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Abstract
We consider the bilevel minimum spanning tree (BMST) problem where the leader

and the follower choose a spanning tree together, according to different objec-

tive functions. We show that this problem is NP-hard, even in the special case

where the follower only controls a matching. Moreover, we give some evidence

that BMST might even remain hard in case the follower controls only few edges.

On the positive side, we present a (|V| − 1)-approximation algorithm for BMST,

where |V| is the number of vertices. Moreover, we show that 2-approximating BMST

is fixed-parameter tractable and that, in case of uniform costs on leader’s edges, even

solving BMST exactly is fixed-parameter tractable. We finally consider bottleneck

variants of BMST and settle the complexity landscape of all combinations of sum or

bottleneck objective functions for the leader and follower, for the optimistic as well

as the pessimistic setting.
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1 INTRODUCTION

A bilevel optimization problem models the interplay between two decision makers, each of them having their own decision

variables, objective function, and constraints. The two decisions can depend on each other and are made in a hierarchical way:

the leader decides first and the follower second, already knowing what the leader has decided. However, the problem is usually

viewed from the leader’s perspective, who has perfect knowledge of the follower’s problem and takes into account how the

follower will react to her
1

decision. In other words, the optimality of the follower’s decision can be viewed as a constraint in

the leader’s optimization problem. Several surveys and text books on bilevel optimization have been published [4-6]. Bilevel

optimization problems turn out to be very hard in general. Even in the case where both objective functions and all constraints

are linear, they are strongly NP-hard [11]. For more details concerning the complexity of bilevel linear optimization, see [7].

In this article, we investigate the complexity of a fundamental combinatorial bilevel optimization problem, namely, the

bilevel minimum spanning tree problem. Here, each of the two decision makers controls a subset of the edges of a given graph

and chooses some of them, such that all chosen edges together form a spanning tree in the graph.

In a possible application [21], the two decision makers can be imagined as a central and a local government whose common

task is to design a transportation network connecting a given set of facilities. Hence, together they have to construct a span-

ning tree, where each of the decision makers may control a different set of potential links, for example, federal highways are

1
Throughout this article, we will refer to the leader using she/her and to the follower using he/him/his.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2022 The Authors. Networks published by Wiley Periodicals LLC.

338 wileyonlinelibrary.com/journal/net Networks. 2022;80:338–355.

https://orcid.org/0000-0001-9190-642X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.22111&domain=pdf&date_stamp=2022-06-08


BUCHHEIM ET AL. 339

controlled by the central government in contrast to local roads, or building grounds are owned by different actors. First, the cen-

tral government constructs some of the connections, and then the local government decides how to complete the network. The

central government, as the leader, pays for the construction of all connections, while the follower optimizes a different objec-

tive function, for example, respecting requests of the citizens. Another possible application is described in [9] and deals with

a communication network between cities. A state is modeled as the leader and assumed to own some communication connec-

tions, while a private company, the follower, is permitted to build its own connections in specific places. The state subsidizes

the connections built by the company, that is, the actual building costs are shared between the two actors. In turn, the company

is required to ensure that each city can communicate with each other city using some activated state-owned and the new pri-

vate connections, that is, that the result is a spanning tree. The decision process now has a hierarchical structure: first, the state

decides which of its own connections are to be activated and thus paid for. Second, the company decides which new connec-

tions to build such that all cities are connected and the costs incurred for the company are minimized. However, the company’s

decision influences the state’s costs as well, because of the subsidies. Hence, the state has to anticipate what the company will

do already when making the first decision.

More formally, let G = (V ,E) be a connected, not necessarily simple graph with some edges E𝓁 being controlled by the

leader and some edges Ef
being controlled by the follower, such that E = E𝓁 ∪Ef

. Without loss of generality, we assume that E𝓁
and Ef

are disjoint sets, using parallel edges otherwise. We are given cost functions c ∶ E → R≥0 and 𝑑 ∶ E → R≥0 for the

leader and follower, respectively, and define c(Z) ∶=
∑

e∈Z c(e) and 𝑑(Z) ∶=
∑

e∈Z 𝑑(e) for any edge set Z ⊆ E. With these

definitions, the bilevel minimum spanning tree problem can be formulated as follows:

min c(X ∪ Y)
s.t. X ⊆ E𝓁

Y ∈ argmin 𝑑(Y)
s.t. Y ⊆ Ef

X ∪ Y is a spanning tree in G .

(BMST)

Here and in the remainder of the article, we identify subgraphs of G, in particular trees and forests, with the corresponding

subsets of E.

If the leader chooses some edge set X rendering the follower’s problem infeasible, then by definition this choice is not valid

for her. In particular, the leader must choose a cycle-free subset X of E𝓁 such that the graph (V ,X ∪ Ef ) is connected, and the

follower will augment X to a spanning tree at minimum cost according to his own objective function 𝑑. The objective function

minimized by the leader is the total cost of the resulting spanning tree with respect to the objective function c.

Given a feasible leader’s choice X, the follower’s problem can easily be solved in polynomial time, for example, by Kruskal’s

algorithm [15] applied to the graph resulting from G by contracting all edges in X and restricting to the edges in Ef
. However,

the follower’s optimum solution might not be unique. In order to make the problem well-defined in this case, we will always

assume that the follower chooses his solution greedily according to some given order of preference that is consistent with

his cost function 𝑑. It is easy to verify that both the optimistic and the pessimistic version of bilevel minimum spanning tree

(BMST) can be modeled in this way. These are the most common strategies to resolve nonuniqueness of follower’s optimum

solutions in bilevel optimization. In the former, the follower is assumed to decide in favor of the leader among his optimum

solutions, that is, he uses the leader’s objective function as a second criterion in his optimization. In contrast, the pessimistic view

corresponds to the follower deciding worst possible for the leader. Note that the follower’s feasible set is uniquely determined

by the connected components of the graph (V ,X), and therefore also his response Y when assuming any deterministic strategy

to resolve nonuniqueness.

In Figure 1, we give an example of a BMST instance and its optimum solution. The cost of the leader’s optimum solution is

9. In contrast to the follower, it is not optimum for the leader to choose edges in a greedy way since taking the edge {v4, v6} into

her solution would result in overall costs of at least 10. It is cheaper for her to let the follower connect the components {v2, v3, v4}
and {v5, v6} with each other. However, this strategy relies on the fact that the edge {v3, v6} is cheaper than {v3, v5} also for the

follower.

Besides the problem with sum objective functions, we will also consider bottleneck versions of BMST, meaning that the

leader and/or the follower only pay for the most expensive edge instead of the sum over the costs of all chosen edges. In case

the follower has a bottleneck objective function, one has to distinguish between two possible models: either the follower pays

for the most expensive edge he chooses himself, that is, his objective function is to minimize maxe∈Y 𝑑(e), or he pays for the

most expensive edge chosen by any of the two actors, that is, he minimizes maxe∈X∪Y 𝑑(e); the latter case is the only situation

in which the follower’s cost 𝑑 of edges in E𝓁 is relevant. These two models are not equivalent, in contrast to the sum objective

case, where 𝑑(X∪Y) = 𝑑(X)+𝑑(Y) in any optimum solution and hence the two objectives only differ by 𝑑(X), which is constant

from the follower’s perspective.
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FIGURE 1 Example of a BMST instance and its optimum solution together with the corresponding response of the follower. The edge sets E𝓁 and Ef
are

represented as solid and dashed edges, respectively. The labels show the leader’s and the follower’s cost of an edge e ∈ E in the form c(e)∕𝑑(e).

Under the assumption that the leader’s and the follower’s edge sets are not disjoint, but that the follower controls all edges,

that is, that E𝓁 ⊆ Ef = E, it has recently been shown by Shi et al. [21] that BMST is tractable in case the leader or the follower (or

both) optimize a bottleneck instead of the sum objective function, where the follower is assumed to minimize maxe∈X∪Y 𝑑(e) in

the bottleneck case. Related results have also been obtained by Gassner [9]. She considered the problem version in which E𝓁 and

Ef
are disjoint and the follower’s objective is maxe∈Y 𝑑(e) in the bottleneck case. Polynomial-time algorithms are presented for

the cases where the leader has a bottleneck objective and the follower either has a sum or a bottleneck objective, while restricting

to the pessimistic problem version in the latter case. In [20], (single-level) mixed integer linear programming formulations for

some variants of BMST are derived. For exact solution methods for general bilevel mixed integer programs, we refer to the

survey [13].

Other variants of bilevel optimization problems dealing with minimum spanning trees are considered in the literature, but

in contrast to the problem addressed here, they usually assume the leader to choose the prices of some edges, while the fol-

lower solves a minimum spanning tree problem on all edges according to these costs; see [16] and the references therein. Also

the similar setting in which the lower level problem is a shortest path problem has been investigated several times; see the

surveys [17,22]. Gassner and Klinz [10] studied a bilevel assignment problem in which leader and follower choose a perfect

matching together, each of them having their own objective function on the edges, very similar to the BMST problem studied

here. Sum and bottleneck objective functions are considered, and it is shown that in most cases, the problem is NP-hard. Only

the optimistic problem version in which both decision makers have bottleneck objectives remains open.

