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Abstract

Microtubules are cylindrical cytoskeletal filaments. Their polymerization dynamics is characterized
by a dynamic instability between phases of growth and shrinkage. The stochastic switches from
shrinkage to growth and vice versa are called rescues and catastrophes, respectively. Experimental
observations characterized the latter ones as multistep processes. In the first part of this thesis, we
extend the empirical Dogterom–Leibler model of dynamic instability to discuss the effect that a
multistep catastrophe mechanism has on the distribution of microtubule lengths in the two regimes of
bounded and unbounded growth.We show that, in the former case, the steady state length distribution
is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe.
If rescue events are possible, we detect a maximum in the distribution, i.e., the microtubule has a
most probable length greater than zero. In the regime of unbounded growth, the length distribution
converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps.

In the mitotic spindle, microtubules attach to chromosomes via kinetochores, and their depolymeriza-
tion forces give rise to stochastic chromosome oscillations during metaphase. In the second part of this
thesis, we investigate the cooperative stochastic microtubule dynamics in spindle models consisting of
ensembles of parallel microtubules, which are attached to kinetochores via elastic linkers. We include
the dynamic instability of microtubules and forces on microtubules and kinetochores from elastic
linkers. A one-sided model with a single kinetochore exposed to an external force is solved analytically
employing a mean-field approach based on Fokker–Planck equations. The solution establishes a
bistable force–velocity relation of the kinetochore. Coupling the kinetochores of two such bistable
systems elastically in the full two-sided model gives rise to oscillations, which can explain stochastic
chromosome oscillations in metaphase. We derive constraints on linker stiffness and microtubule
number for these oscillations. Including poleward microtubule flux into the model, we can provide an
explanation for the experimentally observed suppression of chromosome oscillations in cells with
high flux velocities. Chromosome oscillations persist in the presence of polar ejection forces, however,
with a reduced amplitude and a phase shift between sister kinetochores. Moreover, polar ejection
forces are necessary to align the chromosomes at the spindle equator and stabilize an alternating
oscillation pattern of the two kinetochores. Finally, we modify the model such that microtubules can
only exert tensile forces on the kinetochore. Then, induced microtubule catastrophes after reaching the
kinetochore are necessary to stimulate oscillations. The model parameters can be adapted to reproduce
experimental results for kinetochore oscillations in PtK1 cells quantitatively.

The microtubule-binding Ndc80 complex is an integral part of kinetochores and is essential to transmit
forces from dynamic microtubule ends to the chromosomes. The Ndc80 complex has a rod-like
appearance and its mechanical properties are considered important for the dynamic interaction
between kinetochores and microtubules. In the final part of this thesis, we present a novel method that
allows us to time-trace the effective stiffness of Ndc80 complexes following shortening microtubule
ends against an applied force in optical trap experiments. Applying this method to wild type Ndc80
and three further variants, we reveal that each variant exhibits strain stiffening, i.e., the effective
stiffness increases under tension that is built up by a depolymerizing microtubule. The strain stiffening
relation is roughly linear and independent of the dynamic state of the microtubule. We introduce an
elastic model, which shows that the strain stiffening can be traced back to the specific architecture of
the Ndc80 complex and the bending elasticity of flaring protofilaments. The model reproduces the
roughly linear strain stiffening behavior if a force-dependent binding affinity is taken into account.





Zusammenfassung

Mikrotubuli sind zylinderförmige Filamente und Teil des Zytoskeletts. Ihre Polymerisationsdynamik
zeichnet sich durch eine dynamische Instabilität von Wachstums- und Schrumpfphasen aus. Die
zufälligen Wechsel vom schrumpfenden in den wachsenden Zustand und umgekehrt werden als
Rettungen bzw. Katastrophen bezeichnet. Letztere können experimentellen Beobachtungen zufolge als
Mehrschrittprozesse beschrieben werden. Im ersten Teil dieser Arbeit wird das empirische Dogterom-
Leibler-Modell der dynamischen Instabilität erweitert, um auszuarbeiten, welche Auswirkungen eine
Mehrschrittkatastrophe auf die Längenverteilung eines Mikrotubulus in den Regimen gebundenen
und ungebundenen Wachstums hat. Es zeigt sich, dass die Mikrotubuluslängen im gebundenen
Regime nicht mehr exponentiell und weniger endlastig verteilt sind, wenn eine Katastrophe aus
mehreren Schritten besteht. Wenn Rettungen möglich sind, hat die Verteilung ein Maximum und der
Mikrotubulus somit eine wahrscheinlichste Länge, die größer ist als 0. Im Regime ungebundenen
Wachstums nähert sich die Längenverteilung einer Normalverteilung an, die mit steigender Anzahl
der Katastrophenschritte schmaler wird.

In der Mitosespindel sind Mikrotubuli durch Kinetochore mit den Chromosomen verbunden und
üben so Kräfte aus, die in derMetaphase zu stochastischen Oszillationen der Chromosomen führen. Im
zweiten Teil dieser Arbeit untersuchen wir in Modellen der Mitosespindel die kollektive Dynamik von
Mikrotubuli, die durch elastische Federn an Kinetochore gebunden sind. Die Modelle beinhalten die
dynamische Instabilität derMikrotubuli und die Kräfte, die durch die elastischenVerbindungenwirken.
Für ein einseitiges Modell mit nur einem Kinetochor, das einer externen Kraft ausgesetzt ist, können
mithilfe einer Molekularfeldnäherung Fokker-Planck-Gleichungen aufgestellt und gelöst werden. Aus
der Lösung folgt eine bistabile Abhängigkeit der Kinetochorgeschwindigkeit von der externenKraft. Im
zweiseitigenModell mit zwei elastisch gekoppelten Kinetochoren führt die Bistabilität zu Oszillationen,
die denen der Chromosomen in der Metaphase gleichen. Das Modell kann erklären, warum in Zellen
mit einem schnellen polwärtigen Mikrotubulusfluss keine Oszillationen beobachtet wurden. Polare
Auswurfkräfte gewährleisten im Modell eine Anordnung der Kinetochore am Spindeläquator und
führen zu geregelteren Oszillationen mit verringerter Amplitude. Wenn das Modell so geändert wird,
dass die Mikrotubuli nur Zugkräfte auf das Kinetochor ausüben können, treten Oszillationen nur
unter der Voraussetzung auf, dass in der Nähe der Kinetochore Katastrophen induziert werden.
Die Modellparameter können so angepasst werden, dass die modellierten Oszillationen auch in
quantitativer Hinsicht mit Messungen in PtK1-Zellen übereinstimmen.

Ein wichtiger Bestandteil des Kinetochors sind stäbchenförmige Ndc80-Komplexe, die den Mikrotubu-
lus binden undderen elastischen Eigenschaften alswichtig für die Kraftübertragung vomMikrotubulus
auf das Chromosom erachtet werden. Im letzten Teil dieser Arbeit wird eine Methode präsentiert,
die es erlaubt, den zeitlichen Verlauf der effektiven Steifigkeit von Ndc80-Komplexen zu ermitteln,
die in einer optischen Falle entgegen einer Kraft dem schrumpfenden Ende eines Mikrotubulus
folgen. Die Anwendung der Methode auf mehrere Experimente zeigt, dass sowohl der Wildtyp als
auch drei weitere Ndc80-Varianten steifer werden, wenn der schrumpfende Mikrotubulus sie unter
Spannung setzt. Die gemessene Steifigkeit hat eine annähernd lineare Abhängigkeit von der angelegten
Kraft und ist unabhängig vom dynamischen Zustand des Mikrotubulus. Mithilfe eines elastischen
Modells kann die Versteifung auf die spezielle Architektur des Ndc80-Komplexes sowie auf das
Biegen gekrümmter Protofilamente zurückgeführt werden. Ein Modell mit einer kraftabhängigen
Bindungsaffinität reproduziert die lineare Beziehung zwischen Steifigkeit und Kraft.
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Introduction 1
Since the cell is the fundamental building block of life, its investi-
gation is one of the main branches of biology [1]. While cell biology
was and is still dominated by biochemicalmethods and approaches,
the interest in the physical properties of cells, their compartments
and intracellular processes has grown steadily since the middle of
the 20th century when biochemistry had long become established
as an own area of research [2, 3]. As a consequence, physics does
not only enrich today’s cell biological research methodologically
by providing and improving measuring tools but also conceptually
by offering additional and often necessary perspectives on cell bio-
logical subjects both by experimental and theoretical approaches.
Parallel to physics, alsomathematics entered the field of biology [4].
Similarly to the fruitful interplay between physics andmathematics
in the last four centuries, biology has been pronounced to not only
benefit from but also to bring forward mathematics by giving rise
to questions that require development of novel mathematics to be
answered [5].

The entries of both physics and mathematics into biological re-
search have been facilitated by several developments. One booster
was the development of modern and automated experimental
methods. An example of such revolutionizing experimental tools
are force spectroscopic instruments like the atomic force micro-
scope (AFM) [6] or optical [7] and magnetic tweezers [8], which
allow for measuring as well as applying forces on cells or single
macromolecules at the piconewton scale [9]. Typical experiments
either examine responses to an external force, e.g., stretching of
DNA [10–12] or protein unfolding [13–15], or measure distances
and forces that are actively generated by cellular components like
motor proteins [16–18] or cytoskeletal filaments [19–21]. Thereby,
mechanical forces have been revealed to play an essential role
for various cellular processes and to provide a third important
pathway for the transmission of inter- and intracellular signals
besides biochemical and electric signaling [22]. Due to the me-
chanical character of these forces, their correct description is a
deeply physical issue and, therefore, should be carried out on a
biophysical rather than a biochemical basis.

A further consequence of the automation in modern experimental
techniques is the vastly increased amount of acquired quantitative
data. Such quantitative data also needs to be evaluated quantita-
tively, which often requires sophisticated statistical methods. More-
over, owing to the quantification of biological data, it is common
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1 Similarly, in physics, which is classi-
cally divided into experimental and
theoretical physics, computational
physics emerged as an additional
branch that bridges theory and exper-
iment [25].

2As reported by Freeman Dyson [26],
Enrico Fermi ascribed this quote to
John von Neumann in 1953. Allow-
ing the four or five parameters to be
complex, the statement was actually
shown to be true [27].

3 “Milk production at a dairy farmwas
low so the farmer wrote to the local
university, asking help from academia.
A multidisciplinary team of profes-
sors was assembled, headed by a the-
oretical physicist, and two weeks of
intensive on-site investigation took
place. The scholars then returned to
the university, notebooks crammed
with data, where the task of writing
the report was left to the team leader.
Shortly thereafter the farmer received
the write-up, and opened it to read
on the first line: ’Consider a spherical
cow...’ ” [28]
4 Expressed in the above metaphors,
the models and approaches used in
this thesis are closer to the spherical
cow than to von Neumann’s elephant.

today to interpret experimental results by means of quantitative
models instead of merely deducing qualitative statements [23, 24].
Both data evaluation and modeling have been facilitated by the
enormous evolution of computational resources. The widespread
use of computer simulations led to the term in silico in reference to
the “classical” in vivo and in vitro experiments.1

A theoretical model of a cell biological system always has to be
a simplification due to the sheer complexity of the cell and its
constituents. Even if a detailed ab initio approach that starts from a
molecular basis were realizable given the available computational
resources, it would not have to be helpful. A model that perfectly
reflects the real system is just as complex and as hard to grasp,
and thus, it will possibly produce no new insights that could not
be deduced from the real system, too [23, 24]. Moreover, for any
further detail that is included in a model, additional assumptions
have to be made and additional parameters are required. If these
parameters are not experimentally accessible, they can either be
guessed a priori and then left unchanged, or they can be fitted a
posteriori to make the model reproduce the behavior of the real
system. The more parameters are left free in the fitting process,
the greater the chance to find a combination providing the sought
results, but the smaller the reliability of the found parameters
regarding their uniqueness and their accordance with reality. As
John von Neumann once said: “With four parameters I can fit an
elephant, and with five I can make him wiggle his trunk.”2

Instead of trying to incorporate as many details as possible, a
minimalmodel that is only based on a few simplifying assumptions
often is more valuable. If such a model exhibits the same or at
least a similar behavior as the real system, it can reveal the decisive
mechanisms, and then be extended step by step to approach a
more realistic representation. However, as for extremely detailed
models, there is also the opposite risk of simplifying a model to
such an extent that crucial parts of the real system are omitted.
Oversimplified models are humorously referred to as “spherical
cows” based a famous joke about theoretical physicists.3 After
all, the task of model building is to find an appropriate balance
between feasibility and attention to detail. In this thesis, we follow
the strategy to keep the models as simple as possible without
ignoring the core elements of the real system, and to vary only a
few crucial parameters to investigate their influence in a qualitative
manner rather than seeking an artificial quantitative agreement by
simultaneously adjusting multiple parameters.4

Dependingon thematter of interest, thedegree of simplification can
differ betweendifferentmodels of the sameobject. This is illustrated
in Fig. 1.1 on the example of amicrotubule (MT), which is present in
all models used in this thesis. MTs are dynamic tubular filaments
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Figure 1.1: Scales of coarse-graining
on the example of a microtubule.
(A) MT as a continuous 1-dim. ob-
ject. (B) MT with continuous protofil-
aments. (C) MT as a discrete 1-dim.
polymer. (D) 3-dim. microscopic MT
structure as built up by tubulin dimers.
(E) Spatial Structure of a tubulin dimer,
adapted from [45]. (F) Chemical struc-
ture of a generic polypeptide.

6 This is called ensemble mean. In order
to describe a system that is in a steady
state like the thermodynamic equilib-
rium, averaging over a long running
single simulation is sufficient, since
here, the ensemble mean is the same
as the time mean according to the er-
godic hypothesis.

and part of the cytoskeleton, where they fulfill various functions.
For instance, they serve as tracks for intracellular transport, stabilize
the cell and certain cellular structures, and build up the mitotic
spindle, which drives the chromosome segregation during mitosis.
MTs are built up by cylindrically arranged protofilaments, which
themselves are chains of tubulin heterodimers.5

5 Moredetailed informationaboutMTs,
their structure and their functions is
presented in Sec. 2.1.

In the following
two chapters, where we are only interested in the length of a MT
and its dynamics, we neglect the tubular shape and themicroscopic
structure, and treat the MT as a straight line that can grow and
shrink continuously (Fig. 1.1A) [29–32]. Later, in Chapter 4, where
we examine the elastic properties of the bent protofilaments at
the MT tip, we use a finer grained model that considers the
individual protofilaments as bendable beams (Fig. 1.1B) [33, 34].
If one is interested in the special polymerization dynamics of
a MT in consideration of its discreteness, a first approximation
could be the model in Fig. 1.1C, where the MT is mapped to
a one-dimensional polymer with rings of tubulin dimers as its
monomers [35–38]. In order to investigate how the polymerization
depends on the interactions between tubulins within the same
and within neighboring protofilaments, a model should reflect the
complete spatial structure on a microscopic scale with a tubulin
(dimer) as the smallest element (Fig. 1.1D) [39–43]. Even such
models contain several degrees of coarse-graining as the tubulins
are proteins that have a complex structure themselves (Fig. 1.1E)
and consist of a chain of hundreds of amino acids at the molecular
scale (Fig. 1.1F) [44].

Quantitative models can further be classified by their implemen-
tation, which can be mathematical or computational [23, 46].
Computational models can theoretically be arbitrarily complex
but are restricted by computational power and time. Results are
obtained by running simulations, which can also include stochastic
elements (Monte Carlo (MC) simulations). A simulation is suitable
to generate a sample path of a stochastic process, e.g., motion of
a Brownian particle. To obtain general results, one has to average
over many instances of the same stochastic simulation.6 Therefore,
a systematic analysis of parameter changes can be computationally
very costly so that such analyses are often limited to find one
combination of parameters via trial and error that reproduces
observations made in the real system. However, as mentioned
above, finding such a single parameter set is not a proof for an
accordance with reality, though it may pretend the opposite. Math-
ematical models, on the other hand, are based on algebraic or
(partial) differential equations, which can be solved numerically
or, if possible, analytically. In the case of a stochastic system, the
result of a mathematical model may be a mean value or even the
whole, maybe time dependent probability distribution instead of a
single sample as obtained from a stochastic simulation. In order to
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7 and in a sense also because of the
stronger simplification since it may
make the model comprehensible in
the first place.

keep the equations solvable, mathematical models usually require
more simplifications and/or a higher degree of coarse-graining
than computational models. Despite the stronger simplification,7 a
mathematical model may provide a greater step towards under-
standing not only what are the basic mechanisms but also how
they work. Once a mathematical model is solved, detection and a
systematic analysis of the crucial parameters are possible.

The method of choice should be a combination of both mathe-
matical and computational approaches. In this thesis, the usual
approach is to initially develop amodel with an appropriate degree
of simplification but irrespective of its later implementation. While
the initial models can always be implemented in a computational
simulation, a mathematical solution, which we want to use for a
deeper analysis of the crucial mechanisms, often requires stronger
simplifications. However, the mathematical and the computational
model are probably identical in a particular limit, which can be, for
instance, short or long times or distances, few or many particles, or
a steady state of a dynamic system. Therefore, the mathematical
results can be used to validate the computational simulations on
the one hand, and on the other hand, any conclusion drawn from
the mathematical model that lies out of the limits where it is exact
can be verified by simulations.

In this thesis, we examine different aspects of MT dynamics and
mitosis by means of dynamic and mechanical models. Mitosis
is a crucial part of the eukaryotic cell cycle and describes the
division of the cell nucleus, which contains the DNA organized in
chromosomes. The proper division of the beforehand replicated
chromosomes ensures that the two daughter cells that exist after
cell division contain the same genetic information. Themain results
are presented in Chapters 2–4. Though these chapters are loosely
connected by their overall topic, they are presented in a widely
independent way. Each chapter begins with its own introduction
followed by a propaedeutic section about the biological objects
and processes that are examined thereafter. Moreover, there are
individual discussions at the ends of Chapters 2–4. Only in the
summary and outlook in Chapter 5, we review our work from
a more global perspective and discuss in some aspects which
implications the beforehand independently obtained results have
on each other and how they could be linked in future work.

In the following, we give a brief outline of this thesis, referring to
the more detailed introductions at the beginning of Chapters 2–4.
In Chapter 2, we examine the polymerization dynamics of single
MTs using a coarse-grained model as depicted in Fig. 1.1A. MT
dynamics is characterized by stochastic switches between phases of
constant growth and constant shrinkage, whichwas first quantified
by the empirical Dogterom–Leibler model [29, 30]. While in this
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model, the state transitions are assumed to be Poisson processes
with constant transition rates, it has later been observed in vitro
that the transition from growth to shrinkage is better described
with an age-dependent transition rate or as a process that requires
multiple steps [47–49]. Here, we account for this observation by
incorporating such multistep process into the Dogterom–Leibler
model. Multistep dynamics results in MT length distributions that
are narrower than in the single step model and have a maximum
and a lighter tail in the steady state. These dynamic changes may
help the MT to adapt for its different functions within the cell.

Chapter 3 is about the cooperative dynamics of MTs and chro-
mosomes during mitosis. Mitosis is driven by the mitotic spindle,
in which MTs emerge from two opposite spindle poles. The MTs
can bind to kinetochores, two of which are located on opposite
sites on each chromosome. When the chromosome is bidirection-
ally attached, shrinking MTs can pull the two sister chromatids
apart and transport them into two daughter nuclei. Before the
chromatids are separated, they are aligned in a plate at the spindle
equator, where they do not rest but oscillate along the pole to
pole axis [50–56]. In order to understand the occurrence of these
oscillations, we employ a one-dimensional model of the mitotic
spindle that is based on the minimal model of Banigan et al. [57].
The model contains a single chromosome represented by two
elastically coupled kinetochores, and two opposite ensembles of
MTs, which can stochastically bind to the chromosome via simple
elastic linkers. Chromosome oscillations can be traced back to a
bistable relation between kinetochore velocity and an external
force in a one-sided model with only one chromatid and one MT
ensemble. A mean-field approach allows us to describe bistability
and chromosome oscillations mathematically, and to find lower
bounds of the MT–kinetochore linker stiffness for their occurrence.
Moreover, the mathematical solution helps us to understand the
effects of several additional phenomena like poleward MT flux
or polar ejection forces, which we incorporate into the minimal
model in the later sections.

MTs are linked to the kinetochore via rod-like Ndc80 complexes.
Ndc80 complexes were observed to stiffen under force in recent
optical trap experiments [58], which were repeated with three
different variants of the Ndc80 complex [59]. In Chapter 4, we
first reanalyze these experiments with a novel method that allows
us to time-trace the stiffness during MT growth and shrinkage.
Later, we develop an elastic model based on the structure of the
Ndc80 complex and the elastic properties of the attached MT
and its protofilaments. Comparison of the strain stiffening in the
experiment and the model suggests that Ndc80–MT binding is
enhanced by tension.





Large parts of this chapter have
already been published as a preprint
in Ref. [60].

Figure 2.1: Eukaryotic cytoskeleton.
The picture shows bovine pulmonary
artery endothelial cells. Microtubules
are stained green, actin filaments are
red, the nucleus blue. [61]

1 In the short introduction to this chap-
ter as well as the following section 2.1,
we generally refer to Alberts et al. [1]
for any biological information that we
present without citing a specific refer-
ence.
2 The cells of eukaryotes, including an-
imals and plants, are characterized by
a cell nucleus containing the chromo-
somes, see Fig. 2.1.

Figure 2.2: Structure of actin fila-
ments.

3 The term F-actin (filamentous) de-
notes actin proteins that are bound in
an actin filament. Free actinmonomers
are called G-actin (globular).

Multistep dynamics of single
microtubules 2

The cytoskeleton is an essential part of a biological cell. It is a filamen-
tous scaffold that—to mention just a few of its functions—provides
mechanical stability, defines the cell shape, and is responsible for
cell motility as well as intracellular motion and transport processes.
Unlike the static human skeleton, the cytoskeleton is a highly dy-
namic system, whose structures can be assembled and rearranged
rapidly, which allows the cell to adapt to altered circumstances.1

In eukaryotic cells,2 the cytoskeleton consists of three types of
protein filaments: microtubules, actin filaments, and intermediate
filaments, see Fig. 2.1. Intermediate filaments do not appear in all eu-
karyotic cells, but can be found in some metazoans, for instance, in
vertebrates. The term intermediate filaments covers a whole family
of rope-like protein filaments with a diameter of approximately
10 nm. Due to their ability to withstand tensile forces, their main
function is the mechanical stabilization of the cell.

Actin filaments, also called microfilaments, are with a diameter of
8 nm the thinnest of the cytoskeletal filaments. They consist of two
F-actin3 strands winded helically around each other as sketched
in Fig. 2.2. Each actin subunit has a binding site for adenosine
triphosphate (ATP), which tends to be hydrolyzed to adenosine
diphosphate (ADP) when it is incorporated into the filament. Since
the asymmetrical subunits are aligned with the same orientation
within an F-actin strand, i.e., they are assembled head-to-tail, the
actin filament itself exhibits a structural polarity: one can differ a
slowly polymerizing minus end with an exposed ATP binding site
and a fast polymerizing plus end. Together with hydrolysis of the
bound ATP, the different reaction kinetics of the two ends result in
a polymerizing behavior similar to the one of microtubules, which
is described in the following section. With a persistence length
of approximately 20µm [62], actin filaments are comparatively
flexible. Within the cell, they are often cross-linked to more rigid
networks, for instance, in the actin cortex, which lies beneath the
plasma membrane and stabilizes the shape of the cell. A second
prominent function of actin filaments is the interplay with myosin
motor proteins in muscle cells, which is responsible for muscle
contraction.

In this chapter, we focus on the third filament type, themicrotubules
(MTs). After giving a brief overview of the structure and functions
of MTs, we discuss their specific polymerization dynamics, which
is characterized by stochastic switches between a growing and a
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4Although MTs with 13 protofil-
aments are predominant in most
species [63, 64], there are several coun-
terexamples. For instance, the nema-
tode Caenorhabditis elegans has MTs
with 11 and 15 protofilaments [65].
The so-called accessory MTs in ax-
onemes of insect sperm consist of 13–
20 protofilaments [66], and even acces-
sory MTs with 40 protofilaments have
been observed [67].

shrinking state. These dynamics and the consequential length dis-
tributions are classically quantified by an empirical four parameter
model that describes the state transitions as Poisson processes with
constant transition rates [29, 30]. However, in vitro measurements
that have shown that the growth durations of MTs are not dis-
tributed exponentially as onewould expect for a constant transition
rate led to the conclusion that the catastrophe, which is how the
transition from the growth to the shrinking state is called, is rather
the result of a series of multiple stochastically occurring steps
instead of a single stochastic event [47–49]. In order to account for
these observations, we extend the classical four parameter model
and examine how the length distributions of MTs are affected by a
multistep catastrophe mechanism.

2.1 Structure, functions and dynamics of
microtubules

2.1.1 Structure and functions of microtubules

The subunit of aMT is a heterodimer composed of an α-tubulin and
a β-tubulin, which are bound non-covalently, see Fig. 2.3A. Both
α- and β-tubulin have a binding site for guanosine triphosphate
(GTP), however, only the GTP that is bound to the β-tubulin can be
hydrolyzed to guanosine diphosphate (GDP) whereas the α-bound
GTP is enclosed in the dimer. We will see below that the hydrolysis
of tubulin-bound GTP is crucial for the characteristic polymeriza-
tion dynamics of MTs. A chain of tubulin dimers that are jointed
head-to-tail, i.e., α- and β-tubulin appear alternately as shown in
Fig. 2.3B, forms a protofilament. Finally, MTs are hollow cylinders
consisting of 13 parallel protofilaments4 in a slightly helical ar-
rangement. Since within a MT, the subunits form both longitudinal
attachments to subunits of the same protofilament as well as lateral
attachments to subunits of neighboring protofilaments, the tubulin
dimers are tightly bound in the MT lattice and hence can only be
added or removed at the ends of the MT. Moreover, due to these
multidirectional interactions and the cylindrical structure, MTs
are rather stiff filaments with a persistence length in the range of
millimeters [62].

As a consequence of the parallel arrangement of protofilaments, the
MT inherits their polarity that derives its origin in the head-to-tail
alignment of the subunits. Therefore, as with the actin filaments,
one can differ a slowly polymerizing minus end, which is the end
where the α-tubulins are exposed, and a highly dynamic plus end
with β-tubulin. In vivo, theminus end is often bound in amicrotubule
organizing center (MTOC) like the centrosome in metazoa while the
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Figure 2.3: Microtubule structure.
(A) Structure of the α-/β-tubulin het-
erodimer, adapted from [45]. While
the GTP that is bound to the α-tubulin
is enclosed in the dimer, the β-bound
GTPcanbehydrolyzed toGDP. (B) The
tubulin heterodimer is the subunit of
the MT. A chain of subunits forms a
protofilament. Due to the head-to-tail
order of the heterodimers, the protofil-
ament is a polar structure with a plus
and a minus end. This polarity is in-
herited by the MT, which is a hollow
cylindrical filament composed of 13
slightly helically arranged protofila-
ments.

GTP

GTP/GDP

GTP

β-tubulin

α-tubulin

protofilament

microtubule

plus-endminus-end

tubulin heterodimer

β-tubulinα-tubulin
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5 Such interphase MTs can be seen in
Fig. 2.1.

6 The subunit of actin filaments is G-
actin (instead of tubulin dimers in
MTs) and contains ATP that can be
hydrolyzed to ADP (instead of GTP
and GDP).

free plus end is able to grow and shrink in a stochastic process
called dynamic instability [68]. Before discussing the details of
dynamic instability and its connection to GTP hydrolysis in the
following section, we will first give a brief outline of the main
functions of MTs inside the cell.

MTs fulfill different functions during the course of a eukaryotic
cell cycle. Roughly, one can differ the interphase, in which the
cell grows and replicates its organelles, and the M-Phase, which
contains the mitosis and the cytokinesis. During interphase, an
aster of MTs that emerge from the MTOC spans the cytoplasm.5

TheseMTs stabilize the cell and function as tracks formotor proteins,
in particular for dyneins and kinesins, which transport various cell
organelles from the cell center to the membrane and vice versa.
During mitosis, there are two MT asters that form the bipolar
mitotic spindle. In the spindle, we can find three types of MTs:
while the astral and the interpolar MTs regulate spindle position
and length, respectively, the kinetochore MTs search and capture
the chromosomes, pull their chromatids apart and thereby ensure
the proper separation of the replicated DNA to the two daughter
cells. In chapter 3, we take a closer look on the mitotic spindle and
the interplay between kinetochore MTs and chromosomes.

Besides these two major functions, MTs play important roles
in certain structures of several specialized cells. In neurons, for
instance, they are aligned parallelly along the axon where they
serve as tracks for transport by motor proteins. Another example
are MT bundles that form the core of flagella and cilia, which are
hairy appendages that are important for cell motility.

2.1.2 Filament dynamics and dynamic instability

We start this section with a brief, more general overview of poly-
merization dynamics of filaments. Though, we do this based on
the example of MTs, which are the filaments of our interest, we
note that the following paragraph applies analogously to actin
filaments.6
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7While the mean number of subunits
that leave the filament per second is
constant, the number of added sub-
units is proportional to their concen-
tration C in the vicinity of the MT end.
At the critical concentration, both rates
are the same and the filament has a
constant length: koff � konCc.
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Figure 2.4: Elongation rates of the
plus and the minus end in depen-
dence of the subunit concentration C
and the form of the exposed subunit
(T or D). The elongation rate is de-
fined as konC−koff. Its signdetermines
whether the MT is growing or shrink-
ing. When both ends are of the same
type, their critical concentrations are
equal (Cc,T or Cc,D). Treadmilling and
dynamic instability can occur for con-
centrations Cc,T < C < Cc,D.

As mentioned before, a MT has a fast polymerizing plus end and
a slow minus end. “Fast” and “slow” in this context mean that
the minus end has both a smaller polymerization rate kon and a
smaller depolymerization rate koff than the plus end. However, the
critical concentration7 Cc � koff/kon of free subunits is the same for
the two ends so that both ends either polymerize or depolymerize
simultaneously. This situation changes when the GTP hydrolysis
is taken into account. Depending on whether the β-tubulin carries
a GTP or a GDP molecule, one can differ between a T-form and a
D-form of a subunit. While free subunits are mostly found in the
T-form, their β-bound GTP tends to be hydrolyzed to GDP after
the incorporation into the filament. Thus, the tubulin dimers in
the middle of the MT usually carry a GDP molecule. The form
of the subunits that are exposed at the end is determined by a
race between polymerization and hydrolysis: When new subunits
are added before the currently exposed subunits are hydrolyzed,
the end is formed by a GTP cap consisting of T-subunits, which
is the typical situation at the plus end. On the other hand, when
the hydrolysis is faster than the addition of new subunits, we
find the D-form at the end, which usually applies to the slowly
polymerizingminus end. The decisive factor for the polymerization
dynamics of filaments is that the critical concentration of an end
with T-form subunits is smaller than the critical concentration of
a D-end, Cc,T < Cc,D. Hence, at tubulin concentrations between
these two critical concentrations, a filament is growing at a T-end
and shrinking at a D-end, see Fig. 2.4, which is the basis for the two
characteristic mechanisms of filament dynamics: treadmilling [69]
and dynamic instability [68]. If both ends are free, it is probable
that theminus end consists of D-subunits and depolymerizes while
the plus end has a GTP cap and polymerizes so that the filament
effectively moves in the direction of the plus end. This effective
motion, which is called treadmilling, is usually associated with actin
filaments, but was also observed for MTs in vitro [70] as well as in
vivo [71].

Dynamic instability occurs when the filament has only one free end
as it is usually the case for MTs in vivo, whose minus ends are usu-
ally bound in a MTOC. Such MTs can only (de)polymerize at their
plus ends, which we will also refer to as MT tips in the following.
Since the mentioned race between polymerization and hydrolysis
is a stochastic process, the form of the subunits at the plus end, and
therefore—at appropriate tubulin concentrations—the direction of
polymerization is a stochastic property, too. The term “dynamic
instability” describes the stochastic switching between periods
of growth/polymerization and shrinkage/depolymerization as
illustrated in Fig. 2.5. As long as the MT tip is stabilized by a
GTP cap, the MT is growing. When the GTP hydrolysis overtakes
the addition of new subunits, the GTP cap vanishes and the MT
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Figure 2.5: Dynamic instability.
(A) When the plus end is stabilized
by the GTP cap, the MT is growing
by incorporating GTP dimers from the
solution. Within the MT lattice, the
hydrolysis of GTP to GDP is catalyzed.
(B) When the hydrolysis is faster than
the incorporation of new GTP dimers,
the GTP cap vanishes and the MT un-
dergoes a catastrophe. (C) Without
the stabilizing GTP cap, the protofila-
ments curl outwards and depolymer-
ize. (D) The MT is rescued and starts
growing again when a new GTP cap
emerges.

undergoes a catastrophe: without the stabilizing cap, the protofila-
ments curl outwards8

8We note that the widely held notion
that the protofilaments of a shrinking
MT are curved while being straight-
ened by the stabilizingGTP capduring
growth is outdated as it was recently
observed that the protofilaments of
growing MTs also exhibit a curvature
that is similar to the curvature of de-
polymerizingprotofilaments [72].How-
ever, this microscopic detail is not rel-
evant for the coarse-grained model
used in the next section.

and depolymerize, the MT switches to the
shrinking state. A shrinking MT can switch back to the growing
state when a new GTP cap is formed at its tip. Such an event is
called rescue. The stochastic emergence of a new GTP cap is not
completely understood. One idea is that not all GTP molecules
are hydrolyzed to GDP in the inner MT lattice. Then, the residual
T-subunits can build GTP islands, which form a new GTP cap
when they are reached by the shrinking MT tip. [73, 74].

In vivo, the polymerization dynamics of MTs does not only depend
on the concentration of tubulin dimers but is influenced by a variety
of microtubule associated proteins (MAPs). MAP is a general term for
any protein that binds to aMT, including the aforementionedmotor
proteins. An example for motor proteins that affect MT dynamics
are the members of the kinesin-13 family like MCAK,9

9 mitotic centromere-associatedkinesin

which act as
catastrophe factors by destabilizing the MT tip. Another important
group of MAPs are the plus end tracking proteins (+TIPs), which
accumulate and stay attached at the plus end of a (de)polymerizing
MT. For instance, XMAP215 stabilizes the plus end and increases
the polymerization rate. The end-binding protein EB1 recruits
other +TIPs and can connect the plus end with different cellular
structures, e.g., with the cell cortex. There are also MAPs that
are not directly correlated with the polymerization dynamics but
mediate other functions byMT binding, such as theMT crosslinker
MAP2 or the MT severing protein katanin.

2.2 Modeling dynamics of single microtubules

A first mathematical description of dynamic instability was pro-
vided by the Dogterom–Leibler model [29, 30], which is an
empirical description of the experimental observation that MT
length exhibits phases of constant growth and constant shrink-
age [75, 76]. The model is based on four constant parameters:
a (de)polymerization velocity for the growth and the shrinkage
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10 MTAs are chemical compounds that
affect the dynamic properties of MTs.
They are used as drugs for cancer treat-
ment as they inhibit the division of
cancer cells by destabilizing the MTs
in the mitotic spindle. [78]

state, and two transition rates for the occurrence of catastrophes
or rescues. Depending on these parameters, the MT can either be
in a bounded regime, in which its lengths approach a stationary
exponential distribution, or in a regime of unbounded growth.

Later on, Odde et al. [47] and, more recently, Stepanova et al. [48]
and Gardner et al. [49] found that the durations of the growth
intervals are not distributed exponentially, as onewould expect due
to a constant catastrophe rate. Instead, the measured distributions
could be well described by a multistep process, which means that
the MT ages and the catastrophe rate increases during growth.
While it was concordantly reported from control groups of in vitro
experiments that a MT has to pass approximately three steps to
undergo a catastrophe [47, 49, 77], it was also shown in the same
experiments that the number of steps depends on concentrations
of kinesins [49] or MT targeting agents (MTAs)10 [77].

The underlying mechanism of MT aging is still under debate and
several microscopic models have been proposed. For instance, it
was suggested that a catastrophe is triggered by a certain number of
“sub-catastrophes” of single protofilaments [37]. A mechanochem-
ical approach led to the conclusion that the MT tip becomes
more tapered during growth which promotes catastrophe [41].
Another model, which included Brownian dynamics of single
tubulin molecules, revealed that MT aging might be a much more
complex stochastic process relying on a fluctuating MT tip and an
increasing number of curled protofilaments [42].

Here, we do not concentrate on themicroscopic details ofMT aging
but on the consequences a multistep catastrophe mechanism has
for the distribution of MT lengths. For that purpose, we extend the
empirical Dogterom–Leibler model by subdividing the growing
state into a certain number of sub-states aMThas to pass to undergo
a catastrophe. In the regime of bounded growth, the stationary
form of the resultingmaster equations has to be solved numerically,
except for the case that MTs can not be rescued. However, taking
advantage of the results of Jemseena and Gopalakrishnan [32],
who set up and analyzed master equations for dynamic instability
with an age-dependent catastrophe rate, we are able to compute
exact values for the mean MT length and higher momenta and to
provide an approximation that comprises the key characteristics
of the distribution. While Jemseena and Gopalakrishnan made up
heuristic functions to directly fit the age-dependency of catastrophe,
our work is based on the model that catastrophe is a multistep
process with equal transition rates for each step. Our main results
are similar to those obtained by Jemseena and Gopalakrishnan:
The duration of MT growth becomes less stochastic if more steps
are necessary to undergo a catastrophe, which results in a more
narrow length distribution with a lighter tail. In particular, the
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Figure 2.6: MT trajectories. The MT
exhibits phases of growth (+) and
shrinkage (−) with constant veloci-
ties v±. The durations τ± of these
phases as well as the covered distances
x± � v±τ± are distributed exponen-
tially in the Dogterom–Leibler model,
which contradicts experimentally ob-
served non-exponential distributions
of τ+. This contradiction is dealt with
in the following section by means of
an extended model.

11 Since a MT consists of 13 protofila-
ments, the effective monomer length
is not the size of one tubulin dimer
(8 nm) but 8/13 nm � 0.62 nm.

distribution has a maximum if rescues are possible, i.e., the MT
has a most probable length greater than zero, in contrast to the
monotonically decreasing exponential distribution that follows
from a single-step catastrophe. To go beyond the work of Ref. [32],
we also examine the regime of unbounded growth, where the MT
lengths approach a Gaussian distribution like in the case of a single-
step catastrophe [29, 30] but with a variance that decreases with
the number of steps that are necessary to trigger a catastrophe.

2.2.1 Classical four parameter model of dynamic
instability

The Dogterom–Leibler model [29, 30] is an empirical, coarse-
grained MT model that neglects the microscopic and spatial struc-
ture of the MT and instead approximates the MT as a continuous
one-dimensional object. According to themodel, theMT is either in
a growing (+) or in a shrinking (−) state in which it is polymerizing
or depolymerizing, respectively. Neither the stochastic nature nor
the discreteness of (de)polymerization is accounted for. Instead,
the continuous one-dimensional MT grows or shrinks with a con-
stant velocity v+ or v−, as it is sketched in Fig. 2.6 and has been
observed similarly in experiments [75, 76]. The velocities are given
by v± � k± ∆x, where ∆x is the monomer length11 and k± are the
effective elongation rates for a MT with (+) and without (−) a GTP
cap as they are defined in Fig. 2.4. Thus, the constant velocities are
based on the assumption that the concentration of free subunits
stays constant despite (de)polymerization, i.e., the MT is located
in an infinitely large reservoir of free tubulin dimers.

The MT can switch from the growing to the shrinking state with
the catastrophe rate ωc and vice versa with the rescue rate ωr as
sketched in Fig. 2.7A. Both rescue and catastrophe are modeled as
Poisson processes with constant transition rates, i.e., the growth
(shrinking) duration is distributed exponentially and its mean is
given by 〈τ+〉 � ω−1

c (〈τ−〉 � ω−1
r ). Due to the constant growth

(shrinking) velocity, also the length gain (loss) during one period of
growth (shrinkage) is distributed exponentially with an average of
〈x+〉 � v+〈τ+〉 (〈x−〉 � v−〈τ−〉). Introducing probability densities
p±(x , t) for the MT length x in the growing and the shrinking
states at time t, dynamic instability can be described by a system
of two Fokker–Planck equations (FPEs) [30]:

∂t p+(x , t) � −ωc p+(x , t) + ωr p−(x , t) − v+ ∂x p+(x , t),
∂t p−(x , t) � ωc p+(x , t) − ωr p−(x , t) + v− ∂x p−(x , t),

(2.1)

where the overall probability density p(x , t) � p+(x , t) + p−(x , t)
has to be normalized at any time. The mean velocity of the MT tip
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Figure 2.7: Models of dynamic insta-
bility. The MT is either in a growing
or in a shrinking state, in which its
tip moves with constant velocities v+
or v−. (A) In the classical Dogterom–
Leibler model, catastrophe is a single
step process with a constant rate ωc.
(B) When catastrophe is modeled as a
multistep process, the growing state
is divided into n sub-states, and a
growing MT has to pass n sub-steps,
each with rate ω, before it undergoes
a catastrophe. This n-step process can
be summarized by means of an age-
dependent catastrophe rate ωc(τ).
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12 In other words, a new MT is nu-
cleated in the moment the MT disap-
pears.

13 The extension of the Dogterom–
Leibler model is the main work of
this chapter. As mentioned in the Pref-
ace, it builds on the bachelor’s the-
sis of Lina Heydenreich [79], where
the Dogterom–Leibler model was ex-
tended for a two-step catastrophe and
solved analytically. My work is the
generalization for an arbitrary n-step
process that is presented in the follow-
ing sections.

is given by

V �
〈x+〉 − 〈x−〉
〈τ+〉 + 〈τ−〉

�
ωrv+ − ωcv−
ωr + ωc

. (2.2)

With a reflecting boundary at x � 0, i.e., a MT undergoes a forced
rescue as soon as it shrinks back to zero length,12 a negative V
assures that MT growth is bounded. Then, the overall probability
density converges to a stationary exponential distribution with the
mean length

〈x〉 � v+v−
ωcv− − ωrv+

. (2.3)

If V > 0, MT growth is unbounded and there is no stationary
distribution. The probability density approaches a Gaussian distri-
bution

p(x , t) � 1√
4πDt

exp
(
(x − Vt)2

4Dt

)
(2.4)

with the diffusion constant

D �
ωcωr (v+ + v−)2
(ωc + ωr)3

. (2.5)

2.2.2 Microtubule dynamics with a multistep catastrophe

In the following, we extend the Dogterom–Leibler model13 in a
way that takes account of the experimental observation that MT
catastrophe is a multistep process [47–49], see Fig. 2.7B. For this
purpose, we introduce the number of steps n a growing MT has
to pass to undergo a catastrophe. As long as a MT has not passed
all n steps, it continues growing with v+. Therefore, the growing
state can be divided into n sub-states i � 1...n. In the mentioned
experiments [47–49], the conclusion that MT catastrophe is a
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Figure 2.8: Gamma distributions.
Both the growth durations τ+ and the
length gains x+ � v+τ+ are gamma
distributed according to Eqs. (2.6)
and (2.7) for a n-step catastrophe.
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Figure 2.9: The mean velocity Vn in-
creaseswith n, since themore steps are
required for a catastrophe, the longer
the MT stays in the growing state. At
n � nc � ωv−/ωrv+, MT growth
switches from the bounded (Vn < 0)
to the unbounded regime (Vn > 0).

multistep process was derived from characterizing the observed
growth durations τ+ as gamma distributed, see Fig. 2.8:

pτ+(τ+) �
ω (ωτ+)n−1

Γ(n) e−ωτ+ , (2.6)

with the gamma function Γ(n) �
∫ ∞

0 tn−1e−tdt [80]. A gamma
distribution implies that each catastrophe step occurs with the
same rate ω and that backward steps are not allowed, i.e., the
states i � 1...n are passed in a prescribed order as sketched in
Fig. 2.7B. Since rescue is still described as a single-step process,
MT dynamics is now characterized by a set of five parameters n,
v−, v+, ωr and ω. Besides the time τ+ a MT spends in the growing
state, also the length gain x+ � v+τ+ during one growth interval
is gamma distributed, see Fig. 2.8:

px+(x+) �
c (cx+)n−1

Γ(n) e−cx+ , c ≡ ω
v+

. (2.7)

On average, a MT grows for a duration of 〈τ+〉 � nω−1, and its tip
covers a distance of 〈x+〉 � nv+ω−1 during that interval. Together
with the mean shrinking duration ω−1

r and distance v−ω−1
r , we

deduce the mean tip velocity analogously to Eq. (2.2):

Vn �
v+nω−1 − v−ω−1

r

nω−1 + ω−1
r

�
nωrv+ − ωv−

nωr + ω
. (2.8)

Again, the sign of Vn determines whether MT growth is bounded
and a stationary state exists. We note that MT growth is stabilized
and may leave the bounded regime if more steps are required to
trigger a catastrophe (n > ωv−/ωrv+) while the other parameters
remain constant, see Fig. 2.9.

For a general mathematical description, we assign a probability
density pi(x , t) to each sub-state i � 1...n of a growing MT. The
total growing state density is given by p+(x , t) �

∑
i pi(x , t). The

stochastic time evolution of the probability densities is described
by a system of n + 1 FPEs:

∂t p−(x , t) � ω pn(x , t) − ωr p−(x , t) + v− ∂x p−(x , t)
∂t p1(x , t) � −ω p1(x , t) + ωr p−(x , t) − v+ ∂x p1(x , t)
∂t pi(x , t) � ω pi−1(x , t) − ω pi(x , t) − v+ ∂x pi(x , t),

for i � 2...n.

