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Summary. We tackle two limitations of standard instrumental variable regression in experimen-
tal and observational studies: restricted estimation to the conditional mean of the outcome and
the assumption of a linear relationship between regressors and outcome. More flexible regres-
sion approaches that solve these limitations have already been developed but have not yet been
adopted in causality analysis. The paper develops an instrumental variable estimation proce-
dure building on the framework of generalized additive models for location, scale and shape.
This enables modelling all distributional parameters of potentially complex response distribu-
tions and non-linear relationships between the explanatory variables, instrument and outcome.
The approach shows good performance in simulations and is applied to a study that estimates
the effect of rural electrification on the employment of females and males in the South African
province of KwaZulu-Natal. We find positive marginal effects for the mean for employment of
females rates, negative effects for employment of males and a reduced conditional standard
deviation for both, indicating homogenization in employment rates due to the electrification pro-
gramme. Although none of the effects are statistically significant, the application demonstrates
the potentials of using generalized additive models for location, scale and shape in instrumental
variable regression for both to account for endogeneity and to estimate treatment effects beyond
the mean.

Keywords: Causality; Distributional regression; Generalized additive models for location,
scale and shape; Instrumental variable; Treatment effects

1. Introduction

In the potential outcomes framework (Neyman, 1990; Rubin, 1974), causal effects of a binary
treatment D € {0, 1} on an outcome variable of interest Y(D) are defined as comparisons between
the potential outcome under treatment, Y; = Y(1), and the potential outcome without treatment,
Yy =Y(0), for a common set of units. In practice, we shall be able to observe only either Y| or
Yy, depending on the treatment status. When the effect of the treatment is restricted to the mean

Address for correspondence: Guillermo Brisefio Sanchez, Fakultit Statistik, Technische Universitidt Dortmund,
Vogelspothsveg 87, Dortmund, Nordhein Westfalen 44227, Germany.
E-mail: briseno@statistik.tu-dortmund.de

© 2020 The Authors. Journal of the Royal Statistical Society: Series A (Statistics in Society) 0964—1998/20/1831553
Published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.



1554  G. Brisefio Sanchez, M. Hohberg, A. Groll and T. Kneib

of the outcome, the causal effect of the treatment can be reduced to one scalar quantity: the
average treatment effect (ATE)

ATE=E(Y)) — E(Yy).

In heterogeneous populations, the ATE is usually extended to depend on a characteristic X of
the individuals of interest, leading to the conditional ATE

ATE(x)=E(Y1|X=x) — E(Yo|X =x).

Later, we shall consider several characteristics but, for this introductory section, we restrict
the notation to the univariate case. The problem with the scalar ATE is that it provides only a
rather narrow view of the treatment effect.

Policy makers are often concerned with questions that relate to more general distributional as-
pects of the variable of interest, such as income inequality, and might then prefer an intervention
that lowers the variance or the Gini coefficient of an income distribution over an intervention
that has the same ATE but does not reduce inequality. Thus, a more general perspective is to
consider potential changes in the complete (conditional) distribution of the outcome, i.e. differ-
ences between D (Y| X =x) and D(Yy|X =x). In this case, there is not one single scalar treatment
effect but rather several treatment effects on various aspects of the distribution of the outcome.
This has received considerable interest in the context of quantile regression where conditional
treatment effects on specific quantiles 7 € (0, 1) of the distribution of the outcome can be defined
as quantile treatment effects with

QTE. (x) = Qy,1x=x(T) — Qyy|x=x(T), 9]

where Qy|x=y|(-) refers to the quantile function of the distribution of the treatment and control
potential outcome (see Melly and Wiithrich (2017) for a review of quantile treatment effects in
the context of IVs). However, if interest is not only on a specific quantile but also on different fea-
tures of the distribution such as the variance or the Gini coefficient, it is desirable to estimate the
whole conditional distribution directly. With quantile regression, this would require estimating
numerous quantile effects and often also dealing with the problem of crossing quantiles.

In this paper, we consider a different approach to evaluate the difference between D(Y1|X =x)
and D(Yy| X = x), where a parametric type of distribution is assumed for Y such that, for example,
DY X=x)= Dgyl w and D(Yp| X =x) = DlgyO (v)- This assumes the same type of distribution for
Y with and without treatment whereas the parameters of the distribution differ by the treatment
(and covariates). One can then either evaluate differences in the parameters with and without
treatment directly or derive certain other quantities of interest from the parameters

To illustrate thls point in more detail, assume that ¥;|X =x~N{puy, (x), ay (x)} and Y| X =
x~N{py, (x), orYO (x)}, i.e. we assume that the outcome of interest follows a normal distribution
regardless of whether it receives the treatment or not. However, the parameters of the normal
distribution change with treatment, leading to Yy, (x) = (uy, (x), JYI (x)) under treatment and
Py () = (uy, (x), O‘YO (x)) without treatment. The treatment effect on the mean (given character-
istics x) is then given by

TE,, (x) = py, (x) — py, (x). 2
By analogy, the treatment effect on the standard deviation (given characteristics x) is
TEq (x) =0y, (x) — oy, (),

but we can also easily derive a treatment effect on, for example, the coefficient of variation as
oy, (¥)/ py, (x) — oy, (x)/ 11y, (x) or on the quantiles as in equation (1) by evaluating the inverse
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cumulative distribution functions of the corresponding normal distributions. As a consequence,
our parametric distributional approach does not provide one single treatment effect but rather
a variety of treatment effects on various distributional features that can be derived from the pa-
rameters of the outcome distribution with and without treatment. This is particularly so when
replacing the normal distribution with more general types of distributions as formalized in gen-
eralized additive models for location, scale and shape (GAMLSSs) (Rigby and Stasinopoulos,
2005). The GAMLSS class is a highly flexible model class that allows all parameters of a condi-
tional distribution to vary with covariates and for non-linear relationships between covariates
and predictors. It explicitly and parsimoniously models the distribution of the outcome making
a GAMLSS more flexible than a linear model. The main advantage over non-parametric models
is that conditioning on covariates is inherent in the framework and thus straightforward.

When moving from binary to continuous treatments, the basic set-up that has been discussed
so far remains the same but one must specifically determine the status of the treatment variable
D before treatment (D =dp) and after treatment (D =d). For non-linear models focusing on
distributional features beyond the mean, the treatment effect then usually explicitly depends on
both dy and dy, i.e.