The authors of [21] conjecture that the version of BMST in which both leader and follower have a sum objective is NP-hard.

Our main result is a proof of this conjecture. More specifically, we show that BMST is at least as hard as the Steiner forest

problem, hence it is not approximable to within a factor of
96

95
unless P=NP. We can show the same result for the special case

where the follower only controls a matching, and give some evidence that the problem might remain intractable even when the

follower controls only a fixed number of edges. We also show that certain assumptions on the structure of the problem can be

made without loss of generality, for example, that the follower controls a tree or that the leader controls a connected graph.

In view of the negative complexity results mentioned above, one can expect only very limited positive results. We are able to

devise a (|V|− 1)-approximation algorithm for BMST and show that 2-approximating the optimum solution is fixed-parameter

tractable in the number of edges controlled by the follower. For the same parameter, the decision whether a given follower’s

response can be enforced by the leader is fixed-parameter tractable, which implies that the variant of BMST with uniform

costs c(e) for all e ∈ E𝓁 is fixed-parameter tractable as well. For the bottleneck case, we show that the problem is tractable in case

the leader has a bottleneck objective and the follower has a sum objective, while it is hard when the leader has a sum objective

and the follower has a bottleneck objective. If both have a bottleneck objective, the problem turns out to be polynomial-time

solvable in the pessimistic setting, while it is hard to solve in the optimistic case. An overview of our results for different objective

functions can be found in Table 1. In this article, however, we consider a more general variant of BMST than Shi et al. [21] in

terms of the edges controlled by the follower.

The remainder of this article is organized as follows. In Section 2, we consider different types of restrictions on the set of

allowed instances and investigate their relations. In Section 3, we present an approximation-preserving reduction from Steiner

forest to BMST and derive our main complexity results. Our results concerning fixed-parameter tractability are presented in

Section 4, while in Section 5, we devise an approximation algorithm for BMST. Up to Section 5, we concentrate on the setting

in which both leader and follower have a sum objective function. Finally, we review the case of bottleneck objective functions

in Section 6. Section 7 concludes.

2 RESTRICTED SETS OF INSTANCES

In this section, we show that, without loss of generality, we may restrict ourselves to instances of BMST with certain structural

properties. Our aim is to simplify some of the proofs later on, but also to clarify the connections between different settings
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BUCHHEIM ET AL. 341

TABLE 1 Results for all variants of BMST with sum or bottleneck objective functions, assuming an optimistic or pessimistic setting

Leader Follower Assumption Results

Sum Sum Optimistic/Pessimistic NP-hard (Theorem 12)

Sum Bottleneck Pessimistic P for Ef all and maxe∈X∪Y 𝑑(e) ([21])

NP-hard (Corollary 28)

Sum Bottleneck Optimistic P for Ef all and maxe∈X∪Y 𝑑(e) ([21])

NP-hard (Theorem 29)

Bottleneck Sum Optimistic/Pessimistic P for Ef all ([21])

P ([9] and Theorem 26)

Bottleneck Bottleneck Pessimistic P for Ef all and maxe∈X∪Y 𝑑(e) ([21])

P for maxe∈Y 𝑑(e) ([9])

P (Theorem 27)

Bottleneck Bottleneck Optimistic P for Ef all and maxe∈X∪Y 𝑑(e) ([21])

NP-hard (Theorem 30)

corresponding to reasonable restricted problem variants, which sometimes lead to different complexity results. All reductions

are polynomial and approximation-preserving, that is, they can be used to transform an approximation algorithm for one problem

to an approximation algorithm with the same guarantee for the other problem.

Let  be the set of all instances I = (G,E𝓁 ,Ef
, c, 𝑑) of BMST as described in Section 1. As already mentioned, we assume

throughout that E𝓁 and Ef
are disjoint sets. If this is not the case, we can replace any common edge e ∈ E𝓁 ∩Ef

by two parallel

edges, one belonging to E𝓁 and one to Ef
, both having the same leader’s and follower’s costs as e. We now define the following

subsets of , all corresponding to certain restrictions on the edge sets controlled by leader and follower:

• E𝓁 conn, the set of instances for which the leader’s graph (V ,E𝓁) is connected.

• E𝓁 forest, the set of instances for which the leader’s graph (V ,E𝓁) is cycle-free.

• Ef conn, the set of instances for which the follower’s graph (V ,Ef ) is connected.

• Ef forest, the set of instances for which the follower’s graph (V ,Ef ) is cycle-free.

• Ef matching, the set of instances for which the follower’s graph (V ,Ef ) is a matching, that is, for which no vertex is incident

to more than one edge.

• Ef all, the set of instances such that for each leader’s edge in E𝓁 there exists a parallel follower’s edge in Ef
with the same

leader’s cost.

The instances in Ef all exactly correspond to those considered by Shi et al. [21]. Since G is connected, we have Ef all ⊆

Ef conn, and Ef conn is precisely the set of instances where any cycle-free choice of the leader is feasible, that is, for any cycle-free

edge set X ⊆ E𝓁 , there is at least one feasible response of the follower. Moreover, we have Ef matching ⊆ Ef forest.

Our first reduction shows that we may assume that the edges controlled by the follower connect all vertices of G.

Lemma 1. BMST on  can be reduced to BMST on Ef conn. The reduction preserves E𝓁 conn, E𝓁 forest, and Ef forest,
meaning that if we start with an instance in one of these sets, the reduction again results in an instance in this set.

Proof. Let I = (G,E𝓁 ,Ef
, c, 𝑑) ∈ . We construct an instance I′ ∈ Ef conn from I by adding arbitrary edges controlled

by the follower in order to make (V ,Ef ) connected. The new edges e′ have cost c(e′) ∶= 𝑑(e′) ∶= M for some large

enough number M, for example, one can set M ∶=
∑

e∈E max{c(e), 𝑑(e)} + 1.

Every solution of I is also a solution of I′ of the same cost for both leader and follower. The follower’s solution is still

optimum because, by the choice of M, taking one of the new edges can only make the solution worse for him. Conversely,

given a solution of I′, it is also a solution of I of the same cost if it does not contain any new edges. Otherwise, the leader’s

solution of I′ is not a feasible choice in I, as the follower will only take a new edge in I′ if he cannot produce all necessary

connections using only the original edges. In this case, any feasible solution of I is cheaper than the one of I′, due to the

choice of M.

Since E𝓁 is not changed, the reduction preserves all structural properties of E𝓁 , in particular (V ,E𝓁) being connected

or cycle-free. By adding only a minimum number of edges necessary to make (V ,Ef ) connected, we may also assume

that acyclicity of (V ,Ef ) is preserved. ▪

Using a similar construction, one can show the same result for the graph controlled by the leader:
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342 BUCHHEIM ET AL.

Lemma 2. BMST on  can be reduced to BMST on E𝓁 conn. The reduction preserves E𝓁 forest, Ef conn, Ef forest, and
Ef matching.

We next show an important structural result about BMST, from which we can conclude that we may assume without loss

of generality that the follower controls a forest, but which will also be useful on its own. As stated in Section 1, we assume a

fixed ordering of the edges in Ef
that the follower will always, that is, for any choice of X, use in his greedy algorithm. This is

important for the following proof. Moreover, we do not require X1 or X2 to be feasible leader’s solutions in the following, that

is, it might not be possible for the follower to complete them to a spanning tree. However, we assume that the follower applies

his greedy algorithm anyway, leading to forests Y1 and Y2.

Lemma 3. Given two cycle-free edge sets X1 ⊆ X2 ⊆ E𝓁 , let Y1,Y2 ⊆ Ef be the corresponding follower’s responses.
Then Y1 ⊇ Y2.

Proof. Let Ef = {e1, … , em}, where e1, … , em is the follower’s order of preference, and let Y (i)
1

and Y (i)
2

be the partial

solutions of the follower after considering edge ei in his greedy algorithm, starting from the leader’s choice X1 or X2,

respectively. It then suffices to prove the following claim: for all i = 0, … ,m, each pair of vertices that is connected

in X1 ∪ Y (i)
1

is also connected in X2 ∪ Y (i)
2

. This implies that if ei+1 is added to Y (i)
2

, it is also added to Y (i)
1

, so that the full

follower’s response Y (m)
2
= Y2 to X2 is contained in Y (m)

1
= Y1. We show the claim by induction over i.

Since Y (0)
1
= Y (0)

2
= ∅ and X1 ⊆ X2, there is nothing to show for the case i = 0. For i = 1, … ,m, consider two

vertices v,w ∈ V that are connected by X1 ∪ Y (i)
1

. If v and w are already connected by X1 ∪ Y (i−1)
1

, they are connected

by X2 ∪ Y (i−1)
2

as well, by the induction hypothesis, and thus also by the superset X2 ∪ Y (i)
2

. Otherwise, the connection has

been established by adding ei = {vi,wi}, implying that X1 ∪ Y (i−1)
1

connects v to vi and w to wi (or vice versa). Again by

the induction hypothesis, we derive that also X2 ∪ Y (i−1)
2

connects v to vi and w to wi. Hence, either v and w are already

connected by X2 ∪ Y (i−1)
2

, in which case we are done, or vi and wi are not connected by X2 ∪ Y (i−1)
2

. In the latter case,

edge ei will be contained in Y (i)
2

, so that v and w are connected by X2 ∪ Y (i)
2

also in this case. ▪

Corollary 4. BMST on  can be reduced to BMST on Ef forest. The reduction preserves E𝓁 conn, E𝓁 forest, and Ef conn.

