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Abstract 1

Introduction: In traditional pharmacokinetic (PK) bioequivalence analysis, two one-sided 2

tests (TOST) are conducted on the area under the concentration-time curve and the max- 3

imal concentration derived using a non-compartmental approach. When rich sampling is 4

unfeasible, a model-based (MB) approach, using nonlinear mixed effect models (NLMEM) 5

is possible. However, MB-TOST using asymptotic standard errors (SE) presents increased 6

type I error when asymptotic conditions do not hold. 7

Methods : In this work, we propose three alternative calculations of the SE based on 8

i) an adaptation to NLMEM of the correction proposed by Gallant, ii) the a posteriori 9

distribution of the treatment coefficient using the Hamiltonian Monte Carlo algorithm, 10

and iii) parametric random effects and residual errors bootstrap. We evaluate these ap- 11

proaches by simulations, for two-arms parallel and two-periods two-sequences cross-over 12

design with rich (n=10) and sparse (n=3) sampling under the null and the alternative 13

hypotheses, with MB-TOST. 14

Results: All new approaches correct for the inflation of MB-TOST type I error in PK 15

studies with sparse designs. The approach based on the a posteriori distribution appears 16

to be the best compromise between controlled type I errors and computing times. 17

Conclusion: MB-TOST using non-asymptotic SE controls type I error rate better than 18

when using asymptotic SE estimates for bioequivalence on PK studies with sparse sam- 19

pling. 20

Keywords and Phrases: pharmacokinetics, bioequivalence, nonlinear mixed effects model, two 21

one-sided tests, non-asymptotic standard error 22
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1 Introduction 23

Bioequivalence studies are routinely conducted for the development of generics or the adoption 24

of new formulations of existing drug. According to current guidelines by regulation authorities 25

both in the US and the EU [1, 2], bioequivalence between a reference (R) and a test (T) product 26

is to be assessed based on the comparison of their respective area under the time-concentration 27

curves (AUC) and maximal concentrations (Cmax). The presently recommended statistical 28

approach is to claim bioequivalence if the boundaries of the 90%-confidence intervals around 29

the ratios of AUC and Cmax geometric means of both groups do fall between 0.8 and 1.25. This 30

is equivalent to performing a two one-sided tests (TOST) proposed by Schuirmann [3]. 31

Traditionally, individual estimates of AUC are obtained using non-compartmental analysis 32

(NCA-TOST). Based on few hypotheses, NCA requires dense pharmacokinetic (PK) sampling. 33

In especially fragile populations (e.g., children or patients), or for specific indications (e.g., 34

ophthalmic drugs), it may be challenging and/or unethical to collect such dense sampling. 35

Therefore to assess the PK bioequivalence of two ophthalmic drugs on a study with only one- 36

time point per subject, Shen et al. proposed a non parametric bootstrap NCA-based TOST[4]. 37

A population PK model-based (MB) approach is another appealing alternative when dense 38

PK samplings cannot be obtained, as it lowers the individual sampling burden by borrowing 39

information across patients. . 40

In 2010, Dubois et al. compared the type I error and power of the NCA-TOST to a TOST 41

based on individual empirical Bayes estimates (EBE) from a nonlinear mixed effect model 42

(NLMEM)[5]. They found that, when the shrinkage is above 20%, using NCA TOST leads to a 43

modestly increased type I error whereas using TOST on EBE leads to a more severe type I error 44

inflation. They suggested to perform a TOST directly on the treatment effect estimate from 45

the NLMEM (MB-TOST) using the asymptotic standard error (SE). In 2011, they evaluated 46

the MB-TOST using Wald test and likelihood ratio test and found an inflation of the type I 47

error when asymptotic conditions are not met, which is the underlying condition for applying 48

Delta method, that is, for very sparse sample (number of samples per subject is limited), or 49

small sample size (number of subjects is small), or high variability. Further, they associated this 50

inflation to an under-estimation of the SE of the treatment effect coefficient, due to the use of 51

an asymptotic approximation, i.e., the observed Fisher Information matrix (FIM). So the MB- 52