(2.9)

Due to the reflecting boundary, the probability current density

j(x , t) � v+p+(x , t) − v−p−(x , t) (2.10)

has to vanish at x � 0. Furthermore, in any stationary state
(∂t pi(x , t) � 0), the current density is constant in space, as can be
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14 p−(x) is substituted by Eq. (2.12) in
the second step.
15With the (numerically determined)
eigenvalues λ j and -vectors ®v j of the
matrix M, the solution of Eq. (2.13) can
be written as

®p+(x) �
n∑

j�1
a j ®v jeλ j x

or pi(x) �
n∑

j�1
a jSi jeλ j x ,

with S � (®v1 , ..., ®vn). The coeffi-
cients a j follow from the initial condi-
tion (2.15) at x � 0:

®p+(x � 0) � S®a !
� ®p0 ,

⇒ ®a � S−1 ®p0 , a j � p0
(
S−1

)
j1
,

with ®a � (a1 , ..., an)T. Finally, the con-
stant p0 is determined by the normal-
ization condition:

1 �

∫ ∞
0

p(x)dx

� p0

(
1 +

v+
v−

)
×

n∑
i , j�1

(
S−1

)
j1

Si j

(
− 1
λ j

)
,

where Re λ j < 0.

seen by summing up Eqs. (2.9):

0 � ∂x

(
−v+

n∑
i�1

pi(x) + v−p−(x)
)
� −∂x j(x). (2.11)

Together with j(x � 0) � 0, this implies that, in a steady state, the
probability current density has to vanish everywhere. With the
resulting relation

p−(x) �
v+

v−
p+(x) �

v+

v−

n∑
i�1

pi(x), (2.12)

we can eliminate p−(x) in the stationary FPEs and achieve:

∂x ®p+(x) � M ®p+(x), (2.13)

with ®p+(x) � (p1(x), p2(x), ..., pn(x))T,

M �

©­­­­­­­­«

r − c r r r · · · r
c −c 0 0 · · · 0
0 c −c 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 c −c 0
0 · · · 0 0 c −c

ª®®®®®®®®¬
, (2.14)

and the abbreviations r � ωr/v− and c � ω/v+. Due to the
reflecting boundary condition, a growing MT with length 0 must
be in state 1, which provides the initial condition for Eq. (2.13):

®p+(x � 0) � ®p0 ≡ (p0 , 0, ..., 0)T � p0®e1. (2.15)

The parameter p0 is determined by the normalization condition∫ ∞
0 p(x)dx � 1, with14

p(x) � p+(x) + p−(x) �
(
1 +

v+

v−

) n∑
i�1

pi(x). (2.16)

2.2.3 Results for the bounded regime

In general, Eq. (2.13) can only be solved numerically, e.g., by
numerical diagonalization of the coefficient matrix M.15 However,
for the experimentally relevant case [49] that a MT can not be
rescued (ωr � r � 0) except for the forced rescue at the boundary
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17With an age-dependent catastrophe
rate ωc(τ), the evolution of the sur-
vival probability Pτ+ (τ), which is the
probability that a MT is still growing
after a time τ, is given by

ÛPτ+ (τ) � −ωc(τ)Pτ+ (τ).

With pτ+ (τ) � − ÛPτ+ (τ), we find ωc(τ)
as defined in Eq. (2.20).
18 The derivation is presented in Ap-
pendix A.1.

19 The gamma distribution of growth
distances (2.7) and its Laplace trans-
form are:

px+ (x) �
c (cx)n−1

Γ(n) e−cx ,

p̃x+ (s) �
( c

c + s

)n
[80].

x � 0, the solution can be expressed analytically:16

pi(x) �
c

n
(
1 +

v+
v−

) (cx)i−1

(i − 1)! e−cx , (2.17)

p(x) �
(
1 +

v+

v−

) n∑
i�1

pi(x) �
c
n

Q(n , cx), (2.18)

where Q(n , x) � Γ(n , x)/Γ(n) is the regularized form

16 Since for r � 0, the matrix M has
only one eigenvalue λ � c with ge-
ometric multiplicity 1, Eq. (2.13) can
not be solved as described above in
Sidenote 15. Writing out the rows of
Eq. (2.13) gives the inhomogeneous
equations p′i(x) � cpi−1(x) − cpi(x)
(i � 2..n), which are solved by

pi(x) � ai(x) e−cx ,

ai(x) �
∫ x

0
cai−1(x′)dx′.

Starting from the first row of Eq. (2.13),
p′1(x) � −cp1(x), and the initial condi-
tion (2.15), p1(0) � p0, we find a1 � p0.
The further coefficients ai(x) can be
determined iteratively, wich yields

ai(x) �
(cx)i−1

(i − 1)! .

Adjusting p0 for normalization finally
results in the solution as given inEq. (2.17).

of the upper
incomplete gamma function Γ(n , x) �

∫ ∞
x tn−1e−tdt [80].

In order to approach a solution of the general case (ωr > 0), we
make use of the results of Jemseena and Gopalakrishnan [32], who
calculated the Laplace transform

p̃(s) �
∫ ∞

0
p(x) e−sx dx (2.19)

of the steady state length distribution for the case of an arbitrary
age-dependent catastrophe rate ωc(τ), where the age τ is the time
that has passed since the last rescue event. Given an arbitrary
probability density pτ+(τ+) of growth durations τ+, the associated
age-dependent catastrophe rate is defined by17

ωc(τ) �
pτ+(τ)
Pτ+(τ)

� −∂τ ln Pτ+(τ), (2.20)

where Pτ+(τ) �
∫ ∞
τ

pτ+(t)dt is the survival probability of a grow-
ing MT. Combining that with the results of Jemseena and Gopala-
krishnan [32], we find18

p̃(s) �
(

1
〈x+〉

− r
)

1 − p̃x+(s)
s − r (1 − p̃x+(s))

(2.21)

with the Laplace transform p̃x+(s) of the probability density of
growth distances px+(x). To achieve a result for the n-step catastro-
phe process, we substitute the Laplace transform of px+(x) from
Eq. (2.7) into Eq. (2.21):19

p̃(s) �
( c

n
− r

) 1 −
( c

c+s

)n

s − r
(
1 −

( c
c+s

)n
) . (2.22)

If r � 0, inverse transformation yields the probability density from
Eq. (2.18). For the general case with rescues (r > 0), the inverse
Laplace transform p̃(s) → p(x) can not be executed analytically.
Nonetheless, we are able to compute exact results for the mean MT
length 〈x〉 and the variance Var(x) � 〈x2〉 − 〈x〉2 by interpreting
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20 Let L[ f (x)](s) � f̃ (s) denote the
Laplace transform as defined in
Eq. (2.19). The Laplace transform of
a convolution of two functions f (x)
and g(x) is given by the product of the
individual Laplace transforms [80]:

L

[∫ x

0
f (u)g(x − u)du

]
(s) � f̃ (s) g̃(s).

The approximation in Eq. (2.26) can
be written as

p̃(s)
c
n − r

≈ 1
s − r

(
1 − p̃x+ (s)

)
.

With L[erx](s) � 1/(s − r) and
L[δ(x)](s) � 1, the inverse transform
of the approximation is given by

p(x)
c
n − r

≈
∫ x

0
er(x−u)

(
δ(u) − px+ (u)

)
du ,

which results in Eq. (2.27).

21 Starting the simulation with a MT
at length x � 0 in growing state i � 1,
these concrete steps are executed in
each time step:

1. If the MT is in

a) growing state i < n, switch to
state i + 1 with probability
1 − exp(−ω∆t).

b) growing state i � n, switch to
the shrinking state (catastro-
phe) with probability
1 − exp(−ω∆t).

c) shrinking state, switch to grow-
ing state 1 (rescue) with proba-
bility 1 − exp(−ωr∆t).

2. Update MT length depending on
whether it is in a growing (+) or in
the shrinking state (−):

x(t + ∆t) � x(t) ± v±∆t .

3. If x < 0, set x � 0 and switch to
growing state 1 (forced rescue).

the Laplace transform as moment-generating function:

〈xm〉 � (−1)m ∂m

∂sm p̃(s)
����
s�0
, (2.23)

〈x〉 � n + 1
2 (c − nr) �

n + 1
2

v+v−
v−ωc − nv+ωr

, (2.24)

Var(x) � n + 1
12

2n(n − 1) r + (n + 5) c
c (c − nr)2 . (2.25)

Moreover, we can approximate p̃(s) for large s as

p̃(s)
c
n − r

�
(c + s)n − cn

(s − r)(c + s)n + rcn ≈
(c + s)n − cn

(s − r)(c + s)n . (2.26)

Then, inverse transformation is possible and provides an approxi-
mation of p(x) for short MT lengths:20

p(x) ≈
( c

n
− r

)
erx

(
1 −

( c
c + r

)n
P
(
n , (c + r) x

) )
, (2.27)

where P(n , x) � 1 − Q(n , x) is the regularized lower incomplete
gamma function [80].

In the following,we compare the resultswith stochastic simulations
that solve the equation of motion of the MT for fixed time steps ∆t.
Dynamic instability is included by stochastic switching events.21

The time step has to to be sufficiently small to ensure ωi∆t � 1 for
both rescue events and catastrophe steps. For better comparability,
we assume that the catastrophe step rate is proportional to n,

ω � nω0 , c � nc0 , c0 �
ω0
v+

, (2.28)

with a constantω0 so that themeangrowth time 〈τ+〉 � nω−1 � ω−1
0

as well as the mean velocity Vn (2.8) are independent of n, and
the MT remains in the bounded regime despite increasing n. We
choose the values as listed in Tab. 2.1 to assure that Vn is negative
and MT growth is bounded.

Fig. 2.10 shows the results in absence of rescue events (r � 0)
except for the forced rescues at x � 0. The analytical predictions
from Eqs. (2.17) and (2.18) perfectly match with the results from
the simulations. The overall probability densities are monotoni-
cally decreasing functions and converge towards a step function
c0Θ

(
c−1

0 − x
)
for large n. This uniform distribution for an infinite

step catastrophe process can be made plausible by considering the
growth distances x+: Since the standard deviation of the gamma
distribution (2.7) is given by ∆x+ �

√
nc−1, the relative error of

growth distances∆x+/〈x+〉 � 1/
√

n vanishes for large n.Moreover,
as we assumed that c � nc0, also the absolute deviation decreases
as 1/
√

n whereas the mean growth distance stays constant. Conse-
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Figure 2.10: Analytical and simula-
tion results in absence of rescue
events. (A) Overall probability den-
sities with various n. (B) Single state
distributions in a 10-step process. In all
cases the analytical FPE solutions fol-
lowing Eqs. (2.17) and (2.18) (red lines)
match with the distributions mea-
sured in simulations (bars). (C) For
an infinite-step process, the overall
probability density converges to a step
function.

Table 2.1: Parameters used in stochas-
tic simulations.

Parameter Value

Step rate ω0 0.005 s−1

Rescue rate ωr 0.01 s−1

Growth vel. v+ 0.02µm s−1

Shrinking vel. v− 0.2µm s−1

22 The full formula of p(x) for n →∞
and its derivation can be found in Ap-
pendix A.2.

quently, the more steps a MT has to pass to undergo a catastrophe,
the more deterministic and predictable the length gain becomes. In
the infinite step limit, the MT tip always covers the same distance
during one growth interval. Then, in the absence of rescue events, a
MT grows from x � 0 to x � c−1

0 where it undergoes a catastrophe,
and shrinks back to zero length where it is rescued again, finally
resulting in a uniform distribution of MT lengths.

If rescues are possible (r > 0), the probability density functions are
not monotonic anymore but increase exponentially for short MT
lengths up to a maximum, see Fig. 2.11A. The exponential increase
and the maximum are well described by the approximation (2.27).
After the maximum, however, the approximation deviates from the
real distribution. In that region, the probability densities measured
in stochastic simulations are only fitted well by the numerical
solution of Eq. (2.13), which is also the case for the single state
densities pi(x) depicted in Fig 2.11B. If the number of steps n
increases, the maximum becomes sharper and moves towards
longer MT lengths up to x � c−1

0 . In the infinite step limit, the
probability density approaches a piecewise defined function that
initially grows exponentially as (c − r) exp(rx) until it has a step
discontinuity at x � c−1

0 . Moreover, there are non-analyticities
of higher order at each multiple of c−1

0 .22 Like in the absence of
rescues, this behavior can be explained with the determinism of
MT growth distances in the infinite step limit: Since the rescue
rate is greater than zero, a MT can be rescued before shrinking
back to zero length and is able to grow beneath the single growth
distance c−1

0 . Nevertheless, a MT that grows from zero length after
a forced rescue and undergoes a catastrophe at x � c−1

0 still shrinks
back to zero with the probability exp(−r/c) � 82 %. These 82 %
alone would result in a step function again, and only in 18 % of
the growth cycles that start from x � 0, the MT reaches lengths
x > c−1

0 , finally leading to the step discontinuity.
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Figure 2.11: Deterministic and simu-
lation results with r > 0. The deter-
ministic results (red) are calculated
by numerical diagonalization of the
matrix M from Eq. (2.14). (A) Overall
probability densities with various n.
For short MT lengths, they grow expo-
nentially (dashed lines) and can be ap-
proximated by Eq. (2.27) (gray lines).
(B) Single state distributions in a 10-
step process. In all cases the deter-
ministic results (red lines) match with
the distributions measured in simu-
lations (bars). (C) For an infinite-step
process, the overall probability den-
sity converges to a piecewise defined
function that grows exponentially as
(c − r) exp(rx) until it has a step dis-
continuity at x � c−1

0 .
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Figure 2.12: Mean length and devi-
ation. The mean MT length 〈x〉 and
its standard deviation ∆x �

√
Var(x)

measured in simulations (blue) match
with the analytical predictions (red)
from Eqs. (2.24) and (2.25).

As it can be seen in Fig. 2.12, Eqs. (2.24) and (2.25) correctly
describe the mean length and its variance measured in stochastic
simulations. If the number of catastrophe steps and the step rate
are increased proportionally, the mean length decreases by up to
one half of the single-step value.

2.2.4 Results for the unbounded regime

In the regime of unbounded growth, there is no stationary solution
which is why we need to analyze the time dependent FPEs (2.9).
Since the full equations can not be solved analytically, we aim
to find an approximation that is approached after long times.
As Vn > 0 in the unbounded regime, this limit is likewise an
approximation for long MTs.

We define the Fourier transform as

qi(k , t) �
∫ ∞

−∞
e−ikx pi(x , t)dx , (2.29)

and apply it to the master equation (2.9):

∂t ®q(k , t) � A(k)®q(k , t), (2.30)

with ®q(k , t) � (q1(k , t), ..., qn(k , t), q−(k , t))T and

A(k) �

©­­­­­­­­«

−ω − iv+k 0 · · · 0 ωr

ω
. . .

. . . 0

0 . . .
. . .

. . .
...

...
. . .

. . . −ω − iv+k 0
0 · · · 0 ω −ωr + iv−k

ª®®®®®®®®¬
. (2.31)

The fundamental solutions of Eq. (2.30) are given by

®q j(k , t) � ®v j(k) eλ j(k)t , (2.32)
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23After expanding Eq. (2.33) for k � 0,
we can write it as

0 �

n∑
i�1

ai (λ(0))i .

Since all coefficients ai turn out to have
the same sign, all further solutions
besidesλ0(0) � 0must have anegative
real part.

24 q(k , t) denotes the Fourier trans-
form of the overall probability density:

q(k , t) �
∫ ∞
−∞

e−ikx p(x , t)dx

�

n∑
i�1

qi(k , t).

The normalization condition follows
from

q(0, t) �
∫ ∞
−∞

e−i·0·x p(x , t)dx

�

∫ ∞
−∞

p(x , t)dx !
� 1.

where λ j(k) and ®v j(k) are the eigenvalues and eigenvectors of
A(k), respectively. The eigenvalues are defined implicitly by the
characteristic polynomial:

0 � f
(
λ(k), k

)
≡ det

(
A(k) − λ(k)In+1

)
� (−1)nωrω

n
+ (−1)n+1 (ωr − iv−k + λ(k)

)
×

(
ω + iv+k + λ(k)

)n
.

(2.33)

An approximation for long MTs in real space corresponds to the
limit of small k in Fourier space. For k � 0, λ0(k � 0) � 0 is the
only non-negative eigenvalue23 and therefore provides the only
fundamental solution ®q j(k , t) that does not vanish for t →∞. To
approximate the dispersion relation λ0(k) for long MTs after long
times, we expand it around k � 0 by use of the implicit function
theorem:

λ′0(k � 0) � ∂λ0(k)
∂k

����
k�0

� −
∂k f (λ0 , k)
∂λ0 f (λ0 , k)

����
k�0

� −iVn , (2.34)

∂2λ0(k)
∂k2

����
k�0

� −

(
∂2

k + 2λ′0∂λ0∂k + λ′20 ∂
2
λ0

)
f (λ0 , k)

∂λ0 f (λ0 , k)

�������
k�0

� −n(n + 1)ωrω(v+ + v−)2
(nωr + ω)3

≡ −2Dn .

(2.35)

This results in the dispersion relation

λ0(k) ≈ −iVn k − Dn k2 , (2.36)

which corresponds to a diffusion process with diffusion con-
stant Dn and drift Vn , which is the mean velocity as deduced
in Eq. (2.8).

Normalization of the overall probability density is translated
into Fourier space by the condition24 q(0, t) � 1, so that we find
q(k , t) ≈ exp(λ0(k)t). Finally, an inverse Fourier transform shows
that the overall probability density of MT lengths approaches a
Gaussian distribution:

p(x , t) ≈ 1√
4πDn t

exp
(
−(x − Vn t)2

4Dn t

)
. (2.37)

One can easily see that Dn , and thus the standard deviation of
MT lengths vanish for large n if the other parameters remain
constant. Together with Eq. (2.8) this means that an increase of
the number of catastrophe steps favors growth over shrinkage
and thereby can make the MT leave the bounded regime, where a
further increase of n favors growth even more until catastrophes
are almost completely suppressed.
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Figure 2.13: Analytical and simu-
lation results in the unbounded
regime. (A) Overall probability densi-
ties with various n at three different
times, and the corresponding Gaus-
sian approximations. As described,
the results only match for large times
(t & 10 000 s), whereas at the begin-
ning (see t � 1000 s), the initial and
the boundary condition, which are
not incorporated in the approxima-
tion, still have a significant influence
on the simulation results. For n � 1
there is even a considerable amount
of MTs (exp(−ω0t) � 0.67 %) with
length v+t � 0.02 mm that have not
undergone a catastrophe yet. (B) Time
evolution of the mean MT length 〈x〉
and its standard deviation ∆x for vari-
ous n. The simulations converge to the
values of the Gaussian distribution.

In Fig. 2.13, the results are compared to stochastic simulations. Here
again, we assume that the catastrophe step rate is proportional
to n so that the mean growth duration and the mean velocity are
constant. Then, the diffusion constant Dn does not vanish for large
n but still decreases by up to one half of the single-step value. We
use the same parameters as in Tab. 2.1 but with a ten times higher
rescue rate (ωr � 0.1 s−1) in order to induce an unbounded state
with Vn > 0. At the beginning of the simulations both the initial
and, since the MTs are still short, the boundary condition cause
the length distribution to significantly deviate from the Gaussian
approximation. After long times, however, theMTs gained somuch
length that the probability of reaching the boundary is negligible.
Then, the approximation provides an accurate description of the
simulation results.

2.3 Discussion

Based on experimental results that characterizeMT growth periods
as gamma distributed and conclude that catastrophe is a multistep
process [47, 49], we extended the empirical Dogterom–Leibler
model [29, 30] in order to analyze the consequences a multistep
catastrophe mechanism has for the distribution of MT lengths. The
multistep process has two main effects on the growth durations of
a MT, which also underlie the consequential changes in the length
distributions: Firstly, if the number of catastrophe steps is increased
while keeping the rate of a single step constant, the growth dura-
tions become longer and the MT may leave the bounded regime.
Secondly, the growth periods and hence the length gain during
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25 See Fig 2.12.

26 provided that they do not leave the
bounded regime

27Any new terms used in this para-
graph (prometaphase, search-and-
capture etc.) are explained in the
detailed description of mitosis in
Sec. 3.1.1.

one growth interval are less stochastic if more steps are necessary
to trigger a catastrophe.

In the case of bounded growth, the stationary length distribution
has a steep descent in the vicinity of the mean growth distance n/c.
In absence of rescues, the steep descent follows an area where
the probability density is only slowly decreasing and becomes
nearly constant for large n. If rescues are allowed, the distribution
is exponentially increasing and has a maximum before it decreases
sharply. In both cases, the length distributions are lighter tailed
than the exponential distribution resulting from a single-step
catastrophe, i.e., a multistep catastrophe reduces the number of
MTs that are longer than themeangrowth length.As a consequence,
the mean MT length decreases by up to one half the single-step
value if the number of catastrophe steps and the step rate are
increased proportionally.25

Taking into consideration that there are MT regulators that do not
only affect the velocities or the transition rates but also the number
of catastrophe sub-steps [49], we conclude that by such a regulation,
a MT has more potent ways to adapt to special situations inside the
cell: while altering the classical four parameters only adjusts the
range of MT lengths, which stay exponentially distributed in the
single-step case,26 variation of the additional parameter n changes
the shape of the length distribution. As similarly discussed by
Gardner et al. [49], this could be beneficial during mitosis. For
instance, during prometaphase, the steep descent in the length
distribution can appropriately limit the area that is explored by
MTs in order to fasten search-and-capture [81] of chromosomes.
In metaphase, accumulation of MT lengths around the maximum
of the distribution may support the precise positioning of chro-
mosomes in the metaphase plate and the maintenance of spindle
length.27

Stationary length distributions that have a maximum for short
MT lengths before they apparently decrease exponentially and are
similar to the ones in Fig. 2.11 have beenmeasured in several experi-
mental studies [82–87]. Though some of these studies have already
been cited as evidence for a multistep catastrophe mechanism [49,
88], there are different reasons why this interpretation is dubious:
In contrast to our model with a fixed minus and a dynamic plus
end, the in vitro studies in Refs. [82, 86] examined free MTs that
could polymerize simultaneously at both ends. Therefore, the
shape of the length distribution can be rationalized by a convolu-
tion of the respective exponential distributions at the plus and the
minus end, which are both obeying single-step dynamics [86]. In
Ref. [83], the deviation from an exponential distribution for short
MT lengths is attributed to the image resolution being too low to
detect very short MTs. The results in Refs. [84, 85, 87] seem to be
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more in line with our model, yet these publications do not provide
a quantitative evaluation of the measured length distributions,
which makes a valid conclusion difficult. Besides, Refs. [84, 85]
are in vivo experiments so that additional effects due to MAPs or
spatial restrictions are likely.

In the regime of unbounded growth, the MT lengths approach a
Gaussian distribution as in the single-step case but with a reduced
variance. In vivo, the stabilization of MT growth due to an increase
of the number of catastrophe steps might help interphase MTs,
which have been shown to be in the unbounded regime [29, 89],
to reach the cell boundary. On the other hand, at the transition
from interphase to mitosis, MT lengths are significantly reduced
in order to prepare the mitotic spindle assembly [85, 90]. The
restructuring of the MT array may be supported by a reduction of
the number of catastrophe steps, which destabilizes the MTs and
shifts them to the bounded regime. This hypothesis is supported
by the observation of Gardner et al. [49] that MCAK, which plays
a key role for the control of MT dynamics during mitosis [91, 92],
promotes catastrophes by reducing the required steps from n � 3
to n � 1 and simultaneously keeping the step rate ω constant.
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1 The short introduction into cell biol-
ogy and cell division in the following
two paragraphs is based on the book
of Alberts et al. [1].
2 These examples are not present in
all species; e.g., prokaryotes do not
contain centrosomes or mitochondria,
and chloroplasts can only be found in
plant cells.

3 Latin for “every cell (arises) from
another cell”.

Cooperative microtubule and
kinetochore dynamics in the

mitotic spindle 3
While we examined the polymerization dynamics of individual
MTs in the last chapter, the subject of this chapter is an extensive
analysis of the coupled dynamics of MT ensembles and chromo-
somes during cell division. The biological cell is the fundamental
building block of all life, may it be unicellular organisms, like
bacteria or yeasts, or multicellular life forms as plants or ani-
mals including humans.1 All cells consist of a cytoplasm that is
surrounded by the plasma membrane. The cytoplasm contains
various organelles that fulfill different tasks. Examples are the
ribosomes that enable protein biosynthesis, centrosomes serving
as a MTOC, mitochondria, which are well known as “powerhouse
of the cell” [96], or chloroplasts, which are responsible for pho-
tosynthesis.2 Each cell of an organism contains its full genetic
information in form of DNA (deoxyribonucleic acid). Depend-
ing on whether the DNA is distributed freely in the cytoplasm
or whether it is organized in chromosomes and stored in a cell
nucleus, cells can be classified as prokaryotes or eukaryotes, re-
spectively. While prokaryotes comprise the unicellular domains of
bacteria and archaea, eukaryotes form a third domain including
the kingdoms of plants, fungi and animals [97].

Every cell existing in today’s world has its origin in the division of
another, pre-existing cell. This principle of cell theory has already
been stated in 1858 by Rudolph Virchow [98] with his famous
words “Omnis cellula e cellula”.3 A very important task during
cell division is the maintenance of the genetic information, i.e., the
previously replicated DNA has to be distributed equally to the
two daughter cells. Eukaryotic cells repeatedly pass through the
cell cycle, during which the cell organelles are duplicated first and
later divided into two identical daughter cells. The essential task of
proper division of the DNA occurs duringmitosis, which is part of a
cell cycle. Mitosis describes the division of the cell nucleus and the
proper distribution of the previously duplicated chromosomes. It
is driven by themitotic spindle, a molecular machine that consists of
two opposite MT asters organized in two MTOCs, which build the
two spindle poles. The MTs can bind to the sister chromatids from
opposite sides via kinetochores, protein structures that are located
at the centromere, and pull them apart in order to move them into
the two daughter nuclei. During metaphase, i.e., in the moment
before the sister chromatids are separated, the chromosomes are
aligned in a plate at the spindle equator. It has been observed
in several vertebrate cells that chromosomes do not rest in this
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4 These models are reviewed in
Sec. 3.2.1.

5As explained below, the term breath-
ing oscillations describes the oscilla-
tions of the inter-kinetochore distance.

metaphase plate but exhibit oscillations along the pole to pole axis
known as directional instability [50–56], whereas in Drosophila em-
bryos and Xenopus eggs a directional instability does not occur [99,
100].

Although several theoretical models that reproduce chromosome
oscillations have been proposed in the past [57, 101–106],4 a quan-
titative understanding of the underlying mechanics of the MT–
kinetochore–chromosome system is still lacking. The objective of
this chapter is to gain new insights into the mechanisms of direc-
tional instability and to quantify conditions on several parameters
for its occurrence. For that purpose, we start from the minimal
model of Banigan et al. [57], which contains a single chromosome
whose motion is solely driven by the force dependent dynamic
instability of the MTs that are attached to the kinetochores via
elastic linkers. Banigan et al. could trace back the chromosome oscil-
lations to a bistable relation between the kinetochore velocity and
an external force, which they observed in stochastic simulations of
a model with only one spindle pole and one kinetochore. Here, we
increase the understanding and the applicability of this minimal
model dramatically by employing a novel mean-field approach
based on Fokker–Planck equations (FPEs) that allows us to derive
the bistable force–velocity relation mathematically and to quan-
tify the parameter range for a bistability in the parameter plane
of MT–kinetochore linker stiffness and the number of attached
MTs.

By interpreting the force–velocity relation as phase space diagram
for the full model with two spindle poles and two connected kine-
tochores as in Ref. [57], we show that bistability in the monopolar
model is a necessary condition for kinetochore oscillations in the
bipolar model. Beyond that, we are able

1. to quantify an oscillatory regime, in which kinetochores
exhibit directional instability, in the parameter plane of linker
stiffness and MT numbers predicting that linkers have to be
sufficiently stiff;

2. to describe kinetochore motion in this oscillatory regime,
calculate frequencies which agree with in vivo measure-
ments [55] and to explain frequency doubling of breathing5

compared to single kinetochore oscillations;

3. to describe kinetochore motion in the non-oscillatory regime
as fluctuations around a fixed point.

Later, in Sec. 3.4, we generalize the minimal model in several
aspects, which allows us
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Figure 3.1: Phases of the cell cycle.
Adapted from [107]. The chromosomes
are replicated in S phase and the cell
is divided in M phase. M and S phase
are separated by two gap phases G1
and G2. A cell may rest in the non-
dividing G0 phase.

6 The following description of the cell
cycle as well as the sections about mi-
tosis (3.1.1) and the forces acting in the
mitotic spindle (3.1.3) are based on the
book of David O. Morgan [92].
7 The cell cycle can be much faster
in other cells, e.g., 90 min in budding
yeast or only 30 min and less in some
metazoan embryos.

4. to show that high poleward flux velocities move the system
out of the oscillatory regime and thereby explain why direc-
tional instability has been observed in mitotic vertebrate cells
but not in Drosophila embryos and Xenopus eggs (Sec. 3.4.1);

5. to show that polar ejection forces reduce the amplitude of
oscillations, induce a phase shift between sister kinetochores
and are necessary to align the chromosome at the spindle
equator (Sec. 3.4.2);

6. to derive as necessary condition for oscillations that either
MTs must be able to apply pushing forces on the kinetochore
or a catastrophe has to be induced with an increased catas-
trophe rate when a MT reaches the kinetochore (Sec. 3.4.3);

7. to provide a set of model parameters that reproduce ex-
perimental results for kinetochore oscillations in PtK1 cells
quantitatively (Sec. 3.4.4).

All these results are validated by stochastic simulations in or-
der to justify the assumptions that underlie our mathematical
predictions.

In particular, we quantify lower bounds for linker stiffnesses that
allow for oscillations and whose values depend on the behavior
of MTs growing against the kinetochore. If kinetochore MTs can
exert pushing forces, we find oscillations for linker stiffnesses
c > 16 pNµm−1; also if MT catastrophes are induced upon reach-
ing the kinetochore, we find oscillations in a similar range of linker
stiffnesses. These constraints provide useful additional informa-
tion on MT–kinetochore linkers, whose molecular nature is not
completely unraveled up to now.

Before introducing the one-dimensional spindle model and pre-
senting and discussing our results in Secs. 3.2.2 to 3.5, we start
with a short summary of the relevant biological facts about the
eukaryotic cell cycle and mitosis, followed by a brief overview of
existing spindle models and their key differences.

3.1 The cell cycle

The cell cycle6 of eukaryotic cells can be divided into the interphase
and theM phase (mitosis) as sketched in Fig. 3.1. Roughly speaking,
the cell grows and replicates its components during interphase,
and is divided in M phase. The cell cycle of a human somatic cell
lasts approximately 20 hours from which the M phase takes only
1 h.7 Since it is crucial for the maintenance of life that the two
daughter cells contain exactly the same genetic information, the
proper replication and segregation of the chromosomes, which
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8 The centrosome is the major MTOC
in animal cells, and—as we will see
below—the two copies organize the
mitotic spindle, which drives the chro-
mosome segregation.
9Mitosis and cytokinesis are ex-
plained in more detail below.
10 This is the case for most cells in
the human body. E.g., most neurons
and skeletalmuscle cells are terminally
differentiated and stay in G0 until they
or the whole organism dies, and liver
cells rest in G0 but can restart division
when the liver is damaged [1].
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Figure 3.2: Mitotic spindle. (A) Mi-
croscopic image of a human mitotic
spindle [108]. MTs are shown in green,
Chromosomes in blue and kineto-
chores in red. (B) Sketch of the mi-
totic spindle. MTs are bound to the
centrosomes with their minus ends
while their plus ends are radiating out-
wards.AstralMTs interactwith the cell
boundary, interpolar MTs are cross-
linked to opposite interpolar MTs via
motor proteins, kinetochore MTs are
attached to the chromatids via kineto-
chores.
Fig. (B) is adapted with permission
from Ref. [92]; copyright (2007) by Ox-
ford University Press.

carry the genetic information in form of DNA and are located in the
cell nucleus in eukaryotic cells, are of particular importance. The
chromosomes are replicated each to two identical sister chromatids
during S phase (synthesis), which is part of the interphase. It
is ensured that each chromosome is duplicated only once. In
animal cells, also the centrosome8 is duplicated during S phase.
Other cell components, e.g., membranes or cell organelles, are
reproduced throughout the whole cell cycle. The sister chromatids
are segregated during mitosis, which is the first part of M phase.
Mitosis is organized by the mitotic spindle, which consists of a large
number of MTs pulling the sister chromatids apart. After mitosis,
the cell contains two nuclei with the same set of chromosomes and
is finally divided in a process called cytokinesis.9

Between M and S phase, there are two gap phases G1 and G2, see
Fig. 3.1. During these gap phases, the cell has additional time to
grow and can monitor whether the environmental conditions are
favorable for the entry into the following phase. Only if certain
checkpoints are fulfilled, the cell switches from G1 to S phase or
from G2 to M phase. Especially G1 phase can last very long and
the cell can even switch to a non-dividing rest phase called G0.10

Since the subject of this chapter is the dynamics of chromosomes
duringmitosis, we next explain theM phase in more detail. The fol-
lowing is a short description of a protein structure called kinetochore,
which connects the chromatids with MTs. In preparation for the
development of a mechanical model for chromosome dynamics,
we close this section by discussing the relevant forces that act on
the chromatids in the mitotic spindle.

3.1.1 Mitosis and cytokinesis

The mitosis is the division of the cell nucleus, which contains the
replicated chromosomes after interphase. It is driven by the mitotic
spindle, a complex molecular machine with a bipolar structure built
by two opposite MT asters, which are located at the two spindle
poles. The MTs within these asters can be characterized by the
three different tasks they fulfill, see Fig. 3.2: astral MTs radiate
outwards the spindle, and their plus ends interact with the cell
cortex thereby controlling the position of themitotic spindle within
the cytoplasm; interpolar MTs build the scaffold of the spindle by
interacting with interpolar MTs emerging from the opposite pole;
finally, kinetochore MTs link directly to the chromosomes in the
centromere region via protein complexes called kinetochores, and
via these links, they can apply tensile forces, which are responsible
for the segregation of the sister chromatids. In vertebrate cells, 10 to
40 MTs can be attached to the same kinetochore [109, 110] building
a kinetochore fiber (k-fiber).
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Figure 3.3: Phases of mitosis and cy-
tokinesis.
Prophase: The chromosomes con-
dense and the mitotic spindle starts
forming.
Prometaphase: After nuclear enve-
lope breakdown, the MTs search and
capture the chromosomes.
Metaphase: The chromosomes are
aligned in the metaphase plate at the
spindle equator.
Anaphase: The chromosomes are seg-
regated by shortening kinetochore
MTs, and the spindle elongates.
Telophase: The spindle is disassem-
bled and new nuclear envelopes form
around the segregated chromosome
sets.
Cytokinesis: The cell is divided by a
contractile ring.
This figure is adapted with permis-
sion from Ref. [92]; copyright (2007)
by Oxford University Press.
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11 The condensed, X-shaped chromo-
somes are well-known from karyo-
grams and can only be observed dur-
ing mitosis.

Mitosis consists of five phases—prophase, prometaphase, meta-
phase, anaphase and telophase—whichwe explain in the following
and which are sketched and summarized in Fig. 3.3. Our expla-
nation concentrates on the mitosis in vertebrate cells, however,
we add comments on the differences to other species where it is
appropriate.

Prophase

During prophase, two major processes are executed, chromosome
condensation and initiation of spindle assembly by centrosome
separation. At the end of interphase, the duplicated chromosomes
in the nuclear envelope have the form of long, tangled chromatin
strands. During prophase, the chromosomes condense, which
means that each chromatid is densely packed and is linked by
a cohesin bond with its sister chromatid that contains the same
genetic information.11 Outside the nucleus, the two copies of the
centrosome move apart along the nuclear envelope to build the
two spindle poles. This motion is mainly driven by two motor
proteins: minus end directed dynein connects the plus ends of
astral MTs with the cell cortex and pulls the centrosomes apart;
kinesin-14 cross-links two antiparallel interpolar MTs, one with
its head and the other with its motor domain. Since kinesin-14
are minus end directed motors, they pull the two centrosomes
together and thereby balance the effect of the dynein motors at the
cell cortex.
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12 This is not the case in yeast cells
where mitosis takes place inside the
nucleus. Moreover, instead of centro-
somes, the MTs are organized by spin-
dle pole bodies that are embedded in
the nuclear envelope.

13 In cells without centrosomes, e.g.,
higher plant cells, chromosome attach-
ment and even the whole spindle as-
sembly itself is a self-organized pro-
cess. In plant cells, the minus ends are
organized by means of MAPs in two
spindle poles.
14 There are three kinds of erroneous
attachments: in a syntelic attachment,
both sister kinetochores are attached
to the same pole; in a merotelic attach-
ment, one kinetochore is attached to
both poles; in a monotelic attachment,
one kinetochore is attached to one pole
while its sister is unattached. A proper
bipolar attachment is called amphitelic.
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Figure 3.4: Error correction by Au-
rora B kinase. (A) In case of an er-
roneous attachment (here merotelic),
the inter-kinetochore tension is low
and the kinetochores are phosphory-
lated by Aurora B, which is located
at the centromere. Phosphorylation
decreases the MT binding affinity so
that the erroneous attachments are
deleted. (B) In case of an amphitelic at-
tachment, the opposite MT ensembles
pull the attached kinetochores apart
towards low Aurora B concentrations.
The resulting dephosphorylation of
the kinetochores stabilizes the correct
MT attachments.

Prometaphase

Prometaphase starts with the breakdown of the nuclear envelope.12

This does not only release the condensed chromosomes into the
cytoplasm but also a variety of motor and other proteins that
regulate MT dynamics and support spindle assembly. As a conse-
quence, there are more but shorter MTs than during interphase,
which switch their polymerization states more rapidly. Proteins
increasing the catastrophe rate, such as MCAK, which is part of
the kinesin-13 family, play a major role for this conversion. Two
further classes ofmotor proteins are releasedwith nuclear envelope
breakdown: kinesin-5 and the chromokinesins kinesin-4 and -10.
While the latter ones mediate the polar ejection forces, which
are explained below, kinesin-5 has two plus end directed motor
domains that push antiparallel interpolar MTs apart, and regulates
spindle length and position in interplay with the aforementioned
dynein and kinesin-14 motors.

It is essential for mitosis that the chromosomes are attached
properly to the two opposite poles via their kinetochores. This
is achieved by two processes: centrosome mediated search-and-
capture [81] and self-organization of MTs around the chromo-
somes.13 In the former process, the dense arrays of MTs that
emerge from the centrosomes and rapidly grow and shrink search
the space for chromosomes. During the search, a kinetochoremight
be attached laterally to a MT, which can be converted by different
motor proteins to a proper end-on attachment of the kinetochore
to the plus end so that the chromosome is captured. In the self-
organized process, MTs nucleate around the chromosomes, may
attach to a kinetochore, and are organized into an antiparallel array
by thementionedmotor proteins. The spindle poles are established
later by motors and MAPs that organize the minus ends.

Although the back-to-back arrangement of sister kinetochore pairs
promotes the proper bipolar attachment of a chromosome to
the two opposite spindle poles, there may still be erroneous at-
tachments.14 An indicator for a correct attachment is the inter-
kinetochore tension: when kinetochore MTs pull from both sides,
the tension is high, otherwise it is low. Depending on the tension,
the kinase Aurora B, which is located at the centromere between
the two kinetochores, phosphorylates parts of the kinetochores and
thereby influences the binding affinity and the dynamic parameters
of the attached MTs in a way that favors a bipolar arrangement
with high tension, see Fig. 3.4 [91, 111, 112].
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15 Examples are porcine LLC-PK1
cells [52], Newt lung cells [50, 51], hu-
man U2OS, HeLa and RPE1 cells [53,
54, 113], or PtK1 and PtK2 cells of a
rat-kangaroo [55, 56].

16 In budding yeast, where mitosis
takes place inside the nucleus, the nu-
cleus is elongated during anaphase
and divided during cytokinesis.

17Higher plant cells are not divided
by a contractile ring. Instead, a new
cell wall is formed between the two
nuclei and divides the cytoplasm.

Metaphase

After the completion of spindle assembly, the chromosomes are
aligned in a plane at the spindle equator, the metaphase plate. It
has been observed in somatic cells of several vertebrates15 that the
chromosomes do not rest in this position but exhibit directional
instability [50], which means that they regularly switch between
moving polewards (P) and moving away from the pole (AP) resulting
in an oscillation along the pole-to-pole axis. If present, these oscilla-
tions are stochastic and on the time scale of minutes, i.e., on a much
larger time scale than the dynamic instability of single MTs. Both
single kinetochores and the inter-kinetochore distance oscillate,
but inter-kinetochore or breathing oscillations occur with twice the
frequency of single kinetochore oscillations [55]. It is the major ob-
jective of this chapter to identify the origin of directional instability
and the conditions that are necessary for its occurrence.

Anaphase

When all chromosomes are correctly attached to the two opposite
spindle poles, the sister chromatids are separated by loss of the
cohesin bonds. This eventmarks themetaphase-to-anaphase transi-
tion. Without the cohesin bonds, the chromatids can be segregated,
which is achieved by two processes. In anaphase A, the chromatids
are pulled towards the spindle poles by shrinking kinetochore
MTs. In anaphase B, the centrosomes, which are surrounded by
the segregated chromatids after anaphase A, move away from
each other, which is mainly driven by kinesin-5 motors that push
overlapping antiparallel interpolar MTs apart.

Telophase

Mitosis is accomplished in telophase,which ismainly characterized
by the disassembly of the mitotic spindle. During that process, the
MTs detach from the kinetochores and assume the polymerization
dynamics from interphase with few but long MTs, i.e., the changes
from prometaphase are revised. Moreover, two nuclear envelopes
form around the segregated chromosome sets,16 which decondense
and assume the tangled form they have during interphase. At the
end of telophase, the cell contains two spatially separated nuclei
each comprising an identical and complete set of chromosomes.

Cytokinesis

After mitosis, the cell itself is divided by cytokinesis. Cytokinesis is
driven by a contractile ring,17 which is composed of actin filaments
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18 This section is based on the re-
views of Cheeseman [114] and Long
et al. [115].

19 See Sec. 2.1.2 and Fig. 2.5.

20 The experiments in Refs. [58, 59]
are the subject of Chapter 4, where
we furthermore discuss possible bind-
ing mechanisms between Ndc80 com-
plexes and a MT more thoroughly.

and myosin motors and already starts forming during telophase.
The contractile ring encircles the cell membrane between the two
daughter nuclei and centrosomes, and divides the cytoplasm by
contracting and thereby constricting the cell. With the completion
of cytokinesis, the M phase is finished and the cell has been
divided into two daughter cells that enter the G1 phase of another
cell cycle.

3.1.2 The kinetochore–microtubule interface

The kinetochores, two of which are located at the centromere of
each condensed chromosome, play a crucial role for mitosis as they
transmit the forces from depolymerizing MTs that pull the sister
chromatids apart.18 Within the MT lattice, mechanical energy is
stored originating from the GTP hydrolysis. When the GTP cap
is lost and the MT starts to shrink with its protofilaments curling
outwards,19 this energy is released and a single protofilament can
generate power strokes of up to 5 pN [21]. Though the more than
100 protein species composing the kinetochore have been identified
in the past, it is still not completely understood how these proteins
are arranged to facilitate force coupling to the MTs.

A kinetochore consists of an inner kinetochore that is connected
to the chromatid and an outer kinetochore attached to the MTs,
see Fig. 3.5. While some of the proteins that build up the inner
kinetochore are bound to centromeric DNA throughout the whole
cell cycle [116], the outer kinetochore is only assembled during
mitosis [117]. Investigating the question how the outer kinetochore
binds theMTs, during the last twodecades, rod-likeNdc80 complexes
crystallized as the major component of force transmission [118–
120]. One end of an Ndc80 complex can bind directly to the MT
lattice via a globular CH domain and an unstructured tail [121].
Human kinetochores contain about 250 Ndc80 complexes [122],
from which approximately 30 % are engaged in MT binding [123].
In vitro experiments have shown that Ndc80 complexes can only
trace depolymerizing MTs and withstand tensile forces if they are
oligomerized [58, 120].

In budding yeast, MT tracing is accomplished by ring-like Dam1
complexes that surround the MTs, are linked by Ndc80 complexes
and can be moved by depolymerizing curled protofilaments as
sketched in Fig. 3.5A [124–128]. While Dam1 can only be found in
yeast cells, Ska1 complexesmay have a similar function inmetazoan
and plant cells [129–132], see Fig. 3.5B, which is emphasized by
in vitro experiments showing that Ska1 increases the MT binding
affinity of Ndc80 and the ability of this bond to withstand large
forces [59].20
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(A) (B)

Figure 3.5: Kinetochore–MT inter-
face. MTs are connected to the inner
kinetochore via rod-like Ndc80 com-
plexes. (A) In yeast cells, the Ndc80
complexes are attached to a Dam1 ring
that surrounds the MT and can trace
the depolymerizing plus end. (B) Ver-
tebrate cells do not containDam1 rings,
but the the Ndc80–MT binding is sup-
ported by Ska1 complexes.
This figure is reproduced with permis-
sion from Ref. [114]; copyright (2014)
by Cold Spring Harbor Laboratory
Press.

22Although polymerizing MTs may
also be able to generate compressive
forces in other situations [135–138],
there is evidence that kinetochoreMTs
lack this ability [51, 139].

Besides the proteins involved in MT binding, the kinetochore also
contains regulatory proteins that control MT dynamics, e.g., pro-
teins of the kinesin-13 family that promote catastrophes [133].21

21MCAK, a catastrophe promoter pre-
sent in vertebrate cells, is included in
our model in Sec. 3.4.3.

Moreover, in experiments with reconstituted yeast kinetochores,
the attached MTs exhibited force dependent dynamic instability,
e.g., tension enhanced rescues and growth but suppressed catas-
trophes [134]. Also the binding affinity turned out to depend on
force, and in particular, detachment of depolymerizing MTs was
suppressed if tension was high, which means that kinetochores
provide catch bonds that tighten under tension. Since, as written
above, high tension is a marker for a correct bipolar attachment,
this catch bond behavior supports avoidance and correction of
erroneous attachments during prometaphase.

3.1.3 Forces in the mitotic spindle

Before introducing a mechanical model of the mitotic spindle, we
need to know the relevant forces that are acting during mitosis.
Above, we already described the effects of dynein, kinesin-5 and
kinesin-14, which apply forces on the spindle poles via astral or
interpolar MTs and thereby determine the length and the position
of the mitotic spindle. Since we aim to examine the dynamics
of chromosomes and for that purpose use a model assuming
fixed spindle pole positions, these forces are not of interest in the
following.