Proof. Let I = (G,E𝓁 ,Ef
, c, 𝑑) ∈  be an instance of BMST and let Y∗ ⊆ Ef

be the result of Kruskal’s algorithm

applied to the graph (V ,Ef ), using the fixed order of edges defined by the follower’s preferences. Note that Y∗ is a forest

in G, but not necessarily a spanning tree, since we do not require (V ,Ef ) to be connected. Let I′ be the instance that arises

from I by removing the edges in Ef ⧵ Y∗ from Ef
. Then I′ ∈ Ef forest. By applying Lemma 3 for X1 ∶= ∅ and X2 ∶= X, it

follows that for any leader’s solution X in I, the follower’s response Y lies in Y∗. Hence, X has the same objective value

in I as in I′. As the leader’s feasible set is not changed by the above transformation, we obtain the desired reduction result.

Since E𝓁 is not changed, the reduction preserves any specific structure of E𝓁 , in particular (V ,E𝓁) being cycle-free

or connected. Connectedness of (V ,Ef ) is obviously preserved by the construction. ▪

It is worth mentioning that even if the follower’s edge set Ef
is cycle-free, the follower might have several feasible or even

several optimum responses to some leader’s choice X. Indeed, after the contraction of X, the follower’s edges might form cycles

again. For an example, consider the instance illustrated in Figure 1, in which the follower’s edges form a tree. When the leader

takes the edge {v2, v3} into her solution, the vertices v2 and v3 can be thought of as being merged into a single vertex from the

follower’s perspective. This leads to the follower’s edges {v1, v2} and {v1, v3} becoming parallel edges, of which the follower

must choose one. In this example, the two edges even have the same leader’s and follower’s cost such that the follower will

choose any of the two edges, depending on his preferences.

If we are not interested in the connectedness of the follower’s edge set Ef
, but rather in a simple combinatorial structure of

the latter, we can even further restrict Ef
to form a matching:

Lemma 5. BMST on Ef forest can be reduced to BMST on Ef matching. The reduction preserves E𝓁 conn and E𝓁 forest.

Proof. Let I = (G,E𝓁 ,Ef
, c, 𝑑) ∈ Ef forest. From I, construct an instance I′ ∈ Ef matching by applying the following

transformation to every connected component of the graph (V ,Ef ) containing more than one edge: define an arbitrary

vertex in the connected component as its root. Replace every edge e ∈ Ef
in the connected component by a path of length

two, with a new vertex in the middle. The new edge e′ that is closer to the root, is added to E𝓁 and assigned c(e′) ∶= 0,

while the other new edge e′′ replaces e in Ef
and is assigned 𝑑(e′′) ∶= 𝑑(e) and c(e′′) ∶= c(e); moreover, edge e′′ takes

the position of e in the follower’s order of preference. This construction ensures that Ef
forms a matching in I′ because

every new vertex has only one incident follower’s edge, and for every vertex v that was already present in I, only the
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FIGURE 2 Illustration of the construction in the proof of Lemma 5 applied to the example instance of Figure 1, with vertex v1 chosen as root.

follower’s edge e′′ arising from edge e which is contained in the unique path from v to the corresponding root is incident

to v. See Figure 2 for an illustration.

A solution for I can be transformed to a solution for I′ of the same cost by adding all newly introduced leader’s

edges to her solution, which does not change the cost. Indeed, the follower solves exactly the same problem after

the leader’s solution is contracted. For the opposite transformation, consider an optimum leader’s solution X′ for I′.
Observe that we may assume all newly introduced edges to be in X′ because otherwise, adding them would lead to

the follower removing some of his edges from his response by Lemma 3, which cannot increase the leader’s objec-

tive value. Now, remove all new edges from X′ in order to get a solution X for I. Again, the follower has exactly the

same choices responding to X and X′, respectively. Thus, the objective value of X in I is at most the objective value

of X′ in I′.
Since the edges added to E𝓁 connect every new vertex by exactly one edge, the reduction preserves E𝓁 conn and

E𝓁 forest. ▪

Combining the reductions from Lemmas 1 and 2 and Corollary 4, we obtain the following result:

Corollary 6. BMST on  can be reduced to BMST on E𝓁 conn ∩ Ef conn ∩ Ef forest. The reduction preserves E𝓁 forest.

Dropping the connectedness of Ef
, we can apply Lemma 5 to obtain:

Corollary 7. BMST on  can be reduced to BMST on E𝓁 conn ∩ Ef matching. The reduction preserves E𝓁 forest.

As mentioned above, the authors of [21] only consider instances from Ef all, that is, the follower controlling many edges.

This could be seen as an opposite assumption to instances being chosen from Ef forest or even Ef matching. To show that our main

complexity results still hold in the setting of [21], we use the following result:

Lemma 8. BMST on Ef conn can be reduced to BMST on Ef all. The reduction preserves E𝓁 conn and E𝓁 forest.

Proof. Let I = (G,E𝓁 ,Ef
, c, 𝑑) ∈ Ef conn. Construct an instance I′ ∈ Ef all from I by creating a copy e′ of

each edge e ∈ E𝓁 that does not have a parallel follower’s edge of the same leader’s cost, adding e′ to Ef
and setting

c(e′) ∶= c(e) and 𝑑(e′) ∶= M, for some large M, for example, M ∶=
∑

e∈E 𝑑(e) + 1. The construction is illustrated in

Figure 3.

All cycle-free sets X ⊆ E𝓁 are feasible leader’s solutions for both I and I′ because we assume (V ,Ef ) to be connected.

By construction, any feasible leader’s solution X leads to the same follower’s response in I and I′, since the additional

edges are the most expensive ones for the follower and will thus never be chosen because he can establish any desired

connection using only the original edges.

As the reduction does not change the set E𝓁 , it clearly preserves all its structural properties, in particular (V ,E𝓁) being

cycle-free or connected. ▪

From Lemmas 1 and 8, we derive

Corollary 9. BMST on  can be reduced to BMST on Ef all. The reduction preserves E𝓁 conn and E𝓁 forest.

In the following sections, we will also consider the case of uniform leader’s costs on the leader’s edges E𝓁 . For this, we show

Lemma 10. BMST on Ef conn with polynomially bounded integer costs c on E𝓁 can be reduced to BMST with c(e) = 1

for all e ∈ E𝓁 . The reduction preserves E𝓁 conn, E𝓁 forest, Ef conn, and Ef forest.
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344 BUCHHEIM ET AL.

FIGURE 3 Illustration of the construction in the proof of Lemma 8 applied to the example instance of Figure 1.

Proof. Let I = (G,E𝓁 ,Ef
, c, 𝑑) ∈ Ef conn with polynomially bounded integer costs c on E𝓁 . Construct an instance I′ of

BMST with uniform costs c on E𝓁 as follows: contract all edges e ∈ E𝓁
0
∶= {e ∈ E𝓁|c(e) = 0}. Each edge e = {v,w} ∈

E𝓁 ⧵E𝓁
0

is replaced by a path Pe of length c(e), consisting of leader’s edges again. Each interior vertex u of Pe is connected

to v by a new edge e′ added to Ef
with c(e′) ∶= 0 and 𝑑(e′) ∶= M for some large enough constant M ∶=

∑
e∈E 𝑑(e) + 1.

Note that for edges e ∈ E𝓁 with c(e) = 1 nothing changes.

We claim that the instances I and I′ have the same optimum value. Given an optimum solution X to I, we first may

assume that X contains a maximal forest in E𝓁
0

because otherwise, we could add an edge from E𝓁
0

to X, replacing some

edge e with c(e) ≥ 0 in the resulting spanning tree. A feasible solution X′ to I′ having the same objective value as X
can be defined by setting X′ ∶= ∪e∈XPe. This is true since the follower has to connect all interior vertices of paths Pe

with e ∉ X using the newly introduced follower’s edges in order to ensure that the resulting graph is a tree. These edges

have cost 0 for the leader. After adding these edges, the follower has exactly the same choices as in the instance I.