TE’l?(-x> d0> dl) = '19()6', dl) - 19()C, d0)7

where 9 (x, d) represents some distributional quantity given characteristics X = x and treatment
status D =d. For the original treatment status dj, one often considers the empirical mean from a
sample or some representative values of interest. The change in treatment can also be determined
differently, e.g. by changing by 1 unit corresponding to the notion of marginal effects. These
marginal effects can be calculated at means (marginal effects for means (MEMs)) or at other
representative values of covariates, or as average marginal effects (AMEs). Both MEMs and
AMEs can then be formulated for different quantities of the distribution. For example, MEMs
can be written as

MEM on mean= E{Y;(do+ 1)|X =x} — E{Y;(do)| X =X},
AME on mean=E{Y;(dy,; + 1)|X=x;} — E{Yi(do ;)| X =x;},

with i indexing the individual and Y;(d) denoting the outcome for individual i given treatment
status D =d. Instead of a 1-unit change, changes by 1 standard deviation can also be considered
for continuous treatments. For a binary treatment, a marginal effect implies a change in the
treatment variable from 0 to 1. Thus, if the sample of individuals is representative for the
population, AMEs and MEMSs for a binary treatment correspond to the estimated ATE or
the estimated conditional ATE depending on whether the covariates are fixed at their observed
values or at the mean. For continuous treatments the equivalence between marginal effects and
the ATE usually does not hold since the treatment often changes from different baseline levels
or by different amounts for each individual.

In the case of perfect randomization and compliance, all treatment effects discussed so far
could easily be evaluated by including the treatment variable as an additional covariate in a
regression analysis. However, even in randomized control trials (RCTs), compliance of the treat-
ment is often not perfectly observed, calling for an instrumental variable (IV) approach. In other
settings, where randomization is not possible, the treatment is biased because of self-selection or
other sources of endogeneity. Hence, in many quasi-experimental settings, experimental settings
with low compliance or when an explanatory or treatment variable is suspected to be endoge-
nous, an IV can still determine a causal effect. An IV is a variable that affects the treatment or
an endogenous covariate but not the outcome and therefore provides information on the causal
variation in the response of interest induced by the treatment.
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Traditional IV estimators are the Wald estimator or the two-stage least squares estimator
2SLS, where, in the first step, the IV is regressed on the treatment variable (and other covariates)
via ordinary least squares and the fitted values from this regression replace then the endogenous
treatment variable in the regression specification for the variable of main interest. In a more
general setting, 2SLS can not only be applied for treatment effects but for any endogenous
covariate, i.e. to determine the causal effect of a covariate that is correlated with the error term.
Following Imbens and Angrist (1994) and Angrist et al. (1996), such an IV analysis recovers
only the local ATE of a certain subgroup (the so-called compliers, i.e. it enables correction
for deviations from perfect randomization but not for deviations from perfect compliance). In
contrast, the two-stage residual inclusion estimator 2SRI includes residuals from the first stage
of the I'V regression instead of the predicted values and in this way enables the ATE to be targeted
instead of the local ATE (Basu et al., 2018). The idea of 2SLS is to use only the treatment part
that is independent of the unmeasured confounders to explain the outcome, whereas 2SR1 splits
the unmeasured confounders into a part that is correlated with the treatment and a part that is
not (Guo and Small, 2016). Terza et al. (2008) reported good performance of 2SRI when the
response variable of main interest does not follow a Gaussian distribution and the expectation
of the outcome is related to the covariates by means of a non-linear function. In a way, 2SRI is
a form of the control function approach (see Wooldridge (2015) for a review) and was applied
to generalized additive models (GAMs) by Marra and Radice (2011). The 2SRI estimator has
recently become popular within the field of survival analysis, since the Cox model’s hazard rate
is connected via a non-linear function to the predictor, making it a directly comparable case
with Terza et al. (2008). It is also in this strand of literature, where the asymptotic theory for
2SRI has been developed (Jiang et al., 2018; Ying et al., 2019).

We draw on the literature on 2SRI and place it within the GAMLSS framework, not only to
estimate treatment effects on the conditional mean of the outcome, but on the whole conditional
outcome distribution. In this way, we extend the scope of IV regression towards applications
dealing with distributional questions that can be consistently answered by using one model. To
achieve this goal, we propose an [V estimation procedure within the GAMLSS framework, which
we call 2SGAMLSS. The purpose of this paper is twofold: we first analyse the performance of
our estimator and, second, we demonstrate what additional insights the GAMLSS framework
offers when applying 2SGAMLSS to IV regression.

In a simulation study, we assess the ability of 2GAMLSS to estimate the coefficients of the
endogenous variable, the MEMs and AMEs on the mean, and the MEMs and AMEs on the
standard deviation of which the second two are not captured by previous approaches. We find
that our estimator performs particularly well in all non-linear settings as well as in linear settings
where the explanatory and endogenous variables are continuous.

We apply our method to a study on electrification in the South African province of KwaZulu-
Natal by Dinkelman (2011) that is presented as a motivating example in Section 2. The ex post
effect of large infrastructural projects such as electrification can often only be estimated by
using Vs, making it a relevant example for the method proposed. The study by Dinkelman
(2011) analyses the causal effect of rural electrification on employment rates by using the land
gradient as the I'V to account for the effect that entering the electrification programme was not at
random. Using 2SGAMLSS, we account for non-normal outcomes and non-linearities between
treatment and instrument, as well as for the neighbourhood structure between administrative
units, and we evaluate the effect of electrification on the whole conditional distribution of
employment.

We find that the allocation of an electrification project leads to positive marginal effects on
the mean (AMEs and MEMs) for employment rates of females, negative effects for employment
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of males, and a reduced conditional standard deviation for both, indicating a homogenization
in employment rates. However, these effects are not statistically significant.

The remainder of this paper is structured as follows: Section 2 presents the electrification study
and data used, whereas Section 3 briefly reviews existing non-linear IV approaches and intro-
duces 2SGAMLSS. Section 4 performs an extensive simulation study whereas the application
on rural electrification is presented in Section 5. Finally, Section 6 concludes.

2. Motivating example

The importance of access to electricity for everyone has gained considerable attention from
the international community and is highlighted in the sustainable development goals that
were set by the United Nations General Assembly for 2030. Assessing the direct effects of
access to electricity on both the individual and the aggregate level is crucial to design elec-
tricity programmes to improve livelihoods. Studies show that access to electricity provides
positive effects on labour productivity (Lipscomb et al., 2013), household consumption (van
de Walle et al., 2017) and individual access to jobs (Grogan and Sadanand, 2013), among
others. Given the nature of electricity installations being related to natural settings and po-
litical decision making, deriving a causal estimate is difficult. Many studies rely on IV tech-
niques to disentangle such an effect, making electrification an ideal topic for our proposed
method.

To apply 2SGAMLSS and to demonstrate what additional information we can draw from
it, we rely on rural electrification data from South Africa and replicate a study by Dinkelman
(2011) by using the proposed 2SGAMLSS. Using an 1V strategy, Dinkelman (2011) estimated
the effect of electrification on employment rates for females and males in rural KwaZulu-
Natal communities. After Apartheid, during which many households were denied access to
electricity, South Africa’s electricity utility (Eskom) committed to supplying access to electri-
fication for everyone from 1995 onwards. The following electrification roll-out is considered
to suffer from selection bias since flourishing or politically important areas were presumably
targeted first. Hence, Dinkelman used in her main analyses an IV strategy with land gradi-
ent as the instrument for the allocation of electrification. The idea is that the land gradient
is related to project allocation to communities since a higher gradient increases the costs of
electrification but is unrelated to the labour market outcomes, which she showed in a placebo
experiment.

