Advances in Session-Based and
Session-Aware Recommendation

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Technischen Universitat Dortmund
an der Fakultat fir Informatik

von

Malte Ludewig

Dortmund

2020

Tag der miindlichen Priifung: 12.11.2020

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter:
Prof. Dr. Dietmar Jannach
Prof. Dr. Bernhard Steffen

Abstract

Personalized item suggestions provided by a recommender system have become a
crucial part of many online services, e.g., shops or media streaming applications.
Extensive evidence exists that such systems can improve the user experience and, at
the same time, have a beneficial effect for the providers, e.g., in terms of the revenue.
In academia, the recommendation problem is often framed as finding suitable items
that users are not yet aware of based on their long-term preference profiles. In the
real world, however, this problem formulation has a number of limitations.

Long-term profiles, for example, are not available for new or anonymous users and
recommendations can then only be based on the few most recent interactions in an
ongoing usage session. Various approaches to this relevant setting of session-based
recommendation that recently gained more interest in the research community were
proposed over the years. However, in terms of how to compare and evaluate such
methods, no common standard has been established so far. The author of this thesis,
therefore, developed an open framework for reproducible research and, furthermore,
compared several approaches in a fair manner. Moreover, some of the techniques
were proposed by the author himself. Extensive experiments and a user study, to
some surprise, show that comparably simple nearest-neighbor techniques usually
outperform recent deep learning models across many domains and datasets.

Even if long-term preference information is available about the users, recent works
indicate that it might still be beneficial to consider the ongoing session, e.g., because
a user visits a shop with a specific intent in mind. The author of this thesis, thus,
conducted a systematic statistical analysis to assess what makes recommendations
effective in what is called a session-aware scenario. This analysis is based on log
data from a fashion retailer and the obtained insights were, furthermore, opera-
tionalized into novel session-aware recommendation approaches. Matching items
of the customer’s ongoing session, reminding him of previously inspected clothes,
recommending discounted items, and considering recent trends in the community
showed to be particularly effective strategies, not only for item recommendation but
also in the related scenario of search personalization.

Contents

1 Introduction 1
1.1 From Explicit to Implicit Feedback 3
1.2 Sequence-Aware, Session-Aware, and Session-Based Recommendation 5
1.3 Evaluation in Session-Aware and Session-Based Recommendation . . 8

1.3.1 Offline Evaluation 8
1.3.2 User Studies and Field Tests 10
1.4 ResearchQuestions o, 11
1.5 StructureoftheThesis 13
1.6 Publications e e 14
1.6.1 Covered Publications 14
1.6.2 Research Competitions 17

2 Comparison of Session-Based Recommendation Techniques 19
2.1 Session-Based Recommendation Abstraction 20
2.2 Technical Approaches. 21

2.2.1 Frequent-Pattern Mining 22
2.2.2 Nearest-Neighbor Techniques 24
2.2.3 Factorization-Based Approaches 27
2.2.4 Neural Networks 30
2.2.5 Further RelatedWork 34
2.3 Evaluation Scheme 36
2.3.1 GeneralSetup. 36
2.3.2 Explored Datasets« 39
2.4 Multi-Dimensional Comparison 40
2.4.1 Accuracy Measures 40
2.4.2 Additional Quality Criteria 43
2.4.3 Alternative Evaluation Setups 45
2.5 Users’ Perception of Session-based Recommendations 47
2.5.1 StudyDesign 48
2.5.2 Compared Techniques 49

2.5.3 Observations v v i it e e e 50

Vi

3 Exploring Session-Awareness in E-Commerce

3.1 Success Factors in Session-Aware Fashion Recommendation
3.1.1 Analysis of SuccessFactors
3.1.2 Operationalizing the Success Factors

3.2 Session-Aware Personalized Search
3.21 ResearchSetup
3.2.2 Compared Algorithms
3.23 Findings

4 Summary & Conclusions
Bibliography

List of Figures

List of Tables

Publications

Determining Characteristics of Successful Recommendations from Log Data:
ACaseStudy e
Investigating Personalized Search in E-Commerce
Session-Based Item Recommendation in E-Commerce: On Short-Term
Intents, Reminders, Trends and Discounts
When Recurrent Neural Networks meet the Neighborhood for Session-
Based Recommendation
A Comparison of Frequent Pattern Techniques and a Deep Learning Method
for Session-Based Recommendation
Evaluation of Session-Based Recommendation Algorithms
Performance Comparison of Neural and Non-Neural Approaches to Session-
Based Recommendation
User-Centric Evaluation of Session-Based Recommendations for an Auto-
mated Radio Station

53
54
55
59
65
66
67
68

71

75

87

87

89

Introduction

Since the development of the World Wide Web by Tim Berners-Lee in the Swiss
research facility CERN in 1989 and its introduction to the public in 1991, the network
has grown rapidly. As of today, it has become a fundamental part of our lives and
provides us with access to a nearly unlimited amount of information, entertainment,
and services, e.g., news websites, media streaming platforms, and e-commerce shops.
Google’s video platform YouTube!, e.g., by now is a host to hundreds of millions of
videos with over 400 hours of video material being uploaded every minute [Brel5].
The music streaming service Spotify?, for example, changed the way we listen to
music and provides access to over fifty million songs and three billion playlists
[Spol9]. As a consequence, it became impossible for users to fully explore all the
options for entertainment, all the products they could potentially buy in e-commerce
shops, or all the text they could read, e.g., on news platforms.

Hence, recommender systems became a necessary and even crucial part in most of
today’s online services, almost regardless of the domain and the application scenario.
These systems try to understand the users in terms of their preferences and help
them to discover additional items that they might also be interested in, e.g., new
videos on YouTube, exciting tracks on Spotify, or a new shirt to buy on Zalando®.
Besides these obvious examples, the application scenarios are almost endless. The
social network Facebook?, e.g., tries to recommend you the next event to attend or
even new friends to make, the microblogging service Twitter® proposes people to
follow, and the business network LinkedIn® suggests which job to apply for next.

In filtering the vast amount of information and presenting tailored item suggestions,
undisputedly, recommender systems can have a beneficial effect for the user. This, in
turn, can be measured in an increase of the perceived quality of the service in terms
of the user experience, as, for example, shown in [CGT12; JJ19]. At the same time,
the improved user experience not only helps the users of the service but on the other
hand can also help the provider to increase, for example, the customer engagement
and even the revenue [GH16; JJ19].

"https://www.youtube.com
’https://www.spotify.com
Shttps://www.zalando.com
*https://www.facebook.com
*https://wuw.twitter.com
®https://www.linkedin.com

https://www.youtube.com
https://www.spotify.com
https://www.zalando.com
https://www.facebook.com
https://www.twitter.com
https://www.linkedin.com

2

Historically, the research area of Recommender Systems originates from the field
of Information Retrieval and developed to its own field in the 1990s. With the
famous Netflix Prize on movie recommendation [Kor09], the field enjoyed strongly
growing interest. In general, two types of approaches dominated the publications, a)
collaborative filtering techniques that try to find patterns in collective user behavior
(see, e.g., [KBV09]), and b) content-based techniques that try to find similar items
with the help of content information, e.g., the actors, the director, or the description
of movies [MKPO3]. In collaborative filtering, many publications framed the problem
as a matrix completion task, where the matrix represents the preferences of all users
towards all items and missing entries should be predicted. In the beginning, the
proposed techniques often relied on matrices of explicit ratings (e.g., movie ratings
from one to five) in order to learn a preference model and estimate the missing
ratings. Later, the research focus shifted to representing the users based on implicit
feedback, e.g., with the unary signal if the user clicked on a specific video or listened
to a certain track.

By now, in academic research, a majority of the works still focuses on approaches that
solely rely on such long-term preference models to select items to be suggested to
the user. However, in many application scenarios of recommendation techniques this
type of preference model is often not available for many of the users, for example,
because they are not logged in to the service, or because they are visiting an e-
commerce shop for the first time. Thus, when determining suitable recommendations
for these users, systems have to rely on only a small amount of information, i.e., the
users’ few last interactions with a service or a website. Recommendation techniques
that solely base their suggestions on an ongoing session and adapt to the users’
actions in these are called session-based recommendation approaches.

However, even in cases where long-term information is available for a user, consider-
ing the current session might still contribute to the performance of a recommender
system. In an e-commerce scenario, for example, the user might visit an online
fashion store with a specific intent in mind. Assuming the user’s focus lies on finding
a new t-shirt, the recommendation system should immediately react to his needs,
and not suggest, e.g., a winter jacket based on long-term preferences. Dependent on
the season or changing trends, furthermore, long-term information might even not
be valuable at all. Recommendation techniques that have the ability to adapt to an
ongoing session and, at the same time, consider longer-term preferences are called
session-aware recommendation approaches.

Both scenarios have particularities, challenges, and open problems, which have not
been covered in research before. This thesis consists of a number of publications by
the author of this thesis and addresses various of those, including, for example, the
proposal and extensive comparison of session-based recommendation techniques,

Chapter 1 Introduction

the exploration of domain-specific aspects in session-based recommendation, or a
systematic analysis on what makes recommendations successful in a session-aware

e-commerce scenario.

The remainder of this chapter first provides a brief history of recommender systems
in academia and explains the shifting focus from explicit to implicit feedback (Sec-
tion 1.1). Subsequently, the differences between session-based, session-aware and
the more general class of sequence-aware recommendation techniques are explained
in more detail (Section 1.2). After briefly discussing evaluation schemes and quality
measures for sequence-aware recommender systems (Section 1.3), the main research
questions of this thesis are presented (Section 1.4). Finally, the overall structure of
the remaining parts of the thesis is outlined (Section 1.5) and, furthermore, a list of
the publications that are included is presented (Section 1.6).

1.1 From Explicit to Implicit Feedback

As previously mentioned, besides content-based approaches, personalized recom-
mendations are often based on collective user feedback, which can either be available
as explicit or implicit feedback. Over the years, the focus of recommender system
research shifted from using explicit to considering implicit feedback. In the following,
this shift is explained in a brief historic overview of popular recommendation tech-
niques from both worlds. The session-based and session-aware approaches discussed
in this thesis solely rely on different types of implicit feedback signals. Thus, this
section additionally provides an overview of these.

Historically, the research in the field of recommender systems was dominated by
scenarios, in which the users explicitly stated their interest in items, mostly in the
form of item ratings on a numerical scale, e.g., from 1 to 5 [JWK14]. In consequence,
many sophisticated algorithms have been proposed that were very accurately able
to predict the rating that a user would probably give an item. As mentioned earlier,
such approaches mostly frame the problem as a user-item rating matrix completion
task and rely on large datasets of historical ratings.

Over the years, k-nearest-neighbor techniques (see, e.g., [Sar+01]) that often rely
on finding similar users or items based on cosine similarities in the user-item rating
matrix, were outperformed by matrix factorization techniques that represent users
and items as lower-dimensional latent vectors. A very prominent example of such a
technique is FunkSVD, which is based on the concept of singular value decomposition
and, furthermore, played a major role in the winning solution to the 2009 Netflix
Prize on rating prediction [Fun07; Kor09].

1.1 From Explicit to Implicit Feedback

4

While in some domains plenty of explicit feedback is given by the users, e.g., for
videos or restaurants, there are several practical applications, where only little
or even no explicit feedback is available [JHO9; JKG12]. In a business social
network, for example, jobs or co-workers will hardly be rated and, thus, job or friend
recommendations can solely be based on behavioral information monitored for the
users, the implicit feedback.

Also in implicit feedback recommendation scenarios, matrix factorization techniques
became a prominent choice to approach the problem. Here, instead of explicit
ratings, the user-item matrix often contains unary, binary, or graded feedback. Very
prominent examples of such techniques are Bayesian Personalized Ranking (BPR)
that tries to learn a personalized ranking from a unary feedback matrix, and a model
based on alternating least squares optimization (ALS) that included watching times
of TV programs as implicit feedback [Ren+09; HKVO08; TPT11].

In general, implicit user feedback can be divided into a) directly observable user
actions, b) feature-related indirect preference signals, and c) user-action-related indirect
preference signals [JLZ18]. Unary feedback like item click events as used in BPR
can be assigned to the directly observable user actions, while the watching time
incorporated by ALS can be classified as a user-action-related indirect preference signal.
A feature-related indirect preference signal would, e.g., be the explicit statement of
liking a particular brand, which can then indirectly by used in a content-based
recommender system.

In the scenario of session-based or session-aware recommendation, respectively,
the user feedback, in general, is naturally implicit, mainly in the form of directly
observable user actions. The input is mostly formed by a stream of user-generated
events, e.g., clicks on items in an e-commerce browsing session, or listening events in
a mobile music streaming application. However, the collected signals can, of course,
also include explicit rating, for example, thumbs-up/down statements on a video
streaming platform for a specific clip.

Finally, according to [JLZ18] the collection of implicit feedback has some general
problems or disadvantages that also session-based and session-aware recommenda-
tion techniques are naturally affected by. These, for example, include difficulties
regarding the interpretation of a signal. When a user interacts with an item, it still
remains unclear if the detailed inspection leaves the user with a positive or negative
impression. The signal can only be interpreted as positive feedback or discarded
based on some criterion, e.g., that the item was only inspected for a very short time,
which might indicate a negative impression. In general, however, implicit feedback
systems have a lack of negative signals. Furthermore, it is hard to assess the strength
of the signals. Finally, like rating datasets, also implicitly collected feedback is prone

Chapter 1 Introduction

to skewed distributions in terms of the item popularity. Training recommendation
models based on such feedback might lead to a popularity biased system that seldom
recommends unpopular or niche items to the users.

1.2 Sequence-Aware, Session-Aware, and
Session-Based Recommendation

Many traditional recommendation approaches often ignore important particularities
of practical application scenarios. A majority of the techniques, for example, neglects
the order of the user feedback for the creation of recommendation lists. Considering
such information, however, might be crucial to present the user with valuable
recommendations. In the following, a few important scenarios are described:

* Independent of the domain, a change in taste might be detected for users
over time. They are subject to long-term interest-drifts and might, e.g., start to
preferably listen to other musical genres or change personal styling choices due
to a new job. Parts of the historical user feedback, thus, can become obsolete.

* Even when there is no change in the user’s taste, other temporal dynamics
might decrease the value of historic user feedback, e.g., seasonal trends in an
e-commerce scenario.

* Although a user is well-known to an online retailer, he might visit a shop with a
specific short-term intent in mind that a traditional recommender system cannot
be aware of based on the user’s long term interaction history.

* In the process of creating a playlist in an online music application, the order of
the clicks in the historical user feedback might be of great importance. Certain
tracks might often appear in the exact same order as they harmonically match
each other, which a recommender system, in this particular scenario, should be
aware of when recommending the next track to add.

* Traditional recommender systems focus on presenting items that users are not
yet aware of. However, in an e-commerce scenario or in the music domain, for
example, it might be useful to remind the user of already known items that he
has not yet purchased or that he likes to listen to in certain situations.

* Finally, a user might be new to a service or simply not logged in. As a conse-
quence, in this user cold-start setting personalized recommendations can, thus,
solely be based on the very few first interactions with the platform.

Many similar patterns can be found throughout various practical application domains
and, thus, led to new research areas within the field of recommender systems that
emerged from the traditional matrix completion task, specifically, context-aware,

1.2 Sequence-Aware, Session-Aware, and Session-Based Recommendation

6

Time Recommender system

‘ Interaction (user, type, item, timestamp)

l:‘:‘:‘:‘ EEE— Sequence—aware

Long-term user history
‘ Interaction (user, session, type, item, timestamp)

LN e 0 O Y R I B e O B O B | sessionaware
I

Historical user sessions Current session

Interaction (user, session, type, item, timestamp)
_— Session-based
L |

Current session

Figure 1.1: A visualization of the similarities and differences of the sequence-aware, session-
aware, and session-based recommendation scenarios.

time-aware, and sequence-aware recommendation [QCJ18]. In the context of im-
plicit feedback, all of these areas, however, share many common ideas and show
similarities in terms of the input to a recommender system as well as its evaluation.
The scenario of sequence-aware recommendation can be differentiated from the
other areas in paying special attention to repetitive sequences in the users’ feedback.
Furthermore, the settings of session-aware and session-based recommendation are
closely related to and can be classified as a subproblem of sequence-aware recom-
mendation. Figure 1.1 visualizes the main inputs to all three problems and, thereby;,
demonstrates the key differences.

The input to a sequence-aware recommendation problem, in general, is a list of
past user interactions in chronological order. In some cases, these interactions are
timestamped, which then also allows the application of time-aware recommendation
concepts. Each interaction usually refers to an item from the catalog and also to a
predefined type of interaction, e.g., a click on an item or its purchase. Furthermore,
items, as well as users, might have additional attributes. An item in an e-commerce
shop, e.g., could be associated with a specific category or brand while the user has
demographic attributes like his age. Due to the lack of publicly available datasets
with additional metadata information and, at the same time, for the benefit of
comparability and reproducibility, techniques presented in the literature often rely
only on one interaction type and do not consider additional metadata.

In the more specific case of session-aware recommendation, besides a user identifier,
each interaction is furthermore associated with a session identifier that groups
several consecutive interactions. This type of information is very common in online
services that are accessed by a web browser. Here, interactions are grouped into a

Chapter 1 Introduction

single session until the user does not perform any interaction for a specific amount
of time (often configured to thirty minutes) or logs out. The additional information
can be helpful in terms of identifying the previously mentioned short-term intents,
as a user might start a new session with a specific goal in mind. In contrast to
sequence-aware recommendation, session-aware recommenders necessarily always
consider the users’ current session. In sequence-aware recommendation, some early
techniques rely only on the long-term history of users while still taking the order of
events into account. Often, session-aware recommender systems are designed as a
combination of long-term and short-term interest models, e.g., in an e-commerce
setting or for mobile application recommendations [JLJ15a; Bae+15].

Session-based recommendation can be seen as both sequence-aware or session-aware
in a user cold-start scenario, i.e., in the absence of historic information for all users.
In contrast to the session-aware and sequence-aware problem, the session-based setting
is particularly challenging, as no personalized long-term models can be used, and
the personalization of item suggestions can solely be based on the last few user
interactions. Typical application examples include news, e-commerce, video, and
music recommendation [GDF13; Hid+16a; Hid+16b; HMB12].

Across all three scenarios and as also in traditional “item-ranking” recommender
systems, the output of a sequence-aware approach is usually simply an ordered list
of items’. The main computational tasks can be identified as a) Context Adaptation,
b) Trend Detection, c) Repeated Recommendation, and d) Consideration of Order
Constraints and Sequential Patterns (refer to [QCJ18] for a detailed discussion).

Over the years, a variety of different approaches has been proposed to generate
such sequence-aware recommendations, both simple and very complex ones for all
three scenarios. The presented methods range from comparably simple frequent
pattern mining techniques [HLCO8; LLC14], over adapted nearest-neighbor-based or
matrix-factorization-based approaches [JLJ15a; Twal6], to the recent proposal of
many neural network-based models [SEH16; Hid+16a].

This thesis focuses only on the specific settings of session-based and session-aware
recommendation. A number of research questions regarding these scenarios that are
covered by this work are presented in Section 1.4. Furthermore, relevant related
work will be discussed extensively throughout the next chapters alongside a more
formal definition of the explored scenarios.

’In some very specific scenarios, the recommended list is not a set of alternatives but a sequence that
the user should consume in the exact order.

1.2 Sequence-Aware, Session-Aware, and Session-Based Recommendation

8

1.3 Evaluation in Session-Aware and
Session-Based Recommendation

After differentiating the specific recommendation scenarios, it is furthermore impor-
tant to understand how the quality of a recommender system can be assessed. This
section, thus, briefly introduces possible ways that are widely used throughout the lit-
erature with a particular focus on session-based and session-aware recommendation.
At the same time, some relevant problems are be identified.

In general, the evaluation of a recommender system can be divided into offline
experimental schemes and online live experiments. In an offline setting, usually,
parts of the user feedback are hidden from the recommender system, which should
then most accurately predict the missing information. In an online experiment, in
contrast, the system is deployed and the recommendations are presented to real
users. For both scenarios, many different metrics exist in the literature that should
capture the quality of the generated recommendation lists.

1.3.1 Offline Evaluation

As described in the previous section, the main input to session-aware or session-based
problems is an ordered list of user events with session identifiers. Naturally, sessions
should not be split, as they might represent interactions corresponding to a specific
purpose, and also the order of the events should remain intact. Regarding offline
evaluations, according to [QCJ18] the data is mainly partitioned into a training and
a test part in the following two ways:

* TFor the scenario of session-based recommendation, long-term user histories do
not exist. Hence, the common partitioning scheme is mainly time-based or order-
based at the session-level. From the set of all available sessions, the most recent N
sessions are used for testing the system. The number of sessions N can, e.g., be
defined by a constant number, by a certain split date, or as a percentage of the
whole dataset (often 10% or 20%).

* Insession-aware recommendation, long-term user histories have to be considered.
Here, the dataset is usually split user-wise, either for all users (community-level
partitioning) or only a subset of all users (user-level partitioning). For each test
user, again, a time-based partitioning at session-level is performed.

In consequence, the test data consists of a number of sessions, either with or without
a long-term user history. In general, sequence-aware approaches try to predict the
future actions of a user. Hence, the common idea of all evaluation schemes is to
reveal some actions from the beginning of the test sessions and use the following

Chapter 1 Introduction

actions as the ground truth. These indicate what the system should recommend.
The following two generic protocols can be identified from publications regarding
session-based and session-aware recommendation:

* Given-N next-item prediction. In this protocol, the first N interactions of a test
session are revealed to the recommender and only the immediate next interaction
defines the ground truth for evaluation. In some works, only the last action of
each sessions is hidden (see, e.g., [HMB12]). In other works, in contrast, the
number of revealed interactions N is incrementally increased [Hid+ 16a].

* Given-N remaining items prediction. The second protocol is very similar to the first
one. However, instead of defining only the immediate next action as the ground
truth, all remaining hidden actions in a session are assumed to be relevant to the
user. Besides incrementally increasing number N of revealed actions, again, N is
sometimes static [JLJ15a].

In general, according to [QCJ18] a multitude of very specific evaluation schemes
has been presented in the literature for both scenarios and no common standard
can be found. Furthermore, evaluations in the literature have been performed on
a variety of different datasets, which, overall, has counterproductive effects on the
comparability of proposed techniques.

With regard to the ground truth, recommender systems are mainly evaluated in terms
of accuracy metrics in an offline setting. Depending on the evaluation protocol, the
following measures are employed in session-based and session-aware scenarios:

* For the task of next-item prediction when only one item forms the ground truth,
the dominant metrics are the Hit rate (HR, Recall with only one relevant item)
and the Mean Reciprocal Rank (MRR). While the HR only measures if an item is
included in a recommendation list, the MRR also considers the rank in the list.

* When the ground truth consists of multiple items, standard measures from the
field of information retrieval can be applied. These, e.g., include Precision,
Recall, Mean Average Rank (MAR), Mean Average Precision (MAP), Normalized
Discounted Cumulative Gain (NDCG), and the F1 metric.

As mentioned in Section 1.1, the distribution of the feedback for items in datasets
might by skewed towards a few very popular items. As a consequence, a recom-
mender system that was trained on this data might be popularity biased, i.e., it often
suggests these very popular items, because it is statistically beneficial in terms of ac-
curacy metrics. In a real-world scenario, however, these recommendations might not
be satisfactory to a user and, moreover, increase the skew of the distribution. Thus,
it is advisable to also evaluate the recommender systems in terms of beyond-accuracy
metrics. A few examples are given in the following:

1.3 Evaluation in Session-Aware and Session-Based Recommendation

10

* The level of a potential popularity bias can, e.g., be measured with the average
popularity of the items in the produced recommendation lists.

* The metric coverage has a similar purpose and measures the number of different
items that a system has recommended overall. A higher value, thus, might
indicate that the number of more unpopular items among the recommendations
is also higher.

* According to [Eks+14] recommendation lists are more appealing to the user,
when they offer a diverse selection of options. In some works, therefore, an inner
list similarity is calculated as a quality metric. The lower the similarity is, the
more diverse are the recommendations. Often, the similarity is defined by the
co-occurrences of items or additional metadata.

* To practically apply a recommendation technique, the scalability of the approach
is important. The time required for model training as well as for the generation of
a recommendation list should not exceed certain limits. Hence, the measurement
of, e.g., running times and memory consumption is another interesting beyond-
accuracy metric.

Many more examples can be found in the literature, e.g., in [Her+04; GDJ10].
However, techniques that have recently been proposed in the field of session-aware
and session-based recommendation seldom consider such quality aspects.

1.3.2 User Studies and Field Tests

Online experiments that deploy recommender systems and collect the feedback of
real users can further be classified into a) user studies, and b) field tests. While user
studies often frame a certain situation and subsequently ask the user qualitative
questions, field tests rely on a production-like environment and collect implicit
feedback of a large number of users, e.g., in an A/B test of two candidate algorithms.
Here, typical metrics are, for example, click-through or conversion rates [JJ19].

In the research literature, both types of online experiments often show a discrepancy
to offline results and are, thus, highly relevant to the recommender system research
community. In academia, however, the possibilities of conducting large-scale online
studies are often limited. Thus, also for the field of session-based and session-
aware recommendation the number of existing studies is very low. Some of the few
examples can be found in [BOL09; Gar+14; Grb+15; MBR12; KJ17].

In [BOL09] and [KJ17], the authors compared a number of “playlisting” approaches
that can also be seen as session-based techniques through a user study (a playlist here
corresponds to a listening session). Garcin et al. [Gar+14] deployed some session-

Chapter 1 Introduction

based techniques in a field test on a news website. The results generally reveal
strong performances of these session-based techniques compared to popularity-based
baseline approaches. However, the results also differ strongly from a previously
conducted offline experiment.

Overall, as for other recommendation problems, determining a good metric to predict
the success of a recommendation technique from offline results is very challenging
also in session-based and session-aware recommendation setting.

1.4 Research Questions

Referring to the previously introduced characteristics and problems of session-based
and session-aware recommendation settings, this section will now elucidate the
open research questions that are covered in this thesis and the included publications,
respectively. The questions are divided into two blocks, one for each specific scenario.
The questions that motivated the research works with a focus on session-based

recommendation are the following:

* As mentioned in Section 1.3, many approaches proposed in the literature often
rely on a customized or unique evaluation scheme. Even if the protocol is
exactly the same, publications also differ strongly in many other regards, e.g.,
the considered datasets, the dataset preprocessing, or the baseline approaches
employed for comparison. Thus, it is often difficult to understand the relative
performance of recently proposed techniques. One main goal of this thesis, hence,
is to propose a unified research framework that allows for a fair comparison of
session-based techniques. Furthermore, an extensive experimental comparison
has been performed to answer the question: How do recently proposed session-
based recommendation approaches compare in a reproducible setup?

* With regard to the employed baseline approaches, many of the publications on
session-based recommendation are missing out on simple but effective nearest-
neighbor techniques that produced accurate recommendations in a similar setting
[JLJ15a]. Another goal of this thesis, thus, is to adapt these to the scenario of
session-based recommendation and answer the questions: How well do such
simple techniques perform in comparison to modern deep learning solution?
And, are they scalable enough for practical application?

* The predominant evaluation scheme in the scenario of session-based recom-
mendation is the given-N next-item prediction, where the dataset is usually split
time-based at session-level (see Section 1.3). As not only the immediate next item
might be relevant to the user but rather all remaining items in a session, the
following questions arise: How do session-based techniques perform in given-N

1.4 Research Questions

12

remaining items prediction or other alternative schemes? How do the results
compare to the commonly employed given-N next-item prediction scheme? And
most of all, which evaluation setup is a better indicator for the online success of
a recommendation technique?

Publications in the area of session-based recommendation often limit their ex-
periments to a small number of datasets or a specific domain. However, the
performance and suitability of an algorithm might be highly dependent on such
factors. Therefore, further questions are: How do recently proposed algorithms
compare across multiple domains? Can particularities be found that maybe
indicate which algorithm should be applied in which domain?

In general, the quality of a recommender system is often reduced to its accuracy
results in an offline setting. As mentioned in Section 1.3, this pattern can also be
found for session-based recommendation. However, also other measures exist
that can be an indicator for the performance and applicability of a recommen-
dation approach, e.g., the coverage, or the scalability in terms of training and
prediction times. Most works neglect these factors, which is why the analysis
of additional quality measures in session-based recommendation is another re-
search question of this thesis. Specifically, are the approaches prone to potential
popularity biases? Can they easily be applied in practical scenarios in terms of
their computational complexity?

Finally, the evaluation of modern session-based techniques, so far, was only
performed in offline experimental settings. As shown in, e.g., [Gar+14; KJ17],
offline accuracy results can give a misleading impression of a recommender
system’s online performance. Hence, another goal of this thesis is to compare
session-based techniques in an online experiment to answer the following ques-
tions: How do the most promising techniques compare in a user study? How do
the users perceive the quality of the recommendation? Can offline evaluation
results in session-based recommendation provide a good indication for online
performance and, if this is the case, which metric is the best indicator?

In contrast to the questions regarding the scenario of session-based recommendation,

which is approached in a very universal way, for the setting of session-aware recom-

mendation the research questions target very specific problems and particularities

from the e-commerce domain:

With the ideas of, e.g., reminding, short-term intents, and seasonal trends, Sec-
tion 1.2 mentioned several interesting problems or aspects that contribute to
the ongoing proposal of new session-aware recommendation techniques. In
academic research, publicly available datasets usually consist of user interaction
logs. Sometimes these interactions also include recommendation click events,
but almost never the list of recommended items itself. Thus, it is hard to analyze

Chapter 1 Introduction

and quantify the real importance of such aspects. The author of this thesis, how-
ever, was provided with a non-public dataset that includes exactly this type of
information for log data from the large European online fashion retailer Zalando.
This opened the opportunity to extensively investigate, why users click on spe-
cific recommendations. In a structured analysis, this thesis, thus, addresses the
following questions: What makes a recommendation successful in this particular
e-commerce scenario? Why and when do users click on recommendations? How
important are aspects like reminding, short-term intents, and seasonal trends in
the fashion domain?

* Corresponding to the potential results of such an analysis, furthermore, the
following questions arise: How could the obtained insights from the analysis be
operationalized to build a more effective session-aware recommender system?
How does such a system perform in an offline evaluation setup in terms of
standard accuracy metrics?

* The session-aware recommendation scenario, at least in the e-commerce domain,
shares many similarities with the related scenario of personalized search. The
input to both problems similarly includes a stream of past user interactions. In
personalized search, however, also a search query is provided. Assuming that the
query solely narrows the set of potential items to recommend from, session-aware
algorithms can directly be applied to the problem of search personalization. In
a case study, this thesis addresses the following questions: Are session-aware
recommendation techniques useful to personalize search results? How do they
perform in comparison to techniques from the field of personalized search? Can
the findings from the analysis regarding successful recommendations contribute
to developing effective recommendation techniques in this scenario?

More details on how and why these questions have been developed and answered
will be discussed throughout the following chapters.

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 focuses on the
research questions regarding the scenario of session-based recommendation. After
the setting is formally defined, session-based recommendation approaches from the
research literature are extensively reviewed. The approaches can be categorized into
nearest-neighbor-based, frequent-pattern-based, factorization-based, and neural-
network-based techniques. In the following, these techniques are compared in
an extensive multi-dimensional offline evaluation. The comparison includesmany
domains, datasets, evaluation protocols, and metrics, both in terms of accuracy
measures and beyond-accuracy quality factors [JL17c; KJL17; LJ18b; Lud+19].

1.5 Structure of the Thesis

13

14

Next, the evaluation of session-based recommendation approaches in user studies
and field tests is discussed in more detail. In this context, the approach from [LJ19b]
to a user-centric evaluation of a selected number of session-based recommendation
approaches is presented.

Chapter 3 focuses on two particular case studies in the scenario of session-aware
recommendation that have been presented by the author of this thesis in [JL17a],
[JL17b], and [JLL17]. First, a structured analysis of log data in the e-commerce
domain that helps to identify the characteristics of successful recommendations
is presented [JL17a]. The findings are, furthermore, utilized to present a novel
approach to session-aware fashion recommendation [JLL17]. Finally, a number of
selected session-aware recommendation techniques was tested in the related setting
of e-commerce search personalization [JL17b].

Chapter 4 concludes the previous parts of this thesis and summarizes the main
findings. Furthermore, open questions and future perspectives in session-based as
well as session-aware recommendation are discussed. Finally, eight of the author’s
publications that lay the foundation for this thesis are included. A list of these can,
furthermore, be found in the following section.

1.6 Publications

1.6.1 Covered Publications

This thesis is based on eight of the author’s publications. The contribution to
each publication is described in the following. Furthermore, a complete list of all
publications as well as the publications themselves can be found in the appendix.

Determining Characteristics of Successful Recommendations from Log
Data: A Case Study

Dietmar Jannach and Malte Ludewig. “Determining Characteristics of Successful
Recommendations from Log Data: A Case Study”. In: Proceedings of the 32nd ACM
SIGAPP Symposium On Applied Computing. SAC’17. 2017, pp. 1643-1648

This publication is a joint effort with Dietmar Jannach. The author of this thesis
developed the proposed framework for determining insights on what is making
particular recommendations successful. Furthermore, he wrote parts of the text.

Chapter 1 Introduction

Investigating Personalized Search in E-Commerce

Dietmar Jannach and Malte Ludewig. “Investigating Personalized Search in E-
Commerce”. In: Proceedings of the 30th International Florida Artificial Intelligence
Research Society Conference. FLAIRS ’17. 2017, pp. 645-650

In a joint effort with Dietmar Jannach, this work investigates the performance of
session-aware recommendation techniques for personalized search in an e-commerce
scenario. The author of this thesis designed, implemented, and executed the evalua-
tion as well as parts of the algorithms in the context of the reported experimentations.
Moreover, he wrote parts of the text.

Session-Based Item Recommendation in E-Commerce: On Short-Term
Intents, Reminders, Trends and Discounts

Dietmar Jannach, Malte Ludewig, and Lukas Lerche. “Session-Based Item Rec-
ommendation in E-Commerce: On Short-Term Intents, Reminders, Trends and
Discounts”. In: User Modeling and User-Adapted Interaction 27.3-5 (2017), pp. 351-
392

This joint work with Dietmar Jannach and Lukas Lerche is an extension of the works
presented in [LJL16] and [JL17a]. Besides writing parts of the text, the author of this
thesis contributed by designing and evaluating model-based two-stage approaches
to successfully operationalize previous findings regarding the characteristics of
successful recommendations in e-commerce.

When Recurrent Neural Networks meet the Neighborhood for
Session-Based Recommendation

Dietmar Jannach and Malte Ludewig. “When Recurrent Neural Networks meet the
Neighborhood for Session-Based Recommendation”. In: Proceedings of the 11th
ACM Conference on Recommender Systems. RecSys ’17. 2017, pp. 306-310

This publication is joint work with Dietmar Jannach. The author of this thesis wrote
parts of the text, contributed to the design of experiments, executed them, and
helped with the analysis of the results.

1.6 Publications

16

A Comparison of Frequent Pattern Techniques and a Deep Learning Method
for Session-Based Recommendation

Iman Kamehkhosh, Dietmar Jannach, and Malte Ludewig. “A Comparison of
Frequent Pattern Techniques and a Deep Learning Method for Session-Based
Recommendation”. In: Proceedings of the 1st Workshop on Temporal Reasoning
in Recommender Systems co-located with 11th ACM Conference on Recommender
Systems. RecTemp ’17. 2017, pp. 50-56

As an extension to [JL17c], this joint work with Iman Kamehkhosh and Dietmar
Jannach includes further simple techniques within the previously introduced experi-
mental setup. The author of this thesis contributed to the work by implementing
(Association Rules) or proposing (Simple Sequential Rules) these simple techniques,
and, furthermore, helped by conducting several of the experiments.

Evaluation of Session-Based Recommendation Algorithms

Malte Ludewig and Dietmar Jannach. “Evaluation of Session-Based Recommenda-
tion Algorithms”. In: User Modeling and User-Adapted Interaction 28.4-5 (2018),
pp- 331-390

This joint work with Dietmar Jannach is an extension to [LJJ17] and [KJL17]. The
additions consist of proposing a matrix factorization-based model for session-based
recommendation and including additional evaluation setups as well as datasets. All
extensions were designed, implemented, executed, and evaluated by the author of
this thesis. He, furthermore, wrote parts of the text.

Performance Comparison of Neural and Non-Neural Approaches to
Session-Based Recommendation

Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. “Performance
Comparison of Neural and Non-Neural Approaches to Session-Based Recommen-
dation”. In: Proceedings of the 13th ACM Conference on Recommender Systems.
RecSys ’'19. 2019, pp. 306-310

This contribution is a joint work with Noemi Mauro, Sara Latifi, and Dietmar
Jannach, which is partially based on [LJ18b]. The previous work was extended with
the introduction of additional algorithms from the literature. Several of these were
implemented by the author of this thesis.

Chapter 1 Introduction

User-Centric Evaluation of Session-Based Recommendations for an
Automated Radio Station

Malte Ludewig and Dietmar Jannach. “User-Centric Evaluation of Session-Based
Recommendations for an Automated Radio Station”. In: Proceedings of the 13th
ACM Conference on Recommender Systems. RecSys ’19. 2019, pp. 306-310

In this joint work with Dietmar Jannach, the most promising techniques from [LJ18b]
were evaluated in a user-centric setup. Besides writing parts of the text, the author
of this thesis designed, implemented, and conducted the reported user study. In
addition, he processed and analyzed the obtained results.

1.6.2 Research Competitions

The author of this thesis, furthermore, successfully competed in several research
competitions concerning recommender systems in his time as a research associate.
The corresponding publications are presented in the following for the sake of com-
pleteness. They are, however, not extensively discussed in this thesis.

A Light-Weight Approach to Recipient Determination When Recommending
New Items

Malte Ludewig, Michael Jugovac, and Dietmar Jannach. “A Light-Weight Approach
to Recipient Determination When Recommending New Items”. In: Proceedings
of the ACM Recommender Systems Challenge 2017. RecSys Challenge ’17. 2017,
3:1-3:6

This publication is a joint work with Michael Jugovac and Dietmar Jannach. The
author of this thesis wrote most parts of the text and mainly designed the proposed
approach to the 2017 RecSys Challenge on reciprocal job recommendation. In the
end, the proposed solution led to the 5% place in an offline evaluation and the 6™
place in an online evaluation in the business social network Xing®.

Shttps://www.xing.com/

1.6 Publications

https://www.xing.com/

18

Could You Play That Song Again? - Reminding Users of Their Favorite
Tracks Through Recommendations

Malte Ludewig and Dietmar Jannach. “Could You Play That Song Again? - Remind-
ing Users of Their Favorite Tracks Through Recommendations”. In: Proceedings of
the WSDM Cup Workshop 2018. WSDM Cup ’18. 2018

In this joint effort with Dietmar Jannach, besides writing most parts of the text, the
author of this thesis mainly designed the proposed approach to the 2018 WSDM
Cup for music recommendation. The proposed approach finally led to the 8% place
amongst over 1,200 registered participants.

Effective Nearest-Neighbor Music Recommendations

Malte Ludewig, Iman Kamehkhosh, Nick Landia, and Dietmar Jannach. “Effective
Nearest-Neighbor Music Recommendations”. In: Proceedings of the ACM Recom-
mender Systems Challenge 2018. RecSys Challenge '18. 2018, 3:1-3:6

This contribution is joint work with Iman Kamehkhosh, Nick Landia, and Dietmar
Jannach. The author of this thesis mainly designed the proposed approach to the
2018 RecSys Challenge for music recommendation, and furthermore wrote most
parts of the text. After all, the authors placed 3" among over 100 competing teams
from universities around the world.

Learning to Rank Hotels for Recommendation and Search From
Session-based Interaction Logs and Meta Data

Malte Ludewig and Dietmar Jannach. “Learning to Rank Hotels for Search and
Recommendation from Session-Based Interaction Logs and Meta Data”. In: Pro-
ceedings of the ACM Recommender Systems Challenge 2019. RecSys Challenge "19.
2019

In this joint effort with Dietmar Jannach, the author of this thesis mainly designed
the proposed approach to the 2019 RecSys Challenge on hotel recommendation and
wrote most parts of the text. In the end, the authors achieved the 5™ place amongst
over 500 competitors.

Chapter 1 Introduction

Comparison of Session-Based
Recommendation Techniques

As mentioned in the introduction, many academic publications in the field of recom-
mender systems focus on techniques that only or mostly rely on long-term preference
models. In practical recommendation scenarios, however, such long-term informa-
tion is often not available for a substantial number of users. They might, for example,
be entirely new to a service, or simply access it from another device and are, thus,
not logged in. In consequence, an algorithm has to determine suitable personalized
recommendations based on the limited amount of information it can access, i.e., the
user’s few recent interactions with the website or application. Such recommendation
techniques are categorized as session-based approaches. Amazon’s “Customers who
bought ... also bought” item-based recommendations, where the suggestions are
solely based on the currently viewed item, can be seen as an extreme version of such
a session-based approach.

As mentioned in Section 1.2, this setting, in academia, is usually operationalized
as the problem of predicting the next user action, and the evaluation of novel ap-
proaches is performed in offline experiments on large, time-ordered log datasets from
various domains. The most prominent domains in this context are the e-commerce
and the music domain [QCJ18].

Due to its practical importance, the session-based recommendation problem gained
increasing interest in the recommender system research community. A large number
of novel techniques has been proposed over the recent years. Despite the growing
number of published techniques, the papers do not follow any “standard” benchmark
in terms of the tested datasets, evaluation protocols, or baseline approaches. Thus,
it is often difficult to compare the various proposed algorithms and assess to what
extent they contribute to the progress in the field. Furthermore, the algorithmic
proposals are predominantly evaluated in terms of common accuracy metrics. Many
works, however, showed that there can be huge discrepancies between offline
accuracy results and the production performance of a recommender system (see,
e.g., [Gar+14]), and it, thus, is advisable to evaluate new techniques also in terms
of beyond-accuracy metrics.

19

20

To establish a common base for future research, the author of this thesis performed
an in-depth multi-dimensional performance comparison across multiple domains
and datasets, which involved a number of comparably simple as well as more sophis-
ticated algorithms from the recent literature. At this, a public research framework
was developed and shared alongside a diverse selection of datasets from multiple
domains. The goal is to lay a foundation for more open and comparable research
in the area of session-based recommendation®. Furthermore, a number of the com-
pared algorithms were developed and proposed by the author himself throughout
the publications [JL17c], [KJL17], [LJ18b], and [Lud+19].

Not only in the area of session-based recommendation but in general the comparison
of recommendation techniques is mostly based on offline experimentation. As
stated in Section 1.3, the number of user studies and field tests to assess the
perceived quality of the generated recommendation is comparably low, especially
in the rather novel setting of session-based recommendation. Thus, the author of
this thesis conducted a between-subjects user study reported in [LJ19b] to address
the question of how users perceive the quality of recommendations generated by
five different algorithms. The 250 participants were asked to interact with an online
radio station application and subsequently answer several questions regarding the
recommendation quality in a post-task questionnaire.

This chapter is organized as follows. Next, in Section 2.1 the problem of session-
based recommendation, which was only roughly described so far, is formalized. In
the following, Section 2.2 provides a detailed technical description of the algorithms
that were compared in this thesis. Furthermore, additional related work is presented.
Section 2.3 then describes the evaluation setup and Section 2.4 the outcomes of
the extensive experiments. Finally, Section 2.5 is dedicated to the comparison of
session-based recommendation approaches in the online user study. After describing
the general setup of the study in Section 2.5.1 and 2.5.2, the main findings are
presented in Section 2.5.3.

2.1 Session-Based Recommendation Abstraction

Section 1.2 already informally described and visualized the scenario of session-based
recommendation. The main input to the problem is a chronologically ordered list
of user interactions recorded in his or her current browsing or application usage
session, respectively. Each action refers to a specific type, an item, a user or session
identifier, and often a timestamp. When visiting an online shop, the user, e.g., clicks
on a certain t-shirt, favors it on a wish-list, or adds it to the cart. On a music platform,

°The framework can be found on GitHub: https://github.com/rn51/session-rec

Chapter 2 Comparison of Session-Based Recommendation Techniques

https://github.com/rn5l/session-rec

for example, he listens to a song or skips it. Furthermore, a few datasets also contain
metadata for the items, users, or the context of the interactions. The output is simply
defined as an ordered recommendation list.

To test approaches uniformly across multiple domains, the problem formulation has
to be standardized. Independent of the domain, all scenarios have in common that
a user always shows interest in an item with at least one interaction type, e.g., he
plays a track, he starts a video, he clicks on an item in an e-commerce shop, or
views a hotel detail page in a mobile booking application. To overcome the problem
of multiple and different types of interactions, the main input is here reduced to

only the most common action type, which shows the users’ interest in an item.

Furthermore, as timestamps and metadata are not constantly available across all
datasets, they are also neglected.

This slightly abstracted problem of session-based recommendation can be defined
as follows: Let a session s be a chronologically ordered list of m items s =

[s1,52,53,-..,5m], Sp the set of all past sessions, and I the unique set of all items.

Given a user’s current session s, a session-based approach defines a function
b
SCOTCsession (S, %, Sp) 2.1

which returns a relevance score for each item ¢ in I with regard to the current
session s. A recommendation list of variable size can now be retrieved by sorting the
items according to the score.

2.2 Technical Approaches

Algorithmic approaches to session-based recommendation are usually designed to
predict the next item given the session beginning. Early proposals were, e.g., based
on association rules, sequential pattern mining, or nearest neighbors [Mob+02;
YLY12; HMB12]. Subsequently, more complex approaches of different types were
applied to the problem, e.g., factorized Markov models [RFS10]. Recently, deep
learning approaches mainly dominate the literature [Hid+16a; Li+17; Liu+18].

In the following, this thesis will first provide an in-depth description of all approaches
that are included in the unified research framework. These can be classified into
the categories frequent-pattern mining, nearest-neighbor techniques, factorization
models, and neural networks. In the end, further related methods will be discussed
to provide a comprehensive overview.

2.2 Technical Approaches

21

2.2.1 Frequent-Pattern Mining

As simple baseline techniques, the author of this thesis implemented three straight-
forward frequent-pattern mining approaches: an association rule technique, first-
order Markov Chains, and a heuristic method based on sequential rules. All ap-
proaches have in common that their computational complexity is very low, both in
the training and the recommendation phase. Furthermore, the framework includes
a recent more complex algorithm that adapts context trees from the field of file
compression to represent frequent sequences in the data [MF18].

Association Rules

Simple Association Rules (AR) implements a simplified version of association rule
mining with a maximum rule length of two. The method is designed to recommend
items in the style of “Customers who bought ... also bought”.

Technically, the association rules are extracted by simply counting the co-occurrences
of two items 7; and 1z in all sessions. Thus, given a user’s current session s with s
being the last item in s, we can define the session-based score function as:

1 lp| Ip|
Z ZZ Leq(8ys), Pz) - 1eo(i,py)

Ypes, 2L Teo(s)apa) - (10l = 1) 55, &= o=t
2.2)

The indicator function 1z (a,b) is 1 in case a and b refer to the same item and 0

scorear(s,,Sp) =

otherwise. In Equation 2.2, the co-occurrences are first counted (right side) and
then normalized by the number of rule occurrences for the current item s.

Markov Chains

This simple approach (Mc) can be seen as a sequential version of AR. The rules
capture the transition probabilities between two subsequent items in a session and,
thus, represent a first-order Markov Chain. The baseline is implemented by simply
counting how often users viewed an item i, immediately after another item ;.
Consequently, the score can be calculated as:

lp|—1

SN tno(sispe) - Leolispatt) (23)

—1
Ypes, TP ko (510, 22) 55,

1

scorenc(s, 1, Sp) =

22 Chapter 2 Comparison of Session-Based Recommendation Techniques

Sequential Rules

The third baseline method SR is a variation of MC or AR respectively and was proposed
by the author in [KJL17]. The order of the items in the session is also taken into
account, but in a less restrictive manner. A rule is created when an item i, occurs
at some point after an item i; in a session. The weight of a rule is determined by
the distance in terms of the number of events between the two items, e.g., with:
wsg(d) = 1/(d), where d is the number of interactions between the two items.!?
Following the previews formulas the score function for SR is defined as:

[p| z—1

Z Z Z Leq(8)s], Py) 1eq(is P2) wsr (T—Yy)

Zpesp leiz 1EQ(3\s|vpz) "L pes, z=2y=1

1

scoresr (S, 14, Sp) =

2.4)

Context Trees

In contrast to MC, which can be seen as a simple first-order Markov chain, the
context-tree-based approach proposed in [MF18] represents a variable-order Markov
model. The technique aims to capture sequential patterns in sessions that occur over
multiple interactions. Furthermore, it is non-parametric, i.e., it is not dependent on
any parameters that require an optimization.

Figure 2.1: Visualization of a simple context tree. Given a current user session (ng, ng, ni),
the dashed nodes would be traversed top-down in the process of creating
recommendations (adapted from [MF18]).

0ther weighting functions, e.g., a logarithmic decay, are possible as well. Using the linear function,
however, on average led to the best results in the experiments.

2.2 Technical Approaches

23

24

In the training phase, a context tree is constructed from all users’ historic sessions.
Figure 2.1 presents a minimal example of such a tree, which was constructed from
just a few example sessions. Given a current user session (nq, n3, n1), the tree is now
traversed top-down and nodes in the tree are “activated” (dashed nodes) when the
node represents a suffix of the current session. While building the tree, each node
records the probability that a certain item occurs after the sequence that the node
is representing. These probabilities are then combined in a weighted scheme for
all nodes activated by the current session to rank potential items from the catalog.
Note that the weights (w1, w2, w3) in Figure 2.1 are automatically determined in the
training or the tree construction phase, respectively.

2.2.2 Nearest-Neighbor Techniques

In previous works (see, e.g., [VG14]), context-aware nearest-neighbor-based ap-
proaches often showed a surprisingly good performance in terms of their predictive
accuracy. Hence, the author of this thesis adapted this scheme and refined it in
multiple nearest-neighbor techniques, which were proposed throughout [JL17c],
[LJ18b], and [Lud+19]. Furthermore, also traditional item-based schemes are
suitable for the session-based problem setting and have been employed as a baseline
method in previous works [Hid+16a].

Item-Based Nearest Neighbors

Similarly to AR, the item-based kNN method (IKNN) implements the “Customers who
bought ... also bought” scheme. Similarly, IKNN solely bases its recommendations
on the last given item in the current session. Then, the recommendations are
formed from the items that are most similar to the last given item in terms of the
co-occurrences in other sessions. The items are encoded as binary vectors over
the session-space, i.e., each position of the vector corresponds to a certain session
and is set to 1 when the item is part of that session. Item similarities are then
calculated by measuring the cosine similarity between the vectors. In contrast to AR,
the application of the cosine similarity measure makes the approach less prone to
popularity biases. In general, despite their simplicity, item-to-item approaches are
often used in practice and usually show a strong performance [LSY03; Dav+10].

Chapter 2 Comparison of Session-Based Recommendation Techniques

Session-Based Nearest Neighbors

The basic session-based kNN technique (SKNN) (see [BJ14]) shares some similarities
with IKNN. However, in contrast to solely basing the recommendation on the very
last item in the current user session, SKNN considers all items in the session. Then,
instead of directly finding similar items, SKNN determines the & most similar past
sessions. At this, sessions are represented as binary vectors over the item-space. A
set of neighboring session N is then calculated with a suitable similarity measure,
e.g., again, the cosine similarity. Given the current session s, the neighbors N, and
a similarity measure sim(s, s2), the score function can be defined as:

scoresgnn (8,1, Sp) = Xpen, stm(s,n) - 1,(1) (2.5

In this case, the function 1,,(7) indicates if the session n contains the item i.

Scalability. Although nearest-neighbor-based methods usually show a solid per-
formance, they are very prone to scalability issues. In a large scale scenario, it is
computationally not feasible to calculate the similarities of the current session to all
past user sessions. In [JL17c], the author of this thesis, thus, presented an implemen-
tation of the algorithm that is applicable in practical scenarios. The improvements
rely on fast in-memory data structures and heuristic neighborhood sampling (refer
to [JL17c] for more technical details). It has shown that sampling a small fraction of
all past sessions only leads to small decreases in the prediction accuracy. Capturing
recent trends in the community by sampling solely the most recent sessions often
even proved to be beneficial. The nearest-neighbor implementations, therefore, have
an additional parameter m, which determines the size of the sample. In the experi-
ments reported in the course of this thesis, it was, for example, mostly sufficient to
consider only the 1,000 most recent sessions that include one item from the current
session at minimum.

Sequence-Awareness. The basic SKNN approach does not incorporate the order
in which the items occur in a session. However, the order of the elements might
be of particular importance, e.g., as the focus or the goal of the user might shift
over a single session. Thus, in [LJ18b], the author of this thesis proposed several
sequence-aware extensions to SKNN.

* Vector Multiplication Session-Based kNN (v-SKNN): The main idea of this
extension is to consider more recent events in a session as more important.
Instead of representing the current user session as a binary vector, a real-valued
weighted encoding is performed. While only the very last interaction is assigned
the value 1, the previous interactions obtain a lower weight determined by a
variable decay function, e.g., a linear, logarithmic or exponential decay based on

2.2 Technical Approaches

25

26

the distance to the most recent interaction in steps. The session similarity is then
calculated as the dot product. Note that past sessions are still encoded as binary
vectors over the item-space.

* Sequential Session-Based kNN (s-SKNN): The second extension, again, empha-
sizes items more the later they occur in the current user session. In this case,
however, the final scoring function is adjusted:

scores-sknn (S, 1, Sp) = Lnen, SIm(s,n) - Wseq(i,n, S) (2.6)

To reward items that appear later in the current session, the indicator function
1,,(7) is replaced with a weighting function ws.,(7, n, s). For a neighbor session
n, the weight is higher the more recently an item was consumed in the current
session that appears in both of the sessions. Following v-SKNN, if the most recent
item s|, appears in both sessions, the assigned weight is 1. Otherwise, the weight
is again determined by a variable decay function based on the distance d to the
most recent item in terms of the steps, e.g., we, (4,1, 5) = (|s| — d)/]s]-.

* Sequential Filter Session-Based kNN (SF-SKNN): The third extension, like s-
SKNN, also adjusts the scoring function, but in a more restrictive way. Here, the
recommendation of an item is only allowed in case it appears after the most
recently consumed item at least once in the dataset.

scoresp.sknn (8,1, Sp) = Lnen, sim (s, n) - 1n(s)y), 1) 2.7)

The scoring function is almost identical to SKNN, however, the indicator function
1, (s, 7) is more restrictive. As stated above, it only returns 1 if the item i occurs
immediately after s, in any session s in S),.

In the course of the author’s most recent work [Lud+19], all sequential extensions
have been integrated into a single parametrized approach, which is hereafter referred
to as V-SKNN. Furthermore, [Lud+19] presented an additional extension that favors
the recommendation of less popular items to mitigate potential popularity biases. At
this, the inverse document frequency (IDF) is calculated for each item and included
in the final scoring function:

scorey.sknn (S, 1, Sp) = Lnen, sim(s,n) - Weeq(1, 1, 8) - wigr() (2.8)

Here, w;qs (i) adds an IDF-based weight of configurable strength, which showed a
beneficial effect for the successful generation of playlist continuations in previous
experiments conducted by the author of this thesis [Lud+18].

Chapter 2 Comparison of Session-Based Recommendation Techniques

2.2.3 Factorization-Based Approaches

As mentioned in the beginning of this section, the second category of techniques that
can be applied in the session-based scenario are a number of factorization-based
methods. Besides sequence-aware factorization approaches, also the basic implicit
feedback recommendation approach Bayesian Personalized Ranking (BPR) has been
included as a baseline and adapted to the scenario. Furthermore, three sequential
methods from the literature have been included, Factorized Personalized Markov
Chains (FPMC) [RFS10], Factored Item Similarity Models [KNK13], and Factorized
Sequential Prediction with Item Similarity Models [He+16]. Like BPR, those tech-
niques are not explicitly designed for the scenario of session-based recommendation
and were slightly adjusted. Finally, the author of this thesis designed a novel tech-
nique named Session-based Matrix Factorization, which adopts ideas from previous
techniques but is, however, created specifically for the given scenario.

Bayesian Personalized Ranking

Bayesian Personalized Ranking (BPR) is well-known and widely used as a baseline
approach in the recommender systems research community [Ren+09]. Although
the method is not designed for the scenario of session-based recommendation, it can
easily be adapted to the setting and has, thus, been included as a baseline technique,
representative for traditional long-term preference models. To apply BPR in the given
setting, each session was assumed to be caused by a unique user, i.e., the session
corresponds to the user in a sparse user-item interaction matrix. After applying BPR,
each user and item is represented by a lower-dimensional vector of latent factors.
Given the current session s, recommendations can be generated by inferring a user
vector u, as the average of all latent vectors for the items in s. Traditionally, the
score for item i is determined by calculating the dot product of the user profile u;
and the latent factors for .

Factorized Personalized Markov Chains

Originally, Factorized Personalized Markov Chains (FpMcC) were designed for the
problem setting of next-basket recommendation [RFS10]. Given a history of pur-
chased shopping carts, the task is to predict the item that a user will purchase
next. By simply limiting the maximum basket size to one and assuming the current
session to be the history of baskets, the approach immediately suits the session-based
recommendation scenario.

2.2 Technical Approaches

27

28

E) 05 1 (05| 0 [T
£) ||
S 050 05 0 [
2222
to item

Figure 2.2: Visualization of the personalized transition cube (adapted from [RFS10]).

From an algorithmic perspective, FPMC extends the traditional user-item matrix
factorization by a third dimension, the item-item transition probability (see Figure
2.2). To factorize the three-dimensional tensor, internally a specific form of Canonical
Tensor Decomposition is applied. Again, as no long-term user histories are available
in this scenario, the user latent vectors are estimated as the average of the item
latent vectors in the current session. More technical details can be found in [RFS10]
and [LJ18b] respectively.

Factored Item Similarity Models

In contrast to FPMC, Factored Item Similarity Models (Fism) rely solely on item-item
factorization and, thus, are directly applicable in the session-based scenario. The
score of an item i is determined by the sum of latent vector products between i and
each item that was already "rated" by a user. Originally, in [KNK13], the model
was designed to predict ratings, for example, in the movie domain. Thus, for the
given session-based scenario, the training procedure from BPR was adapted to find
an optimal ranking for all items given the items in a session. Even though the model
is directly applicable in the given setting, a possible disadvantage is that sequential
item-item relations in the data are neglected. Technical details can be found in
[KNK13] and [LJ18b], respectively.

Factorized Sequential Prediction with Item Similarity Models

The Factorized Sequential Prediction with Item Similarity Model (FOSSIL) tries to
overcome the previously mentioned disadvantage of FISM by incorporating sequential
information in the form of factorized Markov chains [He+16]. The FisM model is

Chapter 2 Comparison of Session-Based Recommendation Techniques

extended by a second item-item factorization part, which is supposed to learn an
item-item transition probability. To determine this second part of the score for a
certain item 4, a latent representation of 7 is multiplied with a latent representation
of the last item in the current session. Finally, the second score is combined with
the FISM score in a weighted sum (see [He+16] and [LJ18b] for details). Again, the
model is directly applicable in the session-based scenario as no long-term information
is needed for prediction. The training of the model is performed similarly to Fism.

Session-Based Matrix Factorization

Finally, with the Session-based Matrix Factorization technique (SMF), the author
of this thesis proposed a novel factorization-based model that was specifically de-
signed for the task of session-based recommendation. The basic idea is to combine
traditional matrix factorization with factorized Markov chains while considering the
special cold-start scenario of session-based recommendation.

In a simplified traditional factorization-based prediction model, the scores for a user
u and an item 7 are determined with

SCOTefactorized(uy Z) = quz‘T (29)

p, and ¢; represent the lower-dimensional latent vectors for user v and item ¢,
respectively. As the user is anonymous, in SMF the vector p, is replaced by a session
preference vector s., which is calculated in the following way:

Se = Mgy - st (2.10)

Here, s, is a binary representation of the current session s (see Section 2.2.2), and
Mg is a transformation matrix that maps s to the latent vector space. Thus, Mgy is
of size |I| x |¢;.

Using the transformed session representation s, the score function of SMF is pre-
sented in Equation 2.11.

sequential dynamics
—_—

scoresyr(s, 1, Sp) = seql-T +b1i Hw;-(ns‘s‘m? + b2) (2.1
—_——

session preferences

Here, the scoresyr(s, 4, Sp) for a session s with the most recent item s, is calculated
as a weighted sum of the session preferences and sequential dynamics. The session
preferences s, simply replace the long-term user vector in the traditional matrix

2.2 Technical Approaches

29

30

completion setup and the score for an item ¢ with respect to the current session s
is defined by the dot product of s, and the latent item vector ¢;. The sequential
dynamics are determined like in FOSSIL, i.e., a latent vector representation of the
item to score m; is multiplied with a representation of the last item in the current
user session N, - Furthermore, both parts of the overall model include a bias term
b, to learn a global unpersonalized score for all items in the dataset. The weighting
wj, finally, is also dependent on item 4.

The model can be trained by applying a stochastic gradient descent (SGD) opti-
mization procedure and similarly to BPR learns to rank positive examples of session
continuations (subsequent items to the given session start) over negative ones (ran-
dom items that do not occur in the session). Furthermore, regarding the exact
training procedure and the loss functions, some improvements from [HK18] were
included in the approach (see [LJ18b] for details).

2.2.4 Neural Networks

Due to the increasing success of deep learning in various fields and the growing rele-
vance of the session-based recommendation scenario, over the recent years numerous
session-based techniques based on neural networks were proposed. Early approaches
relied on Recurrent Neural Networks (RNNs), which showed great success in the
area of neural language processing (NLP) and seem like a natural choice to model
the sequence of actions in a user session [Hid+16a; HK18]. Later, also alternative
network architectures were adopted for the session-based recommendation task as
they were reported to be superior to RNNs for certain task, e.g., convolutional neural
networks [Yua+19], attention networks [Liu+ 18], memory networks [Wan+19], or
graph-based networks [Wu+19].

In the course of the work described in [JL17c], [LJ18b], and [Lud+19], the author
of this thesis implemented various approaches in the unified framework, which was
publicly released alongside [Lud+19]. To represent the most common network
architectures, these include an early approach based on Gated Recurrent Units
(GRUs), a convolutional neural network, and a recent approach that relies solely on
the attention-mechanism concept. For the sake of completeness, also more recent
works that could not be included in the comparison due to time restrictions are
discussed in Section 2.2.5.

Chapter 2 Comparison of Session-Based Recommendation Techniques

Gated Recurrent Units for Recommendation

Techniques based on RNNs represent the first deep learning approaches that were
applied to the scenario of session-based recommendation. The most prominent one
uses Gated Recurrent Units for Recommendation (GRU4REC), was first presented in
[Hid+16a], later on improved in [HK18], and is designed to predict to probability

fo
o0
g
O [N
Sl 0 I~ g
Z = ﬁf]
o) [=
o > =
. L =] - ,‘_“’: g
'-: 50 g g e o ©»n
ED £ DI E D & D E D> 8| 8
Q o . —] Qe
= =) =) 1
5 g5t I~ I~ = §; &
E 2 e g & = |z
[T

[£5] o &
© A 7y 2 3
o 1] o
g ~pe- . .

1

E/I _______________ L = ! \

Figure 2.3: Architecture of the GRU4REC neural network (adapted from [Hid+16a]).

The overall architecture of GRU4REC is visualized in Figure 2.3. The input to the
network is a single item, which is one-hot encoded in the item-space and the output
is a similar-shaped vector that represents a probabilistic distribution for the next
item given a session beginning. The embedding layer, the feedforward layer, and
additional GRU layers, hereby, are optional.!! The in-between GRU layers memorize
a lower-dimensional hidden state that represents all items that a user has previously

interacted with in a session.

The choice of applying RNNs for session-based recommendation might be natural,
however, with GRU4REC the authors introduced further innovations for the specific
setting of session-based recommendation. In [Hid+16a] they proposed an efficient
training procedure, and in [HK18] they furthermore presented new loss functions
that helped to increase the predictive performance significantly.

Neural Attentive Recommendation Machine

The Neural Attentive Recommendation Machine (NARM), as proposed in [Li+17],
follows the general idea of GRU4REC to employ RNNs, GRUs in particular, to model
the user sessions. However, as an additional attention-mechanism showed to improve

"ndeed, in [Hid+16a] the authors report that a single GRU layer showed the best performance.

2.2 Technical Approaches

31

32

Ce
scorey
9
19 score,
@ ©»
28 e) 9
o8 1 w5 & scores
e Lo o
Il ? 2 I ET 3 Scorey
> — =t I
ThE IEEaE e i
5 - » e o %) .
= Q@ 4) :
S kg =1 = 3 :
) = =
- —
: g -
g = scoren,
=3
g.
em
Local Encoder Item Embeddings
L J L J
Encoder Decoder

Figure 2.4: Architecture of the NARM neural network (adapted from [Li+17]).

the performance of recurrent networks in NLP [BCB15], the authors of NARM
transferred this principle to an attentive network architecture for the scenario of

session-based recommendation.

Figure 2.4 gives an overview of the NARM architecture and shows how the attention-
mechanism is applied. The Global encoder directly corresponds to the concept of
GRU4REC, the Local encoder, however, adds the attention-mechanism from [BCB15].
Instead of just encoding the session by the last hidden state of the RNN (A7), all
hidden states are considered. This is achieved by calculating a similarity between
the last “global” hidden state h{ and all previous “global” hidden states h.. Then,
the final local encoding of the session a! is simply determined as the sum of all
hidden states, weighted by their similarity to hY. In the process of determining
the item scores, NARM, in comparison to GRU4REC, furthermore adds a Similarity
Layer, which is finally softmax-activated. Following traditional matrix factorization
techniques, the Similarity Layer, similar to SMF, calculates a dot product between
the final session representation ¢; (concatenation of ai and hY) and the latent item
representations e;. For more technical details, refer to [Li+17].

Short-Term Attention/Memory Priority Model

A disadvantage of RNNs is that the calculation of the hidden states has to be
performed step-by-step, i.e., the next state depends on the previous one. Thus, no
parallelization can be applied and the computations can become demanding for
longer sequences. The Short-Term Attention/Memory Priority Model (STAMP) tries
to overcome this problem by completely neglecting RNNs and solely relying on the
previously introduced attention-mechanism [Liu+18].

Chapter 2 Comparison of Session-Based Recommendation Techniques

score; 2

€2

‘ Trilinear Composition €3
[[“
‘ Feed Forward ‘ ‘ Feed Forward ‘ €i

A
mgq me

Attention Mechanism [
A

JORORORERON e

Session Item Embeddings

Figure 2.5: Architecture of the sTAMP neural network (adapted from [Liu+18]).

Figure 2.5 presents an overview of the STAMP architecture. Each item z; in the current
session is represented by a lower-dimensional latent representation (embedding
layer). Instead of first applying an RNN, as in NARM, the attention-mechanism is
directly applied to the embedded items to create a session representation m,. Here,
not the last hidden state but simply the last embedded item z; is used as a reference
point for the calculation of the similarity to each item in the session. Differently from
the default attention mechanism described for NARM, the similarity function in STAMP
furthermore includes a mean vector of all items in the session (). The session
representation m, and the last item in the session z; are then fed into individual
feed-forward layers to create two state vectors hs and h;. Finally, the score for an
item i is determined in a triple product of these two states and a latent (embedded)
representation ¢; for the target item 1.

Convolutional Generative Network for Next-ltem Recommendation

Similar to sTAMP, which applies a pure attention-based architecture, the Convolu-
tional Generative Network for Next-Item Recommendation (NEXTITNET) relies on
the concept of convolutional networks to overcome the performance disadvantages
of RNNs [Yua+19]. Convolutional neural networks (CNNs) are the preferred archi-
tecture for problems related to computer vision. They, however, also showed to be
successful for the task of modeling a sequence of signals, e.g., in [Oor+16].

Figure 2.6 visualizes the general concept of applying CNNs to the task of session
modeling. First, as in STAMP, the items in the session (x; to x11) are represented
by lower-dimensional embedding vectors. Here, the resulting matrix can be seen
as an “image” of the current session. Next, traditional convolutional layers are
applied to “scan” the session. A pooling layer transforms the scanned information

2.2 Technical Approaches

33

34

o
o
X1 | scorey
o
5
Xy .;‘ scorey
.
o
X3 e :.' scores
] ¢ *
T, 0 o
X4 * o scorey
.".— — ".’ .
=anrvu I R N N N R DN
g xs . e, scores
] T
o X *., scoreg
N e——] — — Y
X7 3 score;
tea, 1 1 K]
X score,
8 o .’0. 3
X e, .
9 e, *,
e, .’0
X10
] j .
.
X11 Ry ‘., | scorey
.......... I T

Item Embedding Convolutional Layers Pooling Feed Forward

Figure 2.6: Abstract architecture of convolutional neural networks for session-based recom-
mendation (adapted from [Yua+19]).

into a one-dimensional vector, from which, with the help of a feed forward layer, a
probability distribution for the next item can be predicted. In general, NEXTITNET
utilizes this architecture but, furthermore, introduced several improvements, e.g.,
from [Oor+16]. Mainly, the authors transform the session “image” into a one-
dimensional representation to be able to apply more effective 1-D convolutions.
Furthermore, they incorporate the concept of dilated convolutions with “holes” to
improve the modeling of longer sequences [Oor+16], and, finally, borrow concepts
of residual learning to increase the model stability [He+15].

2.2.5 Further Related Work

Besides the representative methods that were included in the experimental setup,
for most categories of session-based techniques, e.g., neural models, a multitude of
other related approaches has been proposed in the literature over the recent years.
This section provides an overview for the sake of completeness.

Historically, early approaches that are applicable to session-based recommendation
mostly rely on some form of frequent pattern mining, e.g., in [Mob+02] the authors
try to predict the next step in user navigation behavior. Also in the music and
e-commerce domain similar techniques were then applied for predicting the next
item in various recommendation scenarios [YLY12; HMB12; BJ14].

Besides GRU4REC, NARM, STAMP, and NEXTITNET the majority of the recent works
that specifically address the session-based recommendation scenario are neural-
network-based techniques, e.g., [Wu+19] or [Wan+19]. After the authors of
GRU4REC first introduced their RNN-based approach, a few improvements to the

Chapter 2 Comparison of Session-Based Recommendation Techniques

model have subsequently been proposed in [TXL16]. However, with the extensions
presented by the original authors in [HK18], the latest version of GRU4REC showed
a superior predictive performance again. In [LLH17], the authors, similar to NARM,
presented an alternative architecture based on RNNs with the attention-mechanism
that was first introduced for machine translation in [BCB15]. In [GWD14] and
[WCB15], external memory modules were proposed for neural networks. The
authors of [Wan+19] incorporated this concept for session-based recommendation
by introducing a memory of the most recent historical user sessions to an RNN.
Following a concept similar to SKNN, the prediction of the next item then additionally
relies on the most similar past session. With the ideas presented in [Sca+09], neural
networks became also popular for graph-based tasks. In [Wu+19], the authors
model user sessions as graphs and rely on such graph neural networks alongside
an attention-mechanism to model the current session and predict the next item. A
particularity of session-based or, in general, sequence-aware recommendation is that
it can be beneficial to repetitively recommend items that a user is already aware
of (see Section 1.2). RepeatNet [Ren+19] addresses this aspect of session-based
recommendation. The authors, therefore, propose an RNN-based approach that
explicitly tries to model if a user is in an exploratory mood and, thus, should be
presented with unknown items, or it is likely that he will click on an item again. A
number of neural session-based approaches furthermore showed that the integration
of timestamps and content data, or the consideration of multiple interaction types
in the network architecture can be beneficial. In [BK17], for example, the authors
considered item dwell times in a GRU4REC-like RNN model. The authors of GRU4REC,
in [Hid+16b], presented an extended architecture, which showed to improve the
predictive accuracy by incorporating video thumbnails or product images that were
encoded with CNNs. In the news domain, e.g., word embeddings were employed
alongside CNNs to create article representations [SFC18]. These, in turn, were fed
into an Long Short-term Memory (LSTM) network designed for the session-based
recommendation of suitable articles.