Conversely, given an optimum solution X′ to I′, we may assume that, for each edge e ∈ E𝓁 ⧵E𝓁
0

, either all edges in Pe

belong to X′ or none: assume this is not true and consider some solution X′ to I′ that contradicts this property. Let Y ′ be

the follower’s response to X′. We construct a solution X′′ ⊂ X′ to I′ with follower’s response Y ′′ with c(X′′) < c(X′) and

c(Y ′) = c(Y ′′) as follows: let

X′′ ∶=
⋃
{Pe|e ∈ E𝓁 ⧵ E𝓁

0
,Pe ⊆ X′}

consist of all the paths that are entirely contained in X′, that is, we simply leave out all edges of paths that were only taken

partially in X′. As we assume I ∈ Ef conn, which implies also I′ ∈ Ef conn, the leader’s solution X′′ is clearly feasible

because the follower can complete any solution to a spanning tree. Moreover, observe that, since the edges connecting the

inner vertices of the paths Pe have very high cost for the follower, they are only taken if absolutely necessary. Therefore,

the response Y ′′ to X′′ is the same as the response Y ′ to X′ with some additional edges that connect the inner vertices of

the paths Pe that are connected by X′, but not by X′′. This shows c(Y ′) = c(Y ′′), since these additional edges have cost 0

for the leader; hence, X′′ is the desired solution. Thus, we can assume that, for each e ∈ E𝓁 ⧵ E𝓁
0

, either all edges in Pe

belong to X′ or none. Setting X ∶= {e ∈ E𝓁 ⧵ E𝓁
0
|Pe ⊆ X′} ∪ F, where F is a maximal forest in E𝓁

0
, then yields a feasible

solution to I with the same objective value as X′ in I′ because the follower’s responses to X and X′ have the same cost,

by the same arguments as in the first part of the proof.

Acyclicity and connectedness of both E𝓁 and Ef
are preserved because the construction ensures that the newly

introduced vertices are all connected to the old vertices in an acyclic manner in both E𝓁 and Ef
. ▪

The reduction described in the proof of Lemma 1 only introduces follower’s edges. We can thus combine it with Lemma 10

to obtain

Corollary 11. BMST on  with polynomially bounded integer costs c on E𝓁 can be reduced to BMST with c(e) = 1 for
all e ∈ E𝓁 . The reduction preserves E𝓁 conn, E𝓁 forest, Ef conn, and Ef forest.

3 MAIN COMPLEXITY RESULTS

In this section, we establish a first hardness result for BMST using a reduction from the well-known Steiner forest problem:

(SF) Given a connected graph G = (V ,E) with edge lengths 𝓁 ∶ E → R≥0 and k disjoint sets S1, … , Sk ⊆ V , find a

forest F ⊆ E of minimum total length 𝓁(F), such that for each terminal set Si, all vertices in Si are connected in the graph (V ,F).
The best approximation ratio that is known for SF is 2 [12] and the problem is NP-hard to approximate within a factor of

96

95
[3]. We will reduce SF to BMST in order to obtain the following result:

 10970037, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22111 by T

echnische U
niversitaet D

ortm
und, W

iley O
nline L

ibrary on [09/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BUCHHEIM ET AL. 345

FIGURE 4 Illustration of the proof of Theorem 12 for k = 1 with Ef being a star. The marked vertices v1, v4, v6 are the given terminals. Edges in Ef
0

are

represented as dashed edges, the remaining edges in Ef
are drawn as dotted edges. Any vertex of S1 can be chosen as the center of the star, here it is v4. Red

edges mark the optimum Steiner tree in the input graph and the optimum leader’s solution and corresponding follower’s response in the BMST instance.

Theorem 12. BMST cannot be approximated to within a factor of 96

95
in polynomial time, unless P=NP, even if Ef is a

tree.

Proof. Let I be an instance of SF, consisting of a graph G = (V ,E) with edge lengths 𝓁 ∶ E → R≥0 and disjoint

terminal sets S1, … , Sk ⊆ V . We construct an instance I′ of BMST as follows. The graph in I′ is G′ ∶= (V ,E𝓁 ∪ Ef ),
where E𝓁 ∶= E and Ef

is defined as follows: first introduce edges forming any forest with connected components having

vertex sets S1, … , Sk and call this edge set Ef
0
. Then, add any further edges turning Ef

0
into a spanning tree on V . All new

edges together form the set Ef
. The cost function for the leader is

c(e) ∶=
⎧
⎪
⎨
⎪
⎩

𝓁(e), if e ∈ E𝓁 ,
M, if e ∈ Ef

0
,

0, if e ∈ Ef ⧵ Ef
0
,

where M is some large constant such as
∑

e∈E 𝓁(e) + 1. The cost function for the follower is given by

𝑑(e) ∶=

{
0, if e ∈ Ef

0
,

1, if e ∈ Ef ⧵ Ef
0
.

This finishes the construction of I′. We now show that any optimum solution X to I corresponds to a feasible leader’s

solution X′ to I′ of the same cost, and vice versa. So let X ⊆ E be any solution to I. Then X′ ∶= X is a feasible leader’s

solution since X forms a forest and Ef
connects all vertices, so that the follower can complete any leader’s solution to

a tree. Since X connects each terminal set, the follower’s response to X′ does not contain any edges from Ef
0

as they

would form a cycle together with X′. Hence, the follower’s response only consists of edges having cost 0 for the leader.

Therefore, the overall cost for the leader is simply c(X′) = 𝓁(X).
It remains to show that any optimum solution X′ to I′ corresponds to a feasible solution X to SF of the same cost.

Clearly, there exists a leader’s solution to I′ of cost at most M − 1, for example, one could choose any spanning tree

in G = (V ,E𝓁). By optimality of X′, this implies that the follower’s response to X′ does not contain any of the edges in

Ef
0
. However, since the follower’s cost for the edges in Ef

0
is cheaper than the cost of the edges in Ef ⧵ Ef

0
, this implies

that the leader’s solution X′ connects each terminal set. As X′ is also cycle-free, it is a solution to I having cost 𝓁(X′). ▪

Remark 13. The definition of Ef
in the proof of Theorem 12 leaves a lot of freedom concerning the structure of the fol-

lower’s tree. For example, it can always be chosen to form a path. Moreover, the reduction can be performed analogously

from the Steiner tree problem instead of the Steiner forest problem, that is, where only one terminal set S1 is given. Then

the structure of the follower’s tree is even less restricted, for example, the set Ef
can be chosen to form a star; see Figure 4

for an illustration. Thus, the hardness of Theorem 12 still holds for restrictions of the follower’s tree’s structure such as

Ef
being a path or a star.

Theorem 12 and Corollary 9 together prove a conjecture stated by Shi et al. [21]:

Corollary 14. BMST on Ef all cannot be approximated to within a factor of 96

95
in polynomial time, unless P=NP.

Remark 15. If we allow negative costs in BMST, the proof of Theorem 12 works in the same way if we define 𝑑(e) ∶=
−c(e) for all e ∈ E𝓁 ∪ Ef

instead. This shows that the special case of BMST in which the follower is adversarial to the

leader, having the opposite objective function, is hard as well. This is in contrast to [21] where this special case (called

MMST there) is shown to be polynomial-time solvable, for both sum and bottleneck objective. However, this is not a
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346 BUCHHEIM ET AL.

contradiction because the authors of [21] only work with instances from Ef all. In fact, Corollary 14 does not carry over

to the special case of MMST since the property of opposite objective functions is lost in the construction in Lemma 8.

Together with Corollary 7, we can conclude that BMST remains hard even if the follower controls a matching, and hence a

very simple combinatorial structure.

Corollary 16. BMST cannot be approximated to within a factor of 96

95
in polynomial time, unless P=NP, even if Ef is a

matching.

From Corollary 11, it follows that the hardness of BMST is preserved even in the case of uniform leader’s costs on her

own edges. We emphasize that Theorem 12 still holds for polynomially bounded and integer leader’s cost since Steiner forest

is strongly NP-hard [1].

Corollary 17. BMST cannot be approximated to within a factor of 96

95
in polynomial time, unless P=NP, even if Ef is a

tree and c(e) = 1 holds for all e ∈ E𝓁 .

To conclude this section, we consider a related question which could be asked in any bilevel optimization problem: can the

leader enforce a given follower’s response? More formally, we consider the following decision problem:

(BMST-R) Given an instance of BMST and a set Y ⊆ Ef
, does there exist some leader’s choice X ⊆ E𝓁 such that Y is the

follower’s response to X?

For this problem to be well defined, as for BMST itself, it is essential to assume that the follower has a consistent strategy to

select a follower’s response in case his optimum solution is not unique. As discussed in Section 1, we ensure such a consistent

strategy by assuming that the follower chooses edges greedily according to some deterministic order.

Apart from being an interesting structural question in its own right, we will see in Section 4 that BMST-R—or more precisely,

the optimization version in which the cheapest solution X enforcing Y is desired—is related to the fixed-parameter tractability

of BMST in terms of |Ef |. However, we will prove that BMST-R, even in the decision version, is NP-complete. For this, we

use the so-called vertex-disjoint Steiner trees problem:

(VDST) Given a connected graph G = (V ,E) and k disjoint sets S1, … , Sk ⊆ V , do there exist vertex-disjoint trees

T1, … ,Tk ⊆ E in G such that Ti spans Si for all i = 1, … , k?