The three major forces that act on a chromosome are sketched in
Fig. 3.6. The first to mention is the poleward force that is exerted by
depolymerizing kinetochore MTs22 in a mechanism as discussed
in Fig. 3.5. Since two chromatids are linked by the cohesin bond, a
depolymerizing kinetochore MT that pulls a chromatid polewards
simultaneously exerts an AP-directed force on the sister chromatid.
With a bipolar attached chromosome, this results in a tug-of-war
of the opposite k-fibers. Later, when the cohesin bond is lost in
anaphase, the depolymerizing kinetochoreMTs are themain driver
of chromatid segregation.
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Figure 3.6: Forces acting on the chro-
mosomes. (A) Depolymerizing MTs
that are connected to the kinetochore
via Ndc80 fibrils pull the chromatid
polewards. (B) Polar ejection forces
(PEFs). Plus end directed chromoki-
nesins push the chromatid arms away
from the pole. (C) Poleward micro-
tubule flux. Kinesin-13 depolymerizes
the minus ends at the centrosome, re-
sulting in a tubulin flux from the plus
to the minus end. For interpolar MTs,
poleward flux is supported by kinesin-
5 with two plus end directed motor
domains.
The cartoon of the spindle is adapted
from Ref. [92]; copyright (2007) Ox-
ford University Press; see Fig. 3.2B.
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23 This behavior can be compared to
treadmilling of free MTs, see Sec. 2.1.2.
The difference is that treadmillingMTs
move in plus end direction while the
spindle MTs undergoing poleward
flux are held at a constant position
by the involved motor proteins.
24 with the exception of indirect forces
transmitted from the sister chromatid
via the cohesin bond

Another poleward acting force results from the poleward microtubule
flux which describes the kinesin-13 driven depolymerization of
MTs at their minus ends near the centrosome. During metaphase,
on the one hand, the depolymerization of kinetochore MTs is
balanced by their polymerizing plus ends so that the MT length
stays constant and there is a continuousfluxof tubulin from theplus
to the minus end.23 For interpolar MTs, this balance is supported
by kinesin-5 pushing antiparallel MTs apart. On the other hand,
during anaphase, poleward flux accelerates the segregation of
sister chromatids as the kinetochore MTs are depolymerized at
both ends simultaneously.

Finally, polar ejection forces (PEFs) are the only AP-directed forces.24

They are exerted by plus end directed chromokinesins of the
kinesin-4 and kinesin-10 families, whose motor domains move
along non-kinetochore MTs while their head domains are attached
to the chromosome arms. In the vicinity of the spindle pole, PEFs
may also be a consequence of the dense array of growing MTs
pushing the chromosome arms directly without assistance of
chromokinesins. During prometa- and metaphase, the PEFs push
the chromosomes towards the spindle equator and ensure their
positioning in the metaphase plate [140]. Since PEFs would impede
the chromatid segregation, they are eliminated by destruction of
the chromokinesins in anaphase.

Beside the three mentioned active forces—depolymerizing kineto-
chore MTs, poleward flux and PEFs—which act on the two sister
chromatids from opposite poles, a moving chromatid is always
exposed to viscous drag which results from the high viscosity of
the cytoplasm. During Metaphase, all forces are balanced in a way
that the chromosomes are arranged in the metaphase plate and
may exhibit directional instability. We examine this force balance
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25More models are reviewed, e.g., in
Refs. [142, 161].
26 There are other one-dimensional
models that also address chromosome
dynamics but differ in one of these
points from the mentioned references.
Spindle pole dynamics can be exam-
ined by including interpolar [162] or
astral MTs [163], thereby also consid-
ering control of spindle length and/or
position. Models for budding yeast
spindles with only one MT per kine-
tochore (instead of a MT ensemble)
are proposed in Refs. [164–166]. Fur-
thermore, models with a single spin-
dle pole [167, 168] deal with oscilla-
tions in monooriented chromosomes
which have been observed during
prometaphase [50, 169] or after sev-
ering the cohesin bond [170]. Such a
monopolar model is the starting point
of our mean-field approach.

cohesin
bond

MTs
kinetochore

centrosome
chromatid

MT–kineto-
chore bond

®FC ®FMT®FMT

Figure 3.7: One-dimensional force
balance models. The single chromo-
some is modeled as a pair of sister
kinetochores connected via a (visco-)
elastic spring that represents the co-
hesin bond. From each of the two fixed
centrosomes, an ensemble of MTs
emerges, whichmay be attached to the
associated kinetochore. The nature of
the MT–kinetochore bond varies from
model to model, see Tab. 3.1. Kineto-
chore dynamics are determined by a
force balance. The main forces include
depolymerizing MTs pulling the kine-
tochores apart (®FMT, green), the elastic
force of the cohesin bond (®FC, red) and
maybe viscous drag.

in the following sections by means of a mechanical model, and
show how and under which conditions the interplay of these three
major forces induces directional instability of chromosomes.

3.2 Model of the mitotic spindle

In this section, we introduce the one-dimensional spindle model
that should respect the considerations about the acting forces
made in the previous section and is examined throughout this
chapter by means of both stochastic simulations and a novel
deterministic mean-field approach. Beforehand, we review some
similar, formerly developed models to point out the benefits of our
work and in particular of our mean-field approach.

3.2.1 Overview of existing spindle models

There is a huge variety of mitotic spindle models focusing on
different aspects and phases of mitosis as reviewed in Refs. [46,
141–144]. Examples for such aspects are the assembly of the mitotic
spindle [145–148], control of spindle position [149–153] and spindle
length [141, 154, 155], or the search-and-capture of chromosomes
during prometaphase [81, 156–160].

Our model focuses on the chromosome dynamics during meta-
phase and can be associated with a set of several theoretical models
that have been proposed over the last 20 years and reproduce
chromosome oscillations [57, 101–106], see Tab. 3.1.25 These models
have in common that they simplify the mitotic spindle to a quasi-
one-dimensional geometry, neglect explicit spindle pole dynamics,
and contain two ensembles of MTs growing from the two spindle
poles. TheMTs link the two opposite poles to a single chromosome,
which is represented by two kinetochores that are connected by a
spring (the cohesin bond).26 Kinetochore dynamics are defined by a
balance of the several forces that act on the chromatids. These forces
may include viscous drag and the kinetochores follow overdamped
motion [57, 102–105], or they are assumed to reach force balance
instantaneously under the influence of MT depolymerization and
polymerization forces because the friction force is small [101, 106].
Fig. 3.7 depicts the generic composition of such one-dimensional
force balance models.

Several MT depolymerization and polymerization forces are in-
cluded in the models. Possibly, poleward MT flux is included [57,
102], which describes a constant flux of tubulin from the plus
ends towards the spindle pole and is probably driven by plus end
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Ref. (year) Linker
model

Catch
bonds

Equal
force

sharing

Force-dep.
rescue/
catastr.

Poleward
MT flux PEFs

MT
pushing
forces

Joglekar [101] (2002) Hill sleeve No No No Yes No
Civelekoglu [102] (2006) Motor No No Yes Yes Yes Yes
Civelekoglu [105] (2013) Viscoelastic Yes No Yes No Yes No
Shtylla [103, 104] (2010) Hill sleeve Yes No No Yes Yes
Banigan [57] (2015) Elastic Yes No Yes Yes No Yes
Klemm [106] (2018) Permanent Yes Yes No No Yes
This work Elastic Yes No Yes Sec. 3.4.1 Sec. 3.4.2 Sec. 3.4.3

Table 3.1: Overview of assumptions
of models exhibiting stochastic chro-
mosome oscillations. In the referred
sections we discuss how poleward
flux, PEFs and the absence of push-
ing forces affect kinetochore dynamics
in the model used for this work.

27 The stochastic switching between
polymerizing and depolymerizing
states is known as “dynamic instabil-
ity” [68], see Sec. 2.1.2.

directed kinesin-5 motors pushing overlapping antiparallel inter-
polar MTs apart and kinesin-13 proteins that depolymerize MTs at
the centrosome [171]. The main poleward forces on kinetochores
are generated by depolymerization of MTs, which builds up and
transmits a poleward force via the MT–kinetochore link. Only in
the model of Civelekoglu-Scholey et al. [102], the main poleward
force is generated by MT depolymerization motors at the spindle
poles. In order to be able to exert poleward pulling forces, the MT–
kinetochore bond needs to remain intact during depolymerization
and “slide” with the depolymerizing MT plus end. The force that
can be exerted depends on the nature of this bond and is high if it is
a catch bond that tightens under tension [134]. All models include
switching between polymerizing and depolymerizing MT states.
In most models, this switching is caused by stochastic catastrophe
and rescue events.27 Only Shtylla and Keener [103, 104] do not
introduce explicit MT catastrophes, but catastrophe-like events
are triggered by a chemical feedback loop if MTs approach the
kinetochore.

The two ensembles of MTs are engaged in a kind of tug-of-war and
exert antagonistic forces via the spring connecting the kinetochores:
poleward (P) depolymerization forces of one ensemble generate an
antipoleward (AP) force on the other kinetochore. Experiments sug-
gest that kinetochore MTs can only exert P-directed pulling forces
by depolymerization but are not able to directly exert AP-directed
pushing forces on the kinetochore during polymerization [51, 139].
During directional instability, the spindle switches between the
left and the right ensemble pulling actively in P-direction by de-
polymerization while the respective other ensemble is passively
following in AP-direction by polymerizationwithout actively push-
ing. Nevertheless, some models have included AP-directed MT
pushing forces [57, 102–104, 106]. Antagonistic AP-directed forces
on the kinetochores can also be generated by polar ejection forces
(PEFs). They originate from non-kinetochore MTs interacting with
the chromosome arms via collisions or chromokinesins belonging
to the kinesin-4 and kinesin-10 families [172] and pushing them
thereby towards the spindle equator. The action of different P- and
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28A generic elastic linker is probably
the most simple and least speculative
way to model the kinetochore struc-
ture depicted in Fig. 3.5 with rod-like
Ndc80 complexes as main force trans-
mitters.
29 While Civelekoglu et al. [105] model
single Ndc80 complexes as viscoelas-
tic springs attaching to and detach-
ing from a MT individually, Banigan
et al. [57] summarize the proteins en-
gaged in a MT–kinetochore bond to a
simple elastic spring with a constant
stiffness.

AP-directed forces can move kinetochores back and forth and also
tense and relax the inter-kinetochore cohesin bond.

The models differ in their assumptions about the MT–kinetochore
link and the mechanism how MT dynamics is directed by me-
chanical forces to give rise to kinetochore and inter-kinetochore
distance oscillations. The model by Joglekar and Hunt [101] uses
the thermodynamic Hill sleevemodel [156] for theMT–kinetochore
connection, which assumes equally spaced rigid linkers that diffuse
on the discrete MT lattice. Shtylla and Keener [103, 104] combine a
continuous version of the Hill sleeve model with a negative chemi-
cal feedback between the force at theMT–kinetochore interface and
the depolymerization rate. In Hill sleeve models, there is no effect
of MT insertion and, thus, force onto the MT dynamic instability,
i.e., on catastrophe and rescue rates. The Hill sleeve can transmit
pulling forces onto the kinetochore up to a critical force above
whichMTs pull out of the sleeve [101], and there is evidence that the
Hill sleeve exhibits catch-bond-like behavior [173]. However, more
recent studies show that the kinetochore is not rigid, as supposed
in the Hill sleeve model, but should be viewed as a flexible frame-
work [174]. Moreover, Ndc80 fibrils have been suggested as main
force transmitter [118–120], which motivated Keener and Shtylla to
modify their Hill sleeve model by replacing the rigid attachment
sites with elastic linkers and allowing for a force feedback onto
MT depolymerization [34]. Nonetheless, sleeve models remain
speculative as electronmicroscopy has not yet revealed appropriate
structures [175, 176]. Civelekoglu-Scholey et al. [102] proposed a
model in whichMTs and kinetochores are linked bymotor proteins
(dyneins) walking towards the MT minus end. These links have no
catch bond like behavior, but are assumed to be able to transmit
tension onto MTs, which promotes MT rescue. In Ref. [106], no
explicit linkers are introduced but permanent MT–kinetochore
links are assumed that can transmit both pulling and pushing
forces onto MTs. Since the exact nature of MT–kinetochore linking
structures is not known, a model of the MT–kinetochore link as a
generic elastic structure seems reasonable, which is based only on
the available solid information about the kinetochore–MT interface
with as little further speculation as possible.28 Such an approach
can be found in recent models where theMTs are linked to the kine-
tochore via (visco-)elastic springs [57, 105].29 The MT–kinetochore
bond can be modeled as a catch bond, and the elastic linkers also
transmit forces back onto the MT allowing for a force feedback
onto MT dynamics as it has been measured in Ref. [134].

In the model of Shtylla and Keener [103], MTs that are attached
to the same kinetochore share the force from the cohesin bond
equally and exhibit synchronous dynamics. The last assumption is
contradictory to the experimental observation that one kinetochore
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30 This explanation turns out to proba-
bly be wrong as we discuss at the end
of Sec. 3.5.

MT ensemble does not coherently (de)polymerize but always
consists of a mixture of both states [177, 178]. Klemm et al. [106] take
into account this observation by dividing each MT ensemble into a
growing and a shrinking sub-ensemble, but also make the strong
assumption of equal force sharing between the MTs within each
sub-ensemble. All other models allow for individual MT dynamics
and for different forces between MTs depending on the distances
of MTs to the kinetochore.

Themainmechanism for oscillations differs between themodels de-
pending on the main antagonistic AP-directed force that switches
a depolymerizing P-directed ensemble back into AP-directed poly-
merization. Switching can be triggered by the AP-directed force
that the other ensemble can exert via the cohesin spring during
depolymerization and by AP-directed PEFs if MT catastrophes
are suppressed or rescues are promoted under tension. In the
model by Joglekar and Hunt [101], AP-directed PEFs are essential
for switching. Civelekoglu-Scholey et al. [102] proposed a model
in which force is transmitted by motor proteins. By variation of
the model parameters, they were able to reproduce a wide range
of chromosome behavior observed in different cell types. In this
model, a depolymerizing P-directed ensemble switches because
tension in the cohesin spring and PEFs promote rescue events. A
modified model [105] uses viscoelastic catch bonds and accounts
for the observation that in PtK1 cells only chromosomes in the cen-
ter of the metaphase plate exhibit directional instability [55]. This
dichotomy is explained with different distributions of PEFs at the
center and the periphery of the metaphase plate.30 In the model by
Shtylla and Keener [103, 104], MT catastrophe-like events are only
triggered by a chemical feedback so that kinetochore oscillations
become coupled to oscillations of the chemical negative feedback
system: AP-directedMT polymerization exerts pushing forces onto
the kinetochore but triggers switching into a depolymerizing state,
and MT depolymerization exerts P-directed pulling forces and
triggers switching back into a polymerizing state.

Whereas in Refs. [101, 102, 105] AP-directed PEFs are present and
in the model by Joglekar and Hunt [101] also essential for realistic
kinetochore oscillations, Banigan et al. [57] presented a minimal
model with simple elastic linkers and neglecting PEFs. They were
able to trace chromosome oscillations back to a bistable force–
velocity relation of a kinetochore in their monopolar or one-sided
minimal spindle model, where a single kinetochore under force is
connected to one or several MTs. Referring to experiments with
budding yeast kinetochores [134], they modeled MT dynamics
with force-dependent velocities, catastrophe and rescue rates. In
this model, kinetochore oscillations arise solely from the collective
behavior of attached MTs under force and the resulting interplay
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31We answer this question in
Sec. 3.4.3.

32 Klemm et al. [106] model fission
yeast with four MTs per kinetochore.
Since they divide each foursome of
MTs into a growing and a shrink-
ing sub-ensemble, i.e., four ensembles
to describe eight MTs, assuming an
equally shared force for MTs within
the same sub-ensemble does not seem
to be an over-simplification.

33 This is the necessary simplification
to keep our mathematical model solv-
able, comparable to the strong assump-
tion of equal force sharing in Refs. [103,
104, 106]. In Appendix B.2, we present
an (less successful) approach assum-
ing equal force sharingbut in exchange
allowing for velocity fluctuations.

between P-directed depolymerization forces and AP-directed poly-
merization forces of the opposingMT ensembles. Force-dependent
velocities, catastrophe and rescue rates are essential to trigger
switching of kinetochore motion and oscillations in this model.
However, MTs can exert pushing forces so that it is unclear to what
extent the oscillation mechanism remains functional if pushing
forces are absent as suggested experimentally.31 Also the recent
model by Klemm et al. [106], which aims to describe kinetochore dy-
namics in fission yeast, does not rely on PEFs. It uses a permanent
MT–kinetochore bond and oscillations result from the interplay
betweenMT depolymerization and polymerization forces via force-
dependentMT dynamics; also in this model MTs can exert pushing
forces.Moreover, themodel includes kinesin-8motors that enhance
the catastrophe rate and have a centering effect on the chromosome
positions.

Finally, themodels can be classified into purely computationalwork
based on stochastic simulations [57, 101, 102, 105] and mathemati-
cal models solving deterministic differential equations [103, 104,
106]. While on the one hand such mathematical approaches often
facilitate a deeper insight into the underlying mechanisms of the
modeled system, on the other hand they usually require stronger
simplifications in order to keep the equations at least numerically
solvable and are therefore even more artificial than computational
models. The simplification made in the mathematical models of
Shtylla et al. [103, 104] and Klemm et al. [106] is the aforementioned
equal force sharing among the kinetochore MTs, which is not
necessary in the computational models, where an ensemble of
individual MTs can be simulated quite easily. However, while the
assumption of equal force sharing is exact for systems with a single
MT andmight still be a reasonable approximation when only a few
MTs are linked to the kinetochore,32 it is likely to fail for larger MT
ensembles. In this chapter, we close this gap by introducing a novel
mathematical approach containing non-uniformMT distributions
that correctly describes systems with a large number of MTs. An
essential part in our quantitative analysis is a mean-field solution
of the one-sided model of Banigan et al. [57], starting from FPEs
for the length distribution of the MT–kinetochore linkers. The
only mean-field approximation is to neglect stochastic velocity
fluctuations of the attached kinetochore.33

In all Refs. [57, 101–106], a sufficient set of ingredients is given for the
respective model to exhibit oscillations including a specific choice
of parameter values. It is a much harder task to give necessary
conditions and parameter ranges for oscillations, which means to
obtain quantitative bounds on model parameters, than to give a
sufficient set of conditions. This is the aim of the present chapter
within a model that starts from the minimal model by Banigan
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34 For a one-dimensional spindle
model including centrosome dynam-
ics and astral MTs, see for instance
Ref. [163].

35 E.g., when a MT in the right half
is growing with the (positive) veloc-
ity vm+, its tip moves in the negative
x-direction: Ûxm � −vm+.

36 There are different detachment
rates ωd± for growing (+) and shrink-
ing (−) MTs.

et al. [57] and generalizes this model in several respects in later
sections, see Tab. 3.1. In this way we discuss the complete inventory
of possible forces acting on the kinetochore and their influence on
oscillations.

3.2.2 One-dimensional model of the mitotic spindle

We use a one-dimensional model of the mitotic spindle as depicted
in Fig. 3.8, which is based on the generic model in Fig. 3.7 and
similar to the model from Ref. [57]. The x-coordinate specifies
positions along the one-dimensional model, and we choose x � 0
to be the spindle equator. The spindle model contains a single
chromosome represented by two kinetochores, which are linked
by a spring with stiffness ck and rest length d0. Two centrosomes
margin the spindle at fixed positions ±xc, i.e., the dynamics of the
centrosomes are neglected.34 From each centrosome, a constant
number of M MTs emerges with their plus ends directed towards
the spindle equator. Each MT exhibits dynamic instability [68]
and attaches to and detaches from the corresponding kinetochore
stochastically. The MTs are confined by the centrosomes. It is
reasonable to assume that they undergo a forced rescue and detach
from the kinetochore if they shrink to zero length. Attached MTs
are connected to the kinetochore by a linker, which we model as
a Hookean polymeric spring with stiffness c and zero rest length.
This spring exerts a force Fmk � −c (xm − Xk) on each MT, and
each MT exerts a counter force −Fmk on the kinetochore, where
Xk and xm are the positions of the kinetochore and the MT tip.

In the following, we define all MT parameters for MTs in the left
half of the spindle model; for MTs in the right half, velocities v
and forces F have opposite signs.35 In the left half, tensile forces
on the MT–kinetochore link arise for Xk > xm and pull the MT in
the positive x-direction, Fmk > 0. In Ref. [134], the velocities of MT
growth vm+ and shrinkage vm− aswell as the rates of catastropheωc,
rescue ωr and detachment36 ωd± have been measured while MTs
were attached to reconstituted yeast kinetochores. They can all be
described by an exponential dependence on the force Fmk that acts
on the MT plus end:

vm± � v0
± exp

(
Fmk
F±

)
, ωi � ω

0
i exp

(
Fmk
Fi

)
, (3.1)

(for i � r, c, d+, d−) with F+ , Fr , Fd+ > 0 and F− , Fc , Fd− < 0
for the characteristic forces, because tension (Fmk > 0) enhances
growth velocity, rescue and detachment of a growing MT, while
it suppresses shrinking velocity, catastrophe and detachment of a
shrinking MT. We note that we use signed velocities throughout
this chapter, i.e., vm− < 0 and vm+ > 0. Suppression of detachment
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Figure 3.8: One-dimensional model
of the mitotic spindle. M MTs arise
from each centrosome, which mar-
gin the spindle. Each MT undergoes
dynamic instability and can attach
to / detach from the corresponding
kinetochore. TheMT–kinetochore link-
ers aremodeled as elastic springs with
stiffness c. The kinetochores are con-
nected via a spring with stiffness ck
representing the cohesin bond.
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37 xm > Xk, again for MTs in the left
half of the spindle

of shrinkingMTs is the catch bond property of theMT–kinetochore
link. The attachment rate is assumed to follow a Boltzmann distri-
bution,

ωa � ω0
a exp

(
c (Xk − xm)2

2kBT

)
, (3.2)

according to the elastic energy of the MT–kinetochore linker.

The kinetochore motion is described by an overdamped dynam-
ics,

vk ≡ ÛXk �
1
γ
(Fkk + Fkm), (3.3)

with the friction coefficient γ, and the forces

Fkk � ck (Xk,r − Xk,l − d0), (3.4)
Fkm � −

∑
att. MTs

Fmk , (3.5)

originating from the cohesin bond between the kinetochores and
the MT–kinetochore linkers of all attached MTs, respectively.

We use parameter values as listed in Tab. 3.2. Most of them are ob-
tained from experiments, in particular those of the load dependent
MT dynamics. The parameters from Tab. 3.2 are kept constant until
Sec. 3.4.4, where we fit the model as a proof of concept to experi-
mental data of chromosome oscillations in PtK1 cells. Before, we
follow our actual aim, which is to achieve a deeper understanding
of the mechanisms that underlie directional instability by studying
the influence of only a few crucial parameters.

For that purpose, we start with the investigation of the minimal
model in which we detect the MT number M and especially the
stiffness c of the MT–kinetochore linker as crucial parameters. In
theminimal or basicmodel, we neglect poleward flux and PEFs and
use the same simple spring model for the MT–kinetochore linker
as Banigan et al. [57] where the MT plus ends are able to “overtake”
the kinetochore37 and thereby exert pushing forces Fkm > 0 on the
kinetochore, which could be interpreted as a compression of the
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Table 3.2: Model parameters. The pa-
rameters listed here are kept constant
except for Sec. 3.4.4.

Transition parameters ωi ω0
i (s
−1) Fi (pN)

Catastrophe ωc 0.0019 −2.3 [134]
Rescue ωr 0.024 6.4 [134]
Detachment of growing MT ωd+ 0.000 11 3.8 [134]
Detachment of shrinking MT ωd− 0.035 −4.0 [134]
Attachment rate ωa 1.0 estimated

Velocity parameters vm± v0
± (nms−1) F± (pN)

Growth vm+ 5.2 8.7 [134]
Shrinkage vm− −210.0 −3.2 [134]

Other parameters Symbol Value

Cohesin bond stiffness ck 20 pNµm−1 estimated
Cohesin bond rest length d0 1µm [51]
Centrosome position xc 6.8µm [54]
Friction coefficient γ 1 pN sµm−1 estimated
Thermal energy kBT 4 pN nm estimated
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Figure 3.9: Boundary condition at
the kinetochore. (A) In the minimal
model, the MTs are not confined by
the kinetochore but can grow across it
and pull it thereby away from the pole.
(B) This can be interpreted as compres-
sion of a MT that grows against and
pushes the kinetochore. In Sec. 3.4.3,
we lift the assumption of pushingMTs.

𝑐
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Figure 3.10: One-sided model of the
mitotic spindle. The cohesin bond is
replaced by the external force Fext.
MTs are not confined by a centro-
some and permanently attached to
the single kinetochore so that the MT–
kinetochore distances xi � xm,i − Xk
are the only relevant coordinates.

MT–kinetochore linker, see Fig. 3.9. Later, we generalize the mini-
mal model as described in Tab. 3.1. Each of the model extensions
involves one additional parameter, and in a first approach, we add
each extension separately in order to analyze its specific influences
on kinetochore dynamics. In a first step, we add poleward MT
flux, which describes a constant flux of tubulin from the plus ends
towards the spindle pole [171], by shifting the MT velocities vm± by
a constant flux velocity vf. PEFs, which push the kinetochore away
from the pole [172], are included in a second step as external forces
that depend on the absolute positions of the kinetochores and a
force constant k. Finally, we take account of the hypothesis that
MTs are not able to apply pushing forces on the kinetochore [51,
139] bymodifying themodel such that the growth of aMT is stalled
when it reaches the kinetochore and a stalled MT might have an
increased catastrophe rate ωkin

c > ω0
c .

3.2.3 One-sided spindle model

Following the approach of Banigan et al. [57], we introduce a
one-sided model that contains only the left half of the two-sided
basic model from Fig. 3.8 with a single kinetochore and a single
MT ensemble as depicted in Fig. 3.10. In the one-sided model, the
cohesin bond is replaced by a constant external force Fext so that
Eq. (3.3) simplifies to

vk �
1
γ
(Fext + Fkm). (3.6)

Banigan et al.worked out that the kinetochore may move in P- or
AP-directionwith a velocity that depends on the external force, and
moreover can exhibit a hysteresis that is the basis of chromosome
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38 In terms of the model parameters,
this assumption can be expressed as
xc � ∞, i.e., the one-sided model con-
tains infinitely long MTs.

39 This behavior is very probable for
large external forces: When the kineto-
chore is pulled strongly, also the ten-
sion Fmk in the MT–kinetochore link-
ers is high, which increases the rescue
rate and the detachment rate of grow-
ingMTs according to Eq. (3.1). If noMT
is attached, the kinetochore velocity
is given by vk � Fext/γ and exceeds
the unloaded MT growth velocity v0

+

for large forces so that the MTs have
no chance to catch up with and to be
reattached to the kinetochore.
40 The equation of motion of the
kinetochores is given by Eqs. (3.3)
and (3.6) in the two- and the one-sided
model, respectively. Motion of the MT
tips is defined by Ûxm,i � vm±,i for
i � 1, ...,M with vm±,i from Eq. (3.1).

oscillations in the two-sided model. To be able to trace kinetochore
motion in simulations for a sufficiently long time even if its velocity
is negative, we neglect the centrosome in our one-sided model
so that the kinetochore and the MTs can move unrestrictedly
in any direction.38 We can also consider the MTs as unconfined
in the two-sided model with centrosomes, as long as the mean
distance of MTs from the spindle equator is sufficiently small,
|〈xm〉| � |xc |. In the one-sided model, we moreover assume that
the MTs are permanently attached to the kinetochore (ωdet � 0)
because otherwise all MTs may be detached at the same time,
and the kinetochore and the MT tips may drift apart without
reattachment.39 As a consequence of these two assumptions, both
MT and kinetochore dynamics solely depend on their relative
distances xi and not on absolute positions, which simplifies the
analysis. This is what allows for themean-field approach presented
below in the first place.

3.2.4 Simulations

We perform simulations of both the one- and the two-sided model
by integrating the deterministic equations of motion for MTs and
kinetochores,40 and include stochastic switching events between
growth and shrinking as well as for attachment to and detachment
from the kinetochore for each MT. For the integration, we employ
an Euler algorithm with a fixed time step ∆t ≤ 1 × 10−3 s, which
is small enough to ensure ωi∆t � 1 for all stochastic switching
events (see Tab. 3.2).

Concretely, in each time step the following steps are executed:

1. The forces Fmk, Fkm, Fkk and FPEF that are exerted by the
MT–kinetochore linkers, the cohesin bond and the PEFs are
calculated from the positions of the kinetochores and the
MT positions. In the one-sided model, Fkk is replaced by the
external Force Fext.

2. Following Eqs. (3.1) and (3.2), the rates for a rescue or a
catastrophe (ωr, ωc) and, if enabled, for attachment/de-
tachment (ωa, ωd±) are computed for each MT in depen-
dence of the force Fmk that is applied on its tip. Transitions
are executed stochastically with the according probability
pi � 1 − exp(−ωi(Fmk)∆t).

3. The velocities of the MTs vm,i and the kinetochores vk are
determined with Eqs (3.1) and (3.3).
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4. The new positions of the kinetochores Xk and the MT tips
xm,i are calculated with an Euler step:

Xk(t + ∆t) � Xk(t) + vk∆t , (3.7)
xm,i(t + ∆t) � xm,i(t) + vm,i∆t . (3.8)

5. The kinetochore and MT positions are revised if they violate
any of the enabled boundary conditions (confinement at
the centrosome and/or the kinetochore, forced rescue at the
centrosome).

3.3 Mean-field theory for bistability and
chromosome oscillations

In simulations of the one-sided spindle model, kinetochore move-
ment exhibits bistable behavior as a function of the applied
force [57], i.e., within a certain force range there are two metastable
states for the same external force: in one state, the MTs predomi-
nantly grow and the kinetochore velocity is positive while in the
other state, the kinetochore has a negative velocity as a consequence
of mainly shrinking MTs. It depends on the history which of these
two states is assumed: when the system enters the bistable area
in consequence of a force change, the kinetochore velocity will
maintain its direction (following its current metastable branch)
until the force is sufficiently large that the system leaves the bistable
area again (the current metastable branch becomes unstable). We
first present a mean-field approach that allows us to reproduce
the hysteresis by means of deterministic FPEs. By this approach,
we can easily obtain constraints on the linker stiffness c and MT
number M for the occurrence of bistability, which is hardly feasible
from stochastic simulations. Furthermore, we show that the hys-
teresis of the one-sided model can explain stochastic chromosome
oscillations in metaphase if two one-sided models are coupled in
the full two-sided model. As for the bistability in the one-sided
model, we again determine a regime of chromosome oscillations
in the c–M parameter plane.

3.3.1 Mean-field theory for bistability in the one-sided
model

As for the simulations of the one-sided model, we make two as-
sumptions for our Fokker–Planck mean-field approach. First, we
assume that all M MTs are always attached to the kinetochore.
Because the MT–kinetochore links are catch bonds, this assump-
tion is equivalent to assuming that these links are predominantly
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41 rather than, for example, a coopera-
tive oscillation as for a MT ensemble
pushing against an elastic barrier [179]

under tension. We will check below by comparison with numerical
simulations to what extent this assumption can be justified. Sec-
ondly, we neglect that MTs are confined by a centrosome so that,
as mentioned above, the only relevant coordinates are the relative
MT–kinetochore distances xi , which measure the extension of the
i-th linker.

We obtain a system of FPEs for the M MT–kinetochore distances
xi (i � 1, ...,M) and decouple the MT dynamics in a mean-field
approximation that neglects kinetochore velocity fluctuations. The
MTs are coupled because they are attached to the same kinetochore:
each MT experiences a force Fmk,i � −cxi from the elastic linker to
the kinetochore, which is under tension (compression) for xi < 0
(xi > 0); the kinetochore is subject to the total counter force
Fkm � c

∑
i xi . Therefore, the kinetochore velocity vk is a stochastic

variable depending on all distances xi , on the one hand, but
determines the velocities Ûxi � vm±(xi) − vk of MTs relative to the
kinetochores, on the other hand. The equations can be decoupled
to a good approximation because the one-sided system assumes a
steady state with an approximately stationary kinetochore velocity
vk after a short time.41 In our mean-field approximation, we then
assume a constant kinetochore velocity vk ≡ 〈vk〉 and neglect
all stochastic fluctuations around this mean. Unlike stochastic
simulations, inwhich a prescribed force Fext acts on the kinetochore,
the mean-field approach starts from a prescribed kinetochore
velocity and obtains as a result the external force that is necessary to
move thekinetochorewith thegivenvelocity. Themeankinetochore
velocity is determined by the mean linker extension 〈x〉 via

vk �
1
γ
(Fext + cM〈x〉). (3.9)

Fluctuations around the mean value are caused by fluctuations of
the force Fkm � c

∑
i xi around its mean 〈Fkm〉 � Mc〈x〉, which

become small for large M according to the central limit theorem.
Therefore, the mean-field approach applies to cells in which many
MTs are attached to a single kinetochore, as it is the case in
mammalian cells with 20–25 MTs per kinetochore [109].

If vk is no longer a stochastic variable, the dynamics of the MT–
kinetochore extensions xi decouple. Then, the probability distri-
bution for the M extensions xi factorizes into M identical factors
p(xi , t) � p+(xi , t) + p−(xi , t), where p±(x , t)dx are the probabili-
ties to find one particular MT in the growing (+) or shrinking (−)
state with a MT–kinetochore linker extension x at time t. We can
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42 The FPEs of a single MT with con-
stant rates and velocities are discussed
in Sec. 2.2.1, see Eq. (2.1).

43 For very large compressive linker
extensions, MT growth is suppressed,
but the kinetochore still moves such
that v+(x) ≈ −vk > 0.

derive two FPEs for the dynamic evolution of p±(x , t),

∂t p+(x , t) � −ωc(x) p+(x , t) + ωr(x) p−(x , t)
− ∂x

(
v+(x) p+(x , t)

)
,

(3.10)

∂t p−(x , t) � ωc(x) p+(x , t) − ωr(x) p−(x , t)
− ∂x

(
v−(x) p−(x , t)

)
,

(3.11)

where v±(x) denotes the relative velocity of MT and kinetochore,

v±(x) ≡ vm±(x) − vk � v0
± exp

(
− cx

F±

)
− vk , (3.12)

and ωc,r(x) � ω0
c,r exp(−cx/Fc,r). The velocity vk is no longer

stochastic but self-consistently determined by (3.9). We note that
these FPEs are equivalent to single MT FPEs with position-depend-
ent velocities, catastrophe and rescue rates [29, 30, 180, 181].42

We now obtain the force–velocity relation of the whole MT ensem-
ble by first solving the FPEs (3.10) and (3.11) in the stationary state
∂t p±(x , t) � 0 and then calculating the mean linker extension 〈x〉
for a given kinetochore velocity vk using the stationary distribution
p±(x). The external force that is necessary to move the kinetochore
with velocity vk then follows from Eq. (3.9),

Fext � γvk − cM〈x〉(vk). (3.13)

The MT–kinetochore distance x is limited to a maximum or a
minimum value xmax or xmin for a given kinetochore velocity
vk > 0 or vk < 0, respectively, see Tab. 3.3. These limiting values
are reached if the relative MT–kinetochore velocities vanish after
the linker extension x has adjusted. First we consider vk < 0 and
a shrinking MT. If we start with a compressed linker (x > 0),
the MT starts to shrink fast, the compression is reduced and
the linker may get under tension (x < 0) because the relative
velocity is negative, Ûx � v−(x) < 0. TheMT–kinetochore distance x
continues to decrease until Ûx � v−(xmin) � 0 in Eq. (3.12), where
the shrinking velocity of the MTs is the same as the prescribed
kinetochore velocity (vm− � vk). Further shrinking to x < xmin
is not possible but distances x > xmin can be reached if MTs are
rescued. If vk < 0 and the MT grows, on the other hand, there is
no upper bound on x as the relative velocity Ûx � v+(x) is always
positive; x starts to grow into the compressive regime x > 0
and continues to grow without upper bound.43 Analogously, if
vk > 0 andMTs grow, x grows until Ûx � v+(xmax) � 0, and smaller
distances can be reached by catastrophe but there is no lower
bound on x for shrinking MTs.

Linker extensions xmax (xmin) are reached as stationary states if
catastrophes (rescues) are suppressed, for instance because of
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Table 3.3: Boundary conditions of
the mean-field approach. The maxi-
mum and the minimum value xmax or
xmin of the stationary linker extension
distribution p(x) follow from condi-
tions v−(xmin) � 0 and v+(xmax) � 0.
The distance xmin (xmax) is a function
of the prescribed kinetochore veloc-
ity vk and has to be specified sep-
arately depending on the direction
of vk. The distance xmin (xmax) is ap-
proached if the MTs shrink (grow) for
a sufficiently long time.

MT shrinks MT grows

vk > 0 v−(x) < −vk always v+(x) > 0 for x < xmax

xmin � −∞ xmax � (F+/c) ln
(
v0
+/vk

)
vk < 0 v−(x) < 0 for x > xmin v+(x) > vk always

xmin � (F−/c) ln
(
v0
−/vk

)
xmax � ∞

vk � 0 v−(x) < 0 always v+(x) > 0 always
xmin � −∞ xmax � ∞

44Note that xmax,min is a function of
the kinetochore velocity vk � ṽ±, see
Tab. 3.3.

45 The Lambert W function is defined
by x � W(x) eW(x) and consists of two
branches [80] (see figure below), from
which only the upper branch (blue) is
relevant in Eq. (3.15), where the argu-
ment of W( ) is always positive.
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x

−3
−2
−1

0
1

W
(x
)

large forces, such that MTs can grow (shrink) for sufficiently long
times. If catastrophes or rescues are suppressed and the external
force Fext is prescribed rather than a kinetochore velocity, all MTs
and the kinetochore reach a stationary state in which they move
with the same velocity vm,i � vk � ṽ±, which is implicitly given by
Eq. (3.13):44

Fext � γṽ± − cMxmax,min. (3.14)

Solving for ṽ±, we find

ṽ± ≡
MF±
γ

W
(
γv0
±

MF±
exp

(
Fext

MF±

))
, (3.15)

where W( ) denotes the Lambert W function.45

In the complete absence of stochastic switching between
growth and shrinking by catastrophes and rescues, the MT
ensemble reaches stationary states with peaked distributions
p+(x) ∝ δ(xmax − x) and p−(x) ∝ δ(x − xmin). Stochastic switch-
ing shifts and broadens these peaks, and the FPEs (3.10) and (3.11)
lead to a distribution p±(x , t) of linker extensions x in the growing
and shrinking states with statistical weight p±(x , t) > 0 in the
whole interval xmin ≤ x ≤ xmax. At the boundaries xmin and xmax
of this interval, the probability current density

j(x , t) ≡ v+(x , t) p+(x , t) + v−(x , t) p−(x , t) (3.16)

has to vanish. Furthermore, in any stationary state (∂t p±(x , t) � 0)
the current density is homogeneous, as can be seen by summing
up the FPEs (3.10) and (3.11):

0 � ∂x
(
v+(x) p+(x) + v−(x) p−(x)

)
� ∂x j(x). (3.17)

Since j � 0 at the boundaries, this implies that j � 0 everywhere in
a steady state. The resulting relation v+(x) p+(x) � −v−(x) p−(x)
can be used to reduce the stationary FPEs to a single ordinary
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differential equation with the solution [180]

p±(x) �
±N

v±(x)
exp

(
−

∫ (
ωc(x)
v+(x)

+
ωr(x)
v−(x)

)
dx

)
(3.18)

for the stationary distribution of linker extensions x in the grow-
ing and shrinking states. The normalization constant Nmust be
chosen so that the overall probability density p(x) ≡ p+(x) + p−(x)
satisfies ∫ xmax

xmin

p(x)dx � 1. (3.19)

Obviously, p±(x) � 0 for x > xmax and x < xmin. The stationary
probability densities p±(x) from Eq. (3.18) can then be used to
calculate the mean distance 〈x〉 as a function of the kinetochore
velocity vk , which enters through Eq. (3.12) for v±(x). The integral
in the exponent in Eq. (3.18) as well as the normalization can be
evaluated numerically to obtain an explicit 〈x〉(vk)-relation, which
is shown in Fig. 3.11A.

At this point it should be noted that in the mean-field theory, the
〈x〉(vk)-relation is independent of the MT number M. Therefore,
we call it master curve henceforth. In Fig. 3.11A, we compare the
mean-field theory result with stochastic simulations and find that
the mean-field approach becomes exact in the limit of large M,
where fluctuations in the kinetochore velocity around its mean in
Eq. (3.9) can be neglected.

The master curve is a central result and the basis for all further
discussion. Together with the force balance (3.13) on the kineto-
chore, the master curve gives the force–velocity relation for the
MT–kinetochore system. A positive slope of the master curve,
as it can occur for small vk ≈ 0 (see Fig. 3.11A), gives rise to
an instability of the MT–kinetochore system: where the slope is
positive, a positive kinetochore velocity fluctuation δvk > 0 leads
to a MT–kinetochore linker compression δ〈x〉 > 0. According to
the force balance (3.13), a compression δ〈x〉 > 0 puts additional
forward-force on the kinetochore leading to a positive feedback
and further increase δvk > 0 of the kinetochore velocity. This re-
sults in an instability, which prevents the system to assume mean
linker extensions 〈x〉 in this unstable regime. This is confirmed
by stochastic simulation results in Fig 3.11A, which show that the
unstable states are only assumed transiently for very short times.
Therefore, occurrence of a positive slope in the master curve in
Fig. 3.11A is the essential feature that gives rise to bistability in the
one-sided model and, finally, to oscillations in the full two-sided
model.
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Figure 3.11: Mean-field results com-
pared to stochastic simulations of
the one-sided model. (A) The master
curve 〈x〉(vk) from the mean-field ap-
proach (red line) agrees with simula-
tion results for different MT-numbers
M � 5, 20, 50, 200. The dashed lines
mark xmin,max(vk) from Tab. 3.3. We
run simulations with constant ex-
ternal forces and average over 80
simulations for each force. Initially,
the MT–kinetochore distance is ei-
ther xmin or xmax while all MTs
grow or shrink with velocity ṽ±, re-
spectively. The system then enters a
(meta-)stable state, in which we mea-
sure the mean kinetochore velocity
and MT–kinetochore distances. The
marker size depicts the time the sys-
tem rests in this state on average,
which is a measure for its stability
(maximummarker size corresponds to
trest ≥ 1000 s). As predicted, themean-
field approach turns out to be correct
in the limit of many MTs, and in this
limit the 〈x〉(vk)-relation is indepen-
dent of the MT-number M. (B) Re-
sulting force–velocity relations for dif-
ferent MT-numbers M � 5, 20, 50, 200.
The dashed lines show the large
velocity limit vk ≈ ṽ± given by
Eq. (3.15). We used a linker stiffness of
c � 20 pNµm−1 both in (A) and (B).

Now we want to trace the origin of this instability for small vk ≈ 0.
If the MTs are growing (shrinking) for a long time, all linker ex-
tensions assume the stationary values x ≈ xmax(vk) (x ≈ xmin(vk))
from Tab. 3.3, where the MT velocity adjusts to the kinetochore
velocity, vk ≈ vm±(x). If the kinetochore velocity increases in these
states by a fluctuation (i.e., δvk > 0), the MT–kinetochore linkers
are stretched (i.e., δx < 0), which slows down the kinetochore
again, resulting in a stable response. This is reflected in the nega-
tive slopes of both xmax(vk) (for vk > 0) and xmin(vk) (for vk < 0).
Because of constant stochastic switching between catastrophes and
rescues, the mean linker extension exhibits fluctuations around
xmax and xmin, but we expect also the master curve 〈x〉(vk) to have
a negative slope for a wide range of velocities vk. Fig. 3.11A shows
that this is actually the case for kinetochore velocities vk around the
force-free growth or shrinking velocities v0

± of the MTs, i.e., if the
imposed kinetochore velocity vk roughly “matches” the force-free
growing or shrinking MT velocity. Then a small mismatch can be
accommodated by small linker extensions x, which do not dra-
matically increase fluctuations by triggering catastrophe or rescue
events.

The situation changes for small negative or small positive val-
ues of the kinetochore velocity around vk ≈ 0. For vk . 0, MT–
kinetochore linkers develop logarithmically growing large negative
extensions xmin (see Tab. 3.3) corresponding to a slow kinetochore
trailing fast shrinking MTs that strongly stretch the linker. Like-
wise, for vk & 0, MT–kinetochore linkers develop logarithmically
growing large positive extensions xmax corresponding to a slow
kinetochore trailing fast growing MTs that strongly compress
the linker. Around vk ≈ 0, the system has to switch from large
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46 The derivation is presented in Ap-
pendix B.1. The entire exponents are:

α+ � −1 +
ω0

c F+
cv0

+

(
vk
v0
+

)−1+F+/Fc

,

α− � −1 +
ω0

r F−
cv0−

(
vk
v0−

)−1+F−/Fr

.

Since α± > −1, the distribution is al-
ways normalizable, even though it
diverges at xmax or xmin for α± < 0.
However, if the peaks are sharp
(α± & −1), their numerical integration
in order to calculate the normaliza-
tion constant N is not readily fea-
sible. Instead, we need to integrate
over intervals [xmin + ∆x , xmax] or
[xmin , xmax − ∆x] with ∆x’s as small
as possible and then extrapolate to
∆x � 0 based on the knowledge of the
exponents α±. This procedure is de-
scribed in more detail in my master
thesis [95].

negative x to large positive x because the resulting tensile force
Fmk � −cx on the shrinking MT destabilizes the shrinking state
and gives rise to MT rescue at least for x < −Fr/c.