Furthermore, the SKNN technique presented by the author in [JL17c] also led to a
number of follow-up publications, e.g., [Guo+19] and [Gar+19]. In [Guo+19],
the authors proposed two extensions to SKNN, which add sequential constraints to
the session sampling procedure and account for the item popularity in the session
similarity calculation. Similar to v-SKNN, [Gar+19] proposes several sequential
extensions to the basic SKNN method. As in V-SKNN, the authors give more weight to
items that have been more recently clicked in the current user session. Furthermore,
their approach utilizes timestamps to weight neighboring sessions by recency and
considers the position of candidate items in neighboring sessions. The items obtain a
higher relevance score, the closer they have been clicks to an item from the current
session. Finally, in [SSZ18] the authors explored the utilization of content data in
techniques similar to SKNN in the news domain.

2.2 Technical Approaches

35

36

Besides the mentioned session-based approaches, a number of related works exist
that focuses on predicting the next item and incorporating sequence information but
not explicitly in a session-based scenario. Such models are often based on Markov
chains [He+09; ML11; GDF13; Hos+15], Markov decision Processes (MDP) and
Reinforcement Learning (RL) [SHBO5; MBR12; TB14], or neural networks [Zha+14;
Sor+15; SEH16; Twal6; Yu+16; Du+16; Soh+17]. The typical application scenar-
ios, again, are the music and e-commerce domain. However, most of the approaches
require long-term histories or additional item metadata, and are, thus, not included
in the in-depth comparison.

Dense item representations are another category of sequence modeling techniques.
They represent items in lower-dimensional vectors that are meant to encode se-
quential information in the data, e.g., with latent Markov embeddings [Che+12;
CXJ13; Wu+13; Fen+15] or distributional embeddings [Dju+14; Bae+15; Grb+15;
Tag+15; VSC16; RLJ16; Zhe+10]. A comprehensive discussion of approaches for
the more general problem setting of sequence-aware recommendation can be found
in [QCJ18]. In the context of [LJ18b], however, the author of this thesis also tested
various item embedding techniques (see [Ren+09; Mik+13; PSM14]) as an alter-
native way of representing sessions. As, e.g., in [Tag+15], the lower-dimensional
vectors can be used as an alternative to the binary representation in SKNN and IKNN.
Using such embeddings, however, did not lead to improvements over the original

nearest-neighbor techniques.

2.3 Evaluation Scheme

Section 1.3 introduced the most common evaluation schemes in the areas of session-
based and session-aware recommendation. In this section, the protocol that was
employed in the in-depth comparison conducted by the author of this thesis is
presented in more detail (see also [LJ18b]).

2.3.1 General Setup

As stated in Section 1.3, the main output of the session-based recommendation
problem is a ranked list of items that matches the given session beginning. The “gold
standard” for evaluation in the research literature is usually to withhold items in test
sessions that an algorithm then has to predict.

Most recent proposals in the area of session-based recommendation rely on an

incremental given-N next-item scheme (see Section 1.3). At this, iteratively all items
in a session are chronologically revealed and the corresponding immediate next item

Chapter 2 Comparison of Session-Based Recommendation Techniques

forms the ground truth for prediction. This scheme was chosen for the in-depth
comparison, as it a) includes alternative protocols with a fixed N and b) represents
the users’ journey throughout a session well.

From a logical point of view, however, the immediate next item might not be the
only relevant item to the user. Also, other held-out items of the same session are
apparently of interest to the user and, thus, should eventually be included in the
ground truth.The comparison presented in this thesis, hence, additionally includes
measurements using an incremental given-N remaining items scheme.

Accuracy Measures. Dependent on the evaluation protocol, the following accuracy
measures were included:

* In the given-N next-item setup, the ground truth consists of the immediate next
item. The metrics that are commonly used in the literature (see [Hid+16a;
Liu+18]) and, thus, were included are a) the hit rate (HR) and b) the Mean
Reciprocal Rank (MRR) at defined list lengths. While the ranking of the recom-
mendations is not important for the HR, the MRR rewards the position in which
a relevant item is recommended. The results are averaged over all test sessions.

* In the given-N remaining items setup, as mentioned in Section 1.3, all standard
information retrieval measures can be applied. Here, the comparison includes
Precision as well as Recall as non-ranking measures and the Mean Average
Precision (MAP) as a ranking-aware metric.

Splitting Procedure. As explained in Section 1.3, the majority of the publications
relies on a single session-level timed-based split to separate the full dataset into a
training and test part, e.g., [Hid+16a], [Li+17], and [Liu+18]. In order to ensure
comparability with other works, the exact same setup was also included in the
conducted experiments.

However, single-split protocols have an apparent limitation. The results that are
collected for one specific train-test configuration could be prone to random effects
or particularities of the data. Thus, it is generally advisable to apply some sort of
cross-validation scheme. As the data is chronologically ordered, a sliding-window
protocol was used. The data was split into 5 slices of equal size, which, then again,
was timed-based split into training and test parts. A more detailed description is
presented in [LJ18b].

Additional Quality Factors. In offline experiments regarding session-based recom-
mendation, researchers often neglect the underlying purpose of a recommendation
technique [JA16], e.g., if the system should be designed for the discovery of new

2.3 Evaluation Scheme

37

38

and maybe unpopular items or for finding substitutes to an inspected item. As
a consequence, accuracy should not be the only quality factor that is tested for
algorithms in an offline evaluation. To account for such scenarios, the following
additional quality measures were included:

* (Coverage: First, it was measured how many different items overall appear in the
top-k recommendation lists produced by an algorithm. The metric is sometimes
also named aggregate diversity (see [AK12]) and should ensure that an algorithm
not only focuses on a few items of the catalog.

* Popularity: Dependent on the data, obtaining a high accuracy can correlate with
the recommendation of mostly very popular items (high popularity bias). The
popularity tendency of an algorithm should, thus, be measured as well, because
such recommendations might not be satisfactory to the users. The popularity
score for an algorithm is calculated as the mean global popularity (number
of item occurrences divided by the total number of events) of the items in all
generated recommendation lists.

* Scalability: Modern deep learning models are often complex and require a sub-
stantial amount of computational power for the training process. Furthermore,
the extensive tuning of hyper-parameters is often required to even achieve satis-
factory results with the models. Thus, all techniques were also tested in terms of
their memory requirements and runtimes, both for the training as well as the
recommendation phase.

Overall, these beyond accuracy metrics should contribute to a better understanding of
certain characteristics of the tested recommendation techniques and reveal possible
practically relevant particularities and limitations.

Parameter Optimization. Some of the tested approaches, especially the neural
networks, have many hyper-parameters that can affect the training process and,
more importantly, the accuracy performance significantly. Thus, for each dataset the
hyper-parameters for these techniques must optimized in a consistent procedure to
ensure reliable results and, most of all, a fair comparison. Following the procedure
in [Hid+16a], the hyper-parameters were determined through a random search of
the parameter-space in 100 iterations. Performing an exhaustive grid search with a
set of reasonable parameter combinations, for many of the techniques, is impossible
in a reasonable amount of time due to the computational complexity of the methods
(see also Section 2.4.2). As in [Hid+16a], the hyper-parameters were tuned with
respect to the MRR at a list length of twenty. The exact optimization procedure, the
considered parameter-space per technique, and the final parameters can be found in
[LJ18b] as well as [Lud+19] and the corresponding appendices.

Chapter 2 Comparison of Session-Based Recommendation Techniques

2.3.2 Explored Datasets

The experiments performed by the author of this thesis throughout [JL17c], [LJ18b],
and [Lud+19] include nine datasets from three different domains. These originate
mostly from the e-commerce websites and music services. Furthermore, data from a
large news website was included to also represent a fast-moving domain, in which
items are only relevant for a very short time. Table 2.1 provides a short description
of all datasets. A more detailed discussion, also regarding the particularities of the
domains, is presented in the included publications.

Table 2.1: Brief description of the datasets included in the comparison.

E-Commerce

RSC15 This is one of the standard datasets in session-based recommendation and was also
used in most of the related works [Hid+16a; Li+17; Liu+18]. The data was released
in the course of the 2015 ACM RecSys Challenge. It contains timestamped click
sequences of sessions recorded over 6 months. Besides item views, the data also
includes purchases.

RETAILR In the context of a Kaggle competition, the personalization company retailrocket
provided a dataset that, again, consists of user logs collected over six months.

DIGINETICA This dataset was published in the context of the 2016 CIKM Cup by the e-commerce
personalization company Diginetica. Like RSC15 and RETAILR, the data contains
multiple different action types and was reduced to just item inspection events.

ZALANDO In contrast to the other datasets, the last e-commerce dataset is non-public. The data
consists of user logs of the online fashion retailer Zalando collected over one year.

Music
8TRACKS This non-public dataset was provided by the online playlisting service 8tracks. The
data includes handcrafted playlists.
AOTM This dataset also consists of handcrafted playlists that were collected from the
Art-of-the-Mix platform. In contrast to 8TRACKS, AOTM is publicly available [ML12].
30MUSIC This dataset consists of historic user listening logs of the online music service last.fm

and was published in [Tur+15].

NOWPLAYING The last music dataset was constructed from tweets with the hashtag “#nowplaying”,
in which users post the tracks they are currently listening to. Thus, NOWPLAYING
represents another dataset of music listening logs [Zan+14].

News

CLEF This dataset was released by the advertising company plista for the 2017 CLEF
NewsREEL challenge.’> The data includes article-read logs from multiple news
platforms. The most interactions were collected for the German news platform
Sportl and form the dataset CLEF.

For many of the public datasets, the user interaction logs have already been split into
sessions and, thus, included a unique session identifier. For some datasets, however,
the "sessionization" had to be performed manually. In these cases, we applied a
common heuristic and split the user logs after a certain period of inactivity [CMS99].
Following the default configuration of typical web servers, the logs were split after
an idle time of 30 minutes.

2.3 Evaluation Scheme

39

40

2.4 Multi-Dimensional Comparison

After introducing the included techniques and the overall evaluation setup, this
section now presents the main findings that were reported throughout the author’s
publications [JL17c], [KJL17], [LJ18b], and [LJ19b].

2.4.1 Accuracy Measures

In this section, the most important findings of the experiments in terms of the
common accuracy measures are presented. Specifically, the outcomes for HR, MRR,
Precision, Recall, and MAP at a list length of 20 will be reported.!® Later on, the
impact of the list length is discussed in more detail. In the following discussion,
the tested techniques are furthermore classified into simple or baseline techniques
like SKNN, CT, or AR that do not require an extensive training process, and complex
methods that, in contrast, do.

Table 2.2: Accuracy results for a list length of 20 for two e-commerce datasets.*
(a) RSC15 (b) RETAILROCKET

RSC15 RETAILROCKET

Metrics MAP@20 P@20 R@20 | HR@20 MRR@20 Metrics MAP@20 P@20 R@20 | HR@20 MRR@20

NARM 0.0357 0.0735 0.5109 | 0.6751 0.3047 SKNN 0.0283 0.0532 0.4707 | 0.5788 0.3370
SMF 0.0352 0.0725 0.5065 | 0.6761 0.3071 V-SKNN 0.0278 0.0531 0.4632 | 0.5745 0.3395
STAMP 0.0344 0.0713 0.4979 | 0.6654 0.3033 GRU4REC 0.0272 0.0502 0.4559 | 0.5669 0.3237
V-SKNN 0.0341 0.0707 0.4937 | 0.6512 0.2872 SMF 0.0246 0.0467 0.4121 | 0.5091 0.2455
GRU4REC 0.0334 0.0682 0.4837 | 0.6480 0.2826 NARM 0.0239 0.0440 0.4072 | 0.5549 0.3196
SR 0.0332 0.0684 0.4853 | 0.6506 0.3010 STAMP 0.0229 0.0428 0.3922 | 0.4620 0.2527
AR 0.0325 0.0673 0.4760 | 0.6361 0.2894 AR 0.0205 0.0387 0.3533 | 0.4367 0.2407
SKNN 0.0318 0.0657 0.4658 | 0.5996 0.2620 SR 0.0194 0.0362 0.3359 | 0.4174 0.2453
CT 0.0316 0.0654 0.4710 | 0.6359 0.3072 NEXTITNET 0.0173 0.0320 0.3051 | 0.3779 0.2038
NEXTITNET - - - - - CT 0.0162 0.0308 0.2902 | 0.3632 0.2305

General Findings. First, the adapted factorization-based approaches were almost
always the worst performing methods in terms of the accuracy (except for SMF).
Even though being sequence-agnostic, BPR surprisingly often performed best among
the factorization approaches. In general, these results show that techniques designed
under the assumption of the existence of long-term user histories are not necessarily
well suited for session-based recommendation. Due to their poor performance,
those techniques were excluded from further experiments in [Lud+19], and will not
further be considered in this discussion. All results alongside a discussion of them
can be found in [LJ18b].

13 list length of 20 is commonly used and, thus, ensures good comparability.

4The best values are highlighted in bold font and the best result from another category of algorithms,
simple or complex, is underlined. Significant differences according to a Student’s t-test with
Bonferroni correction are indicated by the dashed line (o« = 0.05). Due to computational limitations,
the results for NEXTITNET could not be determined for one of the datasets.

Chapter 2 Comparison of Session-Based Recommendation Techniques

Table 2.3: Accuracy results for a list length of 20 for two of the music datasets.'®
(a) NOWPLAYING (b) AOTM

NOWPLAYING AOTM

Metrics MAP@20 P@20 R@20 | HR@20 MRR@20 Metrics MAP@20 P@20 R@20 | HR@20 MRR@20

V-SKNN 00193 0.0664 0.1828 | 0.2534 0.0810 skaN 0.0037 00139 0.0390 | 0.0417 0.0054
SKNN 0.0186 0.0655 0.1809 | 0.2450 0.0687 V-SKNN 0.0032 0.0116 0.0312 | 0.0352 0.0057
AR 0.0166 0.0564 0.1544 | 0.2076 0.0710 AR 0.0018 0.0076 0.0200 | 0.0233 0.0059
SR 0.0133 0.0466 0.1366 | 0.2002 0.1052 SMF 0.0015 0.0064 0.0195| 0.0148 0.0082
NARM 0.0118 0.0463 0.1274 | 0.1849 0.0894 SR 0.0010 0.0047 0.0134| 0.0186 0.0074
SMF 0.0117 0.0457 0.1350 | 0.2113 0.0935 NARM 0.0009 0.0050 0.0146 | 0.0202 0.0088
GRU4REC 0.0116 0.0449 0.1361 | 0.2261 0.1076 CT 0.0006 0.0043 0.0126 | 0.0191 0.0111
STAMP 0.0111 0.0455 0.1245| 0.1919 0.0897 NEXTITNET 0.0004 0.0024 0.0071 | 0.0139 0.0065
CT 0.0065 0.0287 0.0893 | 0.1679 0.1094 STAMP 0.0003 0.0020 0.0063 | 0.0128 0.0088
NEXTITNET - - - - - GRU4REC 0.0003 0.0020 0.0063 | 0.0130 0.0074

Table 2.4: Accuracy results for a list length of 20 for the news dataset (CLEF).'®

CLEF
Metrics P@20 R@20 | HR@20 MRR@20
GRU4REC 0.072448 0.626009 | 0.568499 0.219950
V-SKNN 0.068508 0.593304 | 0.775558 0.223575
SKNN 0.065616 0.577133 | 0.778078 0.218566
SMF 0.061677 0.526821 | 0.706117 0.234424
AR 0.058454 0.505773 | 0.665970 0.216195
SR 0.058275 0.501955 | 0.671878 0.222966

Table 2.2, Table 2.3, and Table 2.4 show representative results of the most important
remaining algorithms and a selection of the analyzed datasets. The main findings in
terms of the accuracy can be summarized as follows:

The results for the e-commerce, music, and news domain are mostly aligned. How-
ever, for each domain, there exist datasets that seem to be more sequential (e.g.,
RSC15 and NOWPLAYING) than others (e.g., DIGINETICA and AOTM). In the
sequential datasets, items more often occur in the same order and, thus, more
sequence-aware techniques like GRU4REC and SR, have an advantage over sequence-
agnostic techniques like SKNN or AR.

The neural approaches GRU4REC, NARM, and STAMP are mostly among the best-
performing methods with regard to the accuracy measures HR@20 and MRR@20.
However, when considering all remaining items in a session as relevant, these
techniques are often ranked lower, especially in the music domain. Among the
neural techniques, no constantly superior algorithm can be identified. Although the
authors of NARM and later STAMP reported performance increases over GRU4REC for
RSC15, which could be reproduced in the conducted experiments, the order of the
techniques is not homogeneous for the other datasets. NARM, however, is the most
stable of the three approaches across all datasets. NEXTITNET mostly showed a poor
performance compared to the other neural approaches in the investigated setup.

15The best values are again highlighted in bold font and the best result from another category of
algorithms, simple or complex, is underlined. Significant differences are once more indicated by
the dashed line.

2.4 Multi-Dimensional Comparison

41

42

The factorization-based sSMF method mostly led to results comparable to GRU4REC.
For a few less sequential datasets (AOTM and 8TRACKS), the approach was able to
outperform GRU4REC consistently for all measures. For the news domain, it even led
the best overall results in terms of the MRR.

The simple pairwise frequent pattern techniques (AR, MC, SR) can mostly be found
in the middle places in comparison. Usually, it is favorable to choose SR over
AR and Mc. Only for a few of the less sequential datasets (RETAILROCKET and
AOTM), the sequence-agnostic AR approach performs slightly better. In general,
however, SR is very competitive with the neural techniques and is sometimes even
able to outperform them for the ranking-aware measure MRR at a list length of 20
(NOWPLAYING, 30MUSIC, and AOTM). The more sophisticated ¢cT method can be
seen as an improvement to SR and even achieves the best MRR results for most of
the datasets, especially in the music domain.

Finally, the nearest-neighbor-based techniques presented by the author of this thesis
in the included publications usually showed the best performance for most measures
across all e-commerce and music datasets except for the RSC15 dataset, which seems
to be particularly sequential. Only for the MRR@20 measure other techniques could
outperform SKNN and V-SKNN, mostly CT. For the news domain, v-SKNN still showed
a better performance in terms of the HR. In contrast to the other datasets, however,
GRU4REC here interestingly performed better in terms of precision and recall.'®

Overall, no consistent pattern in terms of the performance ranking can be identified.
The results are very dependent on the measures and the dataset. The application of
the simple and efficient AR and SR methods, however, can give an impression of the
sequentiality of the data and, in consequence, serve as an indicator for the techniques
that are most suitable for the situation. Furthermore, no consistent progress in terms
of the predictive performance of neural techniques proposed over recent years can be
found. In contrast, comparably simple techniques based on nearest-neighbors (SKNN,
V-SKNN) or frequent patterns (CT) show a strong performance across all experiments
and are still mostly able to outperform the more recent sophisticated model-based
techniques. Similar observations were made in [DCJ19] for the scenario of top-n
recommendation, where recent neural approaches were seldom able to outperform
properly applied and tuned baseline techniques.

Impact of the List Length. In the previously reported results, the list length was
fixed at a size of twenty. However, the length of the recommendation lists can
have an impact on the accuracy measures and, thus, on the ranking of the tested
techniques. As a consequence, an analysis of different list lengths was performed in
[LJ18b]. Regarding the HR, for example, the dependencies visualized in Figure 2.7a

15Note that the news dataset was only used in [LJ18b] and the measurements did not include more
recent methods as well as the MAP.

Chapter 2 Comparison of Session-Based Recommendation Techniques

06 — = I T —]
T 0.2|
0.4 \ 2
0.1}
0.2 N
! ! ! ! ! ! ! ! ! !
20 15 10 5 0 20 15 10 5 0
List length List length
SKNN ——— V-SKNN SKNN ——— V-SKNN
GRU4REC —— SR GRU4REC —— SR
(a) RETAILROCKET (b) NOWPLAYING

Figure 2.7: Hit rate (HR) for two of the datasets when reducing the recommendation list
length from 20 to 1.

and Figure 2.7b can be observed across all dataset. When decreasing the list length,
usually, the discrepancy between sequence-agnostic and sequence-aware techniques
becomes smaller (RETAILROCKET), or the sequence-aware techniques even start to
show a better performance (NOWPLAYING). Similar patterns can be observed for
the metric Precision. The ranking-aware measures are less prone to this effect.

2.4.2 Additional Quality Criteria

As discussed in Section 2.3, it is advisable to analyze the performance of a recom-
mender system not only in terms of accuracy metrics. Hence, a number of additional
quality factors were measured across all algorithms, datasets, and domains.

Popularity and Coverage. First, insights about the popularity bias and the catalog
coverage (or aggregated diversity) of the tested techniques are discussed. Alongside
very poor accuracy results, the factorization-based techniques generally led to a very
low popularity bias and high coverage. As the bad accuracy results can, however,
not be ignored completely, these results are not of great value in the discussion and
are thus neglected. For the remaining techniques no consistent overall ranking of
the algorithms across the datasets can be determined. However, the results indicate
the following general observations:

* The cT method performs very differently from all other approaches. Compared
to other techniques, it consistently focuses on very popular items, which also
results in a low coverage of the item catalog.

* The neural network techniques tend to have a lower popularity bias than the
SKNN and v-SKNN methods, especially GRU4REC, which almost always has the
lowest popularity bias and the highest coverage. Among the neural networks,
STAMP consistently has the highest popularity bias and also the lowest coverage.

2.4 Multi-Dimensional Comparison

43

44

* By design, the frequent pattern technique AR also often focuses on the recom-
mendation of rather popular items. At the same time, however, the catalog
coverage is still not among the worst performing techniques. SR, in comparison,
generally recommends less popular items, and shows a higher coverage than
AR. Mostly, the popularity tendency for AR and SR is still lower than for v-SKNN,
while, however, the coverage also tends to by lower.

Computational Complexity. In terms of the practical application of session-based
techniques, also the computational complexity can play an important role. In
general, models based on neural networks tend to require a time-intensive training
procedure. At the same time, these techniques often have a substantial number of
hyper-parameters that must be optimized for individual application scenarios. Table
2.5, as an example, shows an overview of the running times for two of the datasets,
RSC15 and ZALANDO.

Techniques like v-SKNN and SR do not rely on learning a model. In contrast, they
only need a single iteration over the training interactions to initialize some data
structures and thus have very short training times. Also the prediction times are low
enough for practical applications. CT requires more time in the training phase but
can still be initialized efficiently. The prediction time, however, increases strongly
with the number of items in the dataset. While the measured time for RSC15 might
still be acceptable, predicting for ZALANDO becomes very slow.

In terms of the neural networks, the training times are, as expected, much higher.
Training GRU4REC with approximately one and two hours (RSC15 and ZALANDO)
was comparably fast. STAMP and NARM were many times slower but could still be
executed in a reasonable amount of time. Training NEXTITNET, however, already
took over a day on a dataset of modest size. A extensive optimization of hyper-
parameters, thus, becomes exceedingly difficult. Note furthermore that the training
was performed with a state-of-the-art GPU and an execution on a CPU usually took

Table 2.5: Running times for two of the e-commerce datasets.

Training Predicting (ms)
Algorithm RSC15 ZALANDO RSC15 ZALANDO
GRU4REC (on GPU) 0.8%h 1.51h 8.81 30.06
STAMP (on GPU) 1.25h 7.61h 13.79 51.84
NARM (on GPU) 4.36h 12.99h 9.72 28.69
NEXTITNET (on GPU) 26.3%h - 8.98 -
SR (on CPU) 17.35s 21.37s 3.40 8.66
V-SKNN (on CPU) 10.71s 5.48s 16.42 26.00
CcT (on CPU) 5.91m 2.10h 57.66 327.83

Chapter 2 Comparison of Session-Based Recommendation Techniques

five to ten times longer. In general, besides the number of interactions, the training
and prediction times also increase strongly with the number of items in the dataset.
In terms of predicting, however, the neural networks by design are fast in general.

2.4.3 Alternative Evaluation Setups

Besides the standard evaluation setup described in Section 2.3, in [JL17c] and
[LJ18b], the author of this thesis also investigated several alternative approaches to
evaluate session-based recommendation techniques.

0.7 N
o N\
0.6 - N
0.5 B
| | | | | | |
60 50 40 30 20 10 0
Time in days
SKNN ——— V-SKNN
GRU4REC —— SR

Figure 2.8: HR@20 for a single split of the RSC15 datasets when artificially reducing the
size of the training set from 60 days to 1 day.

Sparsity Effects. First, the overall evaluation setup was slightly altered to inves-
tigate the effects of data sparsity on different techniques. While the test sessions
are still treated as usual (incremental given-N next-item prediction), the training
data was artificially reduced in its size from 60 days to only the last day. Figure
2.8, as an example, shows the results for the RSC15 dataset. The reduction of the
training data surprisingly has almost no influence on the resulting performance. A
similar pattern can be found for many of the datasets, at least in the e-commerce
domain (see [1.J18b]). This observation also coincides with the results presented
in [JLL17] that the user interactions are strongly influenced by recent trends in the
data. Furthermore, it explains why sampling only recent user sessions in SKNN can

even have beneficial effects (see Section 2.2.2).

Fixed-N Next-ltem Prediction. In [JL17c], the author of this thesis also explored the
given-N next-item prediction scheme with a fixed N. Specifically, only the first item in
a session was revealed (N = 1) or only the very last item in each session was held-out
in the testing phase (IV = |s| — 1). Hereby, differences in the ability of the techniques
to adapt to short and long sequences have been investigated. Table 2.6 shows

the results for a single split of the RSC15 dataset. In general, SKNN outperforms

2.4 Multi-Dimensional Comparison

45

46

Table 2.6: Additional measurements for the RSC15 dataset.

Dataset SECOND (N = 1) LAST (N = |s| = 1) PURCHASES

Metric HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20
SKNN 0.716 0.355 0.446 0.196 0.758 0.290
GRU4REC 0.655 0.300 0.388 0.174 0.542 0.215

GRU4REC. Interestingly, both SKNN and GRU4REC show a stronger performance for
the session beginning, while the differences between the techniques decrease when
predicting only the last item of the session. Note however that these results are take
from early experimentations that relied on the first version of GRU4REC, which did
not include the improved loss functions [Hid+16a].

Predicting Purchase Events. In addition to the fixed-n next-item prediction scheme,
in [JL17c], the author of this thesis evaluated the techniques SKNN and GRU4REC
with an alternative protocol that includes multiple interaction types. Specifically, for
the RSC15 dataset, besides item view events, purchases of items were additionally
considered. It is a natural assumption that purchased items might be most relevant
to the user in a session and, thus, form a reasonable ground truth. In general,
the protocol follows the common incremental given-N next-item prediction but a
prediction is only made and subsequently evaluated when the next-item refers to
a purchase event. The input for the algorithms, however, still solely consists of
interactions of the type view. Table 2.6 shows the results of this evaluation in the
column PURCHASES. In contrast to the standard given-N next-item prediction scheme,
the difference in terms of the HR as well as the MRR between SKNN and GRU4REC
is even more substantial. Again, these experiments were conducted with the first
version of GRU4REC [Hid+16a]. Furthermore, the architecture of GRU4REC is, of
course, not designed and trained to predict the next purchases. The results, however,
again show that the SKNN method is at least a very strong baseline approach for
session-based recommendation scenarios.

Chapter 2 Comparison of Session-Based Recommendation Techniques

2.5 Users’ Perception of Session-based
Recommendations

As mentioned in Section 1.3, session-based recommendation techniques are mostly
evaluated in an offline experimental setting. The main findings presented in the
previous section indicate that rather simple nearest-neighbor approaches like the
SKNN or the v-SKNN method often perform at least as good or often even better
than recently proposed complex models in terms of accuracy measures. The results,
however, at the same time also show a stronger popularity bias and a lower coverage
for such simple techniques. This ultimately leads to the following question: How do
the techniques compare in a field test and how is the quality of the recommendations

perceived by the users?

Hence, alongside another offline evaluation, the author of this thesis conducted
an online user study to compare five different algorithms, both simple as well as
complex ones [LJ19b]. Recent findings indicate that results are more reliable when
the participants are actually able to consume the recommended item [Loe+18;
JLJ15b]. Thus, the presented study simulated an interactive online radio station, in
which the users received recommendations based on a start track that they chose.
They could then actually listen to all recommended songs and give feedback, which
furthermore an influence on the list of upcoming tracks. The algorithms were
compared in terms of the number of liked or skipped tracks as well as through a
post-task questionnaire.

In terms of previous works, the number of user studies on the perception of session-
based recommendations is comparably low. Two related studies from the music
domain can be identified with [BOL09] and [KJ17], in which different playlist
continuation approaches are compared in terms of the perceived quality of the
recommendations. Besides the music domain, various studies on the users’ quality
perception of recommendations have been conducted, for example, in the movie
domain [Eks+14]. All studies, however, address a different setting or do not included
recent session-based techniques.

Throughout the next sections, the study design is explained in more detail, the tested
algorithms are discussed, and, finally, the results of both the online as well as the
offline evaluation are presented and compared.

2.5 Users’ Perception of Session-based Recommendations

47

48

Loud Places

Do You know the track?* Yes . No

Completely Disagree Completely Agree
Does the track match the previously liked tracks?*

O O O 4 O O O

Do you like the track in general?*

(@] O O O 5 O O

Finish Study

Figure 2.9: Interface of the interactive radio station.

2.5.1 Study Design

The main research goal was to understand how different algorithms affect the quality
perception of users. Therefore, the author of this thesis developed an online radio
station application to conduct a corresponding study. The task for the participants
can be summarized in the following three steps:

1. The users were first provided with a search interface to find a pleasing track
as the seed track for the radio station. At this, they could listen to 30-second
excerpts of the tracks to simplify the decision-making process. Finally, the radio
had to be started.

2. Next, the users were confronted with the main radio interface (see Figure 2.9).
Again, the users could listen to a snippet of the song. Besides pausing the
playback and skipping the song, they were able to give feedback in numerous
ways. A “Thumbs-up” button could be pressed as an explicit statement of liking
the current track. Positive feedback, furthermore, influenced the upcoming
recommendations (visualized by the cover arts in the playback queue). Further-
more, the users were asked to respond to three basic questions; (a) if they know
the track already, (b) if the track matches the previously liked tracks, and (c) if
they like the track in general.

Chapter 2 Comparison of Session-Based Recommendation Techniques

3. When the participants gave feedback to enough tracks (15 at minimum), they
could continue to a post-task questionnaire consisting of 10 quality-related
questions (7-point Likert scale). These questions are shown in Table 2.7 and

were based on the general frameworks proposed in [Kni+12] and [PCH11].

Furthermore, one question had the purpose of checking the attention of the user
(Q8). Another four questions were related to the participants’ general taste in
music and their music listening behavior.

Table 2.7: Questions about the users’ quality perceptions.

Question

Q1 I liked the automatically generated radio station.
Q2 The radio suited my general taste in music.
Q3 The tracks on the radio musically matched the track I selected in the beginning.

Q4 The radio was tailored to my preferences the more positive feedback I gave.

Q5 The radio was diversified in a good way.
Q6 The tracks on the radio surprised me.

Q7 Idiscovered some unknown tracks that I liked in the process.

Q8 I am participating in this study with care so I change this slider to two.

Q9 I would listen to the same radio station based on that track again.
Q10 Iwould use this system again, e.g., with a different first song.
Q11 Iwould recommend this radio station to a friend.

Q12 TIwould recommend this system to a friend.

2.5.2 Compared Techniques

The author of the thesis included five different techniques for the creation of the
recommendations as a “treatment” and, furthermore, trained them on Spotify’s
Million Playlist Datasets (MPD), which was released in the course of the 2018
ACM RecSys Challenge [Che+18]. From the methods presented in Section 2.2,
AR, V-SKNN, and GRU4REC were included. AR and v-SKNN already showed a strong
performance for the MPD in [Lud+18], and GRU4REC was selected over the other
neural techniques due to its better scalability. Furthermore, the approach Collocated
Artists - Greatest Hits (CAGH) was implemented, which simply recommends the
most popular tracks of similar artists. In [BJ14], this technique has proven to be
successful in “playlisting” scenarios. Finally, we retrieved recommendations with
the help of Spotify’s API in real-time. Similarly for all techniques, a diversifying
post-processing filter was applied to prevent that two tracks by the same artist are
played subsequently. For further technical details, also regarding hyper-parameter
optimizations and the offline evaluation, refer to [LJ19b].

2.5 Users’ Perception of Session-based Recommendations

49

50

2.5.3 Observations

Overall, the author of this theses recruited 316 participants over the crowdsourc-
ing platform Mechanical Turk!” (“Masters” only'®) to collect 50 unique reliable

submissions per treatment group.

Table 2.8: Statistics for the item-specific questions (mean and standard deviation).

Track matches

Like the track in

Algorithm Track known (%) Thumb Up the playlist general
AR 8.61 6.48 £3.58 4.06 +£1.60 4.34 £1.37
CAGH 10.83 5.38 £3.77 5.15 *1.14 5.03 £1.22
GRU4REC 9.30 5.36 =3.63 4.61 £1.52 4.94 £1.31
V-SKNN 10.13 5.63 £3.13 5.31 =1.04 4.94 £1.06
SPOTIFY 7.00 4.48 £2.90 4.72 =1.13 4.69 +£1.07

Item-specific Results. When analyzing the item-specific answers and behavioral
patterns of the participants reported in Table 2.8 the observations that are presented

in the following can be made:

 Surprisingly, AR led to the significantly more like (“Thumbs-up”) statements'?,
although the participants stated that the recommended tracks matched the
previous songs the least and they furthermore rated the track quality the worst.

* In terms of the characteristics of the recommended tracks, GRU4REC and, espe-
cially, sSPOTIFY played the least popular tracks. The tracks suggested by SPOTIFY
were, furthermore, significantly less often known by the users. Finally, the
popularity of the tracks is highly correlated with the number of likes (0.89).

* V-SKNN and CAGH matched the previously played tracks significantly better than
any of the other approaches.

* No specific differences could be determined regarding how much the users liked
the recommended tracks in general.

Post-Task Questionnaire. When examining the users’ answers to the post-task

questionnaire, the following observations can be made:

* All methods received very positive feedback for all the questions and were
seemingly able to satisfy the participants very well.

Yhttps://www.mturk.com

18This option ensures a minimum average rating of the “workers” that participated in the study.

°In general, one-way ANOVA with a subsequent Tukey post-hoc test was used to test for significant
differences, when the required pre-requisites were given. Otherwise, a Kruskal-Wallis with a
subsequent Mann-Whitney-U test was applied.

Chapter 2 Comparison of Session-Based Recommendation Techniques

https://www.mturk.com

For v-SKNN, the participants attested that they liked the radio significantly better,
and also preferred the matching quality over AR, GRU4REC, and SPOTIFY (Q1+3
in Table 2.7). Also, their likeliness to use the system again or even recommend it
to a friend was significantly higher than for GRU4REC (Q10+12).

SPOTIFY excelled in helping the users to discover unknown tracks and outper-
formed all other techniques significantly in that regard (Q7).

CAGH, again, proved to be a very simple but nevertheless strong baseline in music
recommendation scenarios.

Discrepancy to Offline Results. Finally, all techniques were also compared in an

offline experimental setup. The results in terms of precision (P), recall (R), HR and

MRR at a list length of five are presented in Table 2.9.2° The evaluation scheme

follows Section 2.3 and is described in [LJ19b] in more detail. The main findings in

comparison to the online evaluation are:

Table 2.9: Offline results for the investigated techniques that were determined in a five-fold

cross-validation on the MPD.

Algorithm P@5 R@5 HR@5 MRR@5
V-SKNN 0.271 0.044 0.137 0.077
GRU4REC 0.161 0.028 0.151 0.096
AR 0.234 0.037 0.135 0.081
CAGH 0.172 0.024 0.052 0.026
SPOTIFY 0.009 0.001 0.002 0.001

In line with the experiments in Section 2.4, the offline performance can depend
on the chosen scheme and metrics. S-KNN shows a stronger predictive perfor-
mance for the given-n remaining item prediction, while GRU4REC is the winner
when predicting only the next-item given-N.

As indicated by the online results, SPOTIFY, probably by design, recommends
rather unpopular and novel tracks and, thus, shows a very limited offline perfor-
mance in terms of accuracy measures.

No clear correlation between offline and online results can be identified. However,
with v-SKNN showing a better perceived quality in comparison to GRU4REC,
precision and recall might be the more suitable offline indicators for online
success in the given scenario.

20In contrast to the previous section, the list length was reduced as only a single recommended item is

visible to the user in the online radio application.

2.5 Users’ Perception of Session-based Recommendations

51

52

Overall, the comparably simple nearest-neighbor technique v-SKNN could corroborate
the strong offline performance in comparison to the more complex deep learning
technique GRU4REC. The popularity bias, however, was also noticeable in this field
test. However, it had no negative effects on the quality of the recommendations
as perceived by the users that participated. Finally, the good perception of SPO-
TIFY’s recommendations once more shows that bad offline results do not necessarily
indicate a similarly poor real-world performance.

Chapter 2 Comparison of Session-Based Recommendation Techniques

Exploring Session-Awareness in
E-Commerce

As already discussed in Section 1.1, the problem of recommendation in the research
literature is often abstracted to the matrix completion task, while neglecting practical
limitations and challenges. With the work presented in [JL17a], [JLL17], and
[JL17b], the author of this thesis focused on particular challenges of this problem
formulation in the e-commerce domain. Here, the following problems that highly
encourage session-awareness can be identified.

First, algorithms that are designed to solve the common matrix completion problem
usually construct long-term user preference models. Customers of an e-commerce
website, however, might visit the shop with a very specific intent in mind, e.g., to
buy a swimming suit for an upcoming vacation. When solely relying on historical
feedback from previous session, the preference model cannot consider the user’s
current intention. Thus, it is crucial for an e-commerce recommender system to be
session-aware and adapt to such short-term goals of the user to provide valuable
recommendations [SHBO5; TB14; JLJ15a].

Second, the matrix completion task is designed to provide the user with recommen-
dation of items that he is not yet aware of. However, from a business perspective, it
might also be very valuable to recommend items that the user has previously shown
interest in, e.g., in the ongoing or one of the more recent browsing sessions. The
recommendation of such an item might then have a convincing effect and encourage
the user in his intent of finally purchasing the item, or eventually of purchasing it
again. Also from a user’s perspective session-aware reminders can have the beneficial
functionality of providing convenient navigation shortcuts to products that he or she
might want to keep in mind (see [Sch+16]).

Besides these aspects of session-awareness, also other particularities of the e-
commerce domain might have a big impact on the success of recommendations
and are seldom covered in the academic recommender system literature. In the
given session-aware context, the author of this thesis, furthermore, investigated the
importance of short-term trends in the collective user behavior and the impact of
price reductions on the suggested items. Some works indicate that recommending
popular items in real-world scenarios is usually a safe and sometimes even good

53

54

strategy [Gar+14; GH16]. As many domains in e-commerce (e.g., the fashion do-
main) are subject to seasonal trends, explicitly accounting for short-term popularity
trends might be beneficial. Furthermore, it is easily imaginable that the occurrence
of a discounted item in a recommendation list might influence the user’s choice, e.g.,
when three similar swimming suits are presented (in terms of quality and price) but
for one of them the price is significant reduced.

Overall, not only the user’s long-term preferences but a multitude of different short-
term and session-related factors might influence the value of a recommendation given
to the user. As such factors are, to a great extent, unexplored in the recommender
system research literature, the author of this thesis systematically explored the
importance of them and, furthermore, utilized them in designing novel session-
aware recommendation approaches in two specific settings.

The first part of this chapter mainly focuses on the exploration of such aspects in the
setting of fashion recommendation. Besides a statistical analysis of success factors, a
number of simple and more complex recommendation techniques are be proposed
and evaluated. The second part (Section 3.2), as mentioned in Section 1.4, explores
the suitability of the previously introduced techniques for the related scenario of
personalized search in e-commerce.

3.1 Success Factors in Session-Aware Fashion
Recommendation

As stated in Section 1.4, the author of this thesis was provided with a large log
dataset recorded by the popular European online fashion retailer Zalando?!. An
outstanding particularity of this dataset is that it includes extensive information
about the interactions of users with recommendations in the context of item views.
It contains both the recommendation lists that were shown to the users as well as
the information on which of the recommendations they clicked. In combination
with information about the purchases of users, the log data thus allows determining
which recommendations were ultimately “successful”.

In consequence, the author of this thesis performed an extensive exploratory as
well as systematical analysis of the data to answer the question of what actually
makes a recommendation successful in the given scenario of online fashion recom-
mendation [JL17a]. A particular focus of the analysis are the previously introduced
aspects, i.e., short-term intents in the user session, reminding, discounts and recent
trends. Besides analyzing theses particularities of the domain, the work presented in

2http://www.zalando. com

Chapter 3 Exploring Session-Awareness in E-Commerce

http://www.zalando.com

[JL17a], furthermore, proposes a generic research framework on how to perform
such an analysis in general and find important factors that indicate the success of
recommendations in any domain.

After presenting the results of the analysis in Section 3.1.1, Section 3.1.2 is dedicated
to investigating how the insights of the analysis can be utilized for the design of new
recommendation techniques. Specifically, the author of this thesis proposed a two-
stage approach based on session-based nearest-neighbors and a subsequent neural
network. The technique jointly considers a multitude of the previously discussed
factors that might be of importance. Furthermore, the approach was evaluated
in comparison with a number of session-aware heuristics that have proven to be
successful in the given scenario [JLJ15a; LJL16; JL17a].

3.1.1 Analysis of Success Factors

In this section the main findings of the dataset analysis are presented, both for the
exploratory statistical as well as the systematical approach to assessing “success” fac-
tors of the recommendations. Note that, from here, a “successful” recommendation
always corresponds to a recommendation that was first clicked and subsequently the
suggested item was purchased in the course of one user session.

Dataset Characteristics. Before introducing the insights from the analysis, some
important characteristics of the dataset are briefly introduce. The interaction logs
from Zalando were collected over the period of one year and include mainly item
view, add-to-cart, as well as purchase events of 3.5M users that interacted with over
400,000 items. For each item, some metadata was provided, specifically, the brand,
the color, the category, and a price level®2.

Each item view interaction is associated with a recommendation list of three items
that was presented to the user. To ensure subsequent item view events did not
happen accidentally for one of the recommended items, a special recommendation
click event indicates such interactions.

A “successful” recommendation was defined as an item suggestion that leads to a
purchase. However, the dataset is very sparse, many users are one-time visitors, and
removing users without a purchase reduces the number of users by ca. 80% (760,000
of 3.5M). For the analyses and experiments reported in Section 3.1.2 the users were
furthermore categorized into frequent, regular, and occasional users to investigate
the behavior of different user groups (see [JLL17] for more details).

22The level was defined by binning the prices of the items per category.

3.1 Success Factors in Session-Aware Fashion Recommendation

55

56

Exploratory Statistics

First, the author of this thesis calculated several descriptive statistics for the frequent
users to quantify the importance of session-awareness, reminders, discounts, and
recent trends. In general, the frequent users, on average, clicked on an item in every
hundredth recommendation list (1%), 14% of the clicks led to an add-to-cart action,
and 7% finally resulted in the purchase of an item (successful).

Importance of Short-Term Intents. The presence and importance of special session-
intents can, e.g., be analyzed through the metadata of the inspected items. On
average, the frequent users, e.g., only inspected items in 2.7 of over 330 categories
(including sub-categories) per session, which strongly indicates the existence of a
special goal in many sessions. As a consequence, the author of this thesis mainly
analyzed the successfulness of recommendations when having the same attribute
values as the currently viewed item (category, brand, color, and price level).

In general, the conversion rate for recommended items that have similar features
was much higher. In terms of the brand, the differences were most significant with a
345% higher success rate for the same brand. This is to some extent expected, as the
affinity with a brand is usually strong in the fashion domain. A similar price level
(158%), the same category (158%), and the same color (77%) also improved the
conversion rate substantially.

Effectiveness of Reminders. First, to be able to analyze the impact of reminders, it
is important that Zalando’s recommender system provides such suggestions after all.
In fact, around 10% of the recommendations in the log data are reminders.

Secondly, even though the number of reminders is comparably low, it is interesting
that still nearly half of the successful recommendations (44%) were already known
to the customer from the ongoing or a previous session. This number does not
guarantee that the recommendation ultimately induced the purchase. However, it
demonstrates that this type of recommendation is, indeed, beneficial for the user, at
least as a navigation shortcut [Pla+06; Sch+16].

Lastly, more than 50% of the products, on the contrary, were new to the user. This
distribution shows that both types of recommendations have their justifications and
a recommendation list, therefore, should be a balanced mix of both.

Impact of Discounts. As stated in the beginning, the hypothesis that discounts
in a recommendation list might make items seem more attractive to users is not
far-fetched. To this end, similarly to the analysis of the short-term intents, a com-
parison of the conversion rate for discounted and non-discounted items in the
recommendation lists was performed.

Chapter 3 Exploring Session-Awareness in E-Commerce

As expected, while the overall conversion rate for regular priced items was at
0.45%, the success rate for the discounted items was 1800% higher (8.1%). Note,
however, that discounted items stood out in the three-item lists, as the deployed
recommender system on average only included one discounted item in the list.
Nevertheless, these statistics are a very strong indicator for the proposed assumption
and highly encourage the inclusion of discounted items in recommendation lists in

the e-commerce domain.

A possible limitation of such type of recommendations might, however, be that users
perceive the discounted items as some form of active advertisement by the shop
provider and, thus, might be less pleased with the shopping experience.

Influence of Trends. When analyzing the popularity effects in the three-item rec-
ommendation lists, in 43% of the cases, the most popular item was chosen over the
alternatives. Thus, a slight popularity tendency can be determined in general.

This effect, however, is much more noticeable when the popularity was determined
for a limited period of time and, this way, should capture recent trends. The average
daily popularity?3, e.g., of successful recommendations was three times higher than
for all recommended items.

Overall, alongside many more descriptive statistics that have been calculated in the
course of this exploratory analysis, the presented figures indicate the importance of
every single factor for the creation of successful recommendation lists. Therefore,
it furthermore seems quite promising to include such aspects in a session-aware
recommender system in some form.

Structured Feature-Based Analysis

As a follow-up work to the exploratory analysis of the frequent user dataset, the
author of this thesis explored ways of determining the relative importance of the
four potential factors that might lead to a successful recommendation. Therefore,
in [JLL17], he proposed a systematic procedure to quantify the impact of the
different particularities in the log data. To this end, the logs were used to frame
the research question of what makes a recommendation successful as a binary
classification task. Each recommendation that was displayed to a user can be
labeled as successful in case the item was subsequently purchased, or as unsuccessful
otherwise. Furthermore, a multitude of features can be engineered that correspond
to one of the previously investigated phenomena and which should indicate the

ZMore details on how the popularity values and all statistics in general were determined can be found
in [JLL17].

3.1 Success Factors in Session-Aware Fashion Recommendation

57

58

successfulness of a certain recommended item. Finally, after collecting a dataset
consisting of many features and the success label per recommendation, common
techniques for determining the individual feature importance with regard to the
label can be applied.

Feature Engineering. Overall, the author of this thesis engineered a total of 95
features corresponding to short-term intents, reminders, discounts, and recent popu-
larity. The latter category is, e.g., covered by comparably simple features like the
individual item popularity during the last 14 days. With a certain discount level,
furthermore, a good predictor variable for this aspect is directly provided in the data.
The importance of reminders is, e.g., modeled by the number of previous views of
the item in the current session, or the distance in days to the last recorded view
event. Last, in terms of short-term intents, for example, features like the ratio of
clicks that refer to the same brand, category, color, or price level were engineered. A
comprehensive list of all features can either be found attached in the appendix of
[JLL17] or in an online appendix®*. All 95 features were calculated for the frequent
users ending up with 8,500 positive samples of successful recommendations. Note
that due to a strong class imbalance (100 times more unsuccessful recommendations)
a random down-sampling procedure was applied to balance the dataset.

Table 3.1: Results of the statistical feature weight analysis in terms of the Gain Ratio and a
Chi Squared test.

(a) Gain Ratio (b) Chi Squared

Feature Weight Feature Weight
Viewed before? 0.319 Current popularity (day) 1.000
Any discount granted? 0.274 Distance to last view (in sessions) 0.624
Discount level 0.274 Distance to last view (in days) 0.619
Distance to last view (in days) 0.251 Current popularity (week) 0.610
Current popularity (day) 0.249 Number of previous views 0.603
Distance to last view (in sessions) 0.232 Distance to first view (in sessions) 0.598
Distance to first view (in days) 0.199 Distance to first view (in days) 0.595
Distance to first view (in sessions) 0.194 Viewed before? 0.590
Number of previous views 0.181 Any discount granted? 0.569
Current popularity (week) 0.138 Discount level 0.569

Feature Importance. Table 3.1 shows the ten most important features when ap-
plying the two popular feature selection techniques Gain Ratio and Chi Squared
[MRSO08]. Overall, four different approaches were applied to minimize the risk
of misleading results. As shown in Table 3.1, however, the ranking of the most
impactful features is very consistent. Although the order is not exactly similar, the
same top ten features were determined.

http://dx.doi.org/10.17877/DE290R- 18094

Chapter 3 Exploring Session-Awareness in E-Commerce

http://dx.doi.org/10.17877/DE290R-18094

In terms of the included types of features, the importance values perfectly confirm
the assumptions made in the previous section. In the top ten list, features related to
previous item views are very prominent. The recent popularity, furthermore, also
seems to play a very important role. Finally, features regarding a potential discount
and the level of the discount are also present in all lists. Merely the session-intent-
related feature are not in the top-10 lists shown in Table 3.1. However, many of the
subsequent features in the ranking are related to the brand and the category of the
currently viewed item as well as their presence in the ongoing user session.

Overall, the previously described analysis revealed some indications which factors
can ultimately contribute to the success of recommendations. Next, the following
sections will investigate how these insights can be operationalized when designing
new recommendation approaches.

3.1.2 Operationalizing the Success Factors

Based on the previous findings, the purpose of this section is the proposal of new
session-aware recommendation algorithms that can successfully utilize the insights.
In contrast to Chapter 2, where the task for the algorithms in the session-based
abstraction was to predict the immediate next item click, the focus here shifts to
purchase events. These are naturally present in the e-commerce domain, furthermore
more meaningful than item view events, and are thus defined as the relevant "ground
truth" in this scenario. The goal of the techniques that are proposed in the following
therefore is to better predict the next purchase.

Two-Stage Approach

Previous works showed that it is highly important to consider both, the long-term
history of the user as well as his short-term intents in the ongoing or the last few
user sessions. In [JLJ15a], the authors, therefore, proposed a two-stage approach,
which was adopted in this work:

1. A baseline algorithm is applied to generate a ranked candidate set of items. This
technique can capture long-term preferences in the data. The application of just
a session-based technique is, however, also possible and can even be beneficial
in comparison to long-term models (see [JLJ15a]).

2. In the second stage, a session-aware re-ranking procedure is performed to adapt
to short-term signals, both of the particular user (session-intent) and also the
community (recent trends). The previously identified success factors are mainly
considered through the second-stage approaches.

3.1 Success Factors in Session-Aware Fashion Recommendation

59

60

In this two-stage approach, they choice of the number of candidate items that are
selected in the first stage can be crucial. Furthermore, it is important how these two
individual stages are connected in terms of the final ranking. The item scores of
the first stage could, e.g., be entirely neglected or adjusted in a weighted scheme.
The proposed techniques rely on the latter variant and consider 200 candidate items
from the first stage, which overall showed the best result in terms of the prediction
accuracy in the evaluation presented in 3.1.2 (see [JLL17] for more details).

Baseline Recommenders. In terms of the baseline recommenders applied in the
first stage, as in [JLJ15a], the author of this thesis relied on three algorithms that
have already been introduced in Chapter 2 for the task of session-based recommen-
dation. Specifically, BPR was included as a personalized long-term model, and AR
as well as SKNN as session-aware approaches. However, with regard to the given
scenario all techniques were subject to small alterations.

First, BPR was applied in the originally intended way. As long-term histories are
available for all users, there was no need for approximating the latent user vector
from the few available interactions in the current session (see 2.2.3).

Second, AR still relies on item co-occurrence patterns and computes association
rules of size two for items that appeared together in the users’ sessions. However,
instead of basing the recommendations solely on the last item in the current ongoing
user session, the approach considers all most recent item views. In contrast to the
session-based next-item prediction scenario, this adjustment showed to be beneficial
for the session-aware next-purchase prediction.

Third, as in [JLJ15a], the SKNN approach is not limited to only the latest ongoing user
session. In addition, also previous sessions from the user history were considered.
This procedure showed to be beneficial in previous works, as the user might pursue
a certain goal over multiple sessions. Furthermore, when there are only very few
interactions in the current session, the recommendations can thereby be based on a
larger amount of reference items. Technically, the last NV sessions are simply merged
into a single session, which is then utilized to find similar sessions from the past.

Heuristic Short-Term Adaption. In [JL17a], the author of this thesis tested a number
of simple heuristic approaches to incorporate the different success factors that were
determined in the analysis.

* Feature Matching (FM): Given a ranked set of items, FM ranks those items up
that share similarities with the recently inspected items in the current sessions.
The more attributes the item matches, e.g., brand, color, or category, the higher
it will appear in the re-ranked list (see [JLJ15a] for technical details).

Chapter 3 Exploring Session-Awareness in E-Commerce

* Interaction Recency (REMIND): In [LJL16], the author of this thesis investigated
different approaches to reminding the user of already known items. Among other
techniques, REMIND showed a solid performance by simply moving the items
that the user recently inspected to the top of the recommendation list in reverse
chronological order (newest first).

* Recently Popular (TREND-N): Corresponding to the feature engineering process,
TREND-N simply computes a normalized popularity score for items over the last
n days. In the given scenario, the popularity in the last 24 hours led to the best
ranking and, thus, TREND-N will be reported for n = 1 in the following.

* Discount Promotion (DP): Finally, items are assigned to a discount level from
zero to four. Thus, DP simply ranks the items with the highest discount at the
top of the list. Items with a similar discount are, furthermore, ordered by the
baseline ranking.

A further analysis of the features engineered in Section 3.1.1 showed that the
success factors from the different categories (e.g., session-intent or reminding)
are seldom correlated. Thus, it was furthermore promising to combine multiple
heuristic strategies in a hybrid re-ranking approach (HR). The results for the best
determined combination amongst a multitude of tested weighted and cascading
hybrids is reported in Section 3.1.2.

Model-Based Short-Term Adaption. An severe disadvantage of the previously pro-
posed heuristic approach is that a substantial amount of manual tuning is required to
determine the best possible way of combining the techniques in a hybrid approach.
The author of this thesis, thus, investigated a model-based short-term adaption that
learns to re-rank the candidate items.

The proposed approach is very similar to the feature-based analysis from Section
3.1.1. Again, a binary classification problem was framed from the given log data.
This time, however, the task was to predict if an item will be purchased by a user
given his recent interactions in the ongoing and previous sessions. Even though the
target variable was different, most of the features that were used to describe the
success factors could directly be adopted. The overall recommendation scheme can
be described as follows:

1. Again, a baseline algorithm is applied to compute an initial ranked list of
candidate items.

2. For each of these items, a vector of features is calculated given the current and
previous sessions of the user, e.g., the fraction of item of the same brand in the
current session.

3.1 Success Factors in Session-Aware Fashion Recommendation

61

62

3. A pre-trained model is applied to determine the probability that each specific
item will be purchased given the generated feature vectors. The ranking is,
finally, performed based on the probabilities predicted by the model.

Due to the modifications to the task, some of the features that have been introduced
in Section 3.1.1, could consequentially not be determined anymore, specifically, all
features that are related to the currently viewed item and to the recommendation
list. In this session-aware context, the number of features, therefore, was reduced
from 95 to 32. A schematic overview of all features that were finally employed can
be found in the included publications [LJ18b].

Not only the feature engineering procedure was adjusted but also the generation
of a training dataset. A positive example in this problem definition referred to an
item view event that led to a purchase in the same or a subsequent session of a user.
On the contrary, a non-purchased item inspection formed a negative example. To
create a balanced dataset of examples, for each purchase, a non-purchased item was
randomly sampled from the same session.

Given a labeled training dataset, the author of this thesis next tested various machine
learning approaches in a ten-fold cross-validation procedure, e.g., logictic regression,
decision trees, random forests, or feed-forward neural networks, to determine the
best-performing approaches and suitable hyper-parameters. Finally, feed-forward
neural networks led to the best classification performance in terms of the accuracy.
The second best techniques could be found in Random forests. Both approaches,
namely DEEPRANK and RFRANK, were then trained on the full dataset and employed
in the second stage for the session-aware re-ranking. More technical details are
provided in [JLL17] or the appendix, respectively.

Evaluation Scheme

Overall, the strategies and baseline recommenders have been evaluated for the three
user groups in the Zalando dataset. Besides the frequent users, the approaches were
also tested for the regular and occasional user (see [JLL17]).

The evaluation protocol followed [JLJ15a] and can be classified as an alteration of
the incremental given-N next-item prediction. Instead of predicting the next item
view in an ongoing user session, the next purchase had to be predicted by the
tested algorithms. Thus, successively each purchase event in the test sessions was
evaluated, while the algorithms had access to the previous item view interactions
of the user, both in the current and the preceding sessions. Following [JLJ15a], the
number of previous sessions available for a short-term adaption was limited to 6.

Chapter 3 Exploring Session-Awareness in E-Commerce

Table 3.2: HR@10 and MRR@10 results for Zalando’s frequent users.

Baseline SKNN AR BPR
Metric@10 HR MRR HR MRR HR MRR
No re-ranking 0.268 0.091 0.123 0.046 0.062 0.021
FM 0.281 0.093 0.145 0.052 0.119 0.046
REMIND +FM 0.306 0.097 0.266 0.096 0.262 0.111
DP +FM 0.316 0.177 0.242 0.120 0.168 0.094
TREND-N +FM 0.361 0.187 0.233 0.103 0.216 0.096
RFRANK 0.381 0.248 0.274 0.150 0.241 0.119
HR (TREND-N,DP)+FM 0.382 0.220 0.262 0.121 0.225 0.100
DEEPRANK 0.405 0.284 0.322 0.205 0.301 0.188

In contrast to the evaluation scheme in Chapter 2, in session-aware recommendation
long-term user histories have to be available to the algorithms. Therefore, splitting
the dataset can not be performed solely time-based anymore. Referring to the
terminology introduced in Section 1.3, the dataset was split user-wise at community-
level. Each user history was then divided into a training and a test part, time-based
at session-level. In fact, the most recent 20% of the users’ sessions formed the test
set, while the rest was used to train the models. To account for random effects in
the results, the evaluation was performed in a user-wise five-fold cross-validation
scheme, i.e., each fold consisted of the full histories of 80% of the users.

In terms of the measured accuracy metrics, the evaluation setup follows the session-
based next-item prediction scheme. Besides the HR, the ranking-aware MRR was
recorded, in this case for a list length of 10 (again, following [JLJ15a]).

Results

As an example, the results for the frequent users are presented in Table 3.2. Although
the results for other user groups are different in terms of the range of the values,
they, however, show an identical ranking of the tested techniques and are provided
in the included publications (see [JLL17]).

Baseline Performance. In line with the results presented in Section 2.4 for the
next-item prediction task, also in the examined session-aware next-purchase setting
the SKNN method shows a superior performance in comparison to AR and BPR.
Interestingly, not even the presence of long-term user histories enables BPR to achieve
competitive results. This fact, again, emphasizes the importance of considering the
recent user interactions in an e-commerce recommender system.

3.1 Success Factors in Session-Aware Fashion Recommendation

63

64

Heuristics. All proposed heuristic re-ranking approaches constantly lead to accu-
racy improvements over the baselines. The feature matching technique FwMm, fur-
thermore, also consistently helps in combination with any other heuristic approach
and was, thus, always applied as a pre-processing step to the re-ranking, i.e., items
without any match were excluded from the set of candidates. In comparison to
REMIND and DP, TREND-N usually improves the baseline the most, which to some
extent is consistent with the feature importance values presented in Section 3.1.1
(see also [JLL17]). Finally, a weighted hybrid, as expected, can constantly improve
the performance further by incorporating all different factors.

Model-Based Approach. With the model-based approach that was proposed by the
author of this thesis, all success signals discussed in Section 3.1.1 can be leverage
in a more dynamic and sophisticated way. While RFRANK only outperforms the
fine-tuned hybrid approach HR in terms of the MRR, DEEPRANK shows a superior
performance across almost all user groups and metrics.?> Especially in terms of the
ranking-aware MRR metric the differences stand out.

Overall, the results of the conducted experiments indicate that it is highly important
to generate recommendations with short-term signals in mind. Furthermore, incor-
porating a multitude of factors like user intents, reminders, and community trends in
simple heuristic approaches already helps to improve the accuracy of session-aware
e-commerce recommendations. Finally, modeling these factors more elegantly and
applying modern machine learning techniques, particularly neural networks, further
helped to improve the recommendation performance.

ZThe differences have, furthermore, been statistically significant according to a Student’s t-test with
Bonferroni correction (p < 0.05)

Chapter 3 Exploring Session-Awareness in E-Commerce

3.2 Session-Aware Personalized Search

Chapter 2 as well as the previous section mostly focused on providing automated
recommendations in the context of an item that the user is currently inspecting. This
context, however, is only one of many possible scenarios, in which personalized item
suggestions can help the user to better explore the space of options. Other scenarios
might, for example, be the landing page or the shopping cart. Moreover, an obvious
functionality in the e-commerce domain is the catalog search tool.

In the latter scenario, common e-commerce sites usually provide the user with a
number of pre-defined sorting options, e.g., “by popularity” , “by rating”, “by sales”,
or by “by freshness”. Sometimes the option “by relevance” is offered, which might
refer to the relevance for the particular user.

However, many e-commerce sites do not include a sorting option that explicitly
refers to the user’s personal preferences, although, intuitively, the past shopping
behavior could help to improve the ranking of the search results. They, e.g., could
promote the user’s favorite brands, items that match the user’s price preferences, or
items that the user showed interest in before.

In consequence, the author of this thesis investigated the value of personalizing
search results with a case study in an e-commerce setting [JL17b]. Generally, as
mentioned in Section 1.4, the task of personalizing search results given user activity
logs is quite similar to the scenario of session-aware or session-based recommenda-
tion. The main difference is the search query, which is explicitly entered by the user.
Assuming that a given generic search component can filter the entire item catalog
based on a query, the setting can be reduced to the session-aware recommendation
problem with a restricted catalog of items to recommend from.

Technically, the author thus mainly explored the application of several recommenda-
tion techniques and domain-specific heuristics for session-aware recommendation
that have proven to be successful throughout previous works (see Section 3.1.2).
Additionally, a number of techniques from the broader field of personalized web
search were included. Finally, the evaluation of all techniques was performed in
an offline experimental setting with log data provided by a popular German online
retailer that is specialized in products for infants and small children.

In academia, only a few recent works can be identified that target the analysis of
search log data in the e-commerce domain. In [Dua+13], [Liu+14], or [Yu+14],
for example, the focus however lies not on the personalization of search results but
rather on an unpersonalized diversification. The authors of [PS11] presented an

3.2 Session-Aware Personalized Search

65

66

approach to personalizing the ranking of the results. In their approach, however,
users manually had to adjust the ranking by assigning weights to different sort
criteria with the help of multiple sliders.

In the following, first the general research methodology and the session-aware
evaluation scheme are introduced. After describing the investigated algorithms for
search personalization from both worlds recommendation and web search, finally,
the main findings are presented.

3.2.1 Research Setup

One of the most important aspects regarding the conducted search personalization
experiments is the procedure of defining the evaluation protocol and the relevance
of items given the provided interaction logs. After providing some additional infor-
mation about the dataset, this section will discuss the definition of the “ground truth”
and, in consequence, how a structured evaluation was performed.

Dataset. The data used in the following experiments consists of anonymized be-
havioral user logs collected by the online retailer over a period of one month. Each
time-stamped user event belongs to one of the following action types: item view,
category browsing, search (query included), add-to-cart, or checkout. Furthermore,
some basic metadata was provided for the items, e.g., the category, the brand, and a
textual description. Finally, through web crawling the author of this thesis addition-
ally obtained the search results for each included query and every possible sorting
option that was offered by the shop at that time.

Ground Truth. Differently from the previous sections, the ground truth that the
algorithms should predict can not simply be defined as the next clicked item, all
remaining items, or the finally purchased products in a user session anymore. Given
a search event, an item can only be relevant when it occurred in the search results.
Potentially, an item that was viewed subsequently in the same user session could be
seen as relevant. However, subsequent clicks might be biased by the order in which
the results were originally presented to the user. Thus, items in the results were
defined as relevant only in case they were later on also purchased by the user in the
same browsing session.

Evaluation Protocol. The evaluation protocol applied in this personalized search
scenario shares many similarities with the protocol presented in Section 3.1.2. In
general, the dataset again was split user-wise at community-level. For each user, the
most recent 20% of the sessions were selected for testing (time-based at session-level).

Chapter 3 Exploring Session-Awareness in E-Commerce

Sessions in the test set were then evaluated similarly to the incremental given-N
prediction scheme. However, as in [MR11], only search events are considered as
evaluation points, and items defined as relevant for each specific search event form
the ground truth. In terms of accuracy metrics, the HR and the MRR were measured
for a list length of ten2°.

The number of results might vary strongly for different search queries and can have
an substantial impact on the ranking accuracy. Re-ranking, for example, a set of only
ten candidate items leaves less margin for improvements than for a longer result
list, e.g., of 50 items. Thus, the evaluation was performed with multiple thresholds
regarding the minimum number of items in the search results, specifically 5, 10, 20,
and 50. Finally, the tests were performed in a five-fold user-wise cross-validation
procedure to account for random effects.

More specific details, e.g., on the dataset (including statistical characteristics), on
the crawling process, or regarding the splitting procedure can be found in [JL17b]
or the appendix, respectively.

3.2.2 Compared Algorithms

The compared algorithms mostly include recommendation strategies that were pre-
viously introduced in Section 2.2.2 and 3.1.2. Specifically, BPR, SKNN, FM, TREND-N,
and REMIND were employed to capture signals that have proved to be valuable in
session-aware recommendation throughout previous works [JL17a; JLL17].

In the field of web search personalization, a customization of the search results is
typically achieved by collecting or learning short- and long-term user preferences as
well as modeling the context of a search action from various types of information,
e.g., based on document term vectors, ontologies, language models, or different
machine learning techniques [TSZ06; SMB0O7; BSD10; MR11; Ben+15]. Like the Fm
method, some works rely on additional metadata besides the textual information
of the webpages, e.g., the user’s current location [Ben+11], or information from
social media [ZLW12b; Car+09]. Mainly the following types of personalization
settings can be found in the literature: Techniques that (a) directly extend the search
algorithm with the integration of a personalization component [HKJ03], (b) expand
queries in a personalized manner [CFNO7; ZIW12a], and (c) re-rank search results
by applying a post-processing strategy [DSWO07; MR11].

26 Assuming a standard screen resolution of 1920 by 1080, a user could see around 10 search results
on the first result page at the same time when using the online shop.

3.2 Session-Aware Personalized Search

67

68

As the latter type of techniques perfectly suits the given scenario, PCLICK (see
[DSWO07]) and the content-based approach (cB) presented in [MR11] were included
in the experimentation. Other approaches could not be adapted due to the particu-
larities of the setup. PCLICK has some similarities with REMIND and follows the idea
that users often search for the same or a similar item again. Thus, items that the
users already showed interest in before for a similar or the same search query are
ranked up in the result list. The more often an item was clicked, the higher it is
ranked. In contrast, CB relies on content information. Specifically, as the method
originates from web search, it bases the ranking on the text of a website, which, in
the given scenario, corresponds to the textual item description. This information is
represented by TF-IDF vectors and then again used to represent the user preferences.
A mean vector is calculated from the items he or she interacted with. For each user, a
short-term as well as a long-term preference vector is determined and, furthermore,
combined in a weighted sum according to a specified hyper-parameter. Finally,
the results are ranked by calculating the cosine similarity between the final user
preference vector and the TF-IDF representation of a candidate item.

The included recommendation techniques were, furthermore, combined in three
weighted hybrid approaches (HR). First, an entirely heuristic one that was based on
TREND-N and the session-aware FM approach. Thus, no long-term user model had
to be trained. Second, this hybrid was extended by including BPR. Finally, REMIND
was incorporated to include all factors in the recommendation process, long-term
preferences, trends, reminders, and session-aware context information.

The weights of the hybrid combinations of techniques as well as all other important
algorithm hyper-parameters were optimized in a grid search procedure and are
reported in the included publications [JL17b].

3.2.3 Findings

The results of the experiments in all configurations are presented in Table 3.3. In
terms of the minimum number of items found for a query, the results are very
consistent across all thresholds. However, the HR and MRR values naturally decrease
to some extent with an increasing number of items to rank. Overall, no technique
performed worse than the best initial sorting provided by the online shop itself (“by
sales”) and the main findings are the following:

* Regarding the web search personalization techniques, PCLICK was is slightly
better than sorting “by sales”, which, however, can be attributed to the small
number of users in the data that repeated a query over the short data collection
period of only one month. In contrast, CB shows a solid performance with results
even slightly better than those of the usually promising SKNN method.

Chapter 3 Exploring Session-Awareness in E-Commerce

Table 3.3: HR@10 and MRR@10 results for 5,000 frequent users. The best values are

printed in bold. Differences between the best performing method and the second
best that are statistically significant according to a Wilcoxon signed-rank test
(« = 0.05) are highlighted by the dashed lines.

Min. nb. of result items 10 20 50

Metric@10 HR MRR HR MRR HR MRR
HR (TREND-N,FM,BPR,REMIND) 0.675 0.382 0.636 0.363 0.584 0.324
REMIND 0.652 0.371 0.619 0.352 0.572 0.324
HR (TREND-N,FM,BPR) 0.624 0.304 0.565 0.282 0.511 0.241
HR (TREND-N,FM) 0.604 0.289 0.564 0.267 0.504 0.235
BPR 0.579 0.284 0.535 0.262 0.477 0.226
FM 0.580 0.265 0.536 0.242 0.475 0.209
CB 0.535 0.258 0.487 0.238 0.416 0.198
SKNN 0.524 0.246 0.480 0.227 0.403 0.185
TREND-N 0.506 0.208 0.455 0.185 0.375 0.148
PCLICK 0.438 0.172 0.385 0.150 0.321 0.127
Shop baseline (“by sales”) 0.433 0.168 0.380 0.147 0.314 0.125

Surprisingly, in contrast to the results presented in 3.1.2, the long-term model
BPR shows a stronger performance than the session-aware SKNN for search
personalization. The comparably worse performance of SKNN might be explained
with the position, in which search events usually occur in the user sessions.
Often, users start the session by searching for an item in the catalog. At that time,
however, no previous item view events are available and, thus, SKNN is limited in
finding appropriate neighboring sessions.