TOST in its current form does not meet the standards of regulatory agencies for confirmatory 53

tests. 54

Therefore, the primary objective of this work is to propose alternative approaches to calculate 55

the SE, guarantying for the MB-TOST a nominal type I error on sparse sampling PK studies. 56

First, we adapted the correction based on the work by Gallant [6] which Bertrand et al. extended 57

to Wald tests in NLMEM, in case of small sample size studies [7]. Second, we proposed to sample 58
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in the a posteriori distribution of population parameters obtained by Hamiltonian Monte-Carlo 59

using Stan [8], as proposed by Ueckert et al. [9]. Third, we used parametric bootstrap, which 60

was shown to perform better than case bootstrap and non parametric residual bootstrap when 61

the true model and variance distribution are used [10]. 62

We evaluated MB-TOST using these approaches by clinical trial simulations with parallel and 63

cross-over designs, with rich and sparse samplings. 64

65

Although the TOST is very efficient in most cases, it has proven to be too conservative on 66

drugs with high variability [11]. Therefore, Möllenhoff et al. proposed a bioequivalence optimal 67

test (BOT) as an alternative to the TOST for bioequivalence assessment in such situations 68

[12]. They adapted this test to the MB approach (MB-BOT), and showed that this method 69

appears to have closer type I errors to the conventionally accepted significance level of 0.05 than 70

the MB-TOST for drugs with high variability. However, they also noticed an inflation of the 71

type I errors on sparse designs, showing that the SE-computation method is also an issue with 72

MB-BOT. In supplementary material 2, we evaluate MB-BOT along with the proposed SE- 73

calculation approaches. Then, we further study the conjoint influence of design and variability 74

on the SE of the treatment effect on AUC and Cmax, and thus on type I error and power of 75

MB tests. Thereafter, we determine a threshold on the SE above which MB-BOT should be 76

recommended over MB-TOST. 77

In Section 2, we introduce the NLMEM, the MB-TOST as well as the different SE calculations. 78

In Section 3, we present the clinical trial simulations performed to evaluate the approaches. In 79

Section 4, we present the results, i.e., type I error and power of the different approaches and 80

finally in Section 5, we discuss the conclusions and perspectives of this work. 81

2 Methods 82

2.1 Nonlinear mixed effects models 83

The concentration yi,j,k of subject i (i = 1, . . . , N), at period k (k = 1, 2), at sampling time 84

ti,j,k (j = 1, . . . , ni) is described by a nonlinear function f depending on the vector of individual 85

parameters φi,k of subject i at period k 86

yi,j,k = f(ti,j,k, φi,k) + g(ti,j,k, φi,k)εi,j,k. (1)

The lth individual parameter φi,k,l (l = (1, . . . , p)) is defined by the following equation, where p 87

is the number of PK parameters 88

log(φi,k,l) = log(λl) + βTrl Tri,k + βPl Pk + βSl Si + ηi,l + κi,k,l, (2)
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with λl the lth element of the vector of fixed effects for the covariate reference class. Tri,k, Pk, 89

Si are known vectors of, respectively, the treatment, the period, and the sequence covariates. 90

βTrl , βPl , and βSl are the lth elements of the vectors of coefficients of the treatment, the period, 91

and the sequence effects for the individual parameter. 92

ηi,l is the lth element of the vector ηi of random effects of subject i capturing the between-subject 93

variability (BSV). κi,k,l is the lth element of the vector κi,k of random effects of subject i at 94

period k capturing the within-subject variability (WSV). ηi and κi,k are assumed independent 95

and normally distributed with zero mean and covariance matrix, respectively Ω and Γ, both 96

of size p × p. We define ω2
l the between-subject variance of the lth parameter, and γ2l the 97

within-subject variance of the lth parameter. 98

The residual errors εi,j,k are supposed independent and identically distributed according to a 99

normal centered distribution with variance 1. The error model can be additive g(ti,j,k, φi,k) = a, 100

proportionnal g(ti,j,k, φi,k) = b × f(ti,j,k, φi,k), i.e., additive on log-concentrations, or combined 101

g(ti,j,k, φi,k) = a+ b× f(ti,j,k, φi,k). 102

103

We denote by θ = (λ, βTr, βP , βS,Ω,Γ, a, b) the vector of all parameters of the model, and by 104

