation and optimization
have been proposed to solve S3VM [56] in gene analysis [57], text classification [58], in
addition, to spectral images analysis [59, 60].

2.4.4. Probabilistic generative models

The idea of this approach is to construct a classifier based on likelihood maximization
using both labeled and unlabeled instances. A probabilistic generative model assumes that
data is generated from mixture models, which are divided into distinct classes. Both
Xiabetea a0d Xy niapelea are used to estimate the optimal parameters to maximize the
probability of the model [61].

If D = {(Xiapetedr Viaveted) Xunaberea s 18 the training dataset, the maximum log likelihood
function log p(D16,,,,4) is given by

l l+u
10gP(D16oa) = ) 108D Gl Omoa) PCCilYe Omod) + ) 108D Cilomoa) — 2.1)
i=1 i=l+1
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The sizes of X petea aNd Xyniavelea are given by land u respectively whereas the
parameters of the generative model are given by 6,,,,4.

Eq. (2.1) can be divided into two terms. The first summation represents the log likelthood
of supervised learning using X;,pe1eq- The second term is related to SSL where p(x|6) is
referred as the marginal probability. The marginal probability estimates the probability of
getting Xy niapereq regardless of the label [41].

The problem of maximizing the log likelihood log p(D|0,,,4) using hidden data has been
discussed by Dempster, et al. [62] under the term ‘Expectation Maximization (EM)’ in
1977. EM optimization is an iterative method to optimize 6,,,4 resulting in maximizing
logp(D|0,,,4) and is carried in two steps [62]. The first step is the expectation step (e-
step) where the algorithm generates ‘soft labels’ of Xy, qpeieq given the current model
parameters 0,,,4. The second step is the maximization step (m-step) in which, based on
the e-step, the optimal parameters that maximize the log likelthood are found. EM
assumes that the prior information, p(x) and p(x|y), of the mixture models are accurate
[41], nevertheless, since the labels are missing or limited, the correctness of the model
parameters cannot be assessed correctly. To alleviate this weakness, generative models
can be applied only for domain knowledge or specialized fields [41] tasks. Another way
is to introduce a low weight variable that is associated with X,,.;apeted, SO the role of
unlabeled data is de-emphasized [41].

Mixture models have been applied in various context like text [37, 63-65] and image
classification [66, 67].

2.4.5. Self-training method

In self-training methods, a classifier uses its own prediction to update its training model.
In the self-training scenario, the classifiers build a training model based on X pejeq USING
supervised learning. Later, on the learning phase, a new subset of instances S; €
Xuniavelea 18 selected to predict their labels, where i € n is the number of subsets. Then
the subset S 1s removed from X,,,14peieq @and added together with their predicted labels to
the training dataset X;,p..q. Finally, the classifier is re-trained using X;gpereq and the
labeled subset S;.This process is repeated until the whole X,,;apeteq 15 €Xhausted or no
confident predictions can be further added to the training set.

Usually, in the self-learning process, the subset S contains a few numbers of unlabeled
instances. However, the complete set of X;,perea and Xyniapeiea can also be used in the
learning process, here the predicted labels might differ between iterations. Self-training is
used as a wrapper method, so the prediction function is not restricted to specific classifiers
and any classifier can be wrapped in the self-training scenario. On the other hand, self-
learning classifiers are sensitive to mislabeling; a wrong prediction can boost itself
effecting the retrained model and the overall performance [41]. A vital element in the self-
training method is the confidence measure used to select which x; € S; is to be added to
the training set. Only the most confident label predictions are added to the training dataset
and used to update the training model [37, 41].
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Among other applications, self-learning has been applied in human gestures recognition
[68], traffic sign classifications [69, 70] and speech recognition [71]. In this thesis, semi-
supervised self-training method is used in all the proposed classifiers.

2.5. CONFIDENCE BANDS

Confidence bands are an uncertainty measure of an estimate obtained from limited data,
and it defines the area where the true model lies with a pre-defined probability [72]. The
certainty predictions in SSL can be employed by introducing confidence bands, which are
used to reject possible outliers, i.e., do not lie in the confidence band threshold [73].
Therefore, samples that lie within the confidence threshold are added to the training set,
and then, retraining of the classifier 1s performed using the added data [73]. Confidence
bands can be calculated in several ways, for instance, using Monte Carlo [74] or
bootstrapping [75]. The confidence band o,f(G) of the classifier output g for a test

sample x is measured by

(2.2)

Gconf(g) = ﬁ\/ gT(]T])_lg

N
S
i

where f = tc_(}f(l — “/2,17) is inverse cumulative t-student distribution, « is the

probability of the chosen confidence band, we use @ =0.05 for 95% confidence bands, and
v is the number of degrees of freedom associated with the t-student distribution. The term
(JT))~! represents the covariance matrix computed by finding the weighted Jacobian | =

% where J;; = aTtl- and g; are the associated uncertainty of the sample label that may result
i j

from a human or self-training. The residual r is the difference between the predicted
value and the real value of sample i, and P; are the classifiers parameters to be optimized
[76]. Confidence bands were used in the field of SSL to add certainty to the predictions
in gesture recognition [68] and image classification [73]. In this work, we use the output
of the proposed classifiers to compute the confidence bands following the procedure
presented in [76-78].

2.6. NOVELTY DETECTION

Novelty detection (ND) is a technique used to recognize new test samples, which are
unknown to the training model. Depending on the domain of application, the terms one-
class classification, outlier or anomaly detection are interchangeably used to refer to
novelty detection systems that try to distinguish normal or target samples from abnormal
non-target samples. The concept normal/target and abnormal/non-target samples are
used to differentiate the known categories or classes, on which the classification model is
trained on, from uncommon new data that appears during the test phase. Due to the
complexity of real-world systems, it is sometime inapplicable to define a list of all
categories that might appear in the test phase. Consequently, conventional classification
algorithms are inappropriate for this issue because they will assign a wrong label to the
new data sample by employing the predefined categories [38, 79].
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Novelty detection is particularly beneficial when a class is extremely under-sampled or
when a class is unavailable during the training time. In the first situation, the normal class
has few examples to be added to the training dataset; for instance, a particular category
happens rarely, so the classification system does not have enough instances to represent
this category. In this case, it is better to consider the rare category as novel or abnormal
and test it against the more frequently accruing classes. The second situation occurs when
the training list is incomplete. Although enough instances are available to form a training
model, it is expected that new classes will appear in the future or during the test phase
[39]. Therefore, it is important to introduce ND algorithms that can be used to identify
new classes which are not yet included in the training dataset.

According to Moya and Hush [79], the one-class classifier is able to identify new training
instances (target patterns) and distinguish them from non-target patterns. Obviously, the
only available data to the classifier is the class of interest and ND has to distinguish them
from all other non-target data [79, 80]. Consequently, a one-side novelty boundary is
created based solely on the target class since no other classes are available. On the other
hand, in multi-classes classification, data from multiple classes are accessible and the
boundary is created depending on data instances from all classes [80].

Following Pimentel et al. (2014) [38], ND is categorized into the following five
approaches[38]:

2.6.1. Probabilistic methods

Probabilistic methods are based on using the density estimation of the data to distinguish
novel from non-novel instances. The training data set is used to estimate a generative
probability density function (pdf) which resembles a model of normality. Using a
threshold on the pdf, a test sample can be tested against novelty. This method is similar
to the method in Section 2.4.4, where a novel sample is assumed to reside in low dense
areas and a known sample is expected to belong to high dense areas [38]. Probabilistic
methods can be further divided into:

e Parametric approaches: It is presumed that the normal data is generated from pre-
known distributions with pre-calculated parameters. These parameters are finite
based on the 1nitial training data and used to fit the model. These distributions can
be modeled as a simple Gaussian distribution, as mixture of Gaussian models or a
mixture of different distributions, e.g. Poisson or gamma distributions [38, 81].
Common techniques in this category are mixture models [82, 83], extreme value
theory [84-86] and state space model [87, 88].

e Non-parametric approaches: In non-parametric approaches, no statistical
information about the distribution of the data is assumed. The density function is
built using infinite parameters that can grow in size to adapt to the complexity and
the form of the data distribution [81]. The main techniques of non-parametric
approaches are the kernel-density estimation (KDE) [89, 90] and negative selection
[91-93]. Parzen window estimator [94] is a common KDE approach in which the
density function is calculated as linear combination of the neighbor kernels at each
point in the dataset. Parzen window estimator will be further discussed in Chapter
7.
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2.6.2. Distance-based methods

Distance-based methods learn a distance metric to identify the similarity between
different samples. They use the assumption that similar data are located near each other,
while novel instances are located away from known data. A common technique is the
nearest neighbor-based approaches, where the distance, typically the Euclidean distance,
1s estimated between a point x and the k-nearest neighbor. If the distance is above a
threshold, point x is considered novel [95, 96]. Another technique is the cluster-based
approach, where the distance between a cluster center and data points that belong to a
cluster k 1s estimated [84, 97]. A point belongs to the known classes, if the distance is
within a specific threshold [85]. Though distance based-measures are flexible and do not
rely on the distribution of data, these methods depends extremely on the chosen similarity
measure, number of neighbors and cluster widths [38].

2.6.3. Domain-based methods

Domain-based methods describe the boundaries enclose the training data. These methods
ignore the class density or the sampling procedure and define a domain where the normal
data resides [38]. One-class support vector machines (SVM) is one of the most known
domain-based methods. A separating novelty boundary is defined as a hyperplane using
the closest training points in a mapped space rather than the whole training set [98].
Another variation of SVM is support vector data description (SVDD). SVDD defines a
hypersphere with minimum volume that contains all the known training data. This
hypersphere comprises the novelty boundary. A test sample is considered abnormal if it
lies outside the hypersphere boundary [80, 99].

2.6.4. Information-theoretic techniques

Information-theoretic techniques use uncertainty metrics to derive information contained
in the dataset. These techniques presume that abnormal data changes the information
related to the content of normal data. In general, metrics such as entropy and Kolmogorov
complexity are applied on the whole dataset. If a subset of instances whose removal
causes a significant difference in the metric, the subset is considered novel. Information-
theoretic techniques do not use the density or distribution of the data but depend
extremely on the chosen information theoretic measure [38].

2.6.5. Reconstruction-based techniques

Using the reconstruction-based techniques, test data instances are mapped using a model
based on the training set. The objective is to find a mapping that minimizes the
reconstruction error. The reconstruction error is defined as a novelty score which is
created based on the distance between the test sample and the regression target. Data
instances with large reconstruction error are considered novel samples [100].
Reconstruction-based techniques are divided [38] into:

e Neural network-based approaches: Neural networks (NN) one of the most used
approaches in ND [101]. NNs are flexible systems that are able to find the
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association between the input and the output samples and also capable of detecting
novel data [102]. In general, NNs are organized as a series of neurons grouped in
layers. These neurons are connected through weighted links. Several architectures
and applications of NN have been proposed. The main NN types are Multi-layer
perceptron (MLP), Radial basis function (RBF), Auto-associative networks
(AANN) and Self-organizing networks (SOM) [38] .

e Subspace approaches: Subspace method use attributes that represent the variability
of the data to find an embedding of the training data. This embedding is assumed
to be able to map the data into a lower dimensional subspace where normal and
abnormal data can be distinguished [103]. Subspace methods are also termed
spectral methods. A common technique is Principal Component Analysis (PCA).
PCA projects data into a lower dimensional subspace using orthogonal projection.
The linear projection is tested for every data instance against the principal
component. Instances belonging to known classes comply with the correlation
structure of the training data and have a low projection value. On the other hand,
instances belong to unknown classes do not satisfy the correlation structure of the
training data will have a large projection value [38, 103]. Kernel PCA is an
extension of PCA that employs nonlinear projection. Kernel PCA, uses the kernel
methods to map the original features into a higher dimensional space and then use
PCA to project into a lower dimensional space [104]. These methods are employed
in hand-writing recognition [105], breast-cancer detection [106], network intrusion
detection [107] and detection of abnormal events in spacecraft components [108,
109].

2.7. THRESHOLD COMPUTATION

A novelty threshold is essential in detecting novel data. Thresholds can be computed
using the cross-validation method or using a separate validation dataset. In cross
validation, the training dataset is divided into K folds where a fold k = {1...K}. The
training model is built using K — 1 folds and the k" fold is hold out and used to validate
the training model. This method is repeated until all folds are used as a validation [34].
Validation dataset is a separate labeled training dataset that is used to derive the optimal
parameters of the training model. The novelty threshold for each classifier and each class
1s computed by finding the threshold with the minimum error on a validation dataset.
ROC and AUC are used to find the optimal threshold. Brute-force search is applied on
all possible values of thresholds per class [110]. The threshold with the minimum false
positive and minimum false negative rate is selected as the optimal threshold. During the
classification process, when classifying a data point, the threshold is compared to the
output of the corresponding classifier. This output or novelty score takes the form of a
score or a measure that determines the class membership of the test sample. Scores
represent the degree of normality or novelty of a data sample. If the score does not comply
the pre-computed threshold, the data sample will be classified as novel [111].
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3.1. NUCLEAR MAGNETIC RESONANCE (NMR)

NMR is an analytical technique used for qualitative and quantitative analyses in
numerous applications. Due to NMR'’s reproducibility, quantitative and non-destructive
properties, NMR is considered one of the main instruments used in metabolic profiling.
The analysis of metabolites allow a differentiated prediction of the health status and
potential health risks of a patient [112].

NMR is used in multi-component mixture analysis of biological fluids such as plasma,
urine, and serum in addition to tissues. The primary goal of metabolic profiling using
NMR is the prediction, diagnosis, monitoring and prognosis of diseases as well as
optimizing medication efficacy [113]. In general, all metabolites have a known and
reproducible NMR pattern. Using these patterns, NMR can be used to investigate the
metabolic composition of complex biological samples. In this chapter an introduction to
1D and 2D NMR is introduced.

3.2. ONE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE

NMR spectroscopy is based on the existence of the nuclear spin angular momentum
inducing a magnetic atomic moment. Once an external magnetic field is applied on a
nucleus a splitting into ground and an excited spin states is induced [114]. Radio
frequency (RF) is used to promote energy transitions between these states. The. RF
frequency required to induce energy transition depends on i) the nucleus type (e.g., 'H or
13C), ii) the chemical environment of the nucleus and iii) when the field is not uniform,
the typical nuclei location in the magnetic field [115]. In addition, the distribution of
electrons in the chemical bonds effects the local magnetic field [116]. As illustrated in
Figure 3.1, after applying a RF pulse, the nuclei transfer to the exited state. After the RF
radiation ends, the external magnetic field By acts upon magnetization M of the atomic
nuclei, which starts a precession around the z-axis of the external field with a
characteristic frequency. The x and y components of the magnetization after the RF pulse
1s measured with a receiver coil and 1s called free induction decay (FID). The time domain
signal is converted via a Fourier transformation to the frequency domain. Depending on
the molecular structure and the chemical environment of the excited nuclei characteristic
frequency are seen in the spectrum [116].

3 Nuclear Magnetic Resonance 18


https://www.sciencedirect.com/topics/engineering/external-magnetic-field

90° RF excitation

(a) (pulse generated by the
RF coil of the probe)
Relaxation - equilibrium Magnetization evolution.
Pre-sr:an'delay Detection of FID
(dead time) :
s
AN L
[FRATAYA" .
vV L Time
y v
L)
z axis zaxis A zaxis A
Bofield Bofield By field
Magnetization My 7 b
RF coil EF coll
' o g P = detection
«  excitation o
/ > > ( / -..) b
3 o x axis F s "/.- | = /, “\\\\\ ’x axis
/ Gt 1 Ny
5 ¥ Lo d M
-y axis -y axis -y axis
Equilibrium magnetization M due Magnetization tilted towards the x Precessing of the magnetization in the
to the static field By, aligned to z axis after a 90° RF pulse. xy plane.and retum to equilibium.
axis. In red, the RF frequency B, field Detection of the electromotrnice force
produced by the coil. induced by Myy .
(b)

—real part
—imaginary part

Fourier Transform
PR e S

100 80 60 40 20 0
Frequency (Hz)

0 100

200
Time (s)

300 400 500

Figure 3.1: One-Dimensional NMR spectroscopy pulse-acquisition and Fourier transform. (a) Pulse-
acquisition 1D NMR experiment. The magnetization at equilibrium is aligned along the By direction
(typically z-axis), ideally at the end of the relaxation delay. After 90° pulse (RF excitation pulse),
magnetization is flipped in the x-y plane and then the precession of the flipped magnetization gives
the FID which is detected with the NMR detector (typically inductance coil). FID is a form of an
NMR signal where the magnetization is flipped by 90° Bg (conventionally along z) using a 90° pulse
leads to non-equilibrium magnetization [117]. (b) Time domain FID plotted data and its corresponding
1D NMR spectrum by the Fourier transform (FT). The diagrams in (a) and (b) are customized from
the literature [118, 119].

Tetramethylsilane (TMS) in organic solvents or sodium 2,2-dimethyl-2-silapentane-5-
sulfonate (DSS) in aqueous solutions, are recommended as universal primary frequency
references. The methyl 'H signal chemical shift of TMS is equal to 0 ppm and therefore
frequencies of chemicals shifts are calibrated according to the 'H or resonance of TMS
[120]. Moreover, 3-(trimethylsilyl) propionic acid sodium salt (TSP) are commonly used
for NMR studies is used as reliable internal chemical shift reference of compounds [121-
123]. The chemical shift ranges of "H-NMR of organic compounds are illustrated in
Figure 3.2, the range is customized from 0-11 ppm [124].
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Figure 3.2: Schematic diagram of 'H chemical shift ranges for organic compounds . Adapted from
[124].