The simple session-aware heuristics FM and especially REMIND lead to very
strong accuracy results. While FM is on par with BPR, REMIND outperforms
all other techniques significantly. However, only reminding the users of known
products might not be desired in practical applications. The strategy should, thus,
rather be combined with alternative approaches that create more “surprising”
recommendations. With this in mind, the strong performance of REMIND, again,
indicates that relying solely on accuracy metrics might be misleading in terms of
the online performance of a recommender system in the given scenario.

The investigated hybrid approaches show that each of the included individual
techniques can contribute to the creation of successful recommendations, at least
to some extent. Already a combination of the simple TREND-N and FM methods
leads to good results, which are again improved by including long-term prefer-
ences (BPR). When, furthermore, REMIND is added to the hybrid approach, the
techniques jointly outperform all other tested approaches significantly. The final
weights that were determined in an extensive grid search procedure, furthermore,
emphasize the importance of the different techniques or factors respectively (0.45
for REMIND, 0.4 for TREND-N, and only 0.075 for BPR and FM).

3.2 Session-Aware Personalized Search

69

70

Overall, despite being applied in a different personalization scenario, simple session-
aware techniques again prove to be very successful. The results, furthermore, show
that a multitude of different factors is again important for the creation of suitable
item suggestions, not only in item-item-recommendation but also in the context of
search personalization. A hybrid approach that considers long-term preferences,
content-based contextualization, reminding, and also recent popularity trends leads

to the best results in re-ranking the candidate items.

Chapter 3 Exploring Session-Awareness in E-Commerce

Summary & Conclusions

This thesis addresses a number of open research questions in the fields of session-
aware and session-based recommendation that are presented in Section 1.4. In this
concluding chapter, the main findings regarding both scenarios are summarized
alongside a discussion of possible limitations of the research as well as future
directions for follow-up works.

Being able to provide suitable item recommendations solely based on a few recent
interactions in an ongoing user session is a highly relevant problem in practical
scenarios. The session-based problem setting, thus, enjoys growing interest in the
recommender system research community and several algorithmic approaches were
proposed over recent years. However, no common standard evaluation procedure
has been established so far, i.e., different datasets, data preprocessing schemes,
evaluation protocols, baseline techniques, and metrics are employed throughout the
presented works. This thesis and the included publications, therefore, propose a
publicly available framework for researchers, which includes many recent techniques,
ships with a number of datasets from different domains, and, thereby, enables future
works to be better comparable and, more importantly, reproducible.

Moreover, this thesis provides an extensive overview of session-based recommen-
dation techniques, which ranged from simple nearest-neighbor techniques, over
factorization-based approaches, to the most recently proposed deep learning models.
Furthermore, all these algorithms were tested in an extensive multi-dimensional
comparison in a fair manner. Surprisingly, the experiments revealed that, in most
cases, a simple nearest-neighbor technique outperforms modern approaches based
on neural networks across many domains, datasets, and metrics. At the same time,
the computational complexity is much lower. The better performance, however, often
comes with a slightly higher popularity bias and a lower catalog coverage, which
might be undesirable in a practical application. A user study in the music domain,
however, shows that, at least in the investigated scenario, this particularity has no
negative impact and the nearest-neighbor technique can provide recommendations
that were perceived also of higher quality by the users.

71

72

New neural network architectures for session-based recommendation are constantly
published and report improvements over previous models for specific setups. Apart
from the fact that stronger baseline techniques like the nearest-neighbor methods are
seldom considered, the extensive experiments, furthermore, show that the improve-
ments over previous models often do not transfer to other domains and datasets. In
fact, in several cases, the earliest neural network GRU4REC still performs best. In
future works, new techniques, thus, will be integrated into the proposed framework
to better asses the ongoing progress regarding session-based techniques.

Further ideas for future works include exploring session-based recommendation
with multiple interaction types or additional metadata, providing a standard setup
for these scenarios, and extending the session-based techniques to the session-aware
scenario by including long-term histories. Furthermore, session-based models are
usually trained to predict the immediate next item in a session. As, however, all
remaining items in a session might be of relevance to the user, future models should
also include these items in the training procedure. Finally, as the performance of
different algorithms sometimes varies strongly across different metrics, domains and
datasets, more research is required to determine why particular algorithms work
better in particular scenarios or for specific datasets.

In terms of the session-aware recommendation scenario, the main intuition behind
the covered research questions was to provide a better understanding of what
makes users click on the provided recommendations in an online fashion shop.
The author of this thesis performed a systematic analysis of the characteristics of
successful real-world item suggestions, which has previously not been done for the
e-commerce domain. The analysis shows that several aspects regarding the most
recent user sessions are of particular importance. Specifically, reminding the user
of previously inspected clothes and matching the recommendations with the most
recently inspected items, e.g., recommending from the same category, showing
clothes in the same color, or focusing on a specific brand leads to substantially more
purchases. Furthermore, discounts and considering recent trends in the community
have a beneficial effect on the conversion rate.

These insights were furthermore utilized in a new approach that jointly considers
the success factors in a sophisticated way and, in consequence, provides more
accurate recommendations than previous methods. The approach operates in a two-
stage scheme. First, BPR is employed to consider the users’ long-term preferences
and, second, a feed-forward neural network effectively re-ranks a certain number
of suitable items with respect to particularities of the most recent user sessions.
Moreover, additional experiments show that similar aspects also help in the related
scenario of session-aware search personalization in e-commerce.

Chapter 4 Summary & Conclusions

While the analyzed and determined success factors are very specific to the given
application domain of fashion recommendation, the procedure of determining the
importance of any imaginable factor functions as a generic framework. Consequently,
future works include the application of this framework to other domains, both from
the e-commerce landscape as well as in completely different application scenarios.
This way, it should be assessed if similar aspects are also success factors of recom-
mendations in other settings. Similarly, the proposed DEEPRANK approach could be
transferred to and tested in other domains.

Moreover, the proposed approach includes reminders and recently very popular items
in the recommendation lists. Both types of item suggestions might not contribute to
a satisfactory user experience in many cases. Although including such recommenda-
tions is common practice, more research is required to find an optimal balance and
to asses when and for whom to include these types of recommendations.

Overall, this thesis contributes to a better understanding concerning the importance
of considering the users’ recent sessions in the recommendation process and, fur-
thermore, leads to implications on how to utilize them effectively across multiple
domains and recommendation scenarios.

73

Bibliography

[AK12]

[Bae+15]

[BCB15]

[Ben+11]

[Ben+15]

[BJ14]

[BK17]

[BOLO9]

[BSD10]

Gediminas Adomavicius and YoungOk Kwon. “Improving Aggregate Recommen-
dation Diversity Using Ranking-Based Techniques”. In: IEEE Transactions on
Knowledge and Data Engineering 24.5 (May 2012), pp. 896-911 (cit. on p. 38).

Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and Beverly Harrison. “Pre-
dicting The Next App That You Are Going To Use”. In: Proceedings of the 8th
ACM International Conference on Web Search and Data Mining. WSDM ’15. 2015,
pp. 285-294 (cit. on pp. 7, 36).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: Proceedings of the
3rd International Conference on Learning Representations. ICLR "15. 2015 (cit. on
pp. 32, 35).

Paul N. Bennett, Filip Radlinski, Ryen W. White, and Emine Yilmaz. “Inferring
and Using Location Metadata to Personalize Web Search”. In: Proceedings of
the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR '11. 2011, pp. 135-144 (cit. on p. 67).

Paul N. Bennett, Kevyn Collins-Thompson, Diane Kelly, Ryen W. White, and Yi
Zhang. “Overview of the Special Issue on Contextual Search and Recommenda-
tion”. In: ACM Transactions on Information Systems 33.1 (Mar. 2015), 1e:1-1e:7
(cit. on p. 67).

Geoffray Bonnin and Dietmar Jannach. “Automated Generation of Music Playlists:

Survey and Experiments”. In: ACM Computing Surveys 47.2 (Nov. 2014), 26:1-
26:35 (cit. on pp. 25, 34, 49).

Veronika Bogina and Tsvi Kuflik. “Incorporating Dwell Time in Session-Based
Recommendations with Recurrent Neural Networks”. In: Proceedings of the 1st
Workshop on Temporal Reasoning in Recommender Systems co-located with 11th
International Conference on Recommender Systems. RecTemp '17. 2017, pp. 57—
59 (cit. on p. 35).

Luke Barrington, Reid Oda, and Gert R. G. Lanckriet. “Smarter than Genius?
Human Evaluation of Music Recommender Systems”. In: Proceedings of the 10th
International Society for Music Information Retrieval Conference. ISMIR ’09. 2009,
pp. 357-362 (cit. on pp. 10, 47).

Paul N. Bennett, Krysta Svore, and Susan T. Dumais. “Classification-enhanced
Ranking”. In: Proceedings of the 19th International Conference on World Wide
Web. WWW ’10. 2010, pp. 111-120 (cit. on p. 67).

75

76

[Car+09]

[CFNO7]

[CGT12]

[Che+12]

[Che+18]

[CMS99]

[CXJ13]

[Dav+10]

[DCJ19]

[Dju+14]

[DSWO07]

David Carmel, Naama Zwerdling, Ido Guy, Shila Ofek-Koifman, Nadav Har’el,
Inbal Ronen, et al. “Personalized Social Search Based on the User’s Social Net-
work”. In: Proceedings of the 18th ACM Conference on Information and Knowledge
Management. CIKM "09. 2009, pp. 1227-1236 (cit. on p. 67).

Paul - Alexandru Chirita, Claudiu S. Firan, and Wolfgang Nejdl. “Personalized
Query Expansion for the Web”. In: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’07. 2007, pp. 7-14 (cit. on p. 67).

Paolo Cremonesi, Franca Garzotto, and Roberto Turrin. “Investigating the Per-
suasion Potential of Recommender Systems from a Quality Perspective: An

Empirical Study”. In: ACM Transactions on Interactive Intelligent Systems 2.2
(June 2012), 11:1-11:41 (cit. on p. 1).

Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten Joachims. “Playlist
Prediction via Metric Embedding”. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’12.
2012, pp. 714-722 (cit. on p. 36).

Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. “Recsys
Challenge 2018: Automatic Music Playlist Continuation”. In: Proceedings of the
12th ACM Conference on Recommender Systems. RecSys ’18. 2018, pp. 527-528
(cit. on p. 49).

Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. “Data Preparation
for Mining World Wide Web Browsing Patterns”. In: Knowledge and Information
Systems 1.1 (Feb. 1999), pp. 5-32 (cit. on p. 39).

Shuo Chen, Jiexun Xu, and Thorsten Joachims. “Multi-space Probabilistic Se-
quence Modeling”. In: Proceedings of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. KDD ’13. 2013, pp. 865-873
(cit. on p. 36).

James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, et al. “The YouTube Video Recommendation System”. In: Proceedings
of the 4th ACM Conference on Recommender Systems. RecSys '10. 2010, pp. 293—
296 (cit. on p. 24).

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. “Are We
Really Making Much Progress? A Worrying Analysis of Recent Neural Recommen-
dation Approaches”. In: Proceedings of the 13th ACM Conference on Recommender
Systems. RecSys ’19. 2019 (cit. on p. 42).

Nemanja Djuric, Vladan Radosavljevic, Mihajlo Grbovic, and Narayan Bhamidi-
pati. “Hidden Conditional Random Fields with Deep User Embeddings for Ad
Targeting”. In: Proceedings of the 2014 IEEE International Conference on Data
Mining. ICDM ’14. 2014, pp. 779-784 (cit. on p. 36).

Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. “A Large-scale Evaluation and
Analysis of Personalized Search Strategies”. In: Proceedings of the 16th Interna-
tional Conference on World Wide Web. WWW °07. 2007, pp. 581-590 (cit. on
pp. 67, 68).

Bibliography

[Du+16]

[Dua+13]

[Eks+14]

[Fen+15]

[Gar+14]

[Gar+19]

[GDF13]

[GDJ10]

[GH16]

[Grb+15]

[Guo+19]

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. “Recurrent Marked Temporal Point Processes: Em-
bedding Event History to Vector”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’16.
2016, pp. 1555-1564 (cit. on p. 36).

Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani. “A
Probabilistic Mixture Model for Mining and Analyzing Product Search Log”.
In: Proceedings of the 22nd ACM International Conference on Information &
Knowledge Management. CIKM "13. 2013, pp. 2179-2188 (cit. on p. 65).

Michael D. Ekstrand, F. Maxwell Harper, Martijn C. Willemsen, and Joseph
A. Konstan. “User Perception of Differences in Recommender Algorithms”. In:
Proceedings of the 8th ACM Conference on Recommender Systems. RecSys ’14.
2014, pp. 161-168 (cit. on pp. 10, 47).

Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan
Yuan. “Personalized Ranking Metric Embedding for Next New POI Recommenda-
tion”. In: Proceedings of the 24th International Conference on Artificial Intelligence.
IJCAI’15. 2015, pp. 2069-2075 (cit. on p. 36).

Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin,
and Amr Huber. “Offline and Online Evaluation of News Recommender Systems
at Swissinfo.Ch”. In: Proceedings of the 8th ACM Conference on Recommender
Systems. RecSys '14. 2014, pp. 169-176 (cit. on pp. 10, 12, 19, 54).

Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam
Shroff. “Sequence and Time Aware Neighborhood for Session-based Recommen-
dations: STAN”. In: Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’19. 2019, pp. 1069-
1072 (cit. on p. 35).

Florent Garcin, Christos Dimitrakakis, and Boi Faltings. “Personalized News
Recommendation with Context Trees”. In: Proceedings of the 7th ACM Conference
on Recommender Systems. RecSys '13. 2013, pp. 105-112 (cit. on pp. 7, 36).

Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. “Beyond Accuracy:
Evaluating Recommender Systems by Coverage and Serendipity”. In: Proceedings
of the 4th ACM Conference on Recommender Systems. RecSys ’10. 2010, pp. 257-
260 (cit. on p. 10).

Carlos A. Gomez-Uribe and Neil Hunt. “The Netflix Recommender System: Algo-
rithms, Business Value, and Innovation”. In: ACM Transactions on Management
Information Systems 6.4 (Jan. 2016), 13:1-13:19 (cit. on pp. 1, 54).

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
Jaikit Savla, Varun Bhagwan, et al. “E-commerce in Your Inbox: Product Rec-
ommendations at Scale”. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’15. 2015, pp. 1809—
1818 (cit. on pp. 10, 36).

Huifeng Guo, Ruiming Tang, Yunming Ye, Feng Liu, and Yuzhou Zhang. “A Novel
KNN Approach for Session-Based Recommendation”. In: Proceedings of the 23rd
Pacific-Asia Conference on Knowledge Discovery and Data Mining. PAKDD ’19.
2019, pp. 381-393 (cit. on p. 35).

Bibliography

77

78

[GWD14] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In:
CoRR abs/1410.5401 (2014). arXiv: 1410.5401 (cit. on p. 35).

[He+09] Qi He, Daxin Jiang, Zhen Liao, Steven C. H. Hoi, Kuiyu Chang, Ee-Peng Lim, et al.
“Web Query Recommendation via Sequential Query Prediction”. In: Proceedings
of the 2009 IEEE International Conference on Data Engineering. ICDE ’09. 2009,
pp. 1443-1454 (cit. on p. 36).

[He+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition. CVPR ’15. 2015, pp. 770-778 (cit. on
p- 34).

[He+16] Jing He, Xin Li, Lejian Liao, Dandan Song, and William Cheung. “Inferring a
Personalized Next Point-of-Interest Recommendation Model with Latent Behav-
ior Patterns”. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence.
AAAT’16. 2016, pp. 137-143 (cit. on pp. 27-29).

[Her+04] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
“Evaluating Collaborative Filtering Recommender Systems”. In: ACM Transac-
tions on Information Systems 22.1 (Jan. 2004), pp. 5-53 (cit. on p. 10).

[Hid+16a] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
“Session-based Recommendations with Recurrent Neural Networks”. In: Proceed-
ings of the 4th International Conference on Learning Representations. ICLR ’16.
2016 (cit. on pp. 7, 9, 21, 24, 30, 31, 37-39, 46).

[Hid+16b] Balazs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk.
“Parallel Recurrent Neural Network Architectures for Feature-rich Session-based
Recommendations”. In: Proceedings of the 10th ACM Conference on Recommender
Systems. RecSys ’16. 2016, pp. 241-248 (cit. on pp. 7, 35).

[HK18] Balédzs Hidasi and Alexandros Karatzoglou. “Recurrent Neural Networks with
Top-k Gains for Session-based Recommendations”. In: Proceedings of the 27th
ACM International Conference on Information and Knowledge Management. CIKM ’18.
2018, pp. 843-852 (cit. on pp. 30, 31, 35).

[HKJO3] Taher Haveliwala, Sepandar Kamvar, and Glen Jeh. An Analytical Comparison
of Approaches to Personalizing PageRank. Technical Report 2003-35. Stanford
InfoLab, June 2003 (cit. on p. 67).

[HKV08] Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative Filtering for Im-
plicit Feedback Datasets”. In: Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining. ICDM ’08. 2008, pp. 263-272 (cit. on p. 4).

[HLCO8] Sue-Chen Hsueh, Ming-Yen Lin, and Chien-Liang Chen. “Mining Negative Se-
quential Patterns for E-commerce Recommendations”. In: Proceedings of the 3rd
IEEE Asia-Pacific Services Computing Conference. APSCC '08. 2008, pp. 1213—
1218 (cit. on p. 7).

[HMB12] Negar Hariri, Bamshad Mobasher, and Robin Burke. “Context-aware Music
Recommendation Based on Latenttopic Sequential Patterns”. In: Proceedings of
the 6th ACM Conference on Recommender Systems. RecSys ’12. 2012, pp. 131-138
(cit. on pp. 7, 9, 21, 34).

Bibliography

https://arxiv.org/abs/1410.5401

[Hos+15] Mehdi Hosseinzadeh Aghdam, Negar Hariri, Bamshad Mobasher, and Robin

[JA16]

[JHO9]

[JJ19]

[JKG12]

[JL17a]

[JL17b]

[JL17c]

[JLJ15a]

[JLJ15b]

[JLL17]

[JLZ18]

Burke. “Adapting Recommendations to Contextual Changes Using Hierarchical
Hidden Markov Models”. In: Proceedings of the 9th ACM Conference on Recom-
mender Systems. RecSys ’15. 2015, pp. 241-244 (cit. on p. 36).

Dietmar Jannach and Gediminas Adomavicius. “Recommendations with a Pur-
pose”. In: Proceedings of the 10th ACM Conference on Recommender Systems.
RecSys '16. 2016, pp. 7-10 (cit. on p. 37).

Dietmar Jannach and Kolja Hegelich. “A Case Study on the Effectiveness of
Recommendations in the Mobile Internet”. In: Proceedings of the 3rd ACM
Conference on Recommender Systems. RecSys ’09. 2009, pp. 205-208 (cit. on
p. 4).

Dietmar Jannach and Michael Jugovac. “Measuring the Business Value of Rec-
ommender Systems”. In: ACM Transactions on Management Information Systems
10.4 (2019) (cit. on pp. 1, 10).

Dietmar Jannach, Zeynep Karakaya, and Fatih Gedikli. “Accuracy Improvements
for Multi-criteria Recommender Systems”. In: Proceedings of the 13th ACM
Conference on Electronic Commerce. EC ’12. 2012, pp. 674-689 (cit. on p. 4).

Dietmar Jannach and Malte Ludewig. “Determining Characteristics of Successful
Recommendations from Log Data: A Case Study”. In: Proceedings of the 32nd
ACM SIGAPP Symposium On Applied Computing. SAC’17. 2017, pp. 1643-1648
(cit. on pp. 14, 15, 53-55, 60, 67, 89).

Dietmar Jannach and Malte Ludewig. “Investigating Personalized Search in E-
Commerce”. In: Proceedings of the 30th International Florida Artificial Intelligence
Research Society Conference. FLAIRS "17. 2017, pp. 645-650 (cit. on pp. 14, 15,
53, 65, 67, 68, 89).

Dietmar Jannach and Malte Ludewig. “When Recurrent Neural Networks meet
the Neighborhood for Session-Based Recommendation”. In: Proceedings of the
11th ACM Conference on Recommender Systems. RecSys '17. 2017, pp. 306-310
(cit. on pp. 13, 15, 16, 20, 24, 25, 30, 35, 39, 40, 45, 46, 89).

Dietmar Jannach, Lukas Lerche, and Michael Jugovac. “Adaptation and Evalua-
tion of Recommendations for Short-term Shopping Goals”. In: Proceedings of the
9th ACM Conference on Recommender Systems. RecSys '15. 2015, pp. 211-218
(cit. on pp. 7, 9, 11, 53, 55, 59, 60, 62, 63).

Dietmar Jannach, Lukas Lerche, and Michael Jugovac. “Item Familiarity as a
Possible Confounding Factor in User-Centric Recommender Systems Evaluation”.
In: i-com Journal of Interactive Media 14.1 (2015), pp. 29-39 (cit. on p. 47).

Dietmar Jannach, Malte Ludewig, and Lukas Lerche. “Session-Based Item Recom-
mendation in E-Commerce: On Short-Term Intents, Reminders, Trends and Dis-
counts”. In: User Modeling and User-Adapted Interaction 27.3-5 (2017), pp. 351-
392 (cit. on pp. 14, 15, 45, 53, 55, 57, 58, 60, 62-64, 67, 89).

Dietmar Jannach, Lukas Lerche, and Markus Zanker. “Recommending Based on
Implicit Feedback”. In: Social Information Access: Systems and Technologies. Ed.
by Peter Brusilovsky and Daqing He. Cham: Springer International Publishing,
2018, pp. 510-569 (cit. on p. 4).

Bibliography

79

80

[JWK14]

[KBV09]

[KJ17]

[KJL17]

[Kni+12]

[KNK13]

[Kor09]

[Li+17]

[Liu+14]

[Liu+18]

[LJ18a]

Gawesh Jawaheer, Peter Weller, and Patty Kostkova. “Modeling User Preferences
in Recommender Systems: A Classification Framework for Explicit and Implicit
User Feedback”. In: ACM Transactions on Interactive Intelligent Systems 4.2 (June
2014), 8:1-8:26 (cit. on p. 3).

Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix Factorization Techniques
for Recommender Systems”. In: Computer 42.8 (Aug. 2009), pp. 30-37 (cit. on
p- 2).

Iman Kamehkhosh and Dietmar Jannach. “User Perception of Next-Track Music
Recommendations”. In: Proceedings of the 25th Conference on User Modeling,
Adaptation and Personalization. UMAP ’17. 2017, pp. 113-121 (cit. on pp. 10,
12, 47).

Iman Kamehkhosh, Dietmar Jannach, and Malte Ludewig. “A Comparison of
Frequent Pattern Techniques and a Deep Learning Method for Session-Based
Recommendation”. In: Proceedings of the 1st Workshop on Temporal Reasoning
in Recommender Systems co-located with 11th ACM Conference on Recommender
Systems. RecTemp '17. 2017, pp. 50-56 (cit. on pp. 13, 16, 20, 23, 40, 89).

Bart P. Knijnenburg, Martijn C. Willemsen, Zeno Gantner, Hakan Soncu, and
Chris Newell. “Explaining the User Experience of Recommender Systems”. In:
User Modeling and User-Adapted Interaction 22.4 (Oct. 2012), pp. 441-504 (cit.
on p. 49).

Santosh Kabbur, Xia Ning, and George Karypis. “FISM: Factored Item Simi-
larity Models for top-N Recommender Systems”. In: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’13. 2013, pp. 659-667 (cit. on pp. 27, 28).

Yehuda Koren. “The BellKor Solution to the Netflix Grand Prize”. In: Netflix Prize
Documentation 81.2009 (2009), pp. 1-10 (cit. on pp. 2, 3).

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma.
“Neural Attentive Session-based Recommendation”. In: Proceedings of the 2017
ACM on Conference on Information and Knowledge Management. CIKM ’17. 2017,
pp. 1419-1428 (cit. on pp. 21, 31, 32, 37, 39).

Zitao Liu, Gyanit Singh, Nish Parikh, and Neel Sundaresan. “A Large Scale Query
Logs Analysis for Assessing Personalization Opportunities in E-commerce Sites”.
In: Proceedings of the WSCD Workshop at the 7th ACM International Conference
on Web Search and Data Mining. WSCD ’14. 2014 (cit. on p. 65).

Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. “STAMP: Short-Term
Attention/Memory Priority Model for Session-based Recommendation”. In: Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining. KDD ’18. 2018, pp. 1831-1839 (cit. on pp. 21, 30, 32, 33,
37, 39).

Malte Ludewig and Dietmar Jannach. “Could You Play That Song Again? -
Reminding Users of Their Favorite Tracks Through Recommendations”. In:
Proceedings of the WSDM Cup Workshop 2018. WSDM Cup ’18. 2018 (cit. on
pp. 18, 90).

Bibliography

[LJ18b]

[LJ19a]

[LJ19b]

[LJJ17]

[LJL16]

[LLC14]

[LLH17]

[Loe+18]

[LSYO3]

[Lud+18]

[Lud+19]

Malte Ludewig and Dietmar Jannach. “Evaluation of Session-Based Recom-
mendation Algorithms”. In: User Modeling and User-Adapted Interaction 28.4-5
(2018), pp. 331-390 (cit. on pp. 13, 16, 17, 20, 24, 25, 28-30, 36-40, 42, 45,
62, 89).

Malte Ludewig and Dietmar Jannach. “Learning to Rank Hotels for Search and
Recommendation from Session-Based Interaction Logs and Meta Data”. In: Pro-
ceedings of the ACM Recommender Systems Challenge 2019. RecSys Challenge ’19.
2019 (cit. on pp. 18, 90).

Malte Ludewig and Dietmar Jannach. “User-Centric Evaluation of Session-Based
Recommendations for an Automated Radio Station”. In: Proceedings of the 13th
ACM Conference on Recommender Systems. RecSys "19. 2019, pp. 306-310 (cit.
on pp. 14, 17, 20, 40, 47, 49, 51, 89).

Malte Ludewig, Michael Jugovac, and Dietmar Jannach. “A Light-Weight Ap-
proach to Recipient Determination When Recommending New Items”. In: Pro-
ceedings of the ACM Recommender Systems Challenge 2017. RecSys Challenge "17.
2017, 3:1-3:6 (cit. on pp. 16, 17, 90).

Lukas Lerche, Dietmar Jannach, and Malte Ludewig. “On the Value of Reminders
within E-Commerce Recommendations”. In: Proceedings of the 2016 Conference
on User Modeling Adaptation and Personalization. UMAP ’16. 2016, pp. 27-35
(cit. on pp. 15, 55, 61, 90).

Eric Hsueh-Chan Lu, Yi-Wei Lin, and Jing-Bin Ciou. “Mining mobile application
sequential patterns for usage prediction”. In: Proceedings of the 2014 IEEE
International Conference on Granular Computing. GrC ’14. Oct. 2014, pp. 185
190 (cit. on p. 7).

Pablo Loyola, Chen Liu, and Yu Hirate. “Modeling User Session and Intent with
an Attention-based Encoder-Decoder Architecture”. In: Proceedings of the 11th
ACM Conference on Recommender Systems. RecSys '17. 2017, pp. 147-151 (cit.
on p. 35).

Benedikt Loepp, Tim Donkers, Timm Kleemann, and Jiirgen Ziegler. “Impact
of Item Consumption on Assessment of Recommendations in User Studies”. In:
Proceedings of the 12th ACM Conference on Recommender Systems. RecSys "18.
2018, pp. 49-53 (cit. on p. 47).

Greg Linden, Brent Smith, and Jeremy York. “Amazon.com recommendations:
item-to-item collaborative filtering”. In: IEEE Internet Computing 7.1 (Jan. 2003),
pp. 76-80 (cit. on p. 24).

Malte Ludewig, Iman Kamehkhosh, Nick Landia, and Dietmar Jannach. “Effec-
tive Nearest-Neighbor Music Recommendations”. In: Proceedings of the ACM
Recommender Systems Challenge 2018. RecSys Challenge ’18. 2018, 3:1-3:6
(cit. on pp. 18, 26, 49, 90).

Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. “Performance
Comparison of Neural and Non-Neural Approaches to Session-Based Recommen-
dation”. In: Proceedings of the 13th ACM Conference on Recommender Systems.
RecSys ’19. 2019, pp. 306-310 (cit. on pp. 13, 16, 20, 24, 26, 30, 38-40, 90).

Bibliography

81

82

[MBR12]

[MF18]

[Mik+13]

[MKPO3]

[ML11]

[ML12]

[Mob+02]

[MR11]

[MRS08]

[Oor+16]

[PCH11]

[Pla+06]

[PS11]

Omar Moling, Linas Baltrunas, and Francesco Ricci. “Optimal Radio Channel
Recommendations with Explicit and Implicit Feedback”. In: Proceedings of the
Sixth ACM Conference on Recommender Systems. RecSys '12. 2012, pp. 75-82
(cit. on pp. 10, 36).

Fei Mi and Boi Faltings. Context Tree for Adaptive Session-based Recommendation.
2018. arXiv: 1806.03733 [cs.IR] (cit. on pp. 22, 23).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. “Dis-
tributed Representations of Words and Phrases and Their Compositionality”. In:
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2. NIPS ’13. 2013, pp. 3111-3119 (cit. on p. 36).

Harry Mak, Irena Koprinska, and Josiah Poon. “INTIMATE: A Web-Based Movie
Recommender Using Text Categorization”. In: Proceedings of the IEEE/WIC
International Conference on Web Intelligence. WI ’03. Oct. 2003, pp. 602-605
(cit. on p. 2).

Brian McFee and Gert Lanckriet. “The Natural Language of Playlists”. In: Proceed-
ings of the 12th International Society for Music Information Retrieval Conference.
ISMIR ’11. Jan. 2011, pp. 537-542 (cit. on p. 36).

Brian Mcfee and Gert Lanckriet. “Hypergraph Models of Playlist Dialects”. In:
Proceedings of the 13th International Society for Music Information Retrieval
Conference. ISMIR "12. Oct. 2012 (cit. on p. 39).

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. “Using Se-
quential and Non-Sequential Patterns in Predictive Web Usage Mining Tasks”. In:
Proceedings of the 2002 IEEE International Conference on Data Mining. ICDM ’02.
Dec. 2002, pp. 669-672 (cit. on pp. 21, 34).

Nicolaas Matthijs and Filip Radlinski. “Personalizing Web Search Using Long
Term Browsing History”. In: Proceedings of the 4th ACM International Conference
on Web Search and Data Mining. WSDM ’11. 2011, pp. 25-34 (cit. on pp. 67,
68).

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction
to Information Retrieval. Cambridge University Press, 2008 (cit. on p. 58).

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, et al. WaveNet: A Generative Model for Raw Audio. 2016.
arXiv: 1609.03499 [cs.SD] (cit. on pp. 33, 34).

Pearl Pu, Li Chen, and Rong Hu. “A User-centric Evaluation Framework for
Recommender Systems”. In: Proceedings of the Fifth ACM Conference on Recom-
mender Systems. RecSys ’11. 2011, pp. 157-164 (cit. on p. 49).

Carolin Plate, Nathalie Basselin, Alexander Kroner, Michael Schneider, Stephan
Baldes, Vania Dimitrova, et al. “Recomindation: New Functions for Augmented
Memories”. In: Proceedings of the 4th International Conference on Adaptive Hyper-
media and Adaptive Web-Based Systems. AH ’06. June 2006, pp. 141-150 (cit. on
p.- 56).

Nish Parikh and Neel Sundaresan. “A user-tunable approach to marketplace
search”. In: Proceedings of the 20th International Conference on World Wide Web.
WWW ’11. 2011, pp. 245-248 (cit. on p. 65).

Bibliography

https://arxiv.org/abs/1806.03733
https://arxiv.org/abs/1609.03499

[PSM14]

[QCJ18]

[Ren+09]

[Ren+19]

[RFS10]

[RLJ16]

[Sar+01]

[Sca+09]

[Sch+16]

[SEH16]

[SFC18]

[SHBO5]

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “Glove: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing. EMNLP '14. 2014, pp. 1532~
1543 (cit. on p. 36).

Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. “Sequence-Aware
Recommender Systems”. In: ACM Computing Surveys 51.4 (Sept. 2018), 66:1-
66:36 (cit. on pp. 6-9, 19, 36).

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. “BPR: Bayesian Personalized Ranking from Implicit Feedback”. In:
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. UAI
’09. 2009, pp. 452-461 (cit. on pp. 4, 27, 36).

Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, and Maarten
de Rijke. “RepeatNet: A Repeat Aware Neural Recommendation Machine for
Session-Based Recommendation”. In: Proceedings of the 33rd AAAI Conference
on Artificial Intelligence. AAAI’19. 2019, pp. 48064813 (cit. on p. 35).

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. “Factorizing
Personalized Markov Chains for Next-basket Recommendation”. In: Proceedings
of the 19th International Conference on World Wide Web. WWW ’10. 2010,
pp. 811-820 (cit. on pp. 21, 27, 28).

Siddharth Reddy, Igor Labutov, and Thorsten Joachims. “Learning Student and
Content Embeddings for Personalized Lesson Sequence Recommendation”. In:
Proceedings of the 3rd ACM Conference on Learning @ Scale. L@S '16. 2016,
pp. 93-96 (cit. on p. 36).

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. “Item-based
Collaborative Filtering Recommendation Algorithms”. In: Proceedings of the 10th
International Conference on World Wide Web. WWW °01. 2001, pp. 285-295
(cit. on p. 3).

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. “The Graph Neural Network Model”. In: IEEE Transac-
tions on Neural Networks 20.1 (Jan. 2009), pp. 61-80 (cit. on p. 35).

Tobias Schnabel, Paul N. Bennett, Susan T. Dumais, and Thorsten Joachims.
“Using Shortlists to Support Decision Making and Improve Recommender System
Performance”. In: Proceedings of the 25th International Conference on World Wide
Web. WWW ’16. 2016, pp. 987-997 (cit. on pp. 53, 56).

Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. “Multi-Rate Deep Learning
for Temporal Recommendation”. In: Proceedings of the 39th International ACM
SIGIR Conference on Research and Development in Information Retrieval. SIGIR
’16. 2016, pp. 909-912 (cit. on pp. 7, 36).

Gabriel de Souza Pereira Moreira, Felipe Ferreira, and Adilson Marques da
Cunha. “News Session-Based Recommendations Using Deep Neural Networks”.
In: Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems.
DLRS ’18. 2018, pp. 15-23 (cit. on p. 35).

Guy Shani, David Heckerman, and Ronen I. Brafman. “An MDP-Based Recom-
mender System”. In: The Journal of Machine Learning Research 6 (Dec. 2005),
pp. 1265-1295 (cit. on pp. 36, 53).

Bibliography

83

84

[SMBO07]

[Soh+17]

[Sor+15]

[SSZ18]

[Tag+15]

[TB14]

[TPT11]

[TSZ06]

[Tur+15]

[Twal6]

[TXL16]

Ahu Sieg, Bamshad Mobasher, and Robin Burke. “Web Search Personalization
with Ontological User Profiles”. In: Proceedings of the 16th ACM Conference
on Conference on Information and Knowledge Management. CIKM ’07. 2007,
pp. 525-534 (cit. on p. 67).

Harold Soh, Scott Sanner, Madeleine White, and Greg Jamieson. “Deep Sequen-
tial Recommendation for Personalized Adaptive User Interfaces”. In: Proceedings
of the 22nd International Conference on Intelligent User Interfaces. IUI’17. 2017,
pp. 589-593 (cit. on p. 36).

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob
Grue Simonsen, and Jian-Yun Nie. “A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion”. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management.
CIKM ’15. 2015, pp. 553-562 (cit. on p. 36).

Gabriele Sottocornola, Panagiotis Symeonidis, and Markus Zanker. “Session-
based News Recommendations”. In: Companion Proceedings of the The Web
Conference 2018. WWW 18 Companion. 2018, pp. 1395-1399 (cit. on p. 35).

Yukihiro Tagami, Hayato Kobayashi, Shingo Ono, and Akira Tajima. “Modeling
User Activities on the Web Using Paragraph Vector”. In: Companion Proceedings
of the 24th International Conference on World Wide Web. WWW ’15 Companion.
2015, pp. 125-126 (cit. on p. 36).

Maryam Tavakol and Ulf Brefeld. “Factored MDPs for Detecting Topics of User
Sessions”. In: Proceedings of the 8th ACM Conference on Recommender Systems.
RecSys '14. 2014, pp. 33-40 (cit. on pp. 36, 53).

Gabor Takacs, Istvan Pilaszy, and Domonkos Tikk. “Applications of the Conjugate
Gradient Method for Implicit Feedback Collaborative Filtering”. In: Proceedings
of the 5th ACM Conference on Recommender Systems. RecSys '11. 2011, pp. 297-
300 (cit. on p. 4).

Bin Tan, Xuehua Shen, and ChengXiang Zhai. “Mining Long-term Search History
to Improve Search Accuracy”. In: Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. KDD ’06. 2006,
pp. 718-723 (cit. on p. 67).

Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and
Paolo Cremonesi. “30Music Listening and Playlists Dataset”. In: Poster Proceed-
ings of the 9th ACM Conference on Recommender Systems. RecSys ’15. 2015
(cit. on p. 39).

Bartlomiej Twardowski. “Modelling Contextual Information in Session-Aware
Recommender Systems with Neural Networks”. In: Proceedings of the 10th ACM
Conference on Recommender Systems. RecSys '16. 2016, pp. 273-276 (cit. on
pp. 7, 36).

Yong Kiam Tan, Xinxing Xu, and Yong Liu. “Improved Recurrent Neural Networks
for Session-based Recommendations”. In: Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems. DLRS "16. 2016, pp. 17-22 (cit. on
p. 35).

Bibliography

[VG14]

[VSC16]

[Wan+19]

[WCB15]

[Wu+13]

[Wu+19]

[YLY12]

[Yu+14]

[Yu+16]

[Yua+19]

[Zan+14]

Koen Verstrepen and Bart Goethals. “Unifying Nearest Neighbors Collaborative
Filtering”. In: Proceedings of the 8th ACM Conference on Recommender Systems.
RecSys '14. 2014, pp. 177-184 (cit. on p. 24).

Flavian Vasile, Elena Smirnova, and Alexis Conneau. “Meta-Prod2Vec: Product
Embeddings Using Side-Information for Recommendation”. In: Proceedings of the
10th ACM Conference on Recommender Systems. RecSys '16. 2016, pp. 225-232
(cit. on p. 36).

Meirui Wang, Pengjie Ren, Lei Mei, Zhumin Chen, Jun Ma, and Maarten de Rijke.
“A Collaborative Session-based Recommendation Approach with Parallel Memory
Modules”. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR'19. 2019, pp. 345-354
(cit. on pp. 30, 34, 35).

Jason Weston, Sumit Chopra, and Antoine Bordes. “Memory Networks”. In:
Proceedings of the 3rd International Conference on Learning Representations.
ICLR ’15. 2015 (cit. on p. 35).

Xiang Wu, Qi Liu, Enhong Chen, Liang He, Jingsong Lv, Can Cao, et al. “Person-
alized Next-song Recommendation in Online Karaokes”. In: Proceedings of the
7th ACM Conference on Recommender Systems. RecSys '13. 2013, pp. 137-140
(cit. on p. 36).

Shu Wu, Yuyuan Tang, Yangiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan.
“Session-based Recommendation with Graph Neural Networks”. In: Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence. AAAI '19. July 2019,
pp. 346-353 (cit. on pp. 30, 34, 35).

Ghim-Eng Yap, Xiao-Li Li, and Philip S. Yu. “Effective Next-items Recommen-
dation via Personalized Sequential Pattern Mining”. In: Proceedings of the 17th
International Conference on Database Systems for Advanced Applications. DAS-
FAA’12. 2012, pp. 48-64 (cit. on pp. 21, 34).

Jun Yu, Sunil Mohan, Duangmanee Putthividhya, and Weng-Keen Wong. “Latent
Dirichlet Allocation Based Diversified Retrieval for e-Commerce Search”. In:
Proceedings of the 7th ACM International Conference on Web Search and Data
Mining. WSDM ’14. 2014, pp. 463-472 (cit. on p. 65).

Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. “A Dynamic Re-
current Model for Next Basket Recommendation”. In: Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’16. 2016, pp. 729-732 (cit. on p. 36).

Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and
Xiangnan He. “A Simple Convolutional Generative Network for Next Item Rec-
ommendation”. In: Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining. WSDM ’19. 2019, pp. 582-590 (cit. on pp. 30, 33,
34).

Eva Zangerle, Martin Pichl, Wolfgang Gassler, and Giinther Specht. “#nowplay-
ing Music Dataset: Extracting Listening Behavior from Twitter”. In: Proceedings
of the First International Workshop on Internet-Scale Multimedia Management.
WISMM ’14. 2014, pp. 21-26 (cit. on p. 39).

Bibliography

85

86

[Zha+14]

[Zhe+10]

[ZLW12a]

[ZLW12b]

Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, et
al. “Sequential Click Prediction for Sponsored Search with Recurrent Neural
Networks”. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence.
AAAT’14. 2014, pp. 1369-1375 (cit. on p. 36).

Elena Zheleva, John Guiver, Eduarda Mendes Rodrigues, and Natasa Mili¢-
Frayling. “Statistical Models of Music-listening Sessions in Social Media”. In:
Proceedings of the 19th International Conference on World Wide Web. WWW ’10.
2010, pp. 1019-1028 (cit. on p. 36).

Dong Zhou, Séamus Lawless, and Vincent Wade. “Improving Search via Person-
alized Query Expansion Using Social Media”. In: Information Retrieval 15.3-4
(June 2012), pp. 218-242 (cit. on p. 67).

Dong Zhou, Séamus Lawless, and Vincent Wade. “Web Search Personalization
Using Social Data”. In: Proceedings of Theory and Practice of Digital Libraries -
Second International Conference. TPDL '12. 2012, pp. 298-310 (cit. on p. 67).

Web pages

[Brel5]

[Fun07]

[Spol9]

Bree Brouwer. YouTube Now Gets Over 400 Hours Of Content Uploaded Every
Minute. 2015. URL: https://www.tubefilter.com/2015/07/26/youtube-
400-hours-content-every-minute (visited on Dec. 30, 2019) (cit. on p. 1).

Simon Funk. Netflix update: Try this at home. 2007. URL: http://sifter.org/
~simon/journal/20061211.html (visited on Dec. 30, 2019) (cit. on p. 3).

Spotify AB. Company Info. 2019. URL: https: //newsroom . spotify . com/
company-info (visited on Dec. 30, 2019) (cit. on p. 1).

Bibliography

https://www.tubefilter.com/2015/07/26/youtube-400-hours-content-every-minute
https://www.tubefilter.com/2015/07/26/youtube-400-hours-content-every-minute
http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
https://newsroom.spotify.com/company-info
https://newsroom.spotify.com/company-info

List of Figures

1.1 Differences between the sequence-aware, session-aware, and session-
based recommendation.,
2.1 Visualization of a simple contexttree.
2.2 Visualization of the personalized transition cube.
2.3 Architecture of the GRU4REC neural network.
2.4 Architecture of the NARM neural network.
2.5 Architecture of the STAMP neural network.
2.6 Abstract architecture of convolutional neural networks for session-based
recommendation. e e
2.7 Hit rate when reducing the recommendation list length from 20 to 1. .
2.8 Hit rate when artificially reducing the size of the training set from 60
daystolday. e
2.9 Interface of the interactive radio station.

List of Tables

2.1 Brief description of the datasets included in the comparison.
2.2 Accuracy results for two of the e-commerce datasets.
2.3 Accuracy results for two of the music datasets.
2.4 Accuracy results for the news dataset.
2.5 Running times for two of the e-commerce datasets.
2.6 Additional measurements for the RSC15 dataset.
2.7 Questions about the users’ quality perceptions.
2.8 Statistics for the item-specific questions. L.
2.9 Offline results for the investigated techniques on the MPD.
3.1 Results of the statistical feature weight analysis.
3.2 HR@10 and MRR@10 results for Zalando’s frequent users.
3.3 HR@10 and MRR@10 results for 5,000 frequent users.

45

87

Publications

In this thesis the following eight works of the author are covered. The full texts of
these works can be found after this list.

* Dietmar Jannach and Malte Ludewig. “Determining Characteristics of Successful
Recommendations from Log Data: A Case Study”. In: Proceedings of the 32nd
ACM SIGAPP Symposium On Applied Computing. SAC’17. 2017, pp. 1643-1648.

* Dietmar Jannach and Malte Ludewig. “Investigating Personalized Search in E-
Commerce”. In: Proceedings of the 30th International Florida Artificial Intelligence
Research Society Conference. FLAIRS "17. 2017, pp. 645-650.

* Dietmar Jannach, Malte Ludewig, and Lukas Lerche. “Session-Based Item Recom-
mendation in E-Commerce: On Short-Term Intents, Reminders, Trends and Dis-
counts”. In: User Modeling and User-Adapted Interaction 27.3-5 (2017), pp. 351-
392.

* Dietmar Jannach and Malte Ludewig. “When Recurrent Neural Networks meet
the Neighborhood for Session-Based Recommendation”. In: Proceedings of the
11th ACM Conference on Recommender Systems. RecSys '17. 2017, pp. 306-310.

* Iman Kamehkhosh, Dietmar Jannach, and Malte Ludewig. “A Comparison of
Frequent Pattern Techniques and a Deep Learning Method for Session-Based
Recommendation”. In: Proceedings of the 1st Workshop on Temporal Reasoning
in Recommender Systems co-located with 11th ACM Conference on Recommender
Systems. RecTemp ’17. 2017, pp. 50-56.

* Malte Ludewig and Dietmar Jannach. “Evaluation of Session-Based Recom-
mendation Algorithms”. In: User Modeling and User-Adapted Interaction 28.4-5
(2018), pp. 331-390.

* Malte Ludewig and Dietmar Jannach. “User-Centric Evaluation of Session-Based
Recommendations for an Automated Radio Station”. In: Proceedings of the 13th
ACM Conference on Recommender Systems. RecSys '19. 2019, pp. 306-310.

89

90

Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. “Performance
Comparison of Neural and Non-Neural Approaches to Session-Based Recommen-
dation”. In: Proceedings of the 13th ACM Conference on Recommender Systems.
RecSys "19. 2019, pp. 306-310.

In addition to these eight main publications, the author of this thesis worked on the

following other publications related to recommender systems that are not included

in this thesis.

Lukas Lerche, Dietmar Jannach, and Malte Ludewig. “On the Value of Reminders
within E-Commerce Recommendations”. In: Proceedings of the 2016 Conference
on User Modeling Adaptation and Personalization. UMAP '16. 2016, pp. 27-35.

Malte Ludewig, Michael Jugovac, and Dietmar Jannach. “A Light-Weight Ap-
proach to Recipient Determination When Recommending New Items”. In: Pro-
ceedings of the ACM Recommender Systems Challenge 2017. RecSys Challenge ’17.
2017, 3:1-3:6.

Malte Ludewig and Dietmar Jannach. “Could You Play That Song Again? -
Reminding Users of Their Favorite Tracks Through Recommendations”. In:
Proceedings of the WSDM Cup Workshop 2018. WSDM Cup ’18. 2018.

Malte Ludewig, Iman Kamehkhosh, Nick Landia, and Dietmar Jannach. “Effec-
tive Nearest-Neighbor Music Recommendations”. In: Proceedings of the ACM
Recommender Systems Challenge 2018. RecSys Challenge ’18. 2018, 3:1-3:6.

Malte Ludewig and Dietmar Jannach. “Learning to Rank Hotels for Search and
Recommendation from Session-Based Interaction Logs and Meta Data”. In: Pro-
ceedings of the ACM Recommender Systems Challenge 2019. RecSys Challenge ’19.
2019.

Publications

Determining Characteristics of Successful
Recommendations from Log Data — A Case Study

Dietmar Jannach
) TU Dortmund, Germany
dietmar.jannach@tu-dortmund.de

ABSTRACT

Academic research in recommender systems largely focuses
on the problem of predicting the relevance of (long-tail)
items that the individual user presumably does not know
yet. Many real-world systems however also recommend items
that users have inspected in the past, items that are pop-
ular at the moment, and items currently on sale. In this
work we investigate the value of including such items in rec-
ommendation lists based on an analysis of the web logs of
a large online retailer. An examination of the features of
successful item suggestions reveals that the chances of a rec-
ommendation leading to a purchase increase when the item
is recently trending, on sale, or was recently viewed by the
user. Offline simulation experiments furthermore show that
considering those success factors that were identified from
log data in the ranking algorithms can help to increase the
prediction accuracy of recommender systems.

CCS Concepts

eInformation systems — Recommender systems;
eApplied computing — Electronic commerce;

Keywords

Recommender Systems; Success Factors; Case Study

1. INTRODUCTION

Automated recommendations of the type “You may also
be interested in” are common on today’s e-commerce sites,
and ample evidence exists that such personalized or item-
related recommendations can measurably impact businesses
[2,4,5,6,9, 10]. Recommender systems are correspondingly
an active area of research, and significant advances have
been made in recent years in terms of accurately predicting
the relevance of individual items for each user.

The most common research approach in the field is to
consider only items for recommendation that the user has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SAC 2017, April 03 - 07, 2017, Marrakech, Morocco

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4486-9/17/04. .. $15.00

DOL: http://dx.doi.org/10.1145/3019612.3019757

Malte Ludewig
TU Dortmund, Germany
malte.ludewig@tu-dortmund.de

not seen, consumed, or purchased before. In addition, rec-
ommending items which are unknown to the user, but very
popular in general, is often considered to be of limited value
for users, and sometimes such items are explicitly excluded
from the evaluation as done, for example, in [13].

Real-world e-commerce sites like Amazon.com, however,
include items in their recommendation lists that the users
have just recently inspected and are therefore at least aware
of or already familiar with. Furthermore, recommending
popular items like top sellers or recently trending items is
quite common in this domain. Finally, an additional aspect
of real-world online shops barely investigated in the litera-
ture is that some recommended items can be on sale and
correspondingly labeled with discount tags.

In a previous work [10], the authors analyzed the first of
these aspects by examining the value of including reminders,
i.e., items that the user has inspected in the past, into rec-
ommendation lists. For these analyses, the authors relied on
specific log data of a large online retailer, which contains in-
formation about (a) which items were recommended to cus-
tomers and (b) which items were actually purchased from
the recommendation list. The analyses showed that many
of the recommendations that were clicked on and later on
purchased were already known to the users.

In this work we investigate — using the same log data —
if there are other seldom-researched factors in e-commerce
settings that contribute to the success of a recommendation.
To identify such factors, we conduct a broader systematic
analysis of the given user interaction data. Based on the
results, we will particularly focus on the effectiveness of in-
cluding trending items and items on sale into recommenda-
tions. Both types of recommendations are not uncommon
in practice as mentioned above. We additionally propose
first algorithms that take these aspects into account in the
item ranking process and test if the inclusion of this addi-
tional information helps to increase the ranking accuracy of
recommendation algorithms.

Obviously, recommending only discounted or currently
trending items might in most cases be less effective in terms
of the business value. This was shown, e.g., in [6], where the
recommendation of top sellers was not very effective in terms
of sales. However, we show that including some known or
trending items can be valuable and also that many users ac-
tually inspect the recommended on-sale items. Overall, our
work therefore contributes to a better understanding of what
makes a recommendation successful in practice, at least in
the domain of fashion products that we comprehensively an-
alyze in this paper.

Publications 91

2. DATA ANALYSIS

We base our analyses on a dataset of user navigation logs
of the large European fashion retailer Zalando. In the fol-
lowing, we first introduce characteristics of the dataset itself
and the subsets we use. Then, we investigate properties of
successful recommendations with the help of basic statisti-
cal analyses. Finally, we present the results of a systematic
feature analysis.

2.1 Dataset Properties

The raw dataset contains website interaction events of
about 3.5 million users. As in [8], the logged actions include
typical events such as item views, purchases, and add-to-cart
actions. Each action relates to one of over 400,000 catalog
items. For each item basic information is available to us,
e.g., the brand, the category, or if the item was on sale at
that time. The dataset is anonymized and distorted in a
way that no inference about business figures of the shop is
possible.

An additional unique feature of our dataset is that it con-
tains (a) information about which recommendations were
made to users when they inspected the details of an item?!
and (b) click events on these recommended items. This in-
formation allows us to investigate which features make rec-
ommendations successful in this domain.

The raw dataset is very sparse and contains many users
who have only visited the shop once or never made a pur-
chase. We therefore created two data samples as in [8] and
[10]. One consists of 3,000 heavy users who visited the shop
frequently. The other one consists of 3,000 occasional users
that were randomly selected from a subset of users for which
we recorded at least 10 purchase events. Over the period of
one year, heavy users visited the shop about two times a
week, resulting in about 114 sessions per year. Occasional
users on average interacted with the shop every second week
(about 28 sessions).

2.2 Properties of Successful Recommendations

General Conversion Rate. We use conversion rates as the
usual success measure for our analysis. Using the dataset of
heavy users as a basis, we observe that about every 100th
recommendation list attracted a click. Note that the abso-
lute number depends on several factors, e.g., on the visual
layout of the shop, and cannot be compared across shops.
Our analysis in addition shows that in as many as 14% of
the cases when a recommended item was actually clicked-
on (viewed), it was added to the shopping cart in the cur-
rent or next two sessions. Furthermore, about 7% of the
recommended-item clicks actually led to a purchase of the
item. This indicates that while recommendation lists are
generally not a main navigation mechanism for users on the
site, they lead to high “click-to-buy” conversions once the
users have found a potentially relevant item within the rec-
ommendations.

Recommendation of Familiar and New Items. Continuing
the research in [10], we examined to what extent recom-
mending items that users already know can be a successful
strategy. From all recommended items, about 10% were
goods that the users had inspected on the site before. This
percentage depends on the specific inner workings of the
used algorithms on the site, which are unknown to us. It is

'Sets of three recommendations were recorded.

92 Publications

therefore more interesting that nearly half of the successful
recommendations (44%) were not new to the users, which
highlights the potential value of including reminders in rec-
ommendation lists [10].

On the other hand, this also means that more than half
of the recommendation-induced purchases were related to
items that the consumers have not seen before. This can
be seen as additional evidence of the capabilities of recom-
menders to help users discover relevant items. The main
practical implication of the combined findings is however
that including at least some already known (but not yet pur-
chased) items can represent a promising strategy to increase
the overall effectiveness of the recommender system.

The Importance of Short-Term Shopping Intents. The in-
vestigations in [8] showed — using simulation experiments on
real data — that adapting to the user’s immediate shopping
intent is important to increase the prediction accuracy of
recommendation algorithms?. To understand to what extent
online consumers are focused on a goal when they visit the
site, we analyzed their browsing behavior. On average, users
inspected about 9 different items from 2.7 (of more than 330
available) categories, and considered 2.5 different colors and
3.6 different brands during one session. These numbers sug-
gest that users indeed often have a specific shopping goal in
each session. Thus, recommending items that are similar to
the estimated shopping intent seems promising.

To quantify this aspect, we compared the recommend-
to-purchase conversion rate when items were recommended
that were similar to the most recent item to the conversion
rate when this was not the case. The results are shown in
Table 1 and we can see that recommending items that, e.g.,
have the same color as the currently viewed one, leads to a
substantial increase of the conversion rate.

Table 1: Recommend-to-purchase conversions for
similar-item and different-item recommendations

Ttem feature Different value Same value Difference

Brand 0.950 % 4.227% 345 %
Price level 1.403 % 3.624% 158 %
Category 1.207 % 2.844 % 135 %
Color 1.521% 2.701 % %

The difference in the conversion rates lie between about
77% (color attribute) and more than 300% for the brand.
The dominating importance of the brand is not particularly
surprising in the fashion domain. However, consumers also
seem to have a strong preference for certain price ranges
(which were predefined categories in our dataset). Also, rec-
ommending items from the same sub-category and with the
same color led to high increases of the conversion rates.

In sum, recommendations were more successful when the
recommended items were very similar to the currently in-
spected ones. This is consistent with the observations re-
garding the focused shopping behavior of many users dis-
cussed above. Also, this underlines that in the examined
domain the recommendation of substitute products is clearly

2A similar approach has shown to work well for news rec-
ommendations [11].

advantageous when compared to the recommendation of al-
ternatives, which corroborates some observations from [3].
The accuracy results from the experiments in [8], which in-
cluded a recommendation component that considers the fea-
tures of recently viewed items, also confirm this hypothesis.

Considering Popular and Trending Items. Recommending
popular items is generally a “safe” strategy, even though it
might not lead to the highest business value as shown, e.g.,
in [6]. The fact that not all items are equally popular in
a shop was also reflected in the consumer’s adoption of the
recommendations. When one of the three recommendations
of a list was inspected by a user, the chances that it was the
most popular one among the three — measured in terms of
clicks and purchases by the entire user community — were
at 43%, i.e., measurably higher than the theoretical 33%
random chance.

Since seasonal trends are common in the fashion domain,
we furthermore looked at the most recent popularity of the
items. When looking for example at the popularity of the
items on the day of the recommendations, we found that rec-
ommendations were particularly successful when they con-
cerned these recently trending items. Using a normalized
popularity score, the daily average popularity of all recom-
mended items was at 0.024, whereas the average of those
which were actually selected afterwards was at 0.088, i.e.,
three times higher.

The Role of Discounts. The pricing of items usually has
a direct impact on demand levels and sales. It therefore
stands to reason that items in recommendation lists which
are marked as being on sale and which are discounted are
more attractive for users than other items. On the other
hand, recommendations that contain too many or only dis-
counted items, might raise the impression that the item sug-
gestions are biased and the presented list is rather an adver-
tisement than a recommendation.

In our dataset, we know for each recommended item if
it was on discount at the time of the recommendation or
not. We could therefore compare the recommendation-to-
buy conversion rates for on-sale items and regular-prized
items. The observed differences were huge. While recom-
mended items with regular prices only lead to a conversion
rate of 0.45%, the rate for discounted items was at least
18 times higher with a value of 8.12%. This clearly indi-
cates that recommending discounted items can be a promis-
ing strategy in this domain.

2.3 Systematic Feature Analysis

The statistical analysis from the previous section showed
that certain item features (popularity and discount status)
can be indicators for the success of recommendations. In this
section, we report the results of a more comprehensive and
systematic analysis, which should help us understand what
makes a recommendation successful. To assess the impor-
tance of different potentially relevant factors, we first used
the available data to frame a classification problem. Then,
we applied different feature weighting methods to numeri-
cally estimate the importance of the factors. Each line of the
resulting classification dataset corresponds to an item rec-
ommendation and is labeled as being successful or not. We
then engineered 95 different features, including simple ones

3The normalized score was computed by dividing the num-
ber of events (clicks and purchases) of an item by the maxi-
mum number of events recorded for an item in the dataset.

Table 2: Gain Ratio

Feature Weight
Discount level 0.439
Current popularity (day) 0.371
Discount flag 0.325
Viewed before 0.286
Current popularity (week) 0.242
Distance to first view (in days) 0.232
Distance to last view (in days) 0.217
Distance to first view (in sessions) 0.214
Distance to last view (in sessions) 0.210
Current popularity (month) 0.201
Table 3: Chi Squared
Feature Rel. weight
Current popularity (day) 1.000
Current popularity (week) 0.785
Current popularity (month) 0.563
Discount flag 0.556
Discount level 0.556
Distance to last view (in sessions) 0.443
Distance to last view (in days) 0.441
Views count 0.435
Distance to first view (in days) 0.428
Distance to first view (in sessions) 0.428

like the popularity of an item during the last n days — as
well as more complex ones that combine item characteristics
with contextual or user-specific aspects?. An example for a
more complex feature is the ratio of clicks by a user on items
that have the same brand as the recommended one during
the last n sessions. Since the dataset is very imbalanced
and there are comparably few successful recommendations,
we applied random downsampling to obtain an equal num-
ber of samples for each class.

Table 2 and 3 show the 10 most relevant features using
the Gain Ratio and the Chi Squared method, respectively.
For this measurement we sampled 2.000 occasional users and
their successful recommendations from our dataset, leading
to about 3.800 positive samples. The results of both meth-
ods are comparable and confirm the observations from the
previous section. The most important features to predict the
success of a recommendation are the recent popularity of an
item and the fact that an item is on sale. Furthermore, when
the user has recently viewed the item (multiple times), the
chances are good that a recommendation will be successful.
This result is also in line with the observation that remind-
ing users of known items through recommendation lists can
be useful.

A correlation analysis of the relevant features over all pos-
itive and negative samples showed that while most features
are not related, a measurable correlation between the dis-
count level and the current item popularity exists (0.47 for
popularity/day, 0.34 for popularity/week). This suggests
that discounts in this domain can have a positive effect on
sales and confirms that recommending on-sale items can be
valuable.

1A detailed list of all features is can be found at http://
1s13-www.cs.tu-dortmund.de/homepage/sac2017-cosr

Publications 93

3. CONSIDERING TRENDS AND
DISCOUNTS WHEN RECOMMENDING

Previous work [8, 10] has shown that considering short-
term interests and recently viewed items can help to increase
the accuracy of the recommendation algorithms. In the fol-
lowing, we will now aim to assess the value of incorporating
popularity and discount information into a recommender.

3.1 Experimental Setup

We apply the offline measurement protocol proposed in [8,
10] to numerically assess the prediction accuracy of differ-
ent algorithms. The protocol is based on time-stamped user
interaction logs which are organized in shopping sessions.
For each user, we split the time ordered list of sessions into
training and test set where the latter one contains 20% of
the user’s purchases. The goal then is to predict every item
an online visitor will purchase in each session of the test set
in which a purchase was made. Since the consideration of
short-term shopping intents is crucial for the e-commerce do-
main, we always reveal the interactions of the last p sessions
including the current one that precede the tested purchase
as proposed in [10]. Finally, we apply user-wise five-fold re-
peated random subsampling to account for random effects.

The evaluation was conducted on the two datasets de-
scribed above (heavy and occasional), which we sampled
from the raw data. As accuracy measures we use the hit
rate and the Mean Reciprocal Rank, each at list length ten,
i.e., HitRate@10 and MRR@10. The latter measure not only
counts for how many of the purchases in the test sessions the
algorithm made a correct guess, but also considers the posi-
tion of the “hit” in the list. Since we hide and predict each
purchase event in the test data individually, Precision is pro-
portional to the hit rate (Recall) and not reported here.

3.2 Algorithms

Baseline Algorithms.

We use the following collaborative filtering (CF) recom-
mendation algorithms as baselines to assess the value of in-
corporating additional features in the process:

e BPR: Bayesian Personalized Ranking [12] is a learning-
to-rank method designed for one-class (implicit feed-
back) collaborative filtering problems that optimizes
an AUC-like performance criterion. The method has
been shown to outperform other techniques like Item-
to-Item CF as well as different matrix factorization
approaches for this and similar problem setups [7, 8].

e C-CoOcc: A baseline method that uses patterns of
item co-occurrences in the users’ recent navigation his-
tories to implement a functionality of the form “Users
who bought ..., also bought ...” (see [10]). The co-
occurrence patterns are then applied to the user’s re-
cent interaction history to make recommendations.

o C-KNN. This method takes a user’s most recent inter-
action history as an input and looks for past sessions in
the training set related to the same items. The cosine
similarity is used to determine the distance between
such sessions and the recommendations are ranked in
a weighted scoring process as described in [10].

94 Publications

In contrast to the BPR method, both C-CoOcc and C-
KNN take the user’s most recent shopping intent as a con-
textual factor into account.

Reranking Schemes.

We implemented several schemes that take the relevance-
ranked list of a baseline algorithm as an input and apply
different strategies to adapt the ranking based on additional
information, e.g., about item properties or current discounts.

e RV: This simple method, also from [8], called Recently
Viewed assumes that recent user interest in an item
is a good indicator for an upcoming purchase. The
method recommends items from the user’s interaction
history in reverse order.

o F'M: Feature Matching was described as a successful
strategy in [8] and moves those items up the list that
have characteristics similar to those that the user has
recently inspected, e.g., the same color or brand. The
ranking is determined by the number of item character-
istics that were also found in the user’s current session.
The ranking of the baseline strategy is kept for items
that have the same number of matching features.

e DR: Discount Reranking ranks items higher that are
currently on sale. In our data, a limited set of discrete
discount levels is available for each purchase, and the
method ranks items with the highest discounts first.
Again, the order of the underlying baseline technique
is kept for items with the same discount level.

RPOP: The Recent Popularity method computes a
normalized popularity value for each item during a re-
cent period. The popularity is determined by counting
the interactions with the items in the entire user com-
munity. Here, we will report the popularity of the day
of the purchase, as this was the strongest success indi-
cator according to our analysis above. When determin-
ing the popularity value, we only counted interactions
that happened before the purchase to be predicted on
the same day.

HyBRIDS: Since the different features according to our
analysis in the previous section are often not strongly
related, we tested a number of different combinations
of the reranking strategies. In particular, we combined
the well-performing content-based FM ranking strat-
egy with the methods proposed in this paper.

In the next section, we will particularly focus on the value
of combining methods that have shown to work well in [8]
(FM and RV) with techniques that additionally leverage
information about discounts (DR) and trends in the recom-
mendation process (RPOP).

3.3 Results

Table 4 and 5 show the results for the heavy and occasional
datasets. In both cases, the parameter p of the protocol, cor-
responding to the number of revealed recent sessions, was set
to 6. Different parameter values did not lead to significantly
better results. The best values for each column are printed
with a grey background. The overall best values are printed
in bold face.

Table 4: Hitrate@10 and MRR@10 results for the Zalando heavy user subset.

Dataset Zalando heavy users subset
Baseline C-KNN C-CoOcc BPR
Metric@10 HR [MRR | HR [MRR | HR [MRR
WR(RPOP,DR,0.5)-FM | 0.382 | 0.220 | 0.262 | 0.121 | 0.225 | 0.100
RPOP-FM 0.361 | 0.187 | 0.233 | 0.103 | 0.216 | 0.096
DR-FM 0.316 | 0.177 | 0.242 | 0.120 | 0.168 | 0.094
RV-FM 0.306 | 0.097 | 0.266 | 0.096 | 0.262 | 0.111
FM 0.281 | 0.093 | 0.145 | 0.052 | 0.119 | 0.046
No postprocessing 0.268 | 0.091 | 0.123 | 0.046 | 0.062 | 0.021
Table 5: Hitrate@10 and MRR@10 results for the Zalando occasional user subset.
Dataset Zalando occasional users subset
Baseline C-KNN C-CoOcc BPR
Metric@Q10 HR [MRR | HR [MRR | HR [MRR
WR(RPOP,DR,0.5)-FM | 0.376 | 0.213 | 0.225 | 0.115 | 0.273 | 0.129
RPOP-FM 0.359 | 0.192 | 0.212 | 0.108 | 0.277 | 0.132
DR-FM 0.275 | 0.152 | 0.197 | 0.095 | 0.206 | 0.111
RV-FM 0.296 | 0.097 | 0.198 | 0.076 | 0.244 | 0.097
FM 0.257 | 0.091 | 0.129 | 0.049 | 0.192 | 0.076
No postprocessing 0.241 | 0.087 | 0.109 | 0.043 | 0.152 | 0.060

Baseline Results.

The last rows of the tables show the results when no post-
processing is applied to the ranked lists returned by the
baselines BPR, C-CoOcc, and C-KNN. For both datasets,
C-KNN substantially outperforms the non-contextualized
BPR method and the more simple contextualization method
C-CoOcc on both measures.® This clearly shows that con-
sidering individual items of interest in the current browsing
session in isolation (as C-CoOcc does) is not sufficient. C-
KNN considers all recent interactions of a session and is
thereby more effective in finding additional relevant items
from past sessions. On the occasional dataset, even the BPR
method, which only relies on long-term user models and no
context information, is better than the C-CoOcC method.
This indicates that the C-CoOcc method could not find a
sufficient number of frequent co-occurrence patterns in this
smaller dataset, which comprises the same number of users
but has fewer interactions per user.

Adding Feature Similarity and Interaction Recency.

Moving up from the bottom-most row of the tables, we
see that focusing the recommendations on items that have
similar features as those inspected in the current session
— as done by the FM strategy — helps to improve the hit
rates and the MRR in every case. Also, considering the re-
cency of item views as a ranking criterion (RV-FM strategy)
leads to another accuracy increase as was shown in [8]. Note
that RV-FM specifies a cascading hybrid strategy where the
items are first pre-filtered based on their features and then
re-ranked based on the time-stamp of the last interaction
with it, in case the user has interacted with the item before.

Including mostly recently viewed items (reminders) in rec-
ommendation lists can help to achieve high prediction accu-

5The C-KNN method was in similar form applied to the mu-
sic playlist continuation problem in [1] and exhibited com-
petitive performance also in this domain.

racy as shown in [10]. The recommendations might however
be too obvious and prevent the recommender from pointing
users to other potentially relevant items unknown to them.
In the following, we will therefore focus on the value of rec-
ommending discounted and trending items.

Adding Discounts and Recent Popularity Information.

The effects of putting more emphasis on items that are
currently on sale are given in the row DR-FM in Table 4
and Table 5. Across all configurations, ranking the items
according to their level of discount is measurably better than
ranking only based on their feature similarity (FM strategy).

A similar increase in prediction accuracy can be obtained
by recommending recently trending items. The row labeled
with RPOP-FM shows the results obtained when pushing
items up the list according to their popularity on the day of
the session in which the purchase was made. We varied the
popularity time span to consider, e.g., the trending items of
the week or month. The results show that recommending
items that are trending over a longer period is also helpful;
the strongest effects can however be obtained by looking at
the most recent trends.

The success of recommending currently trending items
can, according to our correlation analysis, at least in part be
explained by the fact these items might be discounted. Nev-
ertheless, since other factors might also increase the pop-
ularity of the offered items, we tested the hybrid strategy
WR(RPOP,DR,0.5)-FM which combines popularity and
discount information in a weighted approach.® This novel
approach, in combination with the strongest baseline C-
KNN, led to the best overall results for both datasets. The
difference between the best-performing method and any other
method was statistically significant at p < 0.01 according to
a Student’s t-test with Bonferroni correction.

5The value 0.5 indicates that both aspects received equal
weights, which was the best configuration in our tests.

Publications

95

Implications.

The analyses in Section 2 indicate that recommendations
that are adopted by consumers are often related to trending
and on-sale items. The results presented in this section show
that these insights can be successfully operationalized in rec-
ommendation algorithms, e.g., through post-processing. At
least for the fashion domain analyzed in this paper this in
particular suggests that consumers do not consider items
that are labeled as being discounted as potentially biased
advertisements. In contrast, pointing consumers to on-sale
items through recommendation lists seems to be an effective
strategy, which, to our knowledge, has not been investigated
in the recommender systems research literature before. An
additional analysis showed that recommending on-sale items
is not only effective for typical “bargain hunters”, who have a
tendency to mostly purchase discounted items. In contrast,
discount recommendations were effective also for users for
whom discounts did not play a role in the past.”

At the same time, recommending trending items has also
proven to be effective in our experiments. At least to some
extent, items became trending when they were put on sale,
but not all trending items were actually on sale. Given the
data that is available to us, we could not identify with cer-
tainty what caused the short-term popularity effects. It
could be the result of a marketing campaign, it could be
due to the recent addition of an item to the shop, or some
other external event. We tested if some of the trending
items appeared unproportionally often in recommendation
lists, causing a “rich-get-richer” effect, which was however
not the case. Also, the trending items were usually not the
first items consumers looked at in a session, which would
have indicated a deep link to the shop item from a mar-
keting campaign. Nonetheless, a general strategy for a rec-
ommender in practice could be to constantly monitor the
current popularity of the items and include (some of the)
short-term bestsellers into the recommendation lists more
often. Adding “a good dose of popularity” was also previ-
ously mentioned in [5] as a successful strategy for the domain
of movie recommendations.

