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Abstract:  
The renowned Swiss mathematician Leonhard Euler created three variations of a simple population projection 
model, including one stable model and two non-stable models, that consider a couple with different fertility 
behaviors and life-spans. While one of the models was published by a German demographer, Johann Peter 
Süßmilch, in his book “The Divine Order”, the other two are not widely known in contemporary literature. This 
paper compares and reanalyzes the three variants of Euler's population projections using matrix algebra, 
providing diagrams and tables of the population time series and their growth rates, as well as age structures of 
selected years. It is demonstrated that the non-stable projection models can be explained in the long run by their 
geometric trend component, which is a special case of strong ergodicity in demography as described by Euler. 
Additionally, a continuous variant of Euler's stable model is introduced, allowing for the calculation of the age 
structure, intrinsic growth rate, and population momentum in a straightforward manner. The effect of im-
mortality on population size and age structure at high growth rates is also examined. 
 
1.  Introduction 

In the collected works of Leonhard Euler (1707–1783), there is a paper (found in his notes) 
that deals with two mathematical models for the evolution of a closed population with simple 
reproductive and mortality behavior. The paper begins in French and is completed in Latin2. 

The first model in Euler's paper assumes a stably growing population, while the second model 
describes the theoretical basis for what is known as Euler's population growth model. The 
results of this model were tabulated by Johann Peter Süßmilch in his book "Die Göttliche 
Ordnung in den Veränderungen des menschlichen Geschlechts" in § 160, but it was not 
accompanied by any formula. 

Euler is considered one of the pioneers of mathematical demography, although this is not 
widely known among mathematicians. In 1760, he derived the stable age distribution for the 
first time using a discrete model, in order to construct a life table when the population was not 
stationary but increasing geometrically. This work can be found in Moser (1839) or Bacaër 
(2011, pp. 14 ff.). 

Euler also took into account population statistics in his “Introduction to the Analysis of the 
Infinite”, published in 1748, where he discussed four examples in chapter 6 on logarithms and 

exponentials using the geometric growth model3  0 1
T

TP P r   ; solutions are given for 

concrete examples involving the population size at time 0 (P0) and at time T (PT), the annual 
growth rate (r), and the time horizon (T), if three of the variables are known (for details see 
also Bacaër, 2011, pp. 12-13). 

                                                 
1 Paper presented in the plenary session on June 9, 2023, at the ASMDA 2023 International Conference held in 
Heraklion, Crete, Greece, from June 6th to 9th, 2023. 
2  The work entitled "Sur la multiplication du genre humain" was first published in: Euler, L; Du Pasquier.L G: 
Leonhardi Euleri opera omnia, Serie I, Vol. 7, Leipzig 1923, pp. 545-552. The work is found in the Notitzbuch 
H6, probably written between 1750 and 1755 (cf. notes in Euler, Du Pasquier, 1923, p.534). 
3 See http://www.17centurymaths.com/contents/introductiontoanalysisvol1.htm,  pp. 162-164 (English 
translation) or pp. 177-180 (the original in Latin language) 
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Euler worked closely with Johann Peter Süßmilch (1707–1767), a German Protestant pastor in 
Berlin and a statistician and demographer. Süßmilch's most significant publication, “Die 
göttliche Ordnung” of 1741, is considered a pioneering work in demography and the history 
of population statistics4. In the second edition of “Die göttliche Ordnung”, published in 1761, 
Süßmilch wanted to prove that high population levels in antiquity were compatible with the 
Christian calendar, even in light of the Flood and the belief that the population descended 
from a single couple.  To achieve this goal, he sought mathematical assistance from Euler, 
who calculated tables for the doubling times of populations as a function of the growth rate 
and performed a population projection with a time horizon of 300 years. 
 
2. Euler´s Population Growth Models 

The following presentation describes the Eulerian models with some modifications in 
symbolism. 
 