Therefore, also the mean value 〈x〉 switches from negative to
positive values resulting in a positive slope of the master curve
if the stationary distributions p−(x) and p+(x) remain sufficiently
peaked around the linker extensions xmin and xmax, also in the
presence of fluctuations by catastrophes and rescues. We find by
an expansion to the leading order that the stationary distribution
assumes a power law behavior around xmax or xmin,46

p(x) ∝ p+(x) ∝ (xmax − x)α+ for vk > 0, (3.20)
p(x) ∝ p−(x) ∝ (x − xmin)α− for vk < 0, (3.21)

which is illustrated by the exemplary overall probability densi-
ties p(x) plotted in Fig. 3.12. Since the exponents α± depend on
the MT–kinetochore stiffness c as α± + 1 ∝ 1/c in the presence of
fluctuations, distributions are peaked (i.e., have a large kurtosis)
and bistability emerges if the MT–kinetochore linker stiffness c is
sufficiently large such that deviations of the MT velocity from the
kinetochore velocity become suppressed by strong spring forces.
This is one of ourmain results and is quantified in Sec. 3.3.3.We also
find that α± + 1 ∝ (|vk/v0

± |)−1−|F±/Fc,r | such that the distributions
become also peaked around xmin,max in the limit of large kineto-
chore velocities |vk |. Then, the velocity approaches vk ≈ ṽ±(Fext)
for a prescribed external force such that ṽ± from Eq. (3.15) repre-
sents the large velocity and large force limit of the force–velocity
relation of the kinetochore, see Fig. 3.11B. The influence of c and vk
can also be seen in Fig. 3.12, where the distributions are unpeaked
in a wider range of kinetochore velocities for c � 7 pN nm−1 than
for c � 20 pN nm−1.

In the unstable regime around vk ≈ 0, the linker length distribu-
tion p(x) is typically broad without pronounced peaks and has a
minimal kurtosis (as a function of vk) in the presence of catastro-
phe and rescue fluctuations. In this regime, the system assumes
a state with a heterogeneous stationary distribution of growing
and shrinking MTs, i.e., the total probabilities to grow or shrink
become comparable,

∫
p+(x)dx ∼

∫
p−(x)dx. If the kinetochore

velocity is increased, δvk > 0, the system does not react by δx < 0,
i.e., by increasing the average tension in the linkers in order to
pull MTs forward, but by switching MTs from the shrinking to the
growing state (on average), which then even allows to relax the
average linker tension.

Using the force balance (3.13) on the kinetochore, the master curve
is converted to a force–velocity relation for the MT-kinetochore
system; the results are shown in Fig. 3.11B. The bistability in the
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Figure 3.12: Power law behavior in
the probability densities of linker
extensions. The overall densities
p(x) � p+(x) + p−(x) following from
Eq. (3.18) are shown for various com-
binations of linker stiffnesses c and
kinetochore velocities vk. For vk > 0
(vk < 0), they show the predicted
power law behavior at xmax (xmin)
that is determined by α+ (α−). For
c � 20 pN nm−1, the distributions are
peaked (α± < 0) if vk > 3.54 nm s−1

(vk < −14.6 nm s−1). Thus, the mean
linker extension stays near xmax (xmin)
also in the vicinity of vk � 0 so
that it has to have a positive slope
to get from xmin to xmax dur-
ing the evolution from negative to
positive velocities, resulting in a
bistability. For c � 7 pN nm−1, which
we show in Sec. 3.3.3 to lie be-
low the lower bound for bistabil-
ity, the distributions themselves as
well as the unpeaked region (α± > 0,
−29.3 nm s−1 < vk < 4.41 nm s−1) are
broader so that the mean linker exten-
sion evolves monotonically from xmin
to xmax when vk is increased and
crosses vk � 0.

master curve directly translates to a bistability in the force–velocity
relation of the MT ensemble, and we obtain a regime with three
branches of possible velocities for the same external force. The
upper and the lower branches agree with our simulation results
as well as previous simulation results in Ref. [57], and our mean-
field results become exact in the limit of large M. These branches
correspond to the two stable parts of themaster curvewith negative
slope that are found for kinetochore velocities vk roughlymatching
the force-free growth or shrinking velocities v0

± of theMTs. Themid
branch corresponds to the part of the master curve with positive
slope where the system is unstable. Fig. 3.11B demonstrates that
this instability is confirmed by stochastic simulations results.

Finally, we note that a simpler theoretical approach, where it is
assumed that all linkers assume identical extensions xi ≈ x and all
attached MTs are in the same state (growing or shrinking), is exact
for a single MT (M � 1) by definition but not sufficient to obtain
a bistable force–velocity relation for MT ensembles (M > 1).47

47 See Appendix B.2.

The same assumption of identical MT positions has already been
used to study an ensemble of MTs that are connected to the same
kinetochore via Hill sleeve like linkers [103, 173]. The model of
Klemm et al. [106] divides each MT ensemble into a growing
and a shrinking sub-ensemble, and assumes equal load sharing
only between MTs within each sub-ensemble. Together with a
force-sensitive rescue force, this is sufficient to obtain a bistable
force–velocity relation in a corresponding one-sided model.

3.3.2 Bistability gives rise to oscillations in the two-sided
model

As already worked out by Banigan et al. [57], the bistability in
the force–velocity relation of the one-sided MT ensemble can be
considered to be the cause for stochastic oscillations in the two-
sided model. Each ensemble can be either on the lower branch
of the force–velocity relation, where it mainly depolymerizes and
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48 By these definitions, it follows that

Fkk,l ≡ Fkk , Fkk,r ≡ −Fkk ,

vk,l ≡ ÛXk,l , vk,r ≡ − ÛXk,r

for the left and the right kinetochore.

49 −v0
− � v0

+, see Tab. 3.2
50 If it were the trailing kinetochore
that switches from the upper to
the lower branch, both kinetochores
would move in P-direction, away from
each other, which would increase the
cohesin tension beyond Fkk > Fmax
where only the upper branch is stable.

exerts a P-directed pulling force (vk < 0), or on the upper branch,
where it mainly polymerizes and exerts an AP-directed pushing
force (vk > 0). The external force in the one-sided model is a
substitute for the spring force Fkk � ck (Xk,r − Xk,l − d0) of the
cohesin bond in the full model with a stiffness ck and rest length d0.
Since the cohesin force is a linear function of the inter-kinetochore
distance, the force–velocity relation can be treated as distance–
velocity or phase space diagram where both kinetochores move
as points along the force–velocity relation, see Fig. 3.13A. The
cohesin bond always affects the two kinetochores in the same way
because action equals reaction: if the cohesin spring is stretched,
both kinetochores are pulled away from their pole (AP); if it is
compressed, both kinetochores are pushed polewards (P). Thus,
the kinetochores always have the same position on the Fkk-axis in
the Fkk–vk diagram in Fig. 3.13A if Fkk on the horizontal axis is
defined as the force on the kinetochore in AP-direction. Likewise,
we define vk on the vertical axis as the velocity in AP-direction.48

The upper/lower stable branch of the force–velocity relation is
denoted by v±k (Fkk). Typically, a kinetochore on the upper (lower)
branch has v+

k > 0 (v−k < 0) and, thus, moves in AP-(P-)direction.
Using Fkk � ck (Xk,r − Xk,l − d0) for the spring force, we find

ÛFkk � −ck (vk,r + vk,l), (3.22)

i.e., kinetochores move with the sum of their AP-velocities along
the force–velocity curve in the Fkk–vk diagram.

Oscillations arise from the two kinetochores moving through the
hysteresis loop of the bistable force–velocity relation as described
Fig. 3.13A. Three states are possible, see Fig. 3.13B. In state 0,
both kinetochores move in AP-direction (vk � v+

k ), i.e., in opposite
directions towards each other, relaxing the Fkk-force from the
cohesin bond. In terms of the vk–Fkk diagram, both kinetochores
are on the upper branch and move to the left with the velocity
ÛFkk � −2ckv+

k < 0 according to Eq. (3.22). After reaching the lower
critical force Fmin of the hysteresis loop, one of the two kinetochores
reverses its direction and switches to the lower branch resulting
into states 2 or 2′, where one kinetochore continues its motion in
AP-direction with v+

k > 0 trailing the other (leading) kinetochore,
which nowmoves in P-directionwith v−k < 0, i.e., both kinetochores
move in the same direction. In the vk–Fkk diagram, this results in a
motion to the right with velocity ÛFkk � ck (−v−k − v+

k ) > 0 because
MTs typically shrink much faster than they grow.49 For the same
reason, moving on opposite P- and AP-branches increases the
kinetochore distance and builds up Fkk-force in the cohesin bond.
After reaching the upper critical force Fmax of the hysteresis loop, it
is always the kinetochore on the lower branchmoving in P-direction
that switches back50 and state 0 is reached again. This behavior is
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Figure 3.13: Bistability gives rise to
oscillations in the two-sided model.
(A,B) Different states of sister kineto-
chore motion can be deduced from
the bistability of the force–velocity re-
lation: either both kinetochores are
in the upper branch (0) or one is
in the upper and the other one in
the lower branch (2, 2′). In the first
case, both kinetochores move away
from their pole (AP) towards each
other. Thus, the spring force Fkk de-
creases until it reaches Fmin. Since
the upper branch is not stable any-
more below Fmin, either the left (1)
or the right (1′) kinetochore switches
to the lower branch and changes di-
rection to poleward motion (P). The
system is then in state 2 or 2′, where
both kinetochores move into the same
direction: the leading kinetochore P,
the trailing kinetochore AP. As P- is
much faster than AP-movement (MT
shrinkage is much faster than growth),
the inter-kinetochore distance and the
spring force are increasing. Above
Fmax only AP-movement is stable
which is why the leading kinetochore
changes direction (3, 3′) and the sys-
tem switches to state 0 again. (C) Solu-
tion of the equations of motion (3.23)
for c � 20 pNµm−1 and M � 25 with
an imposed periodic order of states
(0 − 2 − 0 − 2′ − 0 − ...). The initial
condition is Fkk � Fmax (both kineto-
chores at the right end of the upper
branch).

in agreement with experimental results [55]. The system oscillates
by alternating between state 0 and one of the states 2 or 2′, which
is selected randomly with equal probability.

For each of the states 0, 2 and 2′ depicted in Fig. 3.13AB, the two
branches v±k � v±k [Fkk] provide deterministic equations of motion
for the kinetochore positions. Inserting Fkk � ck (Xk,r − Xk,l − d0),
we obtain both kinetochore velocities as functions of the kineto-
chore positions and find

state 0: ÛXk,l � v+

k
[
ck (Xk,r − Xk,l − d0)

]
> 0,

ÛXk,r � −v+

k
[
ck (Xk,r − Xk,l − d0)

]
< 0,

state 2: ÛXk,l � v−k
[
ck (Xk,r − Xk,l − d0)

]
< 0,

ÛXk,r � −v+

k
[
ck (Xk,r − Xk,l − d0)

]
< 0,

state 2′: ÛXk,l � v+

k
[
ck (Xk,r − Xk,l − d0)

]
> 0,

ÛXk,r � −v−k
[
ck (Xk,r − Xk,l − d0)

]
> 0.

(3.23)

Solving these equations gives idealized deterministic trajectories
of the sister kinetochores when we also assume that the left and
the right kinetochore pass the lower branch alternately such that
the order of states is a periodic sequence 0 − 2 − 0 − 2′ − 0 − ...
as shown in the example in Fig. 3.13C. Then, single kinetochores
oscillate with half the frequency of inter-kinetochore (breathing)
oscillations, just as observed in PtK1 cells [55]. Moreover, we
can obtain numerical values of the frequencies directly from the
trajectories. For a MT–kinetochore linker stiffness c � 20 pNµm−1

and 20 to 25 MTs per kinetochore, which is a realistic number for
mammalian cells [109], we get periods of 206 s to 258 s and 103 s
to 129 s for kinetochore and breathing oscillations, respectively.
These values coincide with experimental results of 239 s and 121 s
measured in PtK1 cells [55].

The calculated trajectories are idealized since theyneglect stochastic
fluctuations that occur in simulations of the two-sided model and
have two main effects on the kinetochore dynamics, which already
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Figure 3.14: Oscillations in stochas-
tic simulations of the unconfined
model compared to mean-field re-
sults. (A) Kinetochore trajectories and
breathing oscillations in the two-sided
model without confinement (xc →∞)
and detachment (ωd � 0). The kineto-
chores behave as described in Fig. 3.13
with a random order of states 2/2′.
The breathing oscillations are regu-
lar enough to assign a frequency by
Fourier analysis, see (D). With less
MTs, oscillations are more fluctuative.
(B) Kinetochore velocity against co-
hesin force in simulations of the uncon-
fined two-sidedmodelwithoutdetach-
ment (green). FormanyMTs, the veloc-
ity follows very precisely the predicted
hysteresis from the mean-field ap-
proach (red). (C) Double-logarithmic
plot of frequencies of breathing os-
cillations as a function of MT num-
ber M: calculated from the mean-field
approach according to Fig. 3.13 (red)
andmeasured in simulations of the un-
confined (green diamonds) as well as
the confined model with detachable
catch bonds (blue circles) and with
permanent attachment (orange trian-
gles). Confinement becomes relevant
for large MT numbers. In the presence
of detachable catch bonds only 75 %
of the MTs are attached on average,
which corresponds to a simple shift
of the curve to lower MT numbers.
(D) Trajectories from (A) in Fourier
space. While X̃k,r has its maximum
at f � 0 due to the random order
of states in Fig. 3.13, ∆X̃k has a dis-
tinct peak that becomes sharper for
large M indicating regular breathing
oscillations. For all simulations, the
MT-kinetochore linker stiffness was
c � 20 pNµm−1.

arise in simulations that comply with the assumptions behind the
mean-field theory:51 Firstly, the sister kinetochores do not pass
the lower branch alternately but in random order. Therefore, in
stochastic simulations, we observe phases where one kinetochore
moves in AP-direction for several periods while the other one
changes its direction periodically but moves polewards on average,
see Fig. 3.14A. Since this does not affect the trajectory of the
inter-kinetochore distance, breathing oscillations still occur in a
more or less regular manner, which allows us to measure their
frequencies by Fourier analysis. We show below that additional
PEFs suppress this random behavior and force the kinetochores
to pass the lower branch alternately. As a second effect of the
stochastic character of the simulation, kinetochores do not change
the branch instantaneously after crossing the critical forces Fmax
or Fmin. Instead, they tend to maintain their primary state for a
while (Fig. 3.14B) and follow the metastable states that we also
observe in simulations of the one-sided model (Fig. 3.11B). Hence,
the frequencies we measure in the simulations are smaller than
those calculated from the Fokker–Planck mean-field approach
(Fig. 3.14C). The latter effect vanishes in the limit of many MTs
(large M): the switching points approach the theoretical values
Fmax and Fmin, and the simulated breathing frequencies converge
to our mean-field predictions.

So far, we have demonstrated that the mean-field theory cor-
rectly describes kinetochore dynamics in simulations of the uncon-
fined model where we suppress detachment in order to prevent
unattached MTs from shrinking towards infinity. As shown in
Fig. 3.15A, kinetochore oscillations also survive in simulations of
the confined model independently of whether the MTs are able
to detach from the kinetochore, i.e., to rupture the catch bond.
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Figure 3.15: Dynamics in the con-
fined model with detachable MTs.
(A) Kinetochore positions Xk and
inter-kinetochore distance ∆Xk over
time in simulations with a total num-
ber of M � 25 and M � 100 MTs
per spindle pole. Oscillations as de-
scribed in Fig. 3.13 are recognizable.
With 100 MTs one kinetochore can get
stuck to the centrosome for a while.
(B) Distribution of kinetochore posi-
tions. The kinetochores are not aligned
to the spindle equator and for M � 100
they are most likely to be found near
the centrosomes. (C) Number of at-
tached MTs Matt over time. MTs are
more likely to be attached when the
correspondent kinetochore is near the
centrosome since the free MTs can be
reattached to the kinetochore faster in
that case. (D) Distribution of Matt. On
average 75 % of the MTs are attached
independently of the total MT num-
ber M.

However, confinement by the centrosome influences the kineto-
chore dynamics in the limit of large M: since more MTs exert a
higher force on the kinetochore, it is possible that one of the two
sisters gets stuck at the centrosome for a while, see Fig. 3.15AB.
Hence, the frequencies measured in the confined two-sided model
deviate from the frequencies in the unconfined case above M ≈ 200
(Fig. 3.14C).

51As a reminder: We assumed perma-
nent MT–kinetochore bonds (ωd � 0)
and ignored the confinement at the
centrosome (xc →∞).

If we enable detachment in our simulations, we find that the num-
ber of attached MTs correlates with the kinetochore position (see
Fig. 3.15C) since due to the exponential distribution of free MTs
and the distance dependent attachment rate (3.2), detached MTs
are more likely to be reattached to the kinetochore the closer it is
to the centrosome. Moreover, on average, about 75 % of the MTs
are attached independently of the total MT number (Fig. 3.15CD).
Therefore, the catch bond nature of the link leads to an effective
behavior similar to a system without detachment but with less
MTs, which explains the difference in frequencies between the
confined models with and without detachment in Fig. 3.14C. We
conclude that detachment does not play a major role for the occur-
rence of kinetochore oscillations in cells with many MTs as despite
detachment there are always enough MTs attached to justify our
mean-field approximation. Hence, (periodic) changes in the num-
ber of attached MTs as they can be seen in Fig. 3.15C are rather a
passive consequence than an active source of kinetochore oscilla-
tions. This argumentation may not be tenable, if just a few MTs are
attached to a kinetochore, so that even detachment of a single MT
affects the total force acting on the kinetochore significantly. Then,
detachment can be the primary cause of directional instability as
worked out by Gay et al. [162], who modeled the mitotic spindle of
fission yeast.
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52 This includes confined/unconfined
systems and permanent/detachable
bonds.

53 See Appendix B.2.

Taking into account the results of the last paragraph, we mainly
investigate the unconfined model with permanently attached MTs
in the following sections. This procedure is reasonable as we do
not lose any qualitative key features of kinetochore dynamics on
the one hand, and, on the other hand, gain a much better compa-
rability of our mean-field theory with the appropriate stochastic
simulations.

We finally note that in all cases we examined,52 the kinetochore
oscillations become more fluctuative if less MTs are attached.
This leads to the conclusion that kinetochore oscillations are a
result of the collective dynamics of an ensemble of MTs that
exhibit a force-dependent dynamic instability individually. Such
a behavior can not be described correctly based on the simple
assumption that all linkers have the same extension, i.e., that
MTs share the load equally and all attached MTs are in the same
state (growing or shrinking).53 Therefore, the model of Shtylla
and Keener [103], which does assume equal load sharing and
synchronous MT dynamics, requires a chemical feedback as an
additional mechanism in order to obtain kinetochore oscillations.
The model of Klemm et al. [106] divides each MT ensemble into a
growing and a shrinking sub-ensemble, and assumes equal load
sharing only between MTs within each sub-ensemble. Together
with a force-sensitive rescue force, this is sufficient to obtain
oscillations.

3.3.3 Constraints on linker stiffness and microtubule
number for bistability and oscillations

We already argued above in Sec. 3.3.1 that bistability (and thus
oscillations) can only emerge if the MT–kinetochore linker is
sufficiently stiff. To analyze the influence of the linker stiffness c and
the MT number M on bistability quantitatively, the transformation
from the master curve to the force–velocity relation is visualized in
Fig. 3.16A as search for the intersections of the master curve with
linear functions

〈x〉 � 1
cM
(γvk − Fext). (3.24)

In the limit of large M, these linear functions have zero slope.
Bistable force–velocity relations with three intersection points are
only possible if themaster curve has positive slope for intermediate
vk resulting in a maximum and a minimum. The extrema of the
master curve vanish, however, in a saddle-node bifurcation if
the linker stiffness drops below cbist � 7.737 pNµm−1, which is,
therefore, a lower bound for the occurrence of bistability. In the
case of finite MT numbers M, bistable force–velocity relations can
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Figure 3.16: Constraints for bistabil-
ity in the one-sided model. (A) Mas-
ter curves for different linker stiff-
nesses c and linear functions accord-
ing to Eq. (3.24). In the limit of large
M, the linear functions have zero slope
and bistability occurs if the master
curve has two extrema, which is the
case for c > cbist. For finite M, bistable
solutions are possible if the linear func-
tions have a smaller slope than the
inflection point of the master curve.
(B) Resulting bistable regime in the
parameter plane of linker stiffness c
and MT number M.

only be found if the slope in the inflection point of the master curve
exceeds γ/cM, which is the slope of the linear function (3.24). This
allows us to quantify a bistable regime in the parameter plane of
linker stiffness c and MT number M as shown in Fig 3.16B.

We showed in Sec. 3.3.2 that bistability of the one-sided model
is a necessary condition for oscillations in the two-sided model.
However, as we show now, bistability in the one-sided model is not
sufficient for oscillations in the full model. If the force–velocity rela-
tion is interpreted as phase space diagram for the two kinetochores,
kinetochores only switch branches in the vk–Fkk diagram if their
velocity changes its sign at the turning points Fmin and Fmax. If this
is not the case since one of the two branches crosses vk � 0 like, for
example, the right branch for c � 10 pNµm−1 in Fig. 3.16A, which
transforms to the upper branch of the force–velocity relation, the
intersection point is a stable fixed point in the phase space diagram
as sketched in Fig. 3.17A. At this fixed point, kinetochore motion
relaxes to zero velocity and just exhibits fluctuations around an
equilibrium distance instead of oscillations.

As a sufficient condition for oscillations, we have to require—
besides bistability—a strictly positive velocity in the upper and a
strictly negative velocity in the lower branch in the vk–Fkk diagram.
Based on this condition, we quantify an oscillatory regime in the
parameter plane of linker stiffness c andMTnumberM in Fig. 3.18A.
In the limit of many MTs, the sufficient condition for oscillations
can be formulated in terms of the master curve: the maximum of
the master curve has to be located at a positive and the minimum
at a negative velocity. This is the case for c > cosc � 15.91 pNµm−1,
which is, therefore, a lower bound for the occurrence of oscillations.
This constraint on the linker stiffness for metaphase chromosome
oscillations provides additional information on MT–kinetochore
linkers, whose molecular nature is not known up to now.
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Figure 3.17: Kinetochore dynam-
ics in the non-oscillatory regime.
(A) Schematic explanation of kineto-
chore motion in the non-oscillatory
regime based on the force–velocity re-
lation.Where theupper branch crosses
zero velocity, the inter-kinetochore dis-
tance has a fixed point, around which
it fluctuates. With higher linker stiff-
nesses c, the fixed point comes closer
to the left turning point Fmin. If c is
just slightly smaller than cosc, fluctua-
tions can be large enough for the kine-
tochore distance to leave the upper
stable branch. Then, one of the two sis-
ter kinetochores passes once through
the lower branch. (B,C) This behavior
can be observed in simulations. While
at c � 10 pNµm−1, kinetochores just
fluctuate around the fixed point, at
c � 14 pNµm−1, the kinetochores oc-
casionally pass through the hystere-
sis loop. Simulations were performed
with an unconfined system and 100
MTs on each side.

Because of stochastic fluctuations, the transition between the oscilla-
tory and the non-oscillatory regime is not sharp in our simulations.
In the non-oscillatory regime, kinetochores fluctuate around a
fixed point of inter-kinetochore distance, where the upper branch
crosses vk � 0. However, these fluctuations can be large enough
for the inter-kinetochore distance to shrink and leave the upper
branch on the left side, especially for stiffnesses c slightly below
cosc. If that happens, one kinetochore passes once through the
lower branch of the force–velocity relation just as in an oscillation.
The difference to genuine oscillations is that these are randomly
occurring single events (resulting in a Poisson process). Randomly
occurring oscillations are visualized in Fig. 3.17 for c < cosc and
c . cosc. Moreover, the force–velocity relations as well as the kine-
tochore trajectories measured in corresponding simulations are
shown.

In the non-oscillatory regime, the fixed point should determine the
mean inter-kinetochore distance 〈∆Xk〉 � 〈Xk,r − Xk,l〉. Solving
the stationary FPEs for vk � 0, we compute the (external) force F0
that has to be applied to one kinetochore to stall its motion:

F0 � γvk − cM〈x〉 � −cM〈x〉(vk � 0). (3.25)

In the two-sided model, this force is applied to the kinetochores by
the cohesin bond at the fixed point. With Fkk � ck (∆Xk − d0), we
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Figure 3.18: Constraints for oscilla-
tions in the two-sided model. (A) Os-
cillatory regime in the parameter
plane of linker stiffness c and MT
number M. cosc � 15.91 pNµm−1 is a
lower bound for the occurrence of os-
cillations. (B) Mean inter-kinetochore
distance according to Eq. (3.26) (red)
andmeasured in simulations of the un-
confined system with M � 100 (blue).
Below cosc � 15.91 pNµm−1 (dashed
line), both results match whereas in
the oscillatory regime the mean inter-
kinetochoredistancediverges from the
fixed point, and its standard deviation
increases notably due to the oscilla-
tions.

compute the corresponding mean inter-kinetochore distance:

〈∆Xk〉 �
F0
ck

+ d0 � − cM
ck
〈x〉(vk � 0) + d0. (3.26)

Fig. 3.18B shows that simulations agree with this result in the non-
oscillatory regime. At cosc the transition to the oscillatory regime
can be recognized where the mean inter-kinetochore distance
deviates from the fixed point (3.26). Moreover, the variance of ∆Xk
increases significantly at cosc due to the transition to the oscillatory
regime.

In order to provide an overview and to make orientation easier
for the reader, we summarize in Fig. 3.19 where the stochastic
simulations from the last three sections and the master curves in
Fig. 3.16A are located in the parameter plane of linker stiffness c
and MT number M, and which regime they are part of.

0 5 cbist 10 cosc 20 25 30
c
(
pNµm−1)1

10

100

1000

M

bistable oscillatory

Fig. 3.11
Fig. 3.14AB
Fig. 3.14C
Fig. 3.15
Fig. 3.16A
Fig. 3.17
Fig. 3.18B

Figure 3.19: Regimes in the c–M pa-
rameter plane with locations of the
master curves from Fig. 3.16A and the
simulations from Figs. 3.11, 3.14, 3.15,
3.17 and 3.18
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54 in contrast to the random choice
of states 2 and 2′ in the oscillation
mechanism of the minimal model as
depicted in Fig. 3.13

3.4 Generalizations of the minimal spindle
model

In the previous section, we presented a mean-field solution for
the minimal model that let us reproduce the bistability of kineto-
chore velocity already found by Banigan et al. [57] in stochastic
simulations and grasp the occurrence of directional instability by
interpreting the (bistable) force–velocity relation as a phase space
diagram for the two-sided model with possibly emerging fixed
points. Beyond that, we were able to quantify boundaries in the
c–M parameter plane for both bistability and chromosome oscilla-
tions, which was a first demonstration of the advantages that our
mean-field approach has over sole stochastic simulations. Those
advantages become even more manifest in the following three sec-
tions, in each of which we add an extension to the minimal model
and analyze its effects on kinetochore dynamics by means of our
theoretical mean-field framework. We start with the inclusion of
poleward flux, which results in a shift of the force–velocity relation
that may generate a fixed point thereby suppressing chromosome
oscillations. Later, we include PEFs as global forces that depend
on the absolute kinetochore positions. They turn out to provide
an alternating oscillation pattern54 and chromosome alignment
at the spindle equator. As a last extension, we take into account
that MTs are probably not able to apply compressive forces on
the kinetochore [51, 139] by assuming MT growth to be confined
at the kinetochore instead of applying the boundary condition
from Fig. 3.9. Then, catastrophe promotion at the kinetochore is a
necessary condition for the occurrence of directional instability. As
for the minimal model, we verify all results by means of stochastic
simulations. In a final section, we combine all extensions with
the aim of fitting stochastic simulations of our model to resemble
certain characteristics of kinetochore trajectories observed in PtK1
cells. During that process, our theoretical understanding obtained
from the mean-field approach proves beneficial in identifying the
parameter changes that have the desired effects.

3.4.1 Poleward microtubule flux

The first additional effect that we include is poleward MT flux,
whichwas observed in severalmetazoan cells (Tab. 3.4). It describes
the constant flux of tubulin from the plus ends towards the spindle
pole and is probably driven by plus end directed kinesin-5 motors
pushing overlapping antiparallel MTs apart as well as kinesin-13
proteins that are located at the centrosome and depolymerize the
MTs at their minus ends [171]. During metaphase, spindle and MT
length can be maintained by simultaneous polymerization at the
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Table 3.4: Metaphase poleward flux
velocities vf and occurrence of direc-
tional instability. Chromosome oscil-
lations have only been observed in
cells with moderate flux velocities
(vf . 10 nm s−1) whereas they are
suppressed by large vf. For a more
detailed review of poleward flux mea-
surements, see Ref. [182].

Cell type vf (nm s−1) Directional
instability

LLC-PK1 (porcine) 8.3 [52] Yes [52]
PtK1 (rat-kangaroo) 7.7 [183] Yes [55]
PtK2 (rat-kangaroo) 10 [52] Yes [56]
Newt lung 9.0 [184] Yes [50]
U2OS (human) 8.8 [53] Yes [53]

Drosophila embryo 32 [185] No [99]
Xenopus egg 37 [186] No [100]

55 Treadmilling MTs polymerize at
their plus end and simultaneously de-
polymerize at their minus end result-
ing in an effective motion in the plus
end direction, see Sec. 2.1.2.

56 Banigan et al. attributed the suppres-
sion of oscillations to the shift of the
force–velocity relation towards higher
forces, and did not recognize the emer-
gence of a fixed point due to the shift
along the vk-axis.

plus ends [182],which results in a behavior similar to treadmilling55

of free MTs [70].

Poleward flux can be easily included in our model by subtracting
a constant flux velocity vf from the MT velocity. Then, the relative
MT–kinetochore velocities (3.12) become

v±(x) � v0
± exp

(
− cx

F±

)
− vf − vk. (3.27)

Hence, the flux velocity can be treated as an offset to the constant
kinetochore velocity in the solution of the stationary FPEs. The
final effect is a shift of both themaster curves and the force–velocity
relations by vf towards smaller kinetochore velocities vk as shown
in Fig. 3.20A. If the shift is so large that the left turning point Fmin
of the force–velocity hysteresis is located at a negative velocity,
poleward flux suppresses directional instability because a fixed
point emerges, and we expect similar behavior as for intermediate
linker stiffnesses in the previous section (Fig. 3.17). In the limit of
many MTs, the maximum flux velocity that still allows directional
instability is given by the velocity in the maximum of the master
curve, which provides the boundary of the oscillatory regime in the
parameter plane of linker stiffness c and poleward flux velocity vf
that is depicted in Fig. 3.20B. Phase space diagrams (Fig. 3.20C)
and kinetochore trajectories (Fig. 3.20D) from simulations with ap-
propriate flux velocities confirm our arguments exhibiting similar
behavior as for intermediate linker stiffnesses in Fig. 3.17. For small
flux velocities, the boundary of the oscillatory regime in Fig. 3.20B
approaches our above result cosc � 15.91 pNµm−1. For increasing
flux velocities, the oscillatory regime shrinks, and its boundary has
amaximum at c ≈ 50 pNµm−1 with vf ≈ 3.11 nm s−1. We conclude
that kinetochore oscillations can be suppressed by moderate flux
velocities independently of the linker stiffness.

Our theory also agrees with simulation results of Banigan et al. [57],
who observed in their model that large flux velocities suppress
kinetochore oscillations while bistability is maintained. However,
they were not able to coherently explain this behavior56 whereas
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Figure 3.20: Poleward flux sup-
presses oscillations. (A) Due to
Eq. (3.27), the force–velocity relation
is shifted by the amount of the flux ve-
locity vf towards smaller kinetochore
velocities. If the flux is slower than the
kinetochore velocity vmin in the left
turning point Fmin, the kinetochores
still oscillate. For larger flux veloci-
ties, a fixed point arises on the upper
branch and the kinetochores behave
as described in Fig. 3.17. (B) Oscilla-
tory regime in the parameter plane of
c and vf in the limit of manyMTs. Fast
poleward flux suppresses kinetochore
oscillations for arbitrary linker stiff-
nesses c. (C,D) Phase space diagrams
and MT trajectories from simulations
of the unconfined two-sided model
with c � 20 pNµm−1 and M � 100.
While at vf � 2 nm s−1 the system is
still in the oscillatory regime, where
hysteresis is recognizable in phase
space, at vf � 4 nm s−1, kinetochores
exhibit fluctuativemotion as described
in Fig. 3.17.

our mean-field approach provides such an explanation quite easily
by the emergence of a fixed point. Moreover, our results explain
the experimentally observed correlation between flux velocity
and directional instability. Kinetochore oscillations have been
observed in the mitotic vertebrate cells listed in Tab. 3.4 (LLC-PK1,
PtK1/2, newt lung, U2OS), which have poleward flux velocities not
exceeding 10 nm s−1, whereas in the mitosis of aDrosophila embryo
as well as in meiosis of a Xenopus egg, where flux velocities are
three to four times higher, chromosomes do not exhibit directional
instability.

3.4.2 Polar ejection forces

As a next extension of the basic model, we now include polar
ejection forces (PEFs). They originate from non-kinetochore MTs
interacting with the chromosome arms and pushing them thereby
towards the spindle equator, either through collisionswith the chro-
mosome arms or via chromokinesins [172], and provide additional
pushing forces on kinetochores. Therefore, they can be included
into the model by adding forces FPEF,r(Xk,r) and FPEF,l(Xk,l) acting
on kinetochores, which depend on the absolute position of the
kinetochores [105]. Due to the exponential length distribution of
free MTs as well as the spherical geometry of the MT asters, the
density of non-kinetochore MTs decreases monotonically with the
distance from the spindle pole. Therefore, we assume that PEFs
reach their maximum at the centrosome and vanish at the spindle
equator (Xk � 0), where opposite PEFs compensate each other.
This assumption is supported by the monotonic PEF distribution
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57 We show inAppendix B.3 that other
force distributions do not differ quali-
tatively in their influence on the kine-
tochore dynamics.

58Here, “leading” refers to the posi-
tion in the force velocity phase space.

59 −v−k for the lower branch is much
larger than +v+k for the upper branch

that has been measured in vivo by Ke et al. [187]. Here, we will only
discuss linearized PEFs57

FPEF,l(Xk,l) � −kXk,l , FPEF,r(Xk,r) � kXk,r , (3.28)

where the spring constant k defines the strength of the forces, and
the signs are chosen so that a positive force acts in AP-direction.

To determine kinetochore trajectories of the two-sided model in
the presence of PEFs, we can start from the same force–velocity
relations as for the basic model. In the presence of PEFs, the total
forces Fk,l and Fk,r that act on the left and the right kinetochore in
AP-direction depend on the absolute kinetochore positions Xk,l
and Xk,r:

Fk,l � Fkk(∆Xk) + FPEF,l(Xk,l), (3.29)
Fk,r � Fkk(∆Xk) + FPEF,r(Xk,r). (3.30)

We can investigate the motion of kinetochores in the full two-sided
model again by using a phase space diagram. In the presence
of PEFs, we use a vk–Fk diagram with the total force Fk in AP-
direction on the horizontal axis and the velocity vk in AP-direction
on the vertical axis. Because the total forces contain the external
PEFs, they are no longer related by action and reaction and, thus,
the two kinetochores no longer have the same position on the
Fk-axis, but they still remain close to each other on the Fk-axis as
long as the cohesin bond is strong enough.

A kinetochore on the upper/lower branch moves in AP-/P-direc-
tionwith v±k (Fk) if v+

k > 0 (v−k < 0). A kinetochore on the upper AP-
directed branch will relax its AP-directed PEFs while a kinetochore
on the lower P-directed branch will build up AP-directed PEFs.
After a time of equilibration, the kinetochores behave as described
in Fig. 3.21. When one kinetochore changes its direction from P to
AP (switches to the upper branch), the sister kinetochore, which
was on the upper branch before, becomes the leading58 kinetochore.
Therefore, the kinetochores do not reach the left turning point Fmin
at the same time so that it is always the leading kinetochore that
switches to the lower branch. Since, in general, the absolute P-
velocity is much larger than the AP-velocity59 and the kinetochores
move along the Fk-axis with

ÛFk,l � −ck (vk,r + vk,l) − kvk,l , (3.31)
ÛFk,r � −ck (vk,r + vk,l) − kvk,r , (3.32)

the AP-directed PEF contribution to the total force increases faster
on the lower branch than on the upper one. As a result, the
P-moving kinetochore overtakes its sister on the Fk-axis before
switching back to the upper branch such that the leading kineto-
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Figure 3.21: Kinetochore dynamics
in the presence of PEFs. (A,B) After a
certain time of equilibration, the sys-
tem periodically passes through the
states 1−2−1′−2′. At the beginning of
state 1, the left kinetochore (green) has
just switched fromP- to AP-movement
so that both kinetochores are on theup-
per branch. Both kinetochores move in
AP-direction, which means that both
the cohesin force and the PEFs de-
crease and both kinetochores move
left in the force–velocity diagram. Due
to different PEFs, the right kineto-
chore (red) reaches the left turning
point Fmin first and switches to the
lower branch, which marks the start
of state 2. This state is dominated by
the fast P-movement of the right kine-
tochore, which causes a steep increase
of both Fkk and FPEF,r. Therefore, the
right kinetochore moves to the right
in the force–velocity diagram. Mean-
while, the left sister still moves in AP-
direction, and Fk,l increases slightly as
the increase of Fkk is larger than the de-
crease of FPEF,l. Since ÛFk,r > ÛFk,l, the
right kinetochore overtakes its sister
on the Fk-axis before it reaches the
right turning point and switches to
the upper branch. The then following
states 1′ and 2′ are the exact oppo-
site to 1 and 2 with swapped kineto-
chores, which ensures an alternating
oscillation pattern. (C) Solution of the
corresponding equations ofmotion for
c � 20 pNµm−1, k � 10 pNµm−1 and
M � 25.

chore automatically becomes the trailing kinetochore in the next
oscillation period.60

60 again, “leading” and “trailing” in
terms of phase space positions

This periodic change of kinetochore positions
in the force–velocity diagram leads to both regular breathing
and regular single kinetochore oscillations as the kinetochores
alternately pass the lower branch. Solving appropriate equations
of motions similar to Eq. (3.23) for each of the states depicted
in Fig. 3.21AB,61 we determine the deterministic trajectories in
Fig. 3.21C confirming this regular alternating oscillation pattern.

The alternating oscillation pattern robustly survives in stochastic
simulations in the presence of moderate PEFs (k ∼ 10 pNµm−1)
as we demonstrate in Fig. 3.22A by means of the kinetochore
trajectories in real space. In Fig. 3.22B, emergence of regular os-
cillations is illustrated in Fourier space: whereas for rather small
values of k, single kinetochore oscillations are still irregular re-
sulting in a nearly monotonic decreasing Fourier transform, for
k � 10 pNµm−1, single kinetochore motion has a distinct peak in
the Fourier space indicating a regular shape of oscillations in real
space. Moreover, frequency doubling of breathing compared to
single kinetochore oscillations can directly be recognized by com-
paring the corresponding Fourier transforms. As a consequence of
regular oscillations, the kinetochores stay near the spindle equator
and can not get stuck to one of the centrosomes as in the basic
model, see histograms of kinetochore positions in Fig. 3.22C. We
conclude that PEFs are necessary to assure proper chromosome
alignment in the metaphase plate at the spindle equator. This is
consistent with an experiment by Levesque and Compton [140],
who observed mitosis of vertebrate cells after suppressing the
activity of chromokinesins and thus PEFs. This resulted in 17.5 %
of the cells in at least one chromosome being not aligned at the
equator but located near a spindle pole.

Moreover, PEFs reduce the amplitude and increase the frequency of
oscillations. The amplitude decreases for increasing PEF strength k
as the kinetochores have to cover a smaller distance between the
turning points at Fmin and Fmax. The increase of the frequency is
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Figure 3.22: Kinetochoremotion in simulations with PEFs. (A) Kinetochore trajectories with different PEF constants k from
simulations with M � 100, c � 20 pNµm−1 and without confinement at the spindle poles. The PEFs force the kinetochores
to oscillate regularly and to stay near the spindle equator. For k � 10 pNµm−1, kinetochores oscillate as described in Fig. 3.21.
Since with strong PEFs, kinetochores tend to switch to the lower branch simultaneously when reaching Fmin in the phase
space at the same time, for k � 1000 pNµm−1, oscillations are in antiphase due to symmetric initial conditions before the
system equilibrates at t ≈ 1500 s. After equilibration, periods of antiphase oscillations reappear over and over again due to
fluctuations. Stronger PEFs cause a more fluctuative kinetochore motion. Especially for moderate MT numbers, this can
lead to suppression of kinetochore oscillations. (B) Single (right) kinetochore and breathing oscillations in Fourier space.
For weak PEFs (k � 1 pNµm−1), single kinetochore oscillations are still irregular and X̃k,r has its maximum at f � 0. If
k � 10 pNµm−1, X̃k,r has a distinct peak at half the breathing frequency, indicating regular oscillations as described in
Fig. 3.21 and frequency doubling of breathing compared to single kinetochore oscillations. With sufficiently strong PEFs
(k & 100 pNµm−1), frequency doubling is lost as a consequence of antiphase oscillations and the peaks of X̃k,r and ∆X̃k
coincide with each other. (C) Histograms of kinetochore positions and inter-kinetochore distances for the realistic case of
M � 25. Chromosomes are aligned at the spindle equator despite missing confinement at the centrosome. The range of
kinetochore positions is narrower and the distances smaller if PEFs are stronger.

linear in k, which can be deduced from the linear increase of the
absolute phase space velocity | ÛFk |, see Eqs. (3.31) and (3.32).

61 Compared to Eq. (3.23), we need
to replace the cohesin force Fkk in
the argument of v±k [ ] with the total
forces Fk,l and Fk,r from Eqs. (3.29)
and (3.30):

ÛXk,l � v±k
[
Fk,l(Xk,l ,Xk,r)

]
,

ÛXk,r � −v±k
[
Fk,r(Xk,l ,Xk,r)

]
,

where the branch the kinetochore is
located on in the current state deter-
mines the choice of v+k [ ] or v−k [ ].

Since PEFs do not have any influence on the underlying master
curves and force–velocity relations, they do not affect the kine-
tochore velocities vk and never completely suppress kinetochore
oscillations in the deterministic Fokker–Planck model but only
reduce their amplitude and increase their frequency. For strong
PEFs, however, this gives rise to kinetochore motion with a fluctua-
tive character, see Fig. 3.22. The same observation was made in the
model of Civelekoglu-Scholey et al. [105]. Additionally, we detect
sister kinetochore oscillations being in antiphase if PEFs are strong
enough (k & 100 pNµm−1), see Fig. 3.22A. This follows from the
phase space velocities ÛFk being dominated by the strong PEFs
compared to inter-kinetochore tension: Imagine, both kinetochores
are in the upper branch of the phase space and reach the turning
point Fmin at nearly the same time. When now one of the two
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62 Of course, this is not equivalent to a
total absence of anyAP-directed forces,
as there may still be PEFs mediated by
interpolar MTs and chromokinesins.

kinetochores switches to the lower branch and starts moving pole-
wards, its sister does not change its direction in phase space as in
state 2/2′ in Fig. 3.21A but continues moving left since the decrease
of PEFs due to its poleward motion can not be compensated by the
increasing AP-directed cohesin tension if k � ck:

| ÛFPEF | � k
��v+

k

�� > | ÛFkk | � ck
��v+

k + v−k
��. (3.33)

As a consequence, the kinetochore will switch to the lower branch
just after its sister, and both kinetochores pass the lower branch
simultaneously, i.e., move apart from each other, finally resulting
in antiphase oscillations. While the antiphase behavior vanishes
after a certain time of equilibration in the deterministic model,
in stochastic simulations, periods of antiphase oscillations can
be observed over and over again regardless of whether the sys-
tem has been equilibrated before. A characteristic of antiphase
oscillations is the loss of frequency doubling, which also appears
in the Fourier space, where the peaks of single kinetochore and
breathing motion coincide with each other if PEFs are strong, see
Fig. 3.22B. Since antiphase kinetochore oscillations have not been
observed experimentally, we conclude that in vivo, PEFs are weak
compared to the inter-kinetochore tension but strong enough to
assure chromosome alignment at the spindle equator. Compared
to experimental results [50, 51, 54–56, 105], k � 10 pNµm−1 seems
a reasonable choice in our model as it assures regular oscillations
with frequency doubling, keeps the inter-kinetochore distance
within a suitable range of (1.2 ± 0.7)µm, and aligns kinetochores
in a realistic maximum distance of 3µm from the spindle equa-
tor with a standard deviation of 0.88µm in the lifelike case of
M � 25.

3.4.3 Confinement and catastrophe promotion at the
kinetochore

So far, we assumed that kinetochore MTs are also able to exert
pushing forces, which arise in the basic model from the absence
of boundary conditions at the kinetochore as described in Fig. 3.9.
During oscillations, we find on average slightly less (48%) MT–
kinetochore links under tension, while a substantial part of linkers
also exerts pushing forces. Two experimental results suggest, how-
ever, that MTs can not exert pushing forces if they are attached to
the kinetochore:62 in Ref. [51], it was shown that the link between
chromosomes is always under tension; the experiments in Ref. [139]
demonstrated that, after removal of the cohesin bond, AP-moving
kinetochores immediately stop indicating that kinetochoreMTs can
not exert pushing forces, while P-moving kinetochores continue
moving due to MT pulling forces.
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63 In the simulation, we set the MT
velocity to vm+ � vk.

In view of these experimental results and in order to answer the
question whether MT pushing forces are essential for bistability
and oscillations, we analyze variants of our basic model, where
MT growth is confined at the kinetochore, i.e., where the relative
coordinate x � xm − Xk is limited to x ≤ 0 such that MTs can
only exert tensile forces on the kinetochore. This implies that the
MT undergoes a catastrophe if it reaches the kinetochore, i.e.,
if the relative coordinate reaches x � 0 from below in the one-
sided model. Different choices for the corresponding catastrophe
rate ωkin

c at x � 0 are possible:

(i) A reflecting boundary, i.e., ωkin
c � ∞, where a catastrophe

is immediately triggered if the MT plus end reaches the
kinetochore.