4. CONCLUSIONS

With our work we aim to contribute to a better under-
standing of what makes recommendations successful in prac-
tice. In this paper we focused on e-commerce recommen-
dations and analyzed the recommendation logs of a large
fashion retailer. The results show that besides the recom-
mendation of recently viewed items, recommending on-sale
items and currently trending items can lead to higher adop-
tion rates of the recommendations in this domain. Our fu-
ture work includes the analysis to what extent our findings
generalize to other product domains and recommendation
scenarios.

Generally, our work also shows that automatically iden-
tifying the factors that contribute to the success of recom-
mendations by modelling it as a classification problem can
help to generate better recommendations for a given appli-
cation domain. The most important features in the fashion
domain according to our analysis were recent item popular-
ity, discounts, recent item views, and content-wise similarity

"More sales of discounted items usually leads to higher rev-
enue but not necessarily more profit. These aspects have to
be balanced by the service provider.

96 Publications

to previously inspected items. The conducted experiments
in [8, 10] and this paper showed that considering these as-
pects helped to improve the accuracy of our domain-specific
algorithms. Generally, we therefore argue that a systematic
analysis of successful recommendations can be one possible
way to approach the largely open problem of predicting the
online success of a recommender from offline experiments,
as discussed, e.g., in [4, 5].

5. REFERENCES

[1] G. Bonnin and D. Jannach. Automated generation of

music playlists: Survey and experiments. ACM

Computing Surveys, 47(2):26:1-26:35, 2014.

P. Cremonesi, F. Garzotto, and R. Turrin.

Investigating the persuasion potential of recommender

systems from a quality perspective: An empirical

study. ACM TIST, 2(2):11, 2012.

K. Diehl, E. van Herpen, and C. Lamberton.

Organizing products with complements versus

substitutes: Effects on store preferences as a function

of effort and assortment perceptions. Journal of

Retailing, 91(1):1-18, 2015.

F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi,

C. Bruttin, and A. Huber. Offline and online

evaluation of news recommender systems at

swissinfo.ch. In RecSys ’14, pages 169-176, 2014.

[5] C. A. Gomez-Uribe and N. Hunt. The Netflix

recommender system: Algorithms, business value, and

innovation. ACM TMIS, 6(4):13:1-13:19, 2015.

D. Jannach and K. Hegelich. A case study on the

effectiveness of recommendations in the mobile

internet. In RecSys ’09, pages 205-208, 2009.

D. Jannach, L. Lerche, F. Gedikli, and G. Bonnin.

What recommenders recommend - an analysis of

accuracy, popularity, and sales diversity effects. In

Proc. UMAP ’13, pages 25-37, 2013.

D. Jannach, L. Lerche, and M. Jugovac. Adaptation

and evaluation of recommendations for short-term

shopping goals. In RecSys 15, pages 211-218, 2015.

E. Kirshenbaum, G. Forman, and M. Dugan. A live

comparison of methods for personalized article

recommendation at Forbes.com. In ECML/PKDD 12,

pages 51-66, 2012.

[10] L. Lerche, D. Jannach, and M. Ludewig. On the Value
of Reminders within E-Commerce Recommendations.
In UMAP ’16, 2016.

[11] J. Liu, P. Dolan, and E. R. Pedersen. Personalized
news recommendation based on click behavior. In TUI
’10, pages 31-40, 2010.

(12] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian personalized
ranking from implicit feedback. In UAI 09, pages
452-461, 2009.

[13] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
N. Oliver, and A. Hanjalic. CLIMF: Learning to
Maximize Reciprocal Rank with Collaborative
Less-is-more Filtering. In RecSys 12, pages 139-146,
2012.

[2

3

4

6

[7

8

[9

Investigating Personalized Search in E-Commerce

Dietmar Jannach
TU Dortmund, Germany
dietmar.jannach @tu-dortmund.de

Abstract

Personalized recommendations have become a common fea-
ture of many modern online services. In particular on e-
commerce sites, one value of such recommendations is that
they help consumers find items of interest in large product
assortments more quickly. Many of today’s sites take advan-
tage of modern recommendation technologies to create per-
sonalized item suggestions for consumers navigating the site.
However, limited research exists on the use of personalization
and recommendation technology when consumers rely on the
site’s catalog search functionality to discover relevant items.
In this work we explore the value of personalizing search re-
sults on e-commerce sites using recommendation technology.
We design and evaluate different personalization strategies
using log data of an online retail site. Our results show that
considering several item relevance signals within the recom-
mendation process in parallel leads to the best ranking of the
search results. Specifically, the factors taken into account in-
clude the users’ general interests, their most recent browsing
behavior, as well as the consideration of current sales trends.

Introduction

Recommender systems are without a doubt one of the most
successful applications of artificial intelligence technology
that made its way from academic research to wide-spread in-
dustrial use. Automated recommendations are today a perva-
sive part of our online user experience and employed to rec-
ommend, for example, things to buy on e-commerce sites,
friends to connect with on social networking sites, or con-
tent to consume on media streaming sites.
Recommendations can in general serve a variety of dif-
ferent purposes as discussed recently by (Jannach and Ado-
mavicius 2016). In particular on e-commerce sites like Ama-
zon.com, one key utility of recommendations is to help con-
sumers find items of interest within large product catalogs
more quickly, for instance, when the system displays items
that are similar to the one the consumer is currently inspect-
ing. Recommendations of this latter type — showing similar
items — support different possible reasons why a consumer
visits the site, namely “knowledge-building”, “directed buy-
ing” and “search and deliberation”, see (Moe 2003). While
recommenders can also support other intents like “hedonic

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Malte Ludewig
TU Dortmund, Germany
malte.ludewig @tu-dortmund.de

browsing” and item discovery, the work in this paper focuses
on the goal-oriented reasons of a customer visiting a site.

Automated recommendations that are made in the context
of a currently inspected item are however only one possi-
ble means to help consumers build up knowledge or under-
stand the space of options. The typical functionalities im-
plemented by most e-commerce sites include predefined, hi-
erarchical catalog navigation structures and, as the focus of
this work, a catalog search functionality.

Typical search engines on e-commerce sites allow users
to change the order in which the search results are presented
with pre-defined sort criteria. Common sort orders include
“by sales rank”, “by average customer rating”, “by price”,
and often “by relevance”, where the relevance function in
this case is typically not further explained and might be a
mix of relevance for the consumer and profit for the site.

Most of today’s online shops do not offer an option for
users to sort the results according to their past personal pref-
erences or shopping behavior. It is however intuitive to as-
sume that taking the consumer’s past behavior into account
when ranking the results can be useful, e.g., by ranking items
up in the list that correspond to the consumer’s typical price
preferences, by listing products of the consumer’s preferred
brands first, or by promoting consumables that the user has
already purchased in the past.

In this work, we aim to explore and quantify the potential
value of ranking the search results in a personalized way.
The underlying and obvious assumption is that the search
functionality is more helpful for users when the more rele-
vant items appear higher up in the result list. Technically, we
will explore the use of different common recommendation
techniques as well as additional problem-specific heuristics
to personalize the search results for the individual consumer.
To evaluate the effectiveness of the proposed techniques, we
will use an offline experimental design using log data of a
German online retailer of products for babies and small chil-
dren and compare the results with existing approaches from
the general field of web search personalization and recom-
mendation.

The paper is organized as follows. Next, we describe our
research methodology and the dataset used for the evalu-
ation. Then, we will summarize the tested algorithmic ap-
proaches and report the results of the empirical evaluation.
The paper ends with a discussion of related works.

Publications 97

Research Methodology
General Setup

The overall problem setting of e-commerce search person-
alization is in various ways similar to the problem of web
search personalization. The typical inputs to a search per-
sonalization algorithm are a search string, a collection of
documents, information about the past search behavior of in-
dividual users, and possibly additional context information.
The computational task of algorithms is then to filter and
rank the documents in a personalized way. Finally, measures
like precision or recall can be used to compare algorithms.

Our research setup is slightly different in two ways. First,
we consider item filtering to be a black box, i.e., we make no
assumption about how the search strings are matched with
the objects. The algorithms that we investigate in this work
can therefore be applied in combination with any existing
search component of an e-commerce site. Second, the main
input provided to the algorithms for personalization is the
recorded navigation behavior of users — data that is usually
available in practical settings. The task of the algorithms is
then to find the best possible ranking of a given set of objects
and personalization therefore only affects the ranking of the
items but not their selection.

Data and Ground Truth

The dataset that we will use in our research was provided to
us by a major German online retailer of goods for babies and
small children. The data comprises an anonymized subset of
the navigation logs of the shop’s web server collected over
the period of one month in early 2016.!

Dataset Features The time-stamped log entries of the
dataset are either marked as page requests or as add-to-cart
events, which we use to determine purchase events. Each
entry has an accompanying URL, which gives us more de-
tails about the requested page or the item that was added to
the cart. By analyzing the URLs, we can further classify the
page requests into the following relevant main categories:

e item view events,

e category browsing events,

e search events (including a search string),
e shopping basket checkout events.

Each log entry furthermore has a customer ID assigned,
which is approximately derived from a tracking pixel. In
addition, for each item we know some basic data like the
category it belongs to, the brand, and the item’s textual de-
scription.

Determining the Ground Truth In order to evaluate to
what extent an algorithm is successful in generating a good
ranking of the search results, we need a “ground truth” (gold
standard) that defines whether or not an item is relevant for a
search query or not. In our case, we consider an item as rel-
evant and the search as successful whenever the consumer
actually purchased an item that was returned by the search

!The data was sampled in a way that no conclusions about the
visitors or the business numbers can be drawn.

98 Publications

in the same session. Since the results returned by the site’s
engine are not available in the log data, we apply the follow-
ing heuristic approach to re-construct a ground truth dataset
from the log data.

1. For each search action in the logs, we repeated the search
on the online shop through an automated agent.

2. The agent collected all results returned by the shop, using
all available search orderings that were provided by the
shop (e.g., by popularity, recency etc.).

3. We then inspected all navigation actions of a user after the
search action in the same session?. Whenever a user actu-
ally purchased an item that was part of the search results
in this session, we consider the search to be successful.

A successful search in this interpretation does not necessar-
ily require that a user purchases an item immediately after
inspecting the search results. If the user inspected various
other items before buying one item in the same session, we
still count the search as a (potential) success. Furthermore,
we chose actual purchase actions as success indicators in-
stead of item views, because the item view events can be bi-
ased by the ordering of the results, i.e., users typically click
more often on the top-ranked items even though they are not
necessarily the most relevant ones in the end. In that sense,
our reconstruction heuristic is very conservative.

Evaluation Approach

Algorithm Task and Metrics At the end of the process
of determining successful search actions, we can apply stan-
dard IR evaluation procedures. For each search query, we
are given a set of items returned by the shop’s search engine
and the information which item of the set was actually pur-
chased. Furthermore, we are given different alternative rank-
ings (by popularity, by relevance etc.) provided by the shop
and can apply the common measures hit rate (recall@n) and
the MRR to determine the capability of an algorithm to rank
the single relevant item at the top places of the result list.

The task of the recommendation approaches that we in-
vestigate in our research is to generate an alternative rank-
ing of the items that were retrieved by the site’s search tool.
The problem of the generation of a candidate set is therefore
not in the scope of our work. As a result, the algorithms that
we analyze in this paper can be used independently of the
internal mechanisms that are used by the site for retrieving
relevant products for a given search query.

Data Sampling and Measurement Procedure As usual
in e-commerce environments, we observe many users who
have visited the shop only once and never made any pur-
chase. To be able to apply personalization strategies, we cre-
ated a subset of 5,000 active users of the shop for which we
have at least 100 log actions and who have bought at least
five items during the data collection period. Table 1 shows
the characteristics of the resulting dataset.

We apply an evaluation protocol for session-based log
data similar to (Jannach, Lerche, and Jugovac 2015). We first

2We split the log actions into sessions using a 30-minute period
of inactivity as an indicator that a new session started.

Table 1: Characteristics of the resulting dataset

Number of users 5,000
Number of items 23,052
Number of purchases 42,905
Number of item view events 419,945
Number of successful searches 3,300
Avg. nb. of sessions per user 13.7
Avg. nb. of views per session 6.9
Avg. nb. of purchases per session 0.6
Avg. nb. of successful searches per user 0.66

split the time-ordered log data of each user into two parts.
The most recent 20 % of the sessions containing successful
searches form the test set and the other sessions are used
as the training set. In the test phase, we therefore only con-
sider users for which we have determined successful search
sessions in the previous step. We iterate over all these suc-
cessful search sessions in the test data, compute the person-
alized result rankings, and apply the above mentioned IR
measures, which are at the end averaged across all tested
users. To avoid random effects, we apply a five-fold user-
wise cross-validation procedure. Note that using a sliding-
window protocol over the time axis was not meaningful in
our situation as we only have log data for one month.

Empirical Results
Compared Algorithms

The online shop from which we obtained the data provides
four ways of ranking the results: by sales numbers, by some
unknown relevance ranking, by price, and by the average
consumer rating. The set of alternative ranking strategies
used in our experiments is shown in Table 2.

We evaluate existing techniques from web search person-
alization, collaborative filtering, context-aware personaliza-
tion strategies, as well as a heuristic that considers recent
sales trends. For all algorithms we tuned their parameters in
a manual process to optimize the hit rate for the complete
dataset.

We have furthermore tested a variety of hybrid approaches
to investigate their effectiveness and to illustrate the relative
importance of the different aspects. We include the results
of a limited selection (including the best performing one) of
the various experiments in Table 3.

Evaluation Results

Table 3 shows the detailed results of our analysis using a
dataset consisting of 5,000 users who frequently visited the
site during the data collection period. We report the results
for various configurations regarding the minimum number
of search results. The ranking of the algorithms at the end
was however very consistent across all configurations.

Configurations Since the effectiveness of different algo-
rithms might depend on the number of existing search re-
sults for a query, we report the results for different config-
urations. The first row of Table 3 shows the threshold re-
garding the minimum number of results to be returned by

the shop’s search engine. The lowest threshold we consider
is five, which means we do not consider search tasks in
our evaluation that led to less than five results, because re-
ranking these results which are all displayed on one single
page might not add much value for the user. Considering
higher thresholds can be informative in particular in the con-
text of the reminding strategy, which might only be able to
re-rank a smaller part of the search results as only a limited
amount of past interactions with the items in the result set
by the individual customer might exist.

The hit rates and MRR values obviously become smaller
when the search results comprise more objects. The absolute
values of the hit rates are generally comparably high, e.g.,
at around 0.4 for the most simple baseline method, because
in many cases not too many results are returned and even
a random recommender would place a number of relevant
objects into the top 10 lists.

Performance of the Shop’s Methods The best-
performing method among the ranking strategies that
are currently available on the site is the ranking according to
the sales numbers, i.e., the Bestseller strategy. This strategy
is however outperformed by any of the other algorithms
tested in this work as shown in Table 3. We omit the detailed
results for the other current ordering strategies that are
implemented on the site.

Performance of Search Personalization Methods The
PClick method, which is based on analyzing past success-
ful searches, only works slightly better than the Bestseller
strategy. The comparably weak performance of this strategy
is most probably caused by the limited dataset size. Even
though each of the top 25 search terms in our dataset was
used more than 1,000 times by site visitors during the data
collection period, there is a huge long tail of rarely used
search terms and only 1% of the users entered one specific
query repeatedly. Considering this fact, the PClick method
often cannot make any valuable prediction and then defaults
to the Bestseller strategy. We however believe that with a
larger dataset, the performance of PClick would improve.
While it might not be better than the “winning” strategies, it
might represent a valuable component in a hybrid approach.
The content-based method (CB), which combines short-
term and long-term models, works relatively well and out-
performs, for example, the C-KNN method, whose recom-
mendations are based on the user’s short-term behavior. It
is, however, not as accurate as the more elaborate content-
agnostic learning-to-rank method BPR, which focuses on
the user’s long-term preference model. The somewhat lim-
ited performance of the CB method can in parts again be
attributed to the comparably short data collection period and
the fact that the long-term history is limited to one month.
However, since user interests in the domain of baby goods
might naturally change quite fast over time, this effect might
be limited and focusing on more recent interactions might
even be useful. Another aspect that limits the potential of the
CB method are the often very short product descriptions. We
have tested Doc2Vec as an alternative representation (Le and
Mikolov 2014), which however led to even worse results.

Publications 99

Performance of Collaborative Filtering and Session-
based Approaches The C-KNN method, which works
very well in other recommendation scenarios, does not work
as well as expected in the search personalization scenario.
One reason could be that there are sessions which included
a successful search but no other user actions. This happens
when users arrived at the site, immediately searched for a
specific item (e.g., a consumable) and directly proceeded
with the purchase. In such situations, the available informa-
tion might be too limited to find neighboring sessions.

The modern BPR method and the very simple, session-
based Feature Matching (FM) technique lead to very sim-
ilar results and BPR leads to slightly better MRR values,
possibly due to the coarse-grained re-ranking strategy of
the FM method. In sum, this observation corroborates exist-
ing insights, e.g., from (Matthijs and Radlinski 2011), that

both long-term models (BPR) and short-term interests (FM)
should be considered in search personalization.

Performance of Recommending Reminders and Trend-
ing Items Reminding users of items that they have re-
cently inspected is the most successful individual strategy
in our experiments. This indicates that users often browse
items, which they later on — e.g., in the next session — re-
trieve again through the search functionality before making
a purchase. Reminding users of known products in recom-
mendation lists might not necessarily be the most valuable
business strategy as reminders do not help consumers dis-
cover new areas of the item catalog. Nonetheless, reminders
in search results help users locate their items of interest fast
(e.g., consumables), which contributes to the usability of the
site. In practical settings, one might consider to use hybrids

Table 2: Summary of Compared Result-Ranking Algorithms

Web-Search Personalization Techniques

PClick The rationale of this method is that users often search for the same things multiple times (Dou, Song, and Wen
2007). The method ranks those items up in the list that the user has clicked on in previous search sessions with the
same or a similar search term.

Content-Based An approach based on (Matthijs and Radlinski 2011) which relies on TF-IDF representations of the textual de-

(CB) scriptions of the shop items. We compute weighted combinations of the mean TF-IDF vectors of the long-term and
short-term models of each user and rank the search results based on the cosine similarity of the item descriptions
and the user model.

Collaborative Filtering and Session-Based Recommendation

BPR A modern learning-to-rank collaborative filtering method designed for implicit feedback (Rendle et al. 2009), which
we used to learn long-term interest models. We manually fine-tuned the parameters ending up with 150 features and
150 training iterations using an optimized learning rate and regularization factors.

This contextualized k-nearest-neighbor method recommends items from past shopping sessions that are similar
to the most recent sessions of a user. Cosine similarity is used as a distance measure for binary item vectors (see
(Lerche, Jannach, and Ludewig 2016)). The short-term profiling approach proved effective for e-commerce and also
music recommendation in the past (Hariri, Mobasher, and Burke 2015).We systematically optimized the parameters.
Using a neighborhood size of 10 and considering a user’s last two sessions led to the best results.
Feature-Matching This method proved effective for session-based recommendation in (Jannach, Lerche, and Jugovac 2015). It com-
(FM) pares features (category, subcategory, and brand) of the items to rank with those of items the user inspected in the
last session. Items that are a better content-wise match for the current session are ranked up.

Personalized Reminders and Global Trends

Most-Recent Reminding users of items that were of recent interest to them can be helpful (Lerche, Jannach, and Ludewig 2016), in

Reminder (MR) particular when consumables are sold on the online shop. The MR strategy ranks items up (in reverse chronological
order) that the user has interacted with in recent sessions. Considering the last 6 sessions for reminding proved to
lead to the best results.

Trending-N This strategy considers the last n days before the examined session and computes a normalized popularity score for
each item to be ranked. Recently trending items are moved up in the search results according to this score. The best
results were achieved when considering popularity trends of the last two weeks (Trending-14).

Hybrid Approaches

HR1(Trending-14, A basic cascading hybrid which first ranks the items based on their recent popularity and then applies the feature
FM) matching method described above. The advantage of the method is that it also works in user cold-start situations

and does not require computationally expensive long-term models.

A weighted hybrid which in addition considers the long-term user model using the BPR method. A grid search

procedure was applied to determine optimal weights w.r.t. the hit rate. The final weights were 0.6 for Trending-14

and 0.2 for FM and BPR.

HR3(Trending-14, An extension of HR2 which also includes reminders through the MR strategy. The parameters were again optimized
FM, BPR, through a grid search. The final values were 0.45 for MR, 0.4 for Trending-14, and only 0.075 for BPR and FM,
MR) which emphasizes the importance of reminders and popularity aspects.

HR2(Trending-14,
FM, BPR)

100 Publications

Table 3: Hit Rate@ 10 and MRR@ 0 results for the dataset of 5,000 frequent users. The best values are printed in bold. Dif-
ferences between the best performing method and the second best which are statistically significant according to the Wilcoxon
signed-rank test (av = 0.05) are marked with a star.

[Min. nb. of result items [5 [10 [20 [50 \
[Metric@10 AR [MRR | HR [MRR | AR [MRR | AR [MRR |
HR3(Trending-14, FM, BPR, MR) | 0.685* | 0.394 | 0.675* | 0.382* | 0.636* | 0.363* | 0.584* | 0.324
MR 0.671 0.389 | 0.652 0.371 0.619 0.352 0.572 0.324
HR2(Trending-14, FM, BPR) 0.634 0.315 | 0.624 0.304 0.565 0.282 0.511 0.241
HR1(Trending-14, FM) 0.626 0.306 | 0.604 0.289 0.564 0.267 0.504 0.235
BPR 0.605 0.297 | 0.579 0.284 0.535 0.262 0.477 0.226
M 0.603 0.284 | 0.580 0.265 0.536 0.242 0.475 0.209
CB 0.560 0.273 | 0.535 0.258 0.487 0.238 0.416 0.198
C-KNN 0.555 0.268 | 0.524 0.246 0.480 0.227 0.403 0.185
Trending-14 0.537 0.229 | 0.506 0.208 0.455 0.185 0.375 0.148
PClick 0.476 0.194 | 0.438 0.172 0.385 0.150 0.321 0.127
Shop baseline (Bestseller) 0.467 0.191 | 0.433 0.168 0.380 0.147 0.314 0.125

which recommend both already known as well as new items.

Recommending items that have been popular within the
last 14 days in an unpersonalized way proved to be a signif-
icantly better strategy than recommending the bestsellers of
the entire data collection period (ov = 0.05)3. We found this
strong difference somewhat surprising, given the short data
collection period and this indicates that considering not only
seasonable trends but also short-term spikes in sales (e.g.,
due to recent discounts) can be valuable for consumers.

Performance of Hybrids Combining a variety of different
signals (long-term models, short-term models, reminders,
and recent trends) in the weighted approach HR3 led to the
overall best results and leaving out any of these components
led to performance losses. In all except two cases the hybrid
approach leads to statistically significantly better results ac-
cording to the Wilcoxon signed-rank test as shown in detail
in Table 3. The main practical implication of our research
therefore is that a multitude of signals should be considered
in the search personalization process.

The comparison of the strategies HR1 and HR2 shows
again that including long-term preferences of the individual
user and the user community is useful. Finally, even the sim-
plest hybrid method HR1, which is computationally cheap
and which works for cold-start users, was most of the time
significantly better than all non-hybrid approaches (except
for the reminders). This finding emphasizes the importance
of considering both short-term trends as well as the visitors’
individual and collective behavior for this problem setting.

Related Work

Our work draws on various insights from existing research
in search personalization and recommender systems. While
search result personalization for e-commerce sites, to our
knowledge, has not been investigated in this form in the lit-
erature, the problem of web search personalization has been
widely explored in the past. Typical strategies of such ap-
proaches include (a) the integration of personalization fea-

3We use the Wilcoxon signed-rank test (o« = 0.05) to assess the
statistical significance of differences throughout the paper.

tures in the ranking algorithm itself (Haveliwala, Kamvar,
and Jeh 2003), (b) personalized query expansion (Chirita,
Firan, and Nejdl 2007; Zhou, Lawless, and Wade 2012a),
and (c) re-ranking in a post-processing step (Dou, Song, and
Wen 2007). The algorithms evaluated in our work fall into
this last category and we adopted a corresponding evaluation
scheme used, e.g., in (Matthijs and Radlinski 2011).

Generally, the personalization and adaptation of search re-
sults is typically approached by deriving short- and long-
term user profiles or by modeling the context of a search ac-
tion from query, click-through, and other types of data (Ben-
nett et al. 2015). Technically, this can be achieved with the
help of weighted term vectors, ontologies, language mod-
els, and various machine learning techniques (Tan, Shen,
and Zhai 2006; Sieg et al. 2007; Bennett, Svore, and Dumais
2010; Matthijs and Radlinski 2011).

In terms of additional data, existing research works inves-
tigated the following aspects: (a) the value of considering
different contextual factors like the potentially underlying
relationships between different search actions within a ses-
sion or across multiple sessions; (Luxenburger, Elbassuoni,
and Weikum 2008; Kotov et al. 2011), (b) the consideration
of the user’s current location (Bennett et al. 2011), and (c)
the incorporation of signals from social media (Zhou, Law-
less, and Wade 2012b; Carmel et al. 2009).

In addition, another family of approaches works by an-
alyzing re-occurring search actions to adapt the ranking
of the search results, e.g., (Dou, Song, and Wen 2007;
Shokoubhi et al. 2013).

In our experiments, we included two techniques from this
field, namely a content-based approach that uses weighted
term vectors as short-term and long-term models as well as
one approach that learns from past successful searches. In
theory, also other techniques can be applied, provided that
the additionally required types of information like the user’s
social network activity are known.

In the field of recommender systems, session-based rec-
ommendation and the problem of balancing short-term and
long-term interests was recently discussed, e.g., in (Jannach,
Lerche, and Jugovac 2015). Similar to their work, we use
BPR for learning a long-term model and different strate-

Publications

101

gies (C-KNN and FM) to incorporate short-term user in-
terests. More elaborate techniques to capture the user’s in-
terests within a session, like proposed in (Hariri, Mobasher,
and Burke 2012), could in principle also be applied to our
problem in case sufficient information about the items is
available. The value of including reminders within recom-
mendations was discussed, e.g., in (Plate et al. 2006) and
in (Lerche, Jannach, and Ludewig 2016). From the different
strategies proposed in the latter work we included a simple
yet effective method in our empirical investigations (MR).
Finally, there are different works that aim to extract use-
ful insights from e-commerce search log data, e.g., (Duan
et al. 2013) or (Liu et al. 2014), but their goal is often not
centered around search personalization and focused, for ex-
ample, on the unpersonalized diversification of the search re-
sults as done in (Yu et al. 2014). Personalized result rankings
were discussed in the work of (Parikh and Sundaresan 2011),
who however propose a manual approach, where users can
interactively change the relevance of different sort criteria.

Conclusions

Our work showed that a variety of different factors should
potentially be considered when personalizing search results
in e-commerce. Since phenomena like short-term popularity
trends and repeated item consumption are also common in
other domains, including music or movies, we plan to inves-
tigate the use of hybrid approaches for search personaliza-
tion in other fields as part of our future works.

References
Bennett, P. N.; Radlinski, F.; White, R. W.; and Yilmaz, E.
2011. Inferring and using location metadata to personalize
web search. In SIGIR ’11, 135-144.
Bennett, P. N.; Collins-Thompson, K.; Kelly, D.; White,
R. W.; and Zhang, Y. 2015. Overview of the special is-
sue on contextual search and recommendation. ACM Trans.
Inf. Syst. 33(1):1e:1-1e:7.
Bennett, P. N.; Svore, K.; and Dumais, S. T. 2010.
Classification-enhanced ranking. In WWW 10, 111-120.
Carmel, D.; Zwerdling, N.; Guy, I.; Ofek-Koifman, S.;
Har’el, N.; Ronen, L.; Uziel, E.; Yogev, S.; and Chernov, S.
2009. Personalized social search based on the user’s social
network. In CIKM 09, 1227-1236.
Chirita, P. A.; Firan, C. S.; and Nejdl, W. 2007. Personalized
query expansion for the web. In SIGIR 07, 7-14.
Dou, Z.; Song, R.; and Wen, J.-R. 2007. A large-scale
evaluation and analysis of personalized search strategies. In
WWW 07, 581-590.
Duan, H.; Zhai, C.; Cheng, J.; and Gattani, A. 2013. A
probabilistic mixture model for mining and analyzing prod-
uct search log. In CIKM ’13, 2179-2188.
Hariri, N.; Mobasher, B.; and Burke, R. 2012. Context-
Aware Music Recommendation Based on Latent Topic Se-
quential Patterns. In RecSys "12, 131-138.
Hariri, N.; Mobasher, B.; and Burke, R. 2015. Adapting to
user preference changes in interactive recommendation. In
IJCAI ’15, 4268-4274.

102 Publications

Haveliwala, T.; Kamvar, S.; and Jeh, G. 2003. An Analyt-
ical Comparison of Approaches to Personalizing PageRank.
Technical Report 2003-35, Stanford InfoLab.

Jannach, D., and Adomavicius, G. 2016. Recommendations
with a purpose. In RecSys '16, 7-10.

Jannach, D.; Lerche, L.; and Jugovac, M. 2015. Adaptation
and evaluation of recommendations for short-term shopping
goals. In RecSys ’15,211-218.

Kotov, A.; Bennett, P. N.; White, R. W.; Dumais, S. T.; and
Teevan, J. 2011. Modeling and analysis of cross-session
search tasks. In SIGIR ’11, 5-14.

Le, Q., and Mikolov, T. 2014. Distributed representations of
sentences and documents. In ICML ’14, 1188-1196.

Lerche, L.; Jannach, D.; and Ludewig, M. 2016. On
the Value of Reminders within E-Commerce Recommenda-
tions. In UMAP 16, 27-25.

Liu, Z.; Singh, G.; Parikh, N.; and Sundaresan, N. 2014. A
large scale query logs analysis for assessing personalization
opportunities in e-commerce sites. In WSCD Workshop at
WSDM 4.

Luxenburger, J.; Elbassuoni, S.; and Weikum, G. 2008.
Task-aware search personalization. In SIGIR '08, 721-722.
Matthijs, N., and Radlinski, F. 2011. Personalizing web
search using long term browsing history. In WSDM 11, 25—
34.

Moe, W. W. 2003. Buying, searching, or browsing: Differen-
tiating between online shoppers using in-store navigational
clickstream. J. of Cons. Psych. 13(1):29 — 39.

Parikh, N., and Sundaresan, N. 2011. A user-tunable ap-
proach to marketplace search. In WWW ’11, 245-248.
Plate, C.; Basselin, N.; Kroner, A.; Schneider, M.; Baldes,
S.; Dimitrova, V.; and Jameson, A. 2006. Recomindation:
New functions for augmented memories. In AH '06, 141-
150.

Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. BPR: Bayesian personalized ranking from
implicit feedback. In UAI 09, 452-461.

Shokouhi, M.; White, R. W.; Bennett, P.; and Radlinski, F.
2013. Fighting search engine amnesia: Reranking repeated
results. In SIGIR ’13,273-282.

Sieg, A.; Sieg, A.; Mobasher, B.; Mobasher, B.; Burke, R.;
and Burke, R. 2007. Web search personalization with onto-
logical user profiles. In CIKM '07, 525-534.

Tan, B.; Shen, X.; and Zhai, C. 2006. Mining long-term
search history to improve search accuracy. In KDD ’06,
718-723.

Yu, J.; Mohan, S.; Putthividhya, D. P; and Wong, W.-K.
2014. Latent dirichlet allocation based diversified retrieval
for e-commerce search. In WSDM 14, 463-472.

Zhou, D.; Lawless, S.; and Wade, V. 2012a. Improving
search via personalized query expansion using social media.
Inf. Retr. 15(3-4):218-242.

Zhou, D.; Lawless, S.; and Wade, V. 2012b. Web search
personalization using social data. In TPDL ’12,298-310.

User Modeling and User-Adapted Interaction

Session-based Item Recommendation in E-Commerce

On Short-Term Intents, Reminders, Trends, and Discounts

Dietmar Jannach - Malte Ludewig -
Lukas Lerche

August 2017

Abstract Many e-commerce sites present additional item recommendations to their
visitors while they navigate the site, and ample evidence exists that such recommenda-
tions are valuable for both customers and providers. Academic research often focuses on
the capability of recommender systems to help users discover items they presumably do
not know yet and which match their long-term preference profiles. In reality, however,
recommendations can be helpful for customers also for other reasons, for example, when
they remind them of items they were recently interested in or when they point site
visitors to items that are currently discounted.

In this work, we first adopt a systematic statistical approach to analyze what makes
recommendations effective in practice and then propose ways of operationalizing these
insights into novel recommendation algorithms. Our data analysis is based on log data
of a large e-commerce site. It shows that various factors should be considered in parallel
when selecting items for recommendation, including their match with the customer’s
shopping interests in the previous sessions, the general popularity of the items in the last
few days, as well as information about discounts. Based on these analyses we propose a
novel algorithm that combines a neighborhood-based scheme with a deep neural network
to predict the relevance of items for a given shopping session.!

Keywords Recommender Systems - E-commerce

1 Introduction

Automated and in many cases personalized recommendations of the type “You may also
be interested in ...” are a common feature of modern e-commerce sites. Such recommen-
dations can serve different purposes and create additional value for both customers and
providers, e.g., by helping customers discover additional items of interest or by helping
providers promote certain areas of their item spectrum.

The academic literature in the field mainly focuses on the recommendation utility
for customers or the capability of algorithms to identify items that an individual user
is presumably not aware of (Jannach and Adomavicius, 2016). In research settings the

D. Jannach, M. Ludewig, L. Lerche
Department of Computer Science, TU Dortmund, Germany
E-mail: firstname.lastname@tu-dortmund.de

1 Parts of this work are based on (Jannach et al, 2015a), Lerche et al (2016) and (Jannach and
Ludewig, 2017a). This paper or a similar version is not currently under review by a journal or conference,
nor will it be submitted to such within the next three months. This paper is void of plagiarism or self-
plagiarism as defined in Section 1 of ACM’s Policy and Procedures on Plagiarism.

Publications

103

104

2 Dietmar Jannach et al.

recommendation problem is often abstracted to one of matrix completion. The main
algorithmic task given this problem formulation is then to reliably estimate the relevance
of the unseen items based on the user’s long-term behavior and preferences, and to create
a ranked list of objects to be presented to the user.

However, in e-commerce environments, and in particular on retail websites that offer
a wide range of different products, this research approach has a number of limitations
and does not fully reflect all of the challenges of the domain.

— First, customers often visit e-commerce sites with a very specific shopping intent in
mind (Moe, 2003). Relying solely on long-term preference models can be insufficient
and algorithms have to adapt their recommendations to these short-term goals to be
effective (Shani et al, 2005; Tavakol and Brefeld, 2014; Jannach et al, 2015a).

— Second, when relying on the matrix-completion problem formulation, the focus is on
predicting the relevance of items for which no preference signal is given and which are
presumably unknown to the user. However, many real-world systems also recommend
items that the user has already seen or even purchased before, e.g., with the goal
to remind users of things they were recently interested in or to provide convenient
navigation shortcuts (Schnabel et al, 2016).

— Third, in many e-commerce domains, the purchase decision of a customer can depend
on the current price of an item and some items might only be attractive if they are
on sale. The relationship between prices and market demand has been extensively
analysed in the economics literature for decades, e.g., based on statistical demand
estimation approaches like the broadly-used one by Berry et al (1995), but it is not
fully clear yet how price reductions impact the behavior of users in the context of
recommendations.

— Fourth, an assumption in current research is that the recommendation of very popu-
lar items is of comparably little value, because the recommended items might be too
obvious or of little novelty. Reports on real-world systems however indicate that rec-
ommending a mix of popular and lesser known items can be a good strategy (Garcin
et al, 2014; Gomez-Uribe and Hunt, 2015).

Overall, whether or not an item should be recommended may depend on a number
of factors other than its estimated match with the user’s long-term preferences. These
additional factors are however underexplored in the recommender systems literature. In
this work, our aim is to systematically investigate the role of some of these factors — in
particular those discussed above — and to design novel approaches to incorporate these
factors into future recommender systems.

The structure and the contributions of this paper are as follows:

(i) In Section 2, we report the results of a systematic analysis of a large log dataset
provided to us by Zalando?, a European retailer of fashion products. A particu-
lar feature of the dataset is that it contains information about which items were
recommended to users and which of these recommendations were successful, i.e.,
led to a purchase afterwards. This information allows us to systematically deter-
mine the characteristics of successful recommendations from log data, which to our
knowledge has not been done before in the e-commerce domain.

(if) Our analysis reveals that a larger fraction of the successful recommendations are
actually reminders, i.e., items that the users have seen or purchased before. In
Section 3 we therefore further elaborate on this topic and also report the results
of a field test in a different e-commerce domain which shows that reminding users
of known items can have a positive impact on the business.

2 http://www.zalando.com

Publications

Session-based Item Recommendation in E-Commerce 3

(iii) In Section 4 we finally show how the insights from the previous analyses can be
operationalized within new recommendation algorithms. Specifically, we propose a
hybrid method that combines a session-based nearest-neighbor scheme with a deep
neural network that considers additional factors like discounts or recent sales trends
in the ranking process. An experimental evaluation indicates that the proposed
methods are more effective than previous approaches in terms of selecting and
recommending items that are actually bought by customers on the site.

Generally, the work presented in this paper combines and extends a series of pre-
vious investigations on session-based recommendations in e-commerce environments. In
(Jannach et al, 2015a) we mainly examined the relative importance of considering long-
term preference models and short-term intents; in (Lerche et al, 2016) we focused on the
value of placing reminders in recommendation lists; in (Jannach and Ludewig, 2017a) we
finally designed a first recommendation method that used purchase prediction variables
which were derived from a systematic analysis of log data. In this paper, we put these
individual pieces together to provide a comprehensive picture of different phenomena
that can be observed in practice but have not been explored in the literature to a large
extent. Furthermore, we propose a novel method to combine the prediction features,
which is more effective than our previous one and which is based on a deep learning
technique.

2 Analyzing the Characteristics of Successful Recommendations

This section summarizes the main insights that were obtained through the analysis of
Zalando’s log data. The general goal of our analyses was to better understand in which
cases the recommendations that were displayed to the users were successful (i.e., led to
a purchase at the end).

2.1 Dataset Characteristics

The dataset provided to us contains a subset of the log of user interactions on the e-
commerce site Zalando during about one year.? Actions were recorded for about 3.5
million users, which were identified through unique IDs based on cookies. The different
types of actions that were made available to us include views of item detail pages,
purchase actions, as well as add-to-cart and add-to-wishlist events. The recorded actions
relate to more than 400,000 different shop items. For each item, we know various basic
characteristics like the (anonymized) brand, the color, the item’s catalog categorization
(i.e., if it belongs to shoes or shirts), and the price level compared to other items of
the same category. Furthermore, the log contains information about to which extent the
item was discounted at the time of the user action.

Zalando’s online shop also features a recommendation component, and additional
items of interest are displayed to visitors when they navigate the site, for example, when
they inspect the details page of an item.* Our log dataset contains the list of the top
three recommended items that were displayed to the visitors on such pages. Click events
on these recommended items were recorded as well, i.e., we know when a user visited
an item through a link from the recommendation list. In our subsequent analysis, we
consider a recommendation successful when the user purchased an item later on that he
or she clicked earlier on a recommendation list.

3 The dataset provided to us was fully anonymized and artificially distorted so that no inference on
true sales numbers on the site can be made.

4 Details about the used recommendation algorithm on the website were not disclosed to us.

Publications

105

106

4 Dietmar Jannach et al.

Table 1: Characteristics of the Zalando datasets

Raw dataset Frequent users Regular users Occasional users

Users 3.5M 3,000 3,000 3,000
Items 460k 188k 121k 87k
Views 200M 3.1M 906k 452k
Purchases 3.9M 106k 47k 9.5k
Sessions 27.5M 338k 89k 64k
Sessions per user 7.79 113.11 29.91 21.31
Views per session 7.28 9.44 10.41 7.10
Purchases per session 0.14 0.31 0.52 0.15

The dataset is generally very sparse. Many users have visited the shop only once
and a large majority of the users never made a purchase. Since one of our goals is to
predict purchases based both on long-term and short-term user models, we focused on
users that have interacted with the website several times in different shopping sessions
and also made a minimum number of purchases. Removing non-buying users, which are
not in the focus of our analysis, reduces the total number of unique customers by almost
80%, i.e., only about 760,000 of 3,5 million users remain.

For the various analyses and experiments made in this paper, we created a number
of different data subsamples. Specifically, we varied the lower thresholds regarding the
user’s past activities, with the goal to assess if significant differences can be observed
across different user groups, e.g., when applying different recommendation strategies.

— Our first sample contains 3,000 frequent (heavy) shoppers. We defined those cus-
tomers as heavy users that had purchased at least 20 items during the year when the
data was collected and who have interacted with the site within at least 40 sessions.
On average, the randomly selected users of this group visited the online shop about
two times a week, leading to an average of 114 sessions.

— The second sample covers a random selection of 3,000 regular shoppers, who pur-
chased at least 10 items within at least 20 sessions. For the average customer in this
group about 30 sessions were recorded, i.e., these users visited the site about every
other week.

— The third sample comprises 3,000 randomly selected occasional site visitors, who
interacted with the site at least in 10 sessions. No constraint on the number of
purchases per user was applied for this dataset.

To further validate our novel prediction method presented in Section 4, we created
the following additional datasets.

— A sample of 3,000 random users for which we only required that they purchased at
least one single item. No constraint on the number of shop visits was applied.

— Two larger samples of reqular users as described above, which comprise 5,000 and
10,000 users, respectively.

Table 1 shows some key characteristics of the three main datasets that we use for
our analyses in the paper. The characteristics of the three additional validation datasets
are given in Table 17 in Appendix D. Also in the appendix (Figure 6), we provide a
visualization of the distribution of the purchase frequencies in the raw dataset. What we
can for example observe in the data is that the frequent users visit the site more often,
i.e., there are many more sessions per user, but their sessions are shorter on average and
they make fewer purchases per session.

Generally, while the number of sampled users per dataset is comparably low, the
resulting datasets still have a substantial size. The frequent user dataset for example

Publications

Session-based Item Recommendation in E-Commerce 5

contains more than 3 million recorded item view events for almost 200,000 different
items. We therefore see the dataset sizes not as a limiting factor of our research.®

2.2 Factors Influencing the Success of Recommendations

Based on our discussion of typical limitations of current research in the introduction
of our paper, we investigated the impact of the following factors on the success of
recommendations through different analyses. Each of these factors corresponds to one
of the identified research limitations.

1. The importance of considering the users’ short-term intents.
2. The effectiveness of recommending already known items.

3. The role of discounts.

4. The effects of considering (short-term) popularity trends.

We used the dataset of frequent shop visitors as a basis for the subsequent analyses.
As a success measure for the recommendations, we calculated click-through rates and
conversion rates. In our scenario, a click-through event happens whenever a user clicks
on any of the items in a recommendation list and the click-through rate is computed
as the number of click-through events divided by the number of page (recommendation
list) impressions. We define a conversion as the situation when a user clicked on an
item within a recommendation list and then actually purchased this item in the current
or subsequent session. We determine the conversion rate by dividing the number of
conversions by the number of clicks on any recommended item. Overall, the click-through
rate therefore can be seen as an indicator to which extent the recommendations can
attract clicks, whereas the conversion rate gives an indication of the effectiveness of a
recommendation algorithm in terms of selecting items that match the users’ preferences.5

In our sample of frequent users, we observed that about every 100*" displayed recom-
mendation list received a click, i.e., a click-through rate of 1%. In general, the absolute
value of the click-through rate can depend on various factors that are not related to
the recommendation quality, including the visual layout of the web pages and the posi-
tioning of the recommendation list. Overall, a click-through rate of 1% shows that the
displayed recommendations are not a central element for users to navigate the site.

The second and probably more interesting question is how often an item was added
to the shopping cart and purchased after it was selected in a recommendation list, i.e.,
the conversion rate. In the dataset of frequent shop visitors, users placed an item into
the shopping cart in one of the next two sessions in about 14 % of the cases when they
had clicked on it within a recommendation list. In about 7% of the cases when an
item was clicked on in the list, it was actually purchased later on. This indicates that
the recommender implemented on the site was in many cases able to select items that
were truly interesting for the user. Note that this does not mean that only 7% of the
recommended items were interesting for the users, as we only know for the actually
purchased items with certainty that they were relevant. In fact, other items shown in
the recommendations might have been relevant as well, but not purchased at the end,
e.g., because they were alternatives to the finally purchased item.

5 Using much larger samples makes some of the experiments reported in later sections computationally
challenging as some of the algorithms require extensive hyperparameter tuning.

6 The conversion rate cannot directly be interpreted as the absolute amount of additional sales that
is generated by a recommender since we cannot know if an item would have been bought by a user
even when it was not recommended. Previous studies however indicate that recommenders in general
can turn more visitors into buyers and be effective in terms of generating additional sales (Jannach and
Hegelich, 2009).

Publications

107

108

6 Dietmar Jannach et al.

2.2.1 The Importance of Considering the Users’ Short-Term Intents

To assess how focused website visitors are when they arrive on the site, we analyzed
their browsing behavior in terms of the diversity of the inspected items. An analysis
based on the sample of frequent users showed that visitors on average look at the details
of 9 different items per session and these items belong, again on average, to 2.7 different
categories in the catalog. Given that there are more than 330 categories, this is a strong
indicator that focused navigation behavior with a specific intent is common. Therefore,
recommending mostly items that match the current shopping intent seems promising.

To quantify the importance of considering short-term intents when recommending,
we calculated the recommend-to-purchase conversion rates for different situations: (a)
when the recommended item was similar to the currently inspected one in terms of a
certain feature (e.g., had the same color) and (b) when this was not the case. The results
of this analysis are shown in Table 2.

Table 2: Recommend-to-Purchase Conversion Rates for Similar-Item and Different-Item
Recommendations using the Dataset of Frequent Users

Conversion rate when item feature has ...

Item feature ... a different value ... the same value Difference
Brand 0.950 % 4.227 % 345 %
Price level 1.403 % 3.624 % 158 %
Category 1.207 % 2.844 % 135 %
Color 1.521 % 2.701% 7%

The first row of the table for example shows that once a visitor arrived at the site
and inspected an item of a certain brand, the conversion rate was 345 % higher when
an item of the same brand was recommended than when items of other brands were
recommended.” Much higher conversion rates are also achieved when items from the
same price segment are recommended (158 %) and when the item belongs to the same
category (135%). Similarly, a substantial improvement (77 %) is observed when the
recommendations have the same color as the last inspected item, even though the color
scheme used by the shop is quite fine-grained.

Overall, the analysis shows that website users often have a comparably clear shopping
intent when they visit the site and recommendations are correspondingly more successful
when they relate to items that have characteristics that are similar to those of recently
inspected ones. Therefore, recommending items from the most recent categories of inter-
est might be a more effective strategy than making out-of-category recommendations. If
the assumption holds that items of the same category are typically substitutes (alterna-
tives) and items of other categories are complements (e.g., accessories), our observations
would corroborate the findings of Diehl et al (2015) who also found a substitute-based
store organization to be advantageous over a complement-based one for the fashion
domain.

2.2.2 The Effectiveness of Recommending Already Known Items

When examining all three-item recommendations in the log, we noticed that about 10 %
of these recommendations were items that the current user has inspected before at least

7 Since brand loyalty is common in the fashion domain, a strong effect was generally expected.

Publications

Session-based Item Recommendation in E-Commerce 7

once. The recommender system implemented on the site, like on other e-commerce sites
such as Amazon.com, does therefore not limit itself to the recommendations of items
that are presumably new to the user as is usually done in academic research.

The fraction of such reminders depends on the design and inner workings of the
recommendation algorithm, which are unknown to us. The interesting part however is
that nearly half (44 %) of the successful recommendations that finally led to a purchase
were not new to the visitors. Obviously, we cannot know if the customers bought items
because they were presented as reminders in the recommendation list. However, we can at
least observe that visitors use the recommendations quite often as navigation shortcuts
to items that they finally purchase (Plate et al, 2006; Schnabel et al, 2016). Including
reminders in recommendation lists therefore seems to be promising in this environment.

On the other hand, the fact that more than half of the successful recommendations
were actually unknown to the users shows that the implemented system is effective in
helping users discover new items as well. From a practical perspective, this means that
the most promising strategy could be to create recommendation lists that contain a
well-balanced mix of already known items and items that are new to the visitor.

Generally, the selection of items that assumedly match the short-term interests can
be made independently of the selection of the reminder items. However, once an estimate
of the current user’s shopping intent has been made, it can also be a plausible strategy
to focus on reminder items that are a good match for the given shopping intent.

2.2.3 The Role of Discounts

In many domains, the price of an item has a direct impact on demand levels and sales.
We could therefore hypothesize that items in recommendation lists that are marked as
being discounted are more attractive to users and lead to higher conversion rates. On the
other hand, there could also be a negative effect caused by recommending items that are
labeled as being discounted. This could happen when visitors perceive the recommenda-
tions rather as advertisements than as unbiased hints by a benevolent recommendation
system.

To analyze the effect in our dataset, we separately calculated the recommendation-
to-purchase conversion rates for recommendations that were labeled as being on sale
and items that were sold at the regular price. The observed differences were huge. While
the conversion rates for non-discounted items were at only 0.45 %, the rate for items
on sale was about 18 times higher and at 8.12%. This is a clear indicator that on the
analyzed website the recommendation of discounted items led to a higher effectiveness
of the recommendation system.

Note that the majority of sales transactions during the data collection period were
not involving discounted items. Furthermore, the existing recommender on the site on
average only included one single discounted item in the recommendation list. Recom-
mendations of discounted items were therefore disproportionately often successful.

2.2.4 The Effects of Considering (Short-Term) Popularity Trends

Recommending popular items is generally a “safe” strategy, even though it might not
always lead to the highest business value as shown, e.g., in (Jannach and Hegelich, 2009).
We made different analyses to identify a possible relationship between the popularity of
a recommended item and the chances that the recommendation is adopted by a user.
A first analysis showed that whenever the visitor clicked on one of the three recom-
mendations, the chances that it was the most popular one among the three were at 43 %,
i.e., much higher than the theoretical 33 % random chance. For this particular measure-
ment, we determined an item’s general popularity by counting all view and purchase

Publications

109

110

8 Dietmar Jannach et al.

events related to the item in the entire log dataset. However, in the fashion domain,
seasonal trends are common and considering the item popularity over the period of one
year is probably too coarse-grained. We therefore made an additional measurement in
which we considered the popularity of the items in the recent past. As an example, we
looked at how popular each item on a recommendation list was on the day on which the
recommendation was made.

The results showed that recommendations were particularly successful when the
recommended items were popular on that day and therefore probably represent recently
trending items. Using a normalized popularity score, the average daily popularity of
all recommended items was at 0.024, whereas the average of those which were actually
selected afterwards was at 0.088, i.e., three times higher. The normalized score was
computed by dividing the number of events (clicks and purchases) of an item on a
specific day by the maximum number of events recorded for an item in the dataset on
the same day.®

2.3 A Systematic Feature Importance Analysis

After having analyzed different potential success factors individually in the previous
section, our next goal was to understand the relative importance of the different factors
that can make a recommendation successful. To that purpose we used the available data
to frame a classification problem where the task is to predict whether or not a displayed
recommendation will later on lead to a purchase or not. Based on such a model, different
feature weighting methods can be applied to numerically estimate the importance of the
factors.

Correspondingly, each entry in the constructed classification dataset corresponds to
an item recommendation recorded in the log data, which is labeled as being successful
or not. We engineered a set of 95 different features as predictor variables. We included
both comparably simple ones like the popularity of the item during the last n days as
well as more complex ones that combine item characteristics with context-specific or
user-specific aspects. An example for a more complex feature is the ratio of clicks by
a user on items that have the same brand as the recommended one during the last n
sessions. The full list of features can be found in Appendix C.

For the measurement, we again looked at the 3,000 frequent visitors and their success-
ful recommendations from our dataset, leading to about 8,500 positive samples. Since
the dataset is very imbalanced and there are comparably few successful recommenda-
tions, we applied random downsampling to end up with an equal number of samples
for each class. Table 3 shows the 10 most relevant features using the Gain Ratio and
the Chi Squared methods, respectively.® We used two alternative and popular feature
selection methods to reduce the risk that our analysis is biased by the specifics of one
single method. When looking at the most important features as listed in the table, we
can observe that both methods lead to the exact same set of the 10 most relevant fea-
tures (out of over 90). The order of the features is sometimes slightly different, which is
caused by the specific ways the methods work.'?

The results of both methods are therefore comparable and confirm the observations
from the previous section. Every single feature in the top-10 list is either related to the
recent popularity of the items, to current discounts, or related to the fact that a user has

8 The popularity measurement only considered view and purchases related to the items up to the
time point of the recommendation on that day.

9 See, e.g., (Manning et al, 2008) for details about these feature selection methods.

10 The results of the analysis for the set of 3,000 occasional users are similar and are reported
in Appendix B. The detailed results of the feature analysis are provided at http://1ls13-www.cs.
tu-dortmund.de/homepage/journal-cosr-2017.

Publications

Session-based Item Recommendation in E-Commerce 9

Table 3: Results of the statistical feature weight analysis.

Gain Ratio analysis Chi Squared analysis (normalized)

Feature Weight Feature Weight
Viewed before? 0.319 Current popularity (day) 1.000
Any discount granted? 0.274 Distance to last view (in sessions) 0.624
Discount level 0.274 Distance to last view (in days) 0.619
Distance to last view (in days) 0.251 Current popularity (week) 0.610
Current popularity (day) 0.249 Number of previous views 0.603
Distance to last view (in sessions) 0.232 Distance to first view (in sessions) 0.598
Distance to first view (in days) 0.199 Distance to first view (in days) 0.595
Distance to first view (in sessions) 0.194 Viewed before? 0.590
Number of previous views 0.181 Any discount granted? 0.569
Current popularity (week) 0.138 Discount level 0.569

recently viewed a given item in the past.!’ A correlation analysis of the relevant features
over all positive and negative samples showed that while most groups of different features
are not related, a measurable correlation between the discount level and the recent item
popularity exists (0.47 for popularity/day, 0.34 for popularity/week). This could mean
either that some items become particularly popular once they are discounted, or that
the shop often reduces the prices for more popular items because discounts for popular
items might help to attract more visitors to the site.

Overall, the analysis gives us a number of indications which factors contribute to the
later success of a recommendation. In the following sections we will investigate how we
can operationalize these insights when designing new recommendation algorithms.

3 A Detailed Analysis of Using Reminders Within Recommendations

The feature analysis results in Table 3 showed that there are in fact several features in
the top ten list that are related to reminders, i.e., to items that the user has recently
inspected. In this section we provide a more detailed analysis on the topic of reminders
before we investigate the other features in Section 4.

Generally, reminders within recommendation lists have the unique characteristic that
they do not help users discover so far unseen items, and it is therefore not fully clear
to what extent they truly create business value. Our analyses so far only show that
clicks on already known items in the recommendations lists comparably often lead to
purchases afterwards. To assess the business value of reminders, we have performed an
A/B test on an e-commerce site for electronics and gadgets in which we compared the
effectiveness of a simple reminding strategy with other recommendation techniques. We
will discuss the details in Section 3.1. Then, we will outline different alternative and
more elaborate algorithmic approaches to select already known items for inclusion in
the recommendation lists. The results of different offline experiments using the Zalando
dataset will be summarized in Section 3.2.

3.1 Effectiveness Analysis: Results of a Field Test

To be able to conduct field tests on a real e-commerce website we collaborated with
China-Gadgets'2?, a German online retailer who specializes in consumer electronics and

1 The entry “Distance to first/last view” in the table refers to the time that has passed since the user

has viewed a recommended item the first or last time before the purchase.
12 http://china-gadgets.de

Publications

111

112

10 Dietmar Jannach et al.

Einen groBen Todesstern von etwa 6 cm konnt ihre mit diesem Gadget herstellen! Diese enorme Kuhlpower fahrt also
dazu, dass dieses Gadget nicht fr ein einziges Glas geeignet ist - es will mehr! Als Material ist Silikon angegeben und wenn
ihr nicht gerade gegen die Sonne kmpft, dann lasst sich darin (zusammen mit einer Feuerquelle) auch Nahrung
herstellen.

Hier geht's zum Gadget >>

£l L (EE) 8+ 0 2 % (0, 24 votes)

Interessante Gadgets - Schon gesehen?

'® 24 [&°

Fiir alle Mad Scientists: Raaawrrr - Eiswiirfel im Schwarzer Humor: Jaich will! Die Ring
Eiswiirfel in Haiflossenlook ab 1,35€ Eiswiirfel in Form der (Eiswiirfel)-Form fiir
Gehirnform fiir 1,80€ Titanic (mit passenden 1,39€

Mini Solarventilator mit Clip ab 3,24€

Fig. 1: Screenshot of four recommendations that were displayed below the most recent
item of the China-Gadgets feed. In this example, the first item was a rubber ice tray to
create ice “cubes” in the form of a Star Wars Death Star (not shown in the picture).
The recommendations were created with the Similarity algorithm and are also rubber
ice trays in the form of a brain, a shark fin, the Titanic, and a wedding band.

various types of gadgets. The front page of the China-Gadgets website is organized as
a feed of product reviews, where the most recent item reviews are displayed at the top
of the list. For each item, a details page exists which contains an in-depth review and a
link to an external Chinese online shop.

8.1.1 Ezperiment Setup

For the purpose of the field study, we extended the existing website design and included
recommendation lists at two places. First, we displayed four items below the most recent
item, i.e., below the first entry of the feed, which can be seen in the screenshot in Figure
1. Second, we also showed recommendations on each item’s detail page using the same
layout and design as in Figure 1. Everything else on the website remained unchanged.
We implemented the five strategies listed below in Table 5 to fill the recommendation
lists.

Table 4: Dataset Characteristics

Characteristic Value
Users 49k
Ttems 4k
Views 287k
Purchases 260k
Sessions 226k
Sessions per user 4.63
Views per session 1.94
Purchases per session 1.16
Popularity per item 134.96

During the experiment, which was conducted over the course of three months, the
users of the website were randomly assigned to one of five conditions in an A/B test.
Visitors were only once added to a group and the assignment was not changed when

Publications

Session-based Item Recommendation in E-Commerce 11

Table 5: Brief descriptions of the algorithms used in the randomized field test.

Most Popular A non-personalized baseline technique that recommends the most popular
items of the categories to which the reference item belongs. The reference
item is either the first item of the front page or the item of a detail page
for which the recommendations are displayed.

Similarity Another non-personalized method that recommends items that are
“content-wise” similar to the reference item. The similarity between two
items is determined by the angle between the TF-IDF-encoded representa-
tions of their plain-text item descriptions. We relied on the item descriptions
because only a very limited set of item features was available to us.

Recently Viewed A simple reminding strategy that displays the items that the current visitor
has recently inspected in reverse chronological order.

Similarity Personalized A personalized content-based method where the ranking of the items is
determined by their distance to the current user’s profile. The user profile
is computed as the average TF-IDF vector of the items descriptions that
the user has inspected in the past.

BPR Bayesian Personalized Ranking (BPR) is a learning-to-rank collaborative
filtering (CF) method for implicit feedback recommendation scenarios by
Rendle et al (2009). To create a personalized item ranking for each user, a
generic optimization criterion is optimized that is the maximum posterior
estimator in a Bayesian analysis of the ranking task. Training of the model
is done by utilizing a bootstrapped, stochastic gradient descent method.
In the analysis of our previous work (Jannach et al, 2015a), BPR was the
best-performing individual CF method. Contrary to the usual configuration
of BPR, the algorithm is allowed to place items in the recommendation
list that a user already knows. The BPR models were retrained every 30
minutes and the parameters of the method were optimized in an offline
process beforehand.

a user repeatedly visited the site. All item view events and all clicks on links to the
corresponding Chinese online shop were recorded.

To be able to measure the effects of personalization, we only considered users who
visited the shop at least twice during the data collection period. The resulting dataset
that we used in our analysis contained about 287,000 view events by about 49,000 users
for over 4,100 products (see Table 4 for more details).

Since we also tested a popularity-based recommendation strategy, we analyzed the
popularity distribution of the items (estimated by the number of view events). A distri-
bution where a small set of popular items accumulates most of the view events would
favor such a strategy. For the analysis, we grouped the items into 10 popularity levels
with 400 items in each bin. Figure 2 shows the outcome of this grouping. The results
reveal that the majority of the view events were indeed recorded for a comparably small
set of items, and 10% of the items accounted for nearly 90% of all click events in the
log data. Hence, there is a long tail of items that received very few clicks. The less
popular half of all items, for example, were only involved in 1% of all interactions, with
an average of 3.13 view events per item.

3.1.2 Observations

Looking at the general click-through rates across all conditions, about 2.6 % of the view
events resulted from a click on an item in a recommendation list. The important business
measure for China-Gadgets, however, is how often a visitor actually clicked on a link to
the external Chinese retailer. In our analysis, we therefore consider a recommendation
to be successful only when it was clicked by a user and when the user subsequently
followed the link to the external website.

Publications

113

114

12

Dietmar Jannach et al.

Fig. 2: Perc
in bins of 4

The res
to some sui
when comy
cantly high
those that
popular ite
given that -
comparably
strategy we
be the resu
approach le

100
90

Recently Similarity Most Popular Similarity
Viewed Personalized

Fig. 3: Success rate of the different recommendation strategies in the China-Gadgets
field experiment.

In contrast to typical recommender system evaluation setups, we configured all five
algorithms in a way that they could also recommend items that the users already knew,
i.e., for which we had observed item view events in the past. Across all configurations,
we observed that 38 % of the successful recommendations were actually reminders, while
only 20 % of all item suggestions were known to the users. In particular, the Similarity

13 According to a four field Chi-squared test (p < 0.05) with Bonferroni correction.

Publications

Session-based Item Recommendation in E-Commerce 13

Table 6: Percentage of reminders in the recommendations lists for all tested methods.

Method Percentage of reminders
Recently Viewed 100.00 %
Similarity Personalized 82.56 %
BPR 24.95%
Most Popular 3.33%
Similarity 0.88 %

Personalized method tended to include a large number of known items in the recommen-
dations (about 82 %) and these reminders are probably part of the success of the method
in this experiment. Table 6 shows the percentage of reminders in the recommendations
for all tested approaches.

Overall, our study suggests that including reminders in recommendation lists — be-
sides serving as navigation shortcuts — can also be valuable from a business perspective.
However, due to the site’s structure, the results obtained in this field test have to be
interpreted with care. One particularity of the China-Gadgets website, for example, is
that new items are displayed in the form of a chronological news feed. For other online
shops that follow a more traditional catalog and search-oriented website design, different
effects may be observed.

3.2 Adaptive Reminders

The reminding method used in the field test proved to be quite effective despite its
trivial nature. One can, however, imagine that simply recommending items in reverse
chronological order might not be the best choice in all situations. Consider, for example,
that a customer was searching for a pair of shoes and has — after inspecting a number
of options — made a purchase in the last session. An intuitive approach when applying
a reminding strategy would therefore be to mot remind the user of shoes anymore in
the next session. In the following sections, we will briefly summarize a number of such
adaptive reminding strategies, which we originally introduced in (Lerche et al, 2016),
and present results of offline experiments that were made using the Zalando frequent
user dataset.

3.2.1 Proposed Strategies

In (Lerche et al, 2016), we proposed four general reminding strategies that have the goal
to avoid too obvious recommendations. All strategies take a set of items as an input that
the current user has recently interacted with, and re-rank and filter the items according
to different goals. The strategies are briefly summarized in Table 7.14

Independent of the chosen reminding method, one possible additional strategy is to
ignore an item when the user has recently made a purchase in the item’s category. We
call this the Feature Filter (FF) strategy because it filters out potential items to remind
that have similar features as a recently purchased item. Technically, the FF strategy
maintains a blacklist of categories for each user, and this blacklist is extended upon
each purchase event. When the user, for example, has recently bought a pair of shoes,
no reminders related to shoes will be displayed for some time. However, whenever a user
continues to look for items that belong to a blacklisted category after the purchase, the
category is removed from the blacklist again. Note that the FF strategy can be used in
combination with any of the four re-ranking strategies proposed above.

14 More information about the technical details of the algorithms are provided in (Lerche et al, 2016).

Publications

115

116

14 Dietmar Jannach et al.

Table 7: Adaptive Reminding Strategies

Interaction Recency (IRec) This method represents a generalized “Recently Viewed” strategy that
considers also interactions other than item views (e.g., add-to-wishlist
events). The items are ranked in reverse chronological order of the last
interaction of the user with them.

Interaction Intensity (IInt) In this method, the amount of recent interactions with a certain item is
considered in addition to the last point in time of an interaction. More
weight is given to items that the user has inspected more often.

Item Similarity (ISim) The idea of this method is to remind the user of items that he or she
inspected in a past session and which have similar features as the items
that were inspected in the current session. If, for example, the user is
inspecting shoes in the current session, the strategy ranks up other shoes
that the user has inspected in the past. If the user has in the meantime
looked up other types of products, e.g., scarves, those will be accordingly
ranked lower, as they are from a different item category.

Session Similarity (SSim) This method also considers the user’s current session. In contrast to the
ISim method, it does however not look for similar items, but for similar
sessions. If a user in a past session was inspecting not only shoes but
also matching belts, the SSim method will remind the user also of belts
again, even though he or she has only started looking for shoes in the
current session.

As a baseline to compare the reminding strategies with, we included a session-
based recommendation method called C-KNN in our empirical evaluation. This nearest-
neighbor algorithm compares the current session with all past sessions in the training
data and then recommends items that appeared in past sessions that are most similar
to the current one.

Technically, the algorithm works as follows. To speed up the similarity computations,
we encode each session as a bit vector. Each vector element corresponds to an item and
a “1” at a certain position means that an interaction with the item was recorded for
the session. To quantify the similarity of the current session ¢ with a historical session
h, we compute the cosine similarity simeqs(c, h) between the vectors. Given the current
session ¢ we determine the k most similar sessions in the training data and denote
this set as mostSimilar(c). We then compute a ranking score score(c,) for each item
1 given a current session ¢ by summing up the similarity values of those sessions in
mostSimilar(c) that contain an interaction with 4, i.e.,

SCOT‘G(C, Z) = Z SiMcos (C» h) :]-Intcraction(s,i) (1)

s€mostSimilar(c)

where lipgeraction(s,i) 1S an indicator function that returns true when item i appeared
in session s. The recommendable items are finally ranked by the resulting scores in
descending order.

The described method has proven to be very effective for session-based music rec-
ommendation in the past, see, e.g., (Hariri et al, 2012) or (Jannach et al, 2015b). Ac-
cording to additional experiments not reported here, C-KNN significantly outperforms
more elaborate but session-agnostic methods like BPR for this problem setting.'® The
recommendations of the C-KNN method — in contrast to the other approaches tested
in this setup — are not limited to already known items. This allows us to compare the
effectiveness with non-reminding techniques on an absolute scale.

15 We unfortunately were not yet able to benchmark C-KNN in a field study with our external partner.

Publications

Session-based Item Recommendation in E-Commerce 15

3.2.2 Empirical Results

Using the generic evaluation protocol for session-based recommendations described in
(Jannach et al, 2015a), we conducted a series of experiments on the Zalando and China-
Gadgets datasets as well as on an additional dataset that was published in the context
of the TMall recommendation competition!®.

According to our evaluation protocol, each recommendation algorithm is provided
with a certain number of view events of the beginning of each session in which a purchase
was made, and the goal is to predict the item that will be purchased. In addition to the
views of the current session, the algorithm can be provided with information about the
actions of the same user in the p preceding sessions.

We tested two different configurations of our protocol. The set of recommendable
items consists of (a) either only those items that the user has interacted with in the p
preceding session or (b) those that the user has interacted with in the p past sessions
plus all item view events before the purchase in the current session. We call the latter
configuration reveal, as the most recent views are revealed to the algorithm, and the
other configuration noreveal. Since the algorithms are assumed to return ranked lists of
items, we can use the standard information retrieval measures hit rate (i.e., recall given
only one relevant item) and Mean Reciprocal Rank (MRR). Precision is proportional to
recall in this setup.

Table 8 shows the main results of the empirical analysis for the Zalando frequent user
dataset.!” In this experiment, the possible items for recommendation (reminding) were
taken from the last six user sessions (p = 6). In our previous work (Lerche et al, 2016),
we experimented with different thresholds for the number of past user sessions from
which reminders can be selected. Using too many previous sessions led to the inclusion
of items that were already outdated. On the other hand, considering too few sessions
makes the set of candidates that can be used as reminders too small. Overall, selecting
p = 6 sessions led to the best results across the tested datasets including the Zalando
dataset that is discussed here. In the reveal configuration in which the item view events of
the current session were revealed to the algorithm, the absolute values, as expected, are
generally higher. Users in almost all cases inspect an item before purchasing it. Purchases
without item views in the same session only happen when the item was placed in the
shopping basket already in a previous session.

Table 8: Hit Rate@10 (HR) and MRR@10 results for the Zalando frequent user subset.
The best values for each configuration are highlighted in grey. The observations for the
other datasets were similar, see also (Lerche et al, 2016).

Configuration p = 6, reveal p = 6, noreveal
Metric@10 HR MRR HR MRR
IRec 0.653 0.309 0.230 0.069
FF (SSim) 0.681 0.296 0.293 0.139
FF (1Sim) 0.561 0.219 0.353 0.146

SSim (k= 2) 0.697 0.327 0.210 0.111
ISim (k=20) 0.588 0.241 0.319 0.137
IInt 0.561 0.217 0.363 0.147

C-KNN 0.268 0.091 0.191 0.063

16 The competition was organized in the context of IJCAI '15 and TMall is a leading Chinese online
market place in the style of Amazon (https://tianchi.aliyun.com/datalab/dataSet.htm?id=5).

17 For the sake of brevity we do not report the detailed results for the other datasets here. The
additional results, which are in line with the observations for the Zalando dataset, can be found in
(Lerche et al, 2016).

Publications

117

118

16 Dietmar Jannach et al.

Overall, the results show that all reminding strategies are substantially and statisti-
cally significantly better in terms of the hit rate and the MRR than the best-performing
baseline C-KNN:

— In the reveal condition, the “Recently Viewed” IRec configuration as expected is
hard to beat as usually a view event is recorded some time before the purchase in
the same session. Nonetheless, the results show that the SSim strategy, which looks
for similar past sessions, can slightly outperform the IRec method.

— In the noreveal configuration, in contrast, the performance of the IRec and SSim
strategies drops in comparison to the other techniques because in this condition they
can only remind users of items that they have viewed in preceding sessions. The most
effective strategy in this configuration is to consider how often an item was inspected
by a user in the recent history (IInt). The feature filtering method FF' also proved
to be effective in this condition.

3.3 Discussion

The analyses in this section not only confirm the observation made earlier in (Jannach
et al, 2015a) that including reminders in recommendations leads to higher accuracy
values in offline experiments, but also that it can lead to increased business value in
real-world applications. The analyses of the more elaborate strategies from the previous
section furthermore indicate that better approaches than just recommending the most
recently viewed items in reverse order exist.