The data set in the original work is a combination of two census surveys: administrative
data on the roll-out and geographical data. The data that we use to replicate her IV analysis
are aggregated at the community level and were collected in two waves; one in 1996 (which is
used as baseline), and the other in 2001. For our analysis we consider two response variables:
the difference in employment between 1996 and 2001 for male and female individuals. The
responses, which are denoted by A; prop_male_emp and A, prop_female_emp, are created by
taking the proportion of males or females employed with respect to the population in 2001
minus the baseline proportion of 1996.

Table 1 displays the variables that were considered in both the original and our analysis.
The endogenous variable (treatment variable) Eskom is a binary indicator that is equal to 1 if
a community received an electrification project between 1996 and 2001, and 0 otherwise. The
endogenous treatment covers 20% of the N = 1816 communities in the sample. The IV Gradient
indicates the average land inclination of each community in degrees. Fig. 1 summarizes the
example’s settings. The outcome variables of interest are the differences in employment rates
that are suspected to be influenced by the Eskom electrification programme. Participation in the
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Table 1. Summary statistics for the baseline covariates in the analysist

Variable Description Mean  Standard
deviation

A, prop_female_emp  Difference in proportion of —0.00 0.07
employment of females

A; prop_male_emp Difference in proportion of —0.04 0.09
employment of males

Eskom Electrification project 0.20 0.40
allocation

Gradient Mean land gradient or 10.10 4.89
inclination

prop_hh_fem Proportion of female-led 0.55 0.13
households

hh_povrate Poverty rate 0.61 0.19

sexratio Sex ratio Nfemales/ Nmales 1.48 0.28

prop_indianwhite Proportion of Indian or 0.00 0.01
white adults

kms_to_road Distance (km) to road 37.95 24.57

kms_to_town Distance (km) to town 38.57 18.12

kms_to_grid Distance (km) from grid 19.06 13.32

hh_density Household density 22.05 30.48

prop_hs_male Proportion of men with 0.06 0.05
high school education

prop_hs_fem Proportion of women with 0.07 0.05
high school education

d_prop-flush Difference in toilet access 0.03 0.08

d_prop_water Difference in water access 0.01 0.26

+Number of communities N = 1816. Number of districts G =10.

Tew:
observed
community
features

zrv: land y: em-

gradient

Ten: elec-

trification ployment

Lo
unobserved
community
features

Fig. 1. IV setting for the Eskom programme
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programme is prone to endogeneity due to some areas being of higher political interest and is
thus instrumented by land gradient.
2SGAMLSS augments the electrification analysis in four ways.

(a) Instead of assuming a linear relationship between the instrument (or other regressors)
and the endogenous Eskom treatment, this relationship is modelled flexibly.

(b) In addition to assuming a normal distribution for the employment outcome, we employ
a logistic distribution. The gg-plots in Fig. B3 in the on-line appendix suggest a slightly
better fit of the logistic distribution.

(c) Instead of analysing only treatment effects on the mean, we extend the analysis to causal
effects on the standard deviation of each outcome variable.

(d) Instead of modelling the 10 districts in KwaZulu-Natal as fixed effects, we account for the
neighbouring structure and employ spatial effects via Gaussian Markov random fields.

3. Methodology

3.1.  Non-linear instrumental variable regression

The response variable in our application, the differences in employment rates, is possibly non-
normally distributed. When considering non-Gaussian outcomes in the context of generalized
linear models, the expectation of the outcome is connected to a linear predictor via a one-to-one
response function

E(y[Xen, Xex, Xu) = (Xen Ben + Xex Bex + XuBy),

where y is the outcome variable, X¢x 1S an n X Wex matrix of exogenous variables, Xe, iS a
column vector and denotes the endogenous treatment variable and Xy, is an n x Wy matrix of
unobservable confounders. In case the model includes several treatment variables, Xey, is replaced
by an n x We, matrix of endogenous variables Xen. The corresponding unknown regression
coefficients are B, of dimension Wex x 1, Ben, and 3, of dimension Wy, x 1. The inverse of the
response function A(-) is the link function ¢(-) =h~1(-). For the remainder of this section we
assume that We, =1, i.e. we have only one endogenous variable which is a treatment variable
in our example. The reduced form equation of the endogenous explanatory variable can be
formulated as

Xen = h[l](Xex‘Sex +Xivéry) +&,

where h(-) is the conditional expectation of xe, given the exogenous regressors and IVs, and
the subscript ‘[1] indicates the first-stage model. The matrix Xyy is of dimension n x Wiy and
contains the instruments. The exogenous regressors are contained within Xex. The vectors éex
and dyy are of dimension W x 1 and Wyy x | respectively, and they contain the unknown
first-stage regression coefficients. The number of elements in Xy must be equal to or greater
than the number of endogenous regressors and Wiy > 1. The term £ is a vector of errors of
dimension n x 1 that contains information about the unobserved confounders. Replacing the
endogenous explanatory variable by its ordinary least squares fitted values no longer isolates
the exogenous variation in X, from the variable that is generated by x,,. To retrieve the effect of
an endogenous explanatory variable on the response in a non-linear context, Terza et al. (2008)
proposed the following procedure called 2SRI.

(a) Obtain the estimates dex and dyry from the first-stage regression by using a generalized
linear model algorithm. Define the (pseudo)response residuals as

é: Xen — h[l](Xexéex + XIVSIV)-
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(b) For the second-stage model, attach the residuals £ as an additional explanatory variable

E(y Xen, Xex, &) =) (XenBen + XexBex +€0¢)

and estimate the unknown coefficients Ge, and 3., and the coefficient Be via a generalized
linear model or other non-linear method.

The estimated residuals € will then contain information on the unmeasured confounders.
However, the regression coefficient 6 cannot be employed to explain the effect of the unobserved
confounders on the response, since the variation in € cannot be assigned to any meaningful
regressor in particular. Thisis not problematic, since only accounting for x,,’s absence is necessary
to obtain a consistent estimate of Sep.

The two-stage GAM procedure 2SGAM that was proposed by Marra and Radice (2011) uses
the same approach but relaxes the assumption of strictly linear covariate effects in the first and
second stage and relates the dependent variable in both stages to an additive predictor (details
on the additive predictor are given in the next subsection). The response residuals from the first
stage € enter the second stage as an additional continuous explanatory variable modelled via
smooth functions fé such that

[E(Y|XenaXeXa€) h[Z]{ ex ex""Zfl(X?_)"'fé(é)};

where the column vectors of X = (XZ,, x,) and the residuals are modelled as smooth functions
and X% as linear effects. The model is estlmated by using any GAM method, e.g. via mgcv in
R (Wood, 2017). The smooth estimates of the first-stage residuals account for the influence of
the unmeasured confounders; hence we can consistently estimate the effect of the endogenous
explanatory variable. Extending this framework in the presence of multiple endogenous regres-
sors results in a total of Wey, > 1 first-stage regressions. This produces We, vectors of residuals
£ that must be modelled cither as linear effects via the regression coefficients '66 by using 2SRI

or as smooth functions by using 2SGAM.