3.3. TWO-DIMENSIONAL NMR SPECTROSCOPY (2D NMR)

In the previous section, acquisition of 1D NMR has been described. Though 1D NMR
can be obtained in a relatively short time, obtaining a good signal to noise ratio requires
longer data acquisition times. In addition, due to the short chemical shift range and the
limited spectral widths in 1D NMR, there is an increased probability of overlapping
spectrum especially in complicated mixture of bioorganic molecules such as the example
shown in Figure 3.3 [125]. Dense and overlapped 1D NMR spectra are hard to analyze
and prone to wrong annotations. Therefore, introducing multi-dimensional NMR
techniques can increase the spectral resolution and alleviate spectral crowding which can
credibly detect and identify more metabolites than 1D NMR [11, 112].
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Figure 3.3 : "H NMR spectrum at 600.13 MHz of a HeLa cell extract showing metabolite annotated
on the spectrum. Metabolites abbreviations: betaine, Bet; phosphocholine, ChoP; pyroglutamate, Glp;
glutathione, GSH; N-acetyl 1, NACI; myoinositol, MI; phosphocreatine, PCr; pyruvate, Pyr; UDP-
galactose, UDP-Gal; UDP-glucose, UDP-Glc; UDP-N-acetyl-glucosamine, UDP-GIcNAc [125].

While 1D NMR provides a correlation between frequency and intensity, 2D NMR
correlates two frequencies. The intensity is represented as third dimension and plotted as
contour lines of the two frequencies. 2D-NMR spectroscopy is used to provide
information about the correlation between nuclei through-bond (J-coupling) or through-
space (Nuclear Overhauser effect) to observe the molecular structure in detail. Usually,
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in 2D NMR, the direct detection dimension is 'H while the indirect (transient) dimension
could be 'H, *C, N, 3P, or other nuclei. 2D NMR power lies in its capability to resolve
overlapping peaks [11].

Figure 3.4 shows a simple two-dimensional NMR pulse-sequence. Like 1D, after
applying an RF pulse to the nucleus, the system starts to relax back to equilibrium in the
z axis, nevertheless, the generated FID is not recorded but is left to evolve for an evolution
period t; and a transfer of magnetization happens between coupled nuclei. A second RF
pulse with a frequency resonating with the second nuclei is applied. The excitation of the
coupled nuclei starts decaying and the resulting FID is acquired by the coil. The resulting
FID contains information related to the coupled nuclei due to transfer of magnetization.
Transfer of magnetization between the coupled nuclei is translated into cross peaks in 2D
spectra. A 2D FT is applied on the two FIDs to transfer time domain signals into
frequencies [126, 127].

90% RF excitation 90° RF excitation
(pulse generated by the (pulse generated by the
RF coil of the probe) t1 evolution RF coil of the probe) t2 acquisition
Relaxation - equiibrium
] " .. ' =
A v i s —s
Vv ¥ \ g \ Time
Transfer of Detection
magnetization of 2D FT of t1 and t2
coupled nuclei F2(Hz)
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1 l A ':I#’ W )
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Figure 3.4: Two-Dimensional NMR spectroscopy pulse-acquisition. Adapted from [118]

In 2D NMR spectra, each peak is determined by plotting the horizontal frequency (F2)
versus the vertical frequency (F1) and contour lines are used to represent the intensity of
the signal [128-130]. The following are some of the most common 2D NMR spectrum

types.
3.3.1. Correlation spectroscopy (COSY)

COSY is considered the simplest type of 2D NMR experiments. COSY is a homonuclear
experiment which establishes the coupling between two close protons of two hydrogen
nuclei ("H) indicating connectivities up to four bonds [131]. The diagonal of COSY
spectra resemble the spectrum of the 1D NMR experiment, whereas the couplings
between pairs of protons are indicated by cross- peaks on the off-diagonal [11, 26].

The COSY experiment is relatively fast and simple to analyze. Nevertheless, in complex
mixtures, short bond range and spectral overlap increases the complexity of the COSY
spectrum and harden the analysis process [11].
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3.3.2. Heteronuclear single quantum correlation spectroscopy (HSQC)

"H-X HSQC is a heteronuclear 2D NMR spectrum which shows the correlation between
two different chemical nuclei, for instance '"H and Carbon-13 (**C), Nitrogen-15 (**N) or
Phosphorus-31 (*'P) [132-134]. HSQC is used widely in protein NMR where the
horizontal axis shows the chemical shifts of protons and its correlation with C, "N or
3P is shown on the vertical axis. HSQC spectrums provides less spectral overlapping and
offers a more detailed fingerprints of molecules [134, 135]. Nevertheless, there are strong
coupling effects that influence the HSQC experiment especially when the NMR magnetic
field is weak [136, 137]. Furthermore, there is the disadvantage of missing spin system
information, as all cross-peaks are independent of each other in HSQC [138, 139].
Though HSQC can experience strong peak deviations and loss of intensity, the sensitivity
of HSQC is generally inadequate for metabolomics studies [140, 141]

3.3.3. Heteronuclear multiple-bond correlation spectroscopy (HMBC)

HSQC shows the heteronuclear correlations only to directly bounded proton. Therefore,
coupled nuclei which are not in direct one-bond relation are not detected. On the other
hand, HMBC reveals long-range heteronuclear correlations between protons and a
different chemical nucleus which are separated by chemical bonds which range between
2 to 4 bonds. In HMBC, the direct one bond is eliminated through filtering only small j-
coupling constants by introducing a longer delay allowing evolution of the two or three-
bond. To analyze the whole spin system, a combination of HMBC and HSQC is
recommended [11, 142].

3.3.4. Total Correlation Spectroscopy (TOCSY)

Group of spins that are coupled are called a spin system. TOCSY shows the connectivity
between pairs of spins and the total spin system [126]. TOCSY correlates between the
coupled protons for continuous chains of protons and is not only restricted to three or four
chemical bonds like COSY [11, 26]. Therefore, TOCSY reflects the chemical shift
information of all members of the spin-system [143]. The efficiency of the TOCSY
experiment is related to the magnitude of the J-coupling, the mixing time, and the distance
between the coupled nucleuses. The closer the chemical shift distance, the larger the
resonance of the spin system. TOCSY spectrum is a homonuclear 2D experiment, which
is shown as a symmetrical 2D of two diagonally symmetrical contour plot where the
diagonal represents the 1D spectrum, and the cross diagonal represents the correlation
between the nuclei. The contours shows the amplitude of a signal as a function of the F1
and F2 frequency axes [126]. In TOCSY, diagonal peaks represents singlet patterns in 1D-
NMR experiment and do not indicate any coupling, while the off-diagonal cross peaks
correspond to coupled nuclei [126]. Figure 3.5 displays a 2D 'H-'H TOCSY of a urine
sample [143].
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Figure 3.5: 2D 'H-'"H TOCSY contour plot of a urine sample (left), the top right insert shows an
expanded contour region between 7.5 ppm and 7.9 ppm of correlating protons. The downright inserts
show the 1D projection of the corresponding ppm area. Coupled components can be seen in the same
colors. Lecithin and pyridoxine are singlet signals and appear only diagonally. The MLEV pulse
sequence is used to acquire TOCSY spectra and the MLEV mixing sequence is used to transfer
magnetization along J-coupled bonding [143].

The manual spectral deconvolution is dependent on user experience and is a severe
bottleneck in the field [144, 145]. Additionally, it is an impractical and tedious process,
especially for high-throughput applications and complex biological mixtures [146, 147].
Semi-automated approaches have been developed to decompose TOCSY spectra into
individual components matching- an NMR databases for identification [148]. DemixC is
a semi-automated technique that deduces 1D cross-sections (row) of a 2D TOCSY
spectrum that does not exhibit many peak overlaps [148], and peak fitting is used to
extract peak positions from a TOCSY spectrum [148]. Frequently, metabolomics samples
are composed of hundreds of individual components, which may result in overlapping
peaks and, consequently, problems of the DemixC method [148]. Therefore, the
Demixing by Consensus Deconvolution and Clustering (DeCoDeC) is preferable to
dealing with mixtures of higher complexity [149]. DeCoDeC identifies peaks apparent in
specific pairs of TOCSY 1D cross-sections so that overlapping peaks associated with other
metabolites are eliminated [148]. Significant limitations of both approaches arise because
of the peak shifts due to matrix effects, which is the common case in metabolic profiling
investigation of real-time evolution measurements [146].
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Fundamentally, metabolites are the input and the output of any biological process, and
their associated biomarkers are linked to a broad scope of disease, disorders, genetic
reformation, and environmental settings. Therefore, metabolic studies are suitable
approaches for research in epidemiology, cancer research, biotechnology, drug design
and toxicology [13].

The first NMR measurement was reported in 1938 by Isidor Rabi who has been awarded
a Nobel Prize for his work. However, the potential capabilities of NMR to study living
cells were not investigated until early 1980. Since 1985, NMR has been used to measure
biological tissues and fluids [112]. NMR is established as one of the principal tools for
metabolic studies and multi-component mixtures analysis for the following reasons:
NMR offers detailed chemical information of metabolites in a short period of time [11,
150]. Second, NMR is a non-destructive and a non-invasive technique, consequently,
NMR can be used for living cells and real-time metabolic analysis of the same sample
without damaging it [11, 150]. Third, the results of NMR are highly reproducible; if
biological samples are stored below -80 °C, these samples can be recovered and repeatedly
re-measured to give the same recurrent results. So, researchers test a sample using NMR
for initial evaluation, store it, and then re-measure the same sample using NMR for
further analysis [11]. Fourth, even for NMR measurements of highly complex biological
mixtures, sample preparation in NMR requires minimal or no sample preparation before
moving the sample to the NMR instrumentation [3, 11, 150, 151]. Moreover, NMR can
be applied for in-vitro and in-vivo metabolic profiling. NMR analysis verifies the
possibility of translating the finding of in-vitro experiments to in-vivo medical
applications [11, 152]. Accordingly, NMR practices and evolutions have continued to
emerge and to expand [153]. Figure 4.1 shows the growth of number of publications
related to identifying metabolites in biological systems using NMR in the past years.
Nevertheless, several limitations are associated with analyzing complex biofluids using
NMR, such as low resolution and sensitivity [154].

4.1. 1D NMR METABOLITE SPECTRA

Most NMR metabolic profiling studies employ statistical pattern recognition, such as
partial least-squares discriminate analysis or PCA methods on 1D 1H NMR spectra.
However, because of the large variability of molecular concentrations in living systems,
statistical analysis of 1D NMR is biased toward distinguishing fluctuations in the low
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concentration metabolites. These metabolites are usually hidden due to spectral crowding
[155].
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Figure 4.1: A summary of the number of publications from years 2012 to 2021 on NMR in
metabolomics. This figure is generated using topic search on Web of knowledge applying the
keywords: NMR (AND) Metabolites', 'NMR (AND) Metabolomics' and 'NMR (AND) Metabolic
profiling'.

This issue is further complicated by small but critical chemical shifts due to fluctuation
in pH values, ionic strength and other factors summarized as matrix effect [13]. Matrix
effect results from the variation between the responses of a component in a standard
solution and its response in biological matrix. Matrix effects are hard to predict and are
effected by interfering components such as lipids and protein [156]. Two dimensional
NMR is used to overcome the limitation of 1D NMR, to increase spectral resolution and
dispersion which helps in determining overlapping metabolites [11, 142, 157].

4.2. 2D NMR METABOLITE SPECTRA AND METABOLITE ASSIGNMENT

Metabolite identifying using 2D NMR techniques can reveal more information about the
studied mixture. All 2D NMR spectra use the principle of adding a second dimension by
recording a sequence of 1D NMR spectra incorporating a series of time intervals. A
Fourier transformation is applied to these time intervals to generate an orthogonal second
frequency domain [158].

2D NMR increases the signal dispersion and displays connectivity and chemical bond
information. In addition, homonuclear NMR techniques such as 'H-'H COSY and 'H-
'"H TOCSY and heteronuclear techniques such as 'H-C/"”N HSQC and 'H-*C/"N
HMBC describe direct and indirect coupling and correlation between 'H-protons and a
second nucleus such as *C-carbon or ’N-nitrogen. Moreover, multiple techniques can be
combined to reveal more information on biological mixtures. For instance, measuring 2D
HSQC, TOCSY, and HSQC-TOCSY subsequently allows a comprehensive analysis of
samples [153, 158-160].
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Attempts to overcome signals overlapping in 1D NMR spectra of metabolites have
included (i) skyline projection of 2D J-resolved spectroscopy to obtain a broadband
proton-decoupled 1D spectrum [161], (ii) use of isotopically enriched metabolites [162]
and (i11) sample fractionation [163].

A 2D 'H-'H TOCSY experiment with the zero-quantum filter technique developed by
Thrippleton et al. [164] to obtain phase peaks can be used to obtain a metabolic profile of
a biological sample and at the same time perform proper assignment for the metabolites
in spite of crowding 1D spectra [164]. The experiment allowed more accurate
quantitation of low-abundance metabolites. This approach applied on 1D proton and 2D
TOCSY NMR was employed to analyze the metabolic profiles of urine obtained from
wild-type and Abcc6-knockout mice.

4.3. AUTOMATED METABOLITE IDENTIFICATION

Metabolic profiling encompasses the investigation of metabolites concentrations,
systematic metabolic variation that are caused by different drugs, dieting, microbiological
causes, gene modulation or new stimuli for the purpose of the characterization of the
effects these interactions [165]. Due to the nature of the biological fluids, cells and tissues,
metabolites are changing to reach a dynamic equilibrium in the body. As a result, any
abnormal biological process, will cause a metabolic deviation in the body and biofluids
which can be related to the diagnosis or prognosis of these abnormal biological processes
[150, 166]. Detecting abnormal perturbations can reveal specific diseases or therapeutic
status. NMR spectroscopy is one of the most powerful tools that are used in the
multicomponent analysis of biofluids such as urine, blood plasma or tissue abstracts
[166].

Several NMR related limitations originate from its limited sensitivity and resolution
[167]. Though major efforts to lessen these limitation, the complexity of biological
mixtures demands further developments and enhancements for detection, identification,
and quantitation of complex biological mixtures [3]. One of the major challenges of NMR
spectroscopy is peaks overlapping. Peaks overlap and chemical shift is expected to occur
not only between different molecules, but also within the same molecule in the case of
complex multiplets overlap. Though the identification of metabolites in 2D NMR spectra
is relatively simpler than 1D NMR [166], the straightforward identification of metabolites
in 2D NMR is valid only to first orders systems with weak coupling. In 2D NMR, the
identification of metabolites which appears on a relatively low intensity, or that have
peaks which are partially or totally overlapped is a complicated task [166]. Consequently,
in complex experimental measurements, new peak shifts, misaligned peaks as well as
peaks with slight deviation of the expected peak shape make metabolic profiling of NMR
measurements a challenging task [13, 167]. Therefore, even for experts and researchers,
the manual analysis of NMR spectra is an elaborative, complicated and a time-consuming
task. In addition, the manual analysis of 2D NMR spectra is prone to error and miss-
assignment in cases of complex mixtures with several overlapped metabolites and in high-
throughput applications [168]. In general, the classical manual analysis of 2D NMR
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spectra can be a bottleneck in the research and experimental workflow in NMR
spectroscopy.

Consequently, automating the process of metabolic profiling in biological mixtures will
support and speed the process of 2D NMR analysis significantly. Moreover, creating an
automatic assignment system will enhance the process of knowledge transfer, so even
nonexperience researchers will be able to analyze and assign the metabolites that appears
in the 2D NMR spectra [168, 169]. NMR spectroscopy and Machine learning (ML) create
a promising interdisciplinary research area that will achieve a notable progress in NMR
spectroscopy leading to an advancement of the diagnostic and prognostic use of
biomarkers in addition to drug design and discovery [170].

4.4. RELATED WORK

Introducing ML to serve as an analysis tool for NMR appears to be a reasonable effort.
MetaboAnalyst 3.0 is an R-based tool for metabolomics studies (www.metaboanalyst.ca)
in 1D NMR. MetaboAnalyst 3.0 [171] enables metabolomics analysis, visualization and
interpretation [171] using the metabolome libraries HMDB [172], KEGG [173] and
SMPDB [174]. In addition, MetaboAnalyst 3.0 has been enhanced by a biomarker
analysis module for biomarker identification and features ranking using PCA clustering,
partial least squares - discriminant analysis PLS-DA classification, t-tests and ANOVA
[171]. For raw spectral data processing, MetaboAnalyst 3.0 users have to use an external
software for the simplification and processing of the spectrum before using the tool [171].
Another R-based tool for analyzing 1D spectra is BATMAN. 1D NMR spectroscopy is
commonly used for estimating concentrations of chemical substances in solution.
BATMAN metabolic spectral resonance patterns are derived from the metabolites library
(HMDB) [172] by incorporating this information into a Bayesian model, which
deconvolve NMR spectral resonance peaks to identify metabolites and to measure their
concentrations. The reference spectra are stored in the form of chemical shifts, J-couplings
and multiplet intensity ratios [13]. These properties are used in the sense of a prior
probability in a Bayesian framework, allowing for slight deviations of the observed
spectral parameters from those of the reference spectra due to pH and ionic strength [13].
1D NMR spectroscopy is commonly used for estimating concentrations of chemical
substances in solution [12]. However, in complex mixtures of chemical species such as in
metabolomics, strong peak overlaps are encountered and then 2D NMR is an alternative
approach since peaks superposition in 1D NMR spectra can often be separated in 2D
NMR spectra [166].

Several computer implementations have been proposed to enable NMR spectral
processing and cross peaks identification of 2D NMR spectra. COLMARmM web server
1s an online available platform that incorporates three 2D NMR spectra for the purpose
of simultaneous analysis [175]. COLMARmM operates in two stages; first, an HSQC
spectrum is uploaded by the user, compared against a unified database from Biological
Magnetic Resonance Data Bank (BMRB) [176] and The Human Metabolome Database
(HMAB) [172] and a matched list of metabolites is created. On the next step, the matched
list is validated against the correspondent TOCSY and/or HSQC-TOCSY spectrum. This
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method uses pattern matching with referencing points. These referencing points could be
standard referencing or commonly appearing metabolites. COLMARmM needs human
interventions in the validation step, so this method is not considered fully automatic.
Another category of metabolite identification is structure elucidation and identification
[177]. NMR is one the of the most established procedure in this category [151]. The term
structure elucidation is defined as is the procedure of identifying the chemical structure
of a molecule via the determination of the chemical elements numbers and types which
constitute the molecule [178].

Sheen et al. [179] describe a procedure for spectral outlier classification in 2D NMR using
protein chemical structure imported from the NISTmAD International Multilaboratory
NMR experiment [180].This method incorporates symmetric Kullback-Leibler
divergence as a similarity measure between spectra. A similarity score based on each
spectrum and other similar spectrum is calculated. If the similarity score excessed a
confidence limit, a spectrum is considered as outlier [179].