How many items of a recommendation lists should be reminders and which strategy
one should use to select the reminders largely depends on the specifics of the domain or
application. In fact, our observations in Section 2 for the Zalando dataset showed that
more than half of the successful recommendations were not reminders, so the problem
exists to find a balance between the recommendation of already known items and novel
item suggestions in practice.

4 Algorithmic Approaches to Improve Session-Based Recommendations

Having analyzed the different success factors for recommendations ez post in Section 2,
our goal is now to operationalize these insights into new session-based recommendation
algorithms that are better able to predict the next purchase than previous techniques.

4.1 General Approach — A Two-Phase Item Scoring Method

Our previous works in the field of session-based recommendations showed that consider-
ing both long-term preferences patterns and immediate short-term shopping intents can
be key to high prediction accuracy in e-commerce scenarios (Jannach et al, 2015¢). In
the following, we will therefore adopt the same general approach and apply a two-phase
item selection and ranking strategy:

— In the first phase, we use different baseline algorithms to compute an initial ranked

set of recommendable items. The scoring is either based on long-term preferences
only or based on a session-based scheme.

Publications

Session-based Item Recommendation in E-Commerce 17

— In the second phase, we post-process the resulting sets and apply a number of re-
ranking strategies, which consider the additional success factors for recommendations
that were identified in Section 2, including discounts or trends in popularity. '8

4.2 Baseline Scoring Techniques

We evaluated three baseline scoring techniques in our experiments.

— BPR, as it was the most effective context-agnostic baseline method according to the
experiments in (Jannach et al, 2015c). Technically, the BPR model is learned on
the long-term training data and the recommendations for a given session of the test
dataset are only based on the ID of the current user without incorporating further
contextual information.

— C-KNN, the session-based nearest-neighbor method mentioned above, because it led
to the best accuracy values when additional factors like discounts were not consid-

ered.
— (C-CoOcc, a session-based method that computes recommendations of the type “Cus-
tomers who bought ... also bought ...”. Technically, this method determines pair-

wise item co-occurrence patterns (association rules of size two) in the training data
and then recommends those items that most frequently co-occur with the items in
the current session. We include this method to assess to which extent our re-ranking
methods lead to improvements when a simpler but commonly used baseline technique
is employed.

4.3 Heuristic Re-Ranking Strategies

In (Jannach and Ludewig, 2017a) we proposed first approaches to incorporate additional
relevance signals into the ranking process. The approaches were based on comparably
simple heuristics for each of the potentially relevant success factors (short-term intents,
reminders, trends, and discounts) identified earlier in this paper. A brief summary of
these heuristic approaches is provided in Table 9.

Table 9: Heuristic Re-Ranking Strategies

Feature Matching (FM) This strategy takes the user’s short-term preferences into account by
ranking those items up (given a baseline-ranked set of recommenda-
tions) that have common features with items that the user has in-
spected in the current session. Items with more matching features are
ranked higher. This simple scheme proved to be effective according to
the analyses in (Jannach et al, 2015a).

Interaction Recency (IRec) This method, as described above, simply places those items in front
of the list that the user has recently inspected. The items are sorted
in reverse chronological order (most recent ones first). Items that were
not viewed recently by the user are subsequently ranked according to
the baseline score.

18 In our empirical evaluation presented in Section 4.5 the baseline algorithms were used to create a
set of 200 recommendations to be re-ranked, which on average led to the best results in terms of the
hit rate.

Publications 119

120

18 Dietmar Jannach et al.

Recent Popularity (RPOP-n) This strategy considers recent sales trends in the ranking process. We
compute a normalized popularity score for each recommendable item
for the last n days. To compute the score we simply compute all in-
teractions (views, purchases) of all users with each item in the last
n days. For the last day, i.e., the one of the current session, we only
count interactions up to the time point when the session started. In
the following, we will report the results obtained for RPOP-1, i.e., we
only consider the popularity of the current day, because this led to the
best results according to our experiments.

Discount Promotion (DP) This method ranks up items that are currently on sale. In our dataset,
each purchase event can have one of four discrete discount levels as-
signed. Items with the highest (relative) discount are ranked up. Items
with identical discount levels are ranked according to the baseline score.

Our systematic analysis in Section 2 has shown that most of the success factors
are not correlated. We therefore implemented and evaluated a number of weighted hy-
brid strategies, which combine the outcomes of the four heuristic re-ranking strategies
(FM, IRec, RPOP-n, DP). Through a series of experiments, as reported in (Jannach
and Ludewig, 2017a), we determined the following mix of a cascading and weighted
combination involving three heuristic strategies as the most effective one:

1. We apply the FM strategy to retain only items that share at least one feature with
any of the items viewed in the most recent sessions.

2. We then calculate the RPOP and DP scores for these items.

3. The two scores are finally combined in a weighted approach and used for re-ranking.

We denote this combination as WR(RPOP,DP,0.5)-FM, where the numerical parameter
indicates the relative importance of the two scores returned by RPOP and DP.

4.4 A Classification-based Approach Using Deep Neural Networks: DEEPPREDICT

A main disadvantage of the presented heuristics-based approaches is that the re-ranking
scheme is partially coarse-grained and that a lot of fine-tuning is required to find the
right combination of heuristics and the corresponding weights when hybrids are used.
We are therefore interested in developing a learning-based technique which is able to
consider a variety of signals in parallel and which is able to determine optimal weights
automatically.

In this section, we propose such a learning-based approach, which we call DEEPPRE-
DICT. The general approach is similar to the one applied in Section 2 and is based on
using the available log data to frame a classification problem. In contrast to Section 2,
however, the setup is slightly different. In Section 2, we were interested in determining
the general importance of different features as predictors for the success of a given rec-
ommendation. The goal this time, however, is to predict which item will be purchased
given the user’s specific and usually multiple interactions in the current and previous
sessions. Therefore, the problem encoding is different from the one used in Section 2 and
is based on slightly different features as will be described below.

The outcomes of the classification task are numerical scores that express the probabil-
ity that the user will click and purchase a recommended item. In contrast to traditional
classification problems, we however do not use these scores to classify the recommend-
able items but use them to rank items that were identified as possible recommendations
by a baseline algorithm, e.g., C-KNN.

4.4.1 Feature Engineering, Problem Encoding, and Sampling

Features. As a consequence of the slightly different problem setup, many of the features
that we introduced in Section 2 cannot be used anymore. For example, we cannot any

Publications

Session-based Item Recommendation in E-Commerce 19

Table 10: Features used in the learning-based approach

Feature Description Nb. Type

Popularity Normalized popularity of the item in the same day, week, or 3 Float
month

Viewed before True, if the item was viewed before by the user 1 Bool

Views count Number of previous views of the item by the user 1 Integer

Distance to first view Distance to the first item view by the user in days or sessions 2 Integer

Distance to last view Distance to the last view of the item in days or sessions 2 Integer

Brand ratio Fraction of items of the same brand in the last 1, 2, and 3 3 Float
sessions

Brand popularity Overall popularity of the brand for the same day, week, or 3 Float
month

Color ratio Fraction of items with the same color in the last 1, 2, and 3 3 Float
sessions

Color popularity Overall popularity of the color for the same day, week, or month 3 Float

Category ratio Fraction of items of the same category in the last 1, 2, and 3 3 Float

sessions

Category popularity Overall popularity of the category for the same day, week, or 3 Float

month
Price level ratio Fraction of items of the same price level in the last 1, 2, and 3 3 Float
sessions
Discount granted? True, if the item is discounted 1 Bool
Discount level Level of discount from 0 (no discount) to 3 (high discount) 1 Float

longer compare an item’s color with the color of the currently viewed item as a binary
feature. In fact, in the new problem situation we now have to consider a session-based
context with multiple items of different colors. We therefore reduced the set of all features
from Section 2 to 32 session-based features for the task of predicting the probability of
whether or not a certain item will be purchased in the current session.

The set of features that were used in our experiments is shown in Table 10. A
substantial number of these features is domain-specific, including for example those
related to the color or the brand of an item, which are particularly important in the
fashion domain. In general, however, the proposed classification-based approach can
be applied for arbitrary domains and other domain-specific features can be included if
needed.

Problem encoding and sampling. Differently from the encoding in Section 2, a positive
training example is no longer based on the information if a certain item was shown in a
recommendation list and then purchased. Instead, a positive training example is derived
from the log data for each view event for which we later observed a purchase of the same
item in the same or the next session. A view event that did not lead to a purchase is, in
contrast, encoded as a negative example.

Since there are far more negative training examples than there are positive ones,
for each positive example found in the user sessions we randomly sample exactly one
negative example to end up with a balanced dataset.

4.4.2 Model Selection, Optimization, and Application

Model Optimization and Selection. After the feature engineering phase, a set of labeled
training examples can be derived from the training part of the user log data.'® Given

19 In the experiments reported below we used the frequent user sample, as described in Section 2.1,
as a basis for learning.

Publications

121

122

20 Dietmar Jannach et al.

such a dataset, a variety of different supervised machine learning methods can in prin-
ciple be applied. Using the RapidMiner software suite?’, we tested a number of differ-
ent techniques, including classification using decision trees, random forests and logistic
regression. To determine the best-performing algorithm and its parameters, we system-
atically searched for the best configuration by applying grid search in combination with
ten-fold cross-validation, using again the functionality provided by the RapidMiner soft-
ware. Furthermore, we applied a genetic feature selection strategy to find an optimal set
of features for the given algorithm configurations.

At the end, the best model fit was achieved when testing an optimized artificial neural
network with 2 hidden layers, each with 50 nodes, using the implementation of the H,O
open source artificial intelligence library?!, which is available as an add-on component
for RapidMiner. We briefly explain the neural network in the next section. The feature
selection process for the neural network based approach led to minor improvements when
seven of the 32 features were excluded.??

A random forest classifier led to the second best accuracy scores (with 23 trees and a
maximum depth of 49). For comparison purposes, we accordingly conducted experiments
where we re-ranked the recommendations by the scores returned by this classifier. We call
this alternative method RFPREDICT. In the case of random forests, feature selection did
not lead to further improvements, which is probably caused by the inherent characteristic
of the algorithm to implicitly include only important features in the trees, depending
on the number of features and the configured depth of the trees.

Deep Neural Network Encoding The deep learning algorithm provided by H5O is based
on classic feedforward neural networks consisting of multiple layers of multiple nodes,
each representing a human neuron as a weighted sum of inputs with a bias b as shown
in Figure 4. All these nodes are layer-wise interconnected and the neurons’ outputs are
transformed with a nonlinear activation function f. In our network (see Figure 5), the

Hidden layers
X1 Y
X = =
2 w, E 5
s =]
w & a
X3 78 o ©
7 5
. <
X S S
n b % B
(3
2 :
+1

Fig. 4: Neurc Fig. 5: Network
All weights and biases were optimized in a supervised learning process to mini-
mize the difference between the predictions of the model and the real labels in our
examples. The activation function that led to the best results in our model optimiza-
tion process was the linear rectifier f(z) = max(0,z) combined with cross entropy

20 https://rapidminer.com

21 https://h20.ai

22 The features that were not considered by DEEPPREDICT are listed in the appendix in Table 16. All
non-considered features are related to the recent popularity of a certain brand or category.

Publications

Session-based Item Recommendation in E-Commerce 21

(L(y,p) = —ylog(p) — (1 — y)log(1 — p)) as the loss function, which is commonly used
for binary classification problems.?® For the optimization of the network, the approach
implemented in HoO applies a parallelized stochastic gradient descent (SGD) method
with back-propagation, see (Goodfellow et al, 2016; Candel et al, 2017). Furthermore,
the SGD algorithm incorporates different optimizations like regularization, momentum,
and an adaptive learning rate (ADADELTA) as discussed by Hinton et al (2012), Zeiler
(2012), Sutskever et al (2013), and Wager et al (2013).

Model Application / Recommendation. As was done with the heuristic re-ranking ap-
proaches presented in Section 4.3, we applied the neural network-based method DEEP-
PREDICT and the random forest-based method RFPREDICT in the form of a post-
processing strategy in the recommendation phase.

1. Again, we use different baseline algorithms (e.g., C-KNN) to compute an initial
ranked set of recommendable items.?*

2. We consider each of these items as an unlabeled example and generate values for all
features from Table 10 given the specific situation of the current session. Given an
item to re-rank, we for example compute the fraction of items in the last two sessions
that had the same color.

3. Finally, we apply our pre-trained model to all examples to predict if the corresponding
item will be purchased in the current session by the user or not. The top items
that were returned by the baseline algorithm are then (re-)ranked according to the
probability score returned by the classifier.

4.5 Empirical Evaluation

We evaluated the different recommendation strategies on the three subsets of the Za-
lando dataset, i.e., the frequent, the regular, and the occasional user dataset, again using
the evaluation protocol from (Jannach et al, 2015a), and hit rate and MRR as accu-
racy measures. The reported results are the average after applying a five-fold repeated-
subsampling cross-validation scheme. As done in the previous experiments, we set the
number of preceding user sessions to six (p = 6) and revealed all item views before the
purchase in the current session.?®

The obtained results for the datasets of frequent, regular, and occasional users are
shown in Table 11, Table 12, and Table 13, respectively. The best accuracy values for
each evaluated baseline are highlighted with a grey background and the overall best
result per metric is emphasized in bold font.

4.5.1 Comparison of Baseline Strategies

The performance results of the individual baseline ranking schemes BPR, C-KNN, and
C-CoOcc are shown in the first row of each table (“No post-processing”)26. The C-KNN
method, as already mentioned in Section 3.2.1, leads to the highest hit rate and MRR
among all other baselines on all datasets.

23 4 is the correct label (1 or 0) and p the predicted probability.

24 As in our previous experiments, we took the first 200 recommendations of the baseline algorithms

as a basis for re-ranking as this cut-off value on average led to the best results in terms of the hit rate.
25 Revealing fewer view items of the current session leads to accuracy values that are lower on an
absolute scale; the ranking of the algorithms is however not changed.

26 All reported differences are statistically significant according to a Student’s t-test at p < 0.01 with
Bonferroni correction.

Publications

123

124

22 Dietmar Jannach et al.

Table 11: Hit Rate@10 and MRR@10 results for the Zalando frequent user subset.

Baseline C-KNN C-CoOcc BPR
Metric@10 HR MRR HR MRR HR MRR

No post-processing 0.268 0.091 0.123 0.046 0.062 0.021

FM 0.281 0.093 0.145 0.052 0.119 0.046

IRec-FM 0.306 0.097 0.266 0.096 0.262 0.111

DR-FM 0.316 0.177 0.242 0.120 0.168 0.094

RPOP-FM 0.361 0.187 0.233 0.103 0.216 0.096

RFPrEDICT 0.381 0.248 0.274 0.150 0.241 0.119
WR(RPOP,DR,0.5)-FM 0.382 0.220 0.262 0.121 0.225 0.100
DeepPrREDICT 0.405 0.284 0.322 0.205 0.301 0.188

Table 12: Hit Rate@10 and MRR@10 results for the Zalando regular user subset.

Baseline C-KNN C-CoOcc BPR
Metric@10 HR MRR HR MRR HR MRR

No post-processing 0.241 0.087 0.109 0.043 0.152 0.060

FM 0.257 0.091 0.129 0.049 0.197 0.077

IRec-FM 0.296 0.097 0.198 0.076 0.245 0.104

DR-FM 0.275 0.152 0.197 0.095 0.206 0.110

RPOP-FM 0.359 0.192 0.212 0.108 0.280 0.133

RFPrEDICT 0.367 0.216 0.218 0.121 0.302 0.174
WR(RPOP,DR,0.5)-FM 0.373 0.213 0.225 0.115 0.316 0.155
DeepPrREDICT 0.389 0.253 0.243 0.155 0.316 0.183

Table 13: Hit Rate@10 and MRR@10 results for the Zalando occasional user subset.

Baseline C-KNN C-CoOcc BPR
Metric@10 HR MRR HR MRR HR MRR

No post-processing 0.405 0.197 0.134 0.0563 0.142 0.055

FM 0.430 0.201 0.155 0.060 0.211 0.085

IRec-FM 0.501 0.217 0.235 0.090 0.296 0.125

DR-FM 0.472 0.226 0.209 0.094 0.261 0.137

RPOP-FM 0.501 0.241 0.240 0.118 0.321 0.149

RFPrEDICT 0.500 0.295 0.264 0.159 0.356 0.206
WR(RPOP,DR,0.5)-FM 0.520 0.295 0.263 0.136 0.366 0.186
DeepPrREDICT 0.532 0.322 0.285 0.177 0.356 0.212

On the dataset of frequent users, the context-aware but comparably simple C-CoOcc
method significantly outperforms the context-agnostic BPR method, which only consid-
ers the user’s long-term preferences. For the datasets consisting of regular and occasional
users that in general have a shorter purchase history, in contrast, the BPR method works
better than the C-CoOcc method.

In principle, one would expect BPR to work better for the frequent user dataset
because more detailed profiles for each user are available. However, in the considered
domain, some of the preference signals might be already outdated at the time of the
recommendation. Since BPR has no built-in means to give less weight to older inter-
actions, the learned model might focus too much on old interactions. For the dataset
of regular or occasional users in contrast, the danger of overfitting to past interactions
is less pronounced as the user profiles are less sparse in the first place. In such situa-
tions, BPR’s tendency to focus on popular items might in addition help to increase the
obtained accuracy values, see also (Jannach et al, 2015c¢).

Publications

Session-based Item Recommendation in E-Commerce 23

4.5.2 Considering Short-Term Intents, Reminders, Discounts, and Trends

In the next four rows of Table 11, Table 12, and Table 13, we show the effects of con-
sidering additional factors with the help of the heuristic re-ranking strategies presented
in Section 4.3. The results show that each individual signal can measurably contribute
to an accuracy increase.

(i) Applying Feature Matching (FM) as a post-processing strategy improves the accu-
racy results for every baseline and for all datasets. In the next set of measurements,
we therefore always apply the FM method on top of the baseline ranking.

(ii) Adding reminders on top of the baselines and the FM strategy (IRec-F'M) consis-
tently leads to further increases in terms of the hit rate and the MRR. A similar
effect was reported in (Jannach et al, 2015a) for different baselines. Nonetheless,
while increases in accuracy can be achieved through reminders, focusing too much
on reminders can be of limited business value, as such recommendations are not
suited to point users to unknown but relevant items.

(iii) Next, we examine the effect of focusing the recommendations on items that are
currently on sale (DR-FM). The results show that this strategy proves effective
and significantly more accurate when compared to the FM baselines across all the
configurations. The DR-FM strategy is however not consistently better than the
IRec-FM reminding strategy for all datasets and accuracy measures.

(iv) The RPOP-FM strategy, which focuses on recent trends, finally leads to the best
accuracy results so far. It significantly outperforms all other methods that combine
Feature Matching with one additional signal on the regular users dataset. It is also
better for the frequent users dataset, except when the C-CoOcc strategy is used as
a baseline. In this measurement, we report the results of the RPOP-1 strategy, i.e.,
we only consider the popularity of the items on the day when the recommendations
are made. Considering longer-term trends is also helpful, but the best results in
terms of the hit rate and MRR were achieved when only the last day was considered.

4.5.8 Leveraging Multiple Signals in Parallel

We tested various weighted combinations of our heuristic re-ranking approaches. Our
analyses in Section 2 showed limited correlations between most success indicators, and
we in fact achieved the best performance with the heuristic approaches when combining
three of the factors in the method WR(RPOP,DR,0.5).

With the learning-based approaches DEEPPREDICT and RFPREDICT we furthermore
tried to consider all of these factors in a more elegant and automated way. And, in fact,
applying a neural network in our DEEPPREDICT approach in combination with the C-
KNN method led to the overall best results in our experiments for all three datasets. The
difference between the best-performing method and any other method was statistically
significant at p < 0.05 according to a Student’s t-test with Bonferroni correction.

The random forest based method RFPREDICT was in some test configurations slightly
better than the fine-tuned weighted hybrid approach. In several other situations, we
could however not find a parameter setting for the random forest classifier that led to
an improvement over the heuristics-based hybrid. A possible reason for this observation
might lie in the more coarse-grained predictions of the purchase probabilities of this
method when compared with the neural network based method.

Overall, our results show that re-ranking the recommendations by considering a num-
ber of additional session-based factors can lead to significant accuracy gains. Further-
more, the experiments provide further evidence that modern deep learning approaches
can help to obtain better results in this domain than we could achieve with more tradi-
tional methods like random forests or with manually tuned weight factors.

Publications

125

126

24 Dietmar Jannach et al.

To further validate our observations, we have conducted additional experiments on
different subsamples as described in Section 2. The datasets include a set of 3,000 ran-
dom users who made at least one purchase, and two larger subsamples of regular users,
involving 5,000 and 10,000 regular users, respectively. The results confirm the observa-
tions that were made in this section, i.e., that the best results can be obtained with
the DEEPPREDICT method, i.e., the effectiveness of the method is not limited to a cer-
tain type of users. The dataset characteristics and the detailed results are listed in the
appendix (Tables 17 and 18).

4.6 Practical Implications

Our work has a number of practical implications. First, the work presented in this paper
in general sheds light on the relative importance of considering long-term preference
models and the short-term situational aspects in real-world e-commerce recommendation
processes. Our results show that considering, for example, the user’s short-term interests
can lead to substantially more effective recommendations, i.e., to recommendations that
ultimately lead to a purchase, than when considering only long-term models that are
re-trained overnight. From a practical perspective it is interesting to see that already
quite simple heuristic methods, which can be applied to re-rank the recommendation
lists in real-time, are comparably effective. Furthermore, these heuristic methods can be
used as a fallback method for anonymous or one-time users for which no long-term user
profiles exist.

Second, our research works provide evidence that recommending items that the user
has already seen can be a promising strategy in some domains, and we have proposed
novel heuristics of how to select the items that the user should be reminded of. Practi-
tioners should therefore consider and evaluate the inclusion of reminder items in their
recommendations. In practical environments, the selection of the reminder items and
how many of the items of a recommendation list should be reminders depends on the
specifics of the domain and has to be determined based on business considerations or
A/B tests. The analysis of the log data that was available to us indicates that at least
some companies include a substantial amount of reminders in the recommendations.

Third, our analyses showed that customers of the analyzed shop click more often on
recommendations when they relate to recently trending items or items that are currently
discounted. Regarding the discounts, this means that users generally have no negative
connotations when seeing recommendations that are on sale. They seemingly do not
consider them as being less relevant, which might be the case for other advertisements
on the shop website. Whether or not increased sales of already trending or discounted
items are desirable in practice depends on the specifics of the business and the intended
purpose of the recommendation service. If more revenue is the goal, selling more, even
at reduced prices, is often better. If in contrast profit is the target business metric,
promoting items with higher margins (including not-discounted ones), might be better.
Similar considerations apply for the recommendation of already popular and trending
items.

Fourth, our work shows that “reverse engineering” the most important features of
successful recommendations from log data and using the features in a recommendation
algorithm can be a promising approach in practice. Our work revealed some features
that are probably relevant and useful in many e-commerce scenarios, like trends and
discounts. In practice, often much more fine-grained information about the items or the
contextual situation of the user is available, which can be used in the feature engineering
phase. Considering a variety of such features in parallel can furthermore “automatically”
result in diverse recommendation lists that represent a balanced mix of items that match

Publications

Session-based Item Recommendation in E-Commerce 25

the user’s long-term or short-term preferences, items the user has recently inspected, or
items that sell well at the moment. The proposed prediction method is in general not
limited to a certain set of features or specific learning method. In fact, our results
showed that already the comparably simple weighted hybrid method can lead to good
results. In practice, however, the optimal weights have to be fine-tuned based on offline
experiments or through field tests in case there exists no suitable offline proxy for the
target business metric. The proposed deep learning approach has a higher predictive
power in offline experiments. In practice, however, one has to thoroughly analyze if the
additional computational complexity of such a method justifies its usage.

5 Related Works

Historically, many papers in the field of recommender systems, like ours, target e-
commerce domains, including the recommendation of books to purchase, movies to rent,
or other types of goods to buy. Differently from many works in the literature, our work
is not based on the matrix completion problem formulation, but addresses session-based
recommendation scenarios, where the goal is to predict the users’ next action(s) based
on their most recent behavior. It therefore also falls into the category of context-aware
recommender systems, where the context — in our case the user’s short-term shopping
intent — has to be inferred from the user’s recent interactions with the website.

According to the categorization scheme for context-aware recommenders proposed by
Adomavicius and Tuzhilin (2011), the techniques proposed in our work can be assigned
to the category of contextual post-filtering. Post-filtering means that we initially create a
list of items that are potentially relevant for a given user in general and then reorganize
this list based on the currently given contextual situation.

Within the category of context-aware recommenders itself, our work falls into what
can be called “session-based” or “session-aware” recommendation approaches. In session-
based recommenders, the algorithm is typically given information about the last few
interactions of the user with the system and the problem is to predict a certain future
event, e.g., the next item view or purchase event, in the given session. “Next-basket
recommendation”, as discussed, e.g., in (Rendle et al, 2010), represents a specific form
of this problem in e-commerce settings. Session-based next-item recommendations are
however also common in the music domain in the form of playlist generation problems
(Hariri et al, 2012; Bonnin and Jannach, 2014) or in the context of the provision of
automated website navigation aids (Mobasher et al, 2002).

Compared to the huge amount of works on non-contextualized recommendations
based on public datasets from MovieLens, Yahoo! or Netflix, works on session-based
recommendation problems are comparably scarce. Early works in this area were pub-
lished mostly in the field of interactive and knowledge-based recommender systems. In
such approaches, the users are typically asked directly about their short-term prefer-
ences, e.g., using interactive queries or critiquing-based approaches (Ricci et al, 2003;
Burke, 2000).

An example of an early learning-based approach for the problem of modeling short-
term intents and predicting the next user action is the work by Mobasher et al (2002).
Their goal was to predict the next navigation actions of users on a websites. Technically,
sequential pattern mining was proposed as one solution to find patterns in past interac-
tion logs. Later on, related works on the extraction of repeated navigation patterns from
log data were proposed by Aghabozorgi and Wah (2009) and AlMurtadha et al (2010).
The C-CoOcc method used in our experiments can be seen as a simple form of pattern
mining. Sequential patterns for next-item recommendation were also evaluated for the
music recommendation domain by Bonnin and Jannach (2014). In their work, it how-

Publications

127

128

26 Dietmar Jannach et al.

ever turned out that sequential patterns were not as effective as a neighborhood-based
method.

Session-based recommendations are also discussed in the domain of personalized
news. Here, the recency of news items is crucial for successful recommendations, as the
information gets irrelevant quickly. Therefore, focusing of the short-term interests of in-
dividual users or user groups becomes highly important. For example, in (Garcin et al,
2013) the authors create a news recommender with context trees that incrementally
recommends news articles based on the current click stream of the users. The approach
is therefore applicable for anonymous users that are not logged in and have no long-term
profile. Similar to that work, Li et al (2010) utilize contextual bandits to generate rec-
ommendations for Yahoo! News based on the user’s visited news article pages. For each
page a user visits, the system sequentially sends new recommendations to the user and
is therefore able to detect their short-term interests. A different news recommendation
approach was proposed for the Google News platform by Liu et al (2010). The authors
present a hybrid approach that uses content-based information about news items that
match the user’s interests, but also employs a collaborate filtering algorithm that detects
the short-term trends based on the interactions of a user’s neighborhood.

Another intuitive form of considering session-based next-item recommendation prob-
lems from a machine learning perspective is to view them as sequential optimization
problems and to model them as Markov Decision Processes (Shani et al, 2005). Later
papers that considered Markov processes or Markov chains for next-item recommen-
dation problems include the works described in (Rendle et al, 2010) and (Tavakol and
Brefeld, 2014) for the e-commerce and fashion domains or (Chen et al, 2012) for the
music domain. In principle, these approaches can be used as alternative baseline tech-
niques in our two-phase re-ranking scheme. In contrast to our approach, which considers
several additional factors like reminders or recency aspects, the above-mentioned works
mostly focus on determining those items that match the current intent of the session.
In some cases, Markov process based approaches can suffer from scalability issues and
evidence exists that in some domains neighborhood-based methods are at least equally
effective in terms of their prediction accuracy (Bonnin and Jannach, 2014).

Recurrent neural networks (RNNs), as a special form of artificial neural networks,
represent another machine-learning approach to model the next-item prediction problem.
Such approaches recently gained popularity in the context of deep learning models.
Examples of works that aim to learn the dynamic temporal behavior of users from log
data with RNNs can be found, e.g., in (Romov and Sokolov, 2015) or (Hidasi et al, 2016).
In contrast to our approaches, the mentioned works focus solely on short-term models,
i.e., their predictions are only based on the actions of the current session. Again, these
methods can in principle be used as alternatives baselines for our re-ranking models
that are able to consider other aspects in the recommendation process. Recent work
however revealed that despite the computational complexity of these models, they are
not always favorable in terms of prediction accuracy over the C-KNN method used
in our work (Jannach and Ludewig, 2017b). Another approach using RNNs for next-
basket predictions was recently proposed in (Yu et al, 2016). Their method is capable
of considering multiple sessions of a user over time, but only examines past checkout
events and not a multitude of relevance signals as done in our approaches.

A number of alternative modeling techniques to deal with short-term and long-
term interests was proposed in the literature. An early knowledge-based and “scenario-
based” method was introduced in (Shen et al, 2007) to understand the user’s immediate
shopping needs in the fashion domain. Approaches to combine short-term interest models
and long-term models were put forward, for example, by Anand and Mobasher (2007) or
Nguyen and Ricci (2008). More recently, Hariri et al (2014) relied on a multi-arm bandit
algorithm to consider the user’s short-term goals and to discover possible interest shifts.

Publications

Session-based Item Recommendation in E-Commerce 27

Finally, in the context of the ACM RecSys 2015 challenge, where the task was to predict
whether or not a purchase will be made in a session and which item will be purchased,
Romov and Sokolov (2015) used gradient boosting and decision trees to make predictions
in a two-stage classification process. Similar to the DEEPPREDICT method proposed in
our work, Romov and Sokolov (2015) designed a number of features to predict the next
item using a classification-based approach. In our work, we however consider additional
types of features like reminders that were not in the focus of previous research. Moreover,
the experiments on our datasets showed that artificial neural networks were able to
outperform classifiers based on random forests.

Generally, considering reminders within recommendation lists has not been in the
focus of the recommender systems research to a large extent. In an early work, Prassas
et al (2001) proposed to remind users of online shopping sites of products during the
“checkout” process (“Don’t forget to buy”); Plate et al (2006) later on developed a
mobile shopping assistant which suggests known items that are related to the products
that the user is currently inspecting. Both mentioned articles are examples of works that
discuss the potential value of reminding users of known things. However, no algorithmic
approaches to select the items to recommend are proposed.

Recommending known items for repeated consumption was for example discussed by
Anderson et al (2014) and Kapoor et al (2015). In the work of Anderson et al (2014), the
recency of past interactions with a given product was considered as the best indicator for
repeated consumption. Correspondingly, a recommendation model for known items was
designed that incorporates the time of an item’s last consumption with an exponential
decay factor. Kapoor et al (2015) focus on music recommendations where repeated
consumptions occur more often than in the online shopping domain. In their work the
authors present a method that estimates, based on the current context, whether a user
is in the mood for listening to new tracks or not. Overall, while the work of Anderson
et al (2014) has similarities with our reminding strategies, we see the integration of the
ideas of Kapoor et al (2015) as a potential future extension to our reminding approaches.
Repeated purchases of the exact same item are however not very common in our dataset
from the fashion domain and it is not fully clear yet if the findings of Kapoor et al (2015)
that were made in the music domain generalize to this domain.

Reminders however may not only serve as a means to point users to items that were
of interest in the past, they can also represent a form of navigation shortcuts, e.g., when
users repeatedly inspect the different items of their current choice set. To which extent
navigation shortcuts (“shortlists”) are adopted by users was in the focus of a study
by Schnabel et al (2016). Their work revealed that users in fact heavily relied on the
functionality of a manual shortlist creation tool that was made available to them during
the study. For cases in which such a functionality is not available, Close and Kukar-
Kinney (2010) in an earlier work discovered that some online users tend to misuse the
shopping basket for the purpose of managing the candidate products.

Finally, regarding the question of how to consider (short-term) popularity trends
and whether or not to recommend discounted items, limited academic research exists so
far. Recommending generally popular items is a common approach in cold-start situa-
tions, even though such recommendations often do not lead to the best results in terms
of the business value (Adomavicius and Tuzhilin, 2005; Jannach and Hegelich, 2009).
Considering items that are currently popular on the site was recently discussed by Pad-
manabhan et al (2015) and Gomez-Uribe and Hunt (2015) in the context of the movie
and TV show recommendations provided by Netflix. Besides the consideration of recent
trends, Gomez-Uribe and Hunt (2015) state that their algorithms generally rely on a
“pretty healthy dose of (unpersonalized) popularity”. In the academic environment, in
contrast, the recommendation of popular items is often considered as being of limited
value. More research is therefore required to understand in which domains and under

Publications

129

130

28 Dietmar Jannach et al.

which circumstances the recommendation of known and generally popular items can
contribute value to the business.

With respect to the recommendations of discounted items, to our knowledge very
limited academic research has been published in the computer science literature until
now. The topic of dynamic and personalized pricing, which is extensively discussed,
e.g., by Choudhary et al (2005), is generally to some extent related. Werro et al (2005)
for example propose a method for the generation of personalized discounts to retain
promising customers and increase the willingness to purchase products. Personalized
prices were also in the focus of the later work by Kamishima and Akaho (2011), who
propose to dynamically adjust the prices in the context of a recommendation system.
Research in this field is unfortunately hampered by the lack of real-world datasets, and
works like the one by Kamishima and Akaho (2011) can currently only be based on
synthetic datasets and simulations.

6 Summary, Research Limitations, and Future Works

The goal of our work was to contribute to a better understanding of factors that can
make e-commerce recommendations successful in practice. Specifically, we could show
that including already known, trending, and currently discounted items within the rec-
ommendations of an e-commerce site can be useful. These aspects, as well as the con-
sideration of the user’s short-term shopping intents, are so far little explored in the
literature, partially due to the lack of publicly available datasets.

Our technical approach is based on the systematic analysis of characteristics of suc-
cessful real-world recommendations, which to our knowledge has not been done in the
e-commerce domain before. The obtained insights helped us engineer new methods that
consider various signals in parallel and lead to higher prediction accuracy than previous
methods. The relevance of specific features for the prediction task might be domain-
specific, the general research approach is however generic and can be applied in other
domains as well. We identified the features that we used in our analyses based on the
research literature, based on observations from practical systems, and based on general
considerations regarding the behavior of markets. Depending in particular on the appli-
cation domain, certainly also other factors can exist that could be considered in addition
to those discussed in our work.

So far, we could test our integrated deep learning model only in one application
domain for which we had a dataset available that contained all relevant information
including the pricing. Individual aspects of our approach were however already validated
for different datasets and domains. The reminders were for example evaluated in a field
test as described above. The importance of considering short-term intents was analyzed
for a second e-commerce dataset (TMall) in (Jannach et al, 2015a). Using the TMall
dataset, we could also validate that recommending items that were popular in the last
few days is a better strategy than to recommend those items that were the most popular
ones during the entire data collection period.

More research is however still required in different directions. First, while the gen-
eral approach of deriving characteristics of successful recommendations from log data is
applicable in domains other than e-commerce, it is not clear if the specific aspects inves-
tigated in this paper also play an important role in different scenarios. Recommending
discounted items can for example be explored in other domains as well where the goal
of the recommendations is to stimulate purchases. It is furthermore intuitive to assume
that reminders and current trends should be factors to be considered for example in
the music recommendation domain. However, determining a suitable moment to remind
users of songs they heard in the past might be more challenging as short-term musi-

Publications

Session-based Item Recommendation in E-Commerce 29

cal preferences can be influenced by a number of factors including the user’s mood or
current willingness to explore new things (Kapoor et al, 2015).

To address such issues, in general better methods are still needed to automatically
assess the user’s current intent and motivation to visit the site. Furthermore, a common
challenge in practical applications also outside the e-commerce domain is to find the
optimal balance between the recommendation of novel items, generally trending items,
and reminders. Placing these different sets of items in separate recommendation lists
is not uncommon on real-world e-commerce platforms. Barely any research on multiple
recommendation list exists in the literature, even though this appears to be a problem
that is relevant in practice (Gomez-Uribe and Hunt, 2015).

Finally, the question regarding the true business value of different recommendation
strategies can probably only be answered in the context of a specific application. Our
work shows at least for the case of reminders that they led not only to better results
in the offline experiments, but also to a measurable increase in terms of the business
metric on the e-commerce site on which we could run a field test.

References

Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. Transactions on Knowledge
and Data Engineering 17(6):734-749

Adomavicius G, Tuzhilin A (2011) Context-aware recommender systems. In: Recom-
mender Systems Handbook, Springer, pp 217-253

Aghabozorgi SR, Wah TY (2009) Recommender systems: Incremental clustering on web
log data. In: Proceedings of the 2Nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, ICIS '09, pp 812-818

AlMurtadha Y, Sulaiman NB, Mustapha N, Udzir NI, Muda Z (2010) ARS: Web page
recommendation system for anonymous users based on web usage mining. In: Proceed-
ings of the European Conference of Systems, and European Conference of Circuits
Technology and Devices, and European Conference of Communications, and Euro-
pean Conference on Computer Science, ECS’10/ECCTD’10/ECCOM’10/ECCS’10,
pp 115-120

Anand S, Mobasher B (2007) Contextual recommendation. In: From Web to Social Web,
Springer, pp 142-160

Anderson A, Kumar R, Tomkins A, Vassilvitskii S (2014) The dynamics of repeat con-
sumption. In: Proceedings of the 23rd International Conference on World Wide Web,
WWW ’14, pp 419-430

Berry S, Levinsohn J, Pakes A (1995) Automobile prices in market equilibrium. Econo-
metrica 63(4):841-890

Bonnin G, Jannach D (2014) Automated generation of music playlists: Survey and ex-
periments. ACM Computing Surveys 47(2):26:1-26:35

Burke R (2000) Knowledge-based recommender systems. Encyclopedia of Library and
Information Science 69(32):180-200

Candel A, Parmar V, LeDell E, Arora A (2017) Deep learning with H20. http://docs.
h20.ai/h20/latest-stable/h20-docs/booklets/DeepLearningBooklet.pdf, ac-
cessed 17 August 2017

Chen S, Moore JL, Turnbull D, Joachims T (2012) Playlist prediction via metric em-
bedding. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12, pp 714-722

Choudhary V, Ghose A, Mukhopadhyay T, Rajan U (2005) Personalized pricing and
quality differentiation. Management Science 51(7):1120-1130

Publications

131

132

30 Dietmar Jannach et al.

Close AG, Kukar-Kinney M (2010) Beyond buying: Motivations behind consumers’ on-
line shopping cart use. Journal of Business Research: Advances in Internet Consumer
Behavior & Marketing Strategy 63(9-10):986-992

Diehl K, van Herpen E, Lamberton C (2015) Organizing products with complements
versus substitutes: Effects on store preferences as a function of effort and assortment
perceptions. Journal of Retailing 91(1):1-18

Garcin F, Dimitrakakis C, Faltings B (2013) Personalized news recommendation with
context trees. In: Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys 13, pp 105-112

Garcin F, Faltings B, Donatsch O, Alazzawi A, Bruttin C, Huber A (2014) Offline and
online evaluation of news recommender systems at swissinfo.ch. In: Proceedings of the
8th ACM Conference on Recommender Systems, RecSys ’14, pp 169-176

Gomez-Uribe CA, Hunt N (2015) The Netflix recommender system: Algorithms, business
value, and innovation. Transactions on Management Information Systems 6(4):13:1-
13:19

Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press, http://www.
deeplearningbook.org, accessed 17 August 2017

Hariri N, Mobasher B, Burke R (2012) Context-aware music recommendation based on
latent topic sequential patterns. In: Proceedings of the Sixth ACM Conference on
Recommender Systems, RecSys "12, pp 131-138

Hariri N, Mobasher B, Burke R (2014) Context adaptation in interactive recommender
systems. In: Proceedings of the 8th ACM Conference on Recommender Systems, Rec-
Sys 14, pp 41-48

Hidasi B, Karatzoglou A, Baltrunas L, Tikk D (2016) Session-based recommendations
with recurrent neural networks. In: Proceedings of the International Conference on
Learning Representations, ICLR ’16

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R (2012) Im-
proving neural networks by preventing co-adaptation of feature detectors. CoRR
abs/1207.0580

Jannach D, Adomavicius G (2016) Recommendations with a purpose. In: Proceedings
of the 10th ACM Conference on Recommender Systems, RecSys "16, pp 7-10

Jannach D, Hegelich K (2009) A case study on the effectiveness of recommendations in
the mobile internet. In: Proceedings of the 3rd ACM Conference on Recommender
Systems, RecSys '09, pp 205-208

Jannach D, Ludewig M (2017a) Determining characteristics of successful recommenda-
tions from log data — a case study. In: Proceedings of the Symposium on Applied
Computing, SAC 17, pp 1643-1648

Jannach D, Ludewig M (2017b) When recurrent neural networks meet the neighborhood
for session-based recommendation. In: Proceedings of the 11th ACM Conference on
Recommender Systems, RecSys ’17, p (forthcoming)

Jannach D, Lerche L, Jugovac M (2015a) Adaptation and evaluation of recommenda-
tions for short-term shopping goals. In: Proceedings of the 9th ACM Conference on
Recommender Systems, RecSys "15, pp 211-218

Jannach D, Lerche L, Kamehkhosch I (2015b) Beyond “hitting the hits” — generating
coherent music playlist continuations with the right tracks. In: Proceedings of the 9th
ACM Conference on Recommender Systems, RecSys 15, pp 187-194

Jannach D, Lerche L, Kamehkhosh I, Jugovac M (2015¢) What recommenders rec-
ommend: an analysis of recommendation biases and possible countermeasures. User
Modeling and User-Adapted Interaction 25(5):427-491

Kamishima T, Akaho S (2011) Personalized pricing recommender system: Multi-stage
epsilon-greedy approach. In: Proceedings of the 2Nd International Workshop on In-
formation Heterogeneity and Fusion in Recommender Systems, HetRec ’11, pp 5764

Publications

Session-based Item Recommendation in E-Commerce 31

Kapoor K, Kumar V, Terveen L, Konstan JA, Schrater P (2015) “I like to explore
sometimes”: Adapting to dynamic user novelty preferences. In: Proceedings of the
9th ACM Conference on Recommender Systems, RecSys "15, pp 19-26

Lerche L, Jannach D, Ludewig M (2016) On the value of reminders within e-commerce
recommendations. In: Proceedings of the 2016 Conference on User Modeling Adapta-
tion and Personalization, UMAP ’16, pp 27-25

Li L, Chu W, Langford J, Schapire RE (2010) A contextual-bandit approach to person-
alized news article recommendation. In: Proceedings of the 19th International Con-
ference on World Wide Web, WWW 10, pp 661-670

Liu J, Dolan P, Pedersen ER (2010) Personalized news recommendation based on click
behavior. In: Proceedings of the 15th International Conference on Intelligent User
Interfaces, TUI ’10, pp 31-40

Manning CD, Raghavan P, Schiitze H (2008) Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA

Mobasher B, Dai H, Luo T, Nakagawa M (2002) Using sequential and non-sequential
patterns in predictive web usage mining tasks. In: Proceedings of the 2002 IEEE
International Conference on Data Mining, ICDM ’02, pp 669-672

Moe WW (2003) Buying, searching, or browsing: Differentiating between online shoppers
using in-store navigational clickstream. Journal of Consumer Psychology 13(1):29-39

Nguyen QN, Ricci F (2008) Long-term and session-specific user preferences in a mo-
bile recommender system. In: Proceedings of the 13th International Conference on
Intelligent User Interfaces, IUI '08, pp 381-384

Padmanabhan P, Sadekar K, Krishnan G (2015) What’s trend-
ing on Netflix? URL https://medium.com/netflix-techblog/
whats-trending-on-netflix-f00b4b037£61, accessed 17 August 2017

Plate C, Basselin N, Kroner A, Schneider M, Baldes S, Dimitrova V, Jameson A (2006)
Recomindation: New functions for augmented memories. In: Proceedings of the 4th
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,
AH °06, pp 141-150

Prassas G, Pramataris KC, Papaemmanouil O, Doukidis GJ (2001) A recommender
system for online shopping based on past customer behaviour. In: Proceedings of the
14th BLED Electronic Commerce Conference, BLED ’01, pp 766—782

Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009) BPR: Bayesian per-
sonalized ranking from implicit feedback. In: Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence, UAI ’09, pp 452-461

Rendle S, Freudenthaler C, Schmidt-Thieme L (2010) Factorizing personalized markov
chains for next-basket recommendation. In: Proceedings of the 19th International
Conference on World Wide Web, WWW 10, pp 811-820

Ricci F, Venturini A, Cavada D, Mirzadeh N, Blaas D, Nones M (2003) Product recom-
mendation with interactive query management and twofold similarity. In: Proceedings
of the 5th International Conference on Case-Based Reasoning, ICCBR ’03, pp 479493

Romov P, Sokolov E (2015) Recsys challenge 2015: Ensemble learning with categori-
cal features. In: Proceedings of the 2015 International ACM Recommender Systems
Challenge, RecSys '15 Challenge, pp 1:1-1:4

Schnabel T, Bennett PN, Dumais ST, Joachims T (2016) Using shortlists to support
decision making and improve recommender system performance. In: Proceedings of
the 25th International Conference on World Wide Web, WWW ’16, pp 987-997

Shani G, Heckerman D, Brafman RI (2005) An MDP-Based Recommender System.
Journal of Machine Learning Researh 6:1265-1295

Shen E, Lieberman H, Lam F (2007) What am I gonna wear?: Scenario-oriented recom-
mendation. In: Proceedings of the 12th International Conference on Intelligent User
Interfaces, IUI ’07, pp 365368

Publications

133

134

32 Dietmar Jannach et al.

Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization
and momentum in deep learning. In: Proceedings of the 30th International Conference
on International Conference on Machine Learning, ICML 13, pp 1139-1147

Tavakol M, Brefeld U (2014) Factored MDPs for detecting topics of user sessions. In:
Proceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14, pp
33-40

Wager S, Wang S, Liang P (2013) Dropout training as adaptive regularization. In:
Proceedings of the 26th International Conference on Neural Information Processing
Systems, NIPS’13, pp 351-359

Werro N, Stormer H, Meier A (2005) Personalized discount - a fuzzy logic approach.
In: Proceedings of the 5th IFIP Conference on e-Commerce, e-Business, and e-
Government, I3E 05, pp 375-387

Yu F, Liu Q, Wu S, Wang L, Tan T (2016) A dynamic recurrent model for next basket
recommendation. In: Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 16, pp 729-732

Zeiler MD (2012) ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701

Author Biographies

Dr. Dietmar Jannach is a Professor of Computer Science at TU Dortmund, Germany
and head of the department’s e-services research group. Dr. Jannach has worked on
different areas of artificial intelligence, including recommender systems, model-based
diagnosis, and knowledge-based systems. He is the leading author of a textbook on
recommender systems and has authored more than hundred technical papers, focusing
on the application of artificial intelligence technology to practical problems.

Malte Ludewig is a PhD candidate in Computer Science at TU Dortmund, Germany,
from where he also received his MSc degree. His research interests lie in the field of
recommender systems — with a focus on session-based recommendations — and person-
alization in e-commerce environments in general.

Dr. Lukas Lerche obtained his PhD and MSc degrees from TU Dortmund, Germany.
During his doctoral studies Dr. Lerche worked on different research problems in the field
of recommender systems. In his research publications, he mostly focused on recommen-
dations based on implicit feedback and on session-based recommendation scenarios in
e-commerce.

Publications

Session-based Item Recommendation in E-Commerce

33

Appendix

A Numbers of Purchases per User

100 o
90

80

70

60

50

40

Percentage of Users

30 .

20 * o
10

0 5 10

[]
15 20

)
[

Minimum Number of Purchases

Fig. 6: The figure visualizes the purchase frequency distribution in the raw dataset,
considering only users who ever made a purchase during the data collection period.
The X-axis represents the minimum number of past purchases and on the Y-axis, the
percentage of users in the dataset is shown that are above this threshold. For example,
about one third of all users made 5 or more purchases.

B Feature Weights for the Occasional Users

Table 14: Results of the statistical feature weight analysis for the occasional user subset.

Gain Ratio analysis

Chi Squared analysis (normalized)

Feature Weight Feature Weight
Discount level 0.453 Current popularity (day) 1.000
Any discount granted? 0.325 Current popularity (week) 0.788
Current popularity (day) 0.294 Any discount granted? 0.762
Current popularity (week) 0.231 Discount level 0.762
Viewed before? 0.191 Current popularity (month) 0.544
Distance to first view (in days) 0.191 Number of previous views 0.371
Distance to first view (in sessions) 0.191 Distance to last view (in days) 0.370
Current popularity (month) 0.174 Distance to last view (in sessions) 0.369
Distance to last view (in sessions) 0.165 Viewed before? 0.364
Distance to last view (in days) 0.157 Distance to first view (in days) 0.364

C Examined Features

Table 15: The full list of the examined features (see Section 2.3) along with their type

and a short explanation.

Feature Name Type Explanation

clicked Label Recommended item was clicked

clicked_wished Label Recommended item was clicked and added to the
wish list

clicked_cart Label Recommended item was clicked and added to the

cart

Publications

135

136

34

Dietmar Jannach et al.

clicked_bought
Successful Recommendation

relpop_{day,week,month}
Current popularity (day,week,month)

samebrand
brandratio_session{1,2,3}

brandpop
brandpop-{day,week,month}

samecolor
colorratio_session{1,2,3}

colorpop
colorpop_{day,week,month}

samecat_{1,2,3,4}

catratio_session{1,2,3}_{1,2,3,4}

catpop-{1,2,3,4}
catpop-{day,week,month}_{1,2,3,4}
sameprice

priceratio_session{1,2,3}

similarity _viewed
similarity_session{1,2,3}
neighbors_color

neighbors_brand

neighbors_price

neighbors_category_{1,2,3,4}

neighbors_distance
prevrecclicks_sim
prevrecclicks_color
prevrecclicks_brand

prevrecclicks_cat_{1,2,3,4}

boughtbefore_sim
boughtbefore_color
boughtbefore_brand
boughtbefore_cat_{1,2,3,4}

discount
Any discount granted?

Publications

Label

Numerical

Bool
Numerical

Numerical
Numerical

Bool
Numerical

Numerical
Numerical

Bool

Numerical

Numerical

Numerical

Bool

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Nominal

Recommended item was clicked and bought in
the same or the next session

Popularity of the item on the same day, in the
same week, or in the same month

Same brand as the currently viewed item

Ratio of the recommended brand regarding ac-
tions in the last 1, 2, or 3 sessions

Overall popularity of the brand

Popularity of the brand on the same day, in the
same week, or in the same month

Same color as the currently viewed item

Ratio of the recommended color regarding ac-
tions in the last 1, 2, or 3 sessions

Overall popularity of the color

Popularity of the color on the same day, in the
same week, or in the same month

Same category as the viewed item on breadcrumb
navigation level 1, 2, 3, or 4

Ratio of the recommended category (breadcrumb
navigation level 1, 2, 3, or 4) regarding actions in
the last 1, 2, or 3 sessions

Overall popularity of the category on breadcrumb
navigation level 1, 2, 3, or 4

Popularity of the category on the same day, in the
same week, or in the same month for breadcrumb
navigation level 1, 2, 3, or 4

Same price level as the currently viewed item
Ratio of the recommended price level regarding
actions in the last 1, 2, or 3 sessions

Ratio of features matched with the currently
viewed item

Average ratio of features matched with items
from the last 1, 2, or 3 sessions

Ratio of neighbor recommendations with the
same color

Ratio of neighbor recommendations with the
same brand

Ratio of neighbor recommendations with the
same price level

Ratio of neighbor recommendations with the
same category (breadcrumb navigation level 1,
2, 3, or 4)

Average ratio of item features matched with
neighbor recommendations

Average ratio of item features matched with pre-
viously clicked recommended items in a session
Average ratio of matching colors with previously
clicked recommended items in a session

Average ratio of matching brands with previously
clicked recommended items in a session

Average ratio of matching categories with pre-
viously clicked recommended items in a session
(breadcrumb navigation level 1, 2, 3, or 4)
Average ratio of item features matched with the
last three previously bought items

Average ratio of matching colors with the last
three previously bought items

Average ratio of matching brands with the last
three previously bought items

Average ratio of matching categories with the last
three previously bought items (breadcrumb nav-
igation level 1, 2, 3, or 4)

Knowledge about a discount: yes/no/unknown

Session-based Item Recommendation in E-Commerce

35

discount_level
Discount level

viewed_before

Viewed before?
viewed_before_count

Number of previous views
viewed_before_days_min
Distance to last view (in days)

viewed_before_days_max
Distance to first view (in days)

viewed _before_sessions_min

Distance to last view (in sessions)

viewed_before_sessions_max

Distance to first view (in sessions)

rec_before

rec _before_count
rec_before_days_min

rec _before_days_max

rec _before_sessions_min
rec _before_sessions_max
avg-colors_session{1,2,3}
avg_brands_session{1,2,3}
avg_price_session{1,2,3}

avg_cat{1,2,3,4} session{1,2,3}

user_avg-colors_session
user_avg_brands_session
user_avg_price_session

user_avg_cat{1,2,3,4} _session

user_price
user_pricelevel_{view,buy}
user_discount
user_pricereduction_{view,buy}
user_viewedbefore_click
user_viewedbefore_click_count

user_viewedbefore_success

user_viewedbefore_success_count

Numerical

Bool

Numerical

Numerical

Numerical

Numerical

Numerical

Bool

Numerical
Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Level of the discount (-1:unknown, O:none, 1:low,
2:medium, 3:high)

Has the recommended item been viewed before
Counter of previous item views

Shortest distance to a previous item view event
in days

Longest distance to a previous item view event
in days

Shortest distance to a previous item view event
in sessions

Longest distance to a previous item view event
in sessions

Has the recommended item been recommended
before

Counter of previous item recommendations
Shortest distance to a previous item recommen-
dation event in days

Longest distance to a previous item recommen-
dation event in days

Shortest distance to a previous item recommen-
dation event in sessions

Longest distance to a previous item recommen-
dation event in sessions

Average number of colors in the last 1, 2, or 3
sessions

Average number of brands in the last 1, 2, or 3
sessions

Average number of price levels in the last 1, 2, or
3 sessions

Average number of categories (breadcrumb nav-
igation level 1, 2, 3, or 4) in the last 1, 2, or 3
sessions

Session-wise average of different colors over all
past user sessions

Session-wise average of different brands over all
past user sessions

Session-wise average of different price levels over
all past user sessions

Session-wise average of different categories
(breadcrumb navigation level 1, 2, 3, or 4) over
all past user sessions

Average price level of the user regarding all past
actions

Average price level of the user regarding all past
view or buy actions

Average discount level of the user regarding all
past actions

Average discount level of the user regarding all
past view or buy actions

Ratio of the user clicking on already known rec-
ommendations

Average number of previous item views before
clicking on a recommendation

Ratio of the user clicking already known recom-
mended items and buying them later on in the
same session

Average number of previous item views before a
sucessful recommendation (click and buy in the
same session)

Publications

137

36 Dietmar Jannach et al.

Table 16: List of features not considered by DEEPPREDICT.

Feature name

brandpop
brandpop_day
brandpop-week
catpop
catpop-month
catpop-week
catpop_day

D Additional Experimental Results

Table 17: Characteristics of the additional Zalando datasets.

Raw dataset 3k Random users 5k Regular users 10k Regular users

Users 3.5M 3,000 5,000 10,000
Items 460k 76k 150k 185k
Views 200M 358k 1.6M 3.2M
Purchases 3.9M 12k 67k 134k
Sessions 27.5M 41k 146k 293k
Sessions per user 7.79 13.77 29.22 29.29
Views per session 7.28 8.74 11.15 11.03
Purchases per session 0.14 0.29 0.45 0.46

Table 18: Hit Rate@10 and MRR@10 results for the additional subsets of random and
regular Zalando users. Statistically significant differences (according to a Student’s t-test
with p < 0.05) between DEEPPREDICT and the second-best method in the experiments
are marked with a star.

Baseline C-KNN

Dataset Zalando random 3k Zalando regular 5k Zalando regular 10k
Metric@10 HR MRR HR MRR HR MRR
No post-processing 0.341 0.187 0.392 0.178 0.430 0.189
FM 0.381 0.207 0.415 0.183 0.450 0.194
IRec-FM 0.458 0.299 0.484 0.198 0.499 0.204
DR-FM 0.403 0.258 0.461 0.196 0.476 0.222
RPOP-FM 0.458 0.270 0.491 0.228 0.497 0.217
RFPREDICT 0.458 0.294 0.497 0.281 0.490 0.271
WR(RPOP,DR,0.5)-FM 0.467 0.309 0.513 0.262 0.517 0.250

DEeepPREDICT ~ 0.480* 0.355* 0.523 0.294%* 0.547* 0.316*

138 Publications

When Recurrent Neural Networks meet the Neighborhood for
Session-Based Recommendation

Dietmar Jannach
TU Dortmund, Germany
dietmar.jannach@tu-dortmund.de

ABSTRACT

Deep learning methods have led to substantial progress in various
application fields of Al and in recent years a number of proposals
were made to improve recommender systems with artificial neural
networks. For the problem of making session-based recommen-
dations, i.e., for recommending the next item in an anonymous
session, Hidasi et al. recently investigated the application of re-
current neural networks with Gated Recurrent Units (GRU4REC).
Assessing the true effectiveness of such novel approaches based
only on what is reported in the literature is however difficult when
no standard evaluation protocols are applied and when the strength
of the baselines used in the performance comparison is not clear.
In this work we show based on a comprehensive empirical evalu-
ation that a heuristics-based nearest neighbor (kNN) scheme for
sessions outperforms GRU4REC in the large majority of the tested
configurations and datasets. Neighborhood sampling and efficient
in-memory data structures ensure the scalability of the kNN method.
The best results in the end were often achieved when we combine
the kNN approach with GRU4REC, which shows that RNNs can
leverage sequential signals in the data that cannot be detected by
the co-occurrence-based kNN method.

CCS CONCEPTS

«Information systems —Recommender systems;
+General and reference —Evaluation;

KEYWORDS

Session-Based Recommendation; Deep Learning; Nearest-Neighbors

ACM Reference format:

Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Net-
works meet the Neighborhood for Session-Based Recommendation. In
Proceedings of RecSys '17, Como, Italy, August 27-31, 2017, 5 pages.

DOI http://dx.doi.org/10.1145/3109859.3109872

1 INTRODUCTION

Deep learning approaches based on artificial neural networks have
recently led to significant advances in different application fields
of Al like object classification in images, speech recognition, or
game playing. Their success in these fields has inspired researchers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys 17, Como, Italy

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4652-8/17/08...$15.00

DOI: http://dx.doi.org/10.1145/3109859.3109872

Malte Ludewig
TU Dortmund, Germany
malte ludewig@tu-dortmund.de

to explore the potential of adapting deep learning methods for
recommendation-related problems. While there are limited works
yet that show the advantages of directly applying deep learning
methods for the rating prediction task [29, 35], artificial neural
networks were, for example, used to vectorize content features
from audio, video or textual item data [1, 5, 6, 10] and in particular
for the problem of session-based recommendation [14, 15, 30, 38].

The algorithmic task in the latter scenario is to predict the next
action of a user given the sequence of the actions in the current
session. The problem setting, while not largely explored in the
research literature, is highly relevant in practical settings. Session-
based approaches are usually applied when the visitors of the site
are anonymous (not logged-in) and no past interactions of the users
are known. Furthermore, considering the last few user actions is
also important for applications where already known users often
revisit the site with a specific short-term intent [18].

In their recent work, Hidasi et al. investigated the use of recurrent
neural networks (RNN) for session-based next-item recommenda-
tion [14]. RNNs are a natural choice for this problem and have
been successfully explored for other sequence-based prediction
problems in the past [4, 8, 9, 16]. Technically, the approach in
[14] uses a customized RNN with Gated Recurrent Units (GRU).
An experimental evaluation on two datasets indicated that their
GRU4REC method significantly outperforms other methods, includ-
ing an item-based k-nearest-neighbor (kNN) method, which was
the strongest baseline in their experiments. Despite these positive
results, some questions regarding the effectiveness of the GRU4REC
method remain open. The experiments in [14] were, for example,
only conducted on two specific datasets, used baselines whose
strength cannot be easily judged, and were based on a proprietary
evaluation protocol without cross-validation.

To better understand the true effectiveness of the proposed ap-
proach, we conducted a series of experiments on multiple datasets
in which we benchmarked the GRU4REC method with an alterna-
tive session-based nearest neighbor method, which was identified
as a strong baseline in previous works on session-based music
and e-commerce recommendation problems [2, 12, 21]. To achieve
higher accuracy and to scale for larger datasets, our session-based
kNN method incorporates heuristics to sample suitable neighbors.
Our results show that the proposed kNN method leads to the same
accuracy results as the best configuration reported in [14] and out-
performs GRU4REC in many other tested problem setups.! Com-
bining GRU4REC with the kNN methods in a weighted hybrid
approach finally often led to the best results, which indicates that
RNN methods are indeed capable of capturing sequential patterns
in the data that the kNN approach could not identify.

IRecent works suggest that advanced nearest-neighbor models can lead to competitive
performance also for common item-ranking tasks [34].

Publications 139

RecSys *17, August 27-31, 2017, Como, Italy

2 EXPERIMENT CONFIGURATIONS

2.1 Algorithms

2.1.1 GRU4REC. We used the GRU4REC implementation in
Python that the authors of [14] share online.? The code is regularly
updated by the authors and includes the implementation of the
GRU4REC method, the code of their baseline algorithms, as well as
the code for the evaluation procedure used in [14].

2.1.2 Session-based kNN. The kNN method takes the set of user
actions in the current session, e.g., two view events for certain
items, and then in a first step determines the k most similar past
sessions in the training data. Then, given the current session s,
the set of k nearest neighbors N, and a function sim(s1, s2) that
returns a similarity score for two sessions s1 and s2, the score of a
recommendable item i is

scorexnn(i, s) = Zpen, sim(s, n) X 1,(i) (1)

where 1, (i) = 1 if n contains i and 0 otherwise, see also [2]. We
tested different distance measures. The best results were achieved
when comparing the sessions, which were encoded as binary vec-
tors of the item space, using cosine similarity.

Determining the similarity of the current session with millions of
past sessions after each user action cannot easily be accomplished
under the time constraints of online recommendation. We there-
fore pre-process the training sessions and create an in-memory
index data structure (cache) on startup. Specifically, for each item
we create an index that points to the sessions in which the item
appears. For each session, we furthermore have a pointer to its set
of items. When recommendations for a session s are needed, we
first determine the set of possible neighbors by creating the union
of sessions in which the items of s are contained. This is a fast
operation as it only involves a cache lookup and set operations.
From this set of possible neighbors, we create a subsample of m ses-
sions randomly or using a heuristic. In some experiments, we took
the most recent sessions in case such information was available
as focusing on recent trends has shown to be effective for recom-
mendations in e-commerce [19]. From m we select the k nearest
neighbors regarding the current session s. Again through lookup
and set union operations, we create the set of recommendable items
R that appear in one of the k sessions. We then compute the score
for the items in R using Equation 1. The set operations, similarity
computations, and the final predictions can be done very efficiently,
as will be discussed later in Section 3.2.3.

2.1.3 Hybrid Approach. We tested switching, cascading, as well
as weighted hybrids of the GRU4REC and the kNN method. A
weighted combination led to the best results in our experiments,
where in the most successful configurations the kNN score was
assigned a slightly higher weight. All source code and the public
datasets used in our experiments can be found online. 3

2.2 Datasets and Evaluation Protocols

We performed experiments both on variants of the ACM RecSys
2015 Challenge dataset (RSC15 and RSCW) as used in [14], on the
public e-commerce dataset used in the TMall competition (TMALL),

Zhttps://github.com/hidasib/GRU4Rec
Shtp://bit ly/2nfNIdD

140 Publications

Dietmar Jannach and Malte Ludewig

Table 1: Dataset characteristics

RSC15 RSCW TMALL LFM AOTM 8T

Sessions 8M 4M 650K 120K 82K 520K
Avg. length 3.97 3.92 7.5 2824 1148 9.20
Items 37K 34K 300K 200K 54K 200K

as well as on three different datasets containing music playlists
from the platforms last.fm (LFM), artofthemix.org (AOTM), and
8tracks.com (8T). Music playlists are different in nature from e-
commerce user logs in various ways. Nonetheless, they are de-
signed to be consumed in a listening session and the tracks are
often arranged in a specific sequence by their creators. With the
experiments on these datasets our goal is to assess if recurrent
neural networks can capture sequential patterns in the data which
are not leveraged by the co-occurrence-based kNN approach. The
basic dataset statistics are shown in Table 1, where RSCW and
TMALL correspond to the average characteristics when applying a
sliding-window protocol, as will be described below. In [14], Hidasi
et al. use GRU4REC to predict the next item view events in a session.
They incrementally add events to the sessions in the test set and
report the average hit rate (HR) and the Mean Reciprocal Rank
(MRR) at list length 20. They trained the GRU4REC on six months
of data and used one single day for the evaluation.

In addition to this procedure, we performed experiments where
we created multiple train-test splits, consisting of 3 and 1 month of
training data for the RSC15 and TMall dataset, respectively, and the
subsequent day as the test data.* This sliding-windows approach
allows us to minimize the risk that the obtained results are specific
to the single train-test split used in [14]. Furthermore, we used the
algorithms to predict purchase events in the sessions, which was
one of the original tasks of the ACM RecSys 2015 challenge. To
investigate the performance of the methods at different stages of a
session, we also measured the accuracy when predicting the second
and the last view of each session. Finally, we varied the amount
of the training data to see how the algorithms compare in case of
more sparse data situations.

3 RESULTS

3.1 Accuracy Results

3.1.1 ACM RecSys 2015 Challenge Dataset. Table 2 shows the
results when using the experimental configuration used in [14],
ordered by the values for HR@20 as done in the original paper.
We could reproduce their best hit rate and MRR results (using
their optimal parameters) for the methods GRU4REC(1000,BPR) and
GRU4REC(1000,TOP1), which use 1000 hidden units and the TOP1
and BPR’s pairwise ranking loss function, respectively. In Table 2,
we additionally include the results for list length ten, which might
be more important in different application domains.

The method KNNyr(500,1000), which uses the 500 nearest neigh-
bors from the 1000 most recent candidate sessions, outperforms
GRUA4REC in all measurements except for the MRR in the TOP1

4Using larger training splits for the TMall dataset, due to its large number of items,
led to prohibitively high computational costs by the GRU4REC method, which is why
we report the results when using one month as training data for this dataset.

When Recurrent Neural Networks meet the Neighborhood

Table 2: Results when using the evaluation scheme of [14].

RecSys "17, August 27-31, 2017, Como, Italy

Table 3: Additional measurements for the RSC15 dataset.

Method HR@10 MRR@10 HR@20 MRR@20
WH(KNN,GRU,0.6,0.4) 0.568 0.256 0.691 0.265
WH(KNN,GRU,0.1,0.9) 0.568 0.269 0.666 0.276
KNNyg(500,1000) 0.521 0.242 0.641 0.250
GRU4REC(1000,BPR) 0.517 0.235 0.636 0.243
GRU4REC(1000,TOP1) 0.517 0.261 0.623 0.268
KNNganp(500,1000) 0.499 0.235 0.616 0.242
GRU4REC(100,TOP1) 0.481 0.221 0.595 0.230

configuration. Combining the kNN-method with GRU4REC in a

weighted approach (WH) leads to the best results. As in [14], the
“winner” at list length 20 depends on the metric. Also, different
weights for the hybrid method have to be applied to achieve the best
results for a given list length.> The increases of the best configura-
tion at length 20 are about 8% for the hit rate. A smaller increase was
observed for the MRR when compared to the results of [14]. Even
with a random sampling of candidate sessions (KNNganp(500,1000))
the kNN-method does not fall far behind and is consistently better
than GRU4REC with 100 hidden units.

Table 3 shows the best results obtained with KNNy(500,1000)
and GRU4REC(1000,ToP1) when using alternative measurements,
including the sliding window protocol (RSCW), the prediction of
the second (SECOND) and last item view (LAST), and the accuracy
when predicting which item is purchased in a session (BUYS). In
all experiments, the kNN method outperforms GRU4REC. For the
sliding windows protocol, we applied the Wilcoxon signed-rank test
over the five experiment runs, which revealed that the differences
are statistically significant in terms of the hit rate (¢ = 0.05).

3.1.2 Results for Other Datasets. Table 4 shows the results for
the additional datasets. We again report the results at list length 20
for GRU4REC(1000,TOP1) and KNN(500,1000). For the TMALL dataset,
we applied the sliding-window approach as for RSCW. Note that in
this dataset each session is defined as the sequence of actions of a
user during one day (resulting in a larger average session length as
shown in Table 1). As the playlists have no timestamp attached, we
randomly assigned each playlist to one of 31 buckets (days of the
month) and used one of them as test data.

In the majority of the configurations, the kNN method outper-
formed GRU4REC both in terms of the hit rate and the MRR, in
many cases strongly. Only on the last.fm dataset, GRU4REC worked
better than the kNN approach; on the AOTM dataset, GRU4REC
was furthermore better in terms of the MRR. Generally, however,
the results obtained for the additional datasets indicate that the
good performance of the kNN method on the RSC15 dataset is not
due to the specific nature of this dataset or the application domain.

3.2 Additional Analyses

3.2.1 Focusing on Recent Data. The RSC15 dataset contains
about 45,000 sessions per day. Since our kNN method only uses, e.g.,
one thousand possible neighbor sessions, which are not necessarily
5In all experiments we tuned the parameters for the different algorithms using grid

search. We optimized the hit rate on validation sets (subsets of the training sets). Due
to the run time GRU4REC was only optimized with 100 layers as also done in [14].

Dataset RSCW SECOND LAST BUYS
M@20 HR MRR HR MRR HR MRR HR MRR
KNN 0.621 0.267 0.716 0.355 0.446 0.196 0.758 0.290

GRU4REC 0.587 0.261 0.655 0.300 0.388 0.174 0.542 0.215

Table 4: Results for other datasets.

Dataset TMALL LFM AOTM 8T
M@20 HR MRR HR MRR HR MRR HR MRR
KNN 0.370 0.171 0.078 0.011 0.068 0.008 0.050 0.010

GRU4REC 0.223 0.117 0.121 0.053 0.035 0.012 0.019 0.008

all from the same day, we were interested to what extent we can
omit past sessions without compromising the accuracy results.

Figure 1 shows MRR results when we incrementally remove
data from the training set, beginning with the oldest sessions. The
values for the hit rate are similar. For the GRU4REC method, it
seems sufficient to focus on the last 60 days. For the kNN method
in contrast, it is sufficient to retain the information of the last two
days. While this might come surprising, focusing on the most
recent events has shown to be effective in the past in the domains
of e-commerce and news recommendations [19, 23].

As mentioned above, we made additional experiments on the
RSC15 data and repeatedly sampled 1000 random neighbor sessions
instead of the most recent ones. The average results were shown
in the last row of Table 2. Using random neighborhood sampling
leads to slightly lower accuracy results, which are however still
higher than the ones obtained by GRU4REC with 100 hidden units.