Model I (Stable Model: pp. 545-548)  

In this model, it is assumed that the population grows by a factor  every two years, or 
biennia, i.e., ,2 ,0x xP P   and 2, ,x t x tP P   . All people are expected to reach the age of 50, 

marry at 20, and each marriage is expected to produce 6 children (3 girls and 3 boys), two at 
the age of 22, two at 24, and two at 26. The task is to find the multiplication factor, that is, the 
number of individuals in each age group. 
Using 1   for the number of individuals who died in year t=0, and Px,t  to represent the 
number of individuals at age x, we obtain the following table, which shows the age structure 
of the population at time 0. In this presentation, we will only focus on the female population. 
 
Table 1. Age structure of the female population at time t=0, if 50,0 1P    

Age interval Class k Females in the age 
class k 

Remarks 

0-2 1 25
0,0P    

2-4 2 24
2,0P    

4-6 3 23
4,0P    

..    
x-(x+2) x/2 2

26 25
2 2

,0

x x

xP  


 
   

 

…    
20-22 11 15

20,0P    

22-24 12 14
22,0P   1 daughter (2 children) 

24-26 13 13
24,0P   1 daughter (2 children) 

26-28 14 12
26,0P   1 daughter (2 children) 

…    
46-48 24 2

46,0P    

48-50 25 
48,0P    

50-52 26 
50,0 1P   Number of deaths   

 

                                                 
4 See Girlich (2007). 
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The net reproduction rate is 30R  ; in the general model is the number of deaths 50,0P  . 

 
Euler calculates the number of births or the population in age class 1 after two years as 
follows: 

 12 2 25
0,2 22,0 24,0 26,0 50,0 0,0 50,01P P P P P P P                   

 
et partant (as expressed by Euler) 
 

2 141       
 
or 
 

14 13 12 1         
 
where the solution is to be determined numerically (biennial growth factor). 
The last form is a discrete special case of the Lotka equation, which is well known in 
demography (cf., e.g., Keyfitz, 1977) 

( ) ( ) 1r xe l x m x dx




    , 

if l(x)=1, m(x)=1 and  rx xe   .  
 
 and  are the limits of women's reproductive age, r is the intrinsic rate of growth, and  
( ) ( )l x m x  is the net reproduction function. 

 
On p. 547 Euler5 shows how he found an approximate solution 1.0883  . 
 

The annual growth factor is 1.08838 1.04326annual   . 

Hence, the annual growth rate is 1.08838 1 0.04326r    . 

Euler calculates from 2   the doubling time
lg 2 ln 2

2 16.38
ln(1.08838)lg 1.0883

     years 

and the total population size
26

0

1
91

1
P

  



   


, where   is the number of individuals 

dying in 2 years.  

The total population with annual number of deaths  is
26

0

1 1
185.4

1 1
P

   
 

 
    

 
. 

 
Model II (High fertility model: pp. 548-552) 

In Model I, Euler established relationships between the age structure and age-specific fertility 
rates for a stable population, but did not specify the conditions necessary for stability. In 
Model II, he addresses this issue while again using a two-year period or biennium as the unit 
of time. 

                                                 
5 According to Euler (1748, Art. 249, p. 354 ff.) there exists a root which is greater in absolute value than the 
absolute value of all other roots (cf. Euler (1748), Art. 349, p. 290 ff. and also the calculations of Gumbel (1917) 
p. 261. 
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Euler considers a couple at the age of 20 and applies the following rules to them and all their 
descendants: 

A1: Age of marriage is 20 years. 
A2: Each couple should give birth to one daughter and one son at the ages of 22, 24, 26, 28, 
and 30. 
A3: Each person reaches the age of 50 and then dies. 
 
Using an age-structured table (see pp. 549-550), Euler calculates the number of living 
individuals (P); and from the first column of the table, the number of births (B). The results 
are summarized in Table 2. 
 
Table 2. Population series  

Apres ans Somme (P) 

Ser. 
Nascentium 

(B) 

0 2 0 

2 4 2 

4 6 2 

6 8 2 

8 10 2 

10 12 2 

12 12 0 

14 12 0 

16 12 0 

18 12 0 

20 12 0 

22 12 0 

24 14 2 

26 18 4 

28 24 6 

30 30 (32) 8 

32 40 10 

34 48 8 

36 54 6 

38 58 4 

40 60 2 

42 60 0 

44 60 0 

46 62 2 

48 68 6 

50 80 12 

52 98 (100) 20 

54 126 (128) 30 

56 160 (162) 36 

58 196 (198) 38 

60 230 (232) 36 

62 260 30 

64 280 20 

66 292 12 

68 300 8 
 (In parentheses are the incorrect values given by Euler.) 
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For 15n  the following recurrence equation holds (see also Girlich 2007, pp. 12-13): 

11 12 13 14 15n n n n n nB B B B B B         .  