(ii) A “waiting” boundary condition, where the relative velocity
v+ � vm+ − vk � 0 stalls if the MT reaches x � 0.63 In con-
trast to the reflecting boundary condition, the catastrophe
rate ωkin

c at the kinetochore is finite so that the MT waits at
the kinetochore until it undergoes a catastrophe for a mean
waiting time 1/ωkin

c , as similarly observed in metaphase of
PtK1 cells [177]. Because x � 0 also results in Fmk � 0, the
force-free catastrophe rate seems a natural choice, ωkin

c � ω0
c ,

see Eq. (3.1), which should be realized in the absence of any
additional catastrophe regulating proteins at the centromere.

(iii) If catastrophes are promoted by regulating proteins, but not
immediately as for (i),weobtain intermediate cases ofwaiting
boundary conditions with ω0

c < ω
kin
c < ∞. In mammalian

cells, such regulating mechanisms could be provided by
the kinesin MCAK, which is localized at the centromere
during metaphase [188] and has been reported to increase
the catastrophe rate of MTs roughly 7-fold [189]. Therefore,
waiting boundary conditions with an increased catastrophe
rate appear to be the most realistic scenario.

We introduce a numerical catastrophe enhancement factor n ≥ 1
characterizing the increased catastrophe rate, ωkin

c � nω0
c . Within

this general scenario, reflecting boundary conditions (i) are recov-
ered for n � ∞ and waiting boundary conditions (ii) with the zero
force catastrophe rate for n � 1. We discuss the general case (iii) in
the following.

In our basic model, where MTs can exert pushing forces on kineto-
chores, the pushing phases where x > 0 can also be interpreted as
an effective waiting phase at the kinetochore with a catastrophe
rate that is effectively increased by the pushing forces. Therefore,
the behavior of our basic model resembles a model with waiting
boundary conditions with an increased catastrophe rate n > 1 at
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64According to Tab. 3.3,

xmax �
F+
c

ln

(
v0
+

vk

)
for vk > 0,

we find that

xmax > 0 if vk < v0
+ ,

xmax < 0 if vk > v0
+.
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Figure 3.23: Minimum and maxi-
mum linker extension with confine-
ment at the kinetochore. The confine-
ment allows only for tensile linker ex-
tensions (x < 0), see Eq. (3.34).

the kinetochore. MT pushing forces are not essential for bista-
bility and oscillations and have a similar effect as an increased
catastrophe rate at the kinetochore as our detailed analysis will
show.

In the Fokker–Planck solution for the one-sided model, all con-
fining boundary conditions limit the maximum MT–kinetochore
distance xmax to zero where it is positive in the basic model.64

When xmax is negative in the basic model, confining boundary
conditions do not modify the results, since the MTs are not able to
reach the fast kinetochore. For fast negative kinetochore velocities
vk < v0

−, the minimum distance xmin becomes positive while xmax
is zero. Then, all confining boundary conditions fix the MT tips to
the kinetochore position as they do not shrink fast enough to move
away from the poleward-moving kinetochore after a catastrophe
resulting in 〈x〉 � 0 and Fext � γvk. All in all, confinement leads to
the followingmaximal andminimal values for theMT–kinetochore
distance x modifying Tab. 3.3 as depicted in Fig. 3.23:

xconf
max �

{
0, vk < v0

+

xmax , vk ≥ v0
+

, xconf
min �

{
0, vk < v0

−
xmin , vk ≥ v0

−
. (3.34)

We calculate the master curves 〈x〉(vk) for all three types of con-
fining boundary conditions, see Fig. 3.24A. Because xconf

max ≤ 0 for
any confining boundary condition, also 〈x〉 ≤ 0, i.e., the complete
master curves lie in the regime of tensile MT–kinetochore linker
forces reflecting the fact that pushing forces are strictly suppressed.
Therefore, the MT–kinetochore catch bond is on average under ten-
sion establishing a more firm MT–kinetochore connection during
the stochastic chromosome oscillations in metaphase. Oscillations
then become a tug-of-war, in which both sets of MTs only exert
pulling forces onto each other.

65 Since Q ∝ p+(0) ∝ N, the overall
density p(x) is proportional to the nor-
malization constant N as well, and
normalization can be achieved as in
the basic model by simply adjustingN.

With a waiting boundary condition at the kinetochore, the prob-
ability densities p±(x , t) have to be supplemented with the prob-
ability Q(t) to find a MT at the kinetochore (x � 0). Besides the
FPEs (3.10) and (3.11) for the probability densities, we also have to
solve the equation for the time evolution of Q(t):

∂tQ(t) � v+(0) p+(0, t) − ωkin
c Q(t). (3.35)

The analogous model for a free MT that grows against a rigid wall
has already been solved in Refs. [180, 190]. In the stationary state,
Eq. (3.35) leads to

Q �
p+(0) v+(0)

ωkin
c

. (3.36)
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Figure 3.24: Microtubule confine-
ment at the kinetochore. (A) Mas-
ter curves of a system with a wait-
ing boundary condition for vari-
ous ωkin

c � nω0
c and c � 20 pNµm−1.

(B) Regimes in the parameter plane of
c and ωkin

c in the limit of many MTs.
Outside the blue region, the master
curve is bistable. In the orange region,
the left branch of themaster curve and,
therefore, the lower branch of the vk–
Fkk diagram cross vk � 0, which leads
to a fixed point suppressing oscilla-
tions, whereas in the red region oscilla-
tions are possible. In stochastic simula-
tions, kinetochores already oscillate at
much smaller ωkin

c than predicted by
the master curves. Additionally, a new
kind of fixed point, which is depicted
in (C), emerges in the shaded region.
(C,D) Phase space diagrams and kine-
tochore trajectories from simulations
of the unconfined two-sided model
with c � 20 pNµm−1 and M � 100.
The blue dots mark the new kind of
fixed point, where the leading kine-
tochore in the lower branch moves
with the same velocity as the trail-
ing kinetochore in the upper branch.
Then, the inter-kinetochore distance
remains constant, while the center of
massmoveswith a constant velocity as
in (D) for ωkin

c � 20ω0
c at t ≈ 25 000 s.

In the presence of PEFs, these fixed
points are absent and the shaded re-
gion in (B) does not apply.

For the probability densities p±(x), we get the same solution as for
the basic model without confinement, see Eq. (3.18), except for the
normalization constant. The overall probability density can then
be written as

p(x) � p+(x) + p−(x) + Qδ(x) (3.37)

and has to satisfy the normalization condition65∫ xconf
max

xconf
min

p(x)dx �

∫ xconf
max

xconf
min

(
p+(x) + p−(x)

)
dx + Q � 1. (3.38)

From the overall probability density p(x), we obtain the master
curves, which are shown in Fig. 3.24A for n � 1, 5, 20, 50, 200,∞
and a linker stiffness of c � 20 pNµm−1. Again, we can analyze
the master curves for extrema in order to obtain constraints on
the linker stiffness c and the catastrophe enhancement factor
n � ωkin

c /ω0
c for the occurrence of bistability and oscillations. The

results of this analysis are depicted in Fig. 3.24B as colored regions.
It turns out that extrema in the master curve and, thus, bistability
occur if the linker stiffness is sufficiently high, c > cbist. For the
zero force catastrophe rate (n � 1), we find a high threshold value
cbist � 178 pNµm−1, whereas in the limit of a reflecting boundary
(n � ∞) the threshold is very low at cbist � 1.218 pNµm−1.

We remind that a sufficient condition for oscillations is the absence
of a stable fixed point, where one of the two branches in the vk–
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Figure 3.25: Stochastic simulations
with confinement at the kineto-
chore and PEFs. The simulations
were performedwith c � 20 pN nm−1,
M � 100 and k � 10 pN nm−1. While
the kinetochores exhibit a fluctuative
motion without catastrophe promo-
tion (top), oscillations are recogniz-
able for n � 7 (bottom) although it
lies outside the oscillatory regime in
Fig. 3.24B. The new type of fixed point
is unstable due to the presence of PEFs.

Fkk diagram crosses vk � 0. In contrast to the basic model, the
maxima of the master curve are now located at a positive velocity
for n > 1. Therefore, oscillations are suppressed by a fixed point
v−k � 0 on the lower branch in the vk–Fkk diagram, which occurs
if the velocity is positive in the minimum of the master curve. In
general, oscillations occur if the linker stiffness is sufficiently high,
c > cosc. Again, we find a high threshold value cosc � 280 pNµm−1

for n � 1 and a low threshold cosc � 1.237 pNµm−1 for a reflecting
boundary condition (n � ∞).

For n < 10, the threshold values remain high. Moreover, at such
high linker stiffnesses and for small n, the simulations of the two-
sided model do not show the expected behavior: for n � 1 and
high linker stiffnesses in the oscillatory regime, the kinetochore
trajectories do not exhibit regular oscillations. Naively, one could
argue that kinetochore oscillations are suppressed due to the lack
of a pushing force and can be restored by additional PEFs. However
this is not the case, since, as stated above, PEFs do not affect the
master curve, which determines the regime of kinetochore motion.
One reason for the absence of oscillations is that for the zero force
catastrophe rate (n � 1), the waiting time 1/ωkin

c � 1/ω0
c ∼ 500 s at

the kinetochore is large compared to the typical oscillation periods,
which are in the range of 100 s to 200 s.

Fig. 3.24B also shows that oscillations require increased catastro-
phe rates with n & 20 over a wide range of linker stiffnesses from
c � 10 pNµm−1 to c � 200 pNµm−1. For n > 1, at the boundary
between the bistable and the oscillatory regime in Fig. 3.24B, a
fixed point v−k � 0 appears on the lower branch of the vk–Fkk phase
space diagrams, which can suppress oscillations. This fixed point
is, however, less relevant because the kinetochores only occasion-
ally pass the lower branch simultaneously, which is necessary to
reach this fixed point. Furthermore, this fixed point is located near
the right turning point Fmax so that the kinetochores can easily
leave the fixed point by a stochastic fluctuation as in Fig. 3.17. For
these two reasons, in stochastic simulations, oscillations already
occur for n & 5, which is at a much lower n than the deterministi-
cally predicted n & 20, but not for n � 1, i.e., in the absence of a
catastrophe promoting mechanism, see Fig. 3.25.

The fixed point analysis of the vk–Fkk phase space diagrams re-
veals that also a new type of fixed point corresponding to a
non-oscillatory motion emerges for n . 100 in the shaded regions
in Fig. 3.24B. In this new type of fixed point, which is marked
by blue dots in Fig. 3.24C, the leading P-moving kinetochore in
the lower branch of the master curve has the same velocity as
the trailing AP-moving kinetochore in the upper branch so that
ÛFkk � −ck(vk,r + vk,l) � 0, and the inter-kinetochore distance re-
mains constant while the center of mass moves with a constant
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66 n & 20 or n & 5 in the presence of
stochastic fluctuations

67 Ndc80 complexes and theirmechan-
ical properties are the subject of Chap-
ter 4.

velocity, as it can be seen in Fig. 3.24D. In the presence of PEFs,
however, this new type of fixed point does not survive, see Fig. 3.25,
because for the P-moving kinetochore, the AP-directed PEFs in-
crease whereas they decrease for an AP-moving kinetochore. Then,
the upper blue dot in Fig. 3.24C moves to the left while the lower
blue dot moves to the right such that this new type of fixed point
is unstable in the presence of PEFs. Therefore, PEFs are essential in
the entire shaded region in Fig. 3.24B to re-establish oscillations.

We conclude that both the linker stiffness c > 10 pNµm−1 and the
catastrophe rate ωkin

c at the kinetochore66 have to be sufficiently
large to obtain bistability and oscillations. Because additional
catastrophe promoting proteins are necessary to increase the catas-
trophe rate at the kinetochore, the lowest values of n, which still
enable oscillations, might be advantageous in the cellular system.
We note that poleward flux can influence existence and positions
of fixed points: an intermediate flux velocity can eliminate a fixed
point on the lower branch by moving it into the unstable area of
the phase space diagram; if flux is sufficiently large, it can establish
additional fixed points on the upper branch of the phase space
diagrams, which suppress oscillations as in the basic model.

Moreover, the linker stiffness has to be sufficiently high to give
linker extensions compatible with experimental results. An impor-
tant part of theMT–kinetochore link is theNdc80 complex,67 which
is a rod-like fibril of total length around 60 nm [191, 192] consisting
of two coiled-coil regions with a flexible hinge that can adopt
bending angles up to 120◦ with a broad distribution [192]. This
bending corresponds to linker length changes of |x | ∼ 50 nm.More-
over, fluorescent labeling showed total intra-kinetochore stretches
around 100 nm [193] or 50 nm [56]. Therefore, we regard linker
extensions x . 100 nm as realistic values. For large n � 20, only a
small linker stiffness is necessary to enable oscillations. At the small
threshold stiffness, the average linker length |〈x〉| is typically 1µm
in this regime. Increasing the linker stiffness leads to a decreasing
linker length |〈x〉|. We conclude that for n � 20, experimental
observations of linker extensions |x | . 100 nm put a stronger con-
straint on linker stiffness than the experimental observations of
oscillations. Linker stiffnesses significantly above 5 pNµm−1 and,
thus, far above cosc are necessary to obtain a realistic linker length.

For n in the range of 10 to 20, which is compatible with the ex-
perimental result n ∼ 7 for the catastrophe promoter MCAK [189],
and a linker stiffness c � 20 pNµm−1, the increased catastrophe
rate at the kinetochore leads to a realistic behavior with linker
extensions x ∼ 100 nm, see Fig. 3.24A, which are also compatible
with the experimental results [56, 191–193]. This parameter regime
is within the shaded regions in Fig. 3.24B and PEFs are necessary
to establish oscillations. The linker extension is independent of
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68 The PtK1 cell line is derived from
kidney cells of female long-nosed po-
toroo (Potorous tridactylus), which are
marsupials from the rat-kangaroo fam-
ily [194, 195].
69We discuss this dichotomy later
by attributing the motion of the pe-
ripheral chromosomes to fluctuations
around a fixed point in the non-
oscillatory regime.

PEFs as they do not affect the master curves. The reason why in
such a parameter range of n and c, the more realistic model with
waiting boundary conditions at the kinetochore exhibits a similar
behavior as the basic model is that the pushing phases (x > 0) in
the basic model have a similar duration as the waiting times at the
kinetochore in the more realistic model.

3.4.4 Reproduction of kinetochore oscillations in PtK1
cells

In the previous three sections, we examined the effects of three
different extensions by adding them separately to the basic model.
Each of these extensions is quantified by one additional parameter:
the velocity vf of poleward flux, the force constant k of PEFs,
and the increased catastrophe rate ωkin

c for MTs that are stalled
at the kinetochore. During the analysis of the influence that a
variation of these three parameters as well as a variation of c
and M has on the kinetochore dynamics and the occurrence of
oscillations, the deterministic mean-field approach—in particular
the interpretation of the force–velocity relation as phase space
diagram with potentially emerging fixed points—turned out to be
a powerful tool that let us accomplish this task with lower effort
and, moreover, provided a deeper insight than the sole use of
stochastic simulations.

We now use our gained knowledge for demonstrating that the
parameters of our model can be adjusted to reproduce certain
characteristics of chromosome dynamics in PtK1 cells,68 which
are well quantified in the literature [55, 105]. In doing so, we only
concentrate on the oscillating chromosomes in the center of the
PtK1 spindle, but do not address the chromosomes in the periphery
that do not exhibit directional instability [55, 105, 196, 197].69 For
the purpose of reproduction, we do not only include all extensions
simultaneously, but also adjust the experimental parameters from
Tab. 3.2, which we took for granted so far. This adjustment is
reasonable in that the parameters for MT dynamics stem from
experiments with budding yeast kinetochores [134], which can only
bind one MT [198], whereas the mean-field theory is only correct
if the kinetochores are attached to multiple MTs as in metazoan
cells like PtK1. Moreover, in budding yeast, the Ndc80 fibrils are
connected to MTs via ring-like Dam1 complexes [124, 125, 127, 128],
which do not appear in metazoan cells [114]. For the sake of realism,
we also allow the MTs to detach from the kinetochore. Though
the mean-field theory relies on permanent bonds, it still helps to
systematically identify the parameter changes that implicate the
purposed effects.
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70 To put it in John von Neumann’s
words: we fit the elephant in this sec-
tion.
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Figure 3.26: Effects of varying the
MT velocity parameters.While an in-
crease of the zero force velocity v0

+ pre-
dominantly shifts up the upper branch
of the force–velocity relation (blue to
orange, v0

+ → 2v0
+), the main effect of

increasing the characteristic force F+
is a decrease of the slope (orange to
green, F+ → 2F+). Modifications of
the shrinking parameters v0

− and F−
have analogous effects on the lower
branch.

Before going over the fitting procedure, we note that in this section,
we discard the principle of keeping the model simple, which
we followed so far by adding one generalization at a time and
analyzing the influences of just a few parameters. It is obviously
not surprising to find a solution that resembles the experimental
data by fitting the model with a large number of free parameters,
and there are probably other combinations of parameters than the
one obtained below that resemble the experiments in a similar
or even better manner. Therefore, this section does not claim to
provide a final parameter set predicting real values, but should
rather be seen as a proof of concept.70

Our model exhibits a large difference of P versus AP-velocity
(∼ 100 vs. ∼ 4 nm s−1, see Fig. 3.18), which is the origin of frequency
doubling and also appears in PtK1 cells but not in this extent
(∼ 19 vs. ∼ 16 nm s−1) [55]. As a consequence, in our model, both
kinetochores move towards each other in AP-direction (state 0
in Fig. 3.13) most of the time, whereas in the experiment, mostly
one kinetochore moves in P- while the trailing sister is moving
in AP-direction (state 2/2′ in Fig. 3.13). In a first step we respect
this discrepancy by adjusting the master curve (or force–velocity
relation) in away that the two stable branches fit the experimentally
measured velocities. This objective is achieved by modifying the
force-free MT velocities v0

±, which shifts the upper/lower branch
up- or downwards, and the corresponding characteristic forces F±,
which alters the slope of the upper/lower branch as visualized
in Fig. 3.26. Moreover, as a last parameter of MT dynamics, we
change the rescue rate ω0

r in order to adjust the MT–kinetochore
distance to a realistic value. In a second step, we fit the measured
frequencies and amplitudes by varying the parameters that do not
affect the master curves (ck, k).

Using the model with confinement at the kinetochore, we as-
sume a ten times increased catastrophe rate ωkin

c � 10ω0
c accord-

ing to experimental results [189]. We set the linker stiffness to
c � 20 pNµm−1 and keep it unchanged henceforth since this value
results in strongly bistable master curves and the manifold con-
sequences that a further modification of c has on kinetochore
dynamics are hard to handle. The flux velocity is vf � 8 nm s−1,
see Tab. 3.4. The force-free MT growth velocity v0

+ has to be
greater than vf for two reasons: Firstly, detached MTs would not
have a chance to reach the kinetochore again, otherwise. Sec-
ondly, this choice prevents a fixed point at the upper branch, as
the left turning point in phase space, which is the maximum of
the master curve, is located at vk � v0

+ − vf when the MTs are
confined at the kinetochore. We increase the force-free growth
velocity roughly four-fold to v0

+ � 20 nm s−1 so that the minimum
AP-velocity v0

+ − vf � 12 nm s−1 in the left turning point Fmin lies
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below the observedmean velocity of ∼ 16 nm s−1. In order to adjust
the maximum AP-velocity, we reduce the characteristic force of
MT growth to F+ � 5 pN, which leads to a steeper upper branch
in the phase space diagram. The force-free shrinking velocity v0

−
should be smaller than the observed P-velocity since the lower,
P-directed branch always lies above it. Analogously to the upper
branch and F+, also the slope of the lower branch can be adjusted by
varying the characteristic force F−: an increase of F−, i.e., a decrease
of its absolute value, steepens the lower branch and thereby slows
down the poleward motion. It turns out that it is a good choice to
keep the values for v0

− and F− from Tab. 3.2 unchanged. Finally,
we reduce the rescue rate ω0

r , which lets MTs shrink to smaller
lengths xm, shifts the minimum of the master curve downwards
and increases the MT–kinetochore distance |x | � |Xk − xm | to a
realistic value.

Since we enable detachment in this section, we set M � 35 as it
results in a mean number of ∼ 20 attached MTs. Finally, we adjust
the strength of PEFs k and the cohesin bond stiffness ck to the
following conditions: Firstly, the PEFs have to be strong enough to
assure proper chromosome alignment at the equator as well as a
regular oscillation pattern, but should not dominate compared to
the inter-kinetochore tension in order to prevent antiphase oscilla-
tions. Secondly, k and ck affect the amplitude and the frequency
of kinetochore oscillations, which should resemble experimental
results, in the same manner: an increase of both k and ck de-
creases the amplitude and increases the frequency. We find that
k � 20 pNµm−1 and ck � 20 pNµm−1 fulfill both conditions. In
Tab. 3.5, we list all parameters that have been changed compared
to Tab. 3.2.

The resulting kinetochore dynamics is shown in Fig. 3.27. The
simulated kinetochore trajectories in Fig. 3.27A are very similar to
the experimental results in Refs. [55, 105] as they exhibit frequency
doubling of breathing compared to single kinetochore oscillations
and move predominantly in phase, i.e., there is a leading P- and a
trailing AP-kinetochore as in state 2/2′ in Fig. 3.13. The motion of

Table 3.5: Parameters to reproduce
kinetochore oscillations in PtK1
cells. Parameters not listed here have
been unchanged compared to Tab. 3.2.

Description Symbol Value

Zero force rescue rate ω0
r 0.012 s−1

Zero force MT growth velocity v0
+ 20 nm s−1

Characteristic force of MT growth F+ 5 pN
Catastrophe rate at the kinetochore ωkin

c 0.019 s−1

MT flux velocity vf 8 nm s−1

PEF strength k 20 pNµm−1

Cohesin bond stiffness ck 20 pNµm−1

MT–kinetochore linker stiffness c 20 pNµm−1

Number of MTs M 35
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Figure 3.27: Reproduction of kine-
tochore oscillations in PtK1 cells.
(A) Kinetochore positions and inter-
kinetochore distance over time. Al-
though the breathing oscillations are
rather fluctuative, frequency doubling
is recognizable. (B) Number of at-
tachedMTs over time. (C) Kinetochore
motion in phase space (green) com-
pared to the mean-field force–velocity
relation (red, calculatedwith themean
number of attached MTs). (D) Po-
sition of the right kinetochore and
inter-kinetochore distance in Fourier
space. Fluctuative breathing oscilla-
tions lead to a Fourier transform with
broad maxima, which are almost only
recognizable in the smoothed curve
(black). (E-H) Distributions of kineto-
chore positions Xk, inter-kinetochore
distance ∆Xk, MT-kinetochore dis-
tance |x |, and the number of attached
MTs Matt.

the inter-kinetochore distance is rather fluctuative, resulting in a
broad Fourier transform, in which the maximum at the breathing
frequency is hardly recognizable, see Fig. 3.27D. This is the only
significant difference to the real kinetochore motion. The distri-
butions of kinetochore positions as well as inter-kinetochore and
MT–kinetochore distances (Fig. 3.27E–G) are in good agreement
with experimental results [105].

In Tab. 3.6, we list several characteristic quantities of kinetochore
oscillations that have also been determined experimentally for
PtK1 cells. Comparison with our model results shows quantitative
agreement. In particular, the large discrepancy in the P- and AP-
velocities is eliminated.

Table 3.6: Characteristic quantities of model kinetochore oscillations from
Fig. 3.27 compared to experimental results in PtK1 cells.

Description Model Experiment

Mean P velocity 21.5 nm s−1 19.0 nm s−1 [55]
Mean AP velocity 15.7 nm s−1 15.7 nm s−1 [55]
Single kinetochore frequency 4.27 mHz 4.14–4.23 mHz [55]
Breathing frequency ∼ 8.6 mHz 8.25 mHz [55]
Mean inter-kinetochore distance (1.83 ± 0.42)µm (1.90 ± 0.44)µm [105]
Mean MT-kinetochore distance (0.081 ± 0.042)µm (0.11 ± 0.04)µm [105]
Standard deviation of kinetochore position 0.76µm 0.5–1.1µm [105]
Mean number of attached MTs 21.4 20–25 [109]
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3.5 Discussion

We provided an analytical mean-field solution of the one-sided
spindle model introduced by Banigan et al. [57], which becomes
exact in the limit of large MT numbers. The mean-field solution
is based on the calculation of the mean linker extension 〈x〉 as a
function of a constant kinetochore velocity vk (the master curve).
Together with the equation of motion of the kinetochore, we
obtained the force–velocity relation of the one-sided model from
themaster curve. Our solution clearly shows that the force feedback
of linkers onto the MT depolymerization dynamics is essential for
a bistable force–velocity relation within the minimal model. The
shape of the distribution p±(x) of linker lengths in Eq. (3.18) is
governed by this force feedback, and we traced the bistability back
to the peakedness (kurtosis) of this distribution.

Applying the mean-field solution of the one-sided to the two-sided
model, we were able to deepen and to expand the understand-
ing of the mechanisms that drive kinetochore dynamics in the
mitotic spindle, including the occurrence of oscillations in the
minimal model as well as the effects of several model extensions.
In the following, we discuss these results and their applicability to
experimental observations.

Directional instability is an emergent phenomenon of
collective MT dynamics

Interpreting the bistable force–velocity relation as phase space
diagram for kinetochore dynamics in the two-sided model, we
mathematically characterized regular kinetochore oscillations as
an emergent result of collective dynamics of coupled MTs that
exhibit dynamic instability individually. Our theory becomes ex-
act in the limit of large MT numbers M. This interpretation of
oscillations is underpinned by the experimental observations that
kinetochore oscillations in budding yeast [164, 199, 200], where
each kinetochore is attached to one MT [198], as well as in fission
yeast [106, 201], where two to four MTs interact with the same
kinetochore [202], have a considerably more fluctuative character
than the regular oscillations in vertebrate cells [50–56] with ∼ 20
MTs per kinetochore [109, 110].

We were able to deduce idealized kinetochore oscillations, whose
periods conform with experimental results [55]. For a MT–kineto-
chore linker stiffness c � 20 pNµm−1 and 20–25 MTs per kine-
tochore, we got periods of 206 s to 258 s and 103 s to 129 s for
kinetochore and breathing oscillations, respectively. Our approach
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71As a reminder: When both kine-
tochores are in the slow upper
branch (AP) in Fig. 3.13 and reach
the left turning point Fmin, one kineto-
chore switches to the fast lower branch
(AP to P) and switches back the upper
one (P toAP) soon after, while its sister
stays in the AP branch and does not
change its direction of motion.
72 assuming a forced periodic order
of states 2 and 2′, i.e., the two kine-
tochores pass the lower branch alter-
nately as in Fig 3.13C

reproduced the frequency doubling of breathing compared to sin-
gle kinetochore oscillations observed in the experiment [55]. Both
in the model and in the experiment, this doubling originates from
the different velocities of AP- and P-moving kinetochores, which
ensure that an AP-to-P switch (1/1′ in Fig. 3.13) is always followed
by a P-to-AP switch of the same kinetochore (3/3′ in Fig. 3.13).71

In the minimal model, the velocity difference is, however, much
larger than it has been observed in vivo. As a consequence, in the
basic model with 20–25 MTs, an AP-to-P switch follows 96 s to
119 s after a P-to-AP switch of the sister kinetochore,72 which is
93 % of a breathing period, whereas in PtK2 cells a mean inter-
val of merely 6 s has been measured [56]. In other words, in the
basic model, most of the time both kinetochores move towards
each other in AP-direction (state 0 in Fig. 3.13), whereas in the
experiment, mostly one kinetochore moves in P- while the trailing
sister is moving in AP-direction (state 2/2′ in Fig. 3.13). In our
model, different AP- and P-velocities are based on the fact that the
MT shrinkage is much faster than growth. The model parameters
for MT dynamics were taken from experimental measurements
with yeast kinetochores [134], which, however, are distinct from
kinetochores in the metazoan spindles our model is intended
to represent. Therefore, we demonstrated in Sec. 3.4.4 that the
described discrepancy can be eliminated by adjusting some MT
parameters, and, moreover, the model can reproduce kinetochore
oscillations in PtK1 cells quantitatively.

Stiffness of the MT–kinetochore linker

Our analytical approach also allowed us to go beyond the results of
Banigan et al. [57] and quantify constraints on the linker stiffness c
and the MT number M for the occurrence of bistability in the
one-sided model and for the occurrence of oscillations in the
full model. We found that bistability requires linker stiffnesses
above cbist ≈ 8 pNµm−1. Bistability is, however, not sufficient for
oscillations. Our phase space interpretation showed that bistability
only leads to directional instability if the two branches of the force–
velocity relation are also separated by the zero velocity line. This
conditionquantifies the oscillatory regime in theparameter plane of
c and M. We predicted that oscillations should only be observable
if the MT–kinetochore linker stiffness is above cosc ≈ 16 pNµm−1.
Our model can thus provide additional information on the MT–
kinetochore linkers whose molecular nature is unknown up to
now. Several Ndc80 fibrils, which cooperatively bind to the MT,
are an important part of the MT–kinetochore link, and the stiffness
of this Ndc80 link has been determined recently using optical trap
measurements [58]. These experiments found stiffnesses above
∼ 20 pNµm−1, which are compatible with our bounds. Moreover,
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73We examine the strain stiffening of
Ndc80 complexes in Chapter 4 by re-
evaluating the experimental data of
Volkov,Huis in ’t Veld et al. [58, 59] and
attributing the stiffening to the specific
structure of an Ndc80 complex.

they found a stiffening of the link under force,73 which could be
included in our model in future work.

Fixed points explain observation of “paused” kinetochores

The derivation of the lower bound for the stiffness for the occur-
rence of oscillations is based on the occurrence of a new zero
AP-velocity fixed point in the force–velocity diagram of the kineto-
chores, which suppresses oscillations upon decreasing the stiffness.
Analogously to resting in the fixed point in our model, it has
been observed in newt lung cells that oscillations are occasionally
(11 % of time) interrupted by phases in which the kinetochores
pause their motion [50]. This indicates that the spindle of newt
lung cells operates near the boundary between the oscillatory and
the non-oscillatory regime resulting in a kinetochore motion as
described in Fig. 3.17 with a fixed point very close to the left turning
point Fmin.

Poleward flux suppresses kinetochore oscillations

Also the influence of poleward flux to the system could be exam-
ined by a fixed point analysis of the force–velocity diagram. Since
polewardMT flux shifts the force–velocity relation towards smaller
AP-velocities of the kinetochore, the upper branch may cross zero
velocity establishing again a fixed point suppressing oscillations.
This explains why high flux velocities suppress directional instabil-
ity and rationalizes the correlation between kinetochore oscillations
and poleward flux observed in several cells (Tab. 3.4).

Polar ejection forces provide an alternating oscillation pattern
and chromosome alignment at the spindle equator

Furthermore,we added linearly distributed PEFs,which depend on
the absolute kinetochore positions. Theirmain effect is a phase shift
between the sister kinetochores in their phase space trajectories,
which leads to regularly alternating kinetochore oscillations and,
finally, forces the kinetochores to stay near the spindle equator.
Consistently, experimental results showed that a proper formation
of the metaphase plate is not assured if PEFs are suppressed [140].
Moreover, budding yeast cells, which lack the necessary number of
interpolar MTs to build up PEFs, enter anaphase without aligning
the chromosomes in a metaphase plate beforehand [199]. Since the
PEFs do not affect the master curves and phase space diagrams
deterministically, they never completely suppress oscillations but
only reduce their amplitude and increase their frequency, while
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74 The occurrence of antiphase oscilla-
tions might be tested experimentally
if it is possible to artificially promote
the PEFs, for instance, by increasing
the concentration of chromokinesins.

the kinetochore velocities vk are unchanged. This is consistent
with experiments of Ke et al. [187], who observed an increase in
amplitude but no influence on the occurrence of oscillations and
the velocity of chromosomes after severing the chromosome arms
and thereby weakening the PEFs. In stochastic simulations, the
kinetochore oscillations are more fluctuative in the presence of
PEFs, see Fig. 3.22. A similar observation wasmade in the model of
Civelekoglu-Scholey et al. [105].Moreover, in stochastic simulations,
sister kinetochores tend to oscillate in antiphase and frequency
doubling of breathing compared to single kinetochore oscillations
is lost if PEFs are strong compared to the inter-kinetochore tension
(k � ck). Since to our knowledge such antiphase oscillations have
not been observed in vivo, we conclude that the inter-kinetochore
tension is the dominating force for directional instability.74

Consistently with experimental observations in both fission yeast
[203, 204] and human cells [205], kinesin-8 motors investigated
in the model of Klemm et al. [106] have a similar centering effect
as the PEFs in our model. Since fission yeast does not contain
chromokinesins [206], the Klemm model does not include PEFs
whereas our model does not include kinesin-8. It remains an open
question whether and how the similar effects of PEFs and kinesin-8
cooperate if both are present. As kinesin-8 depolymerizes MTs in
a length-dependent manner [207, 208], it could be included in our
model by a catastrophe rate ωc that depends on the MT length xm.
While such MT length-dependent catastrophe rates can easily be
implemented in the stochastic simulations, they are difficult to
include into our mean-field theory, which is based on solving the
FPEs (3.10) and (3.11) in relative coordinates rather than absolute
MT lengths.

Catastrophe promotion at the kinetochore

Finally, we lifted the assumption thatMTs are able to apply pushing
forces on the kinetochores because experiments suggest that MTs
only exert tensile forces [51, 139]. For that purpose, we confined
MT growth at the kinetochore by catastrophe-triggering boundary
conditions. The catastrophe rate for a MT at the kinetochore ωkin

c
can, in principle, range from the force-free MT catastrophe rate ω0

c ,
which is realistic in the absence of any catastrophe promoting
proteins, up to infinity if a catastrophe is immediately triggered.
In the presence of the centromere-associated regulating protein
MCAK, increased catastrophe rates ωkin

c � 7ω0
c are expected [189].

We found that both the linker stiffness c and the catastrophe rateωkin
c

at the kinetochore have to be sufficiently large to obtain bistability
and oscillations. We found, in particular, that the force-free MT
catastrophe rate is not sufficient to lead to oscillations, which
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75 neglecting the interpolar MTs that
still connect the two centrosomes and
push them apart in anaphase B

76 i.e., Fext � 0 in terms of our model

77 In the basic model with
c � 20 pN nm−1, we find Fmin ≈ 0,
see for instance Figs. 3.11B and 3.14B.
For smaller c, Fmin may also lie above
or below 0 as in Fig. 3.17. In the latter
case however, the system is outside
the oscillatory regime and the upper
branch has a negative velocity at
F � 0 resulting in a poleward motion
again. When the MTs are confined
at the kinetochore, the upper branch
lies at large positive forces, which is
plausible since there is no force left
to drive an AP motion when the MTs
can not push the kinetochore.

shows that catastrophe-promoting proteins are essential to induce
oscillations. In the presence of PEFs, oscillations can be recovered
even for relatively small catastrophe rates: for ωkin

c /ω0
c ∼ 5, we

found no oscillations in the absence of PEFs; for ωkin
c /ω0

c < 2, we
found no oscillations at all. Moreover, the linker stiffness has to be
sufficiently high to give linker extensions below 100 nm compatible
with experimental results [56, 191–193]. For ωkin

c /ω0
c � 20, and

a linker stiffness of c � 20 pNµm−1, we found realistic behavior.
Our results can explain experimental observations in Ref. [133],
where PtK2-cells were observed under depletion of centromeric
MCAK, which decreases ωkin

c . Then, in accordance to our results
in Fig. 3.24CD, where the right turning point Fmax of the hysteresis
is shifted to the left by reducing ωkin

c , the oscillation frequency
increased and the mean centromere stretch decreased, while the
“motility rates”, i.e., the velocities did not change.

Force-free one-sided model reflects Anaphase A

Though we concentrated on chromosome dynamics during meta-
phase throughout the entire chapter, our model can also be used
to discuss anaphase A. By the loss of the cohesin bonds at the
anaphase onset, the formerly bipolar spindle is transformed to
two monopolar spindles,75 each of which can be described by
our one-sided model. Since there are no PEFs during anaphase,
no force is applied on the two separated chromatids besides the
pulling force of the kinetochore MTs.76 For most of the various
force–velocity relations that we have calculated, the left turning
point Fmin is either far above or very close to F � 0 so that at zero
force the lower branch is the only stable one or should at least be
preferred to the upper branch.77 As a consequence, the kinetochore
velocity in the one-sided model is negative on average when no
force is applied, which correctly reflects the poleward motion of
the chromatids during anaphase.

Influence of the cohesin bond

In the following final paragraphs, we substantiate the applicability
of our model by discussing that the mean-field approach and
the force–velocity diagram of kinetochore motion are suitable to
rationalize various further experimental results and to formulate
well-foundedhypotheses. To this end,we startwith the experiments
of Jaqaman et al. [113] who observed an increase of oscillation
amplitudes and periods when they weakened the cohesin bonds in
HeLa cells. In ourmodel, a smaller cohesin stiffness ck has the same
two effects because the inter-kinetochore distance has to be larger
to reach the turning points Fmin and Fmax of the hysteresis loop,
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78 In Chapter 4, we determine stiff-
nesses of Ndc80 complexes tracing a
depolymerizing MT tip in optical trap
experiments. The results for phospho-
rylatedNdc80 complexes do not signif-
icantly differ from those of wild type
Ndc80, see Fig. 4.15.

79 p−(x) ∝ (x − xmin)α− ,

α− � −1 +
ω0

r F−
cv0−

(
vk
v0−

)−1+F−/Fr

,

see Appendix B.1.

and the phase space velocity ÛFkk � ck(vk,r + vk,l) and, therefore,
the frequencies are proportional to ck.

Effects of Hec1 phosphorylation

Next, our theoretical approach can be applied to the observa-
tions in Refs. [111, 209–211] on the effects of phosphorylation
of Hec1, which is part of the mammalian Ndc80 complex, onto
kinetochore dynamics. Dephosphorylation leads to hyper-stable
MT–kinetochore attachments, increases the inter-kinetochore dis-
tance, damps or completely suppresses oscillations, and lets the
kinetochores more often be found in a “paused state”. The increase
of the inter-kinetochore distance can be explained with the hyper-
stable MT-kinetochore attachments: in the oscillatory regime, the
bistable area of the force–velocity relation increases if more MTs
are attached to the kinetochore, see Fig. 3.11B; in the non-oscillatory
regime, the mean distance 〈∆Xk〉 is a linear function of M, see
Eq. (3.26). However, the suppression of oscillations and the fre-
quent appearance of paused states, which are both effects of leaving
the oscillatory regime in our model, can not be explained with
an increasing number of attached MTs. Instead, we suggest three
additional effects of Hec1 phosphorylation: Firstly, it is imaginable
that Hec1 is a catastrophe factor that is activated by phosphory-
lation, i.e., if phosphorylation is suppressed, the catastrophe rate
at the kinetochore ωkin

c decreases. Secondly, phosphorylation of
Hec1 could stiffen the Ndc80 complex so that dephosphorylation
suppresses oscillations by decreasing the linker stiffness c. How-
ever, the stiffness measurements presented in the following chapter
make this explanation unlikely.78 The third possible explanation is
based on the observation of Umbreit et al. [212] that phosphoryla-
tion of Hec1 suppresses rescues. Following the argumentation in
Sec. 3.3.1, we conclude that a decreased rescue rate has a similar
effect as an increase of the linker stiffness: since the exponent α−
that defines the leading order of p(x) near xmin is a linear function
of ω0

r ,79 the probability density p(x) becomes sharper for negative
kinetochore velocities if rescues are suppressed, finally leading to
a bistable master curve that allows for oscillations.

In Ref. [210], besides suppression, Hec1 phosphorylation was also
enforced on up to four sites. As a result, the number of attached
MTs and the periods of kinetochore oscillations decreased, which
is consistent with our model, see Fig. 3.14C. Moreover, kinetochore
oscillations were supported but becamemore erratic just like in our
model, where kinetochore motion is more fluctuative if less MTs
are attached, see Fig. 3.14. This experimental result reinforces our
interpretation of regular kinetochore oscillations as an emergent
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80 See Fig. 6C in Ref. [105].

phenomenon that results from the collective behavior of stochastic
MT dynamics.

Dichotomy of central and peripheral kinetochores in PtK1 cells

We finally discuss the aforementioned dichotomy in the mitotic
spindle of PtK1 cells, where, on the one hand, the kinetochores in
the center of the metaphase plate do exhibit regular oscillations as
we have reproduced them in Sec. 3.4.4, while the trajectories of the
peripheral kinetochores, on the other hand, are very fluctuative,
hardly show any periodicity, and strongly resemble the fluctuative
motion around a fixed point in the non-oscillatory regime of our
model [55, 105, 196, 197]. Civelekoglu-Scholey et al. [105] explained
this dichotomy with different distributions of PEFs in the center
and the periphery of the metaphase plate. However, the model
kinetochore trajectories in the presence of strong PEFs, which they
declare to be representative for the motion of peripheral kineto-
chores,80 still have a regular oscillating shape with only a reduced
amplitude and an increased frequency, in agreement with the
results of our model in Fig. 3.22, and therefore do not satisfactorily
resemble the fluctuative experimental trajectories for peripheral
kinetochores from Refs. [55, 105]. For a clear characterization of
the experimentally measured motion of peripheral kinetochores as
either stochastic fluctuations or regular oscillations, its representa-
tion in Fourier space would be helpful as already provided for the
central kinetochores by Wan et al. [55] and as provided in Fig. 3.22
for our model. If the Fourier transforms do not have any distinct
peaks, differences in PEFs are ruled out as a possible explanation
for the dichotomy in PtK1 cells according to both our model and
the one of Civelekoglu-Scholey et al.

Instead of different PEFs, our results suggest differences in linker
stiffness or catastrophe promotion as reasons for the dichotomy. For
instance, less Ndc80 complexes could participate in the peripheral
MT–kinetochore links resulting in a reduced linker stiffness and
non-oscillatory behavior. Also a non-uniform MCAK distribution
that decreases radially towards the periphery of the metaphase
plate could reduceωkin

c and suppress oscillations of peripheral kine-
tochores. Differences in poleward flux might be another possible
explanation for the dichotomy according to our results. However,
Cameron et al. [197] observed that the flux velocities in PtK1 cells
are the same for all kinetochore MTs.
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Parameter Symbol Occurrence Frequency Amplitude Additional effects

Linker stiffness c Stimulation Decrease Increase
Decrease of

inter-kinetochore distance in
non-oscillatory regime

Poleward flux vf Suppression Decrease None

Polar ejection forces k None Increase Decrease
PEFs force kinetochores to
oscillate alternately and to
stay near the spindle equator

Catastrophe rate of stalled MTs ωkin
c Stimulation Decrease Increase

Cohesin bond stiffness ck None Increase Decrease
MT number M (Stimulation) Decrease Increase

Table 3.7: Summary. The table lists
the effects that an increase of the pa-
rameter in the first column has on the
occurrence, the frequency, and the am-
plitude of kinetochore oscillations.

Conclusion

In conclusion, the minimal model with its generalizations can
rationalize a number of experimental observations. The predicted
responses to the most relevant parameter changes are summarized
in Tab. 3.7 and suggest further systematic perturbation experiments.
Particularly interesting are the constraints on the MT–kinetochore
linker stiffness obtained from our mean-field approach, which pro-
vide new insight into the mechanical properties of the kinetochore
and are compatible with recent optical trap measurements [58] of
the stiffnesses of Ndc80 complexes. These measurements are the
subject of the following chapter.





Large parts of this chapter have al-
ready been published in Ref. [213],
which is licensed under CC BY 4.0 [94].

1 These models are reviewed in
Sec. 3.2.1.

Strain stiffening of the
Ndc80 complex 4

As we have learned in Sec. 3.1.2, chromatids and their inner kine-
tochores are bound to MTs during mitosis via attachments created
by rod-like Ndc80 complexes. The Ndc80 mediated attachments
remain intact while dynamic MTs alternate between growth and
shrinkage and transmit depolymerization forces to the kinetochore
during the segregation of chromosomes. The exact mechanisms
underlying binding and force transmission are not completely
understood but are expected to reflect the molecular structure and
resulting elastic properties of the Ndc80 complex.

For the mitotic spindle model from the previous chapter, we
chose to treat the MT–kinetochore linkers as generic springs. This
simple model was motivated by the aim to account for the rod-
like structure of the Ndc80 complex with as little complicating
assumptions as possible. Similar approaches can be found in
several related force balance models of the mitotic spindle [34,
57, 105, 162].1 By a mathematical analysis of our one-sided model,
we revealed that the stiffness of the generic harmonic linker is a
critical parameter for the cooperative dynamics of kinetochoreMTs
and chromatids in the mitotic spindle and for the occurrence of
directional instability in particular. This critical role raises interest
in the elastic properties of the kinetochore and the stiffness of the
linking Ndc80 complexes, which had to be estimated so far in the
aforementioned models.

In a recent work by Volkov, Huis in ’t Veld et al. [58], a first
experimental approach tomeasure the stiffness ofNdc80 complexes
was provided by employing optical trapping techniques. Contrary
to the assumption of a constant linker stiffness used in the mitotic
spindle models, they found the stiffness of Ndc80 complexes to
increase under tension. The subject of this chapter is a reanalysis of
the above experiments with a focus on the found strain stiffening,
followed by an attempt to trace the experimental findings back to
the known structural features of the Ndc80 complex, the MT and
the curved protofilaments (PFs).

Whereas in the original study, the stiffness was only determined
while the Ndc80 complexes were attached to a stalled MT [58], in
Sec. 4.2, we re-evaluate the same data with a novel method that
allows us to time-trace the stiffness, i.e., to determine the stiffness
of Ndc80 complexes tracking a polymerizing or depolymerizing
MT against the opposing load from the optical trap. By splitting
the force traces into fixed time intervals and analyzing stiffness
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Figure 4.1: Structure of the Ndc80
complex. The Ndc80 complex consists
of two coiled coilswhich are connected
in the tetramerization domain. While
the Spc24:Spc25 coiled coil is anchored
to the centromere, the Ndc80:Nuf2
coiled coil can bind to the MT lattice
via the CH domains and the unstruc-
tured tail. At a distance of 16 nm from
the MT binding domain, the Ndc80
complex has a flexible kink where the
coiled coil structure is interrupted by
a loop.