3.2.2 Popularity Bias and Catalog Coverage. To assess possible
recommendation biases, we measured the average popularity of
the recommendations. Using a normalized popularity score for the
top-20 recommendations (in the setup of [14]) we found that the
kNN method tends to recommends slightly more popular items
on average than GRU4REC (0.036 vs. 0.028). With respect to cat-
alog coverage, we observed that the top-20 recommendations of
GRU4REC include about 47% of the items at least once, which is
slightly more than the kNN method covers (41%). This latter ob-
servation is not surprising, given the focus of the kNN method on

0.6 - ——————————— T\l
M
|

0.4 - “ N
—— KNN “
——— GRU4REC |

0.2 - I I I [
80 60 40 20 0

Time in days

Figure 1: MRR@20 for the RSC15 when artificially reducing
the size of the training set from 3 month to 1 day.

Publications 141

RecSys *17, August 27-31, 2017, Como, Italy

the last few days. Alternative neighbor sampling strategies can
however be designed to deal, e.g., with such accuracy-coverage
trade-offs.

3.2.3 Computational Complexity and Memory Usage. On a desk-
top computer with an Intel i7-4790k processor, training GRU4REC
in the best configuration needed about 23 hours for the RSC15
dataset, which can be reduced to about 8 hours when calculations
are performed by the GPU (Nvidia GeForce GTX 960). The kNN
method needs about 90 seconds to build the in-memory data struc-
tures. Creating one recommendation list with GRU4REC needed
about 12 ms on average and 26 ms for the kNN method. Overall,
computing all (about 40,000) recommendations needs about 27 min-
utes with the kNN method including data structure initialization,
whereas GRU4REC needs more than 8 hours in total. At the same
time, the kNN method has the advantage of supporting online up-
dates. Further speed-ups for the kNN approach can in theory be
achieved when the similarity computations are parallelized, since
these calculations can be done independently for individual subsets
of the neighbor candidates.

The data structures of the kNN method occupy about 6.4 GB
of main memory when the entire RSCI5 training dataset (2.3 GB
of raw data) is used. No special data structures are used in our
implementation and given the observations from above, keeping
only a specific amount of the most recent log actions will help to
reduce the memory requirements. For the same dataset, GRU4REC’s
model needs about 60 MB for 100 and 600 MB for 1000 hidden units.
GRU4REC’s memory demand is thus dependent of the algorithm
parameters and significantly increases with the number of items. In
the playlist and TMall experiments, GRU4REC’s memory demands
exceeded the capacity of our graphic card, making computations
very slow, which is why we could only make a limited number of
evaluation runs on these datasets.

4 RELATED WORK

The commonly used algorithmic approaches to leverage sequen-
tial information for predicting next user actions include Markov
models and sequential pattern mining techniques. In one of the
earlier works on this topic, Shani et al., for example, proposed the
application of Markov Decision Processes in the scenario of an
online book store [27]. More recent works that rely in Markov
models include [3, 13, 17, 26] or [31]. In [31], Markov models were,
for example, used with the goal to detect topic sequences in user
sessions for the next-item prediction task. Detecting and leverag-
ing sequences of topics was also the goal in [11] for the next-track
music recommendation scenario. In this case, however, the authors
applied sequential pattern mining techniques. Sequential patterns
have been investigated earlier also for the problem of predicting
the online navigation behavior of users, e.g., in [25].

Approaches based on Markov models and sequential pattern
mining represent alternative baselines for session-based recom-
mendations. Not all approaches based on Markov model however
scale too well for large datasets [27]. Sequential pattern mining
approaches (and association rule mining approaches in general) of-
ten require some effort to find suitable thresholds for rule learning
and, depending on the application domain, do not lead to better
accuracy results than co-occurrence-based kNN methods [2].

142 Publications

Dietmar Jannach and Malte Ludewig

Particularly in recent years, RNNs have been applied in different
ways to leverage sequence information when recommending, often
based on ideas of the LSTM model proposed in [16] to avoid the
vanishing or exploding gradient problem.

Zhang et al. [38] for example successfully applied RNNs in a
related setting of predicting sequential advertisement clicks, in
which the partitioning into sessions is less important. Hidasi et
al., who proposed GRU4REC [14], were among the first to explore
RNNss for session-based recommendations. Using the same eval-
uation protocol and RSC15 data set, Tan et al. in [30] proposed
an enhanced version of GRU4REC, which is trained on embedded
item sequences with random drop-out to reduce overfitting. The
models are also retrained on the most recent sessions to better
adapt to short-term trends. In their paper, the authors report signif-
icant improvements over [14] which would also slightly outperform
our hybrid approach. The work confirms that considering recent
trends is helpful for this RSC15 dataset and domain. Experiments
on other datasets were unfortunately not reported. Since no source
code was available, we re-implemented their method based on the
information in the paper, but could not reproduce their results.

In [15] and [32] RNN-based approaches were recently proposed
that leverage additional item features to achieve higher accuracy.
Including additional information about users and items in the rec-
ommendation process is also possible for kNN based methods, but
was not in the focus of our work.

Combining short-term with long-term models has shown to be
a successful strategy in the past, e.g., in the e-commerce domain
[18]. Song et al. [28] recently proposed an approach to predicting
news click sequences, which used an RNN to model short-term
interests in a combination with long-term models. The kNN method
used in this paper can be combined with long-term models as well.
However, in the case of the RSC15 dataset, where sessions have no
user ID attached, no long-term user models can be learned.

Yu et al. [37] use RNNs for the related task of next basket recom-
mendations, in which, e.g., items for a shopping cart are suggested
based on a user’s history of past shopping carts. Although the
scenario is slightly different from the one in this paper, the KNN
method can be easily adapted as a baseline for this scenario.

In general, NNs have been used for a number of recommendation-
related tasks in recent years. Often, such networks are used to learn
embeddings of content features in compact fixed-size latent vectors,
e.g., for music, for images, for video data, for documents, or to
represent the user [1, 5-7, 10, 20, 24, 36]. These representations are
then integrated, e.g., in content-based approaches, in variations of
latent factor models, or are part of new methods for computing
recommendations [6, 7, 10, 22, 29, 33, 35].

5 CONCLUSIONS

Our work shows that nearest-neighbor methods should be consid-
ered as competitive baselines for session-based recommendation
scenarios. Considering a mix of co-occurrence signals and sequen-
tial patterns, as identified by recurrent neural networks, led to the
best results in our experiments. In practice, however, one has to
decide based on the application domain if the obtained accuracy
gains justify the usage of more complex learning methods. Our fu-
ture works include the comparison of the performance of additional
session-based algorithms like [26] or [30].

When Recurrent Neural Networks meet the Neighborhood

REFERENCES

(1]

[2

3

[4

[5

[6

(7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU:
Multi-task Learning for Deep Text Recommendations. In Proceedings of the 10th
ACM Conference on Recommender Systems (RecSys ’16). ACM, 107-114. DOI:
http://dx.doi.org/10.1145/2959100.2959180

Geoffray Bonnin and Dietmar Jannach. 2014. Automated Generation of Music
Playlists: Survey and Experiments. Computing Surveys 47, 2 (Nov. 2014), 26:1-
26:35. DOI:http://dx.doi.org/10.1145/2652481

Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten Joachims. 2012.
Playlist Prediction via Metric Embedding. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’12).
ACM, 714-722. DOI:http://dx.doi.org/10.1145/2339530.2339643

Junyoung Chung, Caglar Giilgehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
CoRR abs/1412.3555 (2014). http://arxiv.org/abs/1412.3555

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys '16). ACM, 191-198. DOI:http://dx.doi.org/10.
1145/2959100.2959190

Sander Dieleman. 2016. Deep learning for audio-based music recommendation.
In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems
(DLRS ’16). ACM, 1-1. DOI :http://dx.doi.org/10.1145/2988450.2991128

Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A Multi-View
Deep Learning Approach for Cross Domain User Modeling in Recommendation
Systems. In Proceedings of the 24th International Conference on World Wide Web
(WWW ’15). ACM, 278-288. DOI:http://dx.doi.org/10.1145/2736277.2741667
Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science 14, 2 (1990),
179 - 211. DOI:http://dx.doi.org/10.1016/0364-0213(90)90002-E

Alex Graves. 2013. Generating Sequences With Recurrent Neural Networks.
CoRR abs/1308.0850 (2013). http://arxiv.org/abs/1308.0850

Yupeng Gu, Bo Zhao, David Hardtke, and Yizhou Sun. 2016. Learning Global
Term Weights for Content-based Recommender Systems. In Proceedings of the
25th International Conference on World Wide Web (WWW ’16). ACM, 391-400.
DOI : http://dx.doi.org/10.1145/2872427.2883069

Negar Hariri, Bamshad Mobasher, and Robin Burke. 2012. Context-aware Music
Recommendation Based on Latenttopic Sequential Patterns. In Proceedings of
the Sixth ACM Conference on Recommender Systems (RecSys *12). ACM, 131-138.
DOI : http://dx.doi.org/10.1145/2365952.2365979

Negar Hariri, Bamshad Mobasher, and Robin Burke. 2015. Adapting to User
Preference Changes in Interactive Recommendation. In Proceedings of the 24th
International Conference on Artificial Intelligence (IJCAI ’15). AAAL, 4268-4274.
http://dl.acm.org/citation.cfm?id=2832747.2832852

Qi He, Daxin Jiang, Zhen Liao, Steven C. H. Hoi, Kuiyu Chang, Ee-Peng Lim, and
Hang Li. 2009. Web Query Recommendation via Sequential Query Prediction. In
Proceedings of the 2009 IEEE International Conference on Data Engineering (ICDE
’09). IEEE, 1443-1454. DOI :http://dx.doi.org/10.1109/ICDE.2009.71

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In
Proceedings of the International Conference on Learning Representations (ICLR ’16).
ACM. http://arxiv.org/abs/1511.06939

Balazs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos
Tikk. 2016. Parallel Recurrent Neural Network Architectures for Feature-rich
Session-based Recommendations. In Proceedings of the 10th ACM Conference
on Recommender Systems (RecSys ’16). ACM, 241-248. DOI : http://dx.doi.org/10.
1145/2959100.2959167

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (Nov. 1997), 1735-1780. DOI : http://dx.doi.org/10.1162/
neco.1997.9.8.1735

Mehdi Hosseinzadeh Aghdam, Negar Hariri, Bamshad Mobasher, and Robin
Burke. 2015. Adapting Recommendations to Contextual Changes Using Hier-
archical Hidden Markov Models. In Proceedings of the 9th ACM Conference on
Recommender Systems (RecSys ’15). ACM, 241-244. DOI:http://dx.doi.org/10.
1145/2792838.2799684

Dietmar Jannach, Lukas Lerche, and Michael Jugovac. 2015. Adaptation and
Evaluation of Recommendations for Short-term Shopping Goals. In Proceedings
of the 9th ACM Conference on Recommender Systems (RecSys '15). ACM, 211-218.
DOI : http://dx.doi.org/10.1145/2792838.2800176

Dietmar Jannach and Malte Ludewig. 2017. Determining Characteristics of
Successful Recommendations from Log Data — A Case Study. In Proceedings of
the 32th Annual ACM Symposium on Applied Computing (SAC ’17). ACM.
Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.
2016. Convolutional Matrix Factorization for Document Context-Aware Recom-
mendation. In Proceedings of the 10th ACM Conference on Recommender Systems
(RecSys ’16). ACM, 233-240. DOI :http://dx.doi.org/10.1145/2959100.2959165

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

RecSys "17, August 27-31, 2017, Como, Italy

Lukas Lerche, Dietmar Jannach, and Malte Ludewig. 2016. On the Value of
Reminders Within E-Commerce Recommendations. In Proceedings of the 2016

Conference on User Modeling Adaptation and Personalization (UMAP ’16). ACM,
27-35. DOI:http://dx.doi.org/10.1145/2930238.2930244

Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep Collaborative Filtering via
Marginalized Denoising Auto-encoder. In Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management (CIKM ’15).
ACM, 811-820. DOI :http://dx.doi.org/10.1145/2806416.2806527

Cornelius A. Ludmann and H.-Jiirgen Appelrath. 2016. Lessons Learned from
Using a Data Stream Management System for Real-time Recommendation of
Popular News Articles based on Real User Streams. In Proceedings of the 4th
Workshop on Large-Scale Recommender Systems at ACM RecSys 2016 (LSRS ’16).
ACM.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR °15). ACM, 43-52. DOI:http://dx.doi.org/10.1145/
2766462.2767755

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. 2002. Using
Sequential and Non-Sequential Patterns in Predictive Web Usage Mining Tasks.
In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM
’02). IEEE, 669-672. DOI :http://dx.doi.org/10.1109/ICDM.2002.1184025

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing Personalized Markov Chains for Next-basket Recommendation. In Proceed-
ings of the 19th International Conference on World Wide Web (WWW °10). ACM,
811-820. DOI:http://dx.doi.org/10.1145/1772690.1772773

Guy Shani, David Heckerman, and Ronen I. Brafman. 2005. An MDP-Based
Recommender System. The Journal of Machine Learning Research 6 (Dec. 2005),
1265-1295. http://dl.acm.org/citation.cfm?id=1046920.1088715

Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. 2016. Multi-Rate Deep
Learning for Temporal Recommendation. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information Retrieval (SIGIR
’16). ACM Press, 909-912. DOI:http://dx.doi.org/10.1145/2911451.2914726
Florian Strub, Romaric Gaudel, and Jérémie Mary. 2016. Hybrid Recommender
System based on Autoencoders. In Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems (DLRS ’16). ACM, 11-16. DOI:http://dx.doi.
0rg/10.1145/2988450.2988456

Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved Recurrent Neural
Networks for Session-based Recommendations. In Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems (DLRS ’16). ACM, 17-22. DOI:http:
//dx.doi.org/10.1145/2988450.2988452

Maryam Tavakol and Ulf Brefeld. 2014. Factored MDPs for Detecting Topics of
User Sessions. In Proceedings of the 8th ACM Conference on Recommender Systems
(RecSys °14). ACM, 33-40. DOI:http://dx.doi.org/10.1145/2645710.2645739
Bartlomiej Twardowski. 2016. Modelling Contextual Information in Session-
Aware Recommender Systems with Neural Networks. In Proceedings of the 10th
ACM Conference on Recommender Systems (RecSys '16). ACM, 273-276. DOI:
hitp://dx.doi.org/10.1145/2959100.2959162

Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec:
Product Embeddings Using Side-Information for Recommendation. In Proceedings
of the 10th ACM Conference on Recommender Systems (RecSys '16). ACM, 225-232.
DOI : http://dx.doi.org/10.1145/2959100.2959160 arXiv:1607.07326

Koen Verstrepen and Bart Goethals. 2014. Unifying Nearest Neighbors Collabora-
tive Filtering. In Proceedings of the 8th ACM Conference on Recommender Systems
(RecSys '14). ACM, New York, NY, USA, 177-184. DOI:http://dx.doi.org/10.1145/
2645710.2645731

Jeroen B. P. Vuurens, Martha Larson, and Arjen P. de Vries. 2016. Exploring
Deep Space: Learning Personalized Ranking in a Semantic Space. In Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems (DLRS ’16). ACM,
23-28. DOI:http://dx.doi.org/10.1145/2988450.2988457

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning
for Recommender Systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’15). ACM, 1235-1244.
DOI : http://dx.doi.org/10.1145/2783258.2783273 arXiv:1409.2944

Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A Dynamic
Recurrent Model for Next Basket Recommendation. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Informa-
tion Retrieval (SIGIR ’16). ACM, 729-732. DOI:http://dx.doi.org/10.1145/2911451.
2914683

Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin
Wang, and Tie-Yan Liu. 2014. Sequential Click Prediction for Sponsored Search
with Recurrent Neural Networks. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI "14). AAAL, 1369-1375. http://dLacm.org/citation.
cfm?id=2893873.2894086

Publications

143

A Comparison of Frequent Pattern Techniques and a
Deep Learning Method for Session-Based Recommendation

Iman Kamehkhosh Dietmar Jannach Malte Ludewig
TU Dortmund TU Dortmund TU Dortmund
iman.kamehkhosh@tu-dortmund.de dietmar.jannach@tu-dortmund.de malte.ludewig@tu-dortmund.de
ABSTRACT common on e-commerce sites, e.g., when returning users do not log

Making session-based recommendations, i.e., recommending items
solely based on the users’ last interactions without having access
to their long-term preference profiles, is a challenging problem
in various application fields of recommender systems. Using a
coarse classification scheme, the proposed algorithmic approaches
to this problem in the research literature can be categorized into
frequent pattern mining algorithms and approaches that are based
on sequence modeling. In the context of methods of the latter class,
recent works suggest the application of recurrent neural networks
(RNN) for the problem. However, the lack of established algorithmic
baselines for session-based recommendation problems makes the
assessment of such novel approaches difficult.

In this work, we therefore compare a state-of-the-art RNN-based
approach with a number of (heuristics-based) frequent pattern
mining methods both with respect to the accuracy of their recom-
mendations and with respect to their computational complexity.
The results obtained for a variety of different datasets show that in
every single case a comparably simple frequent pattern method can
be found that outperforms the recent RNN-based method. At the
same time, the proposed much more simple methods are also com-
putationally less expensive and can be applied within the narrow
time constraints of online recommendation.

CCS CONCEPTS

*General and reference —Evaluation; -Information systems
—Recommender systems; -Computing methodologies — Ne-
ural networks; Rule learning;

KEYWORDS

Session-Based Recommendations; Deep Learning; Frequent Pattern
Mining; Benchmarking

1 INTRODUCTION

Making recommendations solely based on a user’s current session
and most recent interactions is a nontrivial problem for recom-
mender systems. On an e-commerce website, for instance, when
a visitor is new (or not logged in), there are no long-term user
models that can be applied to determine suitable recommendations
for this user. Furthermore, recent work shows that considering the
user’s short-term intent has often more effect on the accuracy of the
recommendations than the choice of the method used to build the
long-term user profiles [20]. In general, such types of problems are

Workshop on Temporal Reasoning in Recommender Systems, collocated with ACM Rec-
Sys’17, Como, Italy.
Copyright©2017 for this paper by its authors. Copying permitted for private and
academic purposes.

in every time they use the site. The same challenges can, however,
be observed also for other application domains, in particular for
news and media (music and video) recommendation [21, 33].

The problem of predicting the next actions of users based solely
on their sequence of actions in the current session is referred to
in the literature as session-based recommendation. A number of
algorithmic approaches have been proposed over the years to deal
with the problem. Early academic approaches, for example, rely
on the detection of sequential patterns in the session data of a
larger user community. In principle, even simpler methods can be
applied. Amazon’s “Customers who bought ...also bought” feature
represents an example that relies on simple co-occurrence patterns
to generate recommendations, in that case in the context of the
very last user interaction (an item view event). A number of later
works then explored the use of Markov models [30, 35, 39], and
most recently, researchers explored the use of recurrent neural
networks (RNN) for the session-based next-item recommendation
problem [16, 17, 38, 42].

Today, RNNs can be considered one of the state-of-the-art meth-
ods for sequence learning tasks. They have been successfully ex-
plored for various sequence-based prediction problems in the past
[5,9, 11, 18] and in a recent work, Hidasi et al. [16] investigated an
RNN variant based on gated recurrent units (GRU) for the session-
based recommendations problem. In their work, they benchmarked
their RNN-based method Gru4rEc with different baseline methods
on two datasets. Their results showed that GRU4REC is able to out-
perform the baseline approaches in terms of accuracy for top-20
recommendation lists.

While these results indicate that RNNs can be successfully ap-
plied for the given recommendation task, we argue that the experi-
mental evaluation in [16] does not fully inform us about different
aspects of the effectiveness and the practicability of the proposed
method. First, regarding the effectiveness, it is unclear if the meth-
ods to which GRU4REC was compared are competitive. Second, as
the evaluation was based on one single training-test split and only
using accuracy measures, further investigations are necessary to
assess, for example, if some algorithms exhibit certain biases, e.g., to
recommend mostly popular items. Third, even if the RNN method is
effective, questions regarding the scalability of the method should
be discussed, in particular as hyper-parameter optimization for the
complex networks can become very challenging in practice.

The goal of this work is to shed light on these questions and in
the remainder of this paper we will report the detailed results of
comparing a state-of-the-art RNN-based method with a number
of computationally more efficient pattern mining approaches in
different dimensions.

Publications 145

RecTemp@RecSys’17, August 2017, Como, Italy

2 PREVIOUS WORKS

In session-based recommendation problems, we are given a se-
quence of the most recent actions of a user and the goal is to find
items that are relevant in the context of the user’s specific short-
term intent. One traditional way to determine recommendations
given a set of recent items of interest is to apply frequent pat-
tern mining techniques, e.g., based on association rules (AR) [1].
AR are often applied for market basket analysis with the goal to
find sets of items that are bought together with some probability
[14]. The order of the items or actions in a session is irrelevant
for AR-based approaches. Sequential patterns mining (SP) [2] tech-
niques, in contrast, consider the order of the elements in sessions
when identifying frequent patterns. In one of the earlier works,
Mobasher et al. [32] used frequent pattern mining methods to pre-
dict a user’s next navigation action. In another work, Yap et al. [47]
propose a sequential pattern-mining-based next-item recommen-
dation framework, which weights the patterns according to their
estimated relevance for the individual user. In the domain of music
recommendation, Hariri et al. more recently [15] propose to mine
sequential patterns of latent topics based on the tags attached to
the tracks to predict the context of the next song.

A different way of finding item-to-item correlations is to look
for sessions that are similar to the current one (neighbors), and to
determine frequent item co-occurrence patterns that can be used in
the prediction phase. Such neighborhood-based approaches were
for example applied in the domains of e-commerce and music in
[4] or [26]. In some cases and application domains, simple co-
occurrence patterns are despite their simplicity quite effective, see,
e.g., [20, 40] or [44].

Differently from such pattern- and co-occurrence-based tech-
niques, a number of recent approaches are based on sequence mod-
eling using, e.g., Markov models. The main assumption of Markov-
model-based approaches in the context of session-based recom-
mendation is that the selection of the next item in a session is de-
pendent on a limited number of previous actions. Shani et al. [35]
were among the first who applied first-order Markov chains (MC)
for session-based recommendation and showed the superiority of
sequential models over non-sequential ones. In the music domain,
McFee and Lanckriet [30] proposed a music playlist generation
algorithm based on MCs that - given a seed song — selects the
next track from uniform and weighted distributions as well as from
k-nearest neighbor graphs. Generally, a main issue when applying
Markov chains in session-based recommendation is that the state
space quickly becomes unmanageable when all possible sequences
of user selections should be considered [12, 16].

More recent approaches to sequence modeling for session-based
recommendation utilize recurrent neural networks (RNN). RNNs
process sequential data one element at a time and are able to selec-
tively pass information across sequence steps [28]. Zhang et al. [49],
for example, successfully applied RNNs to predict advertisement
clicks based on the users’ browsing behavior in a sponsored search
scenario. For session-based recommendations, Hidasi et al. [16]
investigated a customized RNN variant based on gated recurrent
units (GRU) [5] to model the users’ transactions within sessions.
They also tested several ranking loss functions in their solutions.
Later on, in [17] and [42] RNN-based approaches were proposed

146 Publications

Iman Kamehkhosh, Dietmar Jannach, and Malte Ludewig

which leverage additional item features to achieve higher accu-
racy. For the problem of news recommendation, Song et al. [36]
proposed a temporal deep semantic structured model for the combi-
nation of long-term static and short-term temporal user preferences.
They considered different levels of granularity in their model to
process both fast and slow temporal changes in the users’ prefer-
ences. In general, neural networks have been used for a number
of recommendation-related tasks in recent years. Often, such net-
works are used to learn embeddings of content features in compact
fixed-size latent vectors, e.g., for music, for images, for video data,
for documents, or to represent the user [3, 6-8, 13, 25, 29, 46].
These representations are then integrated, e.g., in content-based
approaches, in variations of latent factor models, or are part of new
methods for computing recommendations [7, 8, 13, 27, 37, 43, 45].

In the work presented in this paper, we will compare different
existing and novel pattern-mining-based approaches with a state-
of-the-art RNN-based algorithm.

3 EXPERIMENT CONFIGURATIONS

3.1 Algorithms

3.1.1 RNN Baseline. GRU4REC is an RNN-based algorithm that
uses Gated Recurrent Units to deal with the vanishing or exploding
gradient problem proposed in [16]. In our experiments, we used
the Python implementation that is shared by the authors online.!

3.1.2 Session-based kNN — kNN. The KNN method searches the k
most similar past sessions (“neighbors”) in the training data based
on the set of items in the current session. Since the process of
determining the neighbor sessions becomes very time-consuming
as the number of sessions increases, we use an special in-memory
index data structure (cache) in our implementation. Technically, in
the training phase, we create a data structure that maps the training
sessions to their set of items and one structure that maps the items
to the sessions in which they appear. To make recommendations for
the current session s, we first create a union of the sessions in which
the items of s appear. This union will be the set of possible neighbors
of the current session. This is a fast operation as it only involves a
cache lookup and set operations. To further reduce the computa-
tional complexity of the prediction process, we select a subsample
of these possible neighbors using a heuristic. In this work, we took
the m most recent sessions as focusing on recent trends has shown
to be effective for recommendations in e-commerce [23]. We then
compute the similarity of these m most recent possible neighbors
and the current session and select the k most similar sessions as
the neighbor sessions of the current session. Again through lookup
and set union operations, we create the set of recommendable items
R that contains items that appear in one of the k sessions. For each
recommendable item i in R, we then compute the KNN score as the
sum of the similarity values of s and its neighbor sessions n € N;
which contains i (Equation 1). The indicator function 1, (i) returns
1 if n contains i and 0 otherwise, see also [4].

scorexnn (i, $) = Znen, sim(s, n) X 15(i) (1)

In our experiments, we tested different distance measures to
determine the similarity of sessions. The best results were achieved
when the sessions were encoded as binary vectors of the item space

!https://github.com/hidasib/ GRU4Rec

A Comparison of Techniques for Session-Based Recommendation

and when using cosine similarity. In our implementation, the set
operations, similarity computations, and the final predictions can
be done very efficiently as will be discussed later in Section 4.2.2.
Our algorithm has only two parameters, the number of neighbors
k and the number of sampled sessions m. For the large e-commerce
dataset used in [16], the best parameters were, for example, achieved
with k = 500 and m = 1000. Note that the kNN method used in
[16] is based on item-to-item similarities while our kNN method
aims to identify similar sessions.

3.1.3 kNN Temporal Extension — TKNN. The KNN method, when
using cosine similarity as a distance measure, does not consider the
temporal sequence of the events in a session. To be able to leverage
the temporal information within the KNN technique, we designed
an additional temporal-filtering heuristic for it. The proposed TKNN
method uses the same scoring scheme as the kNN method (Equa-
tion 1). The only difference is that, given the current session s, we
consider item i as being recommendable only if it appears in the
neighbor session n directly after a certain item. In our implemen-
tation, that certain item is the last item of the current session s.
Technically, we therefore use a slightly different implementation of
the indicator function of Equation 1: 1,(i) = 1 if neighbor session
n contains i and (j, i) is a subsequence of n, where j is the last item
of the current session and thus the basis to predict the next item.

3.1.4 Simple Association Rules — AR. To assess the strength of
simple two-element co-occurrence patterns, we included a method
named AR which can be considered as an association rule technique
with a maximum rule size of two. Technically, we create a rule Tp.q
for every two items p and g that appear together in the training
sessions. We determine the weight, w4, of each rule simply as the
number of times p and q appear together in past sessions. Given
the current session s, the AR score of a target item i will be then
computed as

scorear(i, s) = wi j X 1ar(ri,j) (2)

where j is the last item of the current session s for which we want
to predict the successor and AR is the set of rules and their weights
as determined based on the training data. The indicator function
14r(ri,j) = 1 when AR contains r; ; and 0 otherwise.

3.1.5 Simple Sequential Rules — sr. The sr method is a variant of
AR, which aims to take the order of the events into account. Similar
to the AR method, we create a sequential rule for the co-occurrence
of every two items p and q as rp g in the training data. This time,
however, we consider the distance between p and q in the session
when computing the weight of the rules. In our implementation,
we use the multiplicative inverse as a weight function and set
Wp,q = 1/x, where x is the number of items that appear between p
and q in a session. Other heuristics such as a linear or a logarithmic
function can also be used. In case that those two items appear
together in another session in the training data, the weight of the
rule in that session will be added to the current weight. We finally
normalize the weight and divide it by the total number of sessions
that contributed to the weight. Given the current session s, the sr
score of a target item i is then computed as

scoresg(i,) = wj i X 1sr(rj,i) (3)

RecTemp@RecSys’17, August 2017, Como, Italy

Table 1: Dataset characteristics.

RSC TMall #nowplaying 30Music AotM 8tracks

Sessions 8M 4.6M 95K 170K 83K 500K
Events 32M 46M 1M 2.9M 1.2M 5.8M
Ttems 38K 620K 115K 450K 140K 600K
Avg. E/S 397 9.77 10.37 17.03 14.12 11.40
Avg. I/S 317 6.92 9.62 14.20 14.11 11.38

where j is the last item of session s and SR is the set of sequential
rules. The indicator function 15g(r;,;) = 1 when SR contains r;,;
and 0 otherwise.

3.1.6 Hybrid Approaches. We made additional experiments with
several hybrids that combine different algorithms. At the end, a
weighted combination of the two normalized prediction scores of
the algorithms led to the best results in our experiments.

3.2 Datasets and Evaluation Protocol

We performed experiments using datasets from two different do-
mains in which session-based recommendation is relevant, namely
e-commerce and next-track music recommendation. The source
code and the public datasets can be found online.?

3.2.1 E-commerce Datasets. For the e-commerce domain, we
chose the ACM RecSys 2015 Challenge dataset (RSC) as used in
[16]. The RSC dataset is a collection of sequences of click events
in shopping sessions. The second e-commerce dataset is a public
dataset published for the TMall competition. This dataset contains
shopping logs of the users on the Tmall.com website.

3.2.2 Music Datasets. We used (a) two datasets that contain
listening logs of several thousand users and (b) two datasets that
comprise thousands of manually created playlists.

Listening logs: These used datasets are (almost one-year-long)
sub-samples of two public datasets. First, we created a subset of
the #nowplaying dataset [48], which contains music-related tweets
on Twitter. Second, we used the recent 30Music dataset [41], which
contains listening sessions retrieved from Internet radio stations
through the Last.fm APL

Playlists: Generally, music playlists are different in nature from
listening logs and e-commerce user logs in various ways. Nonethe-
less, they are designed to be consumed in a listening session and the
tracks are often arranged in a specific sequence. The used playlist
datasets come from two different music platforms. The Art-of-the-
Mix dataset (AotM) was published by [31] and contains playlists
by music enthusiasts. The 8tracks dataset was shared with us by
the 8tracks platform. A particularity of the 8tracks dataset is that
each public playlist can only contain two tracks per artist.

The dataset statistics are shown in Table 1. The total number
of sessions is larger for the e-commerce datasets. However, the
number of unique items in the music datasets, which corresponds
to the number of tracks included in the playlists or the number of
played tracks in the listening sessions, is higher than the number
of items in e-commerce datasets.

Zhttp://Is13-www.cs.tu-dortmund.de/homepage/rectemp2017

Publications 147

RecTemp@RecSys’17, August 2017, Como, Italy

The music sessions are on average longer than the e-commerce
sessions.® The last row of Table 1 shows the average number of
unique items in each session (“Avg. I/S”). Comparing this value
with the average session length (“Avg. E/S”) indicates what we call
the item repetition rate in each dataset. Including the same track
more than once in a playlist is comparably uncommon. Listening
to a track more than once during a listening session is, however,
common. The difference between the average session length and
the average number of items in each session for the e-commerce
dataset indicates that re-occurring of the same item in a session is
common in the e-commerce domain.

3.2.3 Evaluation Protocol. The general task of the session-based
recommendation techniques in our experiment is to predict the next-
item view event in a shopping session or to predict the next track
that is played in a listening session or is included in a playlist. To
evaluate the session-based algorithms, we use the same evaluation
scheme as in [16]. We incrementally add events to the sessions in
the test set and report the average hit rate (HR), which corresponds
to recall in this evaluation setting, and the mean reciprocal rank
(MRR), which takes the position of the hit into account. We tested
list lengths of 1, 2, 3, 5, 7, 10, 15, and 20. While the experiments
in [16] are done without cross-validation, we additionally apply a
fivefold sliding-window validation protocol as in [24] to minimize
the risk that the obtained results are specific to the single train-test
split. We, therefore, created five train-test splits for each dataset.
For the listening logs, we used 3 months of training data and the
next 5 days as the test data and randomized splits for the playlists
as they have no timestamps assigned.

4 RESULTS
4.1 Accuracy Results

Our first experiment used the exact same setup as described in [16],
i.e., we use only one training-test split when comparing GRU4REC
with our methods. As done in [16], we trained the algorithms using
6 months of data containing 7,966,257 sessions of 31,637,239 clicks
on 37,483 items and tested them on the sessions of the next day.

In the subsequent sections, we then report the results of our
comparison using the sliding-window validation scheme described
above with recommendation list lengths varying from 1 to 20. In all
experiments, we tuned the parameters for the different algorithms
using grid search and optimized for HR@20 on validation sets
(subsets of the training sets). GRU4REC was only optimized with
100 layers as done in [16] due to the computational complexity of
the method. To test for statistical significance, we use Wilcoxon
signed-rank test with a = 0.05.

4.1.1 Results Using the Original Evaluation Setup. Table 2 shows
the results ordered by the hit rate (HR@20) when using the origi-
nal setup. We could reproduce the hit rate and MRR results from
[16] (using their optimal parameters) for GRU4REC(1000,BPR) and
GRU4REC(1000,ToP1), which use 1000 hidden units and the TOP1 and
BPR’s pairwise ranking loss functions, respectively. In Table 2, we
additionally report the results for recommendation list length ten,
which might be more important for different application domains.

3Note that each session in the TMall dataset is defined as the sequence of actions of a
user during one day which results in relatively larger average session length.

148 Publications

Iman Kamehkhosh, Dietmar Jannach, and Malte Ludewig

Table 2: Results when using the evaluation scheme of [16].

Method HR@10 MRR@10 HR@20 MRR@20

SR 0.568 0.290 0.672 0.297
TKNN 0.545 0.251 0.670 0.260
AR 0.543 0.273 0.655 0.280
KNN 0.521 0.242 0.641 0.250
GRU4REC(1000,BPR) 0.517 0.235 0.636 0.243
GRU4REC(1000,ToP1) 0.517 0.261 0.623 0.268

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20

TMall

0.18 ¥
0.16
0.14 - - - X
0.12 x/*/x/*——”‘
0.1
0.08
0.06
0.04

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20
4SR WAR KNN %TKNN ®GRU4REC(1000,TOP1) - GRU4REC(1000,BPR)

Figure 1: MRR results for the e-commerce datasets (* indi-
cates statistical significance).

The best accuracy results were achieved by the sr method both
for the hit rate and MRR and for both list lengths. In terms of the hit
rate, every single frequent pattern method used in the experiment
was better than the GRU4REC methods. A similar observation can be
made also for the MRR, with the exception that the kNN-based meth-
ods consistently performed worse than the GRU4REC(1000,TOP1)
method on this measure.

4.1.2 E-commerce Datasets. Figure 1 shows the MRR results for
the algorithms on the two e-commerce datasets, RSC and TMall.
For both datasets, we can observe that most of the frequent pattern
methods lead to higher or at least similar MRR values as GRU4REC.
There is, however, no clear “winner” across both datasets. The sr
method works best for the RSC dataset. On the TMALL dataset,
the kNN method outperforms the others, an effect which might be
caused by the longer list session lengths for this dataset. In both
cases, however, the difference between the winning method and the
best-performing GRU4REC configuration is statistically significant.
This is indicated by a star symbol in Figure 1.

4.1.3 Listening Logs Datasets. Figure 2 shows the accuracy per-
formance of the algorithms on two selected listening logs datasets.

4Remember that the sessions of the TMALL dataset cover the events of one day, as the
time stamps in this dataset are given only in the granularity of days.

A Comparison of Techniques for Session-Based Recommendation

#nowplaying *

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20

30Music

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20
4SR WAR AKNN %TKNN ®GRU4REC(100,TOP1) GRU4REC(100,BPR)

Figure 2: MRR results for the listening log datasets.

Similar to the e-commerce datasets, in all measurements, a frequent
pattern approach, namely the sk method, outperforms GRU4REC.
Here again, for MRR@20, the recommendations of sr are sig-
nificantly more accurate than the recommendations of GRU4REC.
Note that on the music datasets, we apply GRU4REC(100,TOP1) and
GRU4REC(100,8PR), which use 100 hidden units and the TOP1 and
BPR’s pairwise ranking loss function, respectively.®

The TKNN method - the time-aware extension of KNN— works
always significantly better than the KNN method on the listening
logs datasets. TKNN also outperforms both GRU4REC configurations
on the #nowplaying dataset for list lengths larger than 1.

Another observation on the listening logs datasets is that the
sequence-based approaches (SR, TKNN and GRU4REC) work signif-
icantly better than methods that do not consider the temporal
information in data (KNN and AR).

4.1.4 Playlists Datasets. Figure 3 shows the MRR results of the
algorithms on the playlists datasets. On both datasets, the temporal
extension of kNN, TKNN, leads to the best results across all recom-
mendation list sizes and significantly outperforms both variants of
GRU4REC. The performance of all other methods, however, seems
to depend on the specifics of the datset. The srR method works
well on both datasets. The relative performance of the AR method,
however, depends on the dataset and the list length at which the
measurement is made.

One interesting observation that we made for the music datasets
is that the relative performance of XNN strongly improves in terms
of the hit rate® when the recommendation list length is increased.
This can, for example, be seen in Figure 4, which shows the hit rate
results for the #nowplaying dataset. The hit rate of KNN on the
#nowplaying dataset that is about 3% for list length one increases

SRepeating the experiments with 1000 hidden layers for the Gru4rec methods did not
lead to any better results on the music datasets.

SGenerally, the hit rate results for the experiments, which we do not include here for
space reasons, are similar to the MRR results.

RecTemp@RecSys’17, August 2017, Como, Italy

0.014
AotM

0.012 *

0.01

0.008

0.006

0.004

0.002

—h

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20

0.008 %
8tracks

0.007
0.006
0.005
0.004
0.003
0.002
0.001

MRR@1 MRR@2 MRR@3 MRR@5 MRR@7 MRR@10 MRR@15 MRR@20
4SR ®AR AKNN *TKNN ®GRU4REC(100,TOP1) GRUA4REC(100,BPR)

Figure 3: MRR results for the playlist datasets.

0.3

#nowplaying

0.25
0.2
0.15
0.1

0.05

HR@1 HR@2 HR@3 HR@5 HR@7 HR@10 HR@15 HR@20
+SR WAR AKNN TKNN @®GRU4REC(100,TOP1) GRU4REC(100,BPR)

Figure 4: HR results for the #nowplaying dataset.

to 24% for list length 20. At the same time, the hit rate of some of
the other methods only slightly increases, e.g., from 6% to 15%. As a
result, across all four investigated music datasets, KNN outperforms
all other algorithms in terms of HR@20. A similar trend can also
be seen for AR, the other non-sequential approach.

4.1.5 Aggregated Ranking of Algorithms. To determine the rank-
ing of different algorithms based on their accuracy results (MRR@20)
across all six datasets, we applied the Borda Count (BC) rank aggre-
gation strategy [10]. The results show that sr and TKNN are both
ranked first (30 points), followed by AR as the second best algorithm
(20 points). The GRu4REC method with TOP1 ranking loss is ranked
third (18 points). Finally, kNN and GRU4REC with BPR ranking loss
are ranked fourth (15 points) and fifth (13 points), respectively.

4.1.6 Hybrid Approaches. We conducted a variety of additional
experiments with different hybridization methods as described in
Section 3.1.6 to analyze the effect of combining the algorithms. In
general, a weighted combination of the two normalized prediction
scores of a neighborhood-based and a sequence-based method led
to the best results in our experiments. For instance, the combination
of KNN and sr with a weight ratio of 3 to 7, wH(KNN,sR:0.3,0.7), out-
performed all other individual algorithms on the 30Music dataset.

Publications 149

RecTemp@RecSys’17, August 2017, Como, Italy

Table 3: Results of the hybrid methods for 30Music.

Method HR@5 MRR@5 HR@20 MRR@20
SR 0285 0233 0332 0.238
KNN 0.142 0.069 0.342 0.089
GRU 0275 0222 0315 0.226
WH(KNN,SR:O.3,0.7) 0.298 0.243 0.386 0.252

WH(KNN,GRU:0.6,0.4) 0.261 0.144 0.396 0.159

Another example is combining the normalized score of KNN and
GRU4REC(100,TOP1), which can outperform other algorithms in
terms of HR@20. The differences between the winning hybrid
approaches (printed in bold face in Table 3) and the best perform-
ing individual methods in each measurement were statistically
significant. Similar results were also achieved for the other datasets,
which we do not include here for space reasons.

4.2 Additional Analyses

Since prediction accuracy might not be the only possible relevant
quality criterion in a domain [19], we made a number of additional
analyses as shown in Figure 5.

4.2.1 Popularity Bias and Catalog Coverage. As in [22], we first
measured the average popularity of the top-20 recommendations
of the algorithms to assess possible recommendation biases. The
popularity of an item is computed based on its number of occur-
rences in the training dataset. Overall, the recommendations of
non-sequential approaches (kNN and AR) shows the highest bias
towards popular items. The sequence-based approaches (sr and
GRU4REC), in contrast, recommend comparably less popular items.

Additionally, we analyzed the catalog coverage of each algorithm
by counting the number of different items that appear in the top-20
recommendation lists of all sessions in the test set. Overall, the rec-
ommendation lists of GRU4REC and sR include more different items
than the other algorithms. The recommendations of neighborhood
methods, KNN and TKNN, on the other hand, focus on smaller sets of
items and show a higher concentration bias. This can be explained
by considering the sampling strategy of kNN which focuses on a
smaller subset of the sessions, e.g., those of the last few days.

4.2.2 Computational Complexity and Memory Usage. We mea-
sured the training time as well as the needed memory and time
to generate recommendations for each algorithm. On a desktop
computer with an Intel i7-4790k processor, training GRU4REC on
one split of the RSC dataset with almost 4 million sessions and in
its best configuration takes more than 12 hours. This time can be
reduced to 4 hours when calculations are performed by the GPU
(Nvidia GeForce GTX 960).” The XNN method needs about 27 sec-
onds to build the needed in-memory maps, see Section 3.1.2. The
well-performing sk method needs about 48 seconds to determine
the rule weights. A specific advantage of the latter two methods
is that they support incremental updates, i.e., new events can be
immediately incorporated into the algorithms. Creating one rec-
ommendation list with GRU4REC needed, on average, about 12 ms.
KNN needs about 26 ms for this task and sr only 3 ms.

"Training the model for 6 month of data using the GPU lasts about 8 hours.

150 Publications

Iman Kamehkhosh, Dietmar Jannach, and Malte Ludewig

Popularity@20

#nowplaying

Coverage@20

#nowplaying TMall
OSR mMAR EKNN ®mTKNN S GRU4REC(TOP1) B GRU4REC(BPR)

Figure 5: Popularity biases and catalog coverages of the al-
gorithms on three sample datasets.

The raw data used for training the algorithms in this specific
experiment (one split of the RSC dataset) occupies about 540 MB
of main memory. The data structures used for training sr and KNN
occupy about 50 MB and 3.2 GB, respectively. The model created
by GRU4REC needs about 510 MB. Note that memory demand of
GRU4REC depends on the algorithm parameters and significantly in-
creases with the number of items. For the music and Tmall datasets,
the memory demand of GRU4REC exceeded the capacity of our
graphics card. Running GRU4REC using the CPU is multiple times
slower than when a graphics card is used.

5 CONCLUSION AND FUTURE WORKS

Our work indicates that comparably simple frequent-pattern-based
approaches can represent a comparably strong baseline when eval-
uating session-based recommendation problems. At the end, we
could find at least one pattern-based approach that was significantly
better than a recent RNN-based method. In particular the sk method
was surprisingly effective, despite the fact that both learning and
applying the rules is very fast.

Our results also indicates that the “winning” strategy seems to
strongly depend on the characteristics of the data sets like average
session lengths or repetition rates. Further research is still required
to understand this relationship. In our future work, we will investi-
gate the performance of additional session-based algorithms. These
algorithms include both ones that are based on Markov models, e.g.,
Rendle et al’s factorized Markov chains [34], as well as recently
proposed improvements to GRU4REC, e.g., by Tan et al. [38]. We
expect that continuously improved RNN-based methods will be
able to outperform the frequent pattern based baselines used in the
evaluation reported in this paper. These methods can, however, be
computationally quite expensive. From a practical perspective, one
has therefore to assess depending on the application domain if the
obtained gains in accuracy justify the usage of these complex mod-
els, which cannot be easily updated online and whose predictions
can be difficult to explain.

A Comparison of Techniques for Session-Based Recommendation

REFERENCES

i
[2]
[3]

[4

5

(6]
(71
(8]

[

[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. 1993. Mining Association
Rules between Sets of Items in Large Databases. In SIGMOD ’93. 207-216.
Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining Sequential Patterns.
In ICDE ’95. 3-14.

Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU:
Multi-task Learning for Deep Text Recommendations. In RecSys ’16. 107-114.
Geoffray Bonnin and Dietmar Jannach. 2014. Automated Generation of Music
Playlists: Survey and Experiments. ACM Computing Surveys 47, 2 (2014), 26:1-
26:35.

Junyoung Chung, Caglar Giilgehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
CoRR abs/1412.3555 (2014).

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for
YouTube Recommendations. In RecSys ’16. 191-198.

Sander Dieleman. 2016. Deep Learning for Audio-Based Music Recommendation.
In DLRS 16 Workshop. 1-1.

Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A Multi-View
Deep Learning Approach for Cross Domain User Modeling in Recommendation
Systems. In WWW ’15. 278-288.

Jeffrey L. Elman. 1990. Finding Structure in Time. Cognitive Science 14, 2 (1990),
179 - 211.

Peter Emerson. 2013. The Original Borda Count and Partial Voting. Social Choice
and Welfare 40, 2 (2013), 353-358.

Alex Graves. 2013. Generating Sequences With Recurrent Neural Networks.
CoRR abs/1308.0850 (2013). http://arxiv.org/abs/1308.0850

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing Machines.
CoRR abs/1410.5401 (2014).

Yupeng Gu, Bo Zhao, David Hardtke, and Yizhou Sun. 2016. Learning Global
Term Weights for Content-based Recommender Systems. In WWW ’16. 391-400.
Jiawei Han and Micheline Kamber. 2006. Data Mining: Concepts and Techniques
(Second Edition). Morgan Kaufmann.

Negar Hariri, Bamshad Mobasher, and Robin Burke. 2012. Context-Aware Music
Recommendation Based on Latent Topic Sequential Patterns. In RecSys '12. 131—
138.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based Recommendations with Recurrent Neural Networks. CoRR
abs/1511.06939 (2015).

Balazs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos
Tikk. 2016. Parallel Recurrent Neural Network Architectures for Feature-rich
Session-based Recommendations. In RecSys ’16. 241-248.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (Nov. 1997), 1735-1780.

Dietmar Jannach and Gedas Adomavicius. 2016. Recommendations with a
Purpose. In RecSys '16. 7-10.

Dietmar Jannach, Lukas Lerche, and Michael Jugovac. 2015. Adaptation and
Evaluation of Recommendations for Short-term Shopping Goals. In RecSys '15.
211-218.

Dietmar Jannach, Lukas Lerche, and Iman Kamehkhosh. 2015. Beyond “Hitting
the Hits”: Generating Coherent Music Playlist Continuations with the Right
Tracks. In RecSys ’15. 187-194.

Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac. 2015.
What recommenders recommend: an analysis of recommendation biases and
possible countermeasures. User Modeling and User-Adapted Interaction (2015),
1-65.

Dietmar Jannach and Malte Ludewig. 2017. Determining Characteristics of
Successful Recommendations from Log Data — A Case Study. In SAC ’17.
Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Networks
meet the Neighborhood for Session-Based Recommendation. In RecSys 2017.
(forthcoming).

Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.
2016. Convolutional Matrix Factorization for Document Context-Aware Recom-
mendation. In RecSys '16. 233-240.

[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

RecTemp@RecSys’17, August 2017, Como, Italy

Lukas Lerche, Dietmar Jannach, and Malte Ludewig. 2016. On the Value of
Reminders within E-Commerce Recommendations. In UMAP ’16. 27-25.

Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep Collaborative Filtering via
Marginalized Denoising Auto-encoder. In CIKM ’15. 811-820.

Zachary Chase Lipton. 2015. A Critical Review of Recurrent Neural Networks
for Sequence Learning. CoRR abs/1506.00019 (2015).

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In SIGIR ’15.
43-52.

Brian McFee and Gert R. G. Lanckriet. 2011. The Natural Language of Playlists.
In ISMIR °11. 537-542.

Brian McFee and Gert R. G. Lanckriet. 2012. Hypergraph Models of Playlist
Dialects. In ISMIR '12. 343-348.

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. 2002. Using
Sequential and Non-Sequential Patterns in Predictive Web Usage Mining Tasks.
In ICDM °02. 669-672.

Ozlem Ozgobek, Jon A. Gulla, and Riza C. Erdur. 2014. A Survey on Challenges
and Methods in News Recommendation. In WEBIST "14. 278-285.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing Personalized Markov Chains for Next-basket Recommendation. In WWW
’10. 811-820.

Guy Shani, David Heckerman, and Ronen I. Brafman. 2005. An MDP-Based
Recommender System. The Journal of Machine Learning Research 6 (Dec. 2005),
1265-1295.

Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. 2016. Multi-Rate Deep
Learning for Temporal Recommendation. In SIGIR '16. 909-912.

Florian Strub, Romaric Gaudel, and Jérémie Mary. 2016. Hybrid Recommender
System based on Autoencoders. In DLRS °16 Workshop. 11-16.

Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved Recurrent Neural
Networks for Session-based Recommendations. In Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems (DLRS °16). ACM, 17-22.

Maryam Tavakol and Ulf Brefeld. 2014. Factored MDPs for Detecting Topics of
User Sessions. In RecSys ’14. 33-40.

Roberto Turrin, Andrea Condorelli, Paolo Cremonesi, Roberto Pagano, and
Massimo Quadrana. 2015. Large Scale Music Recommendation. In LSRS 2015
Workshop at ACM RecSys.

Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and
Paolo Cremonesi. 2015. 30Music Listening and Playlists Dataset. In Poster Pro-
ceedings RecSys ’15.

Bartlomiej Twardowski. 2016. Modelling Contextual Information in Session-
Aware Recommender Systems with Neural Networks. In RecSys ’16. 273-276.
Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec:
Product Embeddings Using Side-Information for Recommendation. In RecSys ’16.
225-232.

Koen Verstrepen and Bart Goethals. 2014. Unifying Nearest Neighbors Collabo-
rative Filtering. In RecSys '14. 177-184.

Jeroen B. P. Vuurens, Martha Larson, and Arjen P. de Vries. 2016. Exploring
Deep Space: Learning Personalized Ranking in a Semantic Space. In DLRS '16
Workshop. 23-28.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning
for Recommender Systems. In KDD ’15. 1235-1244.

Ghim-Eng Yap, Xiao-Li Li, and Philip S. Yu. 2012. Effective Next-items Recom-
mendation via Personalized Sequential Pattern Mining. In DASFAA’12. Berlin,
Heidelberg, 48-64.

Eva Zangerle, Martin Pichl, Wolfgang Gassler, and Giinther Specht. 2014. #Now-
playing Music Dataset: Extracting Listening Behavior from Twitter. In WISMM
’14 Workshop at MM °14. 21-26.

Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin
‘Wang, and Tie-Yan Liu. 2014. Sequential Click Prediction for Sponsored Search
with Recurrent Neural Networks. In AAAT '14. 1369-1375.

Publications

151

User Modeling and User-Adapted Interaction

Evaluation of Session-based Recommendation
Algorithms

Malte Ludewig - Dietmar Jannach

October 2018

Abstract Recommender systems help users find relevant items of interest, for
example on e-commerce or media streaming sites. Most academic research is
concerned with approaches that personalize the recommendations according to
long-term user profiles. In many real-world applications, however, such long-
term profiles often do not exist and recommendations therefore have to be
made solely based on the observed behavior of a user during an ongoing session.
Given the high practical relevance of the problem, an increased interest in this
problem can be observed in recent years, leading to a number of proposals
for session-based recommendation algorithms that typically aim to predict the
user’s immediate next actions.

In this work, we present the results of an in-depth performance compari-
son of a number of such algorithms, using a variety of datasets and evaluation
measures. Our comparison includes the most recent approaches based on re-
current neural networks like GRU4REC, factorized Markov model approaches
such as FISM or FOSSIL, as well as simpler methods based, e.g., on nearest
neighbor schemes. Our experiments reveal that algorithms of this latter class,
despite their sometimes almost trivial nature, often perform equally well or
significantly better than today’s more complex approaches based on deep neu-
ral networks. Our results therefore suggest that there is substantial room for
improvement regarding the development of more sophisticated session-based
recommendation algorithms.®

Malte Ludewig
TU Dortmund, Germany
E-mail: malte.ludewig@tu-dortmund.de

Dietmar Jannach
AAU Klagenfurt, Austria
E-mail: dietmar.jannach@aau.at

1A preliminary comparison of sequential recommendation algorithms was presented in
our own previous work in (Jannach and Ludewig, 2017; Kamehkhosh et al., 2017) and a pre-
print version of this work is available at https://arxiv.org/abs/1803.09587. This paper
or a similar version is not currently under review by a journal or conference. This paper is

Publications

153

154

2 Malte Ludewig, Dietmar Jannach

Keywords Session-based Recommendation; Sequential Recommendation;
Deep Learning; Factorized Markov Models, Nearest Neighbors

1 Introduction

Many of today’s online services use recommender systems to point their users
or site visitors to additional items that might be of interest to them. In aca-
demic research, the majority of works is focusing on techniques that rely on
long-term preference models to determine the items to be presented to the
user. However, in many application domains of recommender systems, such
long-term user models are often not available for a larger fraction of the users,
e.g., because they are first-time visitors or because they are not logged in.
Consequently, suitable recommendations have to be determined based on other
types of information, usually the user’s most recent interactions with the site or
application. Recommendation techniques that rely solely on the user’s actions
in an ongoing session and which adapt their recommendations to the user’s
actions are called session-based recommendation approaches (Quadrana et al.,
2018).

Amagzon’s “Customers who bought ... also bought” recommendations can
be considered an extreme case of such a session-based approach. In this case,
the recommendations are seemingly only dependent on the item that is cur-
rently viewed by the user (and the purchasing patterns of the community).
A number of other techniques were proposed in the research literature, which
do not limit themselves to the very last action, but consider some or all user
actions since the session started. Some of these techniques only consider which
events happened; others, in contrast, in addition take the sequence of events
into account in their algorithms. Besides the e-commerce domain, a number
of other application fields were in the focus in the literature, among them in
particular music, web page navigation, or travel and tourism.

In academia, sequential recommendation problems are typically opera-
tionalized as the task of predicting the next user action. Experimental eval-
uations are usually based on larger, time-ordered logs of user actions, e.g.,
on the users’ item viewing and purchase activities on an e-commerce shop
or on their listening history on a music streaming site. From an algorithmic
perspective, early approaches to predict the next user actions were based, for
example, on sequential pattern mining techniques. Later on, different types
of more sophisticated methods based on Markov models were proposed and
successfully applied to the problem. Finally, in the most recent years, the use
of deep learning approaches based on artificial neural networks was explored
as another solution. Recurrent Neural Networks (RNN), which are capable of
learning models from sequentially ordered data, are a “natural choice” for this
problem, and significant advances regarding the prediction accuracy of such
algorithms were reported in the recent literature (Hidasi et al., 2016a; Tan

void of plagiarism or self-plagiarism as defined by the Committee on Publication Ethics and
Springer Guidelines.

Publications

Evaluation of Session-based Recommendation Algorithms 3

et al., 2016; Hidasi et al., 2016b; Hidasi and Karatzoglou, 2017; Devooght and
Bersini, 2017).

Despite the growing number of papers on the topic in recent years, no true
“standard” benchmark data sets or evaluation protocols exist in the commu-
nity. Therefore, it remains difficult to compare the various algorithmic propos-
als, in particular as often different baseline algorithms are used in the papers.
And, for some of them it is also unclear if they are particularly strong. In
our previous work (Jannach and Ludewig, 2017; Kamehkhosh et al., 2017), we
could, for example, demonstrate that a comparably simple k-nearest-neighbor
method leads to similar or even better accuracy results than a modern deep
learning approach.

To establish a common base for future research, we performed an in-depth
performance comparison across multiple domains and datasets, which involved
a number of comparably simple as well as more sophisticated algorithms from
the recent literature. Our results show that computationally and conceptually
simple methods often lead to predictions that are similarly accurate or even
better than those of today’s most recent techniques based on deep learning
models. As a consequence, we argue that researchers should take these simpler
methods as alternative baselines into account when developing novel session-
based recommendation algorithms. Furthermore, our results suggest that there
is still substantial room for improvement regarding the development of more
sophisticated session-based recommendation algorithms.

This paper extends our previous works presented in (Jannach and Ludewig,
2017; Kamehkhosh et al., 2017) in a number of ways. First, we made experi-
ments for a larger number of datasets from different domains, using a richer set
of performance measures. Second, we included recent sequential recommenda-
tion algorithms like FISM and FOSSIL (Kabbur et al., 2013; He and McAuley,
2016) in the evaluation as well as the latest version of GRU4REC (Hidasi et al.,
2016a). Third, we designed a number of additional sequence-aware similarity
measures for the previously proposed session-based nearest neighbor method,
which in most cases lead to significant performance gains. Finally, we also pro-
pose a new method called Session-based Matrixz Factorization (SFM), which
yields good results in some of the tested application domains.

The paper is organized as follows. Next, in Section 2, we discuss previ-
ous works and typical application areas of session-based recommendation ap-
proaches. In Section 3, we provide technical details about the algorithms that
were compared in our work. Section 4 describes our evaluation setup and Sec-
tion 5 the outcomes of our experiments. To foster reproducible research on the
topic, we share the code of the used evaluation framework and the compared
algorithms online.?

2 https://www.dropbox.com/sh/dbzmtq4zhzbj509/AAC1dzQWbw-igKjcPTBI6ZPAa?d1=0

Publications

155

156

4 Malte Ludewig, Dietmar Jannach

2 Review of Session-Based Recommendation Approaches

Most of the approaches for session-based recommendation proposed in the lit-
erature implement some form of sequence learning, see also (Quadrana et al.,
2018) for a recent survey on the more general class of sequence-aware recom-
menders. Early approaches were based on the identification of frequent sequen-
tial patterns, which can be used at recommendation time to predict a user’s
next action. These early approaches were applied, for example, in the context
of predicting the online navigation behavior of users (Mobasher et al., 2002).
Later on, such pattern mining techniques were also used for next-item recom-
mendation problems in e-commerce or the music domain (Yap et al., 2012;
Hariri et al., 2012; Bonnin and Jannach, 2014).

While frequent pattern techniques are easy to implement and lead to in-
terpretable models, the mining process can be computationally demanding.
At the same time, finding good algorithm parameters, in particular a suitable
minimum support threshold, can be challenging. Finally, in some application
domains it seems that using frequent item sequences does not lead to bet-
ter recommendations than when using simpler item co-occurrence patterns
(Bonnin and Jannach, 2014). In the context of this work, we investigate both
sequential and co-occurrence patterns in their simplest forms as baselines.

In many newer works, more sophisticated sequence learning approaches
were proposed that implement some form of sequence modeling. Such sequence
modeling approaches are usually based on Markov Chain (MC) models (He
et al., 2009; Mcfee and Lanckriet, 2011; Garcin et al., 2013; Hosseinzadeh Agh-
dam et al., 2015), reinforcement learning (RL) and Markov Decision Processes
(MDP) (Shani et al., 2005; Moling et al., 2012; Tavakol and Brefeld, 2014), or
Recurrent Neural Networks (RNN) (Zhang et al., 2014; Sordoni et al., 2015;
Hidasi et al., 2016a,b; Liu et al., 2016; Song et al., 2016; Twardowski, 2016; Yu
et al., 2016; Du et al., 2016; Soh et al., 2017). Again, the typical application
scenarios of these methods include the e-commerce and the music recommen-
dation domain.

An early approach based on an MDP model was proposed by Shani et al.
(2005). It demonstrated the value of using sequential data in an e-commerce
scenario, but also showed that models based on Markov Chains often cannot
be directly applied due to data sparsity. Therefore, Shani et al. (2005) pro-
posed different heuristics to overcome the problem. An additional challenge
when using this type of models is to decide how many preceding interactions
should be considered when predicting the next one. Some authors therefore
use a mixture of Variable-order Markov Models (VMMs) or context-trees to
consider sequences of different lengths (He et al., 2009; Garcin et al., 2013).
Other works, for example by Hosseinzadeh Aghdam et al. (2015), rely on Hid-
den Markov Models (HMMSs) to overcome certain limitations of plain Markov
Chain models. In (Shani et al., 2005; Moling et al., 2012), reinforcement learn-
ing was implemented based on MDPs, which made it possible to also consider
the reward for the shop in the recommendation process. To deal with the
problem of the explosion of the state space in such scenarios, Tavakol and

Publications

Evaluation of Session-based Recommendation Algorithms 5

Brefeld (2014) proposed to model the state space based on the sequence of
item attributes in order to predict the characteristics of the next item that the
user will consider. In the context of the comparative analysis presented in this
paper, we limit ourselves to a simple MC-based method as a baseline, in par-
ticular because some techniques like the one discussed by Tavakol and Brefeld
(2014) require the existence of knowledge about certain item attributes.

The most recent works on sequence modeling are based on RNNs. Zhang
et al. (2014), for example, used them for the prediction of user clicks in an
advertisement scenario. Hidasi et al. (2016a) were among the first to explore
Gated Recurrent Units (GRUs) as a special form of RNNs for the predic-
tion of the next user action in a session. Their method called GRU4REC was
later on extended in different ways in (Hidasi et al., 2016b; Hidasi and Karat-
zoglou, 2017) and (Quadrana et al., 2017). While Hidasi et al. (2016a) reported
substantial performance improvements over an item-based k-nearest-neighbor
(kNN) method when using their first version of GRU4REC, our previous work
(Jannach and Ludewig, 2017) showed that a session-based nearest neighbor
method also leads to competitive accuracy results for the same problem setting.
Since GRU4REC was substantially improved since its initial version, we include
the latest version of the method proposed by Hidasi and Karatzoglou (2017)
in the performance comparison reported in this paper. Furthermore, given our
observations regarding the often competitive performance of conceptually sim-
pler methods we designed a number of variations of the basic session-based
nearest neighborhood method from (Jannach and Ludewig, 2017), which we
also considered in the experiments.

Another family of sequence modeling approaches relies on distributed item
representations, e.g., in the form of latent Markov embeddings (Chen et al.,
2012, 2013; Wu et al., 2013; Feng et al., 2015) or distributional embeddings
(Djuric et al., 2014; Baeza-Yates et al., 2015; Grbovic et al., 2015; Tagami et al.,
2015; Vasile et al., 2016; Reddy et al., 2016; Zheleva et al., 2010). Embeddings
are dense, lower-dimensional representations that are derived from sequentially
ordered data and encode transition probabilities based on the observations in
the original data. They were applied, for example, in the domains of next-
track music recommendation (Zheleva et al., 2010; Chen et al., 2012), recom-
mendation of learning courses (Reddy et al., 2016), or next point-of-interest
(POI) recommendation (Feng et al., 2015). However, a general challenge when
using item embeddings is that they can be computationally demanding and
sometimes require substantial amounts of training data to be effective. In the
context of our work, we experimented with item embeddings as an alterna-
tive representation of the user sessions. However, the usage of embeddings did
not lead to an improvement in terms of the prediction accuracy for our prob-
lem settings, which is why we do not report the detailed outcomes of these
experiments in this paper.

To overcome the limitations of pure sequence learning methods, a number
of hybrid methods were proposed that, for instance, combine the advantages
of matrix factorization techniques with sequence modeling approaches in the
form of Factorized Markov Chains (Rendle et al., 2010; Lian et al., 2013; Cheng

Publications

157

158

6 Malte Ludewig, Dietmar Jannach

et al., 2013; He et al., 2016; He and McAuley, 2016). Rendle et al. (2010)
proposed the Factorized Personalized Markov Chain (FPMC) approach as an
early method for next-item recommendations in e-commerce settings, where
user interactions are represented as a three-dimensional tensor (user, current
item, next-item). Later on, variations of FPMC were proposed and successfully
applied for a variety of application problems, e.g., by Kabbur et al. (2013)
and He and McAuley (2016). Other hybrid techniques that, for example, use
some form of clustering or Latent Dirichlet Allocation in combination with a
sequential recommendation method were proposed, e.g., in (Hariri et al., 2012;
Natarajan et al., 2013; Song et al., 2015), for the problems of next-track or
next-app recommendation. In our experimental evaluation, we include both
the FPMC method by Rendle et al. (2010) as well as the recent variations and
improvements described by Kabbur et al. (2013) (r1sM) and He and McAuley
(2016) (FOSSIL).

Besides pure session-based techniques, which solely consider a user’s action
of the ongoing session, there are also approaches that consider previous inter-
actions of the same user in the recommendation process. Such techniques are
called session-aware according to the terminology of Quadrana et al. (2018).
Examples of such works include (Baeza-Yates et al., 2015; Billsus et al., 2000;
Hariri et al., 2012; Jannach et al., 2015a, 2017a; Quadrana et al., 2017), and
session-aware approaches were applied for various application domains like
e-commerce, music, news, or next-app recommendation. Considering longer-
term user preferences in these papers shows to be helpful to improve the rec-
ommendations in the current, ongoing session. In some cases, like in (Jannach
et al., 2015a), it however turns out that the short-term user intents are much
more important than the longer-term models. In the research presented herein,
we therefore exclusively focus on session-based recommendation scenarios. We
however consider the combination of long-term and short-term models as an
important area for future research.

3 Details of the Investigated Methods

Based on these discussion, we include the following four types of techniques in
our comparison of session-based recommendation algorithms: simple heuristics
as baseline methods, nearest-neighbor techniques, recurrent neural networks,
and factorization-based methods. The main input to all methods is a training
set of past user sessions, where each session consists of a set of sequentially
ordered actions of a given type, e.g., an item view event in an online shop or
a consumption event on a media streaming site. The models learned by the
algorithms can then be used to predict the next event in a given user session in
the test set. In our evaluations, we follow a pragmatic approach to determine
user sessions—in case these are not provided in the datasets—and use user
inactivity times to determine session borders. The details for each dataset are
described later in this paper.

Publications

Evaluation of Session-based Recommendation Algorithms 7

Regarding the choice of the algorithms, we focus on collaborative filtering
methods based on implicit feedback signals, e.g., item view or music listen-
ing events. Depending on the specific application, content-based and hybrid
algorithms can be designed that use additional meta-data or content features.
Since these features are domain specific and such features are only available
for very few of our datasets, we limit ourselves to methods that do not rely on
such types of data in this paper.

3.1 Baseline Methods

We include the following baseline techniques in our comparison: a method
that we call Simple Association Rules (AR), first-order Markov Chains (M),
and a method that we named Sequential Rules (SR). All baselines implement
very simple prediction schemes, have a low computational complexity both for
training and recommending, and only consider the very last item of a current
user session to make the predictions. Furthermore, we include a prediction
method based on Bayesian Personalized Ranking (BPR-MF) proposed by Ren-
dle et al. (2009) as an alternative baseline.

3.1.1 Simple Association Rules (AR)

Simple Association Rules (AR) are a simplified version of the association rule
mining technique (Agrawal et al., 1993) with a maximum rule size of two. The
method is designed to capture the frequency of two co-occurring events, e.g.,
“Customers who bought ... also bought”. Algorithmically, the rules and their
corresponding importance are “learned” by counting how often the items 4 and

j occurred together in a session of any user.
Let a session s be a chronologically ordered tuple of item click events
s = (s1,52,83,...,5m) and S, the set of all past sessions. Given a user’s

current session s with s, being the last item interaction in s, we can define

the score for a recommendable item ¢ as follows, where the indicator function
lgg(a,b) is 1 in case a and b refer to the same item and 0 otherwise.

1 Ip| |p

Z Z Z Lea(8)s|> Pa) - Lea(is py)

Spes, T Tsa(s)sppe) - (Pl = 1) y65, 2=t 4=
(1)

In Equation 1, the sums at the right-hand side represent the counting scheme.
The term at the left-hand side normalizes the score by the number of total rule
occurrences originating from the current item s5. A list of recommendations
returned by the AR method then contains the items with the highest scores in
descending order. No minimum support or confidence thresholds are applied.
In our implementation, as shared online, we create the rules in one iteration
over the training data and store them (sorted by weight) in nested maps to
support fast lookups in the recommendation phase. With this data structure,
top-n recommendations can be created almost instantaneously.

scorear (i, 8) =

Publications

159

160

8 Malte Ludewig, Dietmar Jannach

3.1.2 Markov Chains (MC)

The MC baseline can be seen as a variant of AR with a focus on sequences in
the data. Here, the rules are extracted from a first-order Markov Chain, see
(Norris, 1997), which describes the transition probability between two subse-
quent events 1n a session. In our baseline approach, we simply count how often
users viewed item ¢ immediately after viewing item p. Technically, the score
for an item 4 given the current session s with the last event s, can be defined

as a simplified version of Equation 1:

lp|—1

Z Z 1EQ(Slshpw) : lEQ(i>pw+1) (2)

-1
ZpESp Zlgjpz‘l 1EQ(S\3\7P$) pESp z=1

1

scorenc(i, s) =

where the function 1gq(a, b) again indicates whether a and b refer to the same
item or not. Here, with the right-hand side of the formula, we count how often
item ¢ appears immediately after s|,. The normalization term transforms the
absolute count into a relative transition probability. In line with AR, in our
implementation the rules and weights are recorded in nested maps in one single
iteration over the training data to ensure short training times and to support
the fast generation of the recommendations.

3.1.3 Sequential Rules (SR)

Finally, the SR method as proposed in (Kamehkhosh et al., 2017) is a variation
of MC or AR respectively. It also takes the order of actions into account, but
in a less restrictive manner. In contrast to the MC method, we create a rule
when an item ¢ appeared after an item p in a session even when other events

happened between p and q.

When assigning weights to the rules, we consider the number of elements
appearing between p and ¢ in the session. Specifically, we use the weight func-
tion weg (z) = 1/(x), where = corresponds to the number of steps between the

two items.? Given the current session s, the SR method calculates the score
for the target item 7 as follows:

Ip| z—1

D DD Lealsisspy) - Lea(i pa) - wse(z —y)

Zpesp ZLP:‘Q 1EQ(S\S\7pI) x4 pESy z=2y=1
3)

In contrast to Equation 1 for AR, the third inner sum only considers indices
of previous item view events for each session p. In addition, the weighting
function ws () is added. Again, we normalize the absolute score by the total
number of rule occurrences for the current item s|,. As for AR and MC, the
algorithm was implemented using nested sorted maps, which can be created
in a single iteration over the training data.

1

scoresg (i, 8) =

3 Other weighting functions, e.g., with a logarithmic decay, are possible as well. Using the
linear function however led to the best results, on average, in our experiments.