This problem is similar to the Steiner forest problem defined previously, but not the same. The important difference is that

in the Steiner forest problem, no disjointness of the trees in the solution is required, that is, it is feasible to have several sets Si
lying in the same connected component of the solution. Moreover, we are considering the decision version of the vertex-disjoint

Steiner trees problem here, without any edge costs. Such a decision version of Steiner forest would not be interesting because

it is always feasible to select a spanning tree.

The problem VDST is known to be NP-complete even for k = 2 in so-called two-layer routing graphs [14]. We use this fact

to prove the following result:

Theorem 18. BMST-R is NP-complete, even if |Y| = 1 and Ef forms a path on a subset of the vertex set.

Proof. BMST-R clearly belongs to NP. To show completeness, we reduce VDST for k = 2 to BMST-R. Given an

instance of VDST consisting of a connected graph G = (V ,E) and disjoint sets S = {s1, … , sr} and S′ = {s′
1
, … , s′r′ },

we define an instance of BMST-R on V by setting E𝓁 ∶= E and

Ef ∶= {{si, si+1}|i = 1, … , r − 1} ∪
{{

s′i , s′i+1

}
|i = 1, … , r′ − 1

}
∪
{{

s1, s′1
}}

,

where 𝑑({s1, s′1}) ∶= 1 and 𝑑(e) ∶= 0 for all e ∈ Ef ⧵
{{

s1, s′1
}}

. Let Y ∶=
{{

s1, s′1
}}

. The leader’s cost function c
is irrelevant for the problem BMST-R. An illustration of this construction is given in Figure 5. We now show that the

answer to this instance of BMST-R is yes if and only if the answer to the given VDST instance is yes.

Assume that T ,T ′ ⊆ E are vertex-disjoint trees such that T spans S and T ′ spans S′. Since G is connected, we may

assume that T ∪ T ′ covers all vertices of G, by connecting all non-covered vertices to either T or T ′ arbitrarily. We claim

that the leader’s choice X ∶= T ∪ T ′ forces the follower to respond with Y . Indeed, the follower’s preferred edges e with

𝑑(e) = 0 would all produce cycles, while {s1, s′1} needs to be added to turn X into a spanning tree.

Now assume that there exists a leader’s solution X forcing the follower to respond with exactly the set Y . Since the

latter prefers edges from Ef ⧵ Y , the leader must prevent him from adding any of those, that is, all vertices in S are

connected by X and the same is true for the vertices in S′. On the other hand, since the follower chooses {s1, s′1}, the sets S
and S′ cannot be connected by X. Hence, X contains two vertex-disjoint trees spanning S and S′, respectively. ▪
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BUCHHEIM ET AL. 347

FIGURE 5 Illustration of the proof of Theorem 18. The two terminal sets in the instance of VDST are marked by red and blue vertices, respectively. Dotted

lines represent follower’s edges of cost 0, whereas the dashed line represents the follower’s edge in Y having cost 1. One feasible solution to VDST is marked

by red and blue edges; a corresponding leader’s solution consists of the red, blue, and purple edges.

Note that, similar to the proof of Theorem 12, there is some freedom in the construction of the follower’s edge set Ef
in

this proof; see Remark 13. Instead of the paths given by {{si, si+1}|i = 1, … , r1} and
{
{s′i , s′i+1

}|i = 1, … , r′ − 1
}

, one could

choose any other graph structure spanning the vertices in S and S′, respectively. Therefore, Theorem 18 does not only hold for

sets Ef
forming a path, but also for many other topologies.

Using the same construction as in Lemma 8, one can show that the result of Theorem 18 holds for instances in Ef all as well.

Moreover, since the leader’s costs are not relevant in the problem BMST-R, Theorem 18 trivially remains true for any specific

choice of leader’s costs, in particular in the case of uniform leader’s costs.

4 FIXED-PARAMETER TRACTABILITY

It is easy to see that BMST is tractable when the number of edges controlled by the leader is bounded. In fact, we have

Theorem 19. BMST is fixed-parameter tractable in the number of edges controlled by the leader.

Proof. If k = |E𝓁|, the leader can choose between at most 2
k

different solutions. Computing the follower’s response

and the corresponding objective function value is possible in polynomial time. ▪

We now turn to the question whether BMST is fixed-parameter tractable in the number of edges controlled by the follower,

which is much more involved. In fact, we are not able to answer it in general. However, we will show some results related to

this question. We start by considering the problem BMST-R introduced in the previous section. In the proof of Theorem 18,

a connection between BMST-R and VDST was established in order to prove NP-completeness. It turns out that this relation

is also useful for translating positive results from VDST to BMST-R. More precisely, the fact that VDST is fixed-parameter

tractable in the total number
∑k

i=1
|Si| of terminals [18,19] can be used to prove the fixed-parameter tractability of BMST-R in

terms of |Ef |.

Theorem 20. BMST-R is fixed-parameter tractable in the number of edges controlled by the follower.

Proof. Consider an instance of BMST-R with graph G = (V ,E𝓁 ∪ Ef ). Let Vf
be the set of all end vertices of edges

in Ef
. The algorithm proceeds as follows: all partitions of Vf

into non-empty subsets are enumerated. For a given parti-

tion S1, … , Sk, the problem VDST on (V ,E𝓁) is solved by the algorithm given in [19]. Note that the graph (V ,E𝓁) does

not have to be connected, but the definition of VDST and the algorithm can be used anyway. If the result is negative,

the partition is discarded. Otherwise, let T1, … ,Tk be a corresponding solution of VDST and extend the sets Ti such

that X ∶= ∪k
i=1

Ti covers all vertices, while the Ti must remain vertex-disjoint. This is possible, since we assume that G is

connected. Next, compute the follower’s response Y ′ to X. If it agrees with Y , stop and return “yes” and, if desired, the

set X. If the end of the enumeration is reached, return “no.”

The correctness of the algorithm immediately follows from the fact that the follower’s response only depends on

whether two vertices in Vf
are connected by the leader or not, and all possible situations are enumerated. For the running

time, note that the number and size of the enumerated partitions only depend on |Vf | ≤ 2|Ef |, but not on the size of the

overall graph. ▪

The algorithm proposed in the proof of Theorem 20 can actually be used for enumerating all possible follower’s responses,

along with one inducing leader’s choice for each response. Unfortunately, Theorem 20 does not imply that the problem of

computing the best leader’s choice enforcing a given response Y is fixed-parameter tractable; see the discussion below, so that
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348 BUCHHEIM ET AL.

we cannot derive that BMST itself is fixed-parameter tractable in the number of edges controlled by the follower. However, all

leader’s choices enforcing a given follower’s response consist of the same number of edges because every spanning tree in the

overall graph has the same number of edges. Hence, if the leader has uniform costs on the edges in E𝓁 , this algorithm can be

used to solve BMST, leading to the following result:

Corollary 21. BMST with c(e) = c for all e ∈ E𝓁 , for some constant c ≥ 0, is fixed-parameter tractable in the number
of edges controlled by the follower.

However, different costs on the edges in E𝓁 cannot be handled easily. In particular, we cannot use the reduction in Lemma 10

to make the costs uniform, since it increases the size of Ef
by

∑
e∈E𝓁 (c(e)−1). The result only carries over to instances where the

latter sum is bounded by some function in the original number of follower’s edges. Unfortunately, we are not able to answer the

question whether Corollary 21 also holds for arbitrary weights, but we conjecture that this is not the case. In fact, there is some

evidence that BMST is not easy to solve even for a fixed number of edges controlled by the follower. To justify this conjecture,

we will establish a relation between BMST and the optimization version of VDST, the shortest vertex-disjoint Steiner trees
problem:

(SVDST) Given a connected graph G = (V ,E) with edge lengths 𝓁 ∶ E → R≥0 and k disjoint sets S1, … , Sk ⊆ V , find

vertex-disjoint trees T1, … ,Tk ⊆ E such that Ti spans Si for i = 1, … , k, minimizing their total length
∑k

i=1
𝓁(Ti), or decide

that such trees do not exist.

Given that already the decision problem VDST is a very difficult problem, it can be expected that SVDST is very hard

as well. In fact, even for the special case in which each set Si consists of only two vertices, which is called the shortest
vertex-disjoint paths (SVDP) problem, there are a lot of open complexity questions. Considerable research has been devoted

to SVDP for k = 2. Very recently, a randomized polynomial-time algorithm for this case has been developed [2]. To the

best of our knowledge, no deterministic polynomial-time algorithm for k = 2 nor the complexity of SVDP for any fixed

k ≥ 3 is known. According to the next result, presenting an efficient algorithm for BMST with a fixed number |Ef | = 2k
of edges controlled by the follower would settle these open questions for k, and even similar ones about the more general

problem SVDST. In particular, an efficient algorithm for BMST with |Ef | = 4 would lead to an efficient algorithm for SVDP

with k = 2.

Theorem 22. SVDST with fixed number K ∶=
∑k

i=1
|Si| can be polynomially reduced to BMST with K edges controlled

by the follower.