The corresponding characteristic equation is  
15 4 3 2 1 0          , 

which Euler simplified to 
16 15 5 1 0      6. 

This last equation was solved approximately by Euler. He writes that the recursion equation of 
the births is continued in the limiting case as a geometric progression with the factor 

1.13315  . The biennial growth factor corresponds to a yearly growth rate of 

1.13315 1 0.064r    . 
 
Model III (Euler-Süßmilch model)7 

In Chapter 8 of his revised edition of "Die göttliche Ordnung" from 1761, Euler calculated the 
doubling time of the population for Süßmilch, assuming geometric growth in § 152 and § 156, 
and presented a population projection without disclosing the analytical methods used in § 160. 
 
A1: The projection starts with one married couple, both 20 years old. 
A2: Marriage age is set at 20 years.  
A3: Each couple gives birth to one daughter and one son at the ages of 22, 24, and 26. 
A4: Everyone reaches the age of 40 and then dies. 
 
The projection is biennial, taking place every two years, which is crucial for the stability of 
the model, as noted in Pflaumer (2023). 
 
Chapter 8 does not offer much insight into the mathematics behind this population model, but 
the mathematical background used by Euler can be found in his notes and described in Model 
II. The results of the population projection up to year 300 can be found in Süßmilch (1761) on 
pages 293-297, and are summarized in Table 6. 
 
The use of the following recursion equation, which is a variant of the recursion equation in his 
high fertility model II (10 children) in Section 2 of his manuscript (see Bacaër (2011, pp. 16-
20), Girlich (2007, pp. 7-9), and Gumbel (1917)),  
 
 

11 12 13n n n nB B B B     .  

 
 
with the characteristic equation 
 

13 2 1 0       
 
leads to the solution of 1.0961   resulting in a tripling time of 23.94 years and a doubling 

time of 15.1 years. The annual growth rate is  1.0961 1 100% 4.7%r     . 

                                                 
6 See Euler, L. (1748): Introductio in analysin infinitorum,  Chs. XIII und XVII. 

http://www.17centurymaths.com/contents/introductiontoanalysisvol1.htm 
7  Model III has been extensively described and analyzed by Pflaumer (2023).  
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Gumbel (1917, p. 255) notes that Euler's derivation has similarities to the derivation of the 
earliest recurrent series by Leonardo Pisano, also known as Fibonacci, in 1202. The Fibonacci 
sequence is a mathematical series that describes the growth of a population of rabbits. It starts 
with one pair of rabbits and assumes that each pair produces a new pair of offspring every 
year, with each offspring also becoming a reproductive pair after one year. The result is a 
series of numbers that grows in a manner similar to exponential growth.  
 
Süßmilch (1761) presents his own population projection in a table in § 159 (with some 
calculation errors), with the goal of proving his thesis that the population after the Flood could 
increase from a low to a very high number in a short time. The table starts with 2 people and 
initially doubles every 10 years. The doubling time for calculating the population then 
gradually increases to 15, 20, 25, 30, 40, and finally to 50 years. After 300 years, the 
population reaches 8,388,608, which is more than double the result of Euler's projection. The 
projection ends after 900 years, as shown in table 3. 
 
 

Table 3. Summary of Süßmilch´s population projection 

Year  

 
 
t Population 

Annual 
growth rate 
from 0 to t 

Annual 
growth rate 

from t to t+1 

0 1 2   

100 2 2,048 0.072 0.072 

205 3 262,144 0.059 0.047 

300 4 8,388,608 0.052 0.037 

400 5 134,217,748 0.046 0.028 

500 6 2,147,487,968 0.042 0.028 

560 7 8,589,951,872 0.040 0.023 

900 8 1,099,513,839,616 0.030 0.014 
 
 
Today's world population of 8 billion will be reached in 342 years according to Model II and 
in 466 years according to Model III. In Süßmilch's projection, it takes 560 years to reach this 
population, and in Euler's example, it takes 336 years if calculated using a growth rate of 
6.25%. Euler likely realized that a growth rate of 6% or higher in a geometric model would 
produce unrealistic population figures very quickly (as seen in Table 4). Therefore, it is 
logical that Euler presented a projection with a lower growth rate that ends in 300 years in 
Süßmilch's book. 
 