Publications

Evaluation of Session-based Recommendation Algorithms 9

3.1.4 Bayesian Personalized Ranking (BPR-MF)

To make our results comparable with previous research, we finally include a
prediction method based on BPR-MF as a baseline in our experiments.*BPR-
MF proposed by Rendle et al. (2009) is a learning-to-rank method designed for
implicit-feedback recommendation scenarios. The method is usually applied
for matrix-completion problem formulations based on longer-term user-item
interactions. In BPR-MF the matrix is factorized into two smaller matrices of
latent user and item features (W and H), optimizing the following criterion:

BPRopr= Y, Ino(ry; —ru;) —ellO| (4)
(u,i,j)EDs

In the above formula, a ranking r,, ; for user v and item ¢ is approximated with
the dot product of the corresponding rows in the matrices W and H (r,,; =
(Wu, H;)). The model parameters @ = (W, H) are learned using stochastic
gradient descent in multiple iterations over the dataset Dg, which consists of
triplets of the form (u,1,7), where (u,%) is a positive feedback pair and (u, 7)
is a sampled negative example. The optimization criterion in Equation 4 aims
to rank the positive sample (u,7) higher than a non-observed sample (u, j).

To apply the method for the session-based recommendation scenario—
where there are no long-term user profiles—we attribute each session in the
training set to a different user, i.e., each session corresponds to a user in the
user-item interaction matrix. At prediction time, we use the average of the
latent item vectors of the current session so far as the user vector.

Generally, BPR and other methods designed for the matrix-completion
problems in their original form, i.e., without considering the short-term session
context, do not lead to competitive results in session-based recommendation
scenarios, as reported, e.g., in (Jannach et al., 2015a). Therefore, we do not
consider such algorithms, e.g., traditional matrix factorization techniques, as
baselines in our experiments.

3.2 Nearest Neighbors

Despite their simplicity, nearest-neighbor-based approaches often perform sur-
prisingly well as discussed, e.g., by Verstrepen and Goethals (2014) and in our
previous work (Jannach and Ludewig, 2017; Kamehkhosh et al., 2017). We,
therefore, include different nearest neighbor schemes in our comparison. First,
we consider a more traditional item-based variant, which was also employed
as a baseline method by Hidasi et al. (2016a). Furthermore, we evaluate three
variations of a more recent session-based nearest neighbor technique in our
experiments.

4 The method was proposed by Hidasi et al. in the context of the GRU4REC method.

Publications

161

162

10 Malte Ludewig, Dietmar Jannach

3.2.1 Item-based kNN (IKNN)

The 1KNN method as used in (Hidasi et al., 2016a) only considers the last ele-
ment in a given session and then returns those items as recommendations that
are most similar to it in terms of their co-occurrence in other sessions. Techni-
cally, each item is encoded as a binary vector, where each element corresponds
to a session and is set to “1” in case the item appeared in the session. The
similarity of two items can then be determined, e.g., using the cosine similarity
measure, and the number of neighbours & is implicitly defined by the desired
recommendation list length.

Conceptually, the method implements a certain form of a “Customers who
bought ... also bought” scheme like the AR baseline. The use of the cosine
similarity metric however makes it less susceptible to popularity biases. Al-
though item-to-item approaches are comparably simple, they are commonly
used in practice and sometimes considered a strong baselines (Linden et al.,
2003; Davidson et al., 2010). In terms of the technical implementation, all
similarity values can be pre-computed and sorted in the training process to
ensure fast responses at recommendation time.®

3.2.2 Session-based kNN (SKNN)

Instead of considering only the last event in the current session, the SKNN
method compares the entire current session with the past sessions in the train-
ing data to determine the items to be recommended, see also (Hariri et al.,
2012; Bonnin and Jannach, 2014; Lerche et al., 2016). Technically, given a
session s, we first determine the k£ most similar past sessions (neighbors) N
by applying a suitable session similarity measure, e.g., the Jaccard index or
cosine similarity on binary vectors over the item space (Bonnin and Jannach,
2014). In our experiments, the binary cosine similarity measure led to the best
results. As in (Jannach and Ludewig, 2017), using & = 500 as the number
of neighbors to consider led to good performance results for many datasets.
Next, given the current session s, its neighbors IV,, and the chosen similarity
function sim(sy, s2) for two sessions s; and sg, the recommendation score for
each item ¢ can as defined by Bonnin and Jannach (2014):

scoresgnn (i, 8) = Ynen,sim(s,n) - 1,(4) (5)

Here, the indicator function 1, (7) returns 1 if session n contains item i and 0
otherwise.

Scalability Considerations. Given a current session s, we cannot scan a poten-
tially large set of past sessions for possible neighbors in an online recommenda-
tion scenario. Therefore, in our implementation of the algorithm, as described
in (Jannach and Ludewig, 2017) in more detail, we rely on pre-computed in-
memory index data structures and on neighborhood sampling to enable fast

5 We use the implementation published at https://github.com/hidasib/GRU4Rec.

Publications

Evaluation of Session-based Recommendation Algorithms 11

recommendation responses. The index is used to quickly locate past sessions
that contain a certain item, i.e., the index allows us to retrieve possible neigh-
bor sessions that contain at least one element of the current session through
fast lookup operations. On the other hand, sampling only a smaller fraction
of all past sessions in our experiments as potential neighbors has shown to
lead to comparably small accuracy compromises. In fact, in some domains like
e-commerce, only looking for neighbors in the most recent sessions—thereby
capturing recent trends in the community—proved to be very effective (Jan-
nach et al., 2017b) and led to even better results than when all past sessions
were taken into account.

Our nearest neighbor implementations, therefore, have an additional pa-
rameter m, which determines the size of the sample from which the neighbors
of a target session are taken. In the experiments reported in (Jannach and
Ludewig, 2017), it was, for example, sufficient to consider only the 1,000 most
recent sessions from several million existing ones.

Sequence-Aware Ertensions: V-SKNN, S-SKNN, and SF-SKNN The described
SKNN method does not consider the order of the elements in a session when
using the Jaccard index or cosine similarity as a distance measure. Since the
order of the elements might, however, be relevant in some domains and since
the user preferences might change within a single session depending on the
already seen items, we propose three variations of the SKNN method.®

— Vector Multiplication Session-Based kNN (V-SKNN): The idea of this vari-
ant is to put more emphasis on the more recent events of a session when
computing the similarities. Instead of encoding a session as a binary vector
as described above, we use real-valued vectors to encode the current ses-
sion. Only the very last element of the session obtains a value of “1”; the
weights of the other elements are determined using a linear decay function
that depends on the position of the element within the session, where ele-
ments appearing earlier in the session obtain a lower weight. As a result,
when using the dot product as a similarity function between the current
weight-encoded session and a binary-encoded past session, more emphasis
is given to elements that appear later in the sessions.

— Sequential Session-based kNN (S-SKNN): This variant also puts more weight
on elements that appear later in the session. This time, however, we achieve
the effect with the following scoring function:

scores syn (i, §) = Xnen,sim(s,n) - wy(s) - 1,,(4) (6)

Here, the indicator function 1, (i) is complemented with a weighting func-
tion wy, (i, s), which takes the order of the events in the current session s
into account. The weight w, (i, s) increases when the more recent items of

6 We made additional experiments using other ways of encoding sequential information,
e.g., by using embeddings of sessions and items with the popular Word2Vec and Doc2Vec
approaches. However, none of these variations led to better accuracy results than the SKNN
method in our experiments. We therefore omit these results from our later discussions.

Publications

163

164

12 Malte Ludewig, Dietmar Jannach

the current session s also appeared in a neighboring session n. If an item
Sz 18 the most recent item of the current session s that also appears in the
neighbor session n, then the weight will be defined as w,,(s) = z/|s|, where
the index x indicates the position of s, within the session.” If, for example,
the second-to-last item of the current session with a length of 5 is the most
recent item also included in the neighbor session n, the weight would be
wp(i,s) = 4/5. Items from this neighbor can, therefore, potentially obtain
a higher score than, e.g., items from neighbor sessions that only include
the third from last item of the current session, which are assigned a weight
of 3/5.

— Sequential Filter Session-based kNN (SF-skNN): This method also uses a
modified scoring function, but in a more restrictive way. The basic idea is
that given the last event (and related item s|,) of the current session s, we
only consider items for recommendation that appeared directly after s
in the training data at least once.

scoresp-sknn (1, 8) = Znen,stm(s,n) - 1n(s)), 1) (7)

While the general scoring function is identical to the one of SKNN (Equation
5), we use a different implementation of the indicator function 1, (ss|,7).
Here, 1 is only returned if there exists any past session which contains
the sequence (s|,), given s|, is the item currently viewed in the user’s
current session s. Though the sequence (s5,4) can be part of any past
session, the item 4 obviously still has to be a part of the neighbor session
n for the indicator function to return 1.

3.3 Neural Networks — GRU4REC

Approaches based on Recurrent Neural Networks (RNNs), as discussed in
Section 2, represent the most recently explored family of techniques for session-
based recommendation problems. Among these methods, GRU4REC is one of
the latest deep learning approaches that was specifically designed for session-
based recommendation scenarios (Hidasi et al., 2016a; Hidasi and Karatzoglou,
2017).

GRU4REC models user sessions with the help of an RNN with Gated Re-
current Units (Cho et al., 2014) in order to predict the probability of the sub-
sequent events (e.g., item clicks) given a session beginning. Figure 1 shows the
general architecture of the network, in which the embedding, the feedforward,
and additional GRU layers are optional. In fact, the authors of the method
found that a single GRU layer of varying width led to the best performance
in their experiments.

The input of the network is formed by a single item, which is one-hot
encoded in a vector representing the entire item space, and the output is a

7 Note that the weighting function is designed to work independently from the similarity
function. We rely on the binary session representation for the similarity calculation without
considering the order of the items to ensure computational efficiency.

Publications

Evalua

|

Input: actual item, 1-of-N coding
Embedding layer
GRU layer
GRU layer
GRU layer
Output: scores on items

Fig. 1: Architecture of the GRU4REC neural network, adapted from (Hidasi
et al., 2016a).

vector of similar shape that should give a ranking distribution for the subse-
quent item. Inbetween, the standard GRU layer keeps track of a hidden state
that encodes the previously occurring items in the same session. Therefore,
while training and predicting with the help of this network architecture, the
items of a session have to be fed into the network in the correct order and
the hidden state of the GRUs has to be reset after a session ends. In terms of
the activation functions, the authors found tanh and the sigmoid function to
work best for the GRU and the ranking layer, respectively.

While the usage of RNNs for session-based, or more generally, sequential
prediction problems is a natural choice, the particular network architecture,
the choice of the loss functions, and the use of session-parallel mini-batches to
speed up the training phase are key innovative elements of the approach.

The model can be trained with stochastic gradient descent (SGD) using
established optimizations like ADAM, ADADELTA, RMSProp, or ADAGRAD
(Duchi et al., 2011; Zeiler, 2012; Kingma and Ba, 2014). As common in prac-
tice when optimizing deep neural networks, Hidasi et al. train the network in
batches. To ensure that the items or events are fed into the network in the
correct order, they propose the session-parallel mini-batch training scheme,
which is illustrated in Figure 2. In the training process, each part of a batch
belongs to a specific session in the training data and the network records a
separate hidden state for each position. Whenever a session at a position in
the batch ends, the corresponding hidden state is reset and the next batch
update includes the first event of a new session at that position.

As usual, a number of hyper-parameters can be tuned, including, the learn-
ing rate, the layer sizes, a momentum factor, and a drop-out factor to stabilize
the network. The choice of the loss function is another key to the quality of the
recommendations of GRU4REC. The following loss functions were designed or
applied by the authors. In particular the latest function (MAX) proposed by
Hidasi and Karatzoglou (2017) led to a significant performance improvement
over the previous ones.

Publications

165

166

14

Malte Ludewig, Dietmar Jannach

i1, |i5,1 |i5,2 ‘

Session | it

Session 2
Session 3 ‘13,1 |l3,2 |l3,3 |13,4 |i3.5 ‘ —
Session 4

. : Output
Session 5 |isa g [fss |

‘i3,1 ‘|‘i3,z |i3,3 |i3,4 |i3,5 ‘

i1, |i5,2 |is,3 ‘

s [t0r | -

Fig. 2: Illustration of the session-parallel mini-batch scheme of GRU4REC,
adapted from (Hidasi et al., 2016a).

— BPR: Bayesian Personalized Ranking (BPR), as discussed above, uses a

pairwise ranking loss function for the task of creating top-n recommenda-
tions. In GRU4REC, a generalized version of this function is applied using
the following formula:

Ly(Psi, Sn) = Zlog 0(Fsi — Tsj)) (8)

JESN

In the loss function, the predicted rating 7 ; for the actual next item ¢
given the current session s is compared to a set of negative samples Sy
with the goal of maximizing the difference between them. Here, the sigmoid
and logarithm functions are applied to represent the proportion between
the ranking of the negative and the positive example.

TOP1: This loss function was introduced by the authors of GRU4REC and
can be seen as a regularized approximation of the relative rank of a positive
sample 7 ; and the negative samples Sy:

1 X R R
g D 0y —7si) + o)) (9)

Ls (fs,ia SN) -
ISnl 55

Here, the proportion is approximated with the sigmoid function, and the
regularization term o (72 J) is added so that the score of the negative sam-
ples is directed to zero.

MAX: In continuation of their work, the authors proposed a generic ex-
tension to these two loss functions, where L stands for a loss function like
BPR or TOP1 defined above:

Lmaaz ('ﬁs,z’a SN) = Ls (fs,ia {maX fs,j}) (10)
JESN

Instead of using a sum of differences between the positive item’s rating
7s,; and the negative samples Sy, only the highest rated negative sample

Publications

Evaluation of Session-based Recommendation Algorithms 15

max;ecsy 7s,; from Sy is used to calculate the loss. As this function has
to be differentiable for SGD training, max;eg, is approximated with the
softmax function. The resulting functions BP R, and TOP1,,,, showed
superior performance when compared to the BPR and TOPI1 functions
(Hidasi and Karatzoglou, 2017).

In our experiments, we used the GRU4REC (v2.0) implementation that the
authors shared online. The code is regularly maintained by the authors and
includes the implementation of the GRU4REC method, the code of their baseline
algorithms, as well as the code for the evaluation procedure proposed in (Hidasi
et al., 2016a).

3.4 Factorization-based Methods

As described in Section 2, a number of (hybrid) factorization-based methods
were proposed in recent years for sequential recommendation problems. We
include three existing methods from the literature in our experiments, Factor-
ized Personalized Markov Chains (FPMC) proposed by Rendle et al. (2010),
FISM by Kabbur et al. (2013), and FOsSIL by He and McAuley (2016). Gener-
ally, these methods aim at predicting the next actions of users, but were not
designed for session-based recommendation scenarios with anonymous users.
We therefore describe for each method how we applied them to our problem
setting. In addition, we propose a novel factorization method called Session-
based Matrix Factorization (SMF), which relies on the BP R4, and TOP1,,,4,
loss functions as described above.

3.4.1 Factorized Personalized Markov Chains (FPMC)

The FPMC method was designed for the specific problem of next-basket recom-
mendation. The problem consists of predicting the contents of the next basket
of a user, given his or her history of past shopping baskets. By limiting the
basket size to one item and by considering the current session as the history of
baskets, the method can be directly applied for session-based recommendation
problems.

Technically, FPMC combines MC and traditional user-item matrix factor-
ization in a three dimensional tensor factorization approach. As illustrated in
Figure 3, the third dimension captures the transition probabilities from one
item to another.

Publications

167

168

16 Malte Ludewig, Dietmar Jannach

&é ‘ 9 ‘ 9 ‘ 2 ‘ 2
Ll 1y
ol 1] 1] o0 [
-
Slos| 1 o507
2 -
E 05 0 |05/ 0 *L
? ? ? 2
to item

Fig. 3: Personalized transition cube, adapted from (Rendle et al., 2009).

Internally, a special form of the Canonical Tensor Decomposition is used
to factor the cube into latent matrices, which can then be used to predict a
ranking in the following way:

Furi = W 0] Yy + D oy + W) (11)

u ? (2

where 7, is a score for item ¢ with the preferences of user v when he or
she previously examined item /. The three-dimensional decomposition results
in six latent matrices vXY representing the latent factors for dimension X
regarding dimension Y, e.g., v¥"% are the user latent factors in terms of the
previously examined item and v!>* the item latent factors regarding the previ-
ously examined item. Accordingly, v¥* for example represents the factors for
a single user u and v]"" the factors for item 4, which are combined with the
regular dot product ({a, b)) to calculate the ranking 7,,; ;. Those latent factors
are learned using SGD with the pairwise ranking loss function BPR.

In our problem setting, where we have no long-term user histories, each
session in the training data corresponds to a user. Once the model is trained,
each new session therefore represents a user cold-start situation. To apply the
model to our setting, we estimate the session latent vectors as the average
of the latent factors of the individual items in the session. This approach
was adopted also by Hidasi et al. (2016a) to apply BPR-MF to session-based
recommendation scenarios.

3.4.2 Factored Item Similarity Models (F1sM)

This method is based on an item-item factorization, which has the advantage
of being directly applicable to our session-based cold-start scenario, where no
explicit user representation can be learned. However, FISM does not incorporate
sequential item-to-item transitions like FPMC does. Equation 12 shows the
prediction function which Kabbur et al. (2013) trained using SGD to predict
ratings, e.g., for the movie domain.

TA’u,i = bu + bl + (ni-)—a Z ijiT (12)
JERE

Publications

Evaluation of Session-based Recommendation Algorithms 17

Technically, for user v and item 4, a score 7, ; is calculated as the sum of latent
vector products p;jq! between item i and the items R, already rated by the
user u. In our scenario, R,l corresponds to the previously inspected items in
a session. The terms b, and b; are bias terms and nj[specifies the number
of ratings by user u, which is combined with a parameter « to normalize the
sum of vector products to a certain degree. Instead of using the RMSFE as an
error metric, we use BPR’s pairwise loss function when optimizing the top-n

recommendations for the given implicit feedback scenario.

3.4.83 Factorized Sequential Prediction with Item Similarity Models (FOSSIL)

In this approach, FisM is combined with factorized Markov chains to incor-
porate sequential information into the model. The model can be described as
shown in Equation 13 (from He and McAuley (2016)):

personalized weighting

——

~ T T

Tu,li = E Piq; + (w + wy) : nmy (13)
JERE\{i} sequential dynamics
—_——

long-term preferences

Again, 7, ; represents a rating for item 4 given a user w and his or her previ-
ously inspected item [. The first term represents the long-term user preferences
and corresponds to the FISM model in Equation 12. Using a weighted sum with
a global factor w and a personalized factor w,, the model is extended by a
factorized Markov chain to capture the sequential dynamics. In the last term
of Equation 13, a latent vector n; for item [is multiplied with a latent vector
m,; for item i to factor in the user-independent probability of item [being
followed by item 4.

In our scenario, again, the sessions represent the users, R, corresponds to
the current session and BPR is used as the loss function to rank suitable items
over negative examples.

3.4.4 Session-based Matrixz Factorization (SMF)

Finally, SMF is a novel factorization-based model that we designed for the
specific task of session-based recommendation. Similar to FOSSIL it combines
factorized Markov chains with classic matrix factorization. In addition, our
method considers the cold-start situation of session-based recommendation
scenarios as follows.

In contrast to the traditional factorization-based prediction model r, ; =
puqiT , in the sMF method, we replace the latent user vector p, with a session
preference vector s., which is computed as an embedding of the current session
s:

Se = MST . ST (14)

Here, the session s is as a binary vector similar to the representation in SKNN
(see Section 3.2.2) and Mgy is a transformation matrix of size |I|- |us|, which

Publications

169

170

18 Malte Ludewig, Dietmar Jannach

reduces the size of the binary session vector (number of unique items |I|) to a
specific latent vector size |s.|.

Based on the embedded session representation s, the prediction function
is defined as shown in Equation 15.

sequential dynamics

T T
Ts,li = Wi+ (Seq; + b1) + (1 - wi) : (nm; + bz) (15)
N—_———

session preferences

The score 7, ,; for a session s with the most recent item [and an item
i is computed as a weighted combination of session preferences and sequen-
tial dynamics. Here, the session preferences correspond to the long-term user
preferences in the traditional matrix factorization model, i.e., the embedded
session latent vector s. for the current session s is multiplied with an item
latent vector ¢; for item ¢ to compute a relevance score ¢ regarding s. The
sequential dynamics are captured exactly as in Equation 13 for FOSSIL us-
ing latent representations for the currently inspected item [and item 7. Both
partial scores are adjusted with a separate bias term b, ; and combined in a
weighted sum with the factor w; dependent on item 4.

To train this model, we incorporated some of the concepts from GRU4REC
(see Section 3.3). Specifically, we adopted ADAGRAD for SGD-based opti-
mization, and used BPR,,q, and TOP1,,,. as loss functions. Furthermore,
we integrated two additional concepts (and corresponding hyper-parameters)
in the training phase to avoid model over-fitting: a session drop-out factor
and a skip-rate. For a drop-out factor of 0.1, for example, each positive entry
of the binary session input vector is set to 0 with a probability of 10%. The
skip-rate, in contrast, describes how often not the immediate next item in the
log data should be used as a positive sample in the training process, but the
subsequent one. A skip rate of 0.1 therefore means that in 10 % of the cases
the immediate next item is skipped.

4 Experiment Setup

In this section, we describe the details of our algorithm comparison in terms of
to the used evaluation protocol, the performance measures, and the evaluation
datasets. All source code and pointers to the public datasets are provided
online to ensure reproducibility of our research.®

4.1 Evaluation Protocol and Performance Measures
The general computational task in session-based recommendation problems is

to generate a ranked list of objects that in some form “matches” a given session
beginning. What represents a good match, depends on the specific application

8 https://wuw.dropbox.com/sh/dbzmtqézhzbj509/AAC1dzQWbw—-igKjcPTBI6ZPAa?d1=0

Publications

Evaluation of Session-based Recommendation Algorithms 19

scenario. It could be a set of alternative shopping items in an e-commerce
scenario or a continuation of given music listening session.

In offline evaluations for session-based recommendations, researchers often
abstract from the underlying purpose of the system (Jannach and Adomavi-
cius, 2016), e.g., if the recommender should help discover something new or find
alternatives to a currently inspected item. Instead, the recorded user sessions
are typically considered as a “gold standard” for the evaluation. To measure
the performance of an algorithm, researchers resort to assessing the capability
of an algorithm to predict the withheld entries of a session.

Different approaches are found in the literature to withhold certain entries
of a session. In some works, only the last element is hidden (Hariri et al., 2012;
Bonnin and Jannach, 2014), some propose to “reveal” the first n elements of a
session (Jannach et al., 2015a), while others, finally, evaluate their approaches
by iteratively revealing one entry after the other (Hidasi et al., 2016b). We
employed the latter iterative revealing scheme in our experiments as it (i)
conceptually includes both of the other techniques and (ii) reflects the user
journey throughout a session in the best way.

Selection of the Target Item and Accuracy Measures. We measured prediction
accuracy in two ways and correspondingly report the results in separate tables.

— First, to establish comparability with existing research, we use an evalua-
tion scheme in which the task is to predict the immediate next item given
the first n elements. For each session, we iteratively increment n, measure
the hit rate (HR) and the Mean Reciprocal Rank (MRR), and finally deter-
mine the average HR and MRR for all sessions for the different list lengths,
as done by Hidasi et al. (2016b).

— Second, instead of focusing only on the next item, we made a measurement
where we considered all subsequent elements for the given session begin-
ning, because all of them might be relevant to the user. In this scheme,
we used the standard information retrieval measures precision and recall
at defined list lengths. The number of given elements of the session is also
iteratively incremented as in the previously described evaluation scheme.

Sessionization strategies. Different strategies exist in the literature to split the
user activity logs into sessions. In some of the public datasets used in our eval-
uation, the activity logs were already split up into sessions, i.e., each log entry
was assigned a unique session ID (RSC15, Zalando). For other datasets (RE-
TAILR, NOWPLAYING, 30MUSIC, CLEF), we used a common heuristic-
based approach and considered a session as over after a defined user idle
time, e.g., 30 minutes of user inactivity (Cooley et al., 1999). For the TMALL
dataset, where the timetamps for the recorded events were only available at
the granularity of a day, we considered all events of one day as belonging to
one session. Finally, for the two playlists dataset (AOTM, 8TRACKS), we
considered all elements of a playlist to be part of a session.

Publications

171

172

20 Malte Ludewig, Dietmar Jannach

Training and Test Splits, Repeated Subsampling. Hidasi et al. (2016b) used one
single training-test split. In the case of an e-commerce dataset, the data was
split in a way that the sessions of all six months except those of the very last
day of the entire dataset were placed in the training set. The last day was used
for testing. We report the results of applying this evaluation scheme to ensure
comparability, e.g., with respect to the results obtained for the e-commerce
dataset that was used in their experiments.

Since such single-split setups have their limitations, we focus our discussion
on the results that were obtained when applying a sliding-window protocol,
where we split the data into 5 slices of equal size in days. For most e-commerce
data, for example, we used the data of about one month for training and the
subsequent data (e.g., of one day) for testing (see Section 4.2 for the dataset
specific configurations). This allows us to make multiple measurements with
different test sets. We then evaluate the performance for each of these data
samples and report the average of the performance results for all slices. This
latter protocol helps us reduce the danger that the observed outcomes are the
results of one particular train-test configuration.®

For the playlist datasets STRACKS and AOTM no timestamp information
is available. For these datasets we therefore applied a standard cross-validation
procedure, where elements are randomly assigned to the training and test
sets. We did not use such a time-agnostic data splitting procedure for the
e-commerce and news datasets for different reasons. First, as the results will
show, there are strong temporal effects that should be considered in the rec-
ommendation process. Second, in these domains, the set of items is not static
and in particular in the news domain new items appear constantly. Randomly
splitting the sessions would then potentially result in the effect that future
interactions with not-yet-existing items would be considered in the training
phase.

Additional Quality Factors. Since accuracy is not the only relevant quality
factor in practice, we made the following additional measurements, as was
done by Jannach and Ludewig (2017).

— Coverage: We report how many different items ever appear in the top-
k recommendations. This measure represents a form of catalog coverage,
which is sometimes referred to as aggregate diversity (Adomavicius and
Kwon, 2012).

— Popularity bias: High accuracy values can, depending on the measurement
method, correlate with the tendency of an algorithm to recommend mostly
popular items (Jannach et al., 2015b). To assess the popularity tendencies
of the tested algorithms, we report the average popularity score for the
elements of the top-k recommendations of each algorithm. This average

9 To ensure that the smaller size of those splits does not negatively affect the perfor-
mance of the model-based approaches, we tested the single-split configurations as well on all
datasets. The obtained results are mostly in line with those obtained with the sliding-window
protocol and shown in Appendix D.

Publications

Evaluation of Session-based Recommendation Algorithms 21

score is the mean of the individual popularity scores of each recommended
item. We compute these scores based on the training set by counting how
often each item appears in one of the training sessions and by then applying
min-max normalization to obtain a score between 0 and 1.

— Cold start: Some methods might only be effective when a significant amount
of training data is available. We, therefore, report the results of measure-
ments where we artificially removed parts of the (older) training data to
simulate such situations.

— Scalability: Training modern machine learning methods can be computa-
tionally challenging, and obtaining good results may furthermore require
extensive parameter tuning. We, therefore, report the times that the algo-
rithms needed to train the models and to make predictions at runtime. In
addition, we report the memory requirements of the algorithms.

By reporting quality factors coverage and popularity bias our aim is to
emphasize that different recommendation strategies can lead to quite different
recommendations, even if they are similar in terms of the prediction accu-
racy, see also (Jannach et al., 2015b). Such multi-metric evaluation approaches
should also help practitioners to better understand the potential side effects
of the recommenders, e.g., reduced average sales diversity and additionally
increased sales of top-sellers (Lee and Hosanagar, 2014). It remains however
difficult to aggregate the individual performance factors into one single score,
as the relative importance of the factors can depend not only on the application
domain, but also on the specific business model of the provider.

Parameter Optimization. Some of the algorithms that we tested require ex-
tensive (hyper-)parameter tuning including SMF and GRU4REC. Thus, we sys-
tematically optimized the parameters for those algorithms for each dataset.
Due to the computational complexity of the methods, we restricted the layer
size for GRU4REC as well as the number of latent factors for SMF to 100 and
used a randomized search method with 100 iterations for the remaining pa-
rameters as described by Hidasi and Karatzoglou (2017). In each iteration,
the learning rate, the drop-out factor, the momentum, and the loss function
were determined in a randomized process to find the maximum hit rate for a
list length of 20. All optimizations were performed on special validation splits,
which were created by splitting a training set into a validation training and
test set. For the simpler s-KNN-based approaches, we used the same validation
sets to manually adjust the number of neighbors and samples when apply-
ing cosine similarity as the distance measure (except for v-SKNN). The final
parameters for each method and dataset are provided in Appendix A.

4.2 Datasets

We made measurements for datasets from three different domains: e-commerce,
music, and news.

Publications

173

174

22

Malte Ludewig, Dietmar Jannach

Table 1: Characteristics of the e-commerce datasets. The values are averaged
over all five non-overlapping splits for each dataset, except for RSC15-S, where
we only use one train-test split.

Dataset RSC15-S RSC15 TMALL RETAILR ZALANDO
Actions 31.71M 5.43M 13.42M 212,182 4.54M
Sessions 7.98M 1.38M 1.77M 59,962 365,126
Items 37,483 28,582 425,348 31,968 189,328
Timespan in Days 182 31 91 27 91
Actions per Session 3.97 3.95 7.56 3.54 12.43
Unique Items per Session 3.17 3.17 5.56 2.56 8.39
Actions per Day 174,222 175,063 149,096 7,858 50,410
Sessions per Day 43,854 44,358 19,719 2,220 4056

E-Commerce Datasets. We used the following four e-commerce datasets.

RSC15. This is one of the datasets that was used in (Hidasi et al., 2016a)
and their later works. It was published in the context of the ACM RecSys
2015 Challenge and contains recorded click sequences (item views, pur-
chases) for a period of six months. We use the label RSC15-S to denote
the dataset and measurement where only one single train-test split is used.
For RSC15, each split consists of 30 days of training and 1 day of test data.
TMALL. This dataset was published in the context of the TMall compe-
tition and contains interaction logs of the tmall.com website for one year.
For TMALL, each split consists of 90 days of training and 1 day of test
data.

RETAILR. The e-commerce personalization company retailrocket published
this dataset covering six month of user browsing activities, also in the con-
text of a competition. For RETAILR, each split consists of 25 days of
training and 2 days of test data.

ZALANDO. The final dataset is non-public and was shared with us by the
fashion retailer Zalando. It contains user logs of their shopping platform for
a period of one year. In our evaluation, we only considered the item view
events as was done for the other e-commerce datasets. For ZALANDO,
each split consists of 90 days of training and 1 day of test data.

Table 1 shows an overview of the characteristics of the e-commerce datasets.

Except for the RSC15-S dataset, which we include to make our evaluation
comparable with previous works (Hidasi and Karatzoglou, 2017; Jannach and
Ludewig, 2017), we report the average values after creating five data splits as
described above.

Media Datasets: Music and News. As in (Jannach and Ludewig, 2017), we
use the music domain as an alternative area to evaluate session-based recom-
mendation algorithms, because music is commonly consumed within listening
sessions in sequential order. We use the same datasets that were used in (Jan-
nach and Ludewig, 2017), which consist of two sets of listening logs and two

Publications

Evaluation of Session-based Recommendation Algorithms 23

datasets of user-created playlists. In addition, we made measurements using a
dataset from the news recommendation domain.

We in particular consider the news domain because it has certain distinct
characteristics (Karimi et al., 2018). First, constantly new items become avail-
able for recommendation (Das et al., 2007; Liu et al., 2010). At the same time,
items can also quickly become outdated. Second, previous research indicates
that short-term popularity trends can be important for the success of a rec-
ommender (Ludmann, 2017). The experiments based on this dataset should
therefore provide an indicator if the general insights obtained from other do-
mains generalize to a domain with very specific characteristics.

— 8TRACKS and AOTM: These dataset include playlists created by music
enthusiasts. The AOTM dataset was collected from the Art-of-the-Mix
platform and is publicly available (McFee and Lanckriet, 2012). The non-
public 8TRACKS) dataset was shared with us by the 8tracks.com music
platform. For all music datasets, each split consists of 90 days of training
and 5 days of test data.

— 30MUSIC and NOWPLAYING: The 30MUSIC dataset contains listen-
ing histories of the last.fm music platform and was published by Tur-
rin et al. (2015). The NOWPLAYING dataset was created from music-
related tweets, where users posted which tracks they were currently listen-
ing (Zangerle et al., 2014).

— CLEF: The dataset was made available to participants of the 2017 CLEF
NewsREEL challenge.? It consists of a stream of user actions (e.g., article
reads) and article publication events, which were collected by the company
plista for several publishers. In our evaluation we only considered the article
read events. We used the data of the publisher with the largest amount of
recorded interactions (the popular German sports news portal Sport111).
For CLEF, each split consists of 5 days of training and 1 days of test data.

The statistics for the datasets from the media (music and news) domain
are given in Table 2.

5 Results
5.1 E-Commerce Datasets

Table 3 shows the MRR and Hit Rate results at a recommendation list length
20 for the four tested e-commerce datasets. In addition, we report the results
when applying the standard measures precision and recall when considering
all hidden elements in the rest of the session as described above (see Table 4).
Finally, we also report coverage and popularity statistics for each algorithm.

10 http://www.clef-newsreel.org/
' https://www.sportl.de/

Publications

175

176

24

Malte Ludewig, Dietmar Jannach

Table 2: Characteristics of the music and news datasets. The values are again
averaged over all five non-overlapping splits.

8TRACKS 30MUSIC AOTM NOWPLAYING CLEF

Actions 1.50M 638,933 306,830 271,177 5.54M
Sessions 132,453 37,333 21,888 27,005 1.64M
Ttems 376,422 210,633 91,166 75,169 742
Timespan in Days 95 95 95 95 6
Actions per Session 11.32 17.11 14.02 10.04 3.37
Items per Session 11.31 14.47 14.01 9.38 3.17
Actions per Day 16,663 7,099 3,409 3,013 923,414
Sessions per Day 1,472 415 243 300 274,074

5.1.1 Accuracy Measures

The results when the task is to predict the immediate next element in a session
(as done in (Hidasi and Karatzoglou, 2017; Jannach and Ludewig, 2017)) are
shown in Tables 3a to 3e. The following observations in terms of the hit rate
and the MRR can be made.!?

The lowest accuracy values are almost consistently achieved across all
datasets by the family of Factorized Markov Chain approaches (FISM, FPMC
and FOSSIL) and the session-aware BPR-MF variant. BPR-MF in fact often
exhibits the best performance among these methods even though it was not
designed for sequential recommendation problems. In two cases, however,
the session-based BPR-MF variant led to very competitive results when the
measurement was taken at a recommendation list length of 1, although at
the potential price of a high popularity bias and low coverage. Apart from
this phenomenon, our results indicate that the methods that were designed
under the assumption of longer-term and richer user profiles are often not
particularly well suited for the specifics of session-based recommendation
problems.

The simple pairwise association methods (AR and SR) mostly occupy the
middle places in our comparison. In most cases, it is preferable to consider
the available sequentiality information (SR). Only for the TMALL dataset,
where the transactions of an entire day are considered as a session'?, and
for RETAILR, the sequence-agnostic AR method is slightly better in terms
of the hit rate. In terms of the overall ranking, the trivial SR method is, to
some surprise, among the top-performing methods for two of the datasets
in terms of the MRR, with good results also for the hit rate. The MC
method finally, is usually placed somewhere in the middle of the ranking.
Similar to the SR method, it is very strong in terms of the MRR for two of
the datasets.

12

We provide additional results that were obtained for measurements taken at multiple

list lengths in Appendix B.

13

In the dataset, timestamps are only available at the granularity of days.

Publications

Evaluation of Session-based Recommendation Algorithms 25

Table 3: Hit rate (HR), Mean reciprocal rank (MRR), catalog coverage (COV),
and the average popularity (POP) for a list length of 20 obtained for the e-
commerce datasets. The table rows are ordered by MRR@20. The best values
are highlighted in each column and, in case of accuracy measures, marked with
a star when the difference w.r.t. to the second-best performing method was

statistically significant.

(a) RSC15

(b) TMALL

Metrics MRR@20 HR@20 COV@20 POP@20

Metrics MRR@20 HR@20 COV@20 POP@20

GRU4REC 0.308 *0.683 0.504 0.054

SR 0.304 0.653 0.668 0.072
SMF 0.302 0.666 0.565 0.055
MC 0.300 0.642 0.645 0.070
AR 0.289 0.636 0.630 0.093
V-SKNN 0.283 0.653 0.619 0.079
S-SKNN 0.272 0.602 0.655 0.072
SF-SKNN 0.270 0.589 0.619 0.066
S-KNN 0.266 0.621 0.634 0.073
IKNN 0.208 0.486 0.755 0.041
FPMC 0.201 0.363 0.975 0.055
BPR-MF 0.176 0.235 0.911 0.088
FISM 0.115 0.162 0.974 0.008
FOSSIL 0.062 0.190 0.917 0.048

S-SKNN *0.185 0.387 0.467 0.025
S-KNN 0.182 *0.404 0.381 0.026
V-SKNN 0.179 0.373 0.464 0.024
BPR-MF 0.159 0.204 0.723 0.057
SF-SKNN 0.136 0.216 0.436 0.018
GRU4REC 0.129 0.277 0.151 0.035
AR 0.129 0.262 0.509 0.021
SR 0.128 0.242 0.569 0.021
SMF 0.121 0.261 0.261 0.036
MC 0.116 0.200 0.498 0.019
FPMC 0.101 0.119 0.880 0.005
IKNN 0.051 0.150 0.728 0.007
FISM 0.024 0.037 0.752 0.003
FOSSIL 0.001 0.004 0.598 0.016

(c) RETAILR

(d) ZALANDO

Metrics MRR@20 HR@20 COV@20 POP@20

Metrics MRR@20 HR@20 COV@20 POP@20

S-SKNN *0.345 *0.591 0.596 0.056
V-SKNN 0.338 0.573 0.575 0.060
S-KNN 0.337 0.583 0.566 0.058
BPR-MF 0.303 0.357 0.824 0.060
FPMC 0.273 0.320 0.929 0.022
SF-SKNN 0.260 0.358 0.403 0.035
SR 0.245 0.419 0.524 0.042
GRU4REC 0.243 0.480 0.602 0.060
AR 0.241 0.439 0.544 0.053
MC 0.230 0.359 0.411 0.035
SMF 0.225 0.459 0.449 0.085
IKNN 0.107 0.240 0.584 0.033
FISM 0.075 0.132 0.848 0.018
FOSSIL 0.022 0.058 0.753 0.127

SR 0.304 0.483 0.586 0.061
MC 0.303 0.455 0.513 0.060
IKNN 0.275 0.405 0.714 0.037
GRU4REC 0.267 0.468 0.304 0.101
SMF 0.267 0.447 0.362 0.107
AR 0.258 0.467 0.467 0.089
SF-SKNN 0.249 0.438 0.432 0.057
V-SKNN 0.233 *0.521 0.432 0.096
S-SKNN 0.219 0.499 0.435 0.087
S-KNN 0.172 0.456 0.309 0.093
BPR-MF 0.104 0.162 0.609 0.058
FPMC 0.051 0.075 0.812 0.021
FISM 0.004 0.011 0.624 0.020
FOSSIL 0.002 0.005 0.671 0.034

Table 4: Precision (P@20) and Recall (R@Q20) for the e-

(¢) RSC15-S commerce datasets. The rows are ordered by the P@Q20
values for the TMALL data set, which led to a rela-
Dataset RSC15 tively consistent ranking of the algorithms.
Metric ~MRR@20 HR@20
;3‘;4““ %?:’,)Bg %77112 Dataset RSC15 TMALL ROCKET ZALANDO
on 0308 0600 Metric ~ P@20 R@20 P@20 R@20 P@20 R@20 P@20 R@20
V-SKNN 0.274 0.675 skNN 0.086 0.464 0.095 0.312 0.056 0.478 0.074 0.202
SKNN 0.250 0.641 v-sknN 0.092 0.494 0.088 0.291 0.055 0.462 0.076 0.207
SMF 0.092 0.501 0.068 0.230 0.047 0.397 0.062 0.175
GRU4REC 0.085 0.470 0.068 0.233 0.046 0.400 0.065 0.181
SR 0.089 0.488 0.052 0.193 0.038 0.342 0.060 0.174

Publications

177

178

26 Malte Ludewig, Dietmar Jannach

— The performance of the newly-proposed SMF method is very strong for
the RSC15 and RSC15-S dataset and in the middle ranges for the other
datasets. The sMF method consistently outperforms the factorization-based
methods from the literature, apparently due to the embedding of the cur-
rent user session.

— GRU4REC is consistently among the top five algorithms in this comparison
in terms of the hit rate and exhibits competitive performance results also
with respect to the MRR. The method is outperforming all other meth-
ods on the RSC15(-S) datasets in terms of the hitrate and is competitive
w.r.t. the MRR, where the differences between the top-performing meth-
ods are tiny. On the other datasets, the accuracy results of GRU4REC are,
however, often significantly lower than those of the best-performing meth-
ods.14

— For each of the datasets, one of the proposed neighborhood-based methods
was usually the winner in terms of the hit rate and the MRR (except
for RSC15(-S) and the MRR on ZALANDO). Using one of the variants
that considers sequentiality information is usually favorable, except for
the case of the TMALL dataset. The most consistent performance of the
neighborhood-based methods is achieved with the v-SKNN method which
uses a specific sequence-aware similarity measure that gives more weight
to the most recent interactions. Generally, the results suggest that there
is even room for further improvement in the context of the neighborhood-
based methods. In the experiments reported in this work, we could, for
example, observe that using a slightly different similarity measure already
led to substantial performance improvements for some of the datasets.

Precision and Recall for the Remaining Session. The ranking of the best-
performing algorithms when evaluating all subsequent elements of a session
(not only the immediate next click) and measuring precision and recall is given
in Table 4. We report the detailed results for all algorithms for all measure-
ments in the appendix.

The obtained results are mostly in line with the previously reported obser-
vations. The best performance is achieved by the neighborhood-based meth-
ods, with V-SKNN working very well across all datasets. Differently from the
previous measurement, GRU4REC shows a lower performance for the RSC-15
dataset than the other methods. This is probably due to the fact that GRU4REC
is optimized to predict the immediate next action. Generally, which type of
accuracy measurement—focusing on the prediction of the immediate next el-
ement or considering the prediction of any item that is relevant in the session
as a success—is more appropriate, depends on the application domain. Our
results show that the kNN-based methods are successful in both forms, i.e.,
they are often good at predicting the next element while, at the same time,
they many times include more items that are relevant for the given session
than, e.g., GRU4REC.

14 We applied the Wilcoxon signed-rank test (o = 0.05) to determine the significance of
differences between the two best performing approaches for each dataset.

Publications

Evaluation of Session-based Recommendation Algorithms 27
04T ‘ ‘ N 0.6 1 w I T =
0.3} T

0.4f \]
0.2 \ ;
B N 0.2 \ -
017 | | | | > | | | | |
20 15 10 5 20 15 10 5 0
List length List length
——— SKNN V-SKNN ——— SKNN V-SKNN
——— GRU4REC SR —— GRU4REC SR
(a) TMALL (b) RETAILR

Fig. 4: Hit rate (HR) for two of the e-commerce datasets when reducing the
recommendation list length from 20 to 1.

Impact of Different List Lengths To see if the recommendation list length at
which the measurement is taken has an influence on the algorithm ranking,
we varied the length from 20 to 1. Figure 4a and Figure 4b show how the best
algorithms perform for the TMALL and RETAILR datasets when different
list lengths are used in the evaluation. The results show that the ranking of
the algorithms can in fact be affected by the change of the list length.
Specifically, the differences between the nearest-neighbor methods and the
GRU4REC and SR methods becomes gradually smaller for shorter list lengths.
This is not too surprising because both GRU4REC and SR focus on the predic-
tion of the immediate next action and often lead to better performance values
in terms of the MRR. Since the particular evaluation protocol here also only
focuses on the correct prediction of the next item, the effect might however
be overemphasized due to the specific measurement method. An interesting
observation is that at list length 1, BPR-MF and to some extent the FPMC
method lead to the best results for some e-commerce datasets. In the case of
BPR-MF, this however comes at the price of a high popularity tendency of the
algorithm and a comparably low coverage (see Table 15 in Appendix B).

5.1.2 Cold-Start and Sparsity Effects

Previous experiments on the RSC15 dataset revealed that discarding major
parts of the older data has no strong impact on the prediction accuracy, at
least in the e-commerce domain (Jannach and Ludewig, 2017). We therefore
made additional experiments to analyze the effects in more depth. Figure ba
and Figure 5b show the results of this simulation for two of the e-commerce
datasets.

The results for the RSC15-S (single-split) dataset (Figure 5a) are in line
with what was previously reported in (Jannach and Ludewig, 2017). In the e-
commerce domain, the user behavior seems to be strongly influenced by recent
sales trends, an effect that was also reported in (Jannach et al., 2017b). Dis-
carding most of the historical data has almost no influence on the resulting hit

Publications

179

180

28 Malte Ludewig, Dietmar Jannach
orf ——m—m———— 04 | ‘ ‘ M
0.3 -
0.6 |- e
0.2 —_— n
0.5 \
| | ! 0.1 | I L]
60 40 20 30 20 10 0
Time in days Time in days
——— SKNN V-SKNN ——— SKNN V-SKNN
—— GRU4REC SR —— GRU4REC SR
(a) RSC15-S (b) TMALL

Fig. 5: HR@20 for two e-commerce datasets when artificially reducing the size
of the training set from 60 days to 1 day.

rates. This behavior is similar for all compared algorithms. Only in the extreme
case when only the data of the last few days is considered, the performance of
the algorithms degrades. A similar observation can be made for the TMALL
dataset. Generally, the observations also explain why the recency-based neigh-
borhood sampling approach implemented in the kNN methods does not have
a strong negative effect on the accuracy. In fact, focusing on the most recent
sessions when looking for similar neighbors has shown to have a positive effect
in (Jannach and Ludewig, 2017), when compared to a random neighborhood
selection scheme.

Considering other Types of Fvents In the reported experiments, the models
were trained with past item view events and we also predicted the next view
event for a given session beginning. This choice was made to make our work
comparable with previous research. Additional types of events (e.g., “add-to-
wishlist”, “add-to-cart”) can easily incorporated as positive preference signals
into the investigated algorithms. How to weight the different types of signals
nd how to interpret signals like “remove-from-wishlist” is an area for future
research.

Depending on the domain, also different types of events might be in the
focus as well in the prediction phase. In the experiments reported here, we pre-
dict item views. In our previous research on the topic (Jannach and Ludewig,
2017), we also made experiments in which we focused on the prediction of
purchase events. In these experiments, the ranking of the algorithms was sim-
ilar for the item prediction and the purchase prediction tasks. However, some
previous research suggests that view-based collaborative filtering algorithms
lead to sometimes quite different recommendations than purchase-based ones
and also differ in their effectiveness (Lee and Hosanagar, 2014). In general,
the choice of the prediction target should therefore be made with the goal of
the recommender in mind, e.g., increase user attention and click-through-rates
vs. increasing sales, see, e.g., (Jannach and Hegelich, 2009).

Publications

Evaluation of Session-based Recommendation Algorithms 29

5.1.83 Coverage and Popularity Bias

The results listed in Table 3a to Table 3d show that in terms of the coverage
(or: aggregate diversity), the factorization-based methods consistently lead
to the highest values, i.e., they place the largest number of different items
into the top-n lists of the users. GRU4REC represents in all datasets, except
RETAILR, the other extreme and seems to focus its recommendations on a
comparably narrow range of items. In particular in the case of the TMALL
dataset, the coverage of the item space of GRU4REC is as low as 0.15, i.e., the
top-20 recommendations for all given sessions in the test set cover only 15 % of
the available items. To what extent low coverage is undesired, again depends
on the specific application domain.

Not many consistent patterns can be identified with regard to the popular-
ity biases of the different algorithms. BPR-MF, as was previously discussed by
Jannach et al. (2015b), has a comparably strong tendency to focus on generally
popular items. Our newly proposed SMF method exhibits a similar tendency
across all datasets. The FPMC method usually represents the other end of the
spectrum. The tendency of the many of the other algorithms to recommend
popular items seems to strongly depend on the dataset characteristics. Ac-
cording to our previous work (Jannach and Ludewig, 2017), the basic SKNN
method tends to recommend slightly more popular items than GRU4REC. In
this new series of measurements, this is, however, not consistently the case
across the datasets.

5.2 Media Datasets

Table 5, Table 6, and Table 7 show the results for the music and news domains,
respectively.

Accuracy The accuracy results generally exhibit similar patterns as the results
obtained for the e-commerce datasets. For these datasets, however, the winning
strategy more strongly depends on the chosen measure. When the MRR is used
as a performance measure, often the trivial baselines SR or AR lead to the best
results. In terms of the hitrate, in contrast, usually one of the nearest neighbor
methods again performs best.

With respect to the MRR measure also GRU4REC exhibited very compet-
itive performance, except for the STRACKS and AOTM datasets, where the
highest MRR values were achieved with the AR and the SKNN method. Look-
ing at the playlist datasets (8TRACKS and AOTM), the comparably good
results of the sequence-agnostic AR and SKNN strategy indicate that the or-
dering of the tracks is not too important for the playlist creators. Among
the neighborhood-based methods, V-SKNN was again consistently among the
top-performing methods. When looking at the standard precision and recall
measurements for the five best-performing approaches in Table 6, we can see

Publications

181

182

30 Malte Ludewig, Dietmar Jannach

Table 5: Hit rate (HR), Mean reciprocal rank (MRR), catalog coverage (COV),
and the average popularity (POP) for a list length of 20 tested on the music
datasets (Table 5a to 5d). The tables show the top ten algorithms ordered by
MRR@20. Again, the best results are highlighted and significant differences
are marked with a star.

(a) NOWPLAYING (b) STRACKS

Metrics MRR@20 HR@Q20 COV@20 POP@20 Metrics MRR@20 HR@20 COV@20 POP@20

SR 0.105 0.203 0.466 0.025 AR *0.0071 0.0255 0.4529 0.0912
GRU4REC 0.102 0.197 0.433 0.052 sMmF 0.0064 0.0230 0.1527 0.0864
MC 0.097 0.158 0.294 0.028 Sr 0.0063 0.0170 0.4967 0.0531
SF-SKNN 0.095 0.165 0.277 0.031 SF-SKNN 0.0063 0.0118 0.3049 0.0362
SMF 0.088 0.183 0.242 0.092 V-SKNN 0.0057 0.0352 0.4080 0.1194
V-SKNN 0.078 0.255 0.428 0.064 S-KNN 0.0053 *0.0375 0.2430 0.1079
S-SKNN 0.078 *0.262 0.415 0.062 IKNN 0.0050 0.0176 0.6956 0.0245
AR 0.071 0.208 0.453 0.051 GRU4REC 0.0050 0.0189 0.0692 0.1222
S-KNN 0.069 0.243 0.301 0.069 S-SKNN 0.0047 0.0293 0.4509 0.0806
IKNN 0.057 0.182 0.580 0.029 mc 0.0046 0.0098 0.3496 0.0320
(c) 30MUSIC (d) AOTM

Metrics MRR@20 HR@Q20 COV@20 POP@20 Metrics MRR@20 HR@20 COV@20 POPQ@20

SR *0.238 0.332 0.389 0.023 sMmF 0.0111 0.0297 0.2456 0.1998
MC 0.232 0.284 0.204 0.021 SF-SKNN 0.0110 0.0144 0.3558 0.0508
GRU4REC 0.226 0.326 0.345 0.056 Sr 0.0076 0.0195 0.5864 0.0533
SF-SKNN 0.208 0.286 0.185 0.022 GRU4REC 0.0071 0.0156 0.4652 0.1151
SMF 0.178 0.284 0.151 0.105 mc 0.0063 0.0132 0.3803 0.0497
V-SKNN 0.110 0.382 0.317 0.054 AR 0.0059 0.0233 0.5531 0.1049
IKNN 0.109 0.297 0.460 0.023 V-SKNN 0.0054 0.0377 0.5362 0.1397
S-SKNN 0.108 *0.386 0.293 0.052 S-SKNN 0.0054 0.0397 0.5356 0.1289
AR 0.096 0.309 0.352 0.039 S-KNN 0.0053 *0.0429 0.2802 0.1677
S-KNN 0.090 0.344 0.191 0.057 IKNN 0.0049 0.0186 0.7879 0.0472

Table 6: Precision (P@20) and Recall (R@Q20) for the music datasets. The
results are ordered by P@Q20 for 8TRACKS, which represents the largest music
dataset in our evaluation.

Dataset LFM 8TRACKS 30MUSIC AOTM
Metric P@20 R@20 P@20 R@20 P@20 R@20 P@20 R@20

V-SKNN 0.0717 0.1909 0.0122 0.0308 0.1094 0.2321 0.0133 0.0361

SKNN 0.0680 0.1824 0.0117 0.0313 0.1035 0.2140 0.0155 0.0440
SMF 0.0499 0.1453 0.0086 0.0218 0.0746 0.1655 0.0084 0.0259
SR 0.0501 0.1465 0.0055 0.0140 0.0878 0.2010 0.0053 0.0146

GRU4REC 0.0272 0.0810 0.0037 0.0095 0.0404 0.0988 0.0010 0.0027

that V-SKNN is the winning strategy across all datasets and that GRU4REC is
again less effective for this particular measurement.

Finally, looking at the news domain, the average results shown in Table
7 in general confirm the trends observed for the other datasets. The V-SKNN
method is top-performing on almost all measures. GRU4REC also works com-
parably well on this dataset, especially on the precision and recall measures.
Again, however, we can also observe a comparably low level of coverage and

Publications

Evaluation of Session-based Recommendation Algorithms 31

Table 7: Hit rate (HR), Mean reciprocal rank (MRR), Precision (P), Recall
(R), item coverage (COV), and average popularity (POP) results for a list
length of 20 on the CLEF dataset (ordered by MRR@20).

Metrics MRR@20 HR@20 COV@20 POP@20 P@20 R@20

SMF 0.234 0.706 0.650 0.083 0.062 0.527
V-SKNN 0.224 0.776 0.621 0.083 0.068 0.584
SR 0.223 0.672 0.655 0.093 0.058 0.502
GRU4REC 0.220 0.568 0.174 0.094 0.072 0.626
S-KNN 0.219 0.778 0.613 0.084 0.066 0.577
1072
T T T T T 4 77 T i T =
5| \ |
0.2 |
0.1 | 1 \ |
| | | | | (O i i 1 1
20 15 10 5 0 20 15 10 5 0
List length List length
— SKNN V-SKNN — SKNN V-SKNN
——— GRU4REC SR ——— GRU4REC SR
(a) NOWPLAYING (b) STRACKS

Fig. 6: Hit rate (HR) for two of the music datasets when reducing the result
list length from 20 to 1.

a comparably high tendency to recommend popular items. In contrast to all
other domains and datasets however, when looking at the results of the indi-
vidual splits for the CLEF dataset, we could observe that those are subject to
large fluctuations. Depending on the day that was chosen for testing, the rank-
ing of the algorithms in terms of the accuracy measures changes drastically,
which we could not observe for any other dataset.

As mentioned in Section 4, we conducted additional single split experi-
ments to ensure that the reduced amount of training data in the sliding win-
dow protocol does not affect the performance of the model-based approaches.
The single-split results in Appendix D reveal GRU4REC as the best-performing
approach for this particular dataset, which was also the case for two of the
individual splits. Thus, even though such large fluctuations did only occur in
the news domain, this is an indicator that applying a single-split evaluation
protocol can easily lead to “random” and misleading results.

The effects when considering different list lengths for two of the datasets is
shown in Figure 6a (NOWPLAYING) and Figure 6b (§8TRACKS). In contrast
to the e-commerce datasets, the relative ranking of the algorithms even changes
when the list lengths become shorter. For both datasets, the GRU4REC method
and the very simple AR and SR methods, respectively, are better in terms of the
hit rate when it comes to very short list lengths. Considering the good results

Publications

183

184

32 Malte Ludewig, Dietmar Jannach

T T T T 0.35 T T T T
i \ 1 o3 /‘J .
- 1 02 2

[\V] w >
T T
|

T

T
L1

60 40 20 0 60 40 20 0
Time in days Time in days
—— SKNN V-SKNN ——— SKNN V-SKNN
—— GRU4REC SR ——— GRU4REC SR
(a) 8TRACKS (b) NOWPLAYING

Fig. 7: HR@20 for two music datasets when incrementally reducing the size of
the training set to 1 day.

for the MRR for these methods (Table 5a and Table 5b), this was expected.
Again, the good performance of certain methods can be explained by the fact
that these methods are optimized to predict the immediate next item of a
given session.

Cold-Start and Sparsity Effects An interesting effect can be observed when
older data is discarded to simulate sparsity effects. Figure 7a and Figure 7b
show the results for the STRACKS and NOWPLAYING datasets, respec-
tively.'®> While for the STRACKS playlist dataset the accuracy values more
or less consistently decrease when older data is discarded, we can observe
an increase in accuracy for the NOWPLAYING dataset. Remember that this
dataset is based on the analysis of user posts on T'witter about their current lis-
tening behavior. Obtaining the highest accuracy values when only considering
the very last days means that this dataset is strongly dominated by short-term
popularity trends and that the recommendation of older, non-trending tracks
is detrimental to the accuracy results.

Coverage and Popularity Bias In terms of coverage (see Table 5), the findings
for datasets from the media domain are also mostly in line with those for the
e-commerce datasets. The ranking of the algorithms varies largely across the
datasets. The differences are, however, often less pronounced. Regarding the
popularity tendency of the algorithms, methods that are based on pairwise
sequences (SR and MC) in most cases lead to the recommendation of lesser
known items, while nearest-neighbor-based techniques quite often focus on
the recommendation of comparably popular objects.

15 The other media datasets did not exhibit any notable particularities.

Publications

Evaluation of Session-based Recommendation Algorithms 33

Table 8: Overview of Computation Times and Memory Requirements for the
RSC15-S dataset and the first split of the STRACKS dataset, ordered in terms
of required training times for the RSC15-S dataset.

Dataset RSC15-S 8TRACKS

Technique/Metric ~ Train. (min) Pred. (ms) Mem. (MB) Train. Pred. Mem.
MC 0.77 3.34 38 0.05 14.71 144
S-KNN 1.24 33.05 6051 0.04 52.96 353
S-SKNN 1.26 30.26 6051 0.05 51.01 353
V-SKNN 1.30 32.67 6051 0.04 52.43 353
SF-SKNN 1.72 29.82 6254 0.06 18.82 493
SR 2.41 3.14 54 0.18 15.88 284
AR 3.00 3.36 40 0.28 15.79 257
FISM 356.84 8.40 4937 35.07 60.72 387
GRU4REC (GPU) 385.35 7.43 59 19.08 58.08 588
BPR-MF 392.60 8.37 8009 42.69 65.15 771
sMF (GPU) 446.66 14.02 1640 77.50 43.36 1805
FPMC 469.39 9.08 6786 60.92 71.58 1302
FOSSIL 499.19 10.56 4987 50.99 64.91 582

5.3 Computational Complexity & Memory Usage

The methods included in our comparison vary largely in terms of the computa-
tional complexity and their memory requirements. Since neighborhood-based
methods do not scale well when applied in a naive manner, we used imple-
mentation variants that rely on neighborhood sampling and specific in-memory
data structures. The comparison of SKNN method and GRU4REC in (Jannach
and Ludewig, 2017) showed that, with such an implementation, recommen-
dations can be quickly computed at prediction time with nearest neighbor
methods, even though the prediction performance of model-based techniques
like GRU4REC could not be achieved.

To enable comparability with previous research (Jannach and Ludewig,
2017), we report the running times and memory demands for the single-split
RSC15-S dataset, which is also the largest one in terms of the recorded user
actions. Additionally, we include the 8TRACKS dataset, which is rather small
compared to RSC15-S in terms of the number of events, but has the largest
product catalog of all datasets. Table 8 shows the times required for training
the model (if applicable), the time needed to compute a recommendation at
prediction time, and the memory requirements for the internal data struc-
tures. The reported results were obtained when using an Intel Core i7 4790K
processor with 32GB of DDR3-1600 memory and a Nvidia GeForce GTX 960
graphics card with 2GB of memory. The following observations can be made.

Running Times The simple methods in our comparative evaluation need from
less than one to about three minutes of “training” (e.g., co-occurrence counting
or in-memory data structure setup) for the RSC15-S dataset. The factorization-
based methods and the deep learning based method, on the other hand, need
about 6 to 8 hours to learn a model for the single data split. Note that while
the deep learning method GRU4REC and the factorization-based approach SMF

Publications 185

186

34 Malte Ludewig, Dietmar Jannach

do not take the longest absolute time in this comparison, they are the only
method for which the computations are done on the GPU. Running GRU4REC,
for example, on a CPU tripled the computation times according to the mea-
surements in (Jannach and Ludewig, 2017).

Looking at the times needed to compute a single recommendation list,
given a session beginning, we can observe that the simple rule-based methods
AR, MC, and SR are among the fastest ones with prediction times at about 3
ms for the RSC15-5 dataset. The factorization-based methods and GRU4REC
are also very efficient, with prediction times mostly below 10 ms on average.
The nearest-neighbor methods are slower for this task as they have to consider
the neighbors in the prediction process. Since the neighbors can be determined
through fast lookup operations, the overall prediction time even for the more
elaborate S-SKNN and V-SKNN similarity schemes never exceeds 33 ms for cre-
ating a recommendation list.

Looking at the 8TRACKS dataset with its large number of items, we
can, however, see that the prediction times for many algorithms, including
GRU4REC and several of the factorization-based ones significantly increase,
while the prediction time for the neighborhood models only doubles. In the
end, making the neighborhood-based computations is at least as fast as com-
puting the predictions based on the offline-trained models. Overall, due to the
used in-memory data structures and through the neighborhood sampling ap-
proach, such neighborhood models are also suited under the narrow time con-
straints of real-time recommendations. Differently from other methods, newly
arriving interaction signals can be easily included in the underlying model
without re-training (Jugovac et al., 2018).

Memory Requirements In terms of the memory requirements, the rule-based
methods AR, MC, and SR that basically record item co-occurrences of size
two require the least memory, i.e., below 100 megabytes. Also the memory
demands of GRU4REC are very low in this comparison, and GRU4REC occupies
only about 60 MB of memory on the graphics card for the RSC15-S dataset.
The factorization-based methods and the neighborhood methods, in contrast,
have substantially higher memory requirements. The lookup data structures of
the neighborhood-based methods, for example, in our implementation occupy
about 6 GB of memory. When additional recency-based sampling is applied,
which according to the analyses above does not hurt accuracy, these demands
could, however, be substantially lowered.

For some algorithms, the memory requirements largely depend on the char-
acteristics of the datasets. Looking at the numbers for the STRACKS dataset,
which covers over 300,000 different items (in contrast to the about 30,000 of the
RSC15 dataset), we see that in particular the memory demand of GRU4REC
substantially increases with the number of items. As a result, GRU4REC’s net-
work even needs more memory than neighborhood-based methods for this
dataset. Given these observations it seems promising to implement additional
data sampling strategies within the more complex methods—as we did for the
nearest neighbor methods—to decrease their computational demands.

Publications

Evaluation of Session-based Recommendation Algorithms 35

6 Conclusion and Future Directions
6.1 Summary of Main Insights

Being able to predict the user’s short-term interest in an online session is a
highly relevant problem in practice, which has raised increased interest also in
the academic field in recent years. Even though a number of different algorith-
mic approaches were proposed over the years, no standard benchmark datasets
and baseline algorithms exist today. In this work, we have compared a num-
ber of very recent and computationally complex algorithms for session-based
recommendation with more light-weight approaches based, e.g., on session
neighborhoods. The experimental analyses on a number of different datasets
show that in many cases one of the simpler methods is able to outperform
even the most recent methods based on recurrent neural networks in terms
of the prediction accuracy. At the same time, the computational demands of
these methods can be kept comparably low when using in-memory cache data
structures and data sampling.

Overall, the results, therefore, indicate that additional research is required
with respect to the development of sophisticated models that are more flexi-
ble in terms of how much sequential information is contained in the training
data. This is in particular the case as several improvements for the nearest-
neighbor methods can be imagined as well. In this work, we could for example
observe that already using a different similarity measure, as done in the Vv-
SKNN method, can lead to substantial performance improvements for different
datasets. As a side result, we noticed that using the latent feature vectors
of the items of the current session for sequential factorization-based methods
does not lead to high accuracy values and that such methods are usually not
strong baselines when comparing session-based algorithms.

Currently, constantly new deep learning-based algorithms for session-based
recommendation are proposed, e.g., (Liu et al., 2018) and (Li et al., 2018),
which, for example, report improvements over GRU4REC. We performed an
initial evaluation of the STAMP method proposed in (Liu et al., 2018). Our
first results indicate that STAMP does not outperform the trivial SR technique
in terms of the MRR on the Diginetica dataset that was used for the evaluation
in (Liu et al., 2018). The STAMP method, however, seems to be advantageous
in terms of the hit rate for this particular dataset.

Generally, it is of course surprising that a recent and popular RNN-based
method is not substantially better than longer-existing nearest neighbor ap-
proaches. We believe that this might be a result of the fact that for the specific
task of session-based recommendation no “standard” existed so far with re-
spect to baseline techniques and evaluation protocols. With this work, our aim
is to contribute better baselines to benchmark session-based algorithms in the
future. A limitation of our work in some sense is that we could not identify one
best baseline method across all settings and datasets. While we would identify
at least one very-well performing simpler method for each dataset, the relative

Publications

187

188

36 Malte Ludewig, Dietmar Jannach

performance of the algorithms seems depend on a number of factors, which
are not yet fully understood.

Nevertheless, as the simple baseline approaches AR, SR, and S-KNN are
computationally cheap and easy to test, their results obtained for a given
dataset can potentially be used as an indicator for the general characteristics
that a more complex model should aim to implement. If it, for example, turns
out that SR is the best performing baseline method, GRU4REC, an extension
to GRU4REC or a different sequential model might probably be a good choice.
In contrast, a good performance of S-KNN indicates that a more sophisticated
model should not necessarily focus too much on the order of the items in a
session.

6.2 Future Directions

From an algorithmic perspective, we believe that future complex models should
consider more than the last event in a session when making the next-item pre-
diction. Even in GRU4REC, the previous items of a session are only considered
implicitly through the hidden states in the prediction process. Our neighbor-
hood models are in most cases much better when they consider all events in
a session, albeit with a focus on the most recent interactions. In that context
and in particular for longer sessions, it might also be helpful to detect interest
changes that happen within an individual session. This could, for example be
achieved by considering semantic information (e.g., meta-data or content fea-
tures) about the items of the session, as was done, for example, in (Hariri et al.,
2012) or (Hidasi et al., 2016b). Recent advances in the area of deep learning
might be particularly helpful in this context to extract such content features,
e.g., from text, images, or videos, and to use this information in hybrid ap-
proaches. Furthermore, the work in this paper focused on item-view events and
more research is required to understand how to leverage other types of user
actions like “add-to-wishlist” or “add-to-cart” in the learning and prediction
process. With that information at hand, also other types of prediction prob-
lems can be addressed, e.g., whether or not a session will lead to a purchase
or if there is a high probability that the user will abandon the session.

Going beyond the current session, more research also seems required in
the area of session-aware recommendation and the consideration of previous
sessions of the current user. Open questions in this area are, for example,
how to model general long-term user preferences (e.g., towards certain brands
in e-commerce), how to detect user-individual preference drifts, or how to
identify a subset of past sessions that are good predictors for the current one.
This latter aspect was for example explored in (Lerche et al., 2016) in the
context of using recommendations as reminders. In addition, more elaborate
strategies than static weighting schemes can be envisioned when combining
short-term and long-term models. The importance weights, could for example
be determined based on the length of the current session or the specific items
that were considered.

Publications

Evaluation of Session-based Recommendation Algorithms 37

Besides the consideration of signals at the individual user level, future re-
search might also explore the incorporation of additional contextual factors or
short-term trends in the community as a whole, when predicting the relevance
of individual items. Recent works (Tan et al., 2016; Jannach and Ludewig,
2017; Jannach et al., 2017b) for example showed that considering short-term
popularity trends and recency effects can lead to significant performance im-
provements in the e-commerce domain. Item recency (freshness) also plays a
particular role in other domains such as music and news recommendation, and
more work is required to understand how to integrate these aspects in today’s
recommendation algorithms.

Finally, since the relative performance of the different algorithms tested
in our work sometimes varies across different datasets, more research is re-
quired to understand in which situations certain algorithms are better suited
than others. These insights can then be further used to inform the design of
hybrid recommendation approaches, which have shown to lead to the highest
recommendation accuracy for session-based recommendation also in (Jannach
and Ludewig, 2017). Generally, many factors can influence the performance
of a certain recommendation algorithm. Adomavicius and Zhang (2012) have,
for example, made a number of important analyses aiming to relate dataset
characteristics, e.g., rating distributions and dataset sizes, with prediction ac-
curacy. In the context of session-based recommendation problems, additional
factors may have an influence, for example, the existence and strength of the
sequential patterns that can be found in the data. Furthermore, often domain-
specific aspects like item freshness and general item popularity might play
important roles and should be further explored in future research.

References

Gediminas Adomayvicius and YoungOk Kwon. Improving aggregate recommen-
dation diversity using ranking-based techniques. IEEE Trans. on Knowl.
and Data Eng., 24(5):896-911, May 2012.

Gediminas Adomavicius and Jingjing Zhang. Impact of data characteristics
on recommender systems performance. ACM Trans. Manage. Inf. Syst., 3
(1):3:1-3:17, 2012.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules
between sets of items in large databases. In SIGMOD 93, pages 207216,
1993.

Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and Beverly Harrison. Pre-
dicting the next app that you are going to use. In WSDM ’15, pages 285294,
2015.

Daniel Billsus, Michael J. Pazzani, and James Chen. A learning agent for
wireless news access. In TUI ’00, pages 33-36, 2000.

Geoffray Bonnin and Dietmar Jannach. Automated generation of music
playlists: Survey and experiments. Computing Surveys, 47(2):26:1-26:35,
November 2014.

Publications

189

190

38 Malte Ludewig, Dietmar Jannach

Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten Joachims. Playlist
prediction via metric embedding. In KDD 12, pages 714-722, 2012.

Shuo Chen, Jiexun Xu, and Thorsten Joachims. Multi-space probabilistic
sequence modeling. In KDD ’13, pages 865-873, 2013.

Chen Cheng, Haiqin Yang, Michael R. Lyu, and Irwin King. Where you like to
go next: Successive point-of-interest recommendation. In IJCAI ’13, pages
26052611, 2013.

Kyunghyun Cho, Bart van Merriénboer, Caglar Giilgehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder—decoder for statistical machine translation.
In EMNLP ’14, pages 1724-1734, October 2014.

Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Data preparation
for mining world wide web browsing patterns. Knowledge and Information
Systems, 1(1):5-32, 1999.

Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram.
Google news personalization: Scalable online collaborative filtering. In Pro-
ceedings of the 16th International Conference on World Wide Web, WWW
‘07, pages 271-280, 2007.

James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor
Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Liv-
ingston, and Dasarathi Sampath. The youtube video recommendation sys-
tem. In RecSys ’10, pages 293-296, 2010.