3.2. Generalized additive models for location, scale and shape

Since the response variable follows a certain distribution, we can move away from considering
mere mean effects and shift our interest onto the effect on the whole conditional distribution.
The GAMLSS method assumes that the observed y; are conditionally independent and that
their distribution can be described by a parametric density p(y;|9;1, ..., %), where ¥;1, ..., 9k
are K different parameters of the distribution. In the GAMLSS framework, we can specify an
equation for each of these parameters of the form

gk @) = = B3* + £ (1) .+ f1E K 3)
where the link function g ensures compliance with the parameter space and enables modelling
a non-linear relationship between the parameter and the predictor n on the right-hand side of
equation (3). The predictor 77, ¥ has a structured additive form with ﬁg denoting the overall
level of the predictor and functions f (xji), j=1,..., Jk, can be chosen to model a range of
effects of a vector of explanatory Varlables Xji.

(a) L1near effects are included via linear functions f (Xji)=xji ﬁ , where x j; is a scalar and
ok ; % is a regression coefficient.
(b) Non-linear effects for continuous explanatory variables are captured by smooth functions
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I Uk (Xji)= f Uk (x ;) where x j; is a scalar. One way of doing this is by using penalized splines
(E1lers and Marx 1996).

(¢) Spatial information can be included via f “(xji) = /i Uk *(s;), where s; is some spatial infor-
mation such as geographical co- ordlnates or admlmstratlve units.

(d) Forclustered data, random or fixed effects f (xj) = 19 o can be included with g; denoting
the cluster.

The GAMLSS method has the advantage that it estimates the effects on all parameters of
a conditional response distribution that can take basically any parametric form and is thus
not bounded to the exponential family. Model estimation can be done by maximum likelihood
(Rigby and Stasinopoulos, 2005) or Bayesian methods (Klein ef al., 2015). Related R packages
are gamlss (Stasinopoulos et al., 2017), GTRM (Marra and Radice, 2019) and baml ss (Umlauf
et al., 2018).

3.3. Two-stage generalized additive models for location, scale and shape in

instrumental variable regression (2SGAMLSS)

We propose the two-stage GAMLSS method 2SGAMLSS: a procedure that in the first stage
performs a distributional regression on the reduced form equation of the endogenous variable

Xen-

Gen (Vi en) =11} = B0 + £ 50 (X1v.0) + Sy (X1 + .+ £ (X0, @)

where nen is the structured additive predictor of the conditional expectation of xeq, and g(-) =
h~1(-)is thelink function. The subscript ‘[1]’ indicates that the terms that are specified in equation
(4) belong to the first-stage model. The structured additive predictor contains an overall level,
as well as effects for the instrument and the remaining exogenous regressors Xi;, ..., Xy;. For
notational convenience, the subscript k is dropped in equation (4), i.e. a structured additive
predictor can be specified for each parameter of the endogenous regressor’s distribution. After
estimating the regression coefficients in the first-stage model, the conditional expectation of the
endogenous regressor and the residuals are computed:

& =Xen,i — |E(Xen,z'“?i,en,l, cees ﬁi,en,K)~

Subsequently, all K parameters of the response’s density p(y;|¥; 1,...,V; k) are regressed on
the explanatory variables and the residuals:
9@ =" = By + [ 1)+ S ) + 1, . )

Here the subscript ‘[2]” indicates that the components of the K distribution parameters belong
to the second-stage model. Note that extending this framework to multiple endogenous regres-
sors results in multiple first-stage models, and having all first-stage residuals attached to the
structured additive predictors of the K response distribution parameters. Our proposed pro-
cedure resembles that of Marra and Radice (2011) but enables greater flexibility and response
distributions that are not members of the exponential family, e.g. zero-inflated distributions.

Especially in an IV setting and in treatment effect evaluation in general, interest often lies in
heterogeneous effects. Interaction terms and random coefficients accounting for heterogeneity
can be easily included in the second stage. In addition, the GAMLSS method has another notion
of heterogeneous effects since they are interpreted conditionally on covariates. One can easily
derive AMEs, MEMs or marginal effects at representative values not only for the conditional
mean but also for all parameters of the response distribution or other distributional quantities,
e.g. the coefficient of variation.
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3.4. Confidence intervals

Since 2SGAMLSS relies on two-step estimation, a naive calculation yields intervals that do
not necessarily cover their claimed nominal probability, i.e. they will be too narrow. This
is because the second-stage regression does not take into account the uncertainty from the
quantities that are estimated in the first-stage regression. To represent the uncertainty in the
estimated coefficients reliably and to avoid poor coverage, an additional correction must be
considered.

Predecessors of 2SGAMLSS have employed a bootstrap pointwise confidence interval cor-
rection to restore nominal coverage probabilities. The low coverage probabilities are rectified by
employing the joint asymptotic distribution of the GAMLSS maximum likelihood estimators
(Stasinopoulos and Rigby, 2007):

fBIY) ~N (B, D),

where the vector 3 contains the estimates of the unknown regression coefficients 3, e.g. obtained
via the R routine GJRM: : gamlss (). The algorithm for obtaining confidence intervals is as
follows.

(a) Estimate the first-stage model. Draw a total of N, random vectors from a multivariate
Gaussrctn distribution: N (ﬂ[”, 2[1 ). Calculate all Ny, vectors of predictions X

en 1, ceey

X3 Ny and their respective residuals 51 ye 5 Ny
(b) Fit the second- -stage model Ny, times by using the original data attaching the rth vector of
residuals. Obtain 6[2] ~and 2[2] .. Foreachr=1,..., Ny, draw Ngq random vectors from

a multivariate Gaussian distribution, i.e. N/ (5[2 I 2[2] ) forli=1,..., Ng.
(c) Calculate the Ny, Ny fitted values, e.g. f(Xen), and compute the p01ntw1se bootstrap per-
centile intervals.

Using this procedure, the uncertainty in the residuals é is accounted for in each of the estimated
distribution parameters. We employ the following bootstrap replications for our distributional
regression approach: Ny = Nq = 100.

4. Simulation study

4.1. Simulation set-up
We investigate the pointwise precision of our proposed 2SGAMLSS estimation procedure in
a setting that resembles our considered application, i.e. we fit all estimators by assuming a
logistic response distribution and binary endogenous treatment variable. For a more detailed
description of the data-generating process (DGP), as well as eight alternative scenarios (S1-
S8) using different distributions for the response as well as continuous endogenous treatment
variable, see the on-line appendix.

We generate a binary endogenous treatment variable by using a structured additive predictor
that consists of effects from an unobserved confounder x,; and an instrument xyy:

e = ¢y fa(xu) + @2 fa(xry).

The observationindexi=1,...,n is dropped for notational convenience. The parameters ¢ and
¢, areused to control the strength of the instrument, and the severity of the endogeneity. We spec-
ify a strong instrument (|p(xen, fa(x1v))| > 0.4) and severe endogeneity (|p(fa(xy), fa(Xen))| >
0.5). The distributional parameter ¢, is obtained by using a response function; then we sample
the endogenous treatment xe, from a Bernoulli distribution:
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Ven = Jen (Uﬁm ) -1 >
Xen ~ Ber(Yen).