2While Ndc80 is present in yeast, it
is replaced by the homolog Hec1 in
human cells [214]. We use “Ndc80” in
the following as a general term for
both the Ndc80 and the Hec1 protein.

at each of them, we achieve several advantages: (1) we generate
more data over a wider force range; (2) we demonstrate stiffening
during force production and not only compare stalled MTs to free
ones; (3) we alleviate the concern that different levels of strain
stiffening result from differences in MT ends or beads. Moreover,
time-tracing allows us to establish that strain stiffening does not
depend on the state of the MT end: we observe positive correlation
of stiffness with force when the MT stalls, grows, or shrinks. In
addition to wild type Ndc80, we also analyze data from MT end
tracking experiments with three different variants of the Ndc80
complex, which are partly presented in Ref. [59] but have not been
analyzed with regards to the stiffness so far. We observe strain
stiffening for each examined Ndc80 variant.

In order to rationalize the experimental findings on strain stiffening
of the Ndc80 links, we introduce an elastic model in Sec. 4.3. The
model contains serial arrangements of Ndc80 complexes, the PFs
and the MT, to each of which we ascribe a stiffness based on
their structural features. Describing the Ndc80 complex as an
ideal chain with two bonds of different lengths, we show that
the strain stiffening is a direct consequence of the characteristic
Ndc80 structure with a flexible kink at approximately on third of
its length. To better match the measured stiffnesses, it is necessary
to include the contributions from MT fluctuations and from PF
bending to the total effective stiffness. Finally, to explain the shape
of the experimental stiffness–force relations, we also introduce
a positive correlation of the number of MT end-attached Ndc80
complexes with MT-generated force.

As a preparation for the analyses described above, we continue
with a short section on the structure of the Ndc80 complex and
currently discussedmodels for theNdc80–MTbond. These binding
models are discussed at the end of this chapter in consideration of
the meanwhile obtained results.

4.1 The Ndc80 complex

The Ndc80 complex is a rod-like tetramer of 56 nm length consist-
ing of the four proteins Ndc80/Hec1,2 Nuf2, Spc24, Spc25 [191,
192], see Fig. 4.1. The four proteins form two α-helical coiled
coils, Ndc80:Nuf2 and Spc24:Spc25. While the N-terminal ends3

of Spc24:Spc25 build globular domains that anchor the Ndc80
complex to the inner kinetochore, their C-termini are bound to
the N-terminal ends of Ndc80 and Nuf2 in a tetramerization do-
main [191, 216]. The Ndc80:Nuf2 coiled coil is interrupted by a loop
of 40 amino acids [217] resulting in a flexible joint comparable to
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3 Proteins are chains of amino acids.
As sketched below (figure adapted
from [215]), an amino acid contains
an amino group at one end, a carboxyl
group at the other end, and a side
chain R. Within a protein, neighbor-
ing amino acids are connected by a
peptide bond linking the amino and
the carboxyl group. As a consequence,
the polarity of a single amino acid is in-
herited by the protein, which therefore
has a N-terminal end with an amino
group and a C-terminal end exposing
a carboxyl group. [1]
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4 Calponin homology domains are
part of several actin and MT binding
proteins [218, 219].

an elbow, which divides the Ndc80 complex into two stiff arms of
40 nm and 16 nm length [192].

The N-terminal ends of both Ndc80 and Nuf2 fold into CH do-
mains4 that can directly bind to the MT resembling the plus end
tracking protein EB1 [220, 221]. Since the two CH domains are pos-
itively charged, it was proposed that they bind directly to the two
acidic C-terminal tails of a tubulin dimer, whose distance of 32Å
is moreover similar to the distance of the CH domains (30Å) [221].
Later, Alushin et al. [222] detected that a small region on the Ndc80
CH domain, which they called the “toe”, is responsible for MT
binding by recognizing a “toe print” between an α- and a β-tubulin
in the MT lattice. The location of the toe print between two tubulin
monomers can be the reason why Ndc80 complexes preferentially
bind to straight protofilaments [131, 222].

At its very N-terminal end, the Ndc80 protein has an unstructured
tail, which has a length of 80 amino acids in human cells [223]
and is called Ndc80 tail or N-terminal tail in the following. The
tail is highly positively charged and can be phosphorylated by
Aurora kinases on several sites. Phosphorylation of the tail or
introduction of negative charges reduces the binding affinity of the
Ndc80 complex to a MT [111, 209–212] and the ability of this link
to withstand high forces [59]. During prometaphase, the Ndc80
tails are phosphorylated by Aurora B at low inter-kinetochore
tensions providing a mechanism to prevent erroneous attachments
as described in Fig. 3.4. Moreover, modified binding affinities can
explain the several effects discussed in Sec. 3.5 that the enforcement
or the prevention of tail phosphorylation have on the dynamics of
MTs and chromosomes and on the number of attached MTs per
kinetochore during mitosis [111, 209–211].

Since besides phosphorylation, also the total deletion of the Ndc80
tail reduces the binding affinity [212, 220], the tail obviously
has a significant contribution to MT binding. However, the exact
mechanism of this contribution is still unclear, and there are
mainly three models [221, 223], which are sketched in Fig. 4.2.
A first model proposes that the positively charged tails interact
directly with the acidic tubulin tails or other negatively charged
sites on the MT [221] based on the observation that even isolated
Ndc80 tails are able to bind to a MT [224]. In a second approach,
it was suggested that the Ndc80 tail generates cooperativity and
clustering by interacting with adjacent Ndc80 complexes, i.e., the
contribution of the tail is to increase the number of parallelly
attached Ndc80 complexes [222, 225]. Finally, in a third model, the
Ndc80 tail recruits co-factors that enhance Ndc80 binding, such
as the Ska1 complex in Fig. 3.5 [132]. We note that the models
are not exclusive but might coexist side by side to some extent.
In all three models, phosphorylation reduces the binding affinity
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Figure 4.2: Possible roles of the
Ndc80 tail in MT binding. (A) The
tail binds directly to the MT lattice.
(B) The tail generates cooperativity by
interacting with neighboring Ndc80
complexes. (C) The tail recruits co-
factors.

(A) Direct binding (B) Cooperativity (C) Co-factor recruitment

Ndc80wt

Ndc80Δ80

Ndc80CHmut

Ndc80P
P P

P P

Figure 4.3: Ndc80 variants. In com-
parison to the wild type Ndc80 com-
plex, Ndc80∆80 lacks the N-terminal
tail, Ndc80CHmut has a blocked CH
domain, and Ndc80P has a phospho-
rylated tail.

by decreasing the positive charge of the Ndc80 tail and thereby
weakening the electrostatic interaction to the tubulin, the adjacent
Ndc80 complex or the co-factor [223]. Moreover, without positive
charges, the tail might be able to prevent the CH domains from
MT binding by blocking their positive binding sites [212, 221].

Besides the wild type Ndc80 complex (Ndc80wt), three further
variants, which are sketched in Fig. 4.3, were examined in the
experiments that we reanalyze and model in the following two
sections. In each of the variants, the MT binding N-terminal end of
the Ndc80 subunit was modified in a different way: Ndc80∆80 is an
Ndc80 complex, whose N-terminal tail is truncated; the mutated
CH domain of Ndc80CHmut has a greatly reduced MT binding
affinity; and the N-terminal tail of Ndc80P is phosphorylated.

4.2 Strain stiffening in experiments

Since the essential task of the kinetochore and of the Ndc80
complexes in particular is to track the tip of a depolymerizing
MT and to transmit forces to the connected chromatid, the tip-
tracking abilities of bare Ndc80 complexes as well as more complex
structures, both force-free and under an opposing force, have been
subject of several in vitro studies [58, 59, 120, 128, 131, 134]. In
one of these studies, Volkov, Huis in ’t Veld et al. have found a
first evidence for strain stiffening of the Ndc80 complexes, which
emerged as a secondary result of their experiments [58]. In this
section, we reanalyze these experiments with a stronger focus on
the strain stiffening by means of a novel time-tracing analysis. We
also include the data of a subsequent study with mutated Ndc80
complexes [59], which have not been evaluated with regard to the
elastic properties so far. Before, we summarize the experiments
and the original results as published in Refs. [58, 59] to illustrate
the problems that require a novel approach to overcome.

4.2.1 Optical trap experiments

In a previous study, Powers et al. [120] examined the tip-tracking
abilities of glass beads coated with Ndc80 complexes. They found
a lower bound of Ndc80 density for a proper connection between
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5 The experiments and results pre-
sented in this section were performed
and obtained by Vladimir Volkov, Pim
Huis in ’t Veld et al. [58, 59]. My con-
tribution begins with the reanalysis of
the original data in Secs. 4.2.2 ff.

T3S1 T2S2

T1S3
T0S4

ST

Figure 4.4: Ndc80 oligomers. Ndc80
complexes are oligomerized to n-mers
on T4−nSn scaffolds.
Adapted from Volkov et al. [58], used
under CC BY 4.0 license [94].

PEGPLL
(A)

(B)

Figure 4.5: Bead preparation with
PLL-PEG. (A) Structural formulas of
PLL and PEG. (B) PLL is adsorbed on
the glass bead and the PEG side chains
can bind TS–Ndc80 modules.

6 PEG-2000 has a molecular mass of
2000 Da.

Figure 4.6: Setup of optical trap ex-
periments. When the glass bead is
displaced from the trap center by a
depolymerizing MT whose seed is af-
fixed to the coverslip, the trap exerts a
force that opposes the displacement.
Reproduced from Volkov et al. [58],
used under CC BY 4.0 license [94].

bead and MT, concluding that the attachment of multiple Ndc80
complexes is necessary to achieve tip-tracking. Concordantly,
Schmidt et al. [131] reported that single Ndc80 complexes lack
tip-tracking activity. To address these observations more systemat-
ically, Volkov, Huis in ’t Veld et al. [58] constructed oligomerized
Ndc80 complexes based on tetrameric scaffolds of traptavidin (T)
and streptavidin (S).5 Since each S within such a scaffold is cova-
lently bound to the Spc24 and Spc25 end domains of an Ndc80
complex, the constructed TS–Ndc80modules allow for a controlled
stoichiometry of Ndc80 complexes varying from T3S1[Ndc80]1 to
T0S4[Ndc80]4, see Fig. 4.4.

Volkov, Huis in ’t Veld et al. investigated the tip-tracking capabilities
of Ndc80 oligomers in three steps. By tracing the interaction of
bare TS–Ndc80 modules with depolymerizing MTs, they only
observed tip-tracking activity for di-, tri- and tetramerized, but
not for individual Ndc80 complexes. Moreover, tip-tracking of
TS–Ndc80 assemblies became more robust with each additional
Ndc80 complex.

The second step was to examine the ability of the Ndc80 oligomers
to transport cargo during tip-tracking. To this end, small glass
beads (d � 1µm) were coated with the TS–Ndc80 modules via
PLL-PEG. PLL-PEG consists of a poly-l-lysine (PLL) backbone
and polyethylene glycol (PEG) side chains, see Fig. 4.5A. The PLL-
PEG molecules used in the experiments contained PEG-2000,6

which consists of 45 C–C–O segments according to the manu-
facturer [226]. While the PLL backbone, which carries positive
charges, is adsorbed on the negatively charged surface of the glass
bead, the ends of the flexible PEG chains can bind the traptavidin
of the TS scaffolds as sketched in Fig 4.5B. When the bead was
densely coated, it was able to track the MT tip for any TS valency—
including monomeric Ndc80—at least in a few cases. When the
coating was so sparse, however, that there was only one TS–Ndc80
assembly in the proximity of the MT to connect it with the bead,
tip-tracking could only be observed with trimeric Ndc80. These
results reinforce the conclusion of Powers et al. [120] that multiple
Ndc80 attachments are necessary for tip-tracking and, what is
more, specify a lower bound of three Ndc80 complexes that should
be able to interact with the MT.

Finally, Volkov, Huis in ’t Veld et al. investigated to what extend the
Ndc80–MT link can withstand opposing forces in an experimental
setup as sketched in Fig. 4.6. The force was provided by an optical
trap, in which the Ndc80-coated beads were captured during
tip-tracking. When the bead is displaced from the rest position
in the trap center (x � 0) by the depolymerizing MT, the trap
exerts a restoring force F, which can be approximated by Hooke’s
law, F � −ctrapx, and thereby determined via the displacement x
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Figure 4.7: Stiffnesses during MT
stalls. (A) Bead displacements over
time. When a bead is displaced from
the trap center (x � 0) due to tip-
tracking, the depolymerization can be
stalled by the opposing force (gray).
Stalls can be terminated either by de-
tachment of the bead (top) or by a MT
rescue (bottom). (B) Stiffness over stall
force. During a stall, the stiffness can
be determined by Eq. (4.1). The pos-
itive slope of the linear fit indicates
strain stiffening.
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7 The experiments were performed at
kBT � 4.1 pN nm ∼ 23.8 ◦C.

8 See Appendix C.1 for more informa-
tion about optical traps and stiffness
calibration.
9As sketched in Fig. 4.6, the bead dis-
placement x was always measured as
the horizontal (parallel to the cover-
slip) displacement in direction of MT
depolymerization. Vertical displace-
ments were not accounted for. Anal-
ogously, the force F denotes the hor-
izontal force in direction of the dis-
placement.

optical trap
MT

link
bead

®𝐹

Figure 4.8: Elastic representation of
the optical trap experiments. The
corresponding setup is sketched in
Fig. 4.6. Stiffness measurements al-
ways include the stiffnesses of the
trap and the MT–bead link. A detailed
model of the link is developed and
discussed in Sec. 4.3, see Fig. 4.17.

if the trap stiffness ctrap is known [227]. The trap stiffness can
be obtained from a sample path of a trapped bead that is not
displaced by an external force and exhibits a Brownian motion
around its equilibrium position in the trap center due to thermal
fluctuations. A quite simpleway is to apply the equipartition theorem,
which predicts from the harmonic potential of the trap that, at
temperature T,7

ctrap �
kBT

Var(x) . (4.1)

However, since the variance is sensitive to drift or any additional,
for instance, electronic noise, the trap stiffness tends to be un-
derestimated by the equipartition method [228–230]. In a more
accurate and well-established method, which was also used by
Volkov, Huis in ’t Veld et al., the trap stiffness is obtained from a
Lorentzian fit to the power spectral density (PSD) of the sampled
bead displacements [231–233]. The analysis of the whole spectral
information makes the PSD method superior to the equipartition
method.8

Fig. 4.7A shows two characteristic instances of trajectories of
trapped beads tracking a depolymerizing MT. The displacement9

increases until the depolymerization force of the MT is counter-
balanced by the restoring force of the trap so that the MT is stalled.
The stall force correlated with the Ndc80 density on the bead for
densities below 1000 trivalent TS–Ndc80 modules per bead, but
stagnated for larger densities. Coating with monovalent Ndc80
complexes resulted in significantly lower stall forces. There are two
ways a stall can end in, both of which were observed by Volkov,
Huis in ’t Veld et al., see Fig. 4.7A: the bead either detached from
the stalled MT and immediately snapped back to the rest position
in the trap center, or, if the bead stayed attached for a sufficiently
long time, the MT could be rescued, and the bead displacement
relaxed gradually by tracing the now growing MT.

Since the mean displacement is constant during a stall, one can
easily assign a stiffness to the system of MT, Ndc80 complexes
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10 The elastic model is depicted in
Fig. 4.17. The parts of the MT–bead
link that are examined in Sec. 4.3 re-
garding their elastic properties are
the Ndc80 complexes, the PLL-PEG
and the curved PFs at the MT end. It
turns out that Ndc80 complexes ex-
hibit strain stiffening as a consequence
of their structure and that the PFs are
only relevant if their curved part is
sufficiently long while a contribution
of PLL-PEG can be omitted.

11 The theoretical framework of the
PSDmethod,which is presented inAp-
pendix C.1, starts from the Langevin
equation of a Brownian particle in
a harmonic potential. The generality
of the equipartition method can be
shown by considering an object that is
deflected by an external force F in an
arbitrary potential U(x). At tempera-
tureT, the canonical partition function
reads as (β � 1/kBT):

Z ∼
∫

dx e−β(U(x)−Fx).

The moments of the extension x can
be deduced from Z by

〈xn〉 � 1
βn

∂n
F Z

Z
.

Hence, the mean extension and the
variance are

〈x〉 � 1
β
∂FZ

Z
�

1
β
∂F log Z,

Var(x) � 〈x2〉 − 〈x〉2 �
1
β
∂F 〈x〉.

Defining the stiffness as c � ∂F/∂〈x〉,
the last equation is equivalent to
the equipartition method as given in
Eq. (4.1). We note that this is a thermo-
dynamic stiffness, which also contains
entropic contributions and therefore
differs from the purely mechanical stiff-
ness given by ∂2

xU(x) if the potential
is anharmonic.

and displaced bead by application of the equipartition method
analogously to Eq. (4.1) with a variance that is determined over the
duration of the stall. The results of this process, which are depicted
in Fig. 4.7B as obtained by Volkov, Huis in ’t Veld et al. [58], exhibit
stiffnesses that increase with the applied stall force, giving a first
evidence for strain stiffening. Since the bead is trapped throughout
an experiment, the measurements do not solely represent the elas-
ticity of theMT and the link between the bead and theMT, which is
depicted as a green dot in Fig. 4.6, but also include the trap stiffness
as illustrated in Fig. 4.8. However, the trap stiffness is constant
in the examined force range in good approximation, and hence,
the observed strain stiffening can be attributed to the MT and the
MT–bead link. Within the link, there are several potentially elastic
elements, whose contribution to the strain stiffening is discussed
in Sec. 4.3 by means of an elastic model.10 In the current section 4.2,
we concentrate on the stiffness measurements themselves.

The stiffness determination from the stalls as done by Volkov,
Huis in ’t Veld et al. has two shortcomings. The first one is that,
as mentioned above, the stiffness tends to be underestimated
by Eq. (4.1). In contrast to the calibration of the trap stiffness,
this problem can not simply be eliminated by use of the more
accurate PSDmethod,which relies on the assumptionof a harmonic
potential and, thus, can not be applied to a bead that is displaced
by anharmonic MT depolymerization forces—in contrast to the
equipartition method, which is valid for arbitrary potentials.11

Therefore, a higher uncertainty is the cost we have to pay for
the generality of the equipartition method, which allows us to
determine anharmonic stiffnesses in the first place. The second
shortcoming that should be addressed is the correlation of the
stall force with the Ndc80 density on the bead, which does not
let us determine whether the stiffening is an intrinsic property
of the Ndc80 complex and/or the PF, or whether it arises from a
higher number of parallelly attached Ndc80 complexes. We settle
this issue in the following section by time-tracing the stiffness and
uncovering strain stiffening throughout single experiments, i.e.,
while the Ndc80 density on the bead is constant.

The results of Volkov, Huis in ’t Veld et al. presented so far were all
obtained with wild type Ndc80 complexes [58]. In a subsequent
study of the same authors [59], the experiments were repeated
with the (trimerized) variants Ndc80P and Ndc80∆80, which are
sketched in Fig. 4.3. While the phosphorylation of the tail only
reduced the duration of the stalls and the fraction of rescues but did
not impede the tip-tracking per se, the tailless Ndc80∆80 complexes
were hardly able to trace a depolymerizing MT even without an
opposing force. An evaluation regarding the stiffness is missing in
the subsequent paper.We catch up on this by including themutants
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Figure 4.9: Stiffness time-tracing.
The signal is divided into intervals
of ∆t � 0.1 s, which gives 1000 data
points per interval at a sampling rate
of 10 kHz. For each interval k, we esti-
mate the evolution of the equilibrium
bead position with a linear fit fk(t).
The stiffness of an interval is then
given by Eq. (4.2), where the variance
equals the mean squared distance of
the bead position xk(t) from the esti-
mated equilibrium fk(t).

12 Twelve additional examples are
shown in Appendix C.2.

into our reanalysis in the following sections. Moreover, besides
Ndc80wt, Ndc80P and Ndc80∆80, we evaluate new experimental
data of another mutant, Ndc80CHmut, which were also recorded
by Volkov, Huis in ’t Veld et al. but have not yet been published
elsewhere.

4.2.2 Time-tracing reveals strain stiffening in single
experiments

As long as the mean bead position is stationary, e.g., during MT
stall, the effective stiffness can be easily calculated from the variance
of the bead position x by kBT/Var(x). We now present a method
that enables us to monitor the stiffness over time, i.e., also during
polymerization and depolymerization of the MT, and to observe
strain stiffening of the Ndc80 complex in the course of a single
experiment. We divide the signal into several intervals k of a
certain length ∆t for each of which we determine a stiffness as
sketched in Fig. 4.9. For that purpose, we do not use the variance
over that interval but the mean squared distance from a quasi-
equilibrium bead position, which may slowly vary over time. We
estimate the drift of the quasi-equilibrium bead position with a
linear fit fk(t) to the entire time-trace xk(t) in an interval k. Then,
the effective stiffness during the interval k is given by the inverse
of the mean-square distance:

ck �
kBT

〈(xk(t) − fk(t))2〉
. (4.2)

Finally, we can assign a force Fk on the Ndc80 link to each interval,
which can be calculated from the trap stiffness and the mean bead
position during that interval, Fk � ctrap〈xk〉.

The time interval ∆t should be sufficiently small to really describe
a local stiffness, but at the same time should cover enough in-
dependent displacement measurements for a trustful variance
determination. Typical autocorrelation times are γ/c ∼ 0.1–1 ms,
where γ is the friction coefficient and c the stiffness. For our exper-
iments, ∆t � 0.1 s has proven to be a good choice, which results in
100–1000 independent values within each interval.

The results of the time-tracing analysis are shown in Fig. 4.10 for
four representative examples for the four Ndc80 variants Ndc80wt,
Ndc80P, Ndc80∆80 and Ndc80CHmut.12 For each of the Ndc80 vari-
ants, there are experiments in which we detect a smooth stiffening
behaviorwhen the tension increases, but there are also experiments
that do not exhibit any stiffening at all as in Fig. 4.10D. Based on
previously observed absence of stiffening during lateral bead–MT
attachment [58], we interpret experiments without stiffening as
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Figure 4.10: Strain stiffening in sin-
gle experiments. Four representatives
of typical experiments are shown.
More examples can be found in Ap-
pendix C.2. For each experiment, the
upper two plots show the piecewise
linearized bead position and the stiff-
ness over time while the stiffness–
force relation is depicted in the bot-
tom plot, where time is represented
by the color gradient. When the force
is increased due to the shrinking MT,
we observe stiffening in most experi-
ments (A-C). Shrinking usually is fol-
lowed by a stall phase with constant
force and constant stiffness (gray), ex-
cept for experiments with Ndc80∆80

and Ndc80CHmut, where the bead of-
ten detaches before reaching the stall
force (B). The stall is terminated either
bydetachment (A) or byMT rescue (C).
After detachment, the bead snaps back
to the trap center (x � 0), and we mea-
sure the trap stiffness (A,B). When the
MT is rescued and grows, the stiffness–
force relation traces the same curve as
during depolymerization (C).

laterally attached and exclude them from the following analyses.
We note that our main results and conclusions that we derive
in the following remain unchanged if the experiments without
stiffening are not excluded as these experiments exhibited compa-
rably short durations of bead–MT attachment. Experiments with
observed stiffening are interpreted as resulting from an end-on
attachment13

13 Such an end-on attachment is
sketched in Fig. 3.5 and below in
Fig. 4.17A

and analyzed further. Stiffening was observed in 32
of 48 experiments with Ndc80wt, 8/24 with Ndc80∆80, 12/32 with
Ndc80CHmut, and 14/29 with Ndc80P.

In the experiments that exhibited stiffening, the MT depolymeriza-
tion typically stalled at some force for Ndc80wt and Ndc80P, but
not for Ndc80∆80 and Ndc80CHmut, where the bead often detached
before it could stall the MT, see Fig. 4.10B, and the stalls that oc-
curred were shorter [59]. This indicates that the detachment force
for Ndc80∆80 and Ndc80CHmut is usually below the MT stall force
under the experimental conditions applied. Therefore, a systematic
analysis of these mutants is only enabled by time-tracing of the
stiffness prior to detachment as measurements in a stalled state are
rarely possible. The decrease in detachment force also confirms
that the combination of the tail and the CH domain is essential for
force-resisting attachment [59].

A stall can be interrupted in two possible ways: either the bead
detaches from the MT (Fig. 4.10A), or MT growth is rescued
(Fig. 4.10C). In the first case, the bead snaps back immediately to
the equilibrium position of the optical trap, and the measured
stiffness is the trap stiffness ctrap. In case of a rescue, the bead stays
attached to the polymerizing MT and the tension decreases until
the MT undergoes a catastrophe and starts depolymerizing again.
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cal events. The pie charts show how
frequently the typcial events described
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Figure 4.12: Amount of stiffness data.
While only one stiffness per experi-
ment can be obtained by the sole use
of the stalls (right bars), time-tracing
increases the amount of data by 1 to 2
orders of magnitude (left bars).

14 Bead displacement was determined
via a linear conversion from the quad-
rant photo-detector (QPD) voltage [58].
However, the relation between QPD
voltage and bead displacement was
only linear within 200 nm from the
trap center. Outside this range, the
bead displacement and thus the force
are underestimated by the linear con-
version. This explains the steep ascent
in the stiffness–force relation that can
be observed in some experiments for
large forces, for instance, in Fig. 4.10C
for F > 6 pN.
15 While a least squares fit, which min-
imizes the sum of the squared resid-
uals εi , is sensitive to outliers, the ro-
bust regression method that we use
reduces this sensitivity by minimizing
the sum of the Huber loss functions

ρ(εi) �
{

1
2 ε

2
i , |εi | < k

k |εi | − 1
2 k2 , |εi | ≥ k

.

See Appendix C.3 for more informa-
tion.

This allows us to investigate stiffening of the Ndc80 complexes in
dependence of the dynamic state of the MT in Sec. 4.2.4. Almost
all of the typical behaviors that are described above and in Fig. 4.10
can be observed for each in Ndc80 variant but with different
frequencies as summarized in Fig. 4.11.

4.2.3 Collective analysis of the stiffening behavior

Another advantage of our time-tracing method is that we generate
many more data points from the same number of experiments.
While, for example, 53 stiffnesses of Ndc80wt were determined
in Ref. [58] from stalling MTs, time-tracing generates 4403 stiff-
nesses from the same experiments. Also for Ndc80P, Ndc80∆80 and
Ndc80CHmut, we increase the amount of data by 1 to 2 orders of
magnitude as compared with just determining a single stiffness
for each stall, see Fig. 4.12.

In the following, we utilize the newly generated data to analyze
the individual experiments of each Ndc80 variant collectively. In
doing so, we exclude the stiffness values that correspond to bead
positions larger than 200 nm since, here, the determination of bead
displacement becomes inaccurate.14 Fig. 4.13 shows the stiffnesses
thatwere determined from time-tracing the individual experiments
in a single plot for each Ndc80 variant. As compared to the sole use
of the stalls in the case of Ndc80wt, the new results reveal the strain
stiffening more clearly and allow for a more thorough analysis and
interpretation.

In order to further characterize the strain stiffening, we fit power
law functions c(F) � AFm + c0 to the cumulated time-traced data
in Fig. 4.13 by use of a robust regression minimizing the Huber
loss15 [234, 235]. The exponent m characterizes the observed strain
stiffening behavior. We account for the trap stiffness by the offset c0
for which the fits yield results that, indeed, lie in a range from
0.01 pN nm−1 to 0.025 pN nm−1, see Tab. 4.1, which is in accordance
with the trap stiffnesses determined during calibration. While the
stiffnesses exhibit a linear dependence on force with exponents m
around unity for Ndc80wt and Ndc80P, the stiffness–force relations
of Ndc80∆80 and Ndc80CHmut have a roughly parabolic shape
(m ≈ 2). We note that for Ndc80∆80 and Ndc80CHmut, there are
few data for high forces, making the stiffening exponents less
reliable.

The stiffening exponents determined in Fig. 4.13 are the result of a fit
to the combined data from several experiments, and may be biased
by the correlation between the stall force and the Ndc80 densities
on the bead. Our new time-tracing analysis, however, dampens
this bias compared to the sole analysis of the stalls as stiffnesses
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Figure 4.13: Collective analysis via
robust power fits. The combined stiff-
ness data from all experiments is cu-
mulated in one plot (dots) for each
Ndc80 variant. For Ndc80wt, it can be
compared with the stiffnesses as de-
termined by Volkov et al. [58] from the
MT stalls (gray circles). The lines show
robust power fits c(F) � AFm + c0 to
the combined data, where the offset c0
should respect the trap stiffness. The
correspondingfitparameters are listed
in Tab. 4.1.
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Table 4.1: Fit parameters of the robust
power fits c(F) � AFm + c0 depicted
in Fig. 4.13. The offset c0 is given in
units of pN nm−1, the coefficient A in
units of pN1 −mnm−1.

A m c0

wt 0.022 1.03 0.025
P 0.027 0.98 0.010
∆80 0.0038 2.21 0.017

CHmut 0.0069 2.00 0.017
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Figure 4.14: Stiffening exponents
in individual experiments. The de-
picted stiffening exponents m result
from applying robust power fits to
those individual experiments where a
proper stiffening is recognizable and
the bead was attached to the MT for
at least 1 s so that there are ≥10 data
points to fit to. The horizontal bars
mark the medians.

are determined for small forces but at high Ndc80 densities during
MT depolymerization in the respective experiments. We also apply
the power law regressions to the stiffness–force relations of single
experiments. Then, we find most stiffening exponents in a range
between 0.5 and 2, but also detect outliers below this range and
close to 4, see Fig. 4.14.

For a better visibility and comparability of the strain stiffening
of the different Ndc80 variants, we summarize the stiffness mea-
surements in Fig. 4.15A by binning the time-traced stiffnesses of
all experiments in bins of 1 pN width and averaging force and
stiffness in each of these bins. We find that all variant Ndc80
complexes exhibit similar strain stiffening. The direct comparison
in Fig. 4.15B shows that both truncating the tail or modifying the
CH domain slightly decrease the stiffness compared to the wild
type, especially for small forces, which is where the Ndc80∆80

and Ndc80CHmut data is most reliable according to the number of
accumulated stiffness values. This indicates that in all four Ndc80
variants, the remaining intact common parts play a central role in
strain stiffening. Differences between variants are due to changes
in the Ndc80–MT bond and are addressed in the discussion in
Sec. 4.4.

4.2.4 Independence fromMT state

When a MT is rescued after the stall, as in the experiment depicted
in Fig. 4.10C, the time-traced stiffness follows the same stiffness–
force relation in the shrinking and growing states before and
after rescue, respectively. The same observation can be made in
experiments with several consecutive rescues and catastrophes.
This indicates that the stiffness is independent of the MT state,
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Figure 4.15: Summarized stiffness–
force relations. (A) The force axis is di-
vided into bins of 1 pN width, and the
cumulated stiffnesses and the forces
within each bin are averaged. The er-
ror bars represent the standard de-
viation of the mean in F and in c
of the points within each bin, where
each experiment is considered as an
independent event. (B) Direct compar-
ison of Ndc80wt, Ndc80P, Ndc80∆80

and Ndc80CHmut. The lines show the
power fits from Fig. 4.13.

i.e., on whether the Ndc80 complexes are attached to a shrinking,
stalled or growing MT. To address this question systematically,
we identify the phases of shrinking, stalled and growing MTs in
the individual experiments and bin the stiffnesses analogously
to Fig. 4.15A but separately for each of the three MT states. The
results in Fig. 4.16 do not show a significant dependence on the
MT state for any of the four Ndc80 variants. From the elements in
the experiment that can be thought to exhibit an effective elasticity,
the curved ends of the PFs are the ones that are directly correlated
with the MT state. Therefore, we draw two possible conclusions
from the observed independence from MT state: either the PFs
do not contribute to the total stiffness, or, if they do contribute,
their mechanical properties do not depend on whether the MT is
growing or shrinking. The contribution of the PFs is one of the
questions that we try to answer with a theoretical model in the
following section.

Figure 4.16: Independence from MT
state.The stiffnesses are evaluated sep-
arately for stalled, shrinking and grow-
ing MTs, and then summarized bin-
wise as described in Fig. 4.15A.
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4.3 Strain stiffening explained by Ndc80 and
microtubule structure

While the time-tracing analysis presented in the previous section
revealed strain stiffening in single experiments, accumulated ex-
tensive stiffness data, and allowed for a deeper analysis, the new
results raised further questions, which we try to answer in the
following by means of an elastic model. The model is based on the
structure of the involved components that can be found between
the coverslip and the glass bead. In particular, our aims are to
reproduce the strain stiffening at least in a qualitative manner, i.e.,
in terms of the stiffening exponent m; to clarify the contribution of
the PF to the measured stiffness; and to provide an explanation
for the observation that the stiffness of Ndc80wt exceeds those of
Ndc80∆80 and Ndc80CHmut.

Before modeling the results of the stiffness measurements, we have
to identify the elastic elements that contribute to the total stiffness
as sketched in Fig. 4.17. The stiffness of the optical trap is always
present in the measurements. Its value was determined during
the calibration of the optical trap after the bead detached from
the MT. Further potentially elastic elements are located between
the bead and the MT seed that is fixed on the coverslip. This is on
the one hand the MT, which can be thought of to exhibit both a
mechanical (due to stretching or bending) and an entropic stiffness
(due to thermal fluctuations). On the other hand, the link between
the MT and the bead probably has elastic properties. We attribute
the elasticity of the link to its four constituents: first, the Ndc80
complex can act as an entropic spring with stiffness cNdc due to its
flexible kink; secondly, stretching the flaring ends of the PFs at the
MT tip out of their preferred curvature may produce an effective
stiffness cPF for pulling in the axial direction of the MT; thirdly,
also the bond between the Ndc80 trimer and the MT may exhibit
some effective elasticity cbond, e.g., as a consequence of unbinding
and rebinding of individual Ndc80 units; and finally, the PLL-PEG
that connects the Ndc80 complexes with the bead should be taken
into account as another elastic element between the bead and the
MT, generating a fourth stiffness cPEG.

Each of these four stiffnesses may depend on the applied force and
exhibit strain stiffening itself. Since the four elements are aligned
in series, their inverse stiffnesses sum up to the inverse linker
stiffness c̃−1:

c̃(F) �
(

1
cPEG(F)

+
1

cNdc(F)
+

1
cbond(F)

+
1

cPF(F)

)−1

. (4.3)
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Figure 4.17: Elastic model of the op-
tical trap experiments. (A) Sketch of
the experiment (not true to scale) with
n � 3 attached Ndc80 complexes. We
assume that eachNdc80 complex is ex-
posed to the same force F/n. (B) Spring
model. Between the bead and the MT,
there are four potentially elastic ob-
jects, which are aligned in series: the
PLL-PEG, the Ndc80 complex, the
Ndc80–MT bond and the curved PF.
When n Ndc80 complexes are attached
to the MT, n of those serial combina-
tions act as parallel springs.

16Mathematically, the cooperative
stiffness is decreased by adding par-
allel elements if the derivative of c̃n
with respect to n is negative:

∂c̃n(F)
∂n

� c̃
(

F
n

)
− F

n
c̃′

(
F
n

)
< 0.

The relation f (x) < x f ′(x) requires
the function f to be convex if f (x) > 0,
i.e., the strain stiffening of the individ-
ual stiffness c(F) has to be superlinear.

It is important to note that this reduces the total stiffness and that
the softest elastic element dominates the total stiffness.

It is possible that multiple Ndc80 complexes are attached parallelly
to the MT. For the sake of simplicity, we always assume that each
PF can only attach one Ndc80 complex and that the parallel PFs
andNdc80 complexes have the same elongation, respectively. Then,
the force F is shared equally between the parallel Ndc80–PF units
with stiffness c̃(F) so that the total linker stiffness that results from
n parallelly attached Ndc80 complexes can be written as

c̃n(F) � n c̃
(

F
n

)
. (4.4)

Although parallel stiffnesses add up, the shared force can give rise
to an overall reduction c̃n(F) < c̃(F) of the cooperative stiffness if
the individual stiffness exhibits strain stiffening c(F) ∝ Fm with
an exponent m > 1.16 We find below that such strain stiffening
behavior is realized both for the Ndc80 and the PF stiffness.

The n parallel linkers c̃ are in series with a single MT with stiff-
ness cMT while the optical trap, whose force is applied on the bead
from the opposite side, acts as a parallel spring, see Fig. 4.17. This
results in a total stiffness

ctot(F) � ctrap(F) +
(

1
n c̃(F/n) +

1
cMT(F)

)−1

. (4.5)

We note that the force dependence of the trap stiffness is negligible
in the examined force ranges so thatwe can assume ctrap(F) � const
in the following.

The bond between individual Ndc80 complexes and the MT is
established by the globular regions at theN-terminal of the complex
[191, 220, 221] via calponin homology (CH) domains [222]. Also
the N-terminal tail of the Ndc80 subunit is probably involved in
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17 The FJC, also known as ideal chain,
is a polymer model consisting of a
chain of stiff bondswith totally flexible
hinges, thereby modeling the polymer
as a random walk.

18 From the NS C–C–O segments,
let Nhel be in the helical conforma-
tion with length Lhel, and Npl seg-
ments in the planar conformationwith
length Lpl. Assuming a Boltzmann dis-
tribution,

Nhel
Npl

� eβ∆G(F) ,

where ∆G(F) � ∆G0 − F (Lpl − Lhel)
is the free energy difference, the force
dependent contour length is given by

LC(F) � NplLpl + NhelLhel

� NS

( Lpl

eβ∆G(F) + 1

+
Lhel

e−β∆G(F) + 1

)
.

19 L denotes the extension in force
direction. At low forces, the PEG
molecule exhibits an entropic elastic-
ity as described by the first term in
Eq. (4.6), which is (except for the force
dependence of LC) the well-known re-
sult for a FJC with contour length LC
and Kuhn length LK that is stretched
by a force F [240]. At high forces, on
the other hand, the segments them-
selves are stretched, and the behavior
is dominated by the segment elastic-
ity KS.

MT binding [236, 237]. The effective stiffness of the Ndc80–MT
bond is hard to model because the exact binding mechanism to the
MT is still elusive. Since the Ndc80 CH domain and the N-terminal
tail are relevant for binding to the MT, investigation of the stiffness
changes for mutants Ndc80∆80 andNdc80CHmut as compared to the
wild type Ndc80wt allows us to address this issue in the discussion
in Sec. 4.4. Regarding the linker stiffness c̃, we concentrate on the
contributions of the Ndc80 complex itself, the PF and the PLL-PEG
in the following.

4.3.1 Stiffness of PLL-PEG

We start our analysis with the PLL-PEG linkage to the bead, whose
contribution to the measured stiffnesses should be clarified in
addition to those from the Ndc80 complex or the PF. As written
above and sketched in Fig. 4.5, PLL-PEG consists of a PLL backbone,
which is adsorbed on the glass bead, and flexible PEG side chains,
which can bind the Ndc80 oligomers.

Pasche et al. [238] examined the elastic properties of PLL with an
atomic force microscope (AFM). The PLL was adsorbed on a flat
Nb2O5 surface in these experiments, i.e., in a similar arrangement
as the PLL on the glass bead during the optical trap experiments.
From the slope of the force–extension curves that Pasche et al. have
measured, the stiffness of PLL can be estimated as ∼100 pN nm−1,
which is three orders of magnitude above the stiffnesses that
we determined in the previous section. Therefore, a significant
contribution of the PLL can be neglected.

The stiffness of the PEG side chains can be estimated on the
basis of the extended freely jointed chain (FJC)17 model by which
Oesterhelt et al. [239] successfully reproduced the extension–force
relations measured in single molecule AFM experiments with
PEG. Since the C–C–O segments of PEG that is dissolved in water
undergo a conformational transition from a helical to a planar
structure when tension is applied, the model includes two distinct
segment lengths, one for each of the conformations. Assuming
a Boltzmann distributed ratio of helical and planar segments,
the authors obtained a contour length LC(F) that depends on
the applied force.18 We derive the PEG stiffness cPEG from the
extension–force relation L(F) that is given in Ref. [239]:19

L(F) � LC(F)
(
coth

(
βFLK

)
− 1
βFLK

)
+ NS

F
KS
, (4.6)

cPEG(F) �
(

dL(F)
dF

)−1

. (4.7)
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Table 4.2: Parameters of the extended
FJC model for the PEG stiffness [239].

Description Symbol Value

Number of segments NS 45
Segment length of the planar conformation Lpl 0.358 nm
Segment length of the helical conformation Lhel 0.28 nm
Kuhn length LK 0.7 nm
Zero force free energy difference (Gpl − Ghel) ∆G0 3 kBT
Segment elasticity KS 150 N m−1

Thermal energy (β � 1/kBT) kBT 4.1 pN nm
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Figure 4.18: PEG stiffness. The stiff-
ness of n parallel PEG molecules
(ncPEG(F/n), colored lines) is more
than a factor 10 larger than the mea-
sured stiffness of Ndc80wt.
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Figure 4.19: Ndc80 complex as en-
tropic spring. We model the Ndc80
complex as a freely jointed chain with
two bonds ®a and ®b, which have the
different lengths a and b. The long
arm ®a is bound to the glass bead, the
short arm ®b to the MT, which applies
a force ®F � F ®ez . The glass bead is
approximated as a plane surface.

20Here, the z-coordinate corresponds
to the x-direction in Fig. 4.17. This con-
version simplifies the following calcu-
lations using common spherical coor-
dinates.

Using the parameters fromTab. 4.2, which are taken fromRef. [239]
except for the number of segments NS, which is adapted to the
PEG-2000 used in the experiments, we obtain a force-free stiffness
of 1.38 pN nm−1, which increases very slowly under tension, see
Fig. 4.18. This exceeds the typical MT–Ndc80 stiffnesses deter-
mined in the experiments by an factor above 10, and, according
to Eq. (4.4), this factor even increases in the examined force range
when multiple PEG molecules are arranged in parallel.

We conclude that both the PLL backbone and the PEG chains are
too stiff to make a significant contribution to the measured stiffness
since cPEG(F) � c̃(F) in Eq. (4.3). Moreover, the slope of cPEG is
too small to be compatible with the experimentally observed strain
stiffening so that, after all, the PLL-PEG can be omitted in the
following analysis and the experimental results indeed are suitable
to obtain information about the elasticity of the Ndc80–MT link.

4.3.2 Stiffness of the Ndc80 complex

After excluding a significant influence of the PLL-PEG, we next
include the remaining elements (Ndc80 complex, MT, PF) step by
step to discuss their relevance for the observed strain stiffening. We
start our analysis with the Ndc80 complex, which is, due to its flex-
ible structure and its force transmitting role in the mitotic spindle,
the most promising and probably most interesting candidate.

In order tomodel the stiffness of theNdc80 complex under force,we
use a simple polymer model that is based on the known structure
depicted in Fig. 4.1 with two stiff arms of lengths a � 40 nm and
b � 16 nm that are flexibly connected [191, 192]. In the cell, the long
arm is bound to the kinetochore, in the experiment it is bound to
the glass bead while the short arm can be attached to a MT. We
describe the conformation of the two arms by two vectors ®a and ®b
in spherical coordinates as shown in Fig. 4.19:20

®a � a ©­«
sin θa cosϕa

sin θa sinϕa

cos θa

ª®¬, ®b � b ©­«
sin θb cosϕb

sin θb sinϕb

cos θb

ª®¬. (4.8)
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21At an angle of 0°, the elements ®a and
®b are in line while they are maximally
kinked at 120°:

®b

®a

0°
120°

22 In the second step, we substi-
tute za � a cos θa and zb � b cos θb .
The lower bound of the integral
over zb follows from the condi-
tion z � za + zb > 0, which gives
zb > −za . However, if za > b, this con-
dition is fulfilled for any zb ∈ [−b , b]
so that a distinction of the cases za ≤ b
and za > b is necessary.

The impenetrable glass bead restricts these two vectors in the
experiment. Since the diameter of the glass bead (1µm) is much
larger than the Ndc80 complex, we approximate the bead as a
plane surface that confines the Ndc80 complex to the upper half
space so that za > 0 and z � za + zb > 0, see Fig. 4.19. Experiments
have shown that the two arms are connected flexibly within an
angular range between 0° and 120° [192].21 Since we want to model
the Ndc80 complex while it is confined by the glass bead and
under the influence of an external stretching force that is applied in
z-direction and favors small angles, we can neglect the constraint to
angles below 120°. This allows us to perform an explicit analytical
calculation as we reduce the Ndc80 complex to a purely entropic
FJC with two bonds of different lengths. The only energy is the
stretching energy from a constant external force ®F � F ®ez in positive
z-direction,

EFJC � −®F ·
(
®a + ®b

)
� −F (za + zb)

� −F (a cos θa + b cos θb).
(4.9)

Respecting the confinement to the upper half-space, we obtain the
canonical partition function:22

Z(F) �
∬

za ,z>0

dθa sin θadθb sin θb e−βEFJC .

�

∫ a

0

dza

a
eβFza

∫ b

−min(za ,b)

dzb

b
eβFzb

�
2eβFa sinh βFb − eβFb − βFb + 1

(βF)2ab
.

(4.10)

Both the extension–force relation z(F) and the stiffness–force re-
lation cNdc(F) in the presence of thermal fluctuations can be ob-
tained from derivatives of the partition function with respect to
the force:

z(F) � 〈z〉 � 1
β
∂F ln Z, cNdc(F) �

(
∂z(F)
∂F

)−1

. (4.11)

The explicit results for the extension and the stiffness of the Ndc80
complex are

z(F) � − 2
βF

+
2eβFa (a sinh βFb + b cosh βFb

)
− beβFb − b

2eβFa sinh βFb − eβFb − βFb + 1
,

(4.12)
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23 The extension of a general FJC with
N bonds of length b, i.e.,with total con-
tour length LC � Nb, under a force F
behaves as [240, 241]

Nb
(
coth βFb − 1

βFb

)
→ LC −

N
βF
.

The approximation for strong forces
is also valid for bonds with different
lengths as it is the case in our Ndc80
model with LC � a + b and N � 2.

24 See the paragraph below Eq. (4.4)
and Sidenote 16. A necessary condition
is a superlinear strain stiffening of the
individual stiffness, which is fulfilled
by cNdc(F).