  Table 4. Comparison of different calculations 

Year Euler III Euler II Süßmilch  Euler (1748)* 

r 0.047 0.064 0.03 0.0625 

0 2 2 2 6 

200 46,280 1,132,582 < 262,144 1,000,000 

300 3,994,314 610,696,900 8,388,608  

400 353,041,300 320,264,500,000 134,217,748 166,666,666,666 

900 3.4656E+18 1.1968E+25 1.1E+12  
 *Example 3 in Euler (1748, p. 163/179) 
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3. Matrix Representation of Euler´s Population Models  

3.1 Matrix Model  

The matrix representation of the female part of the three models is given by 
 

1t tn A n   , 0,1,2,3,...t   

or 

0
t

tn A n  , 0,1,2,3,...t   

 
with the following population vectors: 
 
 
Model I: (Stable Model) 
 
The vector 0n  has 26 rows. The transpose is 

25 24 2 1
0 ( , ,..,... , ,1)Tn      

with   1,0883    
 
 
Model II: (High Fertility Model) 
 
The vector 0n  has 25 rows. The transpose is 

0 (0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)Tn   

 
 
Model III: (Nonstable Euler-Süßmilch Model) 
 
The vector 0n  has 20 rows. The transpose is 

 

0 (0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0)Tn   

 
The projection matrix A is a kxk-Leslie-matrix (see Table 5). 
 



 8

11 12 13 14 150 0 0 0 0 0 0 0 0 0 0 ... ... 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... ... 0 0

0 1 0 0

0 0 1 0

0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0

m m m m m

A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 



. 

 
Table 5. Model assumptions 
Model k Maternity rates Net 

Reproduction 
rate 

Growth 
factor 

I 26 
11 12 13 14 150; 1; 1; 1; 0m m m m m      0 3R   1.0883   

II 25 
11 12 13 14 151; 1; 1; 1; 1m m m m m      0 5R   1.1332 

III 20 
11 12 13 14 151; 1; 1; 0; 0m m m m m      0 3R   1.0961   

 
In Model I, Euler assumes that fertility starts at the end of the 12th biennium, while in Models 
II and III, fertility starts at the beginning of the 12th biennium. This difference in the timing of 
fertility is the cause of the different stable growth rates in Models I and III, both of which 
have a net reproduction rate of 3. The varying maximum age in the two models does not 
impact the growth rate, it only affects the population level. 
 

0

1

18 20 22 24 26 28 30 32 34

Euler I

Euler II

Euler III

 
Fig. 1.  Comparison of fertility assumptions 
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We describe the biennial projection step with t. The population vector of the total population 
is given by 
 
pt = 2·nt.. 
 
The k×k projection matrix A is a special case of the Leslie matrix, widely used in 
demography (as discussed in Keyfitz, 1977). This allows us to use methods of matrix algebra 
to project the population and analyze the ergodic characteristics of the growth model. The 
results in Table 6 were calculated using these population models. 
 
3.2 Results 
The projection results in Figs. 2 to 4 show that the initial population in Model II and Model III 
is approaching a stable population. In fact, the oscillations decrease very slowly. Finally, the 
typical stable age structures of a growing population result, whereby the biennial growth rate 
(logarithmic difference) tends towards 9.6% (Model II) and 13.3% (Model III). The stable 
Model I has a constant biennial growth rate of 8.8%. The population size increases rapidly 
because of its high growth rate. Although both Model I and Model III have a net reproduction 
rate of 3, the growth rate of Model III is slightly higher because fertility starts at the beginning 
of the 12th biennium. As a result, the mean generation interval is somewhat lower here 
compared to Model I. The higher age at death in Model I has no effect on the stable growth 
rate. It only influences the population size. The biennial growth in Model III tends towards a 
lower stable growth rate compared to Model II with larger oscillations that decrease over 
time. 
 