V̂ AR(θ̂) the estimation variance-covariance matrix, derived as the inverse of the observed FIM. 105

106

Here, bioequivalence is assessed on βTrSP the coefficient of the treatment on the secondary PK 107

parameters of interest SP={AUC or Cmax}. For each secondary parameter, βTrSP is a function 108

of λ and βTr and its SE is derived from V̂ AR(θ̂). 109

2.2 Model-based TOST 110

The MB-TOST global null hypothesis is expressed as H0 : βTrSP ≤ −δ or βTrSP ≥ δ and can be 111

divided in two sub-hypotheses: H0,−δ : βTrSP ≤ −δ and H0,δ : βTrSP ≥ δ. 112

Therefore, the MB-TOST consists in two Wald statistics: W−δ = (β̂TrSP + δ)/SE(βTrSP ) and 113

Wδ = (β̂TrSP−δ)/SE(βTrSP ), respectively testing H0,−δ and H0,δ, with SE(βTrSP ) the standard error 114

on the estimation of a secondary parameter SP = AUC,Cmax. In an asymptotic setting, W−δ 115

and Wδ can be assumed to follow a Gaussian distribution under H0,−δ and H0,δ, respectively. 116

So, the global null hypothesis H0 is rejected with type I error α if W−δ ≥ z1−α and Wδ ≤ −z1−α 117

where z1−α is the (1− α)-quantile of the standard normal distribution. 118

Alternatively, one can compute the (1−2α) confidence interval (CI) of βTrSP and reject the global 119

null hypothesis if it is included in the interval [−δ; δ]. 120

121

For MB-TOST, the asymptotic approach (Asympt.) consists in using V̂ AR(θ̂), λ̂, and ˆβTr 122

for deriving the SE of the secondary parameters (SE(βTrSP )) with the delta method [13]. The 123

analytical formulas are shown in detail in Appendix A of Dubois et al. [14]. 124
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2.3 New approaches for standard error (SE) calculations 125

Gallant. This method consists in multiplying the asymptotic SE by a factor equal to
√

nP×N
dfG

126

where nP is the number of periods, N is the number of subjects, and dfG = nP × N − p. For 127

MB-TOST, the reference distribution is the Student distribution. 128

Sampling in the a posteriori distribution (Post). This method consists in sampling in 129

the a posteriori distribution of βTr. The a posteriori distribution is obtained using Hamiltonian 130

Monte-Carlo (HMC). We assigned default priors to the fixed effects (λ, βTr, βP , βS) and non- 131

informative half Cauchy priors to variance terms. The HMC chain was initialized at θ̂, η̂i, and 132

κ̂i,k from the NLMEM analysis using the SAEM algorithm. For each resulting sample of λ 133

and βTr, we derive a corresponding βTrSP and the standard deviation of this series is the Post 134

SE(βTrSP ). 135

Parametric random effect and residual bootstrap (Boot). This method consists in 136

simulating b = 1, ..., B datasets with the original bioequivalence study design. The subject 137

random effects and residuals are issued from distributions with means and variances equal to 138

the estimated population parameters from the original bioequivalence study NLMEM analysis. 139

Then, the B datasets are fitted with a NLMEM and B replicates of ˆβTrSPb
are calculated as 140

functions of the λ̂b and ˆβTrb estimates. The standard deviation of this series is the Boot SE(βTrSP ). 141

3 Simulation Study 142

3.1 Pharmacokinetic model 143

We used the PK model from Dubois et al. [14], which describes concentrations of the anti- 144

asthmatic drug theophylline, for both reference and test group, with a one-compartment distri- 145

bution (apparent volume, V/F) and first-order absorption (absorption rate, Ka) and elimination 146