Proof. Given an instance of SVDST as defined above, we construct an instance of BMST as follows. We extend G =
(V ,E) by one vertex s0, that is, we set V ′ ∶= V ∪ {s0}. The edges controlled by the leader are given by E𝓁 ∶= E ∪ E𝓁

0
,

where

E𝓁
0
∶=

{

{s0, v}|v ∈ V⧵
k⋃

i=1

Si

}

.

For the follower’s edges, we introduce an arbitrary spanning tree on each vertex set Si and call the set of these edges Ef
0
.

Moreover, for each i = 1, … , k, we select a vertex si ∈ Si arbitrarily and introduce a follower’s edge {si−1, si}. Together

with Ef
0
, these edges form the set Ef

. The cost function for the leader is defined as

c(e) ∶=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝓁(e) +M, if e ∈ E,
M, if e ∈ E𝓁

0
,

M|V|, if e ∈ Ef
0
,

0, if e ∈ Ef ⧵ Ef
0
,

where M ∶=
∑

e∈E 𝓁(e) + 1. The cost function for the follower is given by

𝑑(e) ∶=

{
0, if e ∈ Ef

0
,

1, if e ∈ Ef ⧵ Ef
0
.

Clearly, this construction is polynomial, with |Ef | = k +
∑k

i=1
(|Si| − 1) = K; an illustration is given in Figure 6. We

claim that the given instance of SVDST is feasible if and only if the optimum value of the constructed BMST instance is

smaller than M(|V| − k + 1), and that in this case the optimum values differ by exactly M(|V| − k).
So first assume that vertex-disjoint trees Ti spanning Si for i = 1, … , k, exist. Then consider the leader’s choice X

consisting of all edges contained in any of the trees Ti and, for each vertex v ∈ V not belonging to any tree, the edge {s0, v}.
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BUCHHEIM ET AL. 349

FIGURE 6 Illustration of the proof of Theorem 22 for k = 2 and K = 7. The two terminal sets S1 and S2 in the instance of SVDST are marked by red and

blue vertices, respectively. Dotted lines represent follower’s edges of cost 0, whereas the dashed lines represent the follower’s edges having follower’s cost 1.

An optimum leader’s solution is given by the colored edges, where red and blue edges correspond to an optimum solution of the original instance of SVDST

and purple edges connect all vertices not covered by the latter with the auxiliary vertex s0.

We have |X| = |V| − k because X forms a forest with k + 1 connected components on |V| + 1 vertices. The follower’s

response to X is Y ∶= {{si−1, si}|i = 1, … , k} with c(Y) = 0. In summary, the objective value of X is

c(X) + c(Y) =
k∑

i=1

𝓁(Ti) +M(|V| − k) + 0 < M(|V| − k + 1) .

For the other direction, consider any feasible leader’s choice X in the constructed instance of BMST and assume that it

has an objective value less than M(|V| − k + 1). Then for all i = 1, … , k, all vertices in Si must be connected in X, as

otherwise the follower would choose an edge with leader’s cost M|V| ≥ M(|V| − k + 1). Moreover, since each leader’s

edge costs at least M and the final tree must have |V| edges, the only way to achieve a weight less than M(|V|− k + 1) is

to take exactly |V|− k edges and make the follower choose all edges {si−1, si} for i = 1, … , k. It follows that X has k+ 1

components containing exactly one of the vertices s0, … , sk each. Thus, X contains disjoint trees Ti spanning Si with

total weight

k∑

i=1

𝓁(Ti) =
∑

e∈X
(c(e) −M) =

∑

e∈X
c(e) −M(|V| − k) .

This concludes the proof. ▪

As in Theorems 12 and 18, also other topologies of the follower’s edges are possible; see Remark 13. We emphasize that

Theorem 22 gives a second proof for the NP-hardness of BMST, if we do not bound the number of edges controlled by the

follower. In particular, it shows that BMST is at least as hard as SVDST. However, the reduction used in the proof of Theorem 22

is not approximation-preserving, so that the negative result of Theorem 12 concerning approximability does not follow from

Theorem 22.

While Theorem 22 makes it unlikely that BMST is fixed-parameter tractable in the number of follower’s edges, we will

show next that at least approximating BMST within a factor of 2 is fixed-parameter tractable in the same parameter. As a first

step, we show that a similar result holds for a variant of SF defined as follows:

(SF+) Given a connected graph G = (V ,E) with edge lengths 𝓁 ∶ E → R≥0 and k disjoint sets S1, … , Sk ⊆ V , find a

forest F ⊆ E of minimum total length 𝓁(F), such that each terminal set Si is connected in the graph (V ,F) and every vertex

in V⧵
⋃k

i=1
Si is connected to one of the sets Si.

The difference from the usual Steiner forest problem is hence that in addition to connecting each terminal set Si, all

nonterminals need to be connected to one of the terminal sets.

Theorem 23. The problem of approximating SF+ within a factor of 2 is fixed-parameter tractable in the total number
of terminals.

Proof. We use the fact that the Steiner forest problem is fixed-parameter tractable, which can be seen as follows: for

the classical Steiner tree problem, an exact algorithm with running time O(3|S||V|), where S is the set of terminals, is well

known [8]. This can be extended to the Steiner forest problem in the following way: enumerate all partitions of the set

{S1, … , Sk} of terminal sets, each resulting in a coarser partition S′
1
, … , S′r of the set

⋃k
i=1

Si of all terminals. Now solve

the Steiner tree problem for each terminal set S′i and merge the resulting r edge sets in order to obtain a feasible solution

of the Steiner forest problem. Obviously, the best solution obtained in this way is optimum.

Now we compute a solution to the problem SF+ in the following way: first, compute an optimum solution F of the

corresponding Steiner forest problem, for example using the algorithm described above. Second, merge the set
⋃k

i=1
Si of

all terminals, together with all nonterminals that are connected to a terminal by edges in F, into a single new vertex. Now
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350 BUCHHEIM ET AL.

compute a minimum spanning tree T in the resulting graph and return the set F ∪ T as a solution to the given instance of

SF+.

Clearly, the solution is feasible for SF+ and the running time is the same as the one of the applied Steiner forest

algorithm because the running time for the computation of a minimum spanning tree is negligible. It remains to show that

it is a 2-approximation. For this, observe that both F and T have at most the cost of an optimum solution to SF+, since

every such solution must contain a Steiner forest having at least the cost of F, as well as a spanning tree in the graph in

which T is a minimum spanning tree. ▪

Theorem 23 now allows us to show the desired result about BMST:

Theorem 24. The problem of approximating BMST within a factor of 2 is fixed-parameter tractable in the number of
edges controlled by the follower.

Proof. We may assume that (V ,E𝓁) is connected, since the construction according to Lemma 2 does not increase

the number of follower’s edges. The idea of the algorithm is to enumerate all possible follower’s solutions and apply

Theorem 23 to each of them. More precisely, as in the proof of Theorem 20, we consider the set Vf
⊆ V of vertices

incident to a follower’s edge and enumerate all possible partitions of Vf
into non-empty disjoint sets. For a fixed partition

S1, … , Sk, we solve SF+ on the leader’s graph (V ,E𝓁) with edge lengths defined by the leader’s cost function c, using

the algorithm given in Theorem 23, and obtain some forest X ⊆ E𝓁 . Next, we compute the follower’s response to X
and, if there is a feasible response Y , store it together with X as a candidate for our final solution. Finally, we return the

candidate solution minimizing the total weight c(X) + c(Y).
Clearly, the running time of this algorithm is as desired. Moreover, it computes a feasible solution to BMST if there

is one. It remains to prove that in this case the algorithm always computes a 2-approximate solution. For this, let X∗ be an

optimum leader’s solution of the given BMST instance, together with the follower’s response Y∗, and let S∗
1
, … , S∗k be the

partition of Vf
corresponding to the connected components of (V ,X∗). Then X∗ is a (not necessarily optimum) solution

for SF+ corresponding to this partition. Let X be the solution for SF+ computed by the algorithm presented above when

considering this partition. Since we use a 2-approximation algorithm for SF+, we have c(X) ≤ 2c(X∗). Moreover, the

partition of Vf
induced by X is either S∗

1
, … , S∗k or a coarser one, which implies that the follower’s response Y to X is a

subset of Y∗ by Lemma 3, based on the deterministic behavior of the follower. Altogether, we now obtain

c(X) + c(Y) ≤ 2c(X∗) + c(Y∗) ≤ 2(c(X∗) + c(Y∗)) ,

which shows the desired result. ▪

5 APPROXIMATION ALGORITHM FOR BMST

The previous section showed that already questions about fixed-parameter tractability of BMST and related problems can be

hard to answer. In this section, we present a polynomial-time (|V| − 1)-approximation algorithm for BMST.

Theorem 25. BMST admits a polynomial-time (|V| − 1)-approximation algorithm.

Proof. The algorithm starts with an empty leader’s solution X ∶= ∅ and iteratively adds leader’s edges to X. At the

same time the graph G = (V ,E𝓁 ∪ Ef ), initially given as part of the considered BMST instance, is modified in each

iteration of the algorithm. More specifically, in each iteration, we first apply Corollary 4 in order to turn Ef
into a forest.