A Bayesian framework has been used for the problem of the assignment of peaks in 2D
NMR spectra in different formulations. In [181], 2D NMR spectra are modeled as a
mixture of bivariate Gaussian densities. To estimate the positions of the peaks, the
adaptive Markov chain Monte Carlo (MCMC) algorithm 1s used. A list of candidate
peaks of the highest amplitude is created and the posterior probability of each candidate
peak is calculated [181]. Another technique that use the Bayesian framework and
Pictorial Structures is proposed in [182]. It is assumed that metabolites can be represented
as vectors of chemical shift z € M and a spectrum can be represented as a set of spectral
images I = {I' ...I*}. The assignment problem is modeled as calculating the maximum
posteriori estimation (MAP) of z by zy4p = arg max p(z|1). The spectral image likelthood

p(z|1) can be estimated using Bayes’ theorem as p(z|I) o< p(I|z)p(z) [182]. A more recent
approach using NMR spectral line shape in 2D J-resolved NMR is presented in [183].
The NMR Lorentzian distribution and the associated parameters like B-spline tight
wavelet frames and theoretical templates are incorporated into the Bayesian method.
Online databases are used to create an estimate of prior distributions of NMR related
parameters like J-coupling constants, peak shape parameter, multiplet chemical shift and
global peak width. Markov Chain Monte Carlo estimate is used to perform the posterior
inference based on the likelihood and prior functions. This approach is related to 1D
NMR analysis through BATMAN tool mentioned previously [13, 184]. Another peak
assignment approach [185] which incorporates the shape of the peak on the 2D spectrum
is introduced in [185]. After selecting peaks that are within a predefined threshold, a
technique called the Histogram of Oriented Gradients (HOG) is used to extract the
features of the peaks. HOG transfers the image of the peak from the 2D spectrum into a
matrix of features through shape mapping. These features are trained and tested using
SVM classifier [185].

Neural networks have been exploited in NMR for the reconstruction, denoising of
spectra, chemical shift prediction and automatic peak picking [145]. Mostly, these
applications are implemented using mainstream libraries like Tensorflow [186] or Matlab
Deep Learning Toolbox [187, 188]. For chemical shift prediction, multiple types of
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features have been used as feature space for the training dataset. The first and most
common is the structure of molecule where the relationship between the chemical shift
and the environment and structure related information of the compound is estimated. In
[189] a peak list is created from different 2D spectra, such as 'H-’N HSQC, 'H-"*C
HSQC, HCCH-TOCSY, 15N-edited NOESY and "C edited NOESY. These peaks are
manually inspected by NMR analysis tool, KUJIRA [190] and converted to grayscale 2D
and 3D images. The images are used to build a Cognitive Neural Network Tool Kit from
Microsoft [191] for the purpose of automatic peak identification. These peaks are then
provided to the tool with CYANA [192] for signal assignment and structure elucidation
[189]. SMART and SMART 2.0 [193, 194] are based on training a deep convolutional
neural network (CNN) of Siamese architecture [195] to asset the uniqueness of the
compounds, in addition to the annotation of known compounds in biological mixture.
SMART 2.0 is trained on 25434 HSQC spectra from the JEOL database [194]. This tool
is designed to facilitate the structural elucidation of known compounds and discover new
categories through using the CNN to create clusters by incorporating PCA and
performing the annotation based on similarity metric [193, 194].

Several studies described the metabolism of MSCs and metabolic changes due to
adipogenic [196], osteogenic [197, 198], and chondrogenic differentiation [199]. Stem cell
osteogenic differentiation of hMSCs for 21 days based on 1D NMR has recently been
studied [200, 201]. They mainly considered the lipidomic and amino acid
characterization of osteogenic stem cells using PCA and partial least squares discriminant
analysis. Human embryonic stem cells were studied to monitor the intracellular and
extracellular metabolic dynamics through directed and non-directed differentiation using
1D NMR. Similarly, PCA, least square analysis and ANOVA test were used to compare
the differentiated and undifferentiated cells [202, 203].
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5.1. NMR DATA ACQUISITION AND PROCESSING

"H NMR measurements were performed using HR MAS 'H NMR probe head operated
by a Bruker Avance III 600 spectrometer at 600.13 MHz for 'H at 276 K. HR MAS
spinning frequency was set to 5 kHz, and the magic angle was adjusted typically
according to the KBr measurement. The B, magnetic field shimming was performed
manually until the linewidth of the alanine signal at 1.46 ppm was adjusted to fall within
the range of 1.20-1.83 Hz. Metabolites were deduced from the '"H NMR spectrum based
on expert knowledge with the assist of "H-"H TOCSY, *C-"H HSQS and the Chenomx
NMR Analysis Software from Chenomx Inc. Details are presented in [204-206]

To avoid blurring of multiplet pattern, '"H-"H TOCSY was recorded with suppressed zero-
quantum coherences [164]. TOCSY were measured with a spectral range (SWH) of 7 kHz
in both F2 and F1 dimensions. Mixing time and relaxation delay were set to 80 ms and 1
s, respectively. Zero filling was performed to 16K and 128 data points in F2 and F1
dimensions before 2D Fourier transformation [204-206]. The spectral widths in the F2
and F1 dimensions can be adjusted or enlarged according to the area of interest in the
TOCSY. The 1D NMR spectral projections on the F1 and F2 axes are external
projections from extra 1D NMR measurement using the CPMG pulse sequence with
embedded water suppression by excitation sculpting. CPMG was used to suppress
protein, lipids and other macromolecules and it was recorded employing 400 echoes with
1 ms echo time.

5.2. TOCSY CROSSPEAK PICKING AND DE-NOISING

The cross-peaks entries in F2 and F1 dimensions in ppm and Hz are deduced from the
2D contour lines of the experimental 2D TOCSY NMR spectrum by employing the
automatic peak picking function (pp2d) in TopSpin 3.6 provided by Bruker for acquisition
and processing. Before applying automatic peak picking, the contour projection
magnitude threshold was adjusted for every ppm range in F2 dimension according to the
amplitude of the 1D NMR spectrum internal projection on F2 axis to avoid picking
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artifacts and noise cross peaks. Afterward, the collected peaks were listed and transferred
as text file for data de-noising and artifact cross-peak elimination. in TOCSY spectrum,
every real cross-peak appeared in the upper diagonal (F2, F1) due to the J-coupling should
have a mirror (transpose) cross-peak in the lower diagonal (F1, F2) within tolerance
threshold of ~30 Hz, based on that we could exclude cross-peaks that do not fulfill this
criterion. Moreover, most cross peaks in vicinity of water and solvent signals are
associated with T1-noise [28]. Fortunately, T1-noise appears in TOCSY spectrum as
random or semi-random spurious streaks along the indirect F1 dimension of a 2D NMR
spectrum and they have no transpose (mirror) in the lower diagonal entries (F1, F2).
Typically, no metabolite signals in vicinity are taken for assignment, since other
characteristic peaks in different F2 and F1 ranges can be considered. It is worth
mentioning that metabolites that have no coupled protons will show singlet signals in 1D
NMR and therefore, no cross-peaks in TOCSY. Such signals will only have contour
projections in the diagonal. Typically, 2D TOCSY spectra provide information about
correlated protons of the same spin system. However, peaks in the diagonal can be used
as a part of the data to solve the issue of metabolites with no intrinsic coupling if they are
not severely overlapping. A spectroscopic more favorable approach would be correlation
measurements between 'H-"*C HSQC [207, 208]. The term ‘targeted metabolic profiling’
is used for the analysis of certain molecules or functional groups rather than the whole
spectrum, on the other hand, in this work, non-targeted metabolic profiling of the whole
spectrum is used. Non-targeted metabolic profiling is an all- inclusive and comprehensive
analysis of the whole spectrum and all peaks above a predefined intensity threshold are
selected and analyzed. Automating non-targeted metabolic profiling has unlimited
perspective in overcoming the inherent obstacles in non-targeted 2D NMR analysis [209,
210].

5.3. BREAST CANCER TISSUE CELLS

Breast cancer is considered one of the most frequent tumors and the leading cause of
cancer death among women [211, 212]. Although, in its early stages, breast cancer has a
curability rate of 70-80%, progressed breast cancer can be mortal [213]. Recent studies
target to detect the potential and common metabolic signature for the purpose of early
diagnosis, prognosis evaluation and to improve the realization of the metabolic
pathobiology of breast cancer.

The breast cancer tissue data used in this work has been previously analyzed and
published [204]. The work was part of a comprehensive study focusing on the
heterogeneity of cancer tumor tissues. Breast tumor tissue samples from 18 patients were
analyzed. After surgery, a specimen for pathological diagnosis was immediately procured
and the remaining tissue was snap frozen and stored at —80°C within 10 minutes. Six
cores each taken from a different patient were analyzed blindly by HR MAS 'H-NMR
[204, 206].

A 1D NMR spectrum of the sample was measured, analyzed, and assigned based on
expert knowledge with the help of the Chenomx NMR Analysis Software. A number of
27 metabolites were assigned in the measured real breast cancer tissue sample as
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following, namely: ’Valine’, ’Isoleucine’, 'Leucine’, ’Lysine’, ’Glutamate’, ’Alanine’,
'Glutamine’, ’Aspartate’, Sn-Glycero-3-phosphocholine (GPC), ’Serine’, ’O-
Phosphoethanolamine’, ’Ascorbate’, ’'Myo-Inositole’, ’Lactate’, ’Proline’, ’'3-
Hydroxybutyrate’, ’O-Phosphocholine’, 'Threonine’, 'Glutathione’, 'Inosine’, 'Beta-
Glucose’, ’Alfa-Glucose’, ’'Tyrosine’, ’Phenylalanine’, ’Uracil’, ‘Taurine’ and
"Methionine’. Figure 5.1 shows the '"H-"H TOCSY spectrum of a breast cancer tissue
sample studied in this work at 600.13 MHz with mixing times (7,) of 80 ms. The 2D
TOCSY spectra were recorded using a pulse sequence that suppresses zero-quantum
coherences [164] to avoid blurring the multiplet patterns with a relaxation delay of 1 s. In
this way, the resulting multiplets exhibit the same structure as in 1D NMR spectra, which
facilitates classification. Measurements with a high indirect frequency resolution can only
be obtained by a subdivision into many time increments, resulting in long measurement
cycles. The spectral range was set to 7 kHz in both dimensions, 16K and 128 data points
acquired in the horizontal and the vertical dimension (F2, F1), respectively. Before 2D
Fourier Transform, zero fillings were performed to 32K and 1K data points in the
horizontal and vertical dimensions, respectively. The spectral widths in the two
dimensions were acquired on spectral range of 12.00 ppm to cover all possible metabolites
chemical shifts. The spectral ranges up to ~ 9.0 ppm (5600 Hz) in F2 and F1 dimensions
was considered since the cross-peaks of the metabolites in the TOCSY spectrum were
appeared only in these spectral ranges. The NMR experiment has been acquired at 279
K. The peak (F2, F1 in Hz) entries are deduced from the experimental 2D TOCSY NMR
spectrum of the real breast cancer tissue from the 2D contour lines using the automatic
peak picking function (pp2d) in Bruker TopSpin 3.6. The peak picking level was adjusted
based on the contour projection magnitude threshold to avoid picking artifacts and noise
peaks. Peaks are annotated in the TOCSY spectrum using the red square symbol
associated with peak number, as illustrated in Figure 5.1.

1D NMR spectrum (Projection)
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Figure 5.1 : (a) The '"H-'"H TOCSY spectrum of a breast cancer tissue sampleat 600.13 MHz with
tm of 80 ms. and relaxation time of 1 s, 16K and 128 data points acquired in the horizontal and the
vertical dimension (F2, F1), resp. The NMR projections on F1 and F2 axes are an extra 1D NMR
spectrum acquired by using the CPMG pulse sequence with excitation sculpting water suppression.
(b) Peaks deduced from the experimental 2D TOCSY NMR spectrum.
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5.3.1. Metabolites comprising the training dataset of breast cancer tissue, their
frequencies and ppm in 2D NMR spectra.

Table 5.1 contains the chemical shift of horizontal and vertical frequencies and the
corresponding metabolites in the breast cancer breast tissue. The dataset is available in
https://doi.org/10.5281/zenodo.5724057.

Table 5.1: Breast cancer-tissue sample metabolites.

Metabolite Metabolite F2 F1 F2 F1
[#] [Hz] [Hz] | [ppm] | [ppm]
3-Hydroxybutyrate 1 2496 1388.4 4.16 2.31
3-Hydroxybutyrate 1 2496 1448.4 4.16 2.41
3-Hydroxybutyrate 1 2496 722.4 4.16 1.20
Alanine 2 2256 876 3.76 1.46
Alfa-Glucose 3 3130.3 2112 5.22 3.52
Alfa-Glucose 3 3130.3 | 2224.7 5.22 3.71
Alfa-Glucose 3 3132 2568.5 5.22 4.28
Ascorbate 4 2405.3 | 2241.5 4.01 3.74
Ascorbate 4 2240.9 | 2064.4 3.73 3.44
Aspartate 5 2332.1 1590.9 3.89 2.65
Aspartate 5 2332.1 1681.6 3.89 2.80
Beta-Glucose 6 2778.6 | 1938.4 4.63 3.23
Beta-Glucose 6 2778.6 | 2084.3 4.63 3.47
Beta-Glucose 6 2778.6 | 2081.9 4.63 3.47
Glutamate 7 2248.2 | 1403.4 3.75 2.34
Glutamine 8 2258.4 | 1468.2 3.76 2.45
Glutamine 8 2258.4 1278 3.76 2.13
Glutathione 9 1529 1295 2.55 2.16
Glutathione 9 2262.5 1295 3.77 2.16
Inosine 10 3640.4 | 2567.4 6.07 4.28
Inosine 10 3640.4 2664 6.07 4.44
Isoleucine 11 21942 | 11814 3.66 1.97
Lactate 12 2462.9 790.4 4.10 1.32
Leucine 13 2231.4 | 1020.6 3.72 1.70
Lysine 14 1806 1032 3.01 1.72
Lysine 14 2250 1032 3.75 1.72
Lysine 14 2250 1137 3.75 1.89
Methionine 15 1578.3 1308.3 2.63 2.18
Methionine 15 2310.5 1308.3 3.85 2.18
Myo-Inositole 16 2112.5 1959.4 3.52 3.26
Myo-Inositole 16 2167.1 1959.4 3.61 3.26
Myo-Inositole 16 2429.9 | 21125 4.05 3.52
O-Phosphocholine 17 2571.6 | 2186.9 4.29 3.64
O- 18 2408.9 | 1944.4 4.01 3.24
phosphoethanolamine
Phenylalanine 19 2390.3 1970.1 3.98 3.28
Phenylalanine 19 4453 4394.3 7.42 7.32
Phenylalanine 19 4453 4422.5 7.42 7.37
Proline 20 2471.9 | 1213.2 4.12 2.02
Proline 20 2471.9 | 1402.2 4.12 2.34
Serine 21 2375.3 2300 3.96 3.83
sn-glycero-3- 22 2342.3 | 2163.5 3.90 3.61
phosphocholine (GPC)
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Metabolite Metabolite F2 F1 F2 F1

[#] [Hz] [Hz] [ppm] | [ppm]

sn-glycero-3- 22 2587.8 | 2195.8 4.31 3.66

phosphocholine (GPC)

Taurine 23 2049.9 1949.7 3.42 3.25
Threonine 24 2545.2 | 2144.3 4.24 3.57
Threonine 24 2545.2 791 4.24 1.32
Tyrosine 25 4316.1 | 4139.7 7.19 6.90
Tyrosine 25 2362.1 1920.4 3.94 3.20
Uracil 26 4513 3474.8 7.52 5.79
Valine 27 2160.6 617.4 3.60 1.03

5.4. ADIPOSE TISSUE-DERIVED HUMAN MESENCHYMAL STEM CELLS

Adipose tissue-derived human Mesenchymal Stem cells (AT-derived hMSCs) were
obtained from the Cell Therapy Center (CTC)/The University of Jordan. The sample
belongs to consented healthy females in the age range of 35-43, donor’s recruitment and
sample collection were approved by the Institutional Review board University of Jordan
(IRB: CTC/1-2020/04 and approved on 10.03.2020).

Details of sample preparation can be found in the Appendix.

5.4.1. High resolution 1D and 2D NMR experiments

The NMR measurements were performed at Leibniz Institute for Analytical Sciences —
ISAS, Dortmund, Germany. For '"H NMR profiling, 600 pL of deuterium oxide (D,0)
(sigma Aldrich) was added to the lyophilized metabolite, in addition to an appropriate
concentration of 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TSP) as an internal reference
and mixed thoroughly. Later, samples were transferred into high resolution 5 mm
borosilicate glass NMR tubes (Boro-600-4-8) (Deutero GmbH) NMR tube. The high
resolution '"H NMR spectra of the intracellular extracted samples in addition to two
reference samples were acquired using broadband high resolution 600.13 MHz (B, = 14.1
T) NMR Bruker spectrometer (Avance IIT 600) and the room temperature NMR probe
(BBO model-Bruker) at 279 K. Acquisition and processing of NMR spectra were achieved
by using the software Bruker TopSpin 3.6. The 1D NMR spectra were acquired using the
90° single-pulse experiment (Bruker pulse sequence zg) with embedded excitation
sculpting for water suppression. 'H-'H TOCSY was acquired employing the phase-
sensitive TOCSY experiment, using z-axis decoupling in the presence of scalar
interactions (DIPSI)-2 spin-lock implemented in the Bruker pulse sequence dipsiZesgpph.
The spectral range was set to 7 kHz in both dimensions, 16K and 128 data points acquired
in the horizontal and the vertical dimension (F2, F1), respectively. Before 2D Fourier
Transform, zero filling was performed to 32K and 1K data points in the horizontal and
the vertical dimension, respectively. The spectral widths in the two dimensions were
12.00 ppm.

5.4.2. Metabolic Profiling Assignment

Metabolic assignment was accomplished using BMRB [176], HMAB [172] and Chenomx
NMR Analysis Software. As a result, 32 metabolites were identified and annotated in the
1D spectra as shown in Figure 5.2.The spectra were referenced to the 2D contour of TSP,
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base levels were equalized to eliminate background noise. Later, automated peak picking
at a proper threshold was performed by applying the automatic method using the pp2
function in TopSpin 3.6, and then the obtained F2 and F1 frequencies were deduced.