Table 6. Population sizes 

Year Model I . Model II Model III 

 (stable) (high fertility) (E.-Süßmilch) 

0 2.00 2 2 

2 2.18 4 4 

4 2.37 6 6 

6 2.58 8 8 

8 2.81 10 8 

10 3.05 12 8 

12 3.32 12 8 

14 3.62 12 8 

16 3.94 12 8 

18 4.29 12 8 

20 4.66 12 6 

22 5.08 12 6 

24 5.53 14 8 

26 6.01 18 12 

28 6.55 24 18 

30 7.12 30 22 

32 7.75 40 24 

34 8.44 48 24 

36 9.19 54 24 

38 10.00 58 24 

40 10.88 60 24 

42 11.84 60 22 

44 12.89 60 20 
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46 14.03 62 20 

48 15.27 68 26 

50 16.62 80 38 

100 138 1,974 456 

150 1,147 47,776 4,752 

200 9,532 1,132,582 46,280 

250 79,198 26,437,346 433,674 

300 658,035 610,696,922 3,994,314 
The total population of the model I at time 0 was assumed to be 2 
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Model II (high fertility)
Model III (Euler-Süßmilch)

 
Fig. 2. Total population sizes up to the year 300 
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Fig. 3.  Biennial growth rates up to the year 300 

 
 

Table 7.  Eigenvalues and moduli of complex numbers i=1,2,3 
 Model I Model II Model III 
i Re(i) Im(i) Modulus ri Re(i) Im(i) Modulus ri Re(i) Im(i) Modulus ri 
1 1.0884 0 1.0884 1.1331  1.1331 1.0961 0 1.0961 
2 0.9568 0.5046 1.0817 0.9791 0.5250 1.1110 0.9404 0.5462 1.0875 
3 0.9568 -0.5046 1.0817 0.9791 -0.5250 1.1110 0.9404 −0.5462 1.0875 

 
For Model I and III, there is an eigenvalue of the matrix A with an absolute value greater than 
the absolute value of all other conjugate complex roots (as seen in Table 7).  Although the 
difference between the largest real root and the absolute value of the next two largest 
conjugate complex roots is small in numerical terms, it is still very significant. If this 
difference were zero, two successive population numbers would be cyclic in the long run (as 
noted in Gumbel, 1917, p. 630). As a result, the age structure of the projected population 
approaches a stable age structure. Under the assumptions made, the progression of births, 
deaths, and total population will gradually tend towards a geometric series with a biennial 
growth rate of 9.61% for Model III and 13.3% for Model II, with decreasing cycles (see Fig. 
3). The growth rate in Model III is equivalent to a tripling period of 24 years, as previously 
found by Süßmilch. Furthermore, the difference between the largest real root and the absolute 
value of the two next largest conjugate complex roots is larger in Model II than in Model III, 
leading to larger oscillations in Model III. 
 
In the long run, the population time series in Models II and III can be explained well by the 
sum of two components: ZR1  Trend  S1  . The short-term fluctuations are only relevant 
at the beginning of the time series. In the very long run, the impact of the cycle S1 decreases, 
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despite being an explosive cycle, as the ratio S1/Trend approaches zero. The series can be 
solely explained by its trend component. 
 
The right eigenvector of the Leslie matrix, belonging to the dominant eigenvalue 1 , contains 

only positive elements and represents the age structure of the stable population. It is 
proportional to the stable age distribution and can be scaled to show either the proportion or 
percentage of individuals in each age class. The left eigenvector of the Leslie matrix is 
referred to as the reproductive value of the population. This vector can be scaled so that its 
first element is one, as seen in Table 8. The reproductive value represents the total number of 
female offspring (discounted by the population growth rate) that can be expected from a 
woman at a given age. The reproductive value has its maximum at the beginning of the 
reproductive phase, but decreases to zero after the end of the reproductive phase. It is higher 
when the growth rate is higher, as shown in Table 8 and Figure 6. 
 