Then, in the current graph G = (V ,E𝓁 ∪ Ef ), we compute a minimum spanning tree T according to the leader’s cost

function c. Let T𝓁 ∶= T ∩ E𝓁 be the part of the spanning tree that is controlled by the leader, and add the edges in T𝓁
to X. If T𝓁 = T or T𝓁 = ∅, we stop and output X as the leader’s solution. Otherwise, we contract the edges in T𝓁 and

start the next iteration.

The algorithm clearly runs in polynomial time, since we perform at most |V| − 1 iterations, and in each iteration we

apply the polynomial reduction of Corollary 4 and compute a minimum spanning tree. It is also not hard to see that the

algorithm computes a feasible solution: if it stops with T𝓁 = T , the leader’s solution X already forms a spanning tree in

the original graph. Otherwise, it stops with T𝓁 = ∅. In this case, the follower is able to complete X to a spanning tree, for

example using the edges in T . It remains to show that the objective value of X is at most |V|−1 times the optimum value.

We prove this by induction on the number |V| of vertices. If |V| = 2, the statement is clearly true since we may assume

that we only have two edges, one leader’s and one follower’s edge. So let us assume that for some arbitrary but fixed n ∈ N
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BUCHHEIM ET AL. 351

the statement is true for all graphs that have at most n vertices. Let I be an instance with G = (V ,E𝓁 ∪ Ef ), where Ef
is a

forest and |V| = n+1. Let T be the spanning tree that is computed in the first iteration of the algorithm. If it stops after the

first iteration, that is, if T𝓁 = T or T𝓁 = ∅, either the leader or the follower chooses the whole tree T , while the other player

chooses ∅; note that for T𝓁 = ∅ the follower can only choose T as response, as Ef
is cycle-free. In both cases, the leader’s

objective value is c(T), which is clearly optimum. Otherwise, we have c(T𝓁) ≤ c(T) ≤ OPT(I), where OPT(I) denotes

the value of an optimum solution to instance I. Let Î with the graph ̂G = ( ̂V ,Ê) be the instance that is considered in the

second iteration, that is, after contracting T𝓁 . Observe that by Lemma 3, we have OPT(Î) ≤ OPT(I), since Î arises from I
by contracting certain edges of the graph. Furthermore, a solution ̂X to Î with follower’s response ̂Y can be augmented to

a solution to I by simply adding T𝓁 , such that ̂Y remains the follower’s response. Finally, observe that | ̂V| ≤ n and hence

the induction hypothesis holds, that is, the solution ̂X to Î produced by the algorithm is a (| ̂V|− 1)-approximation, where

| ̂V| − 1 ≤ |V| − 2. Putting things together, we derive that

c(X) + c( ̂Y) = c(T𝓁) + c( ̂X) + c( ̂Y)

≤ OPT(I) + (| ̂V| − 1)OPT(Î)
≤ (|V| − 1)OPT(I)

holds for the objective value of the leader’s solution X = T𝓁 ∪ ̂X returned by the algorithm. ▪

6 BOTTLENECK OBJECTIVE

In this section, we consider variants of BMST in which one or both of the two decision makers have a bottleneck objective

function instead of a sum objective, that is, they pay only for the most expensive edge in their solution. Recall that when the

follower has a bottleneck objective, we have to distinguish two variants of this objective, namely minimizing either maxe∈Y 𝑑(e)
or maxe∈X∪Y 𝑑(e), that is, the follower either takes only his own edges into account or both the edges chosen by the leader and

by himself. As already mentioned in Section 1, these variants are not equivalent, in contrast to the corresponding variants in

the sum objective case. The problem version in which the follower considers only his own edges can be seen as a special case

of the one in which he considers all edges by setting 𝑑(e) ∶= 0 for all e ∈ E𝓁 .

Consider the example depicted in Figure 1 and assume that the leader still has a sum objective, but the follower has a

bottleneck objective. In his response to the leader’s choice shown in Figure 1, the follower could now also choose the edge

{v3, v5} instead of the edge {v3, v6}. Both options are optimum from the follower’s perspective. Under the optimistic assumption,

the follower would choose {v3, v6} because it is better for the leader. But under the pessimistic assumption, the follower would

choose {v3, v5} instead, increasing the leader’s objective value by 4.

Shi et al. [21] showed that BMST is tractable as soon as the leader or the follower (or both) optimize a bottleneck objective.

However, the general assumption in [21] is that the follower’s and the leader’s edge sets are not disjoint, but that the follower

controls all edges, or, equivalently, that instances belong to Ef all. Note that, in the definition of Ef all, we have to require the

parallel edges to have not only the same leader’s, but also the same follower’s cost now. Without this assumption, the tractability

results do not hold anymore in general. In fact, we will see that most cases are NP-hard then. Gassner [9] developed two

polynomial-time algorithms without the assumption that the follower controls all edges, namely for the cases in which the leader

has a bottleneck objective and the follower either has a sum objective or a bottleneck objective, restricting to the pessimistic

problem version in the latter case. In this case, however, she always assumes the follower to minimize maxe∈Y 𝑑(e). We generalize

this result to the case of the follower’s objective being maxe∈X∪Y 𝑑(e) and slightly simplify her other algorithm. Moreover,

our hardness results show that these are the only two cases which are polynomial-time solvable in general, unless P=NP. An

overview of the different cases and results is given in Table 1.

Theorem 26. The variant of BMST in which the leader has a bottleneck objective and the follower has a sum objective
can be solved in polynomial time.

Proof. We first present the algorithm: for each 𝛾 ∈ C ∶= {c(e)|e ∈ E𝓁} ∪ {0}, the leader considers the set E
𝛾
∶=

{e ∈ E𝓁|c(e) ≤ 𝛾} and chooses any edge set X
𝛾
⊆ E

𝛾
consisting of a spanning tree in each connected component

of G
𝛾
∶= (V ,E

𝛾
). Let Y

𝛾
be the corresponding response of the follower and c

𝛾
the resulting leader’s objective value,

where c
𝛾
∶= ∞ in case the follower cannot extend X

𝛾
to a spanning tree. Finally, choose 𝛾

∗ ∈ argmin
𝛾∈Cc

𝛾
and return X

𝛾
∗

as optimum solution.

The algorithm clearly runs in polynomial time, so it remains to show that X
𝛾
∗ is indeed an optimum solution. For this, it

suffices to show that, for any 𝛾 , choosing a solution X ⊆ E
𝛾

with the same bottleneck cost cannot yield a smaller objective
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352 BUCHHEIM ET AL.

function value than c
𝛾
. Since the objective function of the follower is a sum, Lemma 3 applies, thus his response Y to X

is a superset of Y
𝛾
. Now the cost of X ∪ Y (in the leader’s bottleneck objective) is at least the cost of X

𝛾
∪ Y

𝛾
. ▪

We now turn to the case in which both leader and follower have a bottleneck objective. Then, the above algorithm does not

work in general because Lemma 3 is not true in case the follower has a bottleneck objective. However, Gassner [9] showed

that the same algorithm solves the problem version in which both leader and follower have a bottleneck objective, the pes-

simistic setting is assumed and the follower’s objective is to minimize maxe∈Y 𝑑(e). We next prove that a generalized form of

the algorithm can be used to solve the problem version with follower’s objective maxe∈X∪Y 𝑑(e), completing the investigation

of all polynomial-time solvable cases.

Theorem 27. The variant of BMST in which both leader and follower have a bottleneck objective and the pessimistic
setting is assumed can be solved in polynomial time.

Proof. The algorithm works as follows: for all ec, e𝑑 ∈ E𝓁 such that c(ec) ≥ c(e
𝑑
) and 𝑑(ec) ≤ 𝑑(e𝑑), and such that

either ec = e
𝑑

or ec and e
𝑑

are not parallel, consider the set

Eec,e𝑑 ∶= {e ∈ E𝓁|c(e) ≤ c(ec) and 𝑑(e) ≤ 𝑑(e
𝑑
)} .

The leader chooses any edge set Xec,e𝑑 ⊆ Eec,e𝑑 with ec, e𝑑 ∈ Xec,e𝑑 that consists of a spanning tree in each connected com-

ponent of Gec,e𝑑 ∶= (V ,Eec,e𝑑 ). Let Yec,e𝑑 be the corresponding response of the follower and cec,e𝑑 the resulting objective

value, where cec,e𝑑 ∶= ∞ in case the follower cannot extend Xec,e𝑑 to a spanning tree. If the case c(ec) = 𝑑(e𝑑) = 0 does

not occur, consider X0 ∶= ∅ as an additional candidate. Finally, choose (e∗c , e∗
𝑑

) minimizing cec,e𝑑 and return Xe∗c ,e
∗
𝑑

.

The algorithm clearly runs in polynomial time, so it remains to show that Xe∗c ,e
∗
𝑑

is indeed an optimum solution. For

this, let ec, e𝑑 ∈ E𝓁 be such that c(ec) and 𝑑(e
𝑑
) are the maximum leader’s and follower’s edge costs, respectively, among

a leader’s optimum solution X ⊆ E𝓁 , assuming X ≠ ∅. We show that X cannot have a smaller objective function value

than cec,e𝑑 .