Afterwards the additive predictors of the response distribution parameters are created by using
effects from xep, xy and some exogenous variables xex, €.g.

77191 = fa(Xex,) + XenBen + fa(xu),
"7192 = fd(xex2) + XenBen + fa(xu).

The distributional parameters of the response are obtained by applying the appropriate response
function to each predictor. Subsequently, a total of n observations of y are sampled from a
logistic distribution:

D= g™,
y~logistic(¢, ).

The parameter 1J; corresponds to the mean, whereas the scale parameter ¥, corresponds to a
transformation of the variance of the response variable. We created two DGPs by using this
framework: one in which the f;(-) were specified to be strictly linear, and another with f;(-)
as non-linear functions. The specifics of these non-linear functions are detailed in the on-line
appendix.
The estimated coefficient of the endogenous variable is compared against 2SLS, 2SRI, 2SGAM,

a naive GAMLSS (ignores endogeneity) and full GAMLSS (benchmark, includes the unmea-
sured confounder) estimators. All the non-linear functions were modelled by using penalized
splines. The residuals that were obtained in the first stage of 2SGAMLSS are scaled to have unit
variance as recommended in Geraci et al. (2016). All estimations were performed in R (R Core
Team, 2019).

4.2. Target effects for binary and continuous treatments

For the main setting, we report the median of all estimated endogenous coefficients Ben on the
location and scale parameter. For the remaining scenarios in the on-line appendix with non-
linear effects, we focus on pointwise precision quantified by using the root-mean-square error
in relation to the true effect of xep:

n 1 N n
RMSE{f(Xen)} :\/|:N ;{f(xen,i) - f(xen,i)}2 5

where f (+) is the estimated non-linear function evaluation of x; ¢n. Additionally, the bias that
is incurred by each model is calculated by using

. n 1 N .
blas{f(xen)} = N Z:l | f (Xen,i) — f(Xen,i)|.

We report the bias, mean, median and interquantile range IQR, as well as the root-mean-squared
error of all Monte Carlo replications of each DGP. These metrics were obtained by using 1000
Monte Carlo replications for sample sizes N = 500, 2000,4000. The uncertainty that is related
to estimates obtained via 2SGAMLSS is calculated via coverage probabilities of the bootstrap
confidence intervals of x¢,. We employ 200 independent data sets using a non-linear DGP. The
coverage probabilities were evaluated at confidence levels a=(0.01,0.05,0.1).
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In addition to the metrics on the coefficient of the endogenous variable, the relative bias
between the true and estimated MEMs and AMESs, both on the mean and on the standard
deviation sd can be considered. For binary treatments, the MEMs and AMEs are given by

MEM on mean = E{Y;(1)|Xex =Xex} — E{Yi(0)| Xex = Xex }»
MEM on Sd=SD{Yi(1)|Xex =fex} - SD{Y[(O)|Xex =fex}a
AME on mean= E{Yi(1)|Xex zxex,i} - E{Yi(0)|Xex =xex,i},
AME on sd = SD{Y[(I)|X€X :xex,i} — SD{Y,’(O)|XCX erx’,'},
Equivalently, for continuous treatments MEMs and AMEs can be calculated by
MEM on mean = E{Y;(¥en + 5d)| Xex =Xex } — E{Yi(Xen)| Xex =Xex
MEM on SD = SD{Yi(fen +Sd)|Xex :)Eex} - SD{Yi()EenNXex :)Eex},
AME on mean= E{Yi(xen,i —+sd)| Xex =xex,i} - E{Yi(xen,i)|Xex =xex7i}’
AME on SD= SD{Yi (xen,i +sd) [ Xex erx,i) - SD{Yi(xen,i)|Xex =xex,i}'

In the simulation study, we calculate both AMEs and MEMs for binary treatments and focus
on the MEMs for continuous treatments with a change of 1 standard deviation to meet the
range of the treatment. Focusing on the marginal effects at means or other values has the
advantage that we can consider different settings and scenarios of the treatment change, i.e.,
hypothetically, we could assign different amounts of the treatment to certain individuals to
obtain potential outcomes. The advantage of the AME:s is that they provide an overall measure
of the actual individuals in the sample. However, AMEs are not adequate if individuals with
a certain covariate combination have a very different effect compared with another individual
with different covariate values. In practice, we thus recommend calculating AMEs or MEMs or
both and, if there is a specific covariate combination that the researcher is interested in, marginal
effects at representative values should also be reported.

4.3. Results
Table 2 shows the median of the estimated coefficient Ben on the response distribution parame-
ters 11 and 1, across all Monte Carlo replications. Coefficients estimated by using 2SGAMLSS
consistently match those of the benchmark model regardless of DGP and sample size, i.e. es-
timation of ey is not affected by other linear or non-linear functional forms of the additional
covariates. The observed deviations between the medians of 2SGAMLSS and benchmark esti-
mates are very small on both the location (¥1) and scale (¥) parameters. The estimates of Fen
produced by the naive GAMLSS method either underestimate or overestimate the covariate’s
effect on both distributional parameters. This issue is not corrected by increasing the sample
size. Standard IV estimation via 2SLS exhibits noticeable deviations from f3,,, estimated by the
benchmark model as well as our proposed estimator for small sample sizes. Other non-linear IV
methods considered such as 2SRI also tend to underestimate the coefficient of the endogenous
treatment variable given small sample sizes; see the columns dedicated to N =500 in Table 2.
Given larger sample sizes, the estimates from 2SLS, 2SRI, 2SGAM and 2SGAMLSS show min-
imal differences. However, this behaviour is not observed throughout non-Gaussian responses;
see for example the section in the on-line appendix Table A4 dedicated to scenario S6, and S7.
Overall, coefficients estimated by using 2SGAMLSS repeatedly match the coefficients delivered
by the benchmark model.

The GAMLSS framework enables us to recover the effect of the endogenous regressor on all
parameters of the response distribution. The coefficients of x.p,’s effect on the scale parameter 1,
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Table 2. Median (g, on both distribution parameters 94 and ¥, of a logistic-
distributed response across various sample sizes by using 1000 Monte Carlo
replicationst

Method Results for N =500 Results for N =2000 Results for N =4000

Linear Non-linear Linear Non-linear Linear Non-linear

Estimated [B’en on 9

Naive 1.291 0.674 1.236 0.642 1.277 0.657
2SLS 1.079 0.895 0.923 1.098 1.009 1.068
2SRI 1.028 0.816 0.946 1.098 1.007 1.058
2SGAM 1.125 1.032 0.938 0.954 0.965 1.118

2SGAMLSS 1.188 1.044 0.997 0.994 0.963 1.040
Benchmark  1.099 1.069 0.958 0.976 0.996 0.998

Estimated (3o, on v,

Naive 1.277 1.232 1.270 1.221 1.273 1.219
2SGAMLSS 0.984 1.009 0.946 0.969 0.944 0.967
Benchmark  1.007 1.014 0.999 1.003 1.002 1.001

+The procedures 2SLS, 2SRI and 2SGAM are fitted on a Gaussian distribution,
since the logistic distribution cannot be fitted by these procedures, i.e. these esti-
mators are misspecified.

from 2SGAMLSS exhibit similar values compared with the benchmark model across DGPs and
sample sizes. Similarly to the estimates on the location parameter, naive GAMLSS estimates
of Ben on ¥, remain biased across multiple sample sizes. The lower section of Table 2 shows
how our proposed estimator matches the benchmark estimate on the scale parameter across the
sample sizes considered. Such consistent estimation of e, is observed across different response
distributions; see Table AS in the on-line appendix. 2SLS, 2SRI and 2SGAM are limited by
a constant scale parameter assumption; therefore no coefficient can be recovered for the scale
parameter, or any other potential parameter of the conditional response distribution.