In Model III, even after 500 years, the stable state has not yet been reached (as seen in Figure 
4). The population size at that time is nearly five times larger than the current world 
population. The curves in Fig. 4 illustrate strong ergodicity in demography, where the final 
age structure depends only on mortality and fertility and not on the initial age structure. Due 
to higher fertility in Model II, the age structure of Model II is younger than that of Model III 
(as can be seen in Table 8 and Figure 5). 
 
 

 
Fig. 4.  Age structures after 100, 300, 500 and 1000 years (red: stable age structure, see also 
Tab. 8) 
 
 



 13

 
Table 8. Stable age structures c(x) and reproduction values  

 Model I Model II Model III 

x c(x) ( )x  c(x) ( )x  c(x) ( )x  

0-2 0.0913 1 0.1229 1 0.1043 1 

2-4 0.0839 1.0884 0.1085 1.1331 0.0952 1.0961 

4-6 0.0771 1.1846 0.0957 1.2840 0.0868 1.2015 

6-8 0.0708 1.2893 0.0845 1.4550 0.0792 1.3170 

8-10 0.0651 1.4032 0.0745 1.6487 0.0723 1.4436 

10-12 0.0598 1.5272 0.0658 1.8683 0.0659 1.5824 

12-14 0.0549 1.6622 0.0581 2.1170 0.0602 1.7345 

14-16 0.0505 1.8091 0.0512 2.3989 0.0549 1.9012 

16-18 0.0464 1.9690 0.0452 2.7183 0.0501 2.0840 

18-20 0.0426 2.1431 0.0399 3.0802 0.0457 2.2843 

20-22 0.0391 2.3325 0.0352 3.4904 0.0417 2.5039 

22-24 0.0360 2.5386 0.0311 2.9551 0.0380 1.7446 

24-26 0.0330 1.7630 0.0274 2.3486 0.0347 0.9123 

26-28 0.0304 0.9188 0.0242 1.6613 0.0316 0 

28-30 0.0279 0 0.0214 0.8825 0.0289 0 

30-32 0.0256 0 0.0188 0 0.0263 0 

32-34 0.0235 0 0.0166 0 0.0240 0 

34-36 0.0216 0 0.0147 0 0.0219 0 

36-38 0.0199 0 0.0130 0 0.0200 0 

38-40 0.0183 0 0.0114 0 0.0182 0 

40-42 0.0168 0 0.0101 0   

42-44 0.0154 0 0.0089 0   

44-46 0.0142 0 0.0079 0   

46-48 0.0130 0 0.0069 0   

48-50 0.0120 0 0.0061 0   

50-52 0.0110 0     
 
For example, a reproductive value of 3.49 in Table 8 (for age 22-24 in Model II) means that 
an immigration of a woman in that age class will have a 3.49-fold greater impact on the 
increase of the stable population size than an immigration at age 0-2. However, the long-term 
growth rate is not affected by this 3.49-fold greater effect. 
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Fig. 5.  Stable age structures 

 



 15

 
Fig. 6.  Reproductive values at age x (Models I,II, and III) 

 
 
4. A Continuous Variant of Euler's Stable Model I 
 
In the following, we transform the discrete stable model I into a continuous form for easier 
analysis. This simple model is especially useful for educational purposes, as the integrals are 
straightforward to compute. 
 
The International Union for the Scientific Study of Population8 (IUSSP) defines a stable 
population as "theoretical models widely used by demographers to represent and understand 
the structure, growth, and evolution of human populations. By definition, stable populations 
have age-specific fertility and mortality rates that remain constant over time. Mathematically, 
it can be shown that populations with constant fertility and mortality patterns grow or shrink 
at a constant rate and attain a characteristic age structure that remains unchanged over time." 
 
 
4.1 Stable Age Structure and Intrinsic Rate of Growth 
 
The stable age structure is given by (see, e.g., Keyfitz, 1977) 

0

( )
( )

( )

r x

n
r x

e l x
c x

e l x dx

 

 





 

                                                 
8 https://papp.iussp.org/sessions/papp103_s07/PAPP103_s07_020_010.html 
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with the stable birth rate 

0

1

( )
n

r x

b

e l x dx 




.  

 
The stable intrinsic growth rate r, can be determined by solving the characteristic equation 
 

1 ( ) ( )r xe l x m x dx




   , 

where m(x) is the maternity function, and l(x)m(x) is the net maternity function. The limits of 
the integral are the youngest fertile age   and the highest . The net reproduction rate is 

0 ( ) ( )R l x m x dx




  . 