25 as well as in Figs. 4.22 and 4.24
below

cNdc(F) �
[

2
βF2

+ β
2eβFa ((a2 + b2) sinh βFb + 2ab cosh βFb

)
− b2eβFb

2eβFa sinh βFb − eβFb − βFb + 1

− β
(

2eβFa(a sinh βFb + b cosh βFb) − beβFb − b
2eβFa sinh βFb − eβFb − βFb + 1

)2]−1

.

(4.13)

In the limit of strong forces (F � 1/βb � 0.256 pN), this simplifies
to

z(F) ≈ a + b − 2
βF
, cNdc(F) ≈

βF2

2
, (4.14)

which is the same result as for a free FJC23 since the restriction
by the glass bead becomes irrelevant when the Ndc80 complex is
stretched by a large force.

Fig. 4.20 shows that the cooperative stiffnesses of n parallel Ndc80
complexes according to Eqs. (4.13) and (4.4) exhibit an apparent
strain stiffening in the examined force range. Moreover, as already
mentioned above, the cooperative stiffness may be reduced by
adding further Ndc80 complexes in parallel.24 As a result, the
cooperative stiffness isminimized by the linear envelope in Fig. 4.20
when the number of attached Ndc80 complexes increases with the
force. While the recognizable parabolic shape of cNdc(F), which
has already been derived in Eq. (4.14), contradicts the roughly
linear strain stiffening observed in Fig. 4.13, the envelope provides
a better agreement in the stiffening exponents. We discuss below
that this might indicate a catch bond mechanism.

However, as shown in Fig. 4.20 by the example of Ndc80wt, the
Ndc80 model generates stiffnesses that exceed the experimental
values by a factor of at least 2-4 even for the minimizing envelope.
Taking into consideration that the experimental values depicted
in Fig. 4.20 still contain the trap stiffness, which is not included in
the theoretical curves, the discrepancy is even slightly larger than
it appears in Fig. 4.20. We refrained from correcting the experi-
mental measures by the trap stiffness as the trap stiffness and the
time-traced stiffnesses were determined by different methods and
are therefore difficult to compare: while the time-traced data was
obtained from the equipartition theorem as described in Sec. 4.2.2,
the trap stiffness, which was also used for force determination, was
calibrated from the PSD [231–233]. In conclusion, one should keep
in mind that the experimental values depicted in Fig. 4.2025 proba-
bly need to be shifted downwards by an amount of approximately
0.02 pN nm−1.
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Figure 4.20: Ndc80 stiffness. The stiff-
ness of n parallel Ndc80 complexes
n cNdc(F/n) according to Eq. (4.13)
(colored lines) is by a factor of 2-4
larger than the measurements with
wild type Ndc80. The theoretical stiff-
ness isminimizedwhen the number of
attached Ndc80 complexes increases
linearly with the force (nmin(F), gray
line).
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26 The longitudinal stiffness is givenby
YA/L, where A is the cross-sectional
area of the MT.

We conclude that the stiffness of the Ndc80 complex alone can
explain strain stiffening but is not sufficient to explain themeasured
stiffnesses quantitatively. The fact that the Ndc80 model gives
larger stiffnesses than measured motivates the consideration of
the additional elastic elements from the MT, the Ndc80–MT bond
and the PFs in the total stiffness in Eq. (4.5). These elements are
in series to the Ndc80 complex and potentially reduce the total
stiffness of the entire Ndc80–MT link. We argued above that the
stiffness of the Ndc80–MT bond is hard to quantify, and, therefore,
we continue our analysis by investigating the effects of the MT
stiffness cMT and the PF stiffness cPF.

4.3.3 Microtubule stiffness

Next, we consider the elasticity of the MT, whose tip can be
attached to several Ndc80 complexes. The part of the MT that may
contribute to the stiffness measurements is its free end between
its fixed seed and its tip with the flaring PFs, whose flexibility is
examined separately in the following section. In the experiments,
typical lengths L of the free MT end lay between 3 and 10µm.
The MT can be thought of to exhibit two kinds of elasticity: a
purely mechanical one due to stretching or bending, or an entropic
stiffness that follows from thermodynamic fluctuations as for the
Ndc80 complex. We start with the investigation of the mechanical
properties.

Mechanical stiffness

Given the values of 0.1 to 2 GPa that can be found for the Young’s
modulusY of aMT [242], the stiffness of longitudinalMT stretching
can be estimated to26 5 to 330 pN nm−1, which is stiff enough to be
ignored in the following.

Since the MT tip is lifted from the coverslip and therefore slightly
bent when it is bound to the bead, a horizontal force might not
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Figure 4.21: Model for mechanical
MT stiffness. Since theMT tip is lifted
by the bead, it may be unbent by a hor-
izontal force, which is associated with
an effective stiffness.
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27As in the Ndc80 model, the deflec-
tion in force direction is denoted by z
and corresponds to the direction of
bead displacement x in Fig. 4.17.

28 The second term describes the
stretching energy −Fz with

z �

∫ L

0
cos θ(s)ds .

only stretch but also unbend the MT as sketched in Fig. 4.21. In the
following, we deduce the effective stiffness that is associated with
the unbending by modeling the MT as a beam with persistence
length Lp whose seed is fixed to the coverslip (z � u � 0) and
whose tip is forced to a height h by the bead.27 We describe the MT
conformation by the local bending angle θ(s) at the position s along
the MT. The curvature is obtained by the derivative Ûθ(s) � dθ/ds.
With a force F applied in z-direction, the total energy of the MT is
given by the sum of bending and stretching energies:28

EMT �

∫ L

0

(α
2
( Ûθ(s))2 − F cos θ(s)

)
ds , (4.15)

where α � kBTLp denotes the bending stiffness. Since the MT tip
is lifted to a height h when it is attached to the bead, the total
energy EMT has to be minimized under the constraint

h �

∫ L

0
sin θ(s)ds . (4.16)

This results in the Euler–Lagrange equation

Üθ �
F
α

sin θ − Fh

α
cos θ

θ�1≈ F
α
θ − Fh

α
, (4.17)

with a Lagrange-multiplier Fh , which corresponds to the force in
u-direction that is necessary to hold the MT tip at height h. Due
to the fixed MT seed and the unconstrained curvature at the MT
tip, the MT conformation has to satisfy the boundary conditions
θ(0) � 0 and Ûθ(L) � 0, respectively. Altogether, the approximated
form of Eq. (4.17) is solved by

θ(s) � Fh

F
(1 − cosh(λs) + tanh(λL) sinh(λs)), (4.18)

Fh �
Fh/L

1 − 1
λL tanh(λL)

, λ ≡
√

F
α
, (4.19)
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The effective deflection in z-direction and the corresponding stiff-
ness cmech follow from

z �

∫ L

0
cos θ(s)ds ≈

∫ L

0

(
1 − θ

2(s)
2

)
ds , (4.20)

cmech �

(
∂z
∂F

)−1

. (4.21)

The explicit result can be written as

cmech �
8
√

Fα
h2 × (4.22)(

1 − f (λL)
)3

f ′(λL)
(
(3 + 2λ2L2) f (λL) − 3

)
+ 2λL f 2(λL)

(
1 − f (λL)

) ,
with f (x) ≡ tanh(x)/x. For strong forces (F � α/L2 ∼ 0.05 pN),
this can be simplified to

cmech ≈
8L2

h2√α
F

3
2 . (4.23)

Since the persistence length depends on the total length of the
MT,

Lp �
L∞p

1 +
L2

0
L2

, (4.24)

with L∞p � 6.3 mm and L0 � 21µm [243], the only required
parameters besides temperature are the MT length L and the
height h. Given the beaddiameter of 1µmand the distance between
the surfaces of the coverslip and the bead (∼ 100 nm), we estimate
that the height does not exceed h � 500 nm.

Fig. 4.22A shows the stiffness of a MTwith typical length L � 5µm
and h � 500 nm in series with several parallel Ndc80 complexes.
Though the choice of h provides a lower estimate for cmech ∝ h−2,
the purely mechanical MT stiffness only slightly reduces the total
stiffness as compared to the Ndc80 complexes alone, which it
exceeds by a factor greater than 5 in most of the examined force
range. We conclude that a mechanical contribution of the MT can
be neglected and continue with estimating its entropic stiffness.

Entropic stiffness

We consider the entropic stiffness by describing the MT as a
generic semiflexible polymer with persistence length Lp. Then,
for sufficiently large forces (F � kBT/Lp ∼ 10−6 pN), the relation
between the applied force F and the mean extension z in force



106 4 Strain stiffening of the Ndc80 complex

0 1 2 3 4 5 6
𝐹 (pN)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

𝑐
( pN

nm
−1
)

mechanical

(A)

0 1 2 3 4 5 6
𝐹 (pN)

entropic

(B)

𝑐Ndc
𝑐Ndc+MT
𝑛 = 1
𝑛 = 2
𝑛 = 5
𝑛 = 10
𝑛min(𝐹)

Ndc80wt

Figure 4.22: Microtubule stiffness.
Mechanical and entropic stiffness of
a MT in series with n parallel Ndc80
complexes (dashed lines) compared
to the sole Ndc80 stiffness (Eq. (4.11),
bold lines). (A) With the mechanical
MT stiffness according to Eq. (4.23),
the total stiffness is only slightly dif-
ferent from the bare Ndc80 stiffness.
(B) The contribution of the entropic
MTstiffness according toEq. (4.23) can
not be neglected as it significantly re-
duces the stiffness when it is arranged
in series with the Ndc80 complexes.

direction is given by [244]

z
L
� 1 −

(
kBT

4FLp

) 1
2

, (4.25)

The entropic MT stiffness cMT can again be deduced from the
derivative of z with respect to the force:

cMT(F) �
(
∂z
∂F

)−1

�
4
L

(
Lp

kBT

) 1
2

F
3
2 �

4√
kBT

(
L∞p

L2 + L2
0

) 1
2

F
3
2 , (4.26)

where the length dependence of the persistence length according
to Eq. (4.24) was inserted in the last step. The only necessary
parameter besides temperature is the length of the free part of
the MT. Due to the length dependent persistence length, the
resulting MT stiffness in Eq. (4.26) converges for small MT lengths
L � L0 � 21µm. Therefore, the MT stiffness can be assumed to
be the same in all experiments, where typical lengths lay between
3 and 10µm, and we use L � 10µm in the following as a general
representative.

The entropic stiffness of theMT is of the same order ofmagnitude as
theNdc80 stiffness,which is a surprising result itself for aMT that is
by a factor 100 shorter than its persistence length. Consequently, the
sole stiffness of n parallel Ndc80 complexes is significantly reduced
when theMT stiffness is added in series, see Fig. 4.22B. Interestingly,
the combination of a single MT with stiffening exponent 3/2 and
several (n & 5) Ndc80 complexes stiffening with F2 results in a
roughly linear behavior in the examined force range, which might
explain the measured stiffening exponents in Fig. 4.13. Despite
the overall stiffness reduction, our model predictions are still too
large as compared to the measurements when only the MT and the
Ndc80 complexes are considered. Therefore, we speculate in the
next step that the Ndc80 complexes bind to the curved parts of the
PFs resulting in an effective stiffness from straightening the PFs.
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29As in the Ndc80 model above, this
direction is denoted by the z-axis in
the following and corresponds to the
x-direction in Fig. 4.17.
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Figure 4.23: Model for protofilament
bending. The z-axis marks the direc-
tion along the MT, and the u-axis the
radial distance from the straight PF,
i.e., from the surface of theMT. The PF
is described by the local bending an-
gle θ(s), where s is the position along
the curved PF. The Ndc80 complex
is attached at s � s0 and applies the
force F in z-direction.

4.3.4 Effective stiffness of protofilament bending

The Ndc80 complexes apply a force into the axial MT direction29

on the free ends of the PFs, see Fig. 4.23. Since, thereby, the PFs
are bent out of their preferred curvature, a restoring force on the
Ndc80 complexes builds up, governed by an effective stiffness cPF
for strains in the axial direction. In the following, we quantify this
stiffness bymodeling the PF as a beamwith a preferred curvature φ
and persistence length Lp. The approach is very similar to the
mechanical MT model above with the only difference that the PF
is intrinsically curved in absence of an external force while the
MT curvature is a consequence of the vertical force applied by the
optical trap.

As described in Fig. 4.23, the PF is straight and bound by lateral
interactions with neighboring PFs for z < 0. For z > 0, we assume
that there are no interactions to neighboring PFs so that the PF
can bend freely. The PF conformation is described by the local
bending angle θ(s) at the position s along the PF. The PF curvature
is obtained by the derivative Ûθ(s) � dθ/ds. In the absence of an
external force, the PF has a preferred (or spontaneous) constant
curvature φ. Let the Ndc80 complex attach at the position s � s0
and apply a force F in z-direction. Then, the total energy is the
sum of bending and stretching energies,

EPF �

∫ L

0

α
2
( Ûθ(s) − φ)2 ds − Fz(s0), (4.27)

with the bending stiffness α � kBTLp and the total length L of the
free PF. The second term describes the stretching in z-direction
where the effective deflection is given by the position of the point
of force application on the z-axis:

z0 ≡ z(s0) �
∫ s0

0
cos θ(s)ds . (4.28)

The PF is dominated by the interplay of bending and stretching
energy such thatwe can neglect thermal fluctuations and obtain the
PF stiffness from the configurationminimizing the total energy EPF.
Since the force F only affects the shape of the PF for s < s0 while
the curvature at s > s0 stays φ, we have to minimize the PF energy
with boundary conditions θ(0) � 0 and Ûθ(s0) � φ. Moreover,
since the bending energy vanishes for s > s0, we can summarize
Eqs. (4.27) and (4.28) by changing the upper limit of integration in
the bending energy from L to s0:

EPF �

∫ s0

0

(α
2
( Ûθ(s) − φ)2 − F cos θ(s)

)
ds . (4.29)



108 4 Strain stiffening of the Ndc80 complex

30 The differential equation
Üθ � (F/α) θ is generally solved
by

θ(s) � A sinh λs + B cosh λs ,

with λ �
√

F/α. The first boundary
condition (θ(0) � 0) yields B � 0, the
second condition ( Ûθ(s0) � φ) is ful-
filled with A � φ/λ cosh λs0 so that
we find

θ(s) �
φ

λ
sinh λs

cosh λs0
≈
φ

λ
eλ(s−s0).

Using the approximated form, which
is valid for large forces, and expanding
cos θ in Eq. (4.28) for small θ so that

z0 ≈
∫ s0

0

(
1 − θ

2

2

)
ds ,

we finally achieve the result in
Eq. (4.32).

31 Expressed in formulas, the follow-
ing two stiffnesses are depicted in
Fig. 4.24:(

1
cMT(F)

+
1

ncNdc(F/n)

)−1
,(

1
cMT(F)

+
1

ncNdc(F/n)

+
1

ncPF(F/n)

)−1

The energy minimizing PF configuration satisfies the Euler–La-
grange equation

Üθ(s) � F
α

sin θ(s), (4.30)

which we solve numerically with a shooting method in order to
fulfill the boundary conditions. Finally, the effective stretching
stiffness of the PF can be determined from the derivative of the
effective deflection z0(F):

cPF �

(
dz0
dF

)−1

. (4.31)

In the limit of strong forces (F � α/s2
0 ∼ 0.3–2 pN), the PF is

stretched, i.e., θ(s) � 1, and we can approximate Eq. (4.30) by
Üθ � (F/α) θ, which can be solved analytically:30

z0(F) ≈ s0

(
1 −

φ2

4s0

(α
F

)3/2
)

(4.32)

cPF(F) ≈
8F5/2

3φ2α3/2 ∝ F
5
2 . (4.33)

We note the pronounced strain stiffening with cPF(F) ∝ F5/2, which
is a consequence of bending rigidity together with spontaneous
curvature.

The model depends on three parameters: the persistence length Lp,
the preferred curvature φ, and the point of force application s0. Fol-
lowing the results of in vitro experiments [72], we use Lp � 200 nm
and φ � 20° per tubulin dimer throughout this chapter. We have
to guess where the Ndc80 complex attaches to the PF. Since the
attachment point has to be somewhere on the PF, s0 has to be
smaller than L, which is the length of the curved part of the PF.
McIntosh et al. [72] measured values in the range of 10 to 80 nm for
depolymerizing MTs in vitro, with a mean of (36 ± 15)nm. In this
chapter, we use estimates s0 � 20 nm and s0 � 50 nm.

Fig. 4.24 shows how the stiffness of a MT with cMT in series with
n Ndc80 complexes with cNdc is reduced when a PF with cPF is
added in series to each Ndc80 complex.31 We see that the influence
of PF bending is negligible for s0 � 20 nm whereas for s0 � 50 nm,
the PF significantly reduces the total stiffness close to the wild
type measures. We conclude that the PF stiffness is only relevant
if the Nd80 complex is attached near the end of a sufficiently
long PF. An upper bound for s0 is given by the total length of the
curved part of the PF, for which values of L � 10–80 nm have been
measured in vitro [72]. We note that it is questionable whether
such distant attachment points s0 > 20 nm are realizable as there
is experimental evidence that single Ndc80 complexes are only
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Figure 4.24: Protofilament stiffness.
Stiffness of aMT in series with n paral-
lel PFs and Ndc80 complexes (dashed
lines) compared to a MT in series with
just the Ndc80 complexes (bold lines).
(A) When the attachment point on the
curved PF has a distance of s0 � 20 nm
from the straight MT lattice, the stiff-
ness is only slightly reduced. (B) For
s0 � 50 nm, the PF does have a signifi-
cant contribution to the total stiffness.
However, the combined stiffnesses of
MT, Ndc80 complexes and PFs are still
larger than the experimental outcomes
for wild type Ndc80.

32 Though nmin(F) as depicted in
Fig. 4.25 is determined numerically, its
linear behavior can be derived directly:
the number n that minimizes the co-
operative stiffness cn(F) � n c(F/n)
for a given force F is defined by

0 �
∂cn(F)
∂n

� c
(

F
n

)
− F

n
c′

(
F
n

)
.

If c(F � 0) > 0 and c(F) is a con-
vex function, which is the case for
both cNdc(F) and cPF(F), this equa-
tion can be solved by a constant
F∗n � F/nmin , 0, i.e.,

nmin(F) �
F

F∗n
∝ F.

Moreover, since

∂2cn(F)
∂n2 �

F2

n3 c′′
(

F
n

)
,

the convexity of c(F) ensures that nmin
actually minimizes cn .

able to bind to straight PFs [131, 222]. We discuss below why this
evidence might not apply to the conditions of the optical trap
experiments of Volkov, Huis in ’t Veld et al.

Even when long PFs are considered, the additional PF elasticity
does not lower the calculated stiffness sufficiently to accurately
describe the experimental outcomes if a fixed number n of parallel
Ndc80 complexes is used over the whole range of applied forces.
This motivates the last step of our analysis.

4.3.5 Catch bond behavior can minimize the cooperative
stiffness

We now analyze how our model behaves when the number n of
attached Ndc80 complexes depends on the applied force, n � n(F).
In principle, both a catch bond and a slip bond mechanism are
conceivable for the Ndc80–MT bond. A catch (slip) bond is char-
acterized by a binding affinity that increases (decreases) under
tension [245]. In our model, a catch (slip) bond implies a monoton-
ically increasing (decreasing) force-dependent number of attached
Ndc80 complexes n(F).

We find that a force-dependent n(F) can lower the effective total
stiffness of the entire Ndc80–MT link. The minimal cooperative
stiffness that can be realized by allowing a dependence n(F) is
the envelope of the stiffness–force relations cn(F) for different n,
see Figs. 4.20, 4.22 and 4.24. The envelope of the cn(F) relations is
obtained by a force-dependent number nmin(F) of attached Ndc80
complexes that minimizes the stiffness cn(F) for each F. The result-
ing nmin(F) is shown in Fig. 4.25 and increases linearly,32 which
also implies a catch bond behavior. For long PFs (s0 � 50 nm), the
envelope stiffness cnmin(F) has actually the correct order of magni-
tude as compared to the experimental data shown in Fig. 4.24B.
The number nmin(F) also remains below n � 15 in the examined
force range, which is in agreement with estimates for the number
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Figure 4.25: Stiffness minimizing
Ndc80 numbers. Force-dependent
numbers nmin(F) of attached Ndc80
complexes that minimize the coopera-
tive stiffnesses cn(F) of bare Ndc80
complexes (blue) and Ndc80 com-
plexes attached to PFs at s0 � 50 nm
(orange). The corresponding mini-
mum stiffnesses cnmin (F) are depicted
in Figs. 4.20 (Ndc80) and 4.24B
(Ndc80+PF).

33 See Eqs. (4.14), (4.26) and (4.33).

of Ndc80 complexes in the proximity of the MT given the expected
Ndc80 density on the bead [58, 120].

Apart from the absolute stiffness values, a model should repro-
duce the observed roughly linear strain stiffening behavior with
an exponent m around unity (see Fig. 4.13). Our theory, on the
other hand, predicts exponents of 3/2, 2 and 5/2 for the MT, the
Ndc80 complexes and the PFs, respectively.33 The relation n(F)
can change the latter two stiffening exponents. From Eq. (4.4), one
can see that a linearly increasing n(F) actually implies a linear
stiffening as observed in the experiments since F/n(F) � const
and, therefore, cn(F) � n(F) c(const) ∝ n(F). For a slip bond, on
the other hand, where ∂Fn(F) < 0 and n(F) → 0 for large forces by
definition, the argument in Eq. (4.4), F/n(F), increases rapidly. As
a consequence, we can approximate cNdc and cPF with the power
laws from Eqs. (4.14) and (4.33), respectively, so that

cn(F) ∼ n(F)
(

F
n(F)

)m

�
Fm

(n(F))m−1 > O(Fm), (4.34)

We conclude that any kind of slip bond will increase the stiffening
exponent for large forces. Stiffening exponents below the values
m � 2 for Ndc80 stiffness or m � 2.5 for PF stiffness, as obtained
in the experiments, are indicative of a catch bond mechanism. For
the time-traces from single experiments in Fig. 4.14, 79 % of the
stiffening exponents lie below 2.

4.4 Discussion

The novel analysis of time-traces of bead positions in optical
trapping experiments allowed us to time-trace the stiffness during
single experiments and to go beyond an analysis limited to the MT
stall state [58]. This enabled us to increase the available number of
stiffness measurements by 1 to 2 orders of magnitude and study
strain stiffening of wild type Ndc80 in more detail. It also enabled
us to study strain stiffening of Ndc80 variants with a truncated
tail or with a mutated CH domain, both of which typically detach
before the MT has been stalled, and to explore strain stiffening
selectively in the shrinking, stalled and growing state of MTs.

We found that all variant Ndc80 complexes exhibit strain stiffening
hinting at a central role of the Ndc80–Nuf2 coiled coil, rather than
theMTbinding sites in theCH-domain and theN-terminal tail. The
measured stiffnesses of the entire Ndc80–MT link are lower than
theoretical predictions from our Ndc80 model. Therefore, addi-
tional elastic elements in the Ndc80–MT link or a force-dependent
number of attached Ndc80 complexes should be relevant. We
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could exclude the PLL-PEG connection between Ndc80 complexes
and the bead, which is too stiff to contribute. Effects from the MT
and from protofilament flexibility are necessary for the model
to conform to experimentally measured stiffnesses, and the ob-
served linear stiffening may be explained by an increasing number
of attached Ndc80 complexes under force (catch bond). More-
over, stiffness differences between variants allow us to draw some
conclusions on the Ndc80–MT bond.

Effects from protofilaments

Time-tracing of the stiffness allowed us to study strain stiffening
selectively in the shrinking, stalled and growing state of MTs.
Both in single experiments with a MT rescue (Fig. 4.10C) and
in the collective analysis in Fig. 4.16, we found no significant
stiffness differences between MT states, leading to the conclusion
that the stiffness of the bent PFs is either too large to contribute
significantly to the total stiffness or that it does not depend on the
MT’s polymerization state.

Our PF model showed that the PF contribution to the overall
stiffness depends strongly on the length of the PFs and the position
along the PF where the Ndc80 complex is attached. An attachment
point s0 close to the straight part of the PF (s0 ≤ 20 nm) predicts
a negligible contribution of the PF. Indeed, single Ndc80 com-
plexes are only able to bind to straight but not to curved PFs [131,
222]. However, our stiffness measures derive from experiments
where Ndc80 multimers were used that were able to tip-track—in
contrast to the single Ndc80 complexes in Refs. [131, 222]. More-
over, these experiments were not performed with full wild type
Ndc80 complexes but with Ndc80bonsai lacking the flexible loop
region [222] or with Ndc80broccoli lacking Spc24 and Spc25 [131].
Together, these differences leave room for speculating that our
experimental conditions allow for Ndc80 binding to curved PFs.
For instance, a Ndc80 complex may bind initially to a straight PF,
which becomes curved at the binding site during depolymerization
while the Ndc80 complex stays attached.

Attachments of Ndc80 to long flaring PFs with attachment lengths
around s0 � 50 nm are predicted to reduce the stiffness of
the Ndc80–MT link to values close to the measured stiffnesses
(Fig. 4.24B). This favors the second possible explanation, namely
that PFs contribute to the total stiffness but have identical elastic
properties during MT shrinkage, stall and growth. This is also in
agreement with the recent observation that the curvature of PFs is
the same during polymerization and depolymerization [72].
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34As already noted above, the (appar-
ently) linear stiffening may also result
from the combination of the different
stiffening behaviors of a single MT
and a sufficiently large constant num-
ber of Ndc80 complexes and PFs, see
Figs. 4.22 and 4.24 for n � 10 attached
Ndc80 complexes.

35 The catch bond behavior of the puri-
fied yeast kinetochores was abolished
when Dam1 or Stu2 were absent, even
in presence of Ndc80 [134, 249].

36 The angle is 0° for a maximally
stretched Ndc80 complex, see Side-
note 21.

Number of attached Ndc80 complexes and potential catch
bond mechanism

The number n of simultaneously attached Ndc80 complexes could
not be directly inferred from the experiments in Refs. [58, 59]. From
the known Ndc80 densities on the bead we can estimate that 1 to 4
Ndc80 trimers, i.e., 3 to 12 Ndc80 complexes are in the vicinity of
the MT end and can potentially bind [58].

From the equal stiffness–force relations before and after a rescue,
we conclude that also the number of attached Ndc80 complexes is
the same during polymerization and depolymerization. Dynami-
cally, it is possible that the number of attached Ndc80 complexes
changes in a force-dependent manner on a time scale that is small
compared to typical time scale of MT dynamics. For force-free
detachment and attachment of a single Ndc80wt complex, time
scales of τoff � 1.6 s and τon � 0.4 s, respectively, were found [58].
With a phosphorylated tail, τoff is supposed to be smaller [212].
Since the durations of MT depolymerization vary in a wide range
from less than 1 s up to ∼ 100 s, both a constant and a dynamic
number of attached complexes are possible.

Our modeling results showed that the absolute stiffness values as
well as the roughly linear strain stiffening relations in Fig. 4.13 are
best reproduced by a force-dependent number n(F) that increases
linearly with force. Moreover, among the stiffening exponents for
the time-traces from single experiments in Fig. 4.14, 79 % of the
strain stiffening exponents lie below 2. Together, these results are
indicative of a catch bond like behavior of Ndc80–MT binding.34

Assuming that Ndc80 forms a catch bond to the MT, the question
arises how this mechanism could work. The whole kinetochore,
consisting of several additional proteins, has been proposed to
act like a catch bond [246]. It is widely assumed that the Au-
rora B kinase, which was not present in the experiments of Volkov,
Huis in ’t Veld et al., is important in the kinetochore’s catch bond
mechanism [123, 247, 248]. Kinetochores purified from S. cerevisiae,
however, were shown to build catch bonds with MTs in vitro even
without Aurora B activity [134].35 There is evidence that Ndc80
stretching correlates with MT binding as the Ndc80 complex may
exist in an auto-inhibited bent conformationwith reducedMTbind-
ing capacity [250] and bends (“jackknifes”) upon detachment [251].
This suggests that the binding affinity for MTs increases when
the Ndc80 complex is stretched, which would further imply that
Ndc80 has an intrinsic catch-bond-like mechanism. To what extent
this effect is relevant for our experiments is unclear as according to
our FJC model, the Ndc80 complex is already stretched by small
forces. For instance, at F � 1 pN, we find a mean angle of (44± 23)°
between the arms ®a and ®b.36
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37A mechanism that relies on the
N-terminal tail and the CH domain
could explain why, according to the
power fits in Fig. 4.13, Ndc80∆80

and Ndc80CHmut have stiffening ex-
ponents m ≈ 2 as it is predicted
by Eq. (4.13) for a constant num-
ber of attached Ndc80 complexes
whereas Ndc80wt and Ndc80P ex-
hibit a roughly linear strain stiffening
(m ≈ 1) indicating a catch bond be-
havior. If the linear stiffening rather
follows from the serial arrangement
of a MT with a sufficiently large
number of Ndc80 complexes, the
non-linear stiffening exponents of
Ndc80∆80 and Ndc80CHmut might be
a consequence of their reduced bind-
ing affinity. However, as aforemen-
tioned, the current data records of
Ndc80∆80 and Ndc80CHmut are too
poor to make reliable statements re-
garding their stiffening exponents.

Speculating on other possible catch bondmechanisms, it is conceiv-
able that by stretching the unstructured tail, additional binding
sites become available, which are concealed in the entangled tail at
low forces.37 Force-enhanced adhesion by unfolding is a common
catch bond mechanism [252]; examples are the von Willebrand
factor [253, 254] and α-catenin bonding to F-actin in the cytoskele-
ton [255]. In conclusion, an intrinsic catch bond mechanism of
Ndc80 complexes is compatible with current knowledge andworth
considering as one of the ingredients that define the characteristics
of Ndc80 strain stiffening. Such a mechanism could also contribute
to the catch bond behavior of the entire kinetochore.

We finally note that the conclusion of a Ndc80–MT catch bond
was drawn under the assumption that the force is equally shared
among the attached Ndc80 complexes. Allowing for unequal
force-sharing, i.e., for differently stretched linkers, the system
will be dominated by a few very stiff Ndc80 complexes, which
are the ones with the largest elongation. It is thinkable that the
linker extensions approach a uniform distribution under force,
for instance, because some extremely stretched Ndc80 complexes
detach from the shrinking MT. Then, despite detachment of a few
linkers, the number of linkers with a relevant stretch increases
under force. Such a mechanism would result in an apparent catch
bond behavior without the need for individual Ndc80–MT catch
bonds.

Structure of the Ndc80–MT bond and role of the N-terminal
tail in MT binding

Stiffness differences between the wild type Ndc80wt and the mu-
tants Ndc80∆80 andNdc80CHmut should reflect roles inMT binding
of the the N-terminal tail and the CH domain, respectively. In
the following, we discuss these differences to draw some conclu-
sions on the Ndc80–MT bond. As described in Sec. 4.1, the CH
domain binds between two tubulin monomers via a structural ele-
ment named the “toe”[222]. The N-terminal tail also supports MT
binding, but its exact role is still under debate. The three models
from Fig. 4.2 are currently discussed [221, 223]: direct binding to
the MT lattice, cooperativity and clustering by interactions with
neighboring Ndc80 complexes, and co-factor recruitment. Since no
co-factors were present in the experiments that we have analyzed,
we concentrate on the former two models.

Our comparative study of Ndc80wt, Ndc80∆80 and Ndc80CHmut

allows us to dissect the role of the tail and the CHdomain inNdc80–
MT binding. Both Ndc80 mutants displayed decreased stiffnesses
compared to the wild type (Fig. 4.15B), an effect we ascribed either
to a softened Ndc80–MT bond or to a reduced number of attached
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Figure 4.26: Models of the Ndc80–
MT bond for potential roles of the
N-terminal tail. (A) When the tail
binds directly to the PF, an elastic
model of the Ndc80–MT bond com-
prises the tail and the CH domain
as two parallel springs. If the tail is
deleted (Ndc80∆80) or the CH binding
domain is blocked (Ndc80CHmut), ei-
ther of those springs is missing, which
lowers the bond stiffness cbond and
thereby the total stiffness c̃. (B) In the
case of an interaction of the tail with
CH domains of neighboring Ndc80
complexes, the number of parallelly
attached linkers is reduced for the two
mutants Ndc80∆80 and Ndc80CHmut.

Ndc80wt

Ndc80Δ80

cbond = ctail + cCH

Ndc80CHmut

(A) direct binding (B) cooperativity

bead/kinetochore

tail

CH domain

Ndc80 PF
𝑐

cbond = cCH

cbond = ctail

MT

Ndc80 complexes. In the elastic toy model in Fig. 4.26A, both the
CH domain and the tail of Ndc80wt bind to the MT, so that they
can be represented by two parallel springs that add up to the
total bond stiffness cbond. Due to the parallel arrangement, lack
of either of the two springs in Ndc80∆80 or Ndc80CHmut reduces
the bond stiffness, predicting overall stiffnesses as depicted in
Fig. 4.15B. If both the CH domain and the N-terminal tail bind
directly to the MT lattice, the two Ndc80 mutants probably have
a reduced MT binding affinity. Therefore, in the direct binding
model, the reduction of the overall stiffness could be just as well a
consequence of a reduced number of attached Ndc80 complexes
as of a reduction of the individual bond stiffnesses.

When the N-terminal tail interacts with neighboring Ndc80 com-
plexes instead of the tubulin, the induced cooperativity supports
parallel attachments of multiple Ndc80wt complexes, see Fig. 4.26B.
Deletion of the tail or mutation of the CH domain may impair the
cooperative behavior so that less linkers connect the bead (or the
kinetochore) with theMT and the overall stiffness decreases. While
there is evidence supporting a contribution of the tail to coopera-
tive MT binding, there is at present no clear evidence indicating
that the Ndc80 CH domain contributes to binding cooperativity.

Tail phosphorylation was shown to reduce the MT binding affinity
of the Ndc80 complex [111, 209–212]. Moreover, the durations of
the MT stalls were shorter when the Ndc80 tails are phosphory-
lated [59]. This suggests that phosphorylation impedes the function
of the tail similarly as if the tail is truncated. However, in contrast
to Ndc80∆80, the stiffness of Ndc80P is not significantly reduced
compared to Ndc80wt, see Fig. 4.15B. It remains an open question
how these observations are compatible with the binding models
depicted in Fig. 4.26.
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38 The WLC simulations and their re-
sults are presented in Appendix C.4.

39While there is much literature that
lists various methods of stiffness de-
termination and also highlights their
advantages and disadvantages, see
for instance Refs. [227–229, 257, 258],
we found only few studies that com-
pare the different methods quantita-
tively [230, 259, 260]. These studies re-
port that the stiffnesses determined by
the PSD method exceed kBT/Var(x)
by a factor of 1.5–2. However, in all
the references cited above, stiffness
determination is only considered in
the context of trap stiffness calibration,
i.e., while the trapped object fluctu-
ates around its equilibrium position in
the harmonic potential of the optical
tweezers. Therefore, it is questionable
to what extend the observed factors
1.5–2 apply to experiments where the
glass bead is displaced from the trap
center and moves in an anharmonic
potential.

Comparison of model and experiment

Our model can explain the strain stiffening from the structure of
theNdc80 complex, an entropic stiffness of theMT and the bending
elasticity of the long flaring PFs. If we allow for a force-dependent
number of bound Ndc80 complexes, a linearly increasing number
of bound complexes also reproduces the observed roughly linear
strain stiffening relation. Ndc80, by itself or in series with PFs,
gives absolute stiffness values that are still above the measured
stiffnesses. Including a force-dependent number of bound Ndc80
complexes gives values which are close but still slightly higher
than measured. As already mentioned, the missing part might
be the Ndc80–MT bond, which is additionally in series with the
Ndc80 complex and the PF as illustrated in Fig. 4.17. However,
since the stiffness of the bond is hard to quantify due to the little
knowledge of the exact binding mechanism, we did not go beyond
the qualitative discussion above.

Regarding the Ndc80, we have also investigated possible effects
from finite flexibility of the two Ndc80 arms by modeling both
arms as semiflexible worm-like chains (WLCs). We performed
Monte Carlo simulations in which each Ndc80 arm had the same
persistence length Lp. Using persistence lengths in a realistic range
of Lp & 100 nm as they have been determined for other coiled
coil proteins such as tropomyosin [256], our simulations lead to
the conclusion that semiflexibility has only a minor effect on total
stiffness.38

Finally,weneed todiscuss the accuracyof our experimentalmethod.
While the trap stiffnesswas calibrated byfitting the power spectrum
based on Brownian motion in a harmonic potential [231–233], this
well-established PSDmethod can not be applied for measurements
of the anharmonic Ndc80 stiffness. Therefore, we had to determine
the Ndc80 stiffness from the variance of bead position, which is
a simpler and universal but less accurate approach. In particular,
the measured overall variance contains any systematic noise that
is added to the actual variance of bead position, which is why the
stiffness tends to be underestimated by kBT/Var(x) [228–230]. This
systematic underestimation, which we can not quantify,39 might
explain why our model tends to predict higher stiffnesses than
experimentally measured.

Conclusion

In conclusion, we accumulated extensive stiffness data of the
Ndc80–MT link by optical trapping methods in combination with
a novel time-tracing analysis. We were able to study wild type
Ndc80 complexes and three variants. Our theoretical model for
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40 For instance, we could ascribe the
discrepancy to the bond stiffness and
try to reverse engineer cbond and to
find a bond model that reproduces
this stiffness.

the Ndc80–MT link consisting of a mechanical model of the Ndc80
complex, the MT and the flaring PFs at the MT tip is able to
explain the strain stiffening and reproduces the correct order of
magnitude of the stiffness. The theoretical model is based on the
known structural features of the Ndc80 complex, the MT and the
PFs at theMT tip. Thus, our results on the elastic properties further
support these structural models from the mechanical point of view.
Our model also reproduces the roughly linear strain stiffening
behavior when taking a force-dependent binding affinity into
account.

At present, the theoretical model predicts higher absolute stiffness
values than observed in the experiments. One could argue that this
discrepancy could be overcome if only the model were properly
modified.40 However, such modifications would be accompanied
byprobably speculative assumptions andwouldnot be constructive
as long as the absolute reliability of the experimental values is not
clarified. We conclude that the qualitative discussion in terms of
the stiffening exponents and by means of a model with a solid
structural basis is the most reasonable approach at this stage, and
that, after all, both experimental and modeling progress will be
needed to achieve quantitative agreement of absolute stiffness
values.
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In the last three chapters, we developed different quantitative
models to examine dynamic instability of single MTs, cooperative
MT and kinetochore dynamics in the mitotic spindle, and the
strain stiffening of Ndc80 complexes observed in optical trap
experiments. In the following we recapitulate and compare some
methodological aspects of the models, which are summarized in
Tab. 5.1. Afterwards, we provide a short summary of the major
results and their biological implications before we finally give an
outlook on how the models could be extended and linked in future
work.

We always started by developing a model that is simple but still
relies on a solid experimental or structural basis. Where such
a basis was lacking, we needed to make assumptions like the
simple elastic MT–kinetochore linkers or the stiff Ndc80 arms.
Furthermore, we applied simplifications that went beyond the nec-
essary assumptions and deliberately neglected or coarse-grained
certain characteristics of the real system in order to keep the model
comprehensible. For instance, each model ignored the complex
spatial structure of the corresponding real system by mapping it
to one dimension. Dynamic instability of both single MTs and the
MTs in the mitotic spindle was implemented similarly as in the
empirical Dogterom–Leibler model [29, 30], which treats the MT
as a continuous one-dimensional object ignoring its microscopic
structure and the GTP hydrolysis. In the model of the Ndc80 and
the PF stiffness, we ignored the restrictions of the Ndc80 bending
angle [192] or the thermal fluctuations of the PF.

The simplifications also reflected the aspects that the models
were intended to examine. Coarse-graining the MT structure in
Chapter 2 and manually incorporating multistep dynamics is
reasonable as long as we are only interested in the effects of
multistep catastrophes on the MT length distribution, but not in
the multistep process itself and its probably microscopic origin.
In Chapter 3, we concentrated on kinetochore oscillations during
metaphase so that it was appropriate to assume the centrosome
positions as fixed and to exclude astralMTs. Themodel in Chapter 4
should reflect the stiffness of an Ndc80 complex that is attached to
a protofilament, and was not intended to reproduce how Ndc80
complexes track the depolymerizingMT tip under force. Therefore,
we chose a simple static model of serial springs, whose stiffnesses
were determined independently.



118 5 Summary and outlook

Multistep MT (Chapter 2) Mitotic spindle (Chapter 3) Ndc80 stiffness (Chapter 4)
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Experimental
foundations

Dynamic instability [68]
Multistep catastrophe [47–49]

Directional instability [50–56]
Force-dep. MT dynamics [134]
Parameter values (Tab. 3.2)

Optical trap experiments [58]
Ndc80 structure [192]
Elasticity of MT [243] and PF [72]
PLL-PEG [238, 239]

General
Simplifications
and assumptions

Continuous 1d MT
Constant v±
Same rate ω for each step
Reflecting boundary at x � 0

1d model with continuous MTs
One single chromosome
No erroneous attachments
Simple elastic linkers
Fixed centrosomes

Static model, constant force
Serial arrangement of springs
Equal force sharing
Ndc80 hinge fully flexible (FJC)
Non-fluctuating, continuous PF

Additional
assumptions /
restrictions of
mathematical
model

Steady state of bounded regime
Approximation for

unbounded regime
Exact for t →∞

One-sided model
MTs permanently attached
No confinement at centrosome
Mean-field: vk � const
Exact for M →∞

no further assumptions

Model
extensions no extensions

Poleward MT flux (Sec. 3.4.1)
Position-dep. PEFs (Sec. 3.4.2)
Non-pushing MTs (Sec. 3.4.3)

Catch bond (Sec. 4.3.5)
Qualitative elastic model of

Ndc80–MT bond (Fig. 4.26)

Examined
parameter
changes

Number of catastrophe steps n
Linker stiffness c
MT number M
MT flux vf, PEFs k, ωkin

c

Number of Ndc80 complexes n
Attachment point on PF s0

Decisive
mechanisms
and insights

Multistep catastrophe (n > 1)
→ smaller Var(τ+)
→ lighter tailed, non-monotonic

length distributions

vk(F)-relation as phase space
for two-sided model:

Bistability→ oscillations
Fixed point→ no oscillations
Boundaries for c, M, vf, ωkin

c

Ndc80, MT and PF structure
explain strain stiffening

Maybe catch bond

Table 5.1: Summary of the models
used in this thesis. The table is not
complete, but shows a selection of the
most important features of eachmodel.

1 The FJCmodel of the Ndc80 complex
could even be solved analytically, see
Eqs. (4.9) to (4.13). Eq. (4.30), which
defines the shape of a PF under force,
had to be solved numerically, apart
from the analytical approximation for
large forces in Eq. (4.33).
2 Eq. (2.9) is a system of n + 1 par-
tial differential equations. Even in the
case n � 1, i.e., with an ordinary single
step catastrophe as in the Dogterom–
Leibler model, a solution requires
much effort, in particular if the re-
flecting boundary is taken into ac-
count [261].
3After applying the reflecting bound-
ary condition in the steady state, the
system of n + 1 FPEs (2.9) turns into
a system of n first order linear differ-
ential equations (2.13), which can be
handled easily.

Once the models were designed in Chapters 2–4, we introduced
mathematical descriptions as a basis for a thorough analysis. While
the initial assumptions made for the model of the Ndc80, MT and
PF stiffnesses already allowed for an exact mathematical solution,1

the mathematical approaches presented in Chapters 2 and 3 have
several restrictions and may require further simplifications. The
system of FPEs (2.9) reflects the model of multistep MT dynamics
without loss, but can not be solved offhand in general.2 There-
fore, we restricted our solutions to the steady state distributions
in the bounded regime3 (Figs. 2.10 and 2.11) and to a Gaussian
approximation in the unbounded regime (Fig. 2.13). In the mitotic
spindle model, several further assumptions were necessary to set
up the viable FPEs (3.10) and (3.11) in the first place: we consid-
ered only one side of the spindle with permanently attached MTs
and without centrosomes, and started from a strong mean-field
approximation neglecting fluctuations in the kinetochore velocity.
Again, we could only obtain stationary solutions by incorporating
the reflecting boundary condition.4 Whenwe interpreted the force–
velocity relations acquired from the stationary solutions as phase
space diagrams for dynamic kinetochores in the full two-sided
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4 The solution is formally expressed by
Eq. (3.18), which has to be evaluated
and normalized numerically.
5More precisely, we assumed that the
time scale of MT relaxation is much
smaller than the time scale of kineto-
chore dynamics.

6We only analyzed the few parame-
ters listed in Tab. 5.1 and never varied
more than two of them at the same
time. The only exception is Sec. 3.4.4,
were we adjusted eight parameters to
reproduce numerical valuesmeasured
in PtK1 cells.

7Given the different sources for the
input parameters in Tab. 3.2 and the
strong simplifications of the spindle
model, a theoretical result that pre-
dicts the correct order of magnitude
can already be considered satisfac-
tory. An example is the model pre-
diction that directional instability is
suppressed by flux velocities above
vf ∼ 3 nm s−1 (see Fig. 3.20) while in
vivo kinetochore oscillations still occur
with flux velocities up to 10 nm s−1.
8 See for instance Fig. 4.15. Note the dif-
ferent stiffness units used throughout
Chapters 3 and 4, which are pNµm−1

and pN nm−1, respectively.

model, we therefore always assumed that the MTs relax instanta-
neously to the new stationary distributions p±(x) in response to a
change in the force on the kinetochore.5 The same assumption was
made in Chapter 4 when we used equilibrium thermodynamics to
determine stiffnesses of Ndc80 complexes tracing a dynamic MT
and compared these values with an equilibrium model.