If the endogenous variable considered is continuous (scenarios S1-S4), 2SGAMLSS delivers
precise effect estimates for x., across all response distribution parameters. This behaviour is
observed on both linear and non-linear DGPs. Tables A2 and A3 (in the on-line appendix)
show that the mean and median biases of 2SGAMLSS are considerably lower than either naive
estimation and other non-linear IV methods (2SRI and 2SGAM) in the location parameter
for samples containing around N = 2000 observations or more. IQR of the bias of x¢, also
exhibits smaller values for our proposed 2SGAMLSS, indicating a narrower distribution of the
bias incurred. For 2SGAMLSS, the values of all metrics considered, i.e. the mean and median
bias, the bias’s IQR, and RMSE, approach the benchmark values as the sample sizes increases.
The metrics on ¥, exhibit overall slightly larger values compared with those for the location
parameter ¥, but a trend that favours 2SGAMLSS as the number of observations grows is
still noticeable. A somewhat larger sample is essential for 2SGAMLSS to yield consistent effect
estimates on the scale parameter. Precise estimation of effects on the scale parameter is crucial
since it improves the estimation of heterogeneity in Gaussian responses as in scenario S1 or
strictly positive responses as in scenario S4, and overdispersion in count responses as in scenario
S3.

Fig. 2 depicts the coverage probabilities of the 2SGAMLSS bootstrap confidence intervals.
By setting the bootstrap parameters to Ny, = Ng = 100, the intervals achieve satisfactory cover-
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Fig. 2. Coverage probabilities of the bootstrap confidence intervals for Sen, and target treatment effects
on the mean and standard deviation at various confidence levels (90%, 95%, 99%) across sample sizes (a)
N =500, (b) N=2000 and (c) N =40000 by using 200 Monte Carlo replications: O, location parameter; @,
AME (mean); ®, MEM (mean); X, scale parameter; ¢, AME (standard deviation); « , MEM (standard deviation)

Table 3. Median relative bias of the estimated MEM+

Method Results for N=500  Results for N=2000  Results for N =4000

Linear  Non-linear — Linear — Non-linear — Linear  Non-linear

Estimated MEM on the mean

Naive —0.291 0.326 —0.236 0.358 —0.277 0.343
2SLS —0.079 0.105 0.077 —0.098 —0.009 —0.068
2SRI —0.028 0.184 0.054 —0.098 —0.007 —0.058
2SGAM —0.125 —0.032 0.062 0.046 0.035 —0.118

2SGAMLSS —0.180 —0.035 0.003 0.006 0.038 —0.040
Benchmark ~ —0.099 —0.069 0.042 0.024 0.004 0.002

Estimated MEM on the standard deviation

Naive —0.356 —0.414 —0.356 —0.403 —0.358 —0.404
2SGAMLSS 0.013 —0.070 0.033 —0.036 0.029 —0.022
Benchmark 0.004 0.035 0.002 0.041 —0.003 0.043

+The procedures 2SLS, 2SRI and 2SGAM are fitted on a Gaussian distribution, since
the logistic distribution cannot be fitted by these procedures, i.e. these estimators are
misspecified.

age probabilities of the endogenous treatment effect for the response distribution parameters
considered as well as the target treatment effects.

Tables 3 and 4 show the results for the treatment effects on the mean and standard deviation
of the outcome, whereas Fig. A2 in the on-line appendix shows boxplots of these. Results for the
relative bias in the remaining scenarios are given in the appendix. Neglecting the endogeneity
of the treatment variable (naive) leads to considerable bias of both MEMs and AME:s in the
mean regardless of the sample size and type of covariate effects (linear or non-linear). In linear
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Table 4. Median relative bias of the estimated AME+}

Method Results for N=500  Results for N =2000 Results N =4000

Linear  Non-linear  Linear  Non-linear — Linear  Non-linear

Estimated AME on the mean

Naive —0.291 0.326 —0.236 0.358 —0.277 0.343
2SLS —0.079 0.105 0.077 —0.098 —0.009 —0.068
2SRI —0.028 0.184 0.054 —0.098 —0.007 —0.058
2SGAM —0.125 —0.032 0.062 0.046 0.035 —0.118

2SGAMLSS —0.180 —0.035 0.003 0.006 0.038 —0.040
Benchmark ~ —0.099 —0.069 0.042 0.024 0.004 0.002

Estimated AME on the standard deviation

Naive —0.305 —0.302 —0.301 —0.291 —0.303 —0.293
2SGAMLSS 0.029 -0.012 0.055 0.040 0.053 0.037
Benchmark  —0.000 0.006 0.003 0.004 —0.001 0.003

+The procedures 2SLS, 2SRI and 2SGAM are fitted on a Gaussian distribution, since
the logistic distribution cannot be fitted by these procedures, i.e. these estimators are
misspecified.

settings, 2SLS outperforms the naive GAMLSS, but in non-linear cases it incurs a sizable bias
compared with 2SRI and 2SGAM.

The 2SGAMLSS estimator repeatedly resembles the benchmark estimator in both types of
DGP, as well as across the sample sizes considered. As previously mentioned, the GAMLSS
framework enables us to derive treatment effects on different distributional quantities of the
outcome of interest. The relative bias that is incurred in the AMEs and MEMs on the standard
deviation is shown in the lower sections of Table 3 and 4. 2SGAMLSS outperforms the naive
estimator at recovering MEMs on the variance in both DGPs and across sample sizes. The
naive estimator exhibits the same behaviour as observed in the treatment effects on the mean,
i.e. the bias relative to the true value does not benefit from a simpler DGP (linear) or larger
sample sizes. As the remaining procedures considered are restricted to estimating the effects on
the mean with a constant scale parameter, they are omitted when standard deviation effects are
reported.

Although not shown here, we also computed the relative bias for the MEMs and AMEs on
the variance of the outcome. The results for the relative bias on the variance qualitatively match
those for the standard deviation.