In agreement with the 1D spectra, a total of 32 metabolites were assigned from the 2D
NMR spectra as listed in Table 5.2. It can be observed that some metabolites appear and
disappear during the cultivation and differentiation of the cells. NP in Table 5.2 exposes
the disappearance of metabolites during the dynamic evolution of the cells. Looking at
the obtained metabolic 1D and 2D NMR spectra, metabolic changes occurred in MSCs
in response to prolonged cultivation. Differentiation is noticeable and mainly found in
their lipid profiles. Multiple peaks are usually related to fatty acids that are normally
produced by adipocytes that are predominant in the 1D and 2D NMR spectra of
prolonged cultivated cells. MSCs differentiation is related to remodeling of lipidomic
metabolism because different functional phenotypes are correlated with changes of the
cellular membrane. [197, 214-216]. Beside fatty acids, myo-inositol (MI), taurine (Tau)
and 1-methylnicotinamide (1-MNA) were not observed early in MSCs, however they
were observed later in all MSCs groups by both 1D and 2D NMR spectra. Due to the
variation in concentration of intracellular metabolites, the contour intensities of all
TOCSY spectra were equalized (normalized to specific minimum threshold intensity)
which was led to the disappearance of shallow peaks (the signal to noise ratio (SNR) < 3)
as shown in Figure 5.2.

5.4.3. Intracellular metabolites detected in AT-derived hMSCs.

The chemical shift and the horizontal and vertical frequencies of metabolites in AT-
derived hMSCs cultivated and differentiated under different conditions described in
Chapter 8 are listed in Table 5.2. The dataset 1is available in
https://doi.org/10.5281/zenodo.7276518.

5.5. DATA REPRESENTATION

In our datasets, each metabolite is represented by two main characteristic features of the
2D TOCSY spectra: the chemical shift frequencies on the horizontal and vertical axes.
Since sufficient data samples is a vital element for classification, data augmentation is
implemented to overcome the small datasets due to limited NMR data [217, 218]. Data
augmentation is implemented to extend the number of data samples by simulating
anticipated deviation on the original samples [219]. Thus, data augmentation results in
duplicates of the samples, and the classifiers will deal with the same sample in different
versions [220]. Data augmentation has been applied in spectrum classification in NMR
[221], Raman spectra [219], and infrared spectra [222].
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Figure 5.2: Representative high resolution 1H NMR spectra of intracellular metabolite extracts
obtained from AT-derived hMSC samples collected at day 14 of differentiation into adipocytes and
osteocytes, and their control samples represented in AT-derived hMSC collected at day 4 and 14 of
cultivation in BCM. (a) 0.4-5 ppm region; (b) 5-10 ppm region. Peak assignment: Ile: Isoleucine;
Leu: Leucine; Val: Valine; Thr: Threonine; Lac: Lactate; Ala: Alanine; Glu: Glutamine; Gln:
Glutamate; Pro: Proline; Met: Methionine; Lys: Lysine; Arg: Arginine; GPC:
Glycerophosphorylcholine; « -Gle: Alfa-Glucose; 3 -Glc: Beta-Glucose; MI: myo-inositol; ChoP:
O-Phosphocholine; pEtN: Phosphorylethanolamine; GroPEtn: Glycerophosphorylethanolamine;
ATP: Adenosine triphosphate; ADP: Adenosine diphosphate; Tyr: Tyrosine; Phe: Phenylalanine;
NAD+: Nicotinamide adenine dinucleotide; Tau: Taurine; Asp: Asparagine; 1-MNA: 1-
methylnicotinamide; AcO-: Acetate; DMA; Dimethylamine. In addition to the fatty acids signals;
namely FAT 1, FAT 2, FAT 3, FAT 4, and FAT 5, representing methyl group -CH3, Acyl chains-
(CH2) n-, methylene group -CH2-CH=CH, vinyl hydrogen -CH=CH, and diallyl methylene group
=CH-CH2-CH=, respectively. The presence of ETOH (ethanol) and MeOH (methanol) was observed
to represent residues from the cleaning and extraction procedures.
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Table 5.2: Intracellular metabolites detected in AT-derived hMSCs at to control group at 4 days
cultivation (Ct d4), 14 days of cultivation (Ct d14), 14 days of differentiation into adiobocytes (AT d14)
and osteocytes (OS d14) and the standard frequencies from online libraries.

Metabolite Ctd4 Ctdi4 AT di14 0OS di14 Standard
F2 F1 F2 F1 F2 F1 F2 F1 F2 F1

Leu 752 | 494 | 762 | 484 | 762 | 489 | 772 | 494 | 720 | 540
Leu 950 | 590 | 930 | 584 | 930 | 589 | 934 | 560 | 900 | 600
Leu 900 | 720 | 914 | 720 | 913 | 750 | 910 | 760 | 900 | 720

Leu 1040 | 610 | 1073 | 631 | 1060 | 638 | 1046 | 608 | 1080 | 600
Leu 1040 | 695 | 1073 | 705 | 1060 | 709 | 1046 | 749 | 1080 | 720
Leu 1040 | 893 | 1073 | 923 | 1060 | 912 | 1046 | 922 | 1080 | 900
Leu 2229 | 611 | 2210 | 608 | 2212 | 610 | 2198 | 620 | 2220 | 600
Leu 2170 | 737 | 2171 | 750 | 2171 | 752 | 2163 | 749 | 2220 | 720
Leu 2163 | 943 | 2168 | 943 | 2157 | 908 | 2175 | 921 | 2220 | 900

Ile 1020 | 540 | 1020 | 540 | 1020 | 540 | 1020 | 540 | 1020 | 540
Ile 1023 | 408 | 1009 | 403 | 1047 | 417 | 1045 | 417 | 1020 | 600
Ile 2180 | 570 | 2170 | 580 | 2178 | 578 | 2220 | 540 | 2220 | 540
Ile 2160 | 1032 | 2165 | 1042 | 2195 | 1052 | 2210 | 1003 | 2220 | 1020
Tyr 1920 | 1778 | 1920 | 1787 | 1920 | 1782 | 1920 | 1790 | 1920 | 1830

Tyr 2396 | 1788 | 2253 | 1784 | 2355 | 1786 | 2358 | 1780 | 2340 | 1830
Tyr 2304 | 1877 | 2253 | 1848 | 2356 | 1836 | 2356 | 1848 | 2362 | 1920
Tyr 4073 | 4067 | 4090 | 3946 | 4094 | 3961 | 4095 | 3952 | 4316 | 4139
Phe 2340 | 1853 | 2354 | 1906 | 2261 | 1778 | 2360 | 1848 | 2390 | 1868
Phe 2340 | 1934 | 2254 | 1960 | 2254 | 1926 | 2260 | 1913 | 2390 | 1970
Phe 4362 | 4193 | 4362 | 4193 | 4368 | 4193 | 4370 | 4197 | 4453 | 4422
Phe 4362 | 4273 | 4362 | 4275 | 4368 | 4273 | 4370 | 4286 | 4453 | 4394
Glu 1373 | 1102 | 1354 | 1106 | 1354 | 1106 | 1349 | 1106 | 1470 | 1260
Glu 2337 | 1043 | 2337 | 1057 | 2344 | 1048 | 2333 | 1062 | 2258 | 1278
Glu 2341 | 1278 | 2344 | 1269 | 2341 | 1288 | 2333 | 1278 | 2258 | 1468
GIn 1295 | 1100 | 1281 | 1100 | 1284 | 1071 | 1288 | 1100 | 1260 | 1200
GIn 1378 | 1220 | 1384 | 1200 | 1389 | 1210 | 1370 | 1230 | 1380 | 1200
GIn 2190 | 1269 | 2186 | 1288 | 2191 | 1288 | 2194 | 1288 | 2220 | 1200
GIn 2225 | 1370 | 2227 | 1367 | 2210 | 1380 | 2208 | 1369 | 2220 | 1380
Lys 1740 | 809 | NP | NP | 1736 | 783 | NP | NP | 1800 | 840
Lys 1844 | 893 | NP | NP | 1836 | 898 | NP | NP | 1800 | 900
Lys 1836 | 1062 | NP | NP | 1836 | 1058 | NP | NP | 1806 | 1032
Lys 2295 962 | NP | NP | 2290 | 962 | NP | NP | 2220 | 900
Lys 2282 | 1057 | NP | NP | 2278 | 1044 | NP | NP | 2250 | 1032
Lys 2282 | 1118 | NP | NP | 2286 | 1119 | NP | NP | 2250 | 1137
FAT 1 NP | NP | 616 | 405 | 600 | 420 | NP | NP | 600 | 420
FAT 2 NP | NP | 789 | 545 | 789 | 531 | 789 | 545 | 785 | 535
FAT 3 NP | NP | 1230 | 614 | 1245 | 620 | NP | NP | 1260 | 600
FAT 3 NP | NP | 1240 | 1080 | 1260 | 1080 | NP | NP | 1260 | 1050
FAT 4 NP | NP | 1715 | 772 | 1705 | 778 | NP | NP | 1792 | 766
FAT5 NP | NP | 3139 | 607 | 3150 | 607 | NP | NP | 3180 | 540
FAT5 NP | NP | 3138 | 1052 | 3150 | 1052 | NP | NP | 3180 | 1080
FAT 5 NP | NP | 3140 | 1217 | 3150 | 1219 | NP | NP | 3180 | 1260
Lac 2499 | 715 | 2494 | 709 | 2494 | 715 | 2494 | 720 | 2463 | 790
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Ctd4 Ctdi4 AT d14 0OS d14 Standard
F2 F1 F2 F1 F2 F1 F2 F1 F2 F1
Thr 2160 | 789 | 2160 | 790 | 2160 | 720 | 2160 | 720 | 2160 | 780
Thr 2578 | 789 | 2537 | 790 | 2582 | 720 | 2573 | 720 | 2580 | 780

Metabolite

Pro 1879 | 1238 | 1869 | 1230 | 1873 | 1238 | NP | NP | 1980 | 1200
Pro 2408 | 1246 | 2408 | 1234 | 2408 | 1238 | NP | NP | 2472 | 1213
Pro 2408 | 1438 | 2435 | 1448 | 2405 | 1439 | NP | NP | 2472 | 1402
Ala 2270 | 723 | 2295 | 696 | 2295 | 705 | 2291 | 701 | 2256 | 876
Val 1350 | 632 | 1383 | 619 | 1394 | 619 | 1383 | 619 | 1380 | 617
Val 1875 | 1237 | 1890 | 1259 | 1880 | 1244 | 1870 | 1240 | 2160 | 617

Met 1518 | 1187 | 1523 | 1197 | 1518 | 1177 | NP | NP | 1560 | 1260
Met 2338 | 1270 | 2342 | 1274 | 2351 | 1277 | NP | NP | 2340 | 1260
Met 2338 | 1370 | 2342 | 1367 | 2351 | 1380 | NP | NP | 2340 | 1320
pEtN 2317 | 1852 | 2305 | 1848 | 2331 | 1865 | 2307 | 1849 | 2430 | 1950
GroPEtn | 2300 | 1791 | 2291 | 1781 | 2293 | 1791 | 2292 | 1791 | 2300 | 1791
ChoP 2454 | 1950 | 2455 | 1953 | 2458 | 1954 | 2454 | 1947 | 2572 | 2187
GPC 2127 | 1943 | 2121 | 1943 | 2124 | 1939 | 2123 | 1939 | 2160 | 1980
GPC 2552 | 2333 | 2535 | 2338 | 2544 | 2359 | 2533 | 2348 | 2580 | 2340
Arg 1144 | 1000 | 1140 | 975 | 1143 | 984 | 1146 | 980 | 1120 | 920
Arg 1910 | 960 | 1920 | 960 | 1944 | 988 | 1928 | 988 | 1920 | 960
Arg 1974 | 1134 | 1978 | 1134 | 1986 | 1115 | 1969 | 1130 | 1920 | 1140

MI NP | NP | 2039 | 1880 | 2044 | 1869 | 2036 | 1869 | 2040 | 1800
MI NP | NP | 2088 | 1882 | 2093 | 1872 | 2087 | 1866 | 2112 | 1959
MI NP | NP | 2154 | 1970 | 2159 | 1977 | 2152 | 1972 | 2167 | 1959
MI NP | NP | 2460 | 2156 | 2452 | 2140 | 2452 | 2149 | 2423 | 2113

Asp 2390 | 1574 | NP | NP | 2398 | 1578 | NP | NP | 2400 | 1800
Asp 1870 | 1750 | NP | NP | 1876 | 1768 | NP | NP | 1800 | 1740
Tau NP | NP | 2064 | 1809 | 2065 | 1812 | 2063 | 1812 | 2040 | 1980
a-Gle 3135 | 2119 | 3125 | 2139 | 3137 | 2132 | 3140 | 2112 | 3130 | 2112
a-Gle 3135 | 2238 | 3125 | 2254 | 3137 | 2263 | 3140 | 2280 | 3130 | 2224
a-Gle 3135 | 2573 | 3125 | 2558 | 3132 | 2562 | 3140 | 2565 | 3130 | 2568
B-Glc 2760 | 1937 | 2774 | 1928 | 2765 | 1931 | 2759 | 1936 | 2778 | 1938
B-Glc 2717 | 2055 | 2714 | 2065 | 2717 | 2063 | 2717 | 2068 | 2778 | 2084
B-Glc 2717 | 2008 | 2714 | 2000 | 2712 | 2002 | 2714 | 2089 | 2778 | 2081
ATP 3620 | 2587 | 3640 | 2581 | NP | NP | NP | NP | 3620 | 2587
ATP 3620 | 2680 | 3640 | 2628 | NP | NP | NP | NP | 3620 | 2680
ADP 3569 | 2496 | 3566 | 2503 | 3566 | 2501 | 3570 | 2498 | 3569 | 2496
ADP 3569 | 2700 | 3566 | 2706 | 3569 | 2708 | 3569 | 2690 | 3569 | 2700
ADP 3569 | 2762 | 3566 | 2759 | 3569 | 2769 | 3569 | 2765 | 3569 | 2760
ADP 3569 | 2882 | 3566 | 2885 | 3569 | 2870 | 3569 | 2868 | 3569 | 2880
NAD+ 5310 | 5110 | NP | NP | 5302 | 5106 | NP | NP | 5200 | 5110
1-MNA NP | NP | 5218 | 4718 | 5218 | 4725 | NP | NP | 5341 | 4921
1-MNA NP | NP | 5412 | 4718 | 5412 | 4725 | NP | NP | 5581 | 4921
1-MNA NP | NP | 5520 | 5328 | 5512 | 5321 | NP | NP | 5581 | 5341

An example of the data augmentation procedure for tyrosine is shown in Table 5.3. In
SSL, before starting the classification process, data augmentation is used to create four
disjoint datasets, training validation, learning, and testing sets. Each dataset will have
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1200 data instances. In the training dataset, white Gaussian noise is added to the original
frequencies with a different random signal-to-noise ratio. In the learning set, random
noise is added to each instance of the original dataset. The validation and testing datasets
are created by shifting the horizontal and the vertical frequency by a random value under
a predetermined chemical shift constraint, within 30 Hz, 0.049 ppm, which is sufficient
to simulate chemical shift fluctuations due to the NMR environmental matrix change
[223].

Table 5.3: A subset of the training dataset showing the output of the data augmentation procedure
for tyrosine.From one standard chemical shift for a metabolite, multiple versions of the same
metabolite can be created.

Metabolite Standard Experimental Augmented
From J-coupling TOCSY Generated
F2 F1 F2 F1 F2 F1

[Hz] | [Hz] | [Hz] | [Hz] | [Hz] | [Hz]
2353.3 | 1914.4 | 2362.1 | 19204 | 4317.1 | 4138.5
4302.9 | 4138.3 | 4305.9 | 4139.3 | 4305.9 | 4139.0
4315.3 | 4140.3
2363.3 | 1921.7
2361.4 | 1920.9
2362.9 | 1919.1

Tyrosine

In ND scenarios, the training, validation, and testing datasets are used. Figure 5.3 shows
the feature space of the metabolites in the breast cancer tissue sample. It can be observed
that the frequencies overlap in the horizontal and vertical axes and cannot be linearly
separated training dataset and adding random Gaussian noise to create the validation
dataset [205, 219]. Data augmentation is applied on “control group at 4 days cultivation
(Ct d4)” to create the training dataset. The training data set is of size 4000x2, where 4000
1s the number of independent samples from all existing metabolites on “Ct d4” and 2 is
the dimension of the data, representing the horizontal and vertical frequencies. Due to
the different number of multiples per metabolite, an uneven distribution of classes in the
training dataset is observed and a class imbalance problem can arise. To overcome this
issue, under-sampling of metabolites with more than two multiples has been applied
during the data augmentation procedure. Figure 5.4 shows the feature space of the
metabolites in Ct d4, Ct d14 (control group at 14 days of cultivation), AT d14 (after 14
days of adiobocytes differentiation) and OS dl14 (after 14 days of osteocytes
differentiation). It can be observed that peaks overlap on the horizontal and vertical axes
and cannot be linearly separated. Similarly, in AT-derived hMSCs samples, multiple
versions of the same metabolite are created by shifting the experimental chemical shift
right and left up to 50 Hz to create the peaks overlap on the horizontal and vertical axes
and cannot be linearly separated.
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Figure 5.3: The feature space of the 27 metabolites deduced from the TOCSY spectrum of a breast
cancer tissue. The magnifications are selected enlargements of peaks that overlap in (F1, F2)
dimensions.
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Figure 5.4: Feature space of the cross peaks of the metabolites contained in the samples (a) Ct d4,
(b) Ct d14, (c) AT d14 and (d) OS d14. Abbreviations: Ile. Isoleucine, Leu. Leucine, Val. Valine,
Thr. Thrionine, Lac. Lactate, Ala. Alanine, Glu. Glutamine, Gln. Glutamate, Pro. Proline, Met.
Methionine, Lys. Lysine, Arg. Arginine, GPC. Glycerophosphorylcholine, a-Glu. Alfa-Glucose, (3-
Glc. Beta-Glucose, MI. myo-Inositol, ChoP. O-Phosphocholine, pEtN. Phosphorylethanolamine,
GroPEtn. Glycerophosphorylethanolamine, ATP. Adenosine triphosphate, ADP. Adenosine
diphosphate, Tyr. Tyrosine, Phe. Phenylalanine, NAD+. Nicotinamide adenine dinucleotide,
Tau.Taurine, Asp.Aspargine and 1-MNA. 1-methylnicotinamide. In addition to FAT 1 to FAT 5.
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Extreme peak shift and peak overlap are the main difficulties in metabolic profiling of
NMR spectra of biofluid samples and tissues. Peak shifting aggravate the process of peak
assignment of the same metabolites across various samples [13].