Since in the Euler model I ( ) 1l x  and ( ) ( ) 1l x m x dx   we get9 
 

 

0

( )
1

r n xr x

n n r
r x

e r e
c x

e
e dx

  


 


 




, since 
0

1 1n n r n r
r x e e

e dx
r r r

   
  

    

with lnr  . 
 
The continuous variant of Euler's characteristic equation is  
 

0( ) ( ) ln 1r x x R
e l x m x dx dx

 

 


 

   
  . 

In our case with the given values: 
 

 214

14
12

3 13
ln 1

4 2 ln
x dx




 


 
 

  ; the solution is 1.08828  . 

 

Approximation formulas (see, e.g., Keyfitz 1977. p.119) for  or r, with re   are: 
 

0 0

12 14
3, 13

2
R A


   (mean of the net maternity function)  and  

 2

2 14 12 1

12 3



  . 

 

a) 
 22

0 0

ln
exp ln

2
R A

 


 
   

 
 

 and 
 2

2
0 0

ln
ln ln 0

2
A R


      ; 1.08828   

b)   0 13
0 0 0

0

ln
exp ln exp

R
R A R

A
 

 
     

 
; 1.08818   

 
The approximate values hardly deviate from the exact value 1.0883   of Model I. 
 
 
                                                 
9 Euler's life table is a rectangular life table, i.e., the survival pattern shows a rectangular shape (see also 
Pflaumer, 2010).  
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4.2 Effect of an Infinite Life Expectancy 
 
The maximum age has no effect on the dominant eigenvalue and the biennial growth rate, but 
it does affect the population size. According to Pflaumer (2023), who modeled the 
immortality of the Euler-Süßmilch model using the Lefkovitch matrix (which resembles the 
Leslie matrix but with the element in the kth row and the kth column being 1 instead of 0), in 
the long run, the population in which immortality occurs is only about 19% higher than the 
population in which all people die at the age of 40. This analysis is made easier with the 
continuous model. In the case of infinite life expectancy, the age structure can be represented 
by the following equation: 
 

 
lim

1

r n x
r x

n rn

r e
r e

e

 
 




 


. 

 
If r=0 then the rectangular results. 
 

 

0

1
lim

1

r n x

n rr

r e

e n

 







. 

 
Important parameters can be represented by simple formulas, such as 
 
Mean age and variance of the stable population: 

 0

1
( )

1

n n r

S n r

e n r
x c x dx

r e






  
  

   

1
lim S
n r




  

0
lim

2S
r

n


  

 

 
 

2 2 2

2
22

2 1

1

n r n r

S
n r

e e n r

r e


  



    


 
 

2
2

1
lim Sn r




  

2
2

0
lim

12Sr

n


  

 
Ratio of old and young people: 
 

 

0

( )

1
( )

n

b r b r n r

b
A n n r

c x dx
e e e

e
c x dx


   




 






 

lim b r
A

n
e  


  
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 
0

0

( )
1

1
( )

a

n r a r a r

J n n r

c x dx
e e

e
c x dx


   




 






 

 lim 1a r a r
A

n
e e   


   . 

 
 
The population size at time t is in the stable population with l(x)=1 

 
0

1
(0) ( ) (0)

n n r
n r t r x r t e

P t B e e l x dx B e
r

 
    

       . 

    1
lim (0)n r t

n
P t P t B e

r
 


    . 

Thus, the ratio of a population with infinite to a population with finite life expectancy n (in 
the continuous Euler model) is 
 

1

n r
t

n n r
t

P e

P e

 




 

 
In the Euler model III, life expectancy is n=40 and the stable annual growth rate is 

 ln 1.0961 0.0459r    while in the Euler model II, n=50 and the growth rate 

is  ln 1.1332 0.0625r    . 