5. Evaluating the effect of rural electrification on employment rates

5.1. Model

To assess how the better performance of 2SGAMLSS in simulation settings translates into a real
world scenario, we now come back to the data set on rural electrification in South Africa. We
follow the original approach and fit the first-stage distributional regression on the endogenous
treatment Eskom by using the instrument Gradient. Regarding the regressors of the first stage,
we employ Dinkelman’s (2011) most comprehensive specification. This includes community
characteristics at the baseline level to control for different growth paths, controls for the differ-
ent districts and differences in access to water and sanitation. Our approach differs from the
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original analysis by modelling the covariates and instrument by using penalized splines instead
of strictly linear effects, allowing for data-driven estimation of their (potentially) non-linear
functional form. The endogenous covariate Eskom is modelled by using a Bernoulli distribu-
tion employing the generalized extreme value link function (by default in GTRM) to relate the
distribution parameter ﬁESk"m with the following structured additive predictor:

npom = g ﬂ(om + flEsﬁom(Gradlent,) + szf}‘]‘)m(kms to_grid,) + fffhom (kms_to_road;)
+ ffsﬁom(kms to_town;) + fSE[S%“’m(hh density;) + f¢ Skom(hh povrate;)
+ £1 7™ (prop_hh_fem;) + fg "™ (sexratio;) + £3 11} Eafom, (prop_indianwhite;)
+f 1051[(10 " (prop_hs_male;) + f; 1Sk°m(prop hs_fem;) + flzsl[‘lom(d prop_flush;)
+ fll:gS][‘f’m (d_prop_water;) + f|7 f’]m(dlstrlct,).

After estimating the first-stage regression coefficients, we compute the conditional expectation

of Eskom and obtain the residuals:
~Esk
£; = Eskom; — [E(Eskom,|191 o,

The residuals are scaled to have unit variance as in Section 3.1. The quantity £ enters the
second-stage predictors as an additional continuous explanatory variable. Our approach fur-
ther differs from the original study by employing the logistic distribution instead of a Gaussian
distribution for the outcomes. For each response separately (i.e. A; prop_female_emp and
A; prop-male_emp), we specify a structured additive predictor for the location parameter v
with identity link function:

7,]}91 o+ 51 ke Eskom, + f2 [2 (f )+ f3 m(hh povrate;) + f4 2](hh density;)

+ f5 m(prop _hh_fem;) + f6 (prop- 1nd1anwh1tel) + f7 2 (sexratlol)
+f8 ) (kms_to_road; D+ ol 2 (kmS to_town;) + £ 0l (kms_to_grid;)

+ f” (proles male;) + f12 [27(Prop- hs_fem;) + f13 [2](d prop-flush;)
+ f14 2](d -prop_water;) + f15 [z (district;).

We specify a structured additive predictor for the scale parameter v, with log-link function
that features the same set of covariates as the location parameter.

To account better for district heterogeneity, we model the regressor district as a spatial ef-
fect by using Markov random fields instead of fixed effects as in the original study. For 9,
the coefficients that are estimated by 2SGAMLSS will reflect the effect of the covariates and
residuals on the expectation of the proportion of males/females employment. In the case of the
logistic distribution, the conditional variance is a transformation of the scale parameter. The
2SGAMLSS model was fitted using the R package GTJRM (Marra and Radice, 2019), whereas
2SLS from the original study was fitted using AER (Kleiber and Zeileis, 2008).

5.2. First-stage results

In the original study the estimated linear effect of Gradient on Eskom project allocation was
negative with 3G adient = —0.0077. The smooth effect that was estimated in the first stage of
2SGAMLSS that is shown in Fig. 3(a) confirms the existence of an inverse relationship between
the instrument and the Eskom project allocation. However, values of Gradient between 0° and
10° land inclination barely have an effect on the structured additive predictor of Eskom. Only
when land inclination exceeds 10° will the value of nESko™ start to decrease, ceteris paribus.
Conventional IV methods such as 2SLS are unable to capture nuances like the range where



Instrumental Variable Distributional Regression 1569

0.4

0.0

s(Gradient)
1)
N

-0.8
-1.2
0 5 10 15 20 25
Gradient
(a)
06 DC24 District
DC21
DC22
DC23
DC22 DC24
DC25 DC25
—~ 04 DC26
T DC26 — DC27
— DC28
£ DC21 ~ beag
< — DC43
w
T 02
DC23
N
0.0
0 5 10 15 20 25
Gradient

(b)

Fig. 3. (a) Estimated smooth effect of the instrument Gradient on the predictor of Eskom with 95% confi-
dence interval and (b) predicted probability of receiving an Eskom project as a function of Gradient across
districts DC

Gradient has no effect on the predictor of Eskom. Fig. 3(b) shows the conditional expectation of
Eskom as a function of the instrument Gradient, and how the predicted probability of Eskom =1
varies across the districts of KwaZulu-Natal (see the auxiliary map in Fig. Bl in the on-line
appendix to locate neighbouring districts). The inverse relationship between the instrument and
Eskom shows steeper descents for some districts (e.g. DC24), but the general trend indicates
a decreasing probability of receiving an electrification project as the average land inclination
exceeds 10°.

Our proposed approach benefits from the flexible estimation of the instrument’s effect, which
in turn leads to a better estimate of the first-stage residuals £&. The penalized spline estimates
of the first-stage residuals on the predictor of ¢#; that are shown in Fig. B2 (in the on-line
appendix) indicate a strong non-linear effect on the expectation of both response variables. The
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Table 5. Regression coefficients (95% confidence intervals), MEMs
and AMEs for the electrification data and various IV estimatorsT

Results for Results for
2SLS 2SGAMLSS
A; male employment
A Eskom 0.0355 —0.0143
[—0.0500;0.2500] [—0.2615;0.0156]
District effects Fixed Markov random fields
¥,  Eskom — —0.5242
— [—1.2302;0.6032]
District effects — Markov random fields
MEMs or AMEs on mean —0.0143
[—0.2615;0.0156]
MEMs on standard deviation —0.0010
[—0.0647;0.0674]
AME:s on standard deviation —0.0014

[—0.2329;0.0543]

A; female employment

A Eskom 0.0951% 0.0152
[0.0500; 0.3000] [—0.1391;0.0872]
District effects Fixed Markov random fields
¥,  Eskom — —0.8386
— [—1.0868;0.6285]
District effects — Markov random fields
MEMs or AMEs on mean 0.0152
[—0.1391;0.0872]
MEMs on standard deviation —0.0009
[—0.0523;0.0499]
AME:s on standard deviation —0.0012

[—0.1803,0.0772]

+All models control for baseline covariates, differences in access to water
and sanitation, and district heterogeneity, N = 1816. Bootstrap confi-
dence intervals of 2SGAMLSS estimates.

ip<O0.1.

estimates of £ on the structured additive predictor of the scale parameter of both responses
also exhibit a non-linear functional form (Fig. B2 in the appendix), which would not have been
captured by 2SLS, 2SRI or 2SGAM. It should be noted that these non-linear effects of ¢ yield
no useful interpretation, since the variation in the first-stage residuals cannot be assigned to any
explanatory variable. However, the fitted curves validate Dinkelman’s (2011) suspicion of the
Eskom project’s endogeneity.