Using supervised learning, a classifier must be trained over the interval of possible
chemical shifts for each metabolite, together with its multiplets all different pH values,
concentrations, and temperature to reach an acceptable recognition rate. In cases where
there is a shortage in the availability of training data, in addition to possible variations in
data volume, supervised learning cannot be used efficiently. This situation is valid in
NMR experiments due to the inapplicability to capture all settings in the dynamic
environment of metabolites. In SSL, a training model is created based on a small, labeled
amount of data which has been labeled by an expert or through supervised-learning
scenarios. Later, the classifier is updated using the trained model together with the
machine-labeled data [41]. SSL decreases the effort of capturing and adapting to all
possible variations of different metabolites and can be a replacement for the manual
assignment of metabolites in 2D NMR spectra. In this chapter, Polynomial Classifier
(PC), Support Vector Machines (SVM) and Kernel Null Foley—-Sammon Transform
(KNFST) are introduced under the semi-supervised learning scenario. These classifiers
are non-linear, which means that they map the original features of the dataset into a
higher space, which might help in producing acceptable separability.

As discussed in Section 2.4.5, self-learning [224] 1s a subclass of the SSL. methodology
and can be used as a wrapper for different types of classification algorithms [41]. In self-
training methods, the classifier itself 1s used to iteratively label or reject samples which
belong to a larger unlabeled dataset. If not rejected, a sample together with its label, is
added to the labeled dataset. Adding mislabeled data to the training dataset will have an
undesirable effect on the classifier performance, therefore, adding only informative and
certain predictions to the training set is an essential factor. These informative and certain
predictions can be employed by introducing confidence bands, which are used to reject
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possible outliers, 1.e., do not lie in the confidence band threshold. Samples that do not
exceed this threshold will be added to the training set and the classifier is retrained using
the accepted data. The integration of SSL and confidence bands was used in field of traffic
signs, handwritten digits [69, 73, 76], lunar elemental abundances [225] and gesture
recognition [68]. Other confidence measures such as the mutual agreement and majority
voting between multiple classifiers [226], uncertainty sampling [227] or conditional
random fields [228, 229] were discussed in [45, 230]. The stopping conditions of the self-
training technique are defined through one of the following measures: the maximum
number of iteration is reached by the classifiers, the whole unlabeled set, 1s added to the
labeled set or when there are no more confident predictions which can be added to the
labeled set [45]. This chapter has been adapted and/or adopted from [205].

6.1. SEMI-SUPERVISED POLYNOMIAL CLASSIFIER

The Polynomial Classifier (PC) is a parameterized non-linear interpolation which
transforms a sequence of input vectors to a higher dimension. PC has the form of an
algebraic polynomial of order n. Let N = {1 ...k} be the number of training samples X,
where X = {xq,..,x;} of C different classes and class labelsy = {y;, ..., yx}. The
polynomial discriminant function takes the form [72]

gx) = APCT(P(X) 6.1

where ¢(x) is the polynomial structure that represents all the possible multiplicative
combination of the original feature X depending on the order of the polynomial n and on
the dimension of the input vector [72]. The coefficient/weight matrix Ap." is obtained
during the training phase and is employed during the learning process to obtain the
probability that a given feature belongs to class c. The polynomial discriminant function
g(x) creates a mapping from the feature space to a decision dimensional space that
produces an output of posterior probability estimate to determine the class membership
[72]. The solution of the model can be found using least squares optimization through
minimizing the residual ||4p:" @(x) — g*(x)||?, where g*(x) is the optimal classification
function [72].

Moore-Penrose pseudo-inverse approximation ¢ (x)* = ((p (x)T(p(x))_1<p(x)T is used to
estimate the model parameters Ap.” = @(x)* g(x) during the training phase [34].

In the learning phase, the estimated weight matrix Ap." is used to find the label of the
new sample [34, 72, 76]. The number of free parameters N, in the confidence bands
calculation is computed according to N, = (L — 1)M, where L and M are the number of
classes and the number of terms in the polynomial function [76]. In this work, we
implemented third and fourth-order polynomial classifiers [72].

6.2. SEMI-SUPERVISED SUPPORT VECTOR MACHINES

The goal of Support Vector Machines (SVM) is to find a function with a maximum
deviation from a target value fsy), from the training data [231]. The original features are
mapped into a higher dimensional space using a mapping function to find a hyperplane
that separates the features. The support vectors are training samples which act as decision
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boundaries to determine an optimal hyperplane that has the maximal distance to the
nearest support vectors [34]. Let N be the number of training samples, X = {x4, ..., x; } are
the features of the training samples with the labelsY = {y,, ..., ¥x}, € {—1,+1} . SVM
finds a hyperplane that separates these classes by solving.

fovm(x) = Wiy (x) +b (6.2)

where ¢ 1s high-dimensional non-linear mapping of the features X, w is the coefficient
matrix and b is the bias vector. The hyperplane is optimized during the training phase by
finding w and b which maximize the distance between the support vectors and the
hyperplanes [34]. In the learning phase, only Eq. (6.2) must be computed for every new
instance. The implicit features mapping ¢(x): R™ - F, where F is a high dimensional
inner-product space, can be used to define kernel function K (x;, x;) = (p(xi)Tgo(xj) [34].
There is a wide range of kernels that can be used, Bishop [34] presents different kernels
and discusses different conditions for constructing kernel functions. Throughout this

work, the Gaussian kernel, or the radial basis function (RBF): K (x;, x;) = e Vlxi=x; I’ is
used, where y controls the bandwidth of the kernel function[232].

SVM is a binary classifier, i.e., a classifier tries to distinguish between two classes and the
class membership is assigned according to the sign of label y. To solve the multi-class
problem, SVM has to be reformulated to multiple binary problems and solved by
combining these multiple binary classifiers. One approach is to use ‘one-vs-all’
classification. In this method, a multi-class problem is treated as multiple binary-
classifiers in which a model is created using one class against all other classes. Suppose
we have n classes C = {cq,c;,...c_1,Cn} for class c¢;, we consider c¢; as one class and all
other classes c,..c, are considered as another class. We build SVM model for class c;.
This procedure is repeated n times resulting in n models for n classes. The n multiple
binary classifiers are then combined to create a multi-class classification problem. The
label assignment for a new sample employs all n SVM models and assigning the label for
the model with the highest output value [34, 233]. Another strategy is ‘one-vs-one’ in
which c(c — 1) /2 training models are built. An instance is classified according to a voting
system [35]. On this work, the binary classification is extended into a multi-class approach
by using one-vs-all classification.

Originally, SVM was designed as a classification problem where the label y is a discrete
rather than a probability value. For comparing the degree of certainty of the prediction,
obtaining a posterior class probability is useful. Several methods have been introduced to
modify SVM to calibrate distance values into probabilities [53, 232, 234-236]. Platt [236,
237] fits the output of the SVM classification P(y = 1|fsyy) using a sigmoid function
with parameters A and B :

1 (6.3)
P(y = 1lfsvm) = Pap(fsym) = 1+ exp (Afsyn + B)

Platt defines a training set (fSVMl., ti) where foyy, and t; are the output of the SVM
classification and the target probability for training sample i respectively. The parameters
z* = (A", B") are the optimal parameters to solve the maximum likelihood problem. The
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number of positive samples N, and the number of negative samples N_ are used to
describe the targets probability:

Ny+1 if y,_ +1 (6.4)
) Ny2 .
i = YN _+1 ” . Ji=1....1
N_+2 1 Yi=

In the sigmoid fit, instead of [0,1], the target probability t; will be used and the sigmoid
parameters are learned and estimated through minimizing the negative log likelihood of
the training set with cross-entropy error [236, 237]:

minf() = = ) t;log(p) + (1 - t)) log(1 = p) (6:5)

l

subject to p;=Ps5(fsvm,)

In this work, the tool box LIBSVM [232] i1s used. LIBSVM implements the extension of
Platt and multi-class classification. Moreover, the confidence bands are calculated using
Eq. (2.2), the degree of freedom v is defined as the difference between the total number
of training samples and the number of support vectors [76] .

6.3. SEMI-SUPERVISED KERNEL NULL FOLEY-SAMMON TRANSFORM

Following [200, 201], let X. denote the c¢™ class sample and N, is the number of samples
that belong to class c, then X is an n-dimensional sample with elements N belonging to ¢
classes.

The within-scatter matrix S,,, the between-class scatter matrix Sy and the total scatter
matrix S; are defined [238] as

c
Sp = Z Ni(i — W — W' (©.0)
(=1

1

A~
Z

& = ) = )"

Sy =

1

z

1

& =W =T

wn
-
I

M- I

1l
=
1l
=

i=1j

Where x]i'is the jth sample that belongs to class i, p = % 1 Z?Lil X]; is the sample mean,

1

W = EZ?L x]i' 1s the mean of the samples that belong to class i.
1

The Fisher Linear Discriminate criterion (FLD) finds the projection direction w that best
separates the data in terms of classification. FLD helps to find the linear transformation
that yields a minimal within-class scatter and a maximal between-class scatter.
Consequently, a sample is projected as close as possible to samples that belong to the
same class and as far as possible to samples which belong to a different class. In terms of
Sw and Sy, FLD i1s defined [239] as:

w Sy w 6.7)
wTS, w

J(w) =
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Optimizing expression Eq.(6.7) using the generalized eigenvalue problem [238, 240], we
get
Spw = AS,,w (6.8)

By the definition of the generalized eigenvalue problem, S, is non-singular and w and A
are the generalized eigenvectors and corresponding eigenvalues of SyandS,,. The
eigenvalues are ordered such that A; > --- > A = 0 and the eigenvectors are orthonormal

.. . 2
such that ool-tooj = 0 wherei # j. Normalizing the eigenvectors such that ||u)]|| =
w;"w; =1 and collecting them in a matrix = w®,....,0™, we can calculate the

discriminate vectors of FST by y = ¢Tx [200].

The Null-Foley—-Sammon Transform (NFST) suggests that we can find some null
projection direction enforcing the conditions 'S, w = 0 and w'S, w > 0 in Eq.(6.7),
so we get J(w) = o, such w is called the Null Projection Direction (NPD) [201]. The
best separability is ensured because all samples that belong to a given class are projected
into one single point such that the within-class scatter is zero and at the same time,
different classes are projected far from the rest of classes [201]. The idea of NFST is
illustrated in Figure 6.1.

Sw = 0 within similar classes

Sp >0,
o J Spis maximized between
|_pr® different classes

SN

Original Mapped Space
Space

Figure 6.1: Geometrical visualization of NFST. Every class is represented by a single point in the
mapped space. Test samples are mapped nearer to the class representation they belong to and far
away from different classes.

The optimization problem for NFST [240] turns into :
J(w) = max| wTSy, w| subject to | w'S,, w| =0 (6.9)
w

ield
To solve Eq.(6.9), we find w == (wTSyw =0 A w'Sy, w > 0). It has been shown in

[241, 242], that we can find the orthonormal basis B using Gram-Schmidt
orthogonalization, and then we can write
w = B;b! + -+ B,b™ = BB (6.10)
for each w € Z,*

Where Z*is the orthogonal complement of the null space of S;. Then the solution P is
computed through replacing w by BB in w'S,, w = 0, and we can write [241, 242] :
(BTS,B)B =0 (6.11)
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Solution § from Eq.(6.11) is used to compute the null projection direction w using Eq.
(6.10) to calculate the discriminant function NFST [241].

Let X,, be the matrix consisting of the vectors Xg — ; and X, be the matrix consisting of

the vectors x; — 1, we can define S, = %XWXMT, and S; = %Xt XTI [241],s0 Eq. (6.11) can

be expressed as
HHT B =0 whereH = BTX,, (6.12)

The above Equation suggests that the eigenvalue problem solving the Null Space
Discriminative direction is summed up to an inner product problem which proposes to
extend the algorithm using kernels. Although NFST turns out to be a successful classifier
[240], but due to its linear approach, it is inadequate to classify real- world example.
Therefore, it is extended to perform classification in non-linear models using kernels. By
incorporating kernels, Eq. (6.6) are rewritten as

Cc
S¢ = ) N = k) (® = k)T 6.13)
¢ N
5= (@6 — (@6 - w®)"
N
5= D) (00) — ) (@G - u®)T
i=1 j=1

Where p®and ;¢ are the mean of all samples in the higher space and the mean of class
i respectively. The fisher criteria in the higher space can be defined [240] as

»TSPw
® — b (6.14)
() oTSYw

The optimization problem can be written [240] as

J?(w) = max| mTSl;pa)| subject to |wTSV(€m| =0 6.15)

w
The orthonormal set in the mapped space can be found using kernel PCA [241, 243].The
kernel PCA algorithm [241] uses the centralized kernel K = (I — 15)K(I — 1y), where K
is the kernel matrix of the mapped training data, I is the N X N identity matrix and 1y is

a N X N matrix with all elements equal to % Applying the eigenvalue decomposition of

K =VEVT = ¥ Av;vi, where V is the N XN matrix whose columns contain the
eigenvectors v;of Kand E is a diagonal matrix containing the corresponding
eigenvalues A, where A; > --- > A,. With K being guaranteed to be positive-definite [34]
and V be an orthonormal matrix, we can define a factor matrix of the form V = VE'/2,

which defines a scaled eigenvector that contains the coefficient for the normalized
orthonormal basis that is to be replaced [241, 244] in Eq. (6.11). The orthonormal basis

B,ew Can be expressed by the centralized data in kernel space ¢@(x) and coefficient vector
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- _ AT
[241] V as Byew = @GOV. Let the matrix H = ((I - 1y)V) K(1 — L), where La block

diagonal matrix with block sizes equal to the class-specific number of samples N, and the
value 1/N. of each non-zero element. The factor (I — 1y) is a normalization of the basis
vector coefficient due to zero-mean mapping resulting from kernel centralization [241,
242]. Replacing H by Hy, in (6.11), we obtain B! ... ¢~ solutions and we can calculate ¢ —

1 projection directions ) using the coefficient vector V, o = ((I - 1N)\7) B vij=

1,..,c—1. To find the null space projection for point z on @, we calculate ® K(z) =
, AT

B (01— 10V) K(2) [241, 244].

The test point z is mapped to (K (2)7® , ... K(z)To" )T, with K(z) as the kernel function
of sample z [240-242].

KNFST was used an outlier detection in previous work [241, 245, 246], nevertheless, in
this work we have extended the functionality of KNFST to be employed in the SSL
scenario as following: During the training phase, the projection direction w, the class-
wise projections of training data into the null space D [241], in addition to the confidence
band for each sample is computed using the training data. During the learning process,
for each sample Z,p1apeld € Xunlabeled, the projection z* using w is computed. The class
membership is computed according to

Class(z") = 1r2iisnc dist(z*,D) (6.16)

In Eq. (6.16), the class membership Class(z*) is computed by calculating the Euclidean
distance between the projected sample z* and the projection of all classes in the mapped
null space. The instance z* is assigned to the nearest class as depicted in Figure 6.2. Next,
the confidence band for z* is computed according to Eq. (2.2).The degree of freedom for
the t-student distribution is the difference between the size of the feature space and the
size of projected dimension [247].

A o.o A)o
y o--_._______>:.\ d1

d2 0~

@ : —F > ®d3
- B

Original Space Mapped Space

) “@
[

Figure 6.2: Class membership in KNFSTis determined according to the distance between the
projected class and the new red sample. The blue, yellow and green classes are mapped into one
point for each class in the mapped class. The assignment of the new red sample is determined
according to the distance between its projection and the projection of the other classes (d1, d2, d3).
Distance d2 is the shortest distance to the red class, therefore, it is more probable that the red sample
belongs to the yellow class.

Initially, confidence bands are computed from the training data and their values are the
main criterion to decide whether a sample is used to update the training set. A relative
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deviation of the confidence value of training data is allowed, 1.e., an unlabeled sample
can be added to the training set once it is corresponding confidence value falls within this
deviation. Once the sample is accepted, it is added to the training set together with its
label as well as its confidence value. At last, the classifier is retrained after a maximum of
¢t samples has been added to the training dataset. For the sample z*, we construct a two-
sided normalized confidence band (G,,in, Omax) Such that probability((0min » Omax) 2
0,) = 1 — «, where o, is the computed confidence band for sample z. The values of 6,
and oy, are calculated as  op, = quantile(Orrain, £™")  and oy =
quantile(Gryain, £™%%), where £™* and #™" are experiment-dependent and Oy, is the
confidence band vector of the training data. Generally, all possible combinations values
0<#MX < 1and0 < #M" <1 could be examined [248]. In our settings, if multiple
combinations of £™%* and £™" achieve a similar accuracy and misclassification rate, then
we choose the configuration with the narrowest confidence band. Figure 6.3 and Figure
6.4 summarize the steps in the training as well as in the learning phases of KNFST,
respectively.