If X is a maximal forest in Gec,e𝑑 , it leads to the same follower’s response and hence the same objective function value

as Xec,e𝑑 . Otherwise, we may assume that X ⊂ Xec,e𝑑 . The follower cannot achieve a better objective value when responding

to X than to Xec,e𝑑 . Hence, by the pessimistic assumption, the maximum leader’s edge cost among the follower’s response

cannot be smaller in the former than in the latter case. Since the maximum leader’s and follower’s edge costs among X
and Xec,e𝑑 , respectively, are the same, it follows that X cannot lead to a smaller objective function value than Xec,e𝑑 . ▪

Turning to the hardness results, we will reuse several ideas from Sections 3 and 4 that can be applied directly or need to be

changed slightly for the bottleneck cases. First, note that in Theorem 12, the follower’s sum objective can be easily replaced by

a bottleneck objective, assuming the pessimistic setting:

Corollary 28. The variant of BMST in which the leader has a sum objective, the follower has a bottleneck objective and
the pessimistic setting is assumed, cannot be approximated to within a factor of 96

95
in polynomial time, unless P=NP,

even if Ef is a tree.

Proof. We can use the same reduction from the Steiner forest problem as in the proof of Theorem 12. For sake of

simplicity, the follower’s cost function can now be defined as 𝑑(e) ∶= 0 for all edges e ∈ E ∪ Ef
. Then the follower’s

objective value is always 0 and his decision is only guided by the pessimism. For this definition of 𝑑, both variants of the

follower’s bottleneck objective function, maxe∈Y 𝑑(e) and maxe∈X∪Y 𝑑(e), are equivalent, hence this proof clearly holds

for both of them. The pessimistic assumption about the follower’s behavior here is equivalent to the behavior of a follower

having a cost function of 𝑑(e) ∶= −c(e) for all e ∈ Ef
and a sum objective, which is equivalent to the problem variant

which is reduced to in Theorem 12; see also Remark 15. ▪

Corollary 28 cannot be easily adapted to the optimistic assumption. However, the hardness of this case can be concluded

using Theorem 18:

Theorem 29. All variants of BMST where the leader has a sum objective and the follower has a bottleneck objective are
NP-hard, even if c(e) = 1 for all e ∈ E𝓁 .

Proof. First, note that the proof of Theorem 18 works without modification if the follower has a bottleneck objective,

for both the optimistic and pessimistic setting, no matter if the follower is taking only his own or all edges into account;
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BUCHHEIM ET AL. 353

for the latter case, define 𝑑(e) ∶= 0 for all e ∈ E𝓁 . Hence, all corresponding modifications of the problem BMST-R are

NP-complete as well, even if |Y| = 1 and Ef
forms a path on a subset of the vertex set.

We now show that BMST-R can be reduced to BMST in all these variants, assuming a sum objective for the leader,

which proves the desired result. Consider an instance of BMST-R, consisting of a graph G = (V ,E𝓁 ∪ Ef ), a follower’s

objective 𝑑 and a set Y ⊆ Ef
. Define a leader’s cost function c ∶ E → R≥0 by setting

c(e) ∶=
⎧
⎪
⎨
⎪
⎩

1, if e ∈ E𝓁 ,
0, if e ∈ Y ,
|V|, if e ∈ Ef ⧵ Y .

We claim that the answer to the given instance of BMST-R is yes if and only if the leader’s optimum solution value in

this BMST instance is at most |V| − |Y| − 1.

Assume that X ⊆ E𝓁 is a leader’s solution such that Y is the follower’s response to X. Choosing X then yields a

leader’s objective value of c(X) + c(Y) = |V| − |Y| − 1, since X and Y form a tree and hence together have |V| − 1

edges. Conversely, assume that the leader can achieve an objective value of at most |V| − |Y| − 1. By construction, this

is only possible if the follower’s response is exactly Y and the leader thus chooses |V|− |Y|− 1 of her edges. Hence, the

follower’s response Y can be enforced. ▪

The proof of Theorem 29 does not carry over to cases in which the leader has a bottleneck objective, because the reduction

from BMST-R to BMST does not work there. However, the case in which both leader and follower have a bottleneck objective,

assuming the optimistic setting, is NP-hard as well, which can be shown using similar ideas as in the proof of Theorem 29.

Theorem 30. The variant of BMST in which both the leader and the follower have a bottleneck objective and the
optimistic setting is assumed is NP-hard.

Proof. We show the result by reduction from VDST, restricted to k = 2. Given an instance of VDST consisting of a

connected graph G = (V ,E) and disjoint vertex sets S = {s1, … , sr} and S′ = {s′
1
, … , s′r′ }, we define an instance of

BMST by adding a vertex s0 to V , setting E𝓁 ∶= E,

Ef
0
∶= {{si, si+1}|i = 1, … , r − 1} ∪

{{
s′i , s′i+1

}
|i = 1, … , r′ − 1

}
,

and Ef ∶= Ef
0
∪
{{

s1, s′1
}
, {s0, s1} ,

{
s0, s′1

}}
, where the leader’s and follower’s costs are defined as follows:

c(e) ∶=

{
0, if e ∈ E𝓁 ∪

{{
s1, s′1

}
, {s0, s1}

}
,

1, if e ∈ Ef
0
∪
{{

s0, s′1
}}
,

𝑑(e) ∶=

{
0, if e ∈ E𝓁 ∪ Ef

0
∪
{{

s0, s′1
}}
,

1, if e ∈
{{

s1, s′1
}
, {s0, s1}

}
.

This construction is illustrated in Figure 7. We now show that the answer to the given instance of VDST is yes if and

only if the leader’s optimum value in the constructed instance of BMST is 0. Since 𝑑(e) = 0 for all e ∈ E𝓁 , the following

arguments hold for both types of follower’s objective functions, maxe∈Y 𝑑(e) as well as maxe∈X∪Y 𝑑(e).
Assume that T ,T ′ ⊆ E are vertex-disjoint trees such that T spans S and T ′ spans S′. Since G is connected, we may

assume that T ∪ T ′ covers all vertices of G, by connecting all non-covered vertices to either T or T ′ arbitrarily. If the

leader chooses X ∶= T∪T ′ as her solution, the follower must take any two of the three edges {s1, s′1}, {s0, s1} and {s0, s′1}
in order to complete X to a spanning tree. As the follower’s objective value is 1 for any of these choices and we assume

the optimistic setting, his response is Y ∶=
{
{s1, s′1}, {s0, s1}

}
, resulting in a leader’s objective value of 0.

For the other direction, assume that the leader can achieve an objective value of 0. This means that the follower uses

the edge {s0, s1} in order to connect the vertex s0 to the original graph. Since this edge is more expensive than {s0, s′1}
for the follower, he will only do that if he is also forced to connect the vertices s1 and s′

1
, because otherwise, he can

always achieve an objective value of 0. Hence, the leader must not connect s1 and s′
1
. Moreover, all vertices in S have to

be connected by the leader, as well as all vertices in S′, in order to prevent the follower from taking any edge from Ef
0
.

Thus, the leader’s solution contains two vertex-disjoint trees spanning S and S′, respectively. ▪

The proof of Theorem 30 shows that even computing any approximate solution is NP-hard, because the reduction only relies

on distinguishing whether the optimum value is 0 or 1.
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FIGURE 7 Illustration of the proof of Theorem 30. The two terminal sets S and S′ in the instance of VDST are marked by red and blue vertices, respectively.

Dotted lines represent edges in Ef
0

having costs 1∕0, dashed lines have costs as specified. Solid edges are controlled by the leader and have costs 0∕0.

7 CONCLUSION

In this article, we investigated the computational complexity of the BMST problem. After giving some structural insights

about the problem, we proved that BMST is NP-hard, thus answering a conjecture stated by Shi et al. [21]. Furthermore, we

considered the parameterized complexity of the problem in the number of edges controlled by the follower and showed that

the problem is at least as hard as the shortest vertex-disjoint Steiner trees problem, parameterized by the number of terminal

vertices, giving some evidence that the problem might be intractable even for a fixed number of follower’s edges. Finally, we

considered several variants of BMST in which at least one of the decision makers has a bottleneck objective function and gave

a complete complexity classification of all these variants.

It is still open whether BMST is solvable for a fixed number of follower’s edges or even fixed-parameter tractable in this

parameter. Also given the close relation to the shortest vertex-disjoint paths problem, we consider this to be an interesting open

question. Moreover, the approximability of BMST is an interesting question to study further, given that the best approximation

ratio achieved is |V| − 1.

As a generalization of BMST, one could consider the bilevel minimum matroid basis (BMMB) problem, in which both

decision makers together have to compute a basis of a given matroid. We think that some of our structural results can be

generalized to the matroid setting. On the one hand, it would be interesting to see which of the positive results can be generalized

to BMMB. Furthermore, we are curious if the negative results could be strengthened, in particular if the follower only controls

a fixed number of elements.
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