Despite their restrictions, themathematical approachesprovedvery
helpful for detecting the crucial parameters, whose influence was
then analyzed further,6 and for revealing the decisive mechanisms
of themodels. For instance, the lighter tailed length distributions of
multistepMTs could be traced back to a lower spread in the growth
durations τ+. By interpreting the force–velocity relations obtained
from mean field solution of the one-sided spindle model as phase
space for kinetochores in the two-sided model, we were able to
link the occurrence or suppression of kinetochore oscillations to
the absence or presence of fixed points, respectively. Moreover,
the extensions we added to the models in later sections could
be included in the mathematical approaches. These extensions
were either based on known biological features neglected in the
basic model, e.g., MT flux and PEFs in the mitotic spindle, or they
were hypotheses that brought the model in line with experimental
results like the force-enhanced Ndc80–MT binding.

Chapter 4 differs from the former two in the sense that it does
not only contain purely theoretical work but also a reanalysis of
experimentally obtained data. The availability of experimental data
allowed for a direct comparison with the model results. Discrepan-
cies between model and experiment can motivate new hypotheses
like the speculation that Ndc80 forms a catch bond to the MT,
and may reveal shortcomings of the model and/or the experimen-
tal evaluation. A further difference is that the elastic Ndc80–PF
model was intended to reproduce the results of a specific in vitro
experiment while the models in Chapters 2 and 3 should resemble
MT dynamics and metaphase kinetochore dynamics, respectively,
in a more general way. Therefore, we discussed these models in
a mostly qualitative manner, and restricted the few quantitative
comparisons with experimental results to single numerical values
that can be found in literature, e.g., the frequency of kinetochore
oscillations.7 An important numerical result of the spindle model
was the lower bound of linker stiffness cosc ≈ 16 pNµm−1 for the
occurrence of oscillations, since it gives insights into the elastic
properties of the kinetochore. The Ndc80 experiments of Volkov,
Huis in ’t Veld et al. [58, 59] presented in Chapter 4 provided the
first approach to measure this value. For wild type Ndc80, we ob-
tained stiffnesses in a range of about8 20 pNµm−1 to 200 pNµm−1,
which is above cosc and leaves room for further possibly elastic
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9 Examples are the Knl1 and the Mis12
protein complexes, which, together
with the Ndc80 complex, build the
so called KMN network [237].
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Figure 5.1: MT vs. kinetochore oscil-
lations.While the length x of a single
free MT exhibits stochastic switches
between growth and shrinkage (A,MT
in the bounded regime with a single
step catastrophe), the collective dynam-
ics of two opposite MT ensembles that
are coupled via a chromosome results
in regular oscillations of the two kine-
tochores with a distinct frequency (B,
basic unconfinedmodel with M � 100
and c � 20 pNµm−1).

proteins between the Ndc80 complexes and the inner kinetochore
not present in the experiments.9

All of the models used in the last three chapters had in common
that one or multiple MTs played a major role. Thereby, the three
chapters illustrated exemplarily the importance of MTs during the
whole cell cycle of a eukaryotic cell. In Chapter 2, we examined
the characteristic dynamic instability of MT polymerization that
follows from the hydrolysis of the GTP molecules that are bound
to the tubulin dimers. Following experimental results [47–49],
we extended the empirical Dogterom–Leibler model [29, 30] in
a way that the catastrophe is described as a multistep process.
The resulting length distributions had a lighter tail than with a
single step catastrophe, and in the bounded regime, they had
a maximum if rescues were allowed. Given that the number of
required steps depends on the concentration of MAPs [49], the
cell does not only have ways to adapt the mean MT lengths but
also the shape of the distribution. For instance, during metaphase,
concentration of MT lengths around the distribution maximum
may help in positioning the chromosomes in the metaphase plate
or in maintaining spindle length and position. During interphase
on the other hand, where the MTs should reach the cell cortex,
an exponential length distribution with a heavier tail might be
advantageous.

While the polymerization dynamics of free MTs has a stochastic
naturewith unpredictable trajectories, we showed in Chapter 3 that
the stochastic dynamics of individual MTs can be regularized if
multipleMTs are coupled to each other and to an external force, see
Fig. 5.1. Such a force-coupling can be found in the mitotic spindle,
where two ensembles of MTs emerging from the opposite spindle
poles are connected to a chromosome via kinetochores. In the one-
sided spindle model with only one MT ensemble, the cooperative
dynamics results in a kinetochore motion with a constant velocity
that depends on an applied force and may be bistable in a certain
force range. This bistability leads to kinetochore oscillations if two
one-sided systems are elastically coupled in the full two sided
model. Thereby, we were able to interpret the directional instability
of chromosomes observed in various vertebrate cells [50–56] as an
emergent phenomenon of the collective polymerization dynamics
ofmultipleMTs. The stiffness of theMT–kinetochore linkers turned
out to be a crucial parameter for the occurrence of both bistability
and directional instability.

Our mathematical solution allowed us to easily include several
extensions to the basic model. First, we showed that fast poleward
flux suppresses kinetochore oscillations by inducing a fixed point
in the phase space of kinetochore motion. Later, we analyzed how
PEFs align the kinetochores at the spindle equator and assure for
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10A possible function of chromosome
oscillations is discussed in the outlook
below.

regular oscillations. Moreover, we were able to explain further
effects of PEFs on some oscillation characteristics like frequency
and amplitude as they have been observed experimentally. As a
third extension, we accounted for the experimental evidence that
kinetochore MTs can only apply tensile forces. Then, we found
that oscillations are only maintained if catastrophes are induced
for MTs whose tip reaches the kinetochore. Finally, we applied
our gained knowledge to reproduce kinetochore oscillations as
observed in PtK1 cells quantitatively.

Though we did not discuss whether chromosome oscillations are
just an artifact or really have a biological function,10 our model still
provided new insights into mitosis by linking the occurrence of
oscillations with several properties of the mitotic spindle. Thereby,
we were able to rationalize several experimental findings and
to deduce new hypotheses that bring these experiments in line
with our model. For instance, we discussed the several effects that
phosphorylation of Hec1 has on kinetochore oscillations. Moreover,
we showed that the dichotomy between central and peripheral
chromosomes in PtK1 cells can not be deduced to differences in
PEFs as proposed earlier [105]. Instead, different linker stiffnesses
or densities of catastrophe promoting proteins are more likely
explanations.

The importance of the MT–kinetochore linker stiffness for the
occurrence of directional instability raised interest in the elastic
properties of the kinetochore. A first approach to measure the
stiffness of the rod-like Ndc80 complexes, which mediate the
linkage between the MT and the kinetochore, was provided by the
optical trap experiments of Volkov, Huis in ’t Veld et al. [58, 59].
Again, the MT and the GTP hydrolysis played an important role:
the energy from the hydrolysis is stored mechanically in the MT
lattice and its release allows the depolymerizing MT to pull the
attached glass bead against the restoring force of the optical trap.
In Chapter 4, we reanalyzed these experiments using a novel time-
tracing method. Thereby, we generated a vastly higher amount of
stiffness data, which allowed for a more thorough analysis of the
strain-stiffening behavior. We were able to determine stiffening
exponents and to compare the wild type with three further Ndc80
variants. Moreover, the stiffness measurements did not depend on
the polymerization state of the attached MT.

Our elastic model revealed that the linear stiffening can be seen as
a hint for a catch-bond-like Ndc80–MT attachment. The effective
stiffness of PF bending depends strongly on the attachment point
of the Ndc80 complex. Since experimental results, which were
obtained under slightly different conditions, proposed that Ndc80
can only bind to straight PFs [131, 222], the independence of the
stiffness from the MT state might be explained by a negligible
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11A possible reasoning for unequal
step rates is to interpret a step as
an individual catastrophe of a single
protofilament that occurs with a con-
stant rate ωPF, and to assume that
the MT undergoes a catastrophe if
n protofilaments have been destabi-
lized [37]. If the protofilament catas-
trophes occur independently, the step
rate will shrink with each step i as
there is oneprotofilament less topoten-
tially stop growing. Then, the step rate
can be expressed as ωi � (N − i)ωPF,
where N is the total number of PFs. In
the same picture, one could assume
that an individual catastrophe induces
catastrophes of neighboring protofila-
ments resulting in a cascade with an
increasing step rate.
12 Some finer-grained models are illus-
trated in Fig. 1.1.

13 In Sec. 3.5, we shortly discussed the
applicability to anaphase A.

contribution of PF. If, however, the conditions in the experiments
of Volkov Huis in ’t Veld et al. allowed for Ndc80 binding to curved
PFs, the independence from MT state enforces recent results that
the PF curvature does not depend onMT state either [72].Moreover,
in the context of the spindle model from Chapter 3, binding to
curved PFs would mean that the effective linker stiffness does not
only originate from the elastic properties of the kinetochore but
also contains contributions from PF bending.

In the followingfinal paragraphs,webrieflyoutline how themodels
could be extended in future work. A first step can always be to
soften the simplifications. In the multistep MT model for instance,
one could discard the assumptions of equal step rates.11 This could
be included in the current model without further modifications
as the equations for the length distributions could still be set up
and solved as shown in Chapter 2 if each step occurred with an
individual rate ωi . Also length dependent rates and velocities
might be interesting, e.g., for MTs growing against an elastic
barrier [180]. However, this could not be incorporated simply into
ourmathematical framework,which is, for the bounded state, based
on numerically diagonalizing the constant coefficient matrix M
in Eq. (2.13). Any model that has a finer-grained starting point
than the continuous one-dimensional MT12 requires a whole new
approach. Moreover, such models would go beyond our original
aim to examine the effects of a multistep catastrophe on the MT
length distributions.

For the model of the mitotic spindle, one can think of various
modifications and extensions, many of which have already been
realized in the models reviewed in Sec. 3.2.1. For instance, the
assumptions listed in Tab. 5.1 could be modified or discarded by
replacing the simple elastic MT–kinetochore linkers with viscoelas-
tic ones [105] or by including interpolar and/or astral MTs in order
to take centrosome dynamics into account [162, 163]. The probably
greatest but at the same time most complicated step towards a
realistic model would be an extension to two or three dimensions
with multiple chromosomes that interact sterically. Among many
other things, a multidimensional model might answer whether the
dichotomy between central and peripheral chromosomes observed
in PtK1 cells [55] has geometric reasons. Finally, since we concen-
trated on metaphase throughout the chapter, a logical step would
be to apply the model to the other mitotic phases.13 Of particular
interest would be the prometaphase because recent experiments
suggest a function of kinetochore oscillations for the correction of
erroneous attachments [262, 263]: Aurora A kinase can stimulate
detachment of erroneous MTs by phosphorylating the binding
site on the kinetochore. Since Aurora A is most highly concen-
trated around the spindle poles, kinetochore oscillations with a
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14A similar correction mechanism
with Aurora B kinase, which is concen-
trated at the centromeres (see Fig. 3.4),
was discussed in themodel of Banigan
et al. [57].

sufficiently large amplitude are required to trigger this correction
mechanism.14 In the same experiments, chromosome oscillations in
cancer cells were observed to be attenuated. This might be a reason
for chromosomal instability, a behavior that is typical for cancer
cells and is characterized by significant numbers of uncorrected
erroneous attachments leading to chromosome missegregation. To
incorporate the Aurora A correction mechanism into our current
model, one first had to allow for erroneous attachments and then
could define a detachment rate that depends on the absolute kine-
tochore position analogously to the position-dependent PEFs in
Sec. 3.4.2.

Lastly, we can also think of modifying the model of Ndc80–PF
stiffness in several ways. Besides minor modifications like allowing
for unequally extended linkers or considering thermal fluctuations
of the PF, the probably most important step would be to include
the dynamic MT tracing, which requires a continual detachment
and reattachment of individual Ndc80 complexes. The attachment
dynamics may result in an effective stiffness, which could explain
the current discrepancy between model and experiment. More-
over, a dynamic model better reflects the dynamic nature of the
experiment and would allow us to go beyond the static stiffness
results by discussing dynamic quantities like detachment rates or
stall durations.

Finally, since both MT dynamics, which is subject of Chapter 2,
and the Ndc80 stiffness treated in Chapter 4 are crucial parts of the
mitotic spindle model in Chapter 3, the question arises whether
and how these independently developed and discussed models
could be merged. While a mitotic spindle model with n-step MT
dynamics could be easily implemented in stochastic simulations,
an incorporation into our mathematical model is not possible: after
eliminating one equation by use of the reflecting boundary con-
dition, we would still have to solve a system of n stationary FPEs
with coefficients that depend on the linker extensions to obtain the
distribution of linker extensions p(x). In contrast, MT–kinetochore
linkers that stiffen under force can be included both in the compu-
tational and in the mathematical model by defining a superlinear
force Fmk(x) that replaces the linear relation Fmk(x) � −cx used for
the elastic linkers. In the FPEs (3.10) and (3.11), which result from
the mean-field approach, an alternative Fmk(x) changes the rela-
tive MT–kinetochore velocities v±(x). Though the change might
complicate the following calculations, a solution as described for
the current model should still be feasible.
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1 The normalization condition can be
written as

1 �

∫ ∞
0

p(x)dx � 〈x0〉 � p̃(s),

where the last step follows from
Eq. (2.23),

〈xm〉 � (−1)m ∂m

∂sm p̃(s)
����
s�0
,

with m � 0.

2 See Eq. (2.20).

Appendix to Chapter 2 A
A.1 Solution for an age-dependent catastrophe

rate

Jemseena and Gopalakrishnan [32] found that in case of an age-
dependent catastrophe rate ωc(τ) and a reflecting boundary at
x � 0, the Laplace transformed overall probability density p̃(s) of
MT lengths is given by

p̃(s) � J0
1 − ζ(s)

s − r(1 − ζ(s)) , (A.1)

ζ(s) �
∫ ∞

0
ωc(τ) exp(−v+τs −Ω(τ))dτ, (A.2)

Ω(τ) �
∫ τ

0
ωc(τ′)dτ′. (A.3)

Using Eq. (2.23), the normalization condition, which defines the
constant J0, can be expressed as p̃(0) � 1.1 Substituting the catastro-
phe rate ωc(τ) � −∂τ ln Pτ+(τ) that hat follows from an arbitrary
distribution of growth times,2 we findΩ(τ) � − ln Pτ+(τ) and

ζ(s) �
∫ ∞

0
ωc(τ)Pτ+(τ) e−v+τs dτ

�

∫ ∞

0
pτ+(τ) e−v+τs dτ

≈ 1 − v+〈τ+〉s � 1 − 〈x+〉s .

(A.4)

The last line is valid for small s. Next, we substitute x � v+τ to
show that ζ(s) is the Laplace transform of the probability density
of growth distances:

ζ(s) �
∫ ∞

0

1
v+

pτ+

(
x

v+

)
e−sx dx

�

∫ ∞

0
px+(x) e−sx dx � p̃x+(s).

(A.5)

For the purpose of normalization, we use the approximated form
of ζ(s) from Eq. (A.4):

1 � p̃(0) � J0
〈x+〉s

s − r〈x+〉s

����
s�0

� J0
〈x+〉

1 − r〈x+〉
, (A.6)

J0 �
1
〈x+〉

− r. (A.7)
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Substituting Eqs. (A.5) and (A.7) into Eq. (A.1) finally results in
p̃(s) as given in Eq. (2.21).

A.2 Stationary solution for an infinite step
catastrophe process

In the limit n →∞, the Laplace transformed probability density
of growth distances is p̃x+(s) � e−s/c0 . For the Laplace transform of
the overall probability density of MT lengths in presence of rescue
events follows:

p̃(s) � (c0 − r) 1 − e−s/c0

s − r
(
1 − e−s/c0

)
� (c0 − r)

∞∑
k�0

rk
(

1 − e−s/c0

s

) k+1

� (c0 − r)
∞∑

k�0
rk

k+1∑
l�0

(
k + 1

l

)
(−1)l e−ls/c0

sk + 1

(A.8)

Inverse Laplace transformation yields:

p(x) � (c0 − r)
∞∑

k�0
rk

k+1∑
l�0

(k + 1)(−1)l
l!(k + 1 − l)!

(
x − l

c0

) k

Θ

(
x − l

c0

)
� (c0 − r)

∞∑
l�0

(−1)l
l!
Θ

(
x − l

c0

) ∞∑
k�l−1

(k + 1)
(k + 1 − l)!

(
r
(
x − l

c0

)) k

� (c0 − r)
∞∑

l�0

(−1)l
l!
Θ

(
x − l

c0

) (
r
(
x − l

c0

)) l−1 (
l + r

(
x − l

c0

))
exp

(
r
(
x − l

c0

))
� (c0 − r) erx

[
Θ(x) −

(
1 + r

(
x − c−1

0
) )

e−r/c0Θ
(
x − c−1

0
)

+
1
2
(
r
(
x − 2c−1

0
) ) (

2 + r
(
x − 2c−1

0
) )

e−2r/c0Θ
(
x − 2c−1

0
)
− ...

]
.

(A.9)

We see that the probability density increases exponentially until it
has a step discontinuity at the (now deterministic) growth length
x � c−1

0 . At each multiple of the growth length, the function is
non-analytic since an additional term contributes thereafter. The
first two non-analyticities can be seen in Fig. 2.11C. In absence of
rescues (r � 0) the probability density correctly turns into the step
function c0(Θ(x) −Θ(x − c−1

0 )).
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B.1 Behavior of linker length distributions near

the boundary linker extensions

For vk > 0 (vk < 0), the linker length distributions p+(x , t)
(p−(x , t)) as given by Eq (3.18),

p±(x) �
±N

v±(x)
exp

(
−

∫ (
ωc(x)
v+(x)

+
ωr(x)
v−(x)

)
dx

)
, (B.1)

have singularities or peaks at x � xmax (x � xmin) where
v+(xmax) � 0 (v−(xmin) � 0), see Fig. 3.12. These singularities occur
because the integral

I(x) ≡ −
∫ (

ωc(x)
v+(x)

+
ωr(x)
v−(x)

)
dx , (B.2)

in the exponent and the prefactor 1/v±(x) in the expression (B.1)
diverge for v+(xmax) � 0 (v−(xmin) � 0).

To investigate the nature of these singularities or peaks in more
detail, we expand around xmax and xmin to the leading order,
starting with xmax. Since v−(xmax) , 0, the second term of I(x) in
Eq. (B.2) simply yields a finite factor

β(x) ≡ exp
(
−

∫
ωr(x)
v−(x)

dx
)
. (B.3)

For the first term, we find for x . xmax

ωc(x)
v+(x)

≈ α+ + 1
xmax − x

, (B.4)

with α+ + 1 �
ω0

c F+

cv0
+

(
vk

v0
+

)−1+F+/Fc

> 0, (B.5)

resulting in

I(x) ≈ (α+ + 1) ln(xmax − x) + ln β(x), (B.6)

exp(I(x)) ≈ β(xmax) (xmax − x)α++1. (B.7)

Because α+ + 1 > 0, we have for x . xmax

p−(x) ≈ −
N

v−(xmax)
exp(I(x)) ∝ (xmax − x)α++1 ≈ 0, (B.8)
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1 for sufficiently large c or sufficiently
large |vk |

2 This approach is discussed in more
detail in my master thesis [95].

and, therefore, p(x) ≈ p+(x). Analyzing the prefactor

1
v+(x)

≈ const
xmax − x

> 0, (B.9)

we finally find a power law behavior

p(x) ≈ p+(x) ≈Nconst β(xmax)(xmax − x)α+

∝ (xmax − x)α+
(B.10)

for x approaching xmax.

In an analogousmanner, we expand around x � xmin to the leading
order and find a power law behavior

p(x) ≈ p−(x) ∝ (x − xmin)α− ,

with α− + 1 �
ω0

r F−
cv0−

(
vk

v0−

)−1+F−/Fr

> 0.

The resultingdependencies of the exponents on the linker stiffness c
and the kinetochore velocities |vk |,

α± + 1 ∝ 1/c and α± + 1 ∝
���� vk

v0
±

����−1−|F±/Fc,r |
,

are used and discussed in Sec. 3.3.1. Since α± > −1, the probability
densities are always normalizable despite the singularities at xmax
and xmin.

If α± < 0,1 the resulting total distributions p(x) � p+(x) + p−(x)
are peaked around xmax or xmin. In the unstable regime around
vk ≈ 0, however, the linker length distribution p(x) becomes broad
without pronounced peaks. This behavior is visualized in Fig 3.12.
In this regime, the kurtosis〈

(x − 〈x〉)4
〉

〈(x − 〈x〉)2〉2
,

which is a measure of the sharpness of the peaks of the distribu-
tion p(x) around xmin and xmax, becomes minimal indicating a
broad distribution p(x).

B.2 Mean-field theory assuming identical
linker extensions

Here, we present an alternative but simpler mean-field approxi-
mation for the one-sided model.2 We assume that all linkers have
identical extensions (xi ≈ x for all i), i.e., all MTs have identical
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3As with the vk � const approach,
the probability densities p±(x) may
diverge at the boundaries xmax/min.
Therefore, we also need to expand
them to a power function analogously
to Sec. B.1 and extrapolate the numeri-
cal integration results to calculate the
normalization constant [95].

lengths and are in the same state (growing or shrinking). While
we assume in the mean-field approach presented in Sec.3.3.1 that
all MTs approximately decouple as soon as kinetochore velocity
fluctuations are neglected (vk � const), here we assume a strong
coupling between MTs. Accordingly, the compound linker distribu-
tion does no longer factorize but can still be described by a single
function p±(x , t), which is the probability to find all MTs in the
growing (+) or shrinking (−) state with a MT–kinetochore linker
extension x.

While this approximation appears muchmore restrictive regarding
theMT length (and thus the linker extension) distribution, it allows
us to include stochastic fluctuations of the kinetochore velocity,
which we neglected in the mean-field approach in the main text.
Here, the kinetochore velocity is a stochastic variable, depending
on the stochastic (but identical) linker extension x:

vk �
1
γ
(Fext + cMx). (B.11)

The FPEs for the probability densities p±(x , t) are the same as for
the vk � const approximation (Eqs (3.10) and (3.11)), but with a
different relative velocity

v±(x) � vm±(x) − vk

� v0
± exp

(
− cx

F±

)
− 1
γ
(Fext + cMx). (B.12)

The maximum and minimum MT–kinetochore distances xmax,min
are reached if the relative velocity vanishes, v±(xmax,min) � 0, and
Eq. (B.11) is fulfilled. Then, both the kinetochore and the MT tips
move with the same velocity ṽ± given by Eq. (3.15):

ṽ± ≡
MF±
γ

W
(
γv0
±

MF±
exp

(
Fext

MF±

))
. (B.13)

The corresponding MT–kinetochore distances are

xmax/min � (F±/c) ln
(
v0
±/vk

)
� −F±

c

(
Fext

MF±
−W

(
γv0
±

MF±
eFext/MF±

))
,

which agrees with Tab. 3.3, if Eq. (B.13) is used to eliminate vk in
favor of Fext.

With the new relative velocities v±(x) from Eq.(B.12), we finally
obtain a solution for the probability densities p±(x , t) analogous to
Eq. (3.18).3 This solution can be used to calculate the mean linker
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extensions 〈x〉 and the mean kinetochore velocity

〈vk〉 �
1
γ
(Fext + cM〈x〉) (B.14)

as a function of the external force Fext. This type of mean-field
approachwill never result in a bistable force–velocity relation aswe
always obtain a unique mean linker extension 〈x〉 and, according
to Eq. (B.14), a unique mean kinetochore velocity as a function
of the force Fext. In order to map out bistability, it is technically
advantageous to consider 〈x〉 and, thus, Fext as a function of the
kinetochore velocity vk as in the mean-field approach in the main
text. Then, a bistable force–velocity relation can emerge as a result
of a non-monotonous (but unique) mean linker extension 〈x〉 as a
function of vk . Nevertheless, we find hints to a bistable behavior
also in the mean-field theory with identical linker extensions: the
probability density p(x) � p+(x) + p−(x) becomes bimodal around
Fext � 0, which corresponds to bistable temporal switching of the
whole ensemble between two linker extensions and, thus, two
kinetochore velocities vk .

In the present approach, we always assume identical linker exten-
sions and identicalMT states (allMTs growing or allMTs shrinking),
while bistability in the vk � const mean-field approach in the main
text is the result of a very broad and heterogeneous stationary
linker extension distribution where parts of the MT population
switch from shrinking to growing if the velocity is increased in the
bistable region around vk ≈ 0. In this bistable region, not all MTs
are in the same state anymore, and the assumption of identical
linker extensions and states becomes invalid.

Bydefinition, themean-field theorywith identical linker extensions
is exact for a system with a single MT (M � 1), as can be seen
in Fig. B.1. For an ensemble of MTs—even for the next smallest
number M � 2—the approach fails, however, to provide a good
approximation of the mean kinetochore velocity. Then, even the
simple assumption of exclusively shrinking or growingMTs, which
results in vk � ṽ± from Eq. (B.13), gives a better approximation
in the large force regimes. For M � 20, which is the relevant
case for mammalian cells, the mean-field theory with identical
linker extensions differs strongly from the simulation results. We
conclude that the vk � const mean-field approach described in
Sec. 3.3.1 is superior for analyzing bistability and oscillations in
the spindle model.
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Figure B.1:Mean-field theory assum-
ing identical linker extensions. The
mean kinetochore velocities resulting
from the approximation of identical
linker extensions (red lines) are com-
pared to simulation results (markers).
For a one-sided system with a sin-
gle MT (M � 1), the alternative mean-
field approach is exact by definition
and gives correct mean velocities. If
M > 1, even the simple assumption of
exclusively shrinking or growing MTs
(ṽ± from Eq (B.13)) gives a better ap-
proximation (green and blue dashed
lines). In contrast to Fig. 3.11, wherewe
aimed to detect the two bistable states
separately in each simulation, here we
average the simulations over a long pe-
riod tomeasure the totalmean velocity.

B.3 Alternative polar ejection force
distributions

In Sec. 3.4.2, we discuss in detail linearized PEFs, FPEF(Xk) � ±kXk .
Fig. B.2 shows that the results for a harmonic and a square root
dependence,

FPEF(Xk) � ±k2 X2
k , (B.15)

FPEF(Xk) � ±k1/2 |Xk |
1/2 , (B.16)

are qualitatively similar to the results for linearized PEFs in
Fig. 3.21.
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Figure B.2: Influence of alternative polar ejection forces that are a square (top) or a root function (bottom) of the kinetochore
position. Qualitatively, the effects are the same as for linear PEFs which are discussed in Sec. 3.4.2. The values of k2 and k1/2
have been chosen so that the PEFs at a position of Xk � 1µm have the same strength as for the corresponding value of k in
Fig. 3.22. Only, we plot the trajectories for k1/2 � 100 pNµm−1/2 instead of 1000 pNµm−1/2 (bottom (A)) since in the latter
case the time step in the stochastic simulation has to be uncomfortably small due to the steep ascent of the PEFs around
Xk � 0.



1 In stochastic analysis, Brownian mo-
tion in a harmonic potential is known
as Ornstein–Uhlenbeck process [264,
265].

2 Following the equipartition theorem,
the mean potential energy is equal to
kBT/2:

〈U(x)〉 �
〈

1
2

ctrap (x − x0)2
〉

�
1
2

ctrap Var(x) � kBT
2
.

Appendix to Chapter 4 C
C.1 Optical traps and stiffness calibration

Optical traps or optical tweezers are able to trap microscopic objects
in a focused laser beam [227]. Trapping can be achieved when
the object has a higher refraction index than the medium and the
intensity of the beam decreases perpendicularly to its symmetry
axis. Then, there is an equilibrium position ®r0, in which the net
force that acts on the object due to beam refraction and scattering
is zero. When the object is displaced from the equilibrium in any
direction of space, it is exposed to a restoring force, which can
be described in good approximation by Hooke’s law with trap
stiffnesses ci :

Fi � −ci (ri − r0,i), (C.1)

where usually cx � cy > cz when z is the axial direction of
the beam. In most experiments—as well as in the experiments
of Volkov, Huis in ’t Veld et al. [58, 59]—the object is displaced
in radial direction, perpendicularly to the beam. Then, we can
treat the motion of the object in one dimension, which we do by
assigning x as the displacement, setting x0 � 0, and referring to cx

as trap stiffness ctrap henceforth.

When an object is trapped in a medium of temperature T, it
is exposed to thermal fluctuations and, following the Hookean
approximation (C.1), it behaves as aBrownianparticle in aharmonic
potential.1 This knowledge can be used to obtain the trap stiffness
from a sample trajectory of displacements x. Among the various
methods of trap stiffness calibration that have been described in
literature [227–229, 257, 258], the easiest relies on the equipartition
theorem, which predicts that2

ctrap �
kBT

Var(x) . (C.2)

While with the temperature, only one parameter, which is easy to
control, has to be measured besides the sample of displacements,
a disadvantage of the equipartition method is that the overall
variance is increased by a potential drift as well as any additional
noise that is added to the original signal, e.g., electronic noise of
the measurement devices. Therefore, the trap stiffness tends to be
underestimated by Eq. (C.2) [228–230].
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3 The motion of a Brownian particle
with friction coefficient γ in a har-
monic potential with stiffness c is de-
scribed by a Langevin equation:

m Üx(t) � −γ Ûx(t) − cx(t)

+
√

2kBTγ η(t).

The last term represents the thermal
forces, where η(t) is awhite noisewith〈
η(t)

〉
� 0,

〈
η(t)η(t′)

〉
� δ(t − t′).

When the motion is overdamped, as
it is usually the case for an optically
trapped object, we can neglect the in-
ertial term and get

Ûx(t) + 2π fcx(t) �
√

2D η(t),

with corner frequency fc anddiffusion
coefficient D as defined in Eq. (C.3).
Fourier transform (x(t) → x̃( f )) and
solving for x̃( f ) yields

x̃( f ) �
√

2D η̃( f )
2π

(
fc + i f

) .
Finally, the PSD follows as

Sx( f ) �
〈
|x̃( f )|2

〉
�

D/(2π2)
f 2
c + f 2

〈
|η̃( f )|2

〉
,

with
〈
|η̃( f )|2

〉
� 1. [231, 266]

4 According to Stoke’s law, the friction
coefficient of a sphere with radius R in
a fluid with viscosity η is γ � 6πηR.
To reach a higher accuracy, further
hydrodynamic corrections of Stoke’s
law can be applied [231].

To overcome this inaccuracy, a more elaborate method analyzes the
power spectral density (PSD) of the displacement [266, 267], which
is defined as the mean absolute square of the Fourier transform,
Sx( f ) ≡ 〈|x̃( f )|2〉. In the case of a harmonic potential, it takes the
form of a Lorentzian:3

Sx( f ) �
D/(2π2)
f 2
c + f 2

, D ≡ kBT
γ
, fc ≡

ctrap

2πγ
. (C.3)

The trap stiffness can be determined from the corner frequency fc,
which results as a fit parameter of a Lorentzian fit to the PSD
of the sample trajectory x(t). Since the PSD contains the whole
spectral information, unwanted disturbances, for instance, drift
or low frequency noise, can be recognized and eliminated before
fitting in order to overcome the aforementioned disadvantages of
the equipartition method [233, 267]. The PSD method has been
developed further during the last 25 years, and is nowadays well-
established and considered to be the most reliable method of trap
stiffness calibration [227, 231–233]. A disadvantage of the PSD as
compared with the equipartition method is the need to know the
friction coefficient γ. It can be either obtained from the diffusion
coefficient D, which is a parameter of the Lorentzian fit in Eq. (C.3),
or, if the trapped object is spherical, γ can be calculated by Stoke’s
law.4

C.2 Further examples of stiffness time-tracing

Fig. C.1 shows twelve more examples of stiffness time-tracing
during individual experiments, three for each Ndc80 variant.
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Figure C.1: Twelvemore example experiments as explained in Fig. 4.10. The gray lines show power fits to the stiffness–force
relations that exhibit strain stiffening, giving the stiffening exponents depicted in Fig. 4.14.
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5 The squared and the absolute estima-
tor can be rationalized by how their
minimization fits a constant ỹ to a set
of N sample points yi : while the least
squares method yields the arithmetic
mean,

min
ỹ

1
2

N∑
i�1
( ỹ − yi)2 �

1
N

N∑
i�1

yi ,

the absolute estimator results in the
median,

∂
∂ ỹ

N∑
i�1
| ỹ − yi | �

N∑
i�1

sgn( ỹ − yi)
!
� 0.

C.3 Robust regression by minimization of the
Huber loss

Here, we describe the robust fitting procedure of power law func-
tions c(F) � aFb + c0 to the force–stiffness data (Fi ,ci). Since the
stiffness values that result from the time-tracing analysis exhibit
a high spread (see Fig. 4.13), we perform the power fits by use
of a robust fitting method instead of a least squares fit, which is
sensitive to outliers. While in a least squares fit, the sum of the
squared residuals is minimized,

min
1
2
∑

i
ε2

i , εi �
c(Fi) − ci

σi
, (C.4)

the robust fitting method that we applied minimizes the sum of
the Huber loss functions ρ(εi) [234]:

min
∑

i
ρ(εi), ρ(ε) �

{
1
2ε

2 , |ε | < k

k |ε | − 1
2 k2 , |ε | ≥ k

. (C.5)

Thereby, the residuals areweighted as in a least squares fit for ε < k,
and with an absolute estimator for ε ≥ k.5 The tuning parameter k
is set to 1.345 to achieve a relative efficiency of 95 % in respect to
the normal distribution [235, 268].

Finally, we need to estimate the errors σi of the stiffnesses that
we determined from the sample variances of the bead positions x
within each interval as described in Fig. 4.9. Since c ∝ 1/Var(x),
the relative deviation of the stiffness is the same as for the variance,
σc/c � σVar/Var(x). From a sample of length n, the variance and
its deviation can be estimated to [269]

Var(x) � 1
n − 1

∑
i
(xi − 〈x〉)2 , σVar �

√
2

n − 1
Var(x). (C.6)

With n � 1000 in a 0.1 s interval at a sample frequency of 10 kHz
and stiffnesses around c � 0.1 pN nm−1, the estimated error is

σc �

√
2

n − 1
c � 0.0045 pN nm−1. (C.7)

C.4 Worm-like chain model of the Ndc80
complex

To take into account anNdc80 complexwith possibly (semi)flexible
arms,wemodel theNdc80 complex as twoworm-like chains (WLC)
with persistence length Lp that are flexibly connected. To runMonte
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6 In contrast to theWLC, the SHC is an
extensible semiflexible chain. It con-
tains the WLC in the limit of large
bond stiffnesses k, where the SHC be-
comes nearly inextensible but still has
a finite bending rigidity κ � kBTLp.
A SHC is easier to implement in the
Metropolis MC simulations described
below since a single bead can be sug-
gested to be moved in an arbitrary
direction without influencing the po-
sitions of the other beads. In contrast,
random changes of an angle in a gen-
uinely inextensible WLC also alter the
position of any subsequent bead.

7 See Fig. 4.19.

Carlo (MC) simulations, we describe each WLC by a more general
bead–spring model called semiflexible harmonic chain6 (SHC) [241]:
TheNdc80 arm ®a (®b) is discretized into Na +1 (Nb +1) beads, which
are connected by Na (Nb) springs each with rest length da (db) and
stiffness ka (kb). The rest lengths are defined by da � a/Na and
db � b/Nb to be consistent with the observed Ndc80 arm lengths a
and b. Given the extensions and directions of the springs as ®ai (®b j)
with i � 1...Na ( j � 1...Nb), we find the total stretching energy

Estretch �
ka

2

Na∑
i�1

(
| ®ai | − da

)2
+

kb

2

Nb∑
j�1

(
|®b j | − db

)2
. (C.8)

The positions ®Am and ®Bn of the beads are given by

®Am � ®A0 +
m∑

i�1
®ai , ®Bn � ®B0 +

n∑
j�1

®b j , (C.9)

where ®A0 � ®0 (the Ndc80 complex is fixed to the glass bead) and
®B0 � ®ANa . The glass bead, which is modeled as a wall,7 is described
by the boundary condition that each bead has to be located in the
upper half space, i.e., for the z-components: Am ,z , Bn ,z > 0 for each
m , n.

Due to the bending rigidity κ � kBTLp, each bead ®Am , ®Bn except
®A0, ®ANa �

®B0 and ®BNb is associated with a bending energy, which
sums up to

Ebend �
κ
da

Na−1∑
m�1
(1 − cos αm) +

κ
db

Nb−1∑
n�1
(1 − cos βn), (C.10)

where αm (βn) is the angle between bonds m and m + 1 (n and
n + 1), i.e., between the two bonds that are connected connected in
bead m (n):

cos αm �
®am · ®am+1

| ®am | | ®am+1 |
, cos βn �

®bn · ®bn+1

|®bn | |®bn+1 |
. (C.11)

Finally, when a force F in z-direction is applied on the last bead,
the total energy reads as:

E � Estretch + Ebend − FBNb ,z . (C.12)

The MC simulations are based on the Metropolis algorithm [270].
In each step, we randomly choose a bead (i , j > 0) and suggest
to move it in a random direction for a constant distance s. If the
move does not violate the boundary condition, it will be accepted
with probability min(1, exp

(
−β∆E

)
), where ∆E � Esugg − Eorig is

the energy difference between the suggested and the original con-
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Figure C.2: Stiffness of semiflexible
Ndc80 complexes. The plots show the
stiffness–force relations of a single (A)
and n � 5 parallel (B) Ndc80 com-
plexes with persistence lengths Lp. As
a check of the MC simulations, we
added the large persistence length
Lp � 1000 nm, which correctly resem-
bles results of the FJC model (Lp � ∞)
according to Eq. (4.13).

9After generating force–stiffness data
(Fi , ci) of a single semiflexible Ndc80
complex, the respective relation
(Fn ,i , cn ,i) of n parallel Ndc80 com-
plexes can be obtainedwithout further
simulations by the simple transforma-
tion

Fi → Fn ,i ≡ n Fi ,

ci → cn ,i ≡ n ci ,

since

cn(Fn ,i) � n c
(

Fn ,i

n

)
� n c(Fi) � n ci � cn ,i .

Therefore, Fig. C.2B shows the same
data as Fig. C.2A but stretched by a
factor n � 5.

figuration following Eq. (C.12). After a certain time of equilibration,
we measure z � BNb ,z and z2 after each sweep (Na + Nb moves),
and calculate the mean extension and its variance8

8 Var(z) � 〈z2〉 − 〈z〉2

at the end of
a simulation. By repeating it for various external forces, we can
record force–extension and force–stiffness relations.

In our simulations, we used ka � kb � 1000 pN nm−1 to model
the two Ndc80 arms as nearly inextensible. Moreover, we used
the same discretization lengths da � db � 1 nm, i.e., Na � 40 and
Nb � 16. Fig. C.2 shows the stiffness–force relations of a single
and n � 5 parallel9 semiflexible Ndc80 complexes with various
persistence lengths Lp. The effect of semiflexibility on the stiffness
is negligible for realistic persistence lengths above 100 nm [256].
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List of abbreviations

ADP adenosine diphosphate
AFM atomic force microscope
AP away from the pole, antipolewards
ATP adenosine triphosphate
CH calponin homology
DNA deoxyribonucleic acid
FJC freely jointed chain
FPE Fokker–Planck equation
GDP guanosine diphosphate
GTP guanosine triphosphate
k-fiber kinetochore fiber
MAP microtubule-associated protein
MC Monte Carlo (simulation)
MCAK mitotic centromere-associated kinesin
MT microtubule
MTOC microtubule organizing center
Ndc80CHmut Ndc80 mutant with mutated CH domains
Ndc80P Ndc80 with a phosphorylated N-terminal tail
Ndc80wt wild type Ndc80
Ndc80∆80 Ndc80 mutant without N-terminal tail
P polewards
PEF polar ejection force
PEG polyethylene glycol
PF protofilament
PLL poly-l-lysine
PSD power spectral density
S streptavidin
T traptavidin
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List of symbols used in Chapter 2

A(k) coefficient matrix of Fourier transformed FPEs
c ω/v+

Cc critical concentration
D(n) Diffusion constant in the unbounded regime (with an n-step catastrophe)
f (λ, k) characteristic polynomial of A(k)
j probability current density
koff depolymerization rate
kon polymerization rate
k± effective elongation rates
M coefficient matrix of stationary FPEs
n number of catastrophe steps
p(x , t) time-dependent overall probability density of MT lengths
p(x) steady state overall probability density of MT lengths
p̃(s) Laplace transform of p(x)
P(n , x) regularized lower incomplete gamma function
pi(x , t) time-dependent probability density of MT lengths in i-th growing state
pi(x) steady state probability density of MT lengths in i-th growing state
px+(x+) probability density of length gains
pτ+(τ+) probability density of growth durations
Pτ+(τ) survival probability of a growing MT
p±(x , t) time-dependent probability density of MT lengths in growing/shrinking state
p±(x) steady state probability density of MT lengths in growing/shrinking state
Q(n , x) regularized upper incomplete gamma function
qi(k , t) Fourier transform of pi(x , t)
r ωr/v−
t time
V(n) mean velocity of the MT tip (with an n-step catastrophe)
®v j(k) eigenvectors of A(k)
v± growth/shrinking velocity
x MT length
x± length gain/loss
Γ(n) gamma function
Γ(n , x) upper incomplete gamma function
∆t simulation time step
∆x monomer length
λ j(k) eigenvalues of A(k)
τ MT age, time since last rescue
τ± growth/shrinking duration
ω catastrophe step rate
ωc catastrophe rate
ωr rescue rate
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List of symbols used in Chapter 3

c stiffness of MT–kinetochore linker
cbist lower bound of linker stiffness for bistable force–velocity relation
ck stiffness of cohesin bond
cosc lower bound of linker stiffness for occurrence of kinetochore oscillations
d0 rest length of cohesin bond
Fc characteristic force of catastrophe
Fd± characteristic force of detachment of a growing/shrinking MT
Fext external force on kinetochore in one-sided model
Fk (,l/r) AP force acting on (left/right) kinetochore by cohesin bond and PEFs (Fkk + FPEF)
Fkk inter-kinetochore force from cohesin bond
Fkm force acting on a kinetochore by the attached MTs
Fmin/max lower/upper critical force of bistable force–velocity relation
Fmk force acting on a MT tip by the MT–kinetochore linker
FPEF (,l/r) PEFs acting on (left/right) kinetochore in AP-direction
Fr characteristic force of rescue
F± characteristic force of growth/shrinking velocity
j probability current density
k strength (“spring constant”) of PEFs
kBT thermal energy
M number of MTs per spindle pole
Matt (,l/r) number of MTs attached to (left/right) kinetochore
n catastrophe enhancement factor at the kinetochore (ωkin

c � nω0
c )

N normalization constant
p(x , t) time-dependent overall probability density of linker extensions
p(x) steady state overall probability density of linker extensions
p±(x , t) time-dependent probability density of linker extensions in growing/shrinking state
p±(x) steady state probability density of linker extensions in growing/shrinking state
Q probability to find a MT confined at the kinetochore
t time
xc fixed position of the centrosomes
x(i) distance of (i-th) MT tip to kinetochore, (i-th) linker extension
Xk (,l/r) position of (left/right) kinetochore
X̃k (,l/r) position of (left/right) kinetochore in Fourier space
xm (,i) position of (i-th) MT tip
xmin/max minimum/maximum linker extension
xconf

min/max minimum/maximum linker extension with confinement at the kinetochore
vf velocity of poleward MT flux
vk (,l/r) AP velocity of (left/right) kinetochore
v±k AP kinetochore velocity in upper/lower branch of bistable force–velocity relation
vm± growth/shrinking velocity
v± relative velocity of a growing/shrinking MT and kinetochore
ṽ± steady state MT and kinetochore velocity if MTs exclusively grow/shrink
v0
± force-free growth/shrinking velocity

W( ) Lambert W function
α± leading order exponents of stationary linker length distributions near xmax/min
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γ friction coefficient of kinetochore
∆t simulation time step
∆Xk inter kinetochore distance
∆X̃k inter kinetochore distance in Fourier space
ωa attachment rate
ω0

a force-free attachment rate
ωc catastrophe rate
ω0

c force-free catastrophe rate
ωkin

c (enhanced) catastrophe rate at kinetochore
ωd± detachment rate of a growing/shrinking MT
ω0

d± force-free detachment rate of a growing/shrinking MT
ωr rescue rate
ω0

r force-free rescue rate

List of symbols used in Chapter 4

a length of long Ndc80 arm
A coefficient in power fits
®a vector describing long Ndc80 arm in FJC model
b length of short Ndc80 arm
®b vector describing short Ndc80 arm in FJC model
c total stiffness as measured in experiments
c̃ stiffness of a single MT–bead linker (series of cPEG, cNdc, cbond and cPF)
c0 stiffness offset in power fits
cbond stiffness of the Ndc80–MT bond
cmech mechanical MT stiffness
cMT (entropic) MT stiffness
c̃n stiffness of n parallel MT–bead linkers with stiffness c̃
cNdc stiffness of Ndc80 complex
cPEG stiffness of PEG
cPF effective stiffness of PF bending
ctrap trap stiffness
EFJC energy in FJC model of Ndc80 complex
EMT energy of MT in the mechanical model
EPF energy of PF stretching
F force from optical trap or force stretching PEG, Ndc80, MT or PF in models
Fh Lagrange multiplier in mechanical MT model (force to hold MT tip at height h)
fk(t) linear fit of bead position xk(t) during interval k
Fk mean force during interval k
h height of MT tip in mechanical MT model
kBT thermal energy
KS PEG segment elasticity
L elongation of PEG or length of free MT end or length of curved PF
L0 characteristic MT length of length dependent MT persistence length, see Eq. (4.24)
LC contour length
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Lhel segment length of helical PEG conformation
LK Kuhn length
Lp persistence length (of the MT or the PF)
L∞p persistence length of a long MT (L � L0), see Eq. (4.24)
Lpl segment length of planar PEG conformation
m stiffening exponent, exponent in power fits
n number of Ndc80 complexes attached to the MT
nmin stiffness minimizing number of attached Ndc80 complexes
NS number of C–C–O segments in PEG
s position along curved MT or curved PF
s0 position of force application along PF
t time
x bead displacement from the trap center
z extension of MT in force direction
z(a/b) extension in force direction (of long/short arm) of Ndc80 complex in FJC model
z0 effective elongation of PF in force direction
Z canonical partition function
α bending stiffness of MT or PF
β 1/kBT
θ(s) local bending angle of MT or PF
θa/b polar angle of long/short Ndc80 arm (®a/®b)
φ preferred curvature of PF
ϕa/b azimuthal angle of long/short Ndc80 arm (®a/®b)
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