6.4. EXPERIMENTS

In the scenario of semi-supervised learning, a third (PC3) and fourth order (PC4)
polynomial classifier, KNFST, and SVM classifiers are tested. The performance of the
classifiers related to an increased size of the initial training set was investigated and
plotted in Figure 6.5 to Figure 6.6. The learning procedure is repeated for different initial
amounts of training data to examine the role of the size of the initial dataset on the
learning process and to observe the minimum ratio of the initial training set, which is
sufficient to produce an acceptable performance. The labeled dataset is partitioned into
ten portions of training data. The system uses random initial training samples, starting
from 10%, 20%, 30%, until reaching 100% of the training data. This random division and
permutation of the training dataset will lead to a different number of samples per
metabolite; this is important to monitor how classifiers will handle unbalanced datasets
in diverse experimental situations. Therefore, it is essential to repeat the experiment
multiple times and enforce the classifiers to deal with random permutation and partition
to obtain accuracy expectations independent of the partition of the training dataset. The
labeled dataset is partitioned into ten portions of training data. The system starts by using
random initial training samples, starting from 10%, 20%, 30%, until reaching 100% of the
training data size. For each portion of the initial training dataset, ten runs are performed.
Thus, the classifiers will perform the experiments ten times for each of the ten partitions
of the training dataset. A testing dataset, of size 1200 X 2, which is created using data
augmentation is used to test the performance of the SSL scenario.
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— Obtain the scaled eigenvector
V = VE/2
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Compute the solution {3 using
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. I is the N x N identity matrix

. 1y 1s a N X N matrix with all elements equal to %
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Figure 6.3: The training phase in semi-supervised KNFST algorithm. The aim of the training phase
is to generate a training model based on training dataset. The training models consists of the
optimized projection matrix, confidence bands values and the class-wise projections of training data
into the null space.
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* Xmp are the accepted samples that will be added to the training dataset. X, , contains the confident

predicted samples and their labels.
* Re-train flag tis the number of instance collected in Xy, before retraining the classifiers.

* Class is the class label assigned to a sample.

Figure 6.4: The learning phase in Semi-supervised KNFST algorithm. The learning process starts
by using the pre-generated training model. SSL iteratively selects a sample from the unlabeled data.
The classifier predicts a label for the sample where new labels are accepted if the confidence band
value is within a range 0,,i, < 0 < Opqx. Those accepted samples are added to the initial training
set together with their predicted labels after t accepted samples, where t is a re-train flag used to
check the number of accepted samples before retraining the classifier. The classifier is retrained on
those t samples, creating a new training model that will be used to predict the labels for the rest of
the unlabeled data and new confidence bands are calculated. This procedure is repeated until no
unlabeled data matches the confidence band conditions, if there is no qualified example left, the
algorithm terminates.
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The assessment of the results is based on the accuracy of the classification:

Number of correctly classified samples

e Accuracy =
y Total number of samples

Number of wrongly classified samples added to the training set

e Mislabeling rate =
g Total number of learned examples added to the training set

6.5. RESULTS AND DISCUSSION

The accuracy and the mislabeling of the classifiers versus the size of initial training data
are displayed as boxplots of median and standard deviation for ten different processing
runs. Figure 6.5a shows the classification accuracy of KNFST, SVM, PC3, and PC4
classifiers. From the plot, the accuracy of KNFST and SVM increases with an increasing
initial amount of labeled data until reaching around 100% at the size of 20% of the initial
training dataset, where it is corresponding at this point to only eight samples per
metabolite.
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Figure 6.5: The accuracy and mislabeling versus different sizes of initial training data.

Conversely, PC3 and PC4 showed a lower accuracy in comparison and no improvement
in the performance with the increasing size of the training dataset. The most probable
explanation is the high mislabeling rate, shown in Figure 6.5b, where PC3 and PC4 have
mislabeling rates of around 60% and 45%, respectively, overall sizes of the training
dataset. Noticeably, both PC3 and PC4 were unable to learn any samples until using 30%
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and 40% initial labeled training data. Remarkably, the mislabeling (misclassification) of
KNFST and SVM starts with a rate of less than 5% (considered significantly low), and it
decreases with increasing training set size reaching nearly 0%.

Analyzing the performance of the classifiers in the presence of an extremely small
amount of initial training data, as low as one or two labeled samples per metabolite, is
also noteworthy for this work since an NMR dataset is always kept as small as possible
to save measuring time and to avoid sample alteration with time, leading to data scarcity.
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100

80

Accuracy (%)

40

20 |

T
S

100

Mislabeling (%)

N
o
T
Hh
HIH
HIH
o

o
0
[11]

KNFST
SVM
PC3
PC4
KNFST
SVM
PC3
PC4
KNFST
SVM
PC3
PC4
KNFST
SVM
PC3
PC4
KNFST
SVM
PC3
PC4

Figure 6.6: The accuracy and mislabeling versus different sizes of initial training data dataset for
small initial amounts of labeled training data (<9% of the entire dataset).

Figure 6.6a shows the accuracy of the classifiers in these cases with only 1% of the training
dataset, ensuring one sample per metabolite per multiplet was the starting of the
classification. Interestingly, the accuracy of SVM and KNFST kept increasing steadily
despite the extremely small size of the initial training dataset. Additionally, the accuracies
of both KNFST and SVM reached 90% at an initial training data set the size of 9%. The
mislabeling rate of the SVM is around 40% at 1% of the initial training dataset of size, as
shown in Figure 6.6b. No mislabeling rates appear for KNFST because it was not able to
learn any sample. Later, the values of mislabeling of KNFST and SVM were around 15%
and 25%, respectively. These values of mislabeling were decreasing with increasing initial
training data set size. Within the low training data set size settings, KNFST showed a

6 Contribution: Semi-Supervised Learning in Metabolomics employing 2D TOCSY Spectrum 55



higher performance than SVM, while both showed better accuracy than PC3 and PC4 at
extremely low size settings. The mislabeling rates of PC3 and PC4 for extremely low sizes
of the initial training data could not be defined (see Figure 6.6 ). This is typical for
polynomial classifiers since they commonly require a relatively large amount of training
data in order to be able to generalize [76]. It is essential that when a classifier is unable to
learn any data samples and hence does not appear on the figures, the whole classification
process turns into a supervised learning procedure rather than semi-supervised learning.
This happens because no new data samples will be added to the initial training data set
when the classifier does not learn any sample. Therefore, the test dataset will be tested
against the un-updated original training data set. This explains the accuracies that appear
in Figure 6.6a despite the absence of mislabeling in Figure 6.6b.

6.6. VALIDATION

The metabolite assignments of the breast cancer sample were validated based on the
matching between the metabolites standard chemical shift from 1D NMR and 2D
TOCSY with the experimental 2D TOCSY on the same sample (breast cancer tissue).
Every metabolite 2D TOCSY standard chemical shift was deduced from the standard
chemical shift 1D NMR from the Batman [13], BMRB [176], and HMDB [172] databases
as well as relevant literature [249, 250].

Standard (F2, F1) cross-peak entries of "H-'H TOCSY of the metabolites that appeared
in the studied breast cancer tissue are listed in Table 6.1. Standard entries (indicated in
the table) were deduced from the coupled peaks that appeared in standard 1D NMR
250]. Experimental cross-peaks are deduced from the measured TOCSY of the sample.
Characteristic (F2, F1) cross-peak entries of every metabolite that has been used for the
assignment are listed. These peaks are labeled with P1 until P48, and they are annotated
in Figure 5.1b.

After the chemical shift verification of the cross-peak entries, the chemical shifts were
assigned to metabolites. The results were verified and confirmed according to the
published work on the same sample of the same scientific group [204, 251].

The demonstrated assignment in Figure 6.7 was done considering the results of the
KNFST classifier only because it has shown the highest accuracy. The metabolite
assignment was perfect (100%) without an occurrence of mismatching of the entries.
Interestingly, the KNFST classifier matched all metabolites, although, for some
metabolites, the chemical shift deviation was around 30 Hz (0.049 ppm), corresponding
to a severe deviation that may cause substantial uncertainty in the metabolic assignment.
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From experimental 2D NMR TOCSY
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Figure 6.7: The metabolite assignment based on (a) the experimental 2D TOCSY NMR spectrum
of breast cancer tissue after considering (b) the results of the KNFST classifier., which provides the
highest accuracy. Acronyms of the metabolites are Val: Valine; lle: Isoleucine; Leu: Leucine; Lys:
Lysine; Glu: Glutamate; Ala: Alanine; Gln: Glutamine; Asp: Aspartate; GPC: sn-glycero-3-
phosphocholine; Ser: serine; PE: O-phosphoethanolamine; Asc: ascorbate; mIno: myo-Inositole;
Lac: Lactate; Pro: Proline; HB: 3-Hydroxybutyrate; PCho: O-Phosphocholine; Thr: Threonine;
GSH: Glutathione; B-Glucose; a-Glucose; Ino: Inosine; Tyr: Tyrosine; Phe, phenylalanine; Tau:
Taurine; Ura: Uracil; Met: methionine.
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Table 6.1: Standard and experimental (F2, F1) Hz cross-peak entries of 'H-'"H TOCSY of the
metabolites appeared in the studied real breast cancer tissue.. Standard entries (indicated in the table)
were deduced from the coupled peaks that appeared in standard 1D NMR spectra from affirmed

experimental TOCSY measurement of the sample. Only characteristic (F2, F1) Hz cross-peak entries
of every metabolite are listed, and they are labelled with P1 to P48 and annotated in Figure 5.1b.

LD Standard Experimental
Spectra Peak
Peak From From
Position 1D NMR coupling 2D TOCSY
# | Metabolite [PPM] Posit- | F2 [Hz) [FI;Z] F}ZIZ] [FI;Z]
0.976,
1 Valine 1.029, P1 2160.6 617.4 2159.4 615.4
3.601
1.249,
1.458,
1.249,
2 Isoleucine 1.969, P2 2194.2 1181.4 2190.4 1182.2
3.657,
0.927,
0.998
0.94, 0.95
3 Leucine 3.719, P3 22314 1020.6 2238.4 1020.2
1.701
1806.0 1032.0 1812.3 1026.2
1.72, 3.01,
4 Lysine 3.75 P4, P5 2250.0 1032.0 2244 .4 1026.2
1.895
2250.0 1137.0 2244 .4 1140.2
3.747,
5 Glutamate 2.078, P6 2248.2 1403.4 2259.2 1404.3
2.339
6 Alanine 1.46, 3.76 P7 2256.0 876.0 2262.4 882.2
. 3764 2258.4 1278.0 2262.4 1278.2
7 Glutamine 2'1 3 ’2 447 P8, P9
S 2258.4 1468.2 2262.4 1464.3
3.886, P10 2332.1 1590.9 2323.2 1602.2
8 Aspartate 2.802, P 1’
2.651 2332.1 1681.6 2323.4 1685.1
3.605,
3.672.3.90 2587.8 2195.8 2587.9 2210.5
sn-glycero-3- 3, P12
9 phosphocholine 3.871.3.94 P 3’
(GPC) 6, 2342.3 2163.5 2367.8 2117.7
4.312,3.65
9,3.212
. 3.833,
10 | Serine 3.058 P14 2375.3 2300.0 2390.2 2294.6
O- 3.240,
11 sl || A4 P15 2408.9 1944 .4 2390.4 1941.1
12 | Ascorbate 2240.9 2064.4 2217.1 2090.0
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4.857,
4.771,
3.734,

P16,
P17

2405.3

2241.5

2435.0

2204.1

16 | 3-Hydroxybutyrate

4.160,
2.414,
2.314,
1.204

P24,
P25,
P26

2496.0 722.4 2506.6 718.4
2496.0 1388.4 2506.6 1376.6
2496.0 1448.4 2506.6 1438.7

21 Inosine

8.189,
8.310,
6.066,
4.752,
4.439,
4.278,
3.882

P35,
P36

3640.4

2567.4

3543.4

4241,

18 | Theonine ety ggg, 25452 | 791.0 | 25436 |787.7
3.573 25452 | 21443 | 25436 | 21434
4.557, 1529.0 | 1295.0 | 15720 |1277.7
2.97,2943 | poo

19 | Glutathione 3.766, P3 1’
2.548, 22625 | 12950 | 22607 | 12777
2.158

2501.8

3640.4

2664.0

2868.5

2603.0

7.192, P40 23621 1920.4 2374.5 1920.4
23 | Tyrosine 6.898, P 41’
3.200, 4316.1 4139.7 4307.3 4124.8
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3.055,
3.936
gﬁg 44530 | 43943 | 44439 | 4387.0
LS, P42,
24 | Phenylalanine ;ggg P43 4453.0 | 44225 | 44439 | 44259
oS, P44
7.420,
L 23903 | 1970.1 | 23844 | 19548
) 3.246,
25 | Taurine a0 P45 20499 | 19497 |2078.7 | 19512
26 | Uracil 579,752 | P46 4513.0 | 34748 | 45133 | 34717
3.850, 23105 | 13083 | 23166 | 1285.1
o 2.183, P47,
27 Methionine 2122 P48
e 15783 | 13083 | 15714 | 1286.3

6.7. CONCLUSION

This work enabled the automatic and accurate spectral assignment of metabolites based
on deconvolution of 2D-TOCSY NMR spectra by employing a semi-supervised machine
learning approach. We have customized and extended four semi-supervised learning
classifiers to test the automatic assignment under different initial training set sizes. The
correctness of the metabolic assignments by our approach in applying 2D TOCSY spectra
was based on comparing the results deduced from 1D-NMR spectra by human specialists
on the same samples. The KNFST and SVM classifiers show high performance and low
mislabeling rates for small and large sizes of the initially labeled training data set. To
accept or reject the classification results of the classifiers, the concept of confidence bands
was implemented. Under the same settings, both polynomial classifiers show a much
weaker performance. For an extremely small size (<9% of the entire dataset) of the initial
training data set, PC3 and PC4 polynomial fail to provide satisfactory performance
compared to KNFST and SVM classifiers, while the latter provided satisfactory
performance as well as a low mislabeling rate. Hence, KNFST and SVM show superior
performance over the other tested classifiers at every size of the initial training dataset.
Our study demonstrates that machine learning in metabolite assignments based on the
2D TOCSY NMR spectra approach can be considered accurate and robust.
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7. Contribution: Novelty Detection in Metabolomics Employing
2D TOCSY Spectrum
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Classification of metabolites require the assignment of metabolites in NMR spectrum by
experts or automatically using SSL, nevertheless, a more challenging situation is the
detection of metabolites for which limited, or no spectral information 1s available in the
training dataset. There is an emerging need for ND (novelty detection) when a class or
classes are missing, poorly sampled or defined [80]. Basically, supervised, or semi-
supervised training models enable only the prediction of metabolites which exist in the
training dataset, whereas new or unexpected metabolites will be misclassified as an
existing known metabolite. Applying ND is essential in metabolic profiling due to the
complex nature of biological fluids and tissues. Metabolic variations in fluids and tissues
can occur with any new stimuli and will cause alteration in the NMR spectra and new
metabolites can appear in the NMR measurement. Therefore, using supervised or semi-
supervised approaches might be insufficient in complex and - high-throughput NMR
experiments. ND approaches are used to detect well-known and trivial components and
discriminate potential new metabolites. These new metabolites are returned as candidates
of new metabolites to the expert to manually assign them. Normally, ND is required in
two situations. The first is when there are few examples to represent a known class within
the training dataset; for instance, a particular category happens rarely, so the classification
system does not have enough instances to represent this category. In this case, it is better
to consider the rare category as novel or abnormal and test it against the model of
normality. The second situation occurs when the training list is incomplete. Although
enough instances are available to form a training model, it is expected that new classes
will appear in the future [39]. In this chapter, we introduce the concept of ND of
metabolites in 2D NMR TOCSY spectra where new metabolites are detected and
assigned in a crowded spectrum using only the horizontal and vertical frequencies of the
2D TOCSY spectra.

7 Contribution: Novelty Detection in Metabolomics Employing 2D TOCSY Spectrum 62



Figure 7.1 summarizes the ND protocol: automatic peak picking is performed on the first
2D TOCSY spectra, two characteristic frequencies (F2, F1) are assigned to form the
training dataset. The training models will be created based on the KNFST, SVDD and
KDE classifiers with different training data volumes, observing the classifier performance
and the corresponding execution time. The training model will be used in the testing
phase to detect novel classes, i.e., novel metabolites in this case. Subsequently, the
automatically derived peak picking parameters from the training phase are applied to the
second TOCSY. The characteristic frequencies (F2, F1) are studied using the classifiers
to identify novel peaks (i.e., metabolites) compared to the reference training models from
the previous step. During the testing phase, training models are deployed to assess the
novelty of particular metabolites and the success of the learning paradigm [252].This
chapter has been adapted and/or adopted from [252].

7.1. KERNEL NULL FOLEY-SAMMON TRANSFORM

The Kernel Null Foley-Sammon transform (KNFST) was introduced under the SSL
scenario using the confidence bands as an uncertainty measure in Section 6.3. In this
section, KNFST is tested under the ND scenario. Similar to SSL, based on Eq. (6.14) and
Eq. (6.15), ND KNFST tries to find the null projection direction matrix w through
minimizing the within-class scatter and maximizing the between-class scatter [241, 253].
KNFST is a joint multi-class model, which can achieve classification of all classes at once.
The output of KNFST is used as a novelty score, where the larger the novelty score, the
more novel is the test sample. A threshold is set to detect novelty borders. KNFST has
been used in image classification [241, 253], gesture recognition [254], abnormal event
detection in object tracking [255], authentication on mobile devices [256] and fault
detection in machinery [257]. In this work, the KNFST code implementation in [241] has
been customized.

7.2. SUPPORT VECTOR DATA DESCRIPTION

Support Vector Data Description (SVDD) is a domain-based method, which employs a
hyperplane to represent a boundary based on the training data. This hyperplane tries to
maximize the separation between different classes. SVDD was developed by [99] as a
one-class classifier that distinguishes a positive (normal) class from all other classes in the
dataset and builds its model based on the single positive class [80]. This approach creates
a minimum-volume spherically shaped region that encompasses all or most of the training
data of a chosen class. The hypersphere acts as a descriptor of normality, and a sample is
considered an outlier if it falls outside the sphere [80, 258]. The problem of SVDD is an
optimization problem that finds the center a with minimum radius R of the hypersphere
that encloses most of the training data. SVDD enables the existence of outliers outside of
the hypersphere, but a larger distance from the hypersphere is penalized in

n

min  R?+C E &
RERERT e
1=

subject to [|@(x;) — all < R* +§;

(7.1)
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&; 1s a slack variable that permits the existence of outliers, C is a parameter that controls
the trade-off between the volume of the radius and the number of outliers (set to 1% in

the thesis), and ¢(x;) is the high dimensional mapping of x; [99].
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Figure 7.1: Schematic illustration of the ND procedure in metabolic profiling in a biological sample
based on 2D TOCSY NMR spectra.