(apparent clearance, CL/F). We fixed the dose to D = 4 mg for all subjects. 147

For the reference treatment, we considered λKa=1.50 /h, λCL/F=40.00 mL/h, and λV/F=0.50 L. 148

We considered a combined error model with a=0.1 mg/L and b=10%, corresponding to a low 149

residual variability. 150

The bioequivalence threshold δ was set at log(1.25) ≈ 0.22 as recommended by the guide- 151

lines [15]. 152

153

6



3.2 Treatment effect 154

We simulated under one null hypothesis H0,log(0.8), i.e., log(AUCT/AUCR) = log(CT
max/C

R
max) = 155

log(0.8), where AUCT/AUCR and CT
max/C

R
max are the ratios of geometric means of T to R for- 156

mulations of AUC and Cmax respectively [16]. The corresponding treatment effect coefficients 157

modifying both CL/F and V/F are βTrV = βTrCL = log(1.25). 158

We also simulated under one alternative hypothesis by setting βTrCL = βTrV = log(1), which 159

corresponds to βTrAUC = βTrCmax
= log(1) = 0. 160

161

3.3 Study Design 162

We simulated two-arms parallel and 2-periods 2-sequences cross-over designs (as in [14]). For 163

both trials, we simulated a rich and a sparse design, both with N=40 subjects. For the rich 164

design, there were n=10 samples per subject, taken at 0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, 24 hours 165

after dosing. For the sparse design, we simulated n=3 samples per subject, taken at 0.25, 3.35 166

and 24 hours after dosing. We considered the same sparse design as in [14, 17]. The sampling 167

times for this design were chosen by maximization of the determinant of the Fisher information 168

matrix for an individual nonlinear model using the fixed effect values. This was done using the 169

PFIM software [18] with a sampling window from 15 min to 24 hours. 170

We first simulated a parallel design (Figure 1), where N/2 subjects receive the reference treat- 171

ment (R) whereas the other N/2 subjects are allocated to the test treatment (T). Such a design 172

is often chosen to assess the bioequivalence of drugs with long half-lives preventing the use of 173

each patient as his own control within the time constraints of drug development. We simulated 174

BSV random effects with ωKa = ωCL/F = 22% and ωV/F = 11%, i.e., rather low BSV. For par- 175

allel trials, the period effects βPl , the sequence effects βSl , and the WSV κi,k,l in the expression 176

of the log of individual parameters (2) are null. 177

We also simulated a two-periods, two-sequences cross-over design (Figure 2), which is the gold- 178

standard in bioequivalence trials. In these trials, the N/2 subjects of the first sequence (S1) 179

receive the reference (R) treatment at period 1 (P1), and the test (T) treatment at period 2 180

(P2), whereas the N/2 subjects of the second sequence (S2) receive treatments in the reverse 181

order. We simulated BSV and WSV random effects with ωKa = ωCL/F = ωV/F = 50%, and 182

γKa = γCL/F = γV/F = 15%, i.e., rather high BSV and rather low WSV. 183

3.4 Implementation and evaluation 184

We evaluated the type I error and power of the MB-TOST on βTrAUC and βTrCmax using the dif- 185

ferent approaches, at the nominal level α = 5% on the different scenarios. 186
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187

Five hundred data sets were simulated per scenario, using the R software. 188

The parameters of the NLMEM were estimated using the SAEM algorithm. For the parallel 189

design, we used the R package saemix version 1.2 [19], and for the crossover design, we used 190

the monolix software version 2018R2 [20]. 191

We used the same parameterisation with both softwares; 10 Monte Carlo Markov chains, 300 192

iterations in the exploratory phase, and 100 iterations in the smoothing phase. 193

194

For the Asympt approach, the FIM was obtained by linearisation. 195

For the Post approach, we used the Rstan package with 1000 iterations and 100 burn-in, so 196

that we obtained 900 samples. 197

For the Boot approach, we simulated B=250 data sets. 198

199

All calculations were run on an i7-5600 U CPU computer, with frequency 2.60 GHz, 4 cores, 8 200

GB of RAM. 201

4 Results 202

4.1 Two-arms parallel 203

For both the sparse and rich designs, the Relative Biais (RBiais) and the Relative Root Mean 204