 
With these assumptions, the population increases by 18.99% in the first scenario and by only 
4.59% in the second scenario. If we assume a rectangular life table up to the age of n=100, 
with a growth rate of 3%, the increase is 5.24%. The graph in Fig. 7 illustrates the relative 
increases for different growth rates. The simple model shows that at high population growth 
rates, the influence of life expectancy (mortality) is negligible on the age structure and 
population increase (see also Coale, 2003). 
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Fig. 7.  Ratio of population size 

 
4.3 Population Momentum 
 
Keyfitz's population momentum measures the future growth of a population after an abrupt 
decrease (or increase) in fertility rates to replacement levels. In 2010, population momentum 
coefficients ranged from 0.83 in Germany to 1.69 in Guatemala10. 
 
Keyfitz´s formula for a stable population is 
 

0 0

0 0

1statP b e R
M

P r R
  

     
   (see Keyfitz 1977, p. 156) 

with 0P = population size at t=0, statP = resulting stationary population, b= birth rate, e0= life 

expectancy, r=stable growth rate, R0= net reproduction rate,  = mean age of childbearing in 
the stationary population. 

 
Empirically, we will determine the population momentum by performing a long-term 
population projection for Model I (female population) using a Leslie matrix with a dominant 
eigenvalue of 1, or a net reproduction rate of 1, meaning the maternity rates are each 1/3. The 
results can be seen in Figure 8. 

 

                                                 
10 https://papp.iussp.org/sessions/papp103_s08/PAPP103_s08_090_010.html 
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Fig. 8.  Age structures in different years after reducing fertility to replacement level of model 
I (red: age structure of the population at time t=0) 
 
The initial population of Model I with an assumed population size of 91 (see section 2) 
stabilizes relatively quickly at a level slightly above 136, which corresponds to a momentum 
of approximately 1.5. If fertility were to immediately decrease to the replacement level, the 
population would still increase by 50% due to age structure effects. It takes much longer for 
the rectangular stationary age structure to develop (as seen in Fig. 8). The discrete projection 
model allows for a dynamic analysis and shows how a stationary population gradually 
develops. On the other hand, the continuous model only provides a static comparative 
analysis, where the initial state is compared with the final state. Keyfitz's formula provides 
similar results as seen in Table 9. 
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Table 9. Calculations of the population momentum 
Empirical population momentum after 1000 years (500 biennial projection steps) 
 

(2000) 136.42
1.5

(0) 91
P

P
    

Keyfitz´s population momentum formula 
 
0.09130

52 3 12 1.495
0.0423 25 3

      
 with 

23 25 27
3

  
 (mids of the age classes) 

 
0.09130

52 3 12 1.437
0.0423 26 3

      
 with

24 26 28
3

  
  (Upper limits of the age classes) 

 

0.09130
52 3 12 1.557

0.0423 25 3

      
with 

22 24 26
3

  
 (Lower limits of the age classes) 

 
 
Conclusion 
 
Leonhard Euler, the renowned Swiss mathematician, established the foundation of 
mathematical demography. He developed a stable model that showed how to calculate the 
true growth rate based on fertility and mortality rates (which is a special case of Lotka's 
equation). Euler's projection models demonstrate that, in the long term, a constant fertility and 
mortality rate leads to geometric growth and a stable age structure of the population. This is 
the first numerical demonstration of the strong ergodic theorem of demography, which 
assumes fixed age-specific birth and death rates and indicates that the population will grow 
geometrically with a constant growth rate in the long run. 
 
Euler's life table is a rectangular life table, where the process of rectangularization refers to 
transforming a life table, a statistical representation of the survival patterns of a population, 
into a rectangular shape. This type of life table is widely used in mathematical demography to 
demonstrate demographic relationships and the impact of changing factors. The 
rectangularized life table provides a very simple and intuitive representation of age-specific 
mortality rates, making it easier to study population growth and structure over time. 
 
The increasing rectangularization of empirical life tables (see, e.g., Pflaumer, 2010) will lead 
to a growing significance of Euler's models as a tool for simple demonstrations of 
mathematical demography in the classroom, as demonstrated by Pflaumer in 2022. These 
models provide an easy way to illustrate dynamic processes, clarify demographic 
relationships, and study the impact of changing factors. Discrete Euler models can be 
conveniently created using statistical software such as R, while continuous Euler models are 
well-suited for comparative static analyses, as the important integral formulas of the stable 
model are easily solved in this case. 
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