In this work, the binary classification implemented in the Novelty Detection Toolbox
(NDtool) [38, 259] is extended to a multi-class approach using one-vs-all classification.
SVDD has several applications in image and gesture classification [260-264], biomarker
detection in HSQC NMR spectroscopy [265], and fault detection [266, 267].The novelty
threshold of SVDD is defined as the radius of the hypersphere according to [99].
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7.3. KERNEL DENSITY ESTIMATION

Kernel density estimation (KDE) is a probability-based method which computes the
probability at each point in the data space within a localized neighborhood area of that
point. KDE is a non-parametric approach that tries to estimate the probability of
unknown distributions. The main assumption of density estimation is that samples reside
in low-density areas indicate a low probability of being a known class. Accordingly, this
area tends to contain novel data; whereas areas of high probability means the existence
of known samples [38]. The probability density function is approximated by estimating
the probability density through locating kernels at each point of the dataset, i.e., a kernel
1s centered at each data point, and then these kernels are summed up. A typical kernel
density estimation is the Parzen Window estimator [34]. The Parzen estimator defines a
fixed-width region ‘R centered at the sample point x and counts the number of neighboring
sample points which falls in this region. Parzen estimators can be defined as:

N
p(xi) = %Z ky (kx; — x;) (7.2)
i=1

where x; € X = {x;....x,}, N is the number of data samples and kx; are the region centers
which are sampled from X. The density of x; is calculated based upon the distance
between kx; and x; and then representing it as a linear combination of the neighboring
kernel centers. kj, is a kernel function centered at kx; and has an associated parameter h
related to the bandwidth parameter of region R [268]. The parameter h is the Parzen
window width. The Parzen width parameter is defined as the mean value of the distances
between each kx; and its k nearest neighbours. Since the probability must sum up to 1,

we normalize the density by Ni where N, is the number of data points that belong to class
c

c [34, 85]. KDE has been employed in tissue segmentation [269, 270], Alzheimer's disease
detection in MRI [271, 272] and CT images [273, 274]. In this work, the binary
classification implementation in NDtool [38, 84] has been extended to a multi-class
approach using one-vs-all classification.

7.4. THRESHOLD SETTING AND NOVELTY DETECTION

Classifiers are designed to assign already known classes and, consequently, match the
novel data sample to one of the known classes. ND tries to learn a model of normality,
which is described by a novelty boundary. Normal instances are expected to be included
in the normality model and reside within the novelty boundary, whereas unknown
instances are expected to lie outside these boundaries [275]. A validation dataset is used
to compute the novelty threshold for each known class in advance by finding the threshold
with the minimum error on a validation dataset using grid search. During the testing
phase, when classifying a data point, the threshold is compared to the output of the
corresponding classifier. If the output does not comply with the pre-computed threshold,
the data sample will be classified as novel. KNFST is a distance-based approach, which
uses the assumption that similar data are located near each other, while novel instances
are located away from known data. Thus, if the distance between the tested samples d(z)
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is larger than the novelty threshold 7 of the class, the test sample is classified as novel,
i.e.,d(z) > T - novel. This is also valid for SVDD, where the radius of the hypersphere
indicates the threshold. For KDE, if the posterior probability p(x) is below the
threshold T, the more probable the test sample is a novel instance, i.e.p(x) < T — novel
[275, 276].

7.5. NOVELTY DETECTION OF METABOLITES USING BREAST CANCER
TISSUE

The classifiers KNFST, SVDD and KDE are customized and tested for novelty detection
of a breast cancer sample. The training data is partitioned into eight portions. These
portions are used to test the system using different percentages of training data to observe
the relation between the performance and the availability of training data and to examine
the minimum size of the training set sufficient to yield a satisfactory performance. The
portion of labeled training samples is increased every 50 cycles until all training samples
are used in the classification process. In each cycle, different random permutations of
training data are applied. The introduction of multiple cycles is vital; this is due to the
random selection of the training data before starting the recognition process, which leads
to different results for each chosen training dataset. Training portions of sizes 2.5%, 5%,
7.5%, 10%, 25%, 50%, 75% and 100% of the total training dataset size were used. In this
experiment, a TOCSY spectrum of a breast cancer tissue sample, which comprises the
metabolites in Section 5.3 is used.

To test ND on the TOCSY spectrum of breast cancer tissue, two scenarios are applied.
The first scenario handles the one-class ND case. This experiment is built by excluding
one of the metabolites from the training dataset, and afterwards a training model is built
based on the remaining 26 metabolites. The testing dataset includes all 27 metabolites,
which are the known 26 metabolites plus the excluded metabolite. On the second
experiment, multi-class ND is employed by excluding multiple metabolites from the
training set, and a training model is built based on the remaining metabolites.
Subsequently, during the test phase the novelty scenario is tested based on the known and
the excluded metabolites. In both scenarios, the classifiers are expected to detect the
excluded metabolites and regard them as novel metabolites. The procedure is illustrated
in Figure 7.2.

The assessment of the results is based on the ND metrics used in [277]. Let N be the

total number of metabolites in the test dataset and N, the number of novel metabolites

in the test dataset.

o M,,., =(100%*F,)/N.. The percentage of novel metabolites misclassified as
known. F,, stands for the number of novel metabolites misclassified as known (i.e.,
false negatives).

e Fyew =(100*FE,)/(N —N;). The percentage of existing instances falsely
misclassified as novel. F, stands for the number of known metabolites misclassified
as novel (i.e., false positives).
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e Err =100+« (F, + F, + F,)/N. The percentage of total error Err where F, denotes
the misclassifications within known metabolites. It can be seen the Err includes
also M,,,, and E,,,.

* Let € be the number of different metabolite
categories comprising the training dataset.

+ Exclude n categories from the training data

Training set.

+ n categories are the novel metabolites.

*+ Create a training model based on C—n
categories.

Phase

+ The testing dataset comprises all the C
metabolite categories.
Testing + Using the training model, identify the labels of
Phase the testing dataset.
+ Compute the novelty scores of the testing set
instances.

« Compare the novelty scores with the pre-
calculated class-wise thresholds.

Novelty + Check the novelty of a new observation.

Detection

Figure 7.2: ND procedure by excluding one- and multi-metabolites from the pre-assigned 27
metabolites of the breast cancer tissue cell.

7.6. ONE-CLASS NOVELTY DETECTION

In the scenario of one-class novelty detection, the metabolite entry (tyrosine) is considered
novel by excluding it from the list of 27 metabolites. Consequently, the training dataset
consists of the remaining metabolites whereas the testing dataset includes the excluded
novel metabolite tyrosine in addition to the known training data. Excluding a metabolite
during the training process simulates the novelty of the excluded metabolite and
ascertains that the training model is only aware of all metabolites excluding the exempted
tyrosine. In breast cancer, tyrosine is the most frequent reported metabolic biomarker
[278]. Figure 7.3(a-c) show the results of the ND procedure of the classifiers using the
above assessment matrices for the metabolite tyrosine. Figure 7.3a shows that KNFST
has a zero M, rate regardless of the size of the training dataset, which means that
tyrosine was correctly identified as novel. However, when using 2.5% of training data, in
addition to misclassifying some known classes as novel classes, misclassification between
known classes has a median error of 4%. On the other hand, using 2.5% of the training
dataset, KDE and SVDD (Figure 7.3b and 4c) have a M,,.,, value of around 4% and 50%,
respectively, with a relatively high standard deviation. Both classifiers show zero
M ew Values after using only 5% of the training dataset. In general, for all classifiers the
values of F,., and Err decrease when increasing the size of training samples. All
classifiers achieve zero or near-zero values for My, , Fhew and Err when using 5% of the
complete training dataset.
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To test the overall performance of the system for all possible threshold settings, we use
Receiver Operating Characteristic (ROC) curve analysis to show the tradeoff between
false positives and true positives. ROC curves and Area under Curve (AUC) provide an
assessment of the classification performance without indicating a decision threshold
[110]. Figure 7.4 shows ROC curves which are generated using the one-vs-all approach
for one run. This involves training one class per classifier, considering samples that belong
to this particular class as normal samples and all other samples as novel [279].

As mentioned earlier, training portions of sizes 2.5%, 5%, 7.5%, 10%, 25%, 50%, 75%
and 100% of the total training dataset size were used, nevertheless, for clarity only
portions of sizes 2.5%, 10%, 100% are shown in the ROC curves, novelty scores and
thresholds figures. These percentages give an indication of performance using relatively
small, medium, and large amounts of training data. In general, it can be seen in Figure
7.4(a-c) that the classifiers’ capability to distinguish novel metabolites from known
metabolites increases by increasing the size of the training dataset. This can also be
observed by the increasing values of the AUC, which implies a high diagnostic accuracy
for large training data set sizes. Furthermore, it can be deduced that using 2.5% of the
training data results in an inaccurate threshold, and consequently in a low recognition
rate. By using 10% of the total training samples, the AUC of ROC curve of the metabolite
tyrosine was over 97% for all classifiers. The AUC of the ROC curves are close to 100%
for the three classifiers when using 100% of the training data.

Figure 7.5 shows the corresponding difference in novelty scores between known and
unknown metabolites related to Figure 7.4. The red, green, and blue crosses resemble the
unknown test data, known test data and known training data, respectively. The separation
between the known and the unknown instances becomes more representative by
increasing the training data size. In ideal cases, scores of known classes in the training
dataset and testing dataset are similar. On the other hand, scores of novel instances must
be relatively different.
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Figure 7.3: The My, Frew and Err values of breast cancer-tissue sample for the classifiers (a)

KNFST, (b) KDE and (c) SVDD by applying one-class novelty detection.
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Figure 7.4: ROC curves and AUC values showing the accuracy of the novelty threshold for different
sizes of training data for the metabolite tyrosine. From left to right, the ROC curve obtained using (a)
2.5%, (b) 10% (b) and (c) 100% of the total training dataset is shown.
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(c) 100% of the training dataset.
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7.7. MULTI-CLASS NOVELTY DETECTION

According to [278], metabolites (leucine, tyrosine, proline and serine) are a subset of the
clinically most frequently reported metabolic biomarkers related to breast cancer.
Therefore, in the multi-class ND the above-mentioned metabolites were chosen to be
excluded for novelty testing under different conditions. Accordingly, the classifiers were
trained on 23 metabolites only. During the test phase, all assigned 27 metabolites of the
breast cancer sample were included in the test dataset, likewise the one-class novelty
detection.
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Figure 7.6: My ew, Frew and Err values of breast cancer tissue sample for the classifiers (a) KNFST,
(b) KDE and (¢) SVDD by applying multi-class novelty detection.

Figure 7.6 shows the My ew, Frew and Err values in multi-class ND scenario. When using
2.5% of the training data, KNFST and SVDD have similar M,,,, median values around
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16%. The SVDD M, distribution shows a negative skewness, which means most
Mpew Values are low. Although KDE has a median of zero M,.,,, KDE and the other
classifiers have a high standard deviation. This means a low discrimination capability at
extremely low training dataset size. Similarly, the values of F,., and Err showed
unstable standard deviations and median values in all classifiers. Starting from 5%
training data size, KNFST showed a negative skewness in M, values, which implies a
progressing discrimination of novel metabolites. On the other hand, KDE and SVDD
have zero for M,,.,, and approximately zero value for F,.,, and Err. Starting from 50% of
the training data size, a median of zero M, values were reached for KNFST. Using
only 25% of the training data, all the classifiers have reached less than 3% median values
for My ew, Frew and Err values. In addition, already when using only 5% of the training
data, all classifiers reached near-zero median values of F.,, and Err, indicating that the
classifiers are able to correctly classify known metabolites and detect novel instances.

Figure 7.7 (a-c) shows novelty scores of the KNFST, KDE and SVDD classifiers using
2.5%, 10%, and 100% training dataset size by applying the multi-class novelty detection.
The red crosses correspond to the six-pattern related to tyrosine, proline, leucine, and
serine. Comparable to one-class novelty detection, the novelty threshold becomes more
accurate and the separation between normal and abnormal instances becomes more
distinct when increasing the training dataset size. Remarkably, an acceptable threshold
could be calculated even when only 10% of the training data were considered.

Unlike one-class classification, generating ROC curves for multi-class classification tasks
is not a straightforward solvable problem. A typical solution is to generate individual
ROC curves for each class separately using the one-vs-all method [110]. Figure 7.8 shows
the mean and standard deviation of the total classification processing time of 50 runs in
the one- and multi-class novelty detection. The experiments were run on Windows 10
using an Intel Xeon E5 machine with 16 GB memory and 2.8 GHz Quad Core CPU. The
computational complexity for KDE is O(N?) [280], and O(N3) for KNFST [241] and
SVDD [281]. The execution time for KNFST and SVDD grows when increasing the
amount of training data. In one-class novelty detection, the execution time for KNFST
increases steadily until it exceeds the SVDD execution time. However, rather than
increasing, the execution time for one- and multi-class novelty in KDE remains almost
constant when increasing the size of the training dataset. This might be due to the fixed
Parzen window width of the kernel used by KDE. The estimation of the optimal Parzen
window width is the most effecting computational factor [280]. As stated earlier, the
Parzen width parameter is defined as the mean distance between the k-nearest neighbors
and the instances in the training dataset. The number k of neighbors in our experiments
was two [282]. In SVDD, computational cost is related to tuning the parameters of the
kernel, and there is a direct relation between the size of the training dataset and the
execution time [283]. This can be seen SVDD time consumption on multi-class ND
where, in comparison to the one-class scenario, more novel samples are encountered. The
main computational cost in KNFST comes from computing a joint kernel feature space
for all known classes and the eigenvalue decomposition of the kernel matrix [241, 284].
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Figure 7.7: Novelty scores and threshold values of KNFST, KDE and SVDD classifiers for different
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The confusion matrices of one- and multi-class novelty, in addition to the ROC curves
for the multi-class ND algorithm, are presented in the appendix A.

7.8. CONCLUSIONS

In this work, ND was established based on 2D NMR TOCSY spectra for metabolic
profiling associated to dynamics changes in biological systems, where metabolites of
breast cancer tissue samples were extracted from the TOCSY spectrum. The one- and
multi-class ND tests were designed to consider peak assignments appearing in the
TOCSY spectrum as a reference database. Subsequently, one and four metabolites were
excluded from the reference TOCSY to simulate their novelty. The KNFST, KDE and
SVDD classifiers were tested to detect the excluded metabolites. The classifiers achieved
explicit labelling to metabolites that appear in the TOCSY and additionally detected new
metabolites which are unknown to the training model. Despite the observed overlapping
in the training dataset resulting from chemical shifts, the implemented methods in this
work achieved 0% false positive rates at 100% true positive rate. The resulting
classification performance increases with increasing training dataset size. Generally, the
execution time also increases when increasing the training dataset size for all classifiers,
nevertheless, the execution time is noticeably short. The results are supported by
confusion matrices and ROC curves in addition to plotting the novelty outputs. The
presented machine learning based ND techniques provide promising perspectives for
automated assignment of metabolites that evolve in dynamic biological environments and
trigger the metabolic pathways.
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8. Contribution: Automated Monitoring of Metabolic Changes
Accompanying the Differentiation of Adipose Tissue-Derived
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Mesenchymal stem cells (MSCs) are multipotent stem cells with high capacity to
proliferate and differentiate, while exhibiting low immunogenicity and providing
immunosuppressive properties [285]. These potentials put MSCs in the lead as a
promising candidate for several innovative strategies of cellular therapy and tissue
engineering. MSCs are obtained from several body tissues, and their potential to
reproduction and developmental is highly dependent on their source of origin [286].
Adipose tissue is considered a highly valued source to isolate MSCs being a byproduct
that generate a high yield of primary cells, with high potential to proliferate and
differentiate; therefore, adipose tissue-derived MSCs are applied highly in tissue
engineering and regenerative medicine [287]. Metabolic adaptation of MSCs is highly
dependent on their surrounding environment; MSCs cultivated under hypoxic condition
show limited proliferation rate and high production of glycolytic enzymes, while in
normoxic conditions they show high proliferation rate and an additional reliance on
oxidation phosphorylation aside with glycolysis, in what its named by Warburg effect
[288]. In addition, the differentiation of MSC into adipocytes and osteocytes was shown
to be accompanied by a high level of oxidative phosphorylation, in fact, studies have
shown that the differentiation of MSCs into osteocytes is negatively affected under
normoxic conditions [289]. The switch between the glycolytic and oxidative
phosphorylation pathway shows the flexibility of MSCs in adapting a metabolism that
enable them to fulfil their role at the site of their residency [290]. New approaches are
required to reveal novel biomarkers and information in the metabolism of MSCs and to
track the metabolism states in response to stimuli, and metabolic adaptation associated
with several biological processes, including differentiation [197, 291]. This information
may unveil their behavior to be controlled and guided toward successful therapies
providing the proper culture conditions and handling [292].

In this chapter, machine learning is applied to automate the monitoring of the MSCs
differentiation and to resolve the convolution of the associated NMR spectra using the
approaches introduced on Chapter 7. Furthermore, through automating non-targeted
metabolic profiling, the dynamic evolution of biological samples will have an unlimited
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perspective and will overcome the inherent obstacles in non-targeted 2D NMR analysis.
Figure 8.1 demonstrates the experimental settings followed in this chapter. AT-derived
hMSC:s are cultivated in a basal culture media and measured after four days using NMR.
Non-targeted metabolic profiling of 2D NMR TOCSY 1is generated based on the four
days cultivation where all collected peaks are manually assigned by the expert. AT-MSCs
were subdivided into three experiments. On the first one, the MSCs were maintained in
basal MSCs culture for prolonged cultivation. On the second and third experiments, AT-
MSCs were induced to differentiate into adipocytes or osteocytes respectively. After
fourteen days, the adipogenic and osteogenic differentiation of the AT-derived hMSCs in
addition to their control group were measured using 2D NMR TOCSY. Similarly, peak-
picking is applied, and the cross peaks are assigned by an expert. To evaluate the
performance of our methodology, the manual assignments are compared by the
automated method. This work was adopted/adapted from [293].

8.1. MACHINE LEARNING

To monitor the dynamic evolution of adipose tissue-derived human MSCs (AT-derived
hMSCs) using 2D NMR TOCSY spectra, KNFST and KDE were used.