Square Errors (RRMSE) were below 10% for the fixed effects and close to 0 for the treatment 205

effect coefficients (Table I in supplementary material 1). For the BSV and residual error stan- 206

dard deviations, there was a upward trend in the RBiais, below 10% for the rich design and 207

up to 30% for the sparse design. The RRMSE also increased for the sparse design, up to 121% 208

for the additive residual error standard deviation. Yet, there was no major concern with the 209

estimation of the NLMEM parameters. 210

On the rich design, MB-TOST conserved a nominal type I error with all different SE calculations 211

(Figure 3). On the sparse design with N=40, MB-TOST for βTrAUC using the asymptotic SE led 212

to an inflated type I error (Figure 3). However, using the alternative calculations of the SE, 213

the inflation was corrected. 214

In supplementary material 2, we evaluate the proposed approaches to compute the SE along 215

with both MB-TOST and MB-BOT on a sparser design (with N=12 subjects). Then, we 216

further explore the relationship between SE(βTrSP ) and the MB-TOST type I error and derive 217

a critical threshold when MB-TOST no longer controls its nominal level and MB-BOT should 218

be used instead. 219

8



The simulated power of MB-TOST using the different SE calculations were of similar order and 220

of reasonable size > 70% (Table I). We observe higher power to conclude to bioequivalence on 221

Cmax compared to AUC as we simulated ωCmax = 10% and ωAUC = 22%, respectively. 222

With regard to computational times, Asympt and Gallant approaches took a few seconds per 223

data set, whereas running Post took a few minutes, and Boot close to 1 hour. In fact, we did 224

not compute the bootstrap-based SE on the sparse design with N=20 (scenario simulated under 225

the null only), given its computational burden and the good performances of the Gallant and 226

Post alternatives. 227

4.2 Two-periods, two-sequences cross-over 228

The Rbias and RRMSE on all parameters for the scenario with a sparse design, which we 229

expected to be the most challenging under the null, are listed in Supplementary Material 1, 230

Table II. For the fixed effects and treatment effect coefficients, all Rbias were below 5% and 231

the RRMSE were below 25%. For the BSV, WSV and residual error standard deviations, the 232

Rbias showed a downward trend (but for γKa), and the RRMSE were below 40%. Again, there 233

was no major concern with the estimation of the NLMEM parameters. 234

MB-TOST for βTrAUC controlled its nominal level using all SE calculation whatever the design 235

(Figure 4). Whereas MB-TOST for βTrCmax using the asymptotic SE obtained an inflation of 236

the type I error at 7.6% on the rich design and 7.8% on the sparse design. This inflation was 237

corrected using all the alternative SE calculations. Given its computational burden and the 238

good performance of other alternative SE calculations, we only evaluated the bootstrap-based 239

SE on the most challenging design, i.e., the sparse design where it took about 5 hours per data 240

set. 241

MB-TOST for βTrAUC and βTrCmax obtained extremely high power (>95%) using all SE calcula- 242

tions whatever the design (Table II). 243

244

5 Discussion 245

In this work we proposed, and evaluated by simulations, three alternative SE calculations to 246

correct for the type I error inflation of MB-TOST in PK bioequivalence studies with sparse 247

sampling. MB-TOST using the three alternative SE calculations provided both a controlled 248

nominal type I error and satisfactory power, on parallel and cross-over studies with rich and 249

sparse sampling. Here, we used B=250 iterations for bootstrap. This relative small number 250

nonetheless enabled the bootstrap approach to provide a controlled type I error. However, 251

its computational burden proved particularly limiting, especially given the good performances 252

of the SE calculations based on the work of Gallant [6] and the a posteriori distribution [9]. 253
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The latter calculation is particularly appealing given the SE calculation based on the work of 254

Gallant will, by design, be of limited interest for high N. For now, it requires calling the Stan 255

software and further work is needed to embed this calculation within the monolix software or 256

saemix R package. 257

Besides sparse sampling, products with high PK variability present another methodological 258

challenge in bioequivalence studies. Already, Haidar et al. proposed a scaling approach setting 259

a constraint on the geometric mean ratio [21] and the US Food and Drug Administration’s 260