5.3. Second-stage results

The estimated coefficients for the endogenous treatment in the structured additive predictors of
the location and scale parameters of the response distribution are displayed in Table 5. In the
original study, the effect of Eskom on both responses was positive and statistically significant
for the employment of females. After accounting for possible non-linearities in the covariates, as
well as for spatial district heterogeneity, 2SGAMLSS estimates a positive effect of the electricity
project allocation on the expectation of the proportion of employment of females. For example,
the allocation of an Eskom project will lead to an increase in A; prop_female_emp of 1.52% on
average, given that the remaining covariates are held constant. Due to using the identity link
and the fact that the location parameter of the logistic distribution equals the conditional mean,
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Fig. 4. (a), (b) Estimated MEMs on the mean across districts which correspond to the AMEs for the
distribution considered, (c), (d) estimated MEMs on the standard deviation across districts and (e), (f) AMEs
on the standard deviation across districts (A; prop_gender_emp~ logistic(d4, 95)): (a), (c), (e) females; (b),

(d), (f) males
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the effect on ¢ equals the MEMs and AMEs for the mean. The bootstrap confidence intervals
indicate that the estimated effect is not significant at the 5% level.

The coefficients for 19, that were obtained from 2SGAMLSS (logistic) that are shown in Table 5
indicate that the Eskom project allocation has a multiplicative effect on the scale parameter
of the response for females of size exp(—0.8386) =0.4323, given that all other covariates are
held constant. Consequently, the MEMs and AMEs for the standard deviation are negative.
Note that we decided for the application case to report the effects on the standard deviation
due to the scale of the response variable. Variance effects would have been numerically quite
small. This means that the conditional standard deviation of the proportion of employment
of females for communities that have received an Eskom project is reduced, compared with
communities without the electrification project. The coefficient that was estimated by using
2SGAMLSS for A; prop_male_emp suggests that the Eskom project allocation reduces the
expected difference in the employment of males by approximately 1.4% and has a multiplicative
effect of exp(—0.5242) =0.5920 on the scale parameter with negative effect on the MEMs and
AMEs on the standard deviation.

For a policy maker the combined picture of mean and standard deviation (or variance) ef-
fects is of interest. For example, a positive mean effect together with an increase in the standard
deviation would have meant that the positive mean effect came mainly through larger benefits
for communities that already had higher rates of employment before the programme. Regarding
the application, the positive mean and negative standard deviation effect means that a larger
increase in employment was experienced by communities that had lower rates of employment
before the programme conditionally on covariates. For both men and women, the reduced stan-
dard deviation means that the programme led to a homogenization of employment rates between
treatment communities compared with control communities, conditionally on covariates. How-
ever, the negative mean effect for the employment of males indicates that communities that
had higher rates of employment for males before the programme approached the mean rates of
employment by experiencing a reduction in rates. Yet, none of the estimated effects for Eskom
are significant. The difference between the 2SGAMLSS and the 2SLS estimates for Eskom on
the mean of the outcomes could originate from the fact that 2SGAMLSS is based on residual
inclusion which tries to recover the ATE, whereas 2SLS estimates the local ATE. Other sources
of discrepancy between the fits are 2SGAMLSS’s ability to account for possible non-linearities
in the covariates’ functional form, and the Markov random field representation of the districts’
spatial effect.

Fig. 4 depicts the treatment effects for various distributional quantities of both outcomes
across the districts of KwaZulu-Natal. The maps for the MEMs and AME:s for the mean indicate
that the treatment effect induces a reduction in employment rates for men across all districts. For
the employment rates for females, an increase is observed for northern districts and a reduction
for a central district. Figs 4(c) and 4(d) display the estimated MEMs for the standard deviation
of both outcomes. For women, the MEMs and AME:s for the standard deviation imply a higher
degree of homogenization in the east and south than for western districts. For the response for
males the estimated treatment effects indicate a reduction in rates of employment accompanied
by homogenization of these rates that occurred mostly in the southern districts of KwaZulu-
Natal.

6. Concluding remarks

This work proposes an alternative IV estimator which can account for non-normal outcomes,
non-linearities between the endogenous variable, instrument and outcome, and can estimate
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the treatment effect on the whole conditional distribution and not just the mean. The estimator
combines a two-step residual inclusion procedure with the GAMLSS method.

A simulation study shows that, especially in non-linear settings, 2SGAMLSS captures well the
coefficient of the endogenous variable. Other non-linear IV methods such as 2SRI and 2SGAM
show good performance as well but are restricted to estimation of the mean. For linear settings
with Gaussian responses, the results of 2SLS and 2SGAMLSS estimation are very similar.
Our IV estimator performs best when both the instrument and the endogenous regressor are
continuous. In the presence of endogenous binary variables, the endogenous treatment effect
estimated by using 2SGAMLSS repeatedly matches a benchmark estimate for all distribution
parameters throughout linear and non-linear settings, regardless of the sample size and the
response distribution.

We recommend the implementation of 2SGAMLSS in complex 1V settings, where the rela-
tionships between outcome, instrument and endogenous regressor(s) are a priori unknown. In
settings, for which some would claim that interest is solely in the mean, we still suggest using
2SGAMLSS for two reasons. Firstly, once we depart from the Gaussian assumption for the re-
sponse, there are distributions, such as the Gumbel distribution, whose expected mean depends
on more than one parameter. There is no reason why one should be dependent on covariates or
one should not. Secondly, more on a philosophical side, we argue that most models should in-
volve considerations beyond the mean to answer research questions from multiple perspectives.
We follow Rigby et al. (2013) and Kneib (2013) who stated that beyond-the-mean considerations
are ubiquitous and models dealing with them should not be regarded as an exception. They gave
helpful introductions into beyond-the-mean modelling and mentioned various examples that
consider the whole conditional outcome distribution. When estimating the effects of a policy
programme, even if the primary interest is in the average effect, any analysis should always be
concerned with changes in inequality and whether individuals benefit equally.

We replicated and extended an IV study by Dinkelman (2011) who found positive effects
of electrification on employment for both female and male individuals. We found that, in an
‘average’ community, the effect on employment is positive but only for the employment of fe-
males. The effect of electrification on the employment of males was negative. The endogenous
treatment variable also impacts the standard deviation of the conditional response distribution,
leading in general to a larger reduction in the standard deviation of the employment of males
compared with that of females. These statements regarding the treatment effect on the stan-
dard deviation of the conditional outcome distributions complement a proper treatment effect
evaluation. Effects on the standard deviation are of interest since, first, any treatment produces
not just a mean result but varies around that, and second there is no reason to assume that this
variation is equal for all people. In addition to the standard deviation, any other distributional
feature such as the Gini coefficient or quantiles can be derived from the results, which is essential
when we are concerned about inequality and heterogeneity.

These results are of importance not only for extending the GAMLSS applications to IVs but
also to policy makers. Infrastructural projects such as electrification are not only the most cost-
intensive projects but also those where treatment effects can often only be consistently estimated
by using IVs. The method proposed herein enables more exact estimation of the relationships,
improving the guidance and justification for policy makers for those projects.
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