8.2. METABOLIC EVOLUTION OF AT-DERIVED HMSCS

To observe the dynamic evolution of the AT-derived hMSCs at after 14 days of cultivation
(Ct d14) and 14 days of adiobocytes (AT d14) and osteocytes (OS d14) differentiation,
the training dataset created from (Ct d4) is used to create the main training model 6.7 44
using KNFST and KDE. Three independent testing datasets are constructed using Ct
d14, AT d14 and OS d14 using the corresponding frequencies in Table 5.2, and are
introduced to the classifiers and tested against 8.1 44 The results are reported as multi-
class confusion matrices that compare the human-based metabolic profiling described in
Section 5.4.2 with the predicted assignments of the frequencies of the TOCSY spectra. In
addition, Figure 8.5 shows the novelty scores produced by the classifiers to show the
separation ability of the classifier in terms of projection distance for KNFST and
probability estimation for KDE. The scores are color-coded to distinguish the scores of
the different representations of classifier outputs as follows: the scores of known instances
in the training set in blue, the scores of known instances in the testing dataset in green,
the scores of missed novel instances in pink, the scores of correctly classified novel classes
in red and the scores of misclassified known instances in the testing dataset in black. In
1deal cases, the scores of known classes in the training dataset and testing dataset are
similar. On the other hand, the scores of novel instances must be relatively different to
those known classes. Novelty thresholds are created based on the validating dataset
choosing the thresholds with a minimum validation error.
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Figure 8.1: Schematic diagram of the experimental setting to observe the metabolic evolution of AT-
derived hMSCs.using 2D TOCSY of intracellular extracts of MSCs cultivated in basal culture media
at 4 and 14 days and MSCs cultivated for a duration of 14 days in an adipogenic and osteogenic
differentiation media.

Ct d14: Figure 8.2 shows the confusion matrices for the output of the classifiers KNFST
and KDE for Ct d14 sample. Both classifiers were able to detect all the sixteen novel
frequencies which belong the fatty acids, 1-methylnicotinamide, myo-inositol, and
taurine in the sample. No misclassification was encountered in KDE as observed on
Figure 8.5b. Nevertheless, KNFST had two misclassifications within known classes,
where the two instances of valine were misclassified as proline. This can be seen in Figure
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8.5a, where two instances were plotted in pink, indicating the misclassification within
known classes.
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Figure 8.2: Confusion matrices of the output of classifiers KNFST and KDE for the spectrum after
14 days cultivation.

AT d14: It can be seen on Figure 8.3 that both classifiers predicted all the sixteen novel
metabolites which belong to the fatty acids, 1-methylnicotinamide, myo-inositol, and
taurine in the sample. Nevertheless, both classifiers had misclassification within already
known classes. KNFST and KDE misclassified methionine as glutamine. In addition,
KNFST misclassified one of the instances of valine and proline as well as misclassified
one instance of leucine as threonine. This can also be seen on Figure 8.5¢,d where
misclassifications of known classes were plotted in pink.
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Figure 8.3: Confusion matrices of the output of classifiers KNFST and KDE for the spectrum of 14
days adiobocytes differentiation.

OS d14: Figure 8.4 shows the confusion matrices for the output of the classifier KNFST
and KDE for the OS d14 sample. Both classifiers were able to detect all six novel instances
in the sample, such as myo-inositol, Fat2 and taurine. However, it can be observed that
valine was misclassified as proline in KDE. This may be due to the overlap in the vertical
and horizontal frequencies between these metabolites, which can be seen in Table 5.2
and Figure 5.4d. Except for this single misclassification, no misclassification was
encountered in both classifiers. This can be also observed in Figure 8.5e, f.

Depending on the test sample, the number and type of novel metabolites differ. For
instance, there are 16 identical novel (but shifted in frequency) metabolites in Ct d14 and
AT d14 in comparison to Ct d4. Nevertheless, the disappearance of metabolites in both
samples is also different. In sample OS d14, six metabolites were found in comparison to
Ct d4, and more metabolites disappeared during the differentiation. For both classifiers
and all samples, the disappearance of metabolites during the biological pathway did not
affect the classification performance. For instance, though the main training
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model 0.7 44. Was created on specific metabolites that disappeared in the spectra of Ct
d14, AT d14 and OS d14, both classifiers proved their classification flexibility in observing
metabolites presence and absence. Hence, the classifiers were able to detect both the
presence and the absence of individual metabolites in accordance with 8.7 44.
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Figure 8.4: Confusion matrices of the output of classifiers KNFST and KDE for the spectrum of 14
days osteocytes differentiation.

Following the novelty detection metrics used in Section 7.5, Table 8.1 summaries the
performance of the classifiers subject to the sample type.
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Table 8.1: A summary of the performance of KDE and KNFST classifiers for Ct d14, AT d14 and OS

di4.
Ctdig AT d14 0S di14

KNFST | KDE | KNFST KDE KNFST | KDE

False negative rate | 0% 0% 0% 0% 0% 0%

False positive rate 0% 0% 0% 0% 0% 0%
Total error 2.6% 0% 3.6% 1.2% 0% 1.7%
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Figure 8.5: Novelty scores and threshold values of KNFST and KDE classifiers for Ct d14 (a, b), AT
d14(c, d) and OS d14(e, 1).
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8.3. CONCLUSION

In this chapter, we demonstrate using machine learning to perform an automatic analysis
of 'TH-'H TOCSY spectra acquired on cultivated and differentiated adipose-tissue-derived
human MSCs (AT-derived hMSCs). Multi-class classification in addition to the novelty
detection of metabolites were established based on four different 2D NMR TOCSY
spectra. The primary training model was built using TOCSY spectrum of AT-derived
hMSCs at four days of cultivation. Subsequently, the metabolic changes of AT-derived
hMSCs control sample were monitored under three different biological settings
employing the classifiers KDE and KNFST. Despite the severe overlapping in the
frequencies in TOCSY spectra, the classification outputs proved the efficiency of the used
method. KDE and KNFST achieved a total classification error between 0% and 3.6% and
false positive and false negative rates of 0%. The investigation in this work confirms the
common metabolic pathways associated with stem cell biology. In the future, further
features can be added to the dataset to produce a higher discriminative ability.
Furthermore, chemical structure information or integrating other 2D NMR spectra can
be included in the classification process. This work provides methodological approaches
to track information of MSCs metabolism and their biological pathways, including
detecting novel metabolites related to diverse stimuli in terms of prolonged cultivation
and varied differentiation. This work can be extended to monitor further kinds of MSCs
proliferation and recognize spectral signatures of pathways and processes.
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9. Summary and Conclusions

Machine learning based methods are promising tools that can extract concealed
knowledge from biological data. This information can be used to relate the data to
dynamic modeling of biological systems to get an evident and improved comprehension
of data and diseases. Recently, various methods that are related to automatic metabolic
assignment in NMR have been proposed. The metabolic profiling concept of these
methods is based on using deep learning to analyze contours images of the TOCSY
spectrum or uses multivariate analysis techniques. In contrast to these approaches, the
methods developed in this thesis are based on employing the frequencies of the TOCSY
spectra in the analysis process. In NMR, frequencies operate as a metabolic fingerprint of
potential biomarkers. The use of the horizontal and vertical frequencies is beneficial
because frequencies are related to the standard ppm values of the chemical shifts of
metabolites. Depending on the NMR spectrometer frequency, chemical shifts given in
ppm and frequencies are easily exchangeable. Moreover, chemical shift frequencies are
considered the most informative variable in NMR [145] and they can be consistently
reproduced under pre-established protocols.

In this thesis, multiple machine learning methods have been proposed to enable
automatic and accurate spectral assignment of metabolites based on deconvolution of 2D-
TOCSY NMR spectra. Semi-supervised learning and ND techniques based on third- and
fourth-degree polynomial classifiers, Kernel Null Foley-Sammon transform, Support
Vector machines and Kernel Density Estimation are presented.

In Chapters 6 and 7, metabolic profiling associated to dynamic changes in biological
systems were studied. One these Chapters, 27 metabolites from breast-cancer tissue
samples were extracted from the 2D NMR TOCSY spectrum to be used in used in the
automatic metabolic profiling experiments. Semi-supervised learning of 2D NMR is
essential due to the spectral components induced by chemical shifts, overlapping of
metabolites, noise, and biological matrix effects, which aggravate the metabolic
annotation process even for experts. In addition, manual labeling is expensive in terms of
time and effort and particularly dependent on the expert’s experience. Confidence bands
were used to accept or reject the classification results of semi-supervised learning. Based
on our results, SSL can be used as a strong and confident replacement for the manual
assignment of metabolites in 2D NMR spectra. Novelty detection is vital in metabolism
due to the nature of biological systems where new metabolites can emerge because of
dynamic interactions within cells or different stimuli that trigger change. In Chapter 7,
one- and multi-class novelty detection experiments were employed. Subsequently, one
and four metabolites were excluded from the reference TOCSY to simulate the novelty
of the extracted metabolites. The performance of the algorithms has been evaluated
according to different training data sizes through matching the results deduced by human
specialists with the output of the novelty detection. The results have shown that despite
the obvious overlapping, the implemented methods in this work achieved high
performance and low mislabeling rates.
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In Chapter 8, multi-class classification in addition to novelty detection of metabolites was
established based on four different 2D NMR TOCSY spectra. The analysis is based on
comparing the intracellular metabolites of the control cultivation on a basal culture media
at four days and the successive metabolic evolutional on the same cell at fourteen days of
cultivation in addition to their adipogenic or osteogenic differentiation for a duration of
fourteen days. The classifiers Kernel Null Foley-Sammon Transform and Kernel Density
Estimation achieved a total classification error between 0% and 3.6% and false positive
and false negative rates of 0%. This approach was successfully able to automatically
reveal metabolic changes that accompanied MSC cellular evolution starting from their
undifferentiated status to their prolonged cultivation and differentiation into adipocytes
and osteocytes using machine learning. The investigation in Chapter 8 strengthens the
conclusion derived from Chapter 7, because it is consistent with the real metabolic
pathways that are observable in stem cells research [197, 291, 292]. While in Chapter 7 a
simulated novelty system has been tested, the study in Chapter 8 investigated a real and
confirmed metabolic pathway that has been initiated through different biological triggers.
Future work

For future strategies, creating a more comprehensive and standardized metabolic
database using ppm, horizontal and vertical frequencies designed for different NMR
resolution frequency is essential to stimulate an uncomplicated access to diverse NMR
data. This perspective is critical due to the heterogeneity of metabolites and the associated
variables and implications. Furthermore, a new feature, which is related to spin—spin
couplings, can be added to the two already existing features to increase the discriminative
strength. Moreover, additional 2D NMR methods such as HMBC or HSQC can be
employed and integrated in the automatic prediction. The output of the classification
using different techniques might then be combined as ensemble classification to generate
more accurate results in more complex mixtures. Quantification of the NMR signal is a
planned goal for future developments. The introduction of the quantitative
characterization in the classification process will result in a comprehensive and
quantitative analysis of 2D NMR TOCSY.

The proposed methodologies are aimed to accelerate and facilitate the metabolic profiling
of 2D NMR. This development is a big step forward in automated spectral assignment
and a backbone for future enhancement and development in this area.
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10. Appendix
A.Novelty detection related results

i) Confusion matrices and ROC curves

An important statement is the following: For programming indexing purposes, the
metabolites are reordered considering the novel metabolites. This does not affect the
frequencies and only serves as a programming maneuver. The novel metabolites are
renamed and shifted to the last index, which explains the variations on the labels of the
novel metabolites in Figure Supp. 1 to Figure Supp. 5 in comparison to the labels in
Table 5.1. Example for one class-novelty: All classes: a, b, ¢, and d. The novel class: b.
Reordering:

Index 11 2] 3| 4
Classes al b| ¢

Q.

Reorder/Rename | a| c| d| b

Therefore, class b is shifted to the end index. Example for multi-class novelty:
All classes: a, b, ¢, and d. The novel classes: a and b
Reordering:

Index 1 2 3 4
Classes a b C d
Reorder/Rename C d b a

The confusion matrix is utilized to describe the performance of the classification
algorithm 1n terms of true positive, true negative, false positive and false negative values.
Figure Supp. 1 to Figure Supp. 3 show the confusion matrices of one single run using
different training dataset sizes for omne-class novelty detection by excluding the
metabolite tyrosine from the training dataset. It can be observed that, despite the
variation in the training data size and the error in identifying known classes, the
classifiers were always able to detect the novel metabolite, which is indicated as
metabolite 27. A red flag on these figures indicates which class is novel. A row summary
is included on each figure in cases where a severe misclassification is present. The results
of Figure Supp. 1 to Figure Supp. 3 are consistent with the performance measures,
Figure Supp. 4 to Figure Supp. 6 show the confusion matrices of one-run using different
training dataset sizes for multi-class novelty detection by excluding metabolites leucine,
tyrosine, proline, and serine from the training dataset. In comparison to the one-class
novelty case, it can be observed that the classifiers were unable to detect all novel classes,
indicated as metabolites 24, 25, 26, 27, using a small size of the training dataset. The
detection of novel classes is improved for larger sizes of the training dataset. A red flag
on these figures indicates the novel classes. The results of Figure Supp. 4 to Figure Supp.
6 are consistent with the performance measures and novelty scores figures in the main
manuscript and the ROC curves in the supplemental material.
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Figure Supp. 1: Confusion matrices for one-class novelty detection using KNFST, KDE and
SVDD using 2.5% of the training data. The red field represents the novel class.
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The ROC curves and AUC values for metabolites proline, serine and leucine are shown
in Figure Supp. 7 for the metabolites proline, serine, and leucine.
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Figure Supp. 7: ROC curves and AUC values showing the accuracy of the novelty threshold for
different sizes of training data for the metabolites proline, serine, and leucine. For each metabolite
from left to right, the ROC curve using (a) 2.5%, (b) 10% and (c) 100% of the total size of the
training dataset is shown for KNFST, (b) KDE and (c) SVDD as indicated in the subfigure’s
legends.

B. AT-derived hMSCs Sample preparation

i) Cultivation of AT-derived hMSCs

MSCs were maintained in basal MSCs culture media composed of alpha MEM medium
with Earle's Salts (Gibco) supplemented with 5% human platelet lysate (hPL), at a
concentration of 3 I.U Heparin-Sodium 5000 I.U/mL, 1% penicillin streptomycin, and
2 mM L-glutamine [294]. The cells were cultured in an adherent plate at a seeding
density of 4000 cells/cm2, and subculture was performed every time the cells reached a
confluence of 80% until reaching cell division in passage number 4 (P4). The passage
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number indicates the number of times that cells have been collected and re-cultured into
new cell culture flasks [295].

ii) Adipogenic and osteogenic differentiation of AT-derived hMSCs

AT-MSCs were induced to differentiate into adipocytes or osteocytes using StemPro
Adipogenesis, Osteogenesis Differentiation Kit (Gibco), respectively as described by the
manufacturer. In brief, MSCs at P4 were cultivated in MSCs basal culture media (BCM)
at a seeding density of 4000 cells/cm2. When cells reached 70% confluence basal culture
media was aspirated and cells were washed twice with PBS, before the addition of
complete adipogenic (ADM) or osteogenic differentiation media (ODM). Cells were
maintained in standard culture conditions (37 °C, 5% CO2) in humidified incubator for
14 days, while refeeding the cells every 3-4 days with complete fresh media. Through
the differentiation duration, morphological changes in MSCs were monitored using
inverted microscopy. To confirm the differentiation of MSCs into adipocytes and
osteocytes at the end of the differentiation duration, the generated monolayer of
adipogenic or osteogenic induced MSCs went through a staining procedure using oil red
O for adipocytes, or Alizarin red staining for osteocytes [296] . Oil red staining illustrates
the internal neutral lipids generated in adipocytes [297, 298], whereas alizarin red
staining illustrate mineral deposits ,like calcium, generated by osteocytes [299]. BCM is
supposed to maintain the stemness of MSCs without triggering their differentiation, this
was confirmed by the lack of coloration in AT-Derived MSCs after 4 days of cultivation
as seen on Figure Supp. 8a. Figure Supp. 8b shows AT-derived hMSCs that were
cultured in basal cell culture media for 14 days, this media is supposed to maintain only
their growth and stemness without triggering their differentiation. However, prolonged
culture duration triggers the formation of lipid droplets (yellow to orange droplets).
These cells were stained with both alizarin red and oil red stains, and the following was
obtained: negative alizarin red staining, faded staining of oil red shown as yellow to
orange droplets. It can be depicted on Figure Supp. 8c that MSCs cultivated in ADM
for 14 days showed a clear alteration in their morphology due to the formation of large
oil droplet in their cytoplasm as presented by the intense Oil red. Figure Supp. 8d shows
osteogenic differentiation. MSCs cultivated in ODM exhibited an intense deposition of
minerals, calcium, represented by the intense alizarin red staining.

iii) Intracellular metabolites extraction

At the end of the different periods, intracellular metabolites from the adipogenic and
osteogenic differentiated AT-derived hMSCs plus their control group at 4 and 14 days
of cultivation were extracted using methanol extraction method [300]. Briefly,
differentiation media were aspirated, and the cultured cells were washed three times with
phosphate-buffered saline (PBS). Immediately after washing, absolute methanol stored
at —20 °C and water ice were added to the cells in a ratio of 2 parts:0.8 parts MeOH:H,O
to quench metabolism. Culture plates were stored at —80 °C for 10 min, then, the cells
were scraped off the cell culture plate, and the obtained cells/methanol mixture were
centrifuged at a speed of 14,000 rpm for 10 min. To obtain the intracellular metabolite
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in powder form, the samples were lyophilized, and the obtained powder from each
sample was stored at —80 °C until further use [296].

(a) Day 4 in BCM (b) Day 14 in BCM (c) Day 14 in ADM (d) Day 14 in ODM

Figure Supp. 8: Light microscopy images of AT-derived hMSCs. (a) AT-derived hMSCs after
4 days, and (b) 14 days of cultivation in basal culture media (BCM). (c) Oil red staining
illustrating adipogenic differentiation of AT-derived hMSCs after 14 days of cultivation in
adipogenic differentiation media (ADM) [297]. (d) Alizarin red staining illustrating osteogenic

differentiation of AT-derived hMSCs after 14 days of cultivation in osteogenic differentiation
media (ODM) [299].
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