Office of Generic Drugs developed a reference-scaled average bioequivalence approach [22]. In 261

[12], Möllenhoff et al. proposed a new test, the MB-BOT, more appropriate for drugs with high 262

variability, when the sample size is not large enough. In Supplementary Material 2, we showed 263

that MB-BOT can also benefit from alternative SE calculations in PK BE studies with sparse 264

sampling. Further, we derived a threshold for the treatment effect SE above which MB-BOT 265

should be prefered to MB-TOST. 266

One limitation of the present work is the number of simulated datasets for each scenario un- 267

der consideration. We choose to simulate 500 data sets because of the computational burden 268

and because we could effectively compare the approaches in term of type 1 error. Another 269

non-negligible limitation is the use of the simulated model to perform the MB-TOST. Indeed, 270

we did not investigate the robustness to model misspecification, or consider a model averaging 271

approach [23]. However we reckon that when bioequivalence studies are performed, there exists 272

some accumulated knowledge on the drug PK model (resulting from either a bottom-up or a 273

top-down approach), at least in the reference treatment group. 274

275

Finally, statistical methods have recently been proposed to control the nominal type I error in 276

bioequivalence studies using adaptive designs [24]. This methods rely on an adaptation of the 277

NCA-TOST and we believe there is a case for exploring these methods using MB-TOST, and 278

non-asymptotic SE for PK bioequivalence studies with sparse sampling. 279

280

6 Conclusion 281

We recommend to use non-asymptotic SE, based on the a posteriori distribution of the treat- 282

ment effect coefficient, to test for bioequivalence on pharmacokinetic studies with sparse sam- 283

pling with MB-TOST. 284
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Figure 1: Spaghetti plots of simulated concentrations versus time for the two-arms parallel

design under H0 (top) and H1 (bottom) for rich (columns 1 and 2) and sparse (columns 3 and

4) designs, in the reference (R, columns 1 and 3) and the test (T, columns 2 and 4) treatment

groups.

Table I: Estimated power of MB-TOST on βTrAUC and βTrCmax, using the different SE calculations, for

the parallel rich and sparse designs on the 500 data sets.

Rich (n=10) Sparse (n=3)

βTrAUC βTrCmax βTrAUC βTrCmax

Asympt 0.830 1.000 0.804 1.000

Gallant 0.782 1.000 0.762 0.998

Post 0.772 0.966 0.712 0.990

Boot 0.832 1.000 0.800 1.000
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Figure 2: Spaghetti plots of simulated concentrations versus time for the 2-periods 2-sequences

(S1, S2) cross-over design under H0 (lines 1 and 2) and under H1 (lines 3 and 4) for rich

(columns 1 and 2) and sparse (columns 3 and 4) designs, in period 1 (P1, columns 1 and 3) and

period 2 (P2, columns 2 and 4).
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Figure 3: Type I errors of MB-TOST on βTrAUC (o) and on βTrCmax (4) using the different SE

calculations on the parallel rich (left), and sparse (right) designs. The 95% prediction interval

around 0.050 for 500 simulated data sets is indicated in grey (PI95%(0.050) = [0.0326; 0.0729]).
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Figure 4: Type I errors of MB-TOST on βTrAUC (o) and βTrCmax (4) using the different SE

calculations on the cross-over rich (left) and sparse (right) designs. The 95% prediction interval

around 0.050 for 500 simulated data sets is indicated in grey (PI95%(0.050) = [0.0326; 0.0729]).
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Table II: Estimated power of MB-TOST on βTrAUC and βTrCmax using the different SE calculation, for

the cross-over rich and sparse designs.

Rich (n=10) Sparse (n=3)

βTrAUC βTrCmax βTrAUC βTrCmax

Asympt 1.000 1.000 0.998 1.000

Gallant 1.000 1.000 0.998 1.000

Post 0.988 0.998 0.996 0.996
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