Robin Devooght and Hugues Bersini. Long and short-term recommendations
with recurrent neural networks. In UMAP ’17, pages 1321, 2017.

Nemanja Djuric, Vladan Radosavljevic, Mihajlo Grbovic, and Narayan
Bhamidipati. Hidden conditional random fields with deep user embeddings
for ad targeting. In ICDM ’14, pages 779-784, 2014.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. Recurrent marked temporal point processes: Em-
bedding event history to vector. In KDD ’16, pages 1555-1564, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. J. Mach. Learn. Res., 12:
2121-2159, July 2011.

Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and
Quan Yuan. Personalized ranking metric embedding for next new POI rec-
ommendation. In IJCAI ’15, pages 2069-2075, 2015.

Florent Garcin, Christos Dimitrakakis, and Boi Faltings. Personalized news
recommendation with context trees. In RecSys ’13, pages 105-112, 2013.
Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidi-
pati, Jaikit Savla, Varun Bhagwan, and Doug Sharp. E-commerce in your
inbox: Product recommendations at scale. In KDD ’15, pages 1809-1818,

2015.

Negar Hariri, Bamshad Mobasher, and Robin Burke. Context-aware music
recommendation based on latent topic sequential patterns. In RecSys 12,
pages 131-131, 2012.

Publications

Evaluation of Session-based Recommendation Algorithms 39

Jing He, Xin Li, Lejian Liao, Dandan Song, and William Cheung. Inferring a
personalized next point-of-interest recommendation model with latent be-
havior patterns. In AAAI ’16, 2016.

Qi He, Daxin Jiang, Zhen Liao, Steven C. H. Hoi, Kuiyu Chang, Ee-Peng Lim,
and Hang Li. Web query recommendation via sequential query prediction.
In ICDE 09, pages 1443-1454, 2009.

Ruining He and Julian McAuley. Fusing similarity models with markov chains
for sparse sequential recommendation. CoRR, abs/1609.09152, 2016. URL
https://arxiv.org/abs/1609.09152.

Balazs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with
top-k gains for session-based recommendations. CoRR, abs/1706.03847,
2017. URL http://arxiv.org/abs/1706.03847.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based recommendations with recurrent neural networks. In ICLR
’16, 2016a.

Baldzs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos
Tikk. Parallel recurrent neural network architectures for feature-rich session-
based recommendations. In RecSys 16, pages 241-248, 2016b.

Mehdi Hosseinzadeh Aghdam, Negar Hariri, Bamshad Mobasher, and Robin
Burke. Adapting recommendations to contextual changes using hierarchical
hidden markov models. In RecSys 15, pages 241244, 2015.

Dietmar Jannach and Gediminas Adomavicius. Recommendations with a pur-
pose. In RecSys ’16, pages 7-10, 2016.

Dietmar Jannach and Kolja Hegelich. A case study on the effectiveness of
recommendations in the mobile internet. In RecSys 09, pages 205208,
20009.

Dietmar Jannach and Malte Ludewig. When recurrent neural networks meet
the neighborhood for session-based recommendation. In RecSys 17, pages
306-310, 2017.

Dietmar Jannach, Lukas Lerche, and Michael Jugovac. Adaptation and eval-
uation of recommendations for short-term shopping goals. In RecSys ’15,
pages 211-218, 2015a.

Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac.
What recommenders recommend: an analysis of recommendation biases and
possible countermeasures. User Modeling and User-Adapted Interaction, 25
(5):427-491, 2015b.

Dietmar Jannach, Iman Kamehkhosh, and Lukas Lerche. Leveraging multi-
dimensional user models for personalized next-track music recommendation.
In ACM SAC 2017, 2017a.

Dietmar Jannach, Malte Ludewig, and Lukas Lerche. Session-based item rec-
ommendation in e-commerce: On short-term intents, reminders, trends, and
discounts. User-Modeling and User-Adapted Interaction, 27(3-5):351-392,
2017b.

Michael Jugovac, Dietmar Jannach, and Mozhgan Karimi. StreamingRec:
A Framework for Benchmarking Stream-based News Recommenders. In
RecSys 2018, 2018.

Publications

191

192

40 Malte Ludewig, Dietmar Jannach

Santosh Kabbur, Xia Ning, and George Karypis. FISM: Factored item simi-
larity models for top-n recommender systems. In KDD ’13, pages 659-667,
2013.

Iman Kamehkhosh, Dietmar Jannach, and Malte Ludewig. A comparison of
frequent pattern techniques and a deep learning method for session-based
recommendation. In TempRec Workshop at ACM RecSys ’17, Como, Italy,
2017.

Mozhgan Karimi, Dietmar Jannach, and Michael Jugovac. News recommender
systems - survey and roads ahead. Information Processing and Management,
2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.
6980.

Dokyun Lee and Kartik Hosanagar. Impact of recommender systems on sales
volume and diversity. In ICIS 2014, 2014.

Lukas Lerche, Dietmar Jannach, and Malte Ludewig. On the value of re-
minders within e-commerce recommendations. In UMAP ’16, pages 2735,
2016.

Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, and Enhong Chen.
Learning from History and Present: Next-item Recommendation via Dis-
criminatively Exploiting User Behaviors. In KDD 2018, 2018.

Defu Lian, Vincent W. Zheng, and Xing Xie. Collaborative filtering meets
next check-in location prediction. In WWW ’13, pages 231-232, 2013.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76-80,
January 2003.

Jiahui Liu, Peter Dolan, and Elin Rgnby Pedersen. Personalized news recom-
mendation based on click behavior. In IUI ’10, pages 31-40, 2010.

Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. STAMP: Short-Term
Attention/Memory Priority Model for Session-based Recommendation. In
KDD 2018, 2018.

Yanchi Liu, Chuanren Liu, Bin Liu, Meng Qu, and Hui Xiong. Unified point-
of-interest recommendation with temporal interval assessment. In KDD ’16,
pages 1015-1024, 2016.

Cornelius A. Ludmann. Recommending news articles in the CLEF news
recommendation evaluation lab with the data stream management system
odysseus. In Working Notes of CLEF 2017 - Conference and Labs of the
Evaluation, 2017.

Brian Mcfee and Gert Lanckriet. The natural language of playlists. In ISMIR
’11, pages 537-541, 2011.

Brian McFee and Gert R. G. Lanckriet. Hypergraph models of playlist dialects.
In ISMIR ’12, pages 343-348, 2012.

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. Using se-
quential and non-sequential patterns in predictive web usage mining tasks.
In ICDM 02, pages 669—672, 2002.

Publications

Evaluation of Session-based Recommendation Algorithms 41

Omar Moling, Linas Baltrunas, and Francesco Ricci. Optimal radio channel
recommendations with explicit and implicit feedback. In RecSys ’12, pages
75-82, 2012.

Nagarajan Natarajan, Donghyuk Shin, and Inderjit S. Dhillon. Which app will
you use next?: Collaborative filtering with interactional context. In RecSys
’13, pages 201-208, 2013.

J.R. Norris. Markov Chains. Cambridge University Press, Cambridge, 1997.

Massimo Quadrana, Alexandros Karatzoglou, Balazs Hidasi, and Paolo Cre-
monesi. Personalizing session-based recommendations with hierarchical re-
current neural networks. In RecSys 17, 2017.

Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware
recommender systems. ACM Computing Surveys, 54:1-36, 2018.

Siddharth Reddy, Igor Labutov, and Thorsten Joachims. Learning student
and content embeddings for personalized lesson sequence recommendation.
In ACM Learning @ Scale ’16, pages 93-96, 2016.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In
UAI ’09, pages 452-461, 2009.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factoriz-
ing personalized markov chains for next-basket recommendation. In WWW
’10, pages 811-820, 2010.

Guy Shani, David Heckerman, and Ronen I. Brafman. An MDP-based recom-
mender system. J. Mach. Learn. Res., 6:1265-1295, 2005.

Harold Soh, Scott Sanner, Madeleine White, and Greg Jamieson. Deep se-
quential recommendation for personalized adaptive user interfaces. In IUI
’17, pages 589-593, 2017.

Qiang Song, Jian Cheng, Ting Yuan, and Hanqing Lu. Personalized recom-
mendation meets your next favorite. In CIKM ’15, pages 1775-1778, 2015.

Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. Multi-rate deep learning
for temporal recommendation. In SIGIR ’16, pages 909-912, 2016.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob
Grue Simonsen, and Jian-Yun Nie. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In CIKM ’15, pages 553-562,
2015.

Yukihiro Tagami, Hayato Kobayashi, Shingo Ono, and Akira Tajima. Model-
ing user activities on the web using paragraph vector. In WWW 15, pages
125-126, 2015.

Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved Recurrent Neural
Networks for Session-based Recommendations. In DLRS ’16 Workshop at
ACM RecSys, pages 17-22, 2016.

Maryam Tavakol and Ulf Brefeld. Factored mdps for detecting topics of user
sessions. In RecSys ’14, pages 33—40, 2014.

Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and
Paolo Cremonesi. 30music listening and playlists dataset. In Poster Pro-
ceedings of RecSys ’15, 2015.

Publications

193

194

42 Malte Ludewig, Dietmar Jannach

Bartlomiej Twardowski. Modelling contextual information in session-aware
recommender systems with neural networks. In RecSys ’16, pages 273-276,
2016.

Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec: Prod-
uct embeddings using side-information for recommendation. In RecSys ’16,
pages 225-232, 2016.

Koen Verstrepen and Bart Goethals. Unifying nearest neighbors collaborative
filtering. In RecSys ’14, pages 177-184, 2014.

Xiang Wu, Qi Liu, Enhong Chen, Liang He, Jingsong Lv, Can Cao, and Guop-
ing Hu. Personalized next-song recommendation in online karaokes. In
RecSys 13, pages 137-140, 2013.

Ghim-Eng Yap, Xiao-Li Li, and Philip S. Yu. Effective next-items recommen-
dation via personalized sequential pattern mining. In DASFAA ’12, Volume
Part I, pages 48-64, 2012.

Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. A dynamic
recurrent model for next basket recommendation. In SIGIR ’16, pages 729—
732, 2016.

Eva Zangerle, Martin Pichl, Wolfgang Gassler, and Giinther Specht. #Now-
playing Music Dataset: Extracting Listening Behavior from Twitter. In
WISMM 14 Workshop at MM ’1, pages 21-26, 2014.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012. URL http://arxiv.org/abs/1212.5701.

Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian,
Bin Wang, and Tie-Yan Liu. Sequential click prediction for sponsored search
with recurrent neural networks. In AAAT ’1, pages 13691375, 2014.

Elena Zheleva, John Guiver, Eduarda Mendes Rodrigues, and NataSa Mili¢-
Frayling. Statistical models of music-listening sessions in social media. In
WWW ’10, pages 1019-1028, 2010.

Author Biographies

Malte Ludewig is a PhD candidate in Computer Science at TU Dortmund,
Germany, from where he also received his MSc degree. His research inter-
ests lie in the field of recommender systems—with a focus on session-based
recommendations—and personalization in e-commerce environments in gen-
eral.

Dietmar Jannach is a Professor of Computer Science at AAU Klagenfurt,
Austria, and head of the department’s information systems research group.
Dr. Jannach has worked on different areas of artificial intelligence, including
recommender systems, model-based diagnosis, and knowledge-based systems.
He is the leading author of a textbook on recommender systems and has au-
thored more than hundred research papers, focusing on the application of
artificial intelligence technology to practical problems.

Publications

Evaluation of Session-based Recommendation Algorithms 43

A Parameter Configurations

Table 9: Parameters for algorithm GRU4REC for all datasets.

Dataset layer_size objective Ir momentum drop-out
RSC15 100 BPRmax 0.20 0.5 0.0
TMALL 100 TOPlpmax 0.05 0.0 0.3
RETAILROCKET 100 TOPlpax 0.15 0.3 0.0
8TRACKS 100 TOPlpax 0.10 0.0 0.7
AOTM 100 BPRmax 0.10 0.3 0.1
NOWPLAYING 100 BPRmax 0.10 0.5 0.1
30MUSIC 100 TOPlpaq 0.10 0.1 0.1
ZALANDO 100 BPRmax 0.20 0.1 0.1
CLEF 100 TOPlpax 0.20 0.2 0.5
LASTFM 100 BPRuax 0.15 0.4 0.3

Table 10: Parameters used for the SMF algorithm for all datasets.

Dataset layer_size objective Ir momentum drop_-out skip
RSC15 100 TOPlpax 0.085 0.2 0.30 0.00
TMALL 100 BPRmax 0.015 0.6 0.00 0.00
RETAILROCKET 100 BPRpyax 0.045 0.1 0.40 0.20
8TRACKS 100 TOPlpax 0.010 0.5 0.30 0.35
AOTM 100 BPRpyax 0.090 0.8 0.40 0.20
NOWPLAYING 100 TOPlpax 0.055 0.2 0.40 0.20
30MUSIC 100 TOPlpax 0.100 0.1 0.20 0.20
ZALANDO 100 TOPlpax 0.030 0.3 0.25 0.00
CLEF 100 BPRpyax 0.050 0.0 0.40 0.25
LASTFM 100 TOPlpmax 0.015 0.3 0.15 0.45

Table 11: Parameters used for the Table 12: Parameters used for the
V-SKNN algorithm for all datasets. SKNN, S-SKNN, and SF-SKNN algo-
rithm for all datasets.

Dataset K samples
RSC15 200 2000 Dataset K samples
TMALL 200 2000
RETAILROCKET 200 2000 RSC15 500 1000
ZALANDO 200 2000 TMALL 100 500
RETAILROCKET 100 500
STRACKS 200 2000
ZALANDO 100 500
AOTM 200 2000 STRACKS 100 500
NOWPLAYING 100 1000
30MUSIC 100 1000 AQTM 100 500
NOWPLAYING 100 500
CLEF 100 1000
ASTEM 500 ooy 30MUSIC 100 500
CLEF 100 500
LASTFM 100 500

Publications 195

44 Malte Ludewig, Dietmar Jannach

B Full Result Tables

Table 13: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the RSC15 dataset (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOovaz20 POP@20 MRR@10 HRQ@10 covalio POP@10

GRU4REC 0.308 0.683 0.504 0.054 0.301 0.591 0.431 0.058
SR 0.304 0.653 0.668 0.072 0.298 0.569 0.592 0.073
SMF 0.302 0.666 0.565 0.055 0.295 0.575 0.486 0.058
0.300 0.642 0.645 0.070 0.295 0.562 0.584 0.071

0.289 0.636 0.630 0.093 0.283 0.550 0.548 0.091

0.283 0.653 0.619 0.079 0.277 0.563 0.534 0.081

0.272 0.602 0.655 0.072 0.267 0.531 0.543 0.077

0.270 0.589 0.619 0.066 0.266 0.524 0.545 0.074

0.266 0.621 0.634 0.073 0.259 0.526 0.520 0.078

IKNN 0.208 0.486 0.755 0.041 0.203 0.408 0.671 0.046
FPMC 0.201 0.363 0.975 0.055 0.198 0.311 0.908 0.056
BPR-MF 0.176 0.235 0.911 0.088 0.175 0.223 0.793 0.079
FISM 0.115 0.162 0.974 0.008 0.114 0.149 0.917 0.012
FOSSIL 0.062 0.190 0.917 0.048 0.058 0.135 0.806 0.047
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
GRU4REC 0.285 0.470 0.355 0.062 0.263 0.371 0.180 0.180
SR 0.283 0.457 0.503 0.075 0.262 0.365 0.182 0.182
SMF 0.280 0.459 0.406 0.061 0.258 0.364 0.177 0.177
MC 0.280 0.452 0.506 0.073 0.259 0.362 0.181 0.181
AR 0.268 0.438 0.455 0.092 0.248 0.348 0.171 0.171
V-SKNN 0.261 0.446 0.451 0.084 0.239 0.351 0.154 0.154
S-SKNN 0.252 0.424 0.437 0.082 0.231 0.333 0.153 0.153
SKNN 0.252 0.421 0.457 0.081 0.232 0.332 0.154 0.154
S-KNN 0.244 0.411 0.417 0.084 0.224 0.322 0.149 0.149
IKNN 0.190 0.315 0.566 0.050 0.174 0.244 0.121 0.121
FPMC 0.191 0.261 0.774 0.058 0.183 0.226 0.148 0.148
BPR-MF 0.174 0.214 0.630 0.070 0.172 0.205 0.144 0.144
FISM 0.112 0.135 0.810 0.019 0.110 0.126 0.096 0.096
FOSSIL 0.052 0.092 0.653 0.046 0.047 0.067 0.031 0.031

Table 14: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the RSC15-S dataset (sorted by MRR@20).

Algorithm MRR@20 HR@20 cov@20 POP@20 MRR@10 HR@10 cova@lio POP@10

SMF 0.309 0.713 0.512 0.052 0.301 0.606 0.414 0.054
GRU4REC 0.308 0.719 0.350 0.033 0.301 0.609 0.277 0.034
SR 0.308 0.690 0.512 0.038 0.301 0.591 0.407 0.038
MO 0.296 0.667 0.518 0.039 0.289 0.567 0.413 0.039
AR 0.281 0.655 0.473 0.045 0.273 0.543 0.374 0.043
V-SKNN 0.274 0.675 0.427 0.037 0.266 0.562 0.328 0.039
5-SKNN 0.266 0.667 0.417 0.035 0.258 0.548 0.309 0.038
SF-SKNN 0.260 0.670 0.446 0.037 0.251 0.545 0.339 0.039
S-KNN 0.250 0.641 0.398 0.036 0.242 0.521 0.293 0.038
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
SMF 0.284 0.476 0.320 0.056 0.259 0.368 0.177 0.177
GRU4REC 0.283 0.473 0.207 0.037 0.259 0.369 0.175 0.175
SR 0.284 0.468 0.308 0.040 0.262 0.371 0.179 0.179
MO 0.273 0.444 0.314 0.041 0.252 0.354 0.174 0.174
AR 0.257 0.422 0.283 0.046 0.236 0.333 0.163 0.163
V-SKNN 0.248 0.429 0.242 0.042 0.225 0.329 0.145 0.145

0.240 0.414 0.221 0.041 0.218 0.318 0.142 0.142

0.233 0.406 0.246 0.042 0.210 0.307 0.137 0.137

0.224 0.390 0.207 0.041 0.203 0.297 0.133 0.133

196 Publications

Evaluation of Session-based Recommendation Algorithms

45

Table 15: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on

the TMALL dataset (sorted by MRR@20).

Algorithm MRR@20 HR@20 COvV@20 POP@20 MRR@10 HR@10 covaio POP@10
S-SKNN 0.185 0.387 0.467 0.025 0.181 0.330 0.309 0.027
S-KNN 0.182 0.404 0.381 0.026 0.177 0.334 0.249 0.029
V-SKNN 0.179 0.373 0.464 0.024 0.175 0.312 0.320 0.026
BPR-MF 0.159 0.204 0.723 0.057 0.159 0.197 0.534 0.076
SF-SKNN 0.136 0.216 0.436 0.018 0.135 0.203 0.338 0.022
GRU4REC 0.129 0.277 0.151 0.035 0.125 0.225 0.109 0.039
AR 0.129 0.262 0.509 0.021 0.126 0.217 0.358 0.024
SR 0.128 0.242 0.569 0.021 0.125 0.206 0.421 0.023
SMF 0.121 0.261 0.261 0.036 0.118 0.213 0.193 0.039
MC 0.116 0.200 0.498 0.019 0.114 0.178 0.391 0.022
FPMC 0.101 0.119 0.880 0.005 0.100 0.114 0.730 0.007
TKNN 0.051 0.150 0.728 0.007 0.048 0.112 0.575 0.008
FISM 0.024 0.037 0.752 0.003 0.023 0.032 0.586 0.003
FOSSIL 0.001 0.004 0.598 0.016 0.001 0.003 0.457 0.021
Algorithm MRR@5 HR@5 covas POP@s MRR@3 HR@3 MRR@1 HR@1
S-SKNN 0.173 0.267 0.196 0.031 0.161 0.217 0.119 0.119
S-KNN 0.168 0.264 0.161 0.032 0.156 0.212 0.113 0.113
V-SKNN 0.167 0.251 0.218 0.029 0.157 0.207 0.118 0.118
BPR-MF 0.157 0.189 0.343 0.097 0.156 0.181 0.134 0.134
SF-SKNN 0.132 0.182 0.243 0.026 0.127 0.160 0.101 0.101
GRU4REC 0.119 0.177 0.078 0.043 0.112 0.145 0.086 0.086
AR 0.120 0.175 0.235 0.027 0.113 0.145 0.089 0.089
SR 0.120 0.170 0.286 0.026 0.114 0.144 0.091 0.091
SMF 0.112 0.168 0.140 0.041 0.105 0.138 0.079 0.079
MC 0.111 0.151 0.284 0.025 0.106 0.131 0.086 0.086
FPMC 0.100 0.109 0.540 0.010 0.099 0.105 0.093 0.093
IKNN 0.044 0.079 0.403 0.009 0.039 0.058 0.025 0.025
FISM 0.023 0.028 0.419 0.004 0.022 0.026 0.019 0.019
FOSSIL 0.001 0.002 0.310 0.028 0.001 0.002 0.001 0.001

Table 16: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on

the RETAILROCKET dataset (sorted by MRR@20).

Algorithm ~ MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10
$-SKNN 0.345 0.591 0.596 0.056 0.341 0.537 0.480 0.066
V-SKNN 0.338 0.573 0.575 0.060 0.334 0.519 0.474 0.069
S-KNN 0.337 0.583 0.566 0.058 0.333 0.528 0.445 0.068
BPR-MF 0.303 0.357 0.824 0.060 0.303 0.352 0.627 0.072
FPMC 0.273 0.320 0.929 0.022 0.272 0.309 0.777 0.026
SP-SKNN 0.260 0.358 0.403 0.035 0.259 0.350 0.373 0.046
SR 0.245 0.419 0.524 0.042 0.243 0.386 0.458 0.050
GRU4REC 0.243 0.480 0.602 0.060 0.238 0.415 0.478 0.066
AR 0.241 0.439 0.544 0.053 0.238 0.390 0.449 0.061
MC 0.230 0.359 0.411 0.035 0.228 0.343 0.383 0.045
SMF 0.225 0.459 0.449 0.085 0.221 0.393 0.360 0.092
IKNN 0.107 0.240 0.584 0.033 0.105 0.202 0.505 0.038
FISM 0.075 0.132 0.848 0.018 0.074 0.112 0.672 0.019
FOSSIL 0.022 0.058 0.753 0.127 0.020 0.043 0.560 0.150
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
$-SKNN 0.332 0.470 0.344 0.076 0.318 0.406 0.247 0.247
V-SKNN 0.326 0.455 0.348 0.078 0.312 0.396 0.245 0.245
S-KNN 0.324 0.458 0.316 0.080 0.310 0.396 0.242 0.242
BPR-MF 0.302 0.345 0.417 0.083 0.300 0.337 0.267 0.267
FPMC 0.271 0.298 0.560 0.032 0.269 0.289 0.251 0.251
SF-SKNN 0.257 0.331 0.311 0.058 0.250 0.302 0.208 0.208
SR 0.236 0.337 0.354 0.059 0.225 0.288 0.176 0.176
GRU4REC 0.229 0.345 0.350 0.072 0.215 0.285 0.161 0.161
AR 0.230 0.331 0.333 0.071 0.218 0.280 0.170 0.170
MO 0.224 0.308 0.322 0.056 0.215 0.270 0.171 0.171
SMF 0.211 0.322 0.270 0.099 0.198 0.264 0.148 0.148
IKNN 0.099 0.159 0.388 0.042 0.091 0.127 0.065 0.065
FISM 0.071 0.094 0.474 0.023 0.069 0.083 0.058 0.058
FOSSIL 0.019 0.032 0.377 0.171 0.017 0.024 0.012 0.012

Publications

197

46 Malte Ludewig, Dietmar Jannach

Table 17: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the ZALANDO dataset (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOova@z220 POP@20 MRR@10 HR@10 covaio POP@10

SR 0.304 0.483 0.586 0.061 0.302 0.462 0.433 0.066
MC 0.303 0.455 0.513 0.060 0.302 0.441 0.412 0.066
TKNN 0.275 0.405 0.714 0.037 0.273 0.385 0.532 0.041
GRU4REC 0.267 0.468 0.304 0.101 0.265 0.433 0.239 0.103
SMF 0.267 0.447 0.362 0.107 0.265 0.418 0.282 0.108
AR 0.258 0.467 0.467 0.089 0.256 0.435 0.337 0.090
SF-SKNN 0.249 0.438 0.432 0.057 0.249 0.430 0.348 0.068
V-SKNN 0.233 0.521 0.432 0.096 0.230 0.482 0.296 0.096
S-SKNN 0.219 0.499 0.435 0.087 0.216 0.456 0.280 0.092
S-KNN 0.172 0.456 0.309 0.093 0.167 0.380 0.201 0.097
BPR-MF 0.104 0.162 0.609 0.058 0.103 0.152 0.415 0.069
FPMC 0.051 0.075 0.812 0.021 0.050 0.067 0.629 0.022
FISM 0.004 0.011 0.624 0.020 0.004 0.008 0.444 0.020
FOSSIL 0.002 0.005 0.671 0.034 0.002 0.004 0.493 0.036
Algorithm MRR@5 HR@5 covas POP@s MRR@3 HR@3 MRR@1 HR@1
SR 0.298 0.429 0.290 0.069 0.287 0.382 0.211 0.211
MC 0.298 0.415 0.292 0.069 0.289 0.377 0.218 0.218
TKNN 0.270 0.362 0.349 0.047 0.264 0.335 0.205 0.205
GRU4REC 0.259 0.389 0.182 0.100 0.247 0.337 0.177 0.177
SMF 0.259 0.380 0.210 0.104 0.249 0.333 0.183 0.183
AR 0.250 0.393 0.233 0.088 0.237 0.338 0.159 0.159
SF-SKNN 0.245 0.403 0.249 0.074 0.232 0.348 0.142 0.142
V-SKNN 0.222 0.422 0.197 0.092 0.205 0.346 0.095 0.095
S-SKNN 0.207 0.388 0.174 0.095 0.189 0.311 0.095 0.095
S-KNN 0.154 0.290 0.125 0.103 0.137 0.216 0.079 0.079
BPR-MF 0.102 0.141 0.247 0.083 0.099 0.130 0.073 0.073
FPMC 0.049 0.061 0.434 0.025 0.048 0.056 0.042 0.042
FISM 0.004 0.006 0.290 0.021 0.004 0.005 0.003 0.003
FOSSIL 0.002 0.003 0.333 0.037 0.002 0.002 0.001 0.001

Table 18: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the STRACKS dataset (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOova@220 POP@20 MRR@10 HR@10 covaio POP@10

0.0071 0.0255 0.4530 0.0912 0.0066 0.0173 0.3178 0.1075
0.0064 0.0231 0.1528 0.0864 0.0058 0.0148 0.1076 0.0916
0.0064 0.0171 0.4967 0.0531 0.0061 0.0125 0.3645 0.0636
0.0064 0.0119 0.3049 0.0363 0.0063 0.0102 0.2439 0.0517
0.0057 0.0352 0.4081 0.1194 0.0048 0.0211 0.2523 0.1353
S-KNN 0.0053 0.0376 0.2431 0.1080 0.0041 0.0198 0.1544 0.1153
IKNN 0.0051 0.0177 0.6956 0.0245 0.0047 0.0124 0.5101 0.0267
GRU4REC 0.0050 0.0189 0.0693 0.1223 0.0045 0.0118 0.0512 0.1326
S-SKNN 0.0048 0.0293 0.4509 0.0807 0.0040 0.0182 0.2741 0.0961
MC 0.0046 0.0099 0.3496 0.0321 0.0045 0.0079 0.2756 0.0402
BPR-MF 0.0002 0.0004 0.6138 0.0088 0.0002 0.0003 0.4253 0.0131
FOSSIL 0.0001 0.0002 0.6703 0.0084 0.0001 0.0002 0.4941 0.0121
FPMC 0.0000 0.0001 0.7608 0.0031 0.0000 0.0001 0.5729 0.0035
FISM 0.0000 0.0001 0.6210 0.0027 0.0000 0.0000 0.4460 0.0028
Algorithm MRR@5 HR@5 covas POP@s MRR@3 HR@3 MRR@1 HR@1
0.0057 0.0108 0.1998 0.1251 0.0049 0.0073 0.0032 0.0032
0.0051 0.0092 0.0753 0.0958 0.0045 0.0064 0.0031 0.0031
0.0056 0.0090 0.2395 0.0744 0.0051 0.0069 0.0038 0.0038
0.0060 0.0083 0.1794 0.0690 0.0057 0.0071 0.0047 0.0047
0.0034 0.0102 0.1496 0.1364 0.0022 0.0048 0.0004 0.0004
S-KNN 0.0026 0.0079 0.0975 0.1065 0.0016 0.0033 0.0004 0.0004
IKNN 0.0041 0.0078 0.3293 0.0286 0.0035 0.0053 0.0022 0.0022
GRU4REC 0.0039 0.0070 0.0385 0.1414 0.0034 0.0050 0.0023 0.0023
S-SKNN 0.0026 0.0081 0.1404 0.1028 0.0016 0.0034 0.0004 0.0004
MC 0.0043 0.0062 0.2022 0.0493 0.0040 0.0051 0.0032 0.0032
BPR-MF 0.0002 0.0003 0.2576 0.0203 0.0002 0.0002 0.0001 0.0001
FOSSIL 0.0001 0.0001 0.3338 0.0178 0.0001 0.0001 0.0001 0.0001
FPMC 0.0000 0.0001 0.3879 0.0043 0.0000 0.0000 0.0000 0.0000
FISM 0.0000 0.0000 0.2952 0.0030 0.0000 0.0000 0.0000 0.0000

198 Publications

Evaluation of Session-based Recommendation Algorithms 47

Table 19: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the AOTM dataset (sorted by MRR@20).

Algorithm MRR@20 HR@20 covazo POP@20 MRR@10 HR@10 covaio POP@10

SMF 0.0111 0.0298 0.2457 0.1998 0.0105 0.0205 0.1795 0.2085
SF-SKNN 0.0111 0.0145 0.3559 0.0508 0.0110 0.0139 0.3022 0.0686
SR 0.0077 0.0195 0.5864 0.0533 0.0073 0.0149 0.4481 0.0599
GRU4REC 0.0072 0.0157 0.4653 0.1151 0.0070 0.0125 0.3550 0.1131
MC 0.0063 0.0133 0.3803 0.0498 0.0062 0.0112 0.3198 0.0602
AR 0.0059 0.0233 0.5532 0.1049 0.0053 0.0146 0.4003 0.1178
V-SKNN 0.0055 0.0378 0.5363 0.1397 0.0043 0.0208 0.3357 0.1550
S-SKNN 0.0055 0.0397 0.5357 0.1289 0.0042 0.0209 0.3228 0.1475
S-KNN 0.0054 0.0429 0.2802 0.1678 0.0038 0.0200 0.1785 0.1666
IKNN 0.0049 0.0187 0.7880 0.0473 0.0045 0.0122 0.5777 0.0481
FOSSIL 0.0007 0.0027 0.5529 0.0978 0.0006 0.0017 0.3717 0.1139
BPR-MF 0.0005 0.0018 0.5659 0.0968 0.0005 0.0012 0.3550 0.1180
FPMC 0.0003 0.0007 0.7851 0.0264 0.0003 0.0006 0.5867 0.0289
FISM 0.0001 0.0004 0.6172 0.0272 0.0001 0.0002 0.4296 0.0288
Algorithm MRR@5 HR@5 covas POP@s MRR@3 HR@3 MRR@1 HR@1
SMF 0.0097 0.0149 0.1265 0.2136 0.0091 0.0118 0.0070 0.0070
SF-SKNN 0.0109 0.0130 0.2306 0.0875 0.0107 0.0121 0.0096 0.0096
SR 0.0068 0.0107 0.3015 0.0626 0.0062 0.0081 0.0047 0.0047
GRU4REC 0.0067 0.0102 0.2432 0.1141 0.0063 0.0085 0.0045 0.0045
MC 0.0059 0.0089 0.2449 0.0681 0.0055 0.0072 0.0042 0.0042
AR 0.0046 0.0089 0.2543 0.1318 0.0039 0.0059 0.0024 0.0024
V-SKNN 0.0027 0.0085 0.1927 0.1592 0.0016 0.0034 0.0004 0.0004
S-SKNN 0.0025 0.0077 0.1718 0.1558 0.0014 0.0028 0.0005 0.0005
S-KNN 0.0021 0.0063 0.1108 0.1549 0.0011 0.0022 0.0005 0.0005
TKNN 0.0038 0.0073 0.3591 0.0500 0.0033 0.0051 0.0020 0.0020
FOSSIL 0.0005 0.0010 0.2311 0.1308 0.0005 0.0007 0.0003 0.0003
BPR-MF 0.0004 0.0007 0.1900 0.1403 0.0004 0.0005 0.0003 0.0003
FPMC 0.0003 0.0004 0.3884 0.0325 0.0003 0.0003 0.0003 0.0003
FISM 0.0001 0.0001 0.2743 0.0311 0.0000 0.0000 0.0000 0.0000

Table 20: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the 30MUSIC dataset (sorted by MRR@20).

Algorithm ~ MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10
SR 0.2377 0.3323 0.3893 0.0232 0.2363 0.3120 0.2913 0.0273
MC 0.2318 0.2844 0.2038 0.0205 0.2314 0.2780 0.1804 0.0265
GRU4REC 0.2264 0.3257 0.3447 0.0556 0.2249 0.3042 0.2423 0.0567
SF-SKNN 0.2079 0.2856 0.1854 0.0219 0.2078 0.2834 0.1634 0.0302
SMF 0.1777 0.2843 0.1508 0.1048 0.1756 0.2547 0.1117 0.1062
V-SKNN 0.1099 0.3819 0.3170 0.0538 0.1040 0.3002 0.1944 0.0573
IKNN 0.1086 0.2971 0.4596 0.0226 0.1053 0.2501 0.3122 0.0249
S-SKNN 0.1077 0.3856 0.2931 0.0515 0.1014 0.2975 0.1759 0.0569
AR 0.0960 0.3088 0.3524 0.0394 0.0911 0.2395 0.2375 0.0433
S-KNN 0.0898 0.3443 0.1912 0.0574 0.0832 0.2501 0.1155 0.0637
BPR-MF 0.0427 0.0580 0.4521 0.0281 0.0425 0.0548 0.2792 0.0381
FPMC 0.0293 0.0359 0.6544 0.0078 0.0291 0.0334 0.4556 0.0085
FISM 0.0029 0.0047 0.4676 0.0084 0.0028 0.0038 0.3052 0.0089
FOSSIL 0.0029 0.0100 0.3347 0.0297 0.0027 0.0073 0.1919 0.0436
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
SR 0.2326 0.2845 0.1920 0.0294 0.2270 0.2601 0.2005 0.2005
MC 0.2298 0.2663 0.1467 0.0309 0.2270 0.2544 0.2043 0.2043
GRU4REC 0.2215 0.2796 0.1629 0.0557 0.2162 0.2564 0.1835 0.1835
SF-SKNN 0.2062 0.2726 0.1318 0.0371 0.2009 0.2499 0.1614 0.1614
SMF 0.1712 0.2223 0.0817 0.1057 0.1655 0.1970 0.1405 0.1405
V-SKNN 0.0882 0.1813 0.1165 0.0612 0.0727 0.1125 0.0442 0.0442
IKNN 0.0956 0.1788 0.1961 0.0248 0.0837 0.1265 0.0523 0.0523
$-SKNN 0.0851 0.1753 0.1043 0.0629 0.0701 0.1086 0.0428 0.0428
AR 0.0803 0.1580 0.1466 0.0476 0.0686 0.1063 0.0413 0.0413
S-KNN 0.0689 0.1424 0.0691 0.0714 0.0566 0.0877 0.0344 0.0344
BPR-MF 0.0421 0.0515 0.1523 0.0518 0.0414 0.0483 0.0356 0.0356
FPMC 0.0289 0.0317 0.2872 0.0096 0.0286 0.0303 0.0272 0.0272
FISM 0.0028 0.0034 0.1859 0.0095 0.0027 0.0030 0.0025 0.0025
FOSSIL 0.0023 0.0048 0.0914 0.0634 0.0019 0.0031 0.0011 0.0011

Publications 199

48 Malte Ludewig, Dietmar Jannach

Table 21: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the NOWPLAYING dataset (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOova@z220 POP@20 MRR@10 HR@10 covaio POP@10

SR 0.1053 0.2033 0.4656 0.0247 0.1031 0.1712 0.3605 0.0284
GRU4REC 0.1018 0.1970 0.4331 0.0516 0.0995 0.1632 0.3261 0.0529
MC 0.0971 0.1582 0.2936 0.0284 0.0960 0.1417 0.2547 0.0347
SF-SKNN 0.0954 0.1647 0.2773 0.0311 0.0945 0.1524 0.2369 0.0414
SMF 0.0882 0.1825 0.2417 0.0916 0.0859 0.1484 0.1847 0.0960
V-SKNN 0.0785 0.2552 0.4283 0.0639 0.0737 0.1861 0.2904 0.0719
S-SKNN 0.0777 0.2622 0.4149 0.0624 0.0725 0.1880 0.2727 0.0699
AR 0.0710 0.2076 0.4531 0.0511 0.0672 0.1518 0.3261 0.0584
S-KNN 0.0689 0.2429 0.3007 0.0690 0.0637 0.1676 0.1962 0.0759
IKNN 0.0569 0.1822 0.5799 0.0294 0.0534 0.1321 0.4313 0.0308
BPR-MF 0.0392 0.0621 0.5903 0.0672 0.0387 0.0547 0.3764 0.0843
FPMC 0.0331 0.0470 0.7865 0.0154 0.0327 0.0418 0.5833 0.0190
FOSSIL 0.0136 0.0432 0.5950 0.0336 0.0127 0.0302 0.4035 0.0389
FISM 0.0108 0.0183 0.6451 0.0110 0.0105 0.0145 0.4551 0.0123
Algorithm MRR@5 HR@5 covas POP@s MRR@3 HR@3 MRR@1 HR@1
SR 0.0988 0.1395 0.2490 0.0305 0.0938 0.1173 0.0760 0.0760
GRU4REC 0.0958 0.1352 0.2282 0.0540 0.0913 0.1154 0.0726 0.0726
M 0.0935 0.1236 0.2024 0.0409 0.0904 0.1099 0.0751 0.0751

SKNN 0.0921 0.1344 0.1856 0.0518 0.0876 0.1149 0.0665 0.0665
SMF 0.0818 0.1181 0.1358 0.0985 0.0774 0.0985 0.0614 0.0614
V-SKNN 0.0651 0.1213 0.1819 0.0786 0.0562 0.0819 0.0381 0.0381
S-SKNN 0.0632 0.1181 0.1657 0.0771 0.0544 0.0790 0.0371 0.0371
AR 0.0611 0.1060 0.2114 0.0672 0.0543 0.0763 0.0379 0.0379
S-KNN 0.0556 0.1048 0.1226 0.0825 0.0476 0.0695 0.0318 0.0318
TKNN 0.0477 0.0884 0.2869 0.0317 0.0416 0.0615 0.0265 0.0265
BPR-MF 0.0378 0.0482 0.2043 0.0995 0.0367 0.0433 0.0314 0.0314
FPMC 0.0321 0.0371 0.3807 0.0238 0.0316 0.0346 0.0293 0.0293
FOSSIL 0.0113 0.0195 0.2502 0.0439 0.0102 0.0148 0.0069 0.0069
FISM 0.0102 0.0122 0.2934 0.0143 0.0100 0.0111 0.0092 0.0092

Table 22: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the CLEF dataset (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOovaz20 POP@20 MRR@10 HR@10 covaio POP@10

SMF 0.234 0.706 0.650 0.083 0.222 0.529 0.582 0.097
MC 0.225 0.687 0.732 0.095 0.213 0.514 0.705 0.123
V-SKNN 0.224 0.776 0.621 0.082 0.211 0.596 0.566 0.113
SR 0.223 0.672 0.655 0.093 0.212 0.513 0.608 0.123
GRU4REC 0.220 0.568 0.174 0.094 0.212 0.462 0.129 0.118
S-KNN 0.219 0.778 0.613 0.084 0.205 0.588 0.545 0.122
AR 0.216 0.666 0.724 0.100 0.204 0.490 0.656 0.148
IKNN 0.188 0.596 0.746 0.059 0.177 0.436 0.722 0.047
FPMC 0.171 0.598 0.847 0.082 0.159 0.414 0.721 0.093
FOSSIL 0.166 0.571 0.963 0.079 0.155 0.417 0.864 0.093
FISM 0.129 0.403 0.997 0.080 0.122 0.297 0.963 0.108
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HRQ@1
SMF 0.198 0.354 0.511 0.109 0.176 0.255 0.117 0.117
MC 0.190 0.339 0.653 0.144 0.170 0.249 0.113 0.113
V-SKNN 0.185 0.404 0.495 0.154 0.154 0.264 0.076 0.076
SR 0.189 0.337 0.542 0.146 0.169 0.246 0.111 0.111
GRU4REC 0.195 0.331 0.101 0.138 0.177 0.252 0.118 0.118
S-KNN 0.179 0.394 0.476 0.164 0.148 0.254 0.070 0.070
AR 0.183 0.339 0.559 0.215 0.161 0.242 0.102 0.102
TKNN 0.159 0.300 0.669 0.046 0.138 0.209 0.084 0.084
FPMC 0.138 0.258 0.601 0.108 0.120 0.178 0.078 0.078
FOSSIL 0.136 0.268 0.703 0.101 0.119 0.195 0.064 0.064
FISM 0.109 0.201 0.857 0.140 0.096 0.142 0.064 0.064

200 Publications

Evaluation of Session-based Recommendation Algorithms

49

C Additional Results for Precision and Recall

Table 23: Precision (P) and Recall (R) results for a list length of 20, 10, 5, and

3 on the TMALL dataset (sorted by P@20).

Algorithm P@20 R@20 P@10 R@10 PaQ@s R@5 Pa@3 R@3
S-KNN 0.095 0.312 0.141 0.257 0.196 0.199 0.235 0.156
S-SKNN 0.094 0.263 0.139 0.215 0.191 0.165 0.229 0.129
V-SKNN 0.091 0.291 0.131 0.239 0.186 0.187 0.230 0.150
SMF 0.068 0.230 0.099 0.184 0.139 0.141 0.172 0.113
GRU4REC 0.068 0.233 0.098 0.187 0.137 0.143 0.170 0.115
AR 0.057 0.173 0.082 0.138 0.115 0.106 0.143 0.085
SR 0.052 0.193 0.081 0.162 0.121 0.131 0.158 0.109
IKNN 0.043 0.112 0.059 0.082 0.077 0.057 0.091 0.042
SF-SKNN 0.041 0.136 0.072 0.125 0.116 0.108 0.154 0.092
MC 0.036 0.124 0.058 0.107 0.090 0.089 0.119 0.075
BPR-MF 0.027 0.113 0.050 0.108 0.092 0.102 0.142 0.097
FPMC 0.015 0.078 0.028 0.073 0.050 0.068 0.077 0.064
FISM 0.009 0.046 0.015 0.042 0.027 0.038 0.040 0.035
FOSSIL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 24: Precision (P) and Recall (R) results for a list length of 20, 10, 5, and
3 on the RETAILROCKET dataset (sorted by P@20).

Algorithm P@20 R@20 P@i10 R@10 Pas R@5 Pa3 R@3
S-SKNN 0.057 0.480 0.096 0.434 0.156 0.376 0.214 0.326
S-KNN 0.056 0.478 0.095 0.433 0.152 0.373 0.208 0.323
V-SKNN 0.055 0.462 0.093 0.417 0.152 0.364 0.209 0.316
SMF 0.047 0.397 0.074 0.335 0.113 0.271 0.148 0.219
GRU4REC 0.046 0.400 0.073 0.339 0.111 0.271 0.143 0.215
AR 0.041 0.360 0.068 0.318 0.109 0.268 0.147 0.225
SR 0.038 0.342 0.067 0.313 0.110 0.269 0.149 0.227
MC 0.030 0.284 0.056 0.271 0.097 0.242 0.136 0.210
SF-SKNN 0.030 0.285 0.057 0.280 0.105 0.263 0.156 0.240
BPR-MF 0.029 0.286 0.056 0.282 0.107 0.277 0.172 0.272
IKNN 0.026 0.199 0.042 0.167 0.061 0.129 0.077 0.103
FPMC 0.023 0.253 0.043 0.246 0.083 0.239 0.133 0.233
FOSSIL 0.006 0.057 0.009 0.045 0.012 0.032 0.016 0.025
FISM 0.005 0.059 0.008 0.045 0.011 0.034 0.014 0.027

Table 25: Precision (P) and Recall (R) results for
3 on the ZALANDO dataset (sorted by P@20).

a list length of 20, 10, 5, and

Algorithm P@20 R@20 P@i1o0 R@10 Pas R@5 pPa3s R@3
V-SKNN 0.076 0.219 0.129 0.195 0.210 0.168 0.282 0.141
S-SKNN 0.075 0.217 0.127 0.192 0.198 0.159 0.252 0.127
S-KNN 0.074 0.202 0.115 0.169 0.164 0.130 0.196 0.098
GRU4REC 0.065 0.181 0.109 0.161 0.181 0.141 0.247 0.120
SMF 0.062 0.175 0.103 0.154 0.169 0.133 0.228 0.112
AR 0.060 0.179 0.105 0.161 0.178 0.141 0.241 0.118
SR 0.060 0.174 0.106 0.161 0.185 0.146 0.260 0.127
MC 0.054 0.167 0.100 0.157 0.176 0.142 0.246 0.123
SF-SKNN 0.053 0.165 0.101 0.160 0.182 0.147 0.254 0.129
TKNN 0.045 0.134 0.080 0.122 0.137 0.109 0.196 0.096
BPR-MF 0.026 0.089 0.048 0.084 0.088 0.078 0.133 0.072
FPMC 0.016 0.060 0.029 0.055 0.051 0.051 0.078 0.047
FOSSIL 0.009 0.026 0.013 0.020 0.018 0.015 0.023 0.011
FISM 0.007 0.028 0.013 0.024 0.021 0.021 0.031 0.018

Publications

201

50

Malte Ludewig, Dietmar Jannach

Table 26: Precision (P) and Recall (R) results for a list length of 20,
3 on the 8TRACKS dataset (sorted by P@20).

10,

Algorithm P@20 R@20 P@i10 R@10 Pa@s R@5 Pa@3 R@3
V-SKNN 0.0122 0.0308 0.0138 0.0184 0.0125 0.0084 0.0109 0.0047
S-KNN 0.0117 0.0313 0.0119 0.0171 0.0090 0.0067 0.0059 0.0026
S-SKNN 0.0100 0.0266 0.0114 0.0162 0.0097 0.0070 0.0065 0.0029
AR 0.0087 0.0219 0.0112 0.0147 0.0136 0.0090 0.0155 0.0062
SMF 0.0086 0.0218 0.0104 0.0135 0.0118 0.0078 0.0126 0.0052
TKNN 0.0060 0.0149 0.0077 0.0102 0.0092 0.0063 0.0103 0.0043
SR 0.0055 0.0140 0.0077 0.0099 0.0098 0.0067 0.0111 0.0046
GRU4REC 0.0037 0.0095 0.0046 0.0061 0.0056 0.0039 0.0064 0.0027
SF-SKNN 0.0032 0.0081 0.0052 0.0067 0.0079 0.0052 0.0104 0.0042
MC 0.0025 0.0064 0.0036 0.0048 0.0051 0.0035 0.0065 0.0028
FOSSIL 0.0021 0.0043 0.0024 0.0025 0.0027 0.0013 0.0029 0.0009
BPR-MF 0.0018 0.0037 0.0021 0.0020 0.0022 0.0011 0.0019 0.0006
FPMC 0.0005 0.0012 0.0008 0.0009 0.0012 0.0007 0.0016 0.0006
FISM 0.0004 0.0008 0.0004 0.0005 0.0004 0.0002 0.0005 0.0002
Table 27: Precision (P) and Recall (R) results for a list length of 20, 10,
3 on the AOTM dataset (sorted by P@20).
Algorithm PQ@20 R@20 pPa@io R@10 pPas R@5 Pa@3s R@3
S-KNN 0.0155 0.0440 0.0157 0.0214 0.0099 0.0058 0.0056 0.0023
V-SKNN 0.0133 0.0361 0.0145 0.0196 0.0118 0.0078 0.0106 0.0056
S-SKNN 0.0125 0.0353 0.0122 0.0178 0.0084 0.0065 0.0054 0.0027
SMF 0.0084 0.0259 0.0105 0.0163 0.0130 0.0104 0.0143 0.0070
AR 0.0066 0.0183 0.0082 0.0119 0.0095 0.0068 0.0107 0.0049
IKNN 0.0056 0.0155 0.0069 0.0102 0.0082 0.0062 0.0090 0.0043
SR 0.0053 0.0146 0.0070 0.0098 0.0082 0.0061 0.0092 0.0041
SF-SKNN 0.0024 0.0074 0.0043 0.0068 0.0075 0.0062 0.0108 0.0055
MC 0.0022 0.0069 0.0034 0.0056 0.0049 0.0043 0.0060 0.0033
FOSSIL 0.0012 0.0036 0.0013 0.0023 0.0015 0.0013 0.0017 0.0008
GRU4REC 0.0010 0.0027 0.0011 0.0015 0.0014 0.0008 0.0015 0.0005
BPR-MF 0.0004 0.0018 0.0005 0.0012 0.0005 0.0007 0.0005 0.0005
FISM 0.0004 0.0013 0.0005 0.0007 0.0005 0.0004 0.0004 0.0002
FPMC 0.0002 0.0007 0.0003 0.0006 0.0004 0.0004 0.0005 0.0004
Table 28: Precision (P) and Recall (R) results for a list length of 20, 10,
3 on the 30MUSIC dataset (sorted by P@20).
Algorithm P@20 R@20 P@io R@10 pPas R@5 P@3 R@3
V-SKNN 0.1117 0.2438 0.1585 0.1948 0.1947 0.1371 0.2239 0.1044
S-SKNN 0.1110 0.2353 0.1439 0.1672 0.1431 0.0832 0.1344 0.0458
S-KNN 0.1035 0.2140 0.1295 0.1462 0.1283 0.0722 0.1216 0.0402
IKNN 0.0935 0.2023 0.1336 0.1611 0.1529 0.1015 0.1585 0.0651
AR 0.0914 0.1923 0.1244 0.1435 0.1354 0.0825 0.1386 0.0514
SR 0.0878 0.2010 0.1393 0.1750 0.1884 0.1353 0.2204 0.1042
SMF 0.0746 0.1655 0.1025 0.1272 0.1290 0.0876 0.1451 0.0626
GRU4REC 0.0404 0.0988 0.0627 0.0856 0.0932 0.0715 0.1236 0.0611
SF-SKNN 0.0319 0.0865 0.0591 0.0852 0.1027 0.0793 0.1447 0.0702
MC 0.0313 0.0852 0.0553 0.0811 0.0928 0.0743 0.1333 0.0679
BPR-MF 0.0172 0.0340 0.0290 0.0292 0.0442 0.0227 0.0569 0.0185
FOSSIL 0.0123 0.0188 0.0134 0.0117 0.0134 0.0055 0.0099 0.0027
FPMC 0.0046 0.0146 0.0079 0.0126 0.0137 0.0110 0.0205 0.0100
FISM 0.0015 0.0036 0.0019 0.0022 0.0025 0.0014 0.0025 0.0009

202 Publications

5, and

5, and

5, and

Evaluation of Session-based Recommendation Algorithms

51

Table 29: Precision (P) and Recall (R) results for a list length of 20, 10, 5, and
3 on the NOWPLAYING dataset (sorted by P@20).

Algorithm P@20 R@20 PQ@10 R@10 Pas R@5 pP@3 R@3
S-SKNN 0.0726 0.1944 0.0890 0.1296 0.0950 0.0694 0.0935 0.0405
V-SKNN 0.0718 0.1909 0.0900 0.1303 0.1048 0.0873 0.1169 0.0633
S-KNN 0.0680 0.1824 0.0841 0.1186 0.0868 0.0622 0.0890 0.0362
AR 0.0554 0.1551 0.0724 0.1086 0.0876 0.0705 0.0968 0.0491
SR 0.0501 0.1465 0.0717 0.1132 0.0945 0.0826 0.1080 0.0614
SMF 0.0499 0.1453 0.0668 0.1043 0.0840 0.0709 0.0966 0.0525
IKNN 0.0492 0.1385 0.0639 0.0974 0.0755 0.0608 0.0809 0.0405
SF-SKNN 0.0280 0.0903 0.0495 0.0816 0.0761 0.0660 0.0992 0.0539
GRU4REC 0.0272 0.0810 0.0383 0.0601 0.0523 0.0444 0.0636 0.0343
MC 0.0250 0.0845 0.0415 0.0724 0.0625 0.0573 0.0810 0.0473
FOSSIL 0.0169 0.0412 0.0229 0.0291 0.0308 0.0204 0.0359 0.0149
BPR-MF 0.0156 0.0393 0.0231 0.0328 0.0358 0.0275 0.0492 0.0240
FPMC 0.0061 0.0244 0.0102 0.0211 0.0171 0.0181 0.0248 0.0161
FISM 0.0023 0.0077 0.0033 0.0064 0.0051 0.0053 0.0072 0.0044

Table 30: Precision (P) and Recall (R) results for a list length of 20, 10, 5, and
3 on the CLEF dataset (sorted by P@20).

Algorithm P@20 R@20 P@i1o0 R@10 Pas R@5 Pa3 R@3
GRU4REC 0.072 0.626 0.100 0.454 0.128 0.298 0.144 0.204
V-SKNN 0.069 0.593 0.089 0.413 0.108 0.262 0.119 0.180
S-SKNN 0.066 0.579 0.086 0.404 0.097 0.244 0.101 0.154
S-KNN 0.066 0.577 0.085 0.399 0.096 0.241 0.099 0.152
SF-SKNN 0.064 0.565 0.082 0.390 0.095 0.241 0.098 0.151
SMF 0.062 0.527 0.084 0.377 0.107 0.246 0.120 0.167
FPMC 0.060 0.515 0.078 0.347 0.093 0.216 0.110 0.154
MC 0.059 0.510 0.081 0.368 0.107 0.251 0.119 0.170
FOSSIL 0.059 0.504 0.075 0.334 0.090 0.205 0.103 0.143
AR 0.058 0.506 0.080 0.364 0.101 0.239 0.115 0.170
SR 0.058 0.502 0.081 0.366 0.108 0.251 0.115 0.162
FISM 0.058 0.506 0.077 0.357 0.095 0.227 0.105 0.156
IKNN 0.050 0.418 0.065 0.290 0.086 0.197 0.099 0.141
BPR-MF 0.016 0.147 0.024 0.120 0.042 0.105 0.062 0.094

Publications

203

52 Malte Ludewig, Dietmar Jannach

D Additional Single Split Results

Table 31: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the TMALL dataset with a single split (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOovaz0 POP@20 MRR@10 HR@10 covaio POP@10

S-SKNN 0.181 0.385 0.560 0.019 0.177 0.329 0.375 0.021
S-KNN 0.177 0.398 0.461 0.020 0.173 0.334 0.306 0.022
V-SKNN 0.169 0.353 0.570 0.019 0.166 0.298 0.405 0.021
SF-SKNN 0.141 0.237 0.577 0.015 0.140 0.220 0.441 0.018
SMF 0.140 0.298 0.461 0.023 0.136 0.245 0.341 0.023
AR 0.131 0.254 0.628 0.019 0.128 0.214 0.457 0.021
SR 0.131 0.243 0.683 0.019 0.129 0.209 0.507 0.020
GRU4REC 0.123 0.263 0.171 0.029 0.120 0.213 0.117 0.032
MC 0.123 0.214 0.673 0.018 0.121 0.188 0.516 0.019
IKNN 0.049 0.147 0.801 0.006 0.047 0.111 0.644 0.006
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
0.168 0.265 0.240 0.023 0.157 0.215 0.112 0.112
0.163 0.263 0.199 0.024 0.151 0.209 0.106 0.106
0.158 0.241 0.282 0.023 0.148 0.199 0.109 0.109
0.136 0.194 0.309 0.020 0.131 0.168 0.101 0.101
0.129 0.195 0.244 0.024 0.122 0.160 0.092 0.092
0.123 0.174 0.312 0.023 0.117 0.147 0.094 0.094
0.124 0.173 0.348 0.021 0.118 0.148 0.095 0.095
GRU4REC 0.114 0.169 0.082 0.034 0.107 0.139 0.083 0.083
MC 0.117 0.160 0.361 0.021 0.113 0.139 0.092 0.092
IKNN 0.042 0.077 0.471 0.007 0.038 0.056 0.024 0.024

Table 32: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the RETAILROCKET dataset with a single split (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOova@z20 POP@20 MRR@10 HR@10 covaio POP@10

S-SKNN 0.333 0.580 0.272 0.051 0.329 0.524 0.170 0.060
S-KNN 0.332 0.571 0.250 0.052 0.329 0.520 0.155 0.061
V-SKNN 0.327 0.582 0.272 0.061 0.323 0.520 0.172 0.069
SF-SKNN 0.301 0.463 0.224 0.036 0.299 0.444 0.168 0.049
SR 0.270 0.504 0.299 0.047 0.267 0.452 0.201 0.054
SMF 0.270 0.557 0.313 0.056 0.264 0.479 0.198 0.061
AR 0.265 0.485 0.286 0.058 0.261 0.425 0.189 0.064
MC 0.261 0.468 0.250 0.040 0.258 0.425 0.184 0.049
GRU4REC 0.260 0.559 0.291 0.055 0.254 0.475 0.187 0.062
IKNN 0.121 0.284 0.334 0.031 0.118 0.238 0.219 0.036
Algorithm MRR@5 HR@5 cOovas POP@5 MRR@3 HR@3 MRR@1 HR@1
S-SKNN 0.320 0.456 0.098 0.069 0.305 0.391 0.236 0.236
S-KNN 0.320 0.453 0.090 0.070 0.305 0.386 0.242 0.242
V-SKNN 0.313 0.446 0.104 0.075 0.298 0.383 0.230 0.230
SF-SKNN 0.293 0.399 0.110 0.060 0.281 0.346 0.230 0.230
SR 0.257 0.379 0.123 0.062 0.244 0.322 0.184 0.184
SMF 0.252 0.388 0.119 0.067 0.234 0.309 0.177 0.177
AR 0.253 0.366 0.115 0.074 0.240 0.310 0.187 0.187
MC 0.250 0.366 0.121 0.059 0.236 0.308 0.180 0.180
GRU4REC 0.240 0.377 0.114 0.069 0.223 0.300 0.164 0.164
IKNN 0.111 0.185 0.131 0.041 0.103 0.154 0.067 0.067

204 Publications

Evaluation of Session-based Recommendation Algorithms 53

Table 33: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the ZALANDO dataset with a single split (sorted by MRR@20).

Algorithm MRR@20 HR@20 cova20 POP@20 MRR@10 HR@10 covaio POP@10

SR 0.306 0.498 0.525 0.059 0.304 0.473 0.381 0.060
MC 0.304 0.469 0.504 0.052 0.302 0.452 0.381 0.055
IKNN 0.271 0.410 0.597 0.033 0.269 0.388 0.432 0.036
GRU4REC 0.267 0.483 0.290 0.073 0.265 0.442 0.223 0.074
AR 0.265 0.483 0.431 0.073 0.262 0.450 0.311 0.073
SMF 0.253 0.463 0.329 0.075 0.250 0.422 0.248 0.076
SF-SKNN 0.251 0.451 0.419 0.046 0.250 0.440 0.323 0.053
V-SKNN 0.237 0.517 0.396 0.077 0.234 0.478 0.275 0.076
S-SKNN 0.224 0.510 0.395 0.066 0.221 0.464 0.257 0.068
S-KNN 0.181 0.461 0.301 0.069 0.176 0.392 0.197 0.071
Algorithm MRR@5 HR@5 covas POP@s5 MRR@3 HR@3 MRR@1 HR@1
SR 0.299 0.435 0.256 0.058 0.287 0.384 0.210 0.210
MO 0.298 0.422 0.262 0.056 0.288 0.379 0.216 0.216
IKNN 0.266 0.363 0.287 0.040 0.258 0.330 0.199 0.199
GRU4REC 0.258 0.394 0.167 0.073 0.245 0.336 0.174 0.174

0.256 0.404 0.216 0.069 0.243 0.347 0.163 0.163

0.243 0.372 0.182 0.074 0.230 0.317 0.163 0.163

0.245 0.406 0.227 0.057 0.231 0.345 0.143 0.143

0.226 0.419 0.185 0.071 0.208 0.343 0.103 0.103

0.211 0.391 0.161 0.070 0.193 0.311 0.100 0.100

0.164 0.300 0.124 0.074 0.147 0.226 0.087 0.087

Table 34: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the STRACKS dataset with a single split (sorted by MRR@20).

Algorithm ~ MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10
AR 0.0135 0.0410 0.7769 0.0399 0.0126 0.0276 0.5772 0.0545
SR 0.0123 0.0329 0.8875 0.0243 0.0116 0.0233 0.7261 0.0302
SMF 0.0115 0.0476 0.0772 0.1197 0.0102 0.0290 0.0556 0.1303
V-SKNN 0.0110 0.0490 0.7180 0.0290 0.0098 0.0313 0.5317 0.0322
MC 0.0101 0.0234 0.8365 0.0152 0.0098 0.0179 0.7050 0.0179
S-KNN 0.0098 0.0438 0.6122 0.0272 0.0086 0.0267 0.4343 0.0298
S-SKNN 0.0097 0.0402 0.8543 0.0197 0.0087 0.0265 0.6465 0.0238
GRU4REC 0.0095 0.0376 0.0593 0.1930 0.0085 0.0231 0.0445 0.2140
SF-SKNN 0.0089 0.0217 0.7713 0.0157 0.0086 0.0171 0.6555 0.0219
IKNN 0.0072 0.0251 0.9852 0.0063 0.0066 0.0165 0.8756 0.0069
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
AR 0.0114 0.0185 0.3933 0.0774 0.0104 0.0140 0.0078 0.0078
SR 0.0107 0.0166 0.5237 0.0374 0.0099 0.0128 0.0078 0.0078
SMF 0.0087 0.0172 0.0406 0.1401 0.0073 0.0113 0.0044 0.0044
V-SKNN 0.0079 0.0167 0.4041 0.0324 0.0063 0.0097 0.0040 0.0040
MC 0.0092 0.0134 0.5477 0.0216 0.0086 0.0107 0.0070 0.0070
S-KNN 0.0068 0.0128 0.3056 0.0267 0.0055 0.0074 0.0044 0.0044
S-SKNN 0.0070 0.0137 0.3984 0.0256 0.0057 0.0079 0.0043 0.0043
GRUAREC 0.0073 0.0140 0.0336 0.2350 0.0062 0.0093 0.0040 0.0040
SF-SKNN 0.0080 0.0131 0.5072 0.0286 0.0074 0.0101 0.0052 0.0052
IKNN 0.0058 0.0107 0.6635 0.0075 0.0051 0.0075 0.0034 0.0034

Publications 205

54 Malte Ludewig, Dietmar Jannach

Table 35: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the AOTM dataset with a single split (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOova@z220 POP@20 MRR@10 HR@10 covaio POP@10

SF-SKNN 0.0275 0.0440 0.8591 0.0828 0.0273 0.0403 0.7673 0.1025
SMF 0.0204 0.0468 0.9262 0.0941 0.0197 0.0361 0.8294 0.0941
GRU4REC 0.0154 0.0427 0.6523 0.1665 0.0146 0.0312 0.5081 0.1759
SR 0.0152 0.0449 0.9439 0.1061 0.0143 0.0318 0.8140 0.1143
MC 0.0134 0.0348 0.8996 0.0813 0.0128 0.0262 0.7889 0.0902
AR 0.0119 0.0426 0.8523 0.1409 0.0109 0.0283 0.6723 0.1536
V-SKNN 0.0104 0.0721 0.7971 0.1567 0.0083 0.0415 0.6049 0.1662
IKNN 0.0100 0.0384 0.9854 0.0482 0.0090 0.0242 0.8660 0.0490
S-SKNN 0.0095 0.0737 0.8917 0.1192 0.0071 0.0406 0.6652 0.1322
S-KNN 0.0087 0.0740 0.6400 0.1414 0.0059 0.0345 0.4599 0.1416
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
SF-SKNN 0.0267 0.0360 0.6205 0.1192 0.0257 0.0315 0.0212 0.0212
SMF 0.0186 0.0280 0.6845 0.0927 0.0175 0.0232 0.0132 0.0132
GRU4REC 0.0134 0.0225 0.3629 0.1840 0.0121 0.0166 0.0087 0.0087
SR 0.0130 0.0217 0.6154 0.1226 0.0118 0.0167 0.0083 0.0083
MC 0.0119 0.0198 0.6326 0.0985 0.0109 0.0151 0.0078 0.0078
AR 0.0095 0.0178 0.4853 0.1689 0.0083 0.0127 0.0052 0.0052
V-SKNN 0.0051 0.0174 0.4490 0.1646 0.0027 0.0067 0.0001 0.0001
IKNN 0.0079 0.0153 0.6629 0.0499 0.0067 0.0103 0.0040 0.0040
S-SKNN 0.0035 0.0124 0.4265 0.1392 0.0016 0.0040 0.0000 0.0000
S-KNN 0.0028 0.0096 0.3142 0.1387 0.0014 0.0033 0.0001 0.0001

Table 36: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the 30MUSIC dataset with a single split (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOova@z20 POP@20 MRR@10 HR@10 covaio POP@10

SR 0.2690 0.3744 0.5904 0.0373 0.2672 0.3499 0.4619 0.0389
MC 0.2653 0.3302 0.4001 0.0283 0.2646 0.3203 0.3455 0.0340
GRU4REC 0.2354 0.3651 0.4029 0.0665 0.2334 0.3372 0.3077 0.0669
SMF 0.2145 0.3614 0.3974 0.0608 0.2121 0.3275 0.3013 0.0605
SF-SKNN 0.2123 0.3320 0.3404 0.0284 0.2118 0.3258 0.2929 0.0366
IKNN 0.1352 0.3412 0.6758 0.0219 0.1319 0.2943 0.5043 0.0234
V-SKNN 0.1192 0.4134 0.4384 0.0589 0.1130 0.3263 0.2911 0.0599
AR 0.1157 0.3518 0.5352 0.0437 0.1107 0.2810 0.3886 0.0456
S-SKNN 0.1153 0.4119 0.4195 0.0544 0.1087 0.3190 0.2681 0.0593
S-KNN 0.0938 0.3609 0.2848 0.0595 0.0869 0.2626 0.1799 0.0658
Algorithm MRR@5 HR@5 cOovas POP@5 MRR@3 HR@3 MRR@1 HR@1
SR 0.2629 0.3179 0.3270 0.0387 0.2572 0.2930 0.2282 0.2282
MC 0.2625 0.3051 0.2790 0.0374 0.2590 0.2900 0.2332 0.2332
GRU4REC 0.2286 0.3011 0.2289 0.0653 0.2212 0.2688 0.1830 0.1830
SMF 0.2064 0.2851 0.2200 0.0587 0.1981 0.2488 0.1583 0.1583
SF-SKNN 0.2083 0.3013 0.2364 0.0432 0.1987 0.2598 0.1507 0.1507
IKNN 0.1215 0.2176 0.3427 0.0227 0.1084 0.1600 0.0700 0.0700
V-SKNN 0.0958 0.1972 0.1927 0.0630 0.0785 0.1202 0.0494 0.0494
AR 0.0985 0.1905 0.2579 0.0493 0.0849 0.1304 0.0519 0.0519
S-SKNN 0.0913 0.1881 0.1700 0.0660 0.0745 0.1135 0.0471 0.0471
S-KNN 0.0719 0.1481 0.1129 0.0742 0.0589 0.0904 0.0367 0.0367

206 Publications

Evaluation of Session-based Recommendation Algorithms 55

Table 37: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the NOWPLAYING dataset with a single split (sorted by MRR@20).

Algorithm MRR@20 HR@20 cova20 POP@20 MRR@10 HR@10 covaio POP@10

SR 0.0856 0.1825 0.4629 0.0309 0.0831 0.1466 0.3390 0.0346
MC 0.0813 0.1474 0.3576 0.0248 0.0798 0.1255 0.2833 0.0287
SF-SKNN 0.0787 0.1602 0.3015 0.0264 0.0774 0.1431 0.2383 0.0333
SMF 0.0782 0.1881 0.3560 0.0322 0.0753 0.1454 0.2585 0.0332
GRU4REC 0.0771 0.1792 0.2202 0.0523 0.0742 0.1370 0.1647 0.0568
V-SKNN 0.0670 0.2291 0.3358 0.0445 0.0624 0.1627 0.2248 0.0497
S-SKNN 0.0669 0.2406 0.3436 0.0407 0.0618 0.1674 0.2186 0.0468
AR 0.0647 0.1866 0.4137 0.0381 0.0613 0.1378 0.2869 0.0441
S-KNN 0.0604 0.2241 0.2312 0.0453 0.0554 0.1512 0.1487 0.0509
IKNN 0.0467 0.1554 0.5526 0.0144 0.0437 0.1120 0.3960 0.0145
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
SR 0.0789 0.1146 0.2290 0.0390 0.0744 0.0949 0.0584 0.0584
MC 0.0769 0.1041 0.2090 0.0336 0.0738 0.0903 0.0610 0.0610
SF-SKNN 0.0737 0.1157 0.1743 0.0403 0.0682 0.0914 0.0500 0.0500
SMF 0.0705 0.1085 0.1799 0.0341 0.0658 0.0879 0.0491 0.0491
GRU4REC 0.0700 0.1053 0.1196 0.0604 0.0651 0.0839 0.0510 0.0510
V-SKNN 0.0543 0.1019 0.1465 0.0543 0.0466 0.0677 0.0316 0.0316
S-SKNN 0.0532 0.1017 0.1329 0.0523 0.0450 0.0655 0.0306 0.0306
AR 0.0555 0.0947 0.1830 0.0531 0.0499 0.0701 0.0350 0.0350
S-KNN 0.0472 0.0888 0.0936 0.0560 0.0402 0.0578 0.0282 0.0282
IKNN 0.0384 0.0724 0.2597 0.0141 0.0332 0.0494 0.0214 0.0214

Table 38: Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV),
and average popularity (POP) results for a list length of 20, 10, 5, 3, and 1 on
the CLEF dataset with a single split (sorted by MRR@20).

Algorithm MRR@20 HR@20 CcOv@20 POP@20 MRR®@10 HR@10 covailo POP@10

GRU4REC 0.253 0.724 0.154 0.051 0.242 0.564 0.123 0.064
SR 0.213 0.623 0.754 0.055 0.202 0.451 0.715 0.084
MC 0.213 0.625 0.755 0.056 0.202 0.459 0.724 0.080
SMF 0.207 0.646 0.765 0.042 0.194 0.472 0.709 0.042
V-SKNN 0.197 0.683 0.756 0.053 0.183 0.487 0.682 0.080
S-SKNN 0.190 0.670 0.764 0.052 0.175 0.463 0.682 0.081
S-KNN 0.186 0.661 0.760 0.052 0.172 0.453 0.675 0.083
SF-SKNN 0.179 0.636 0.750 0.052 0.165 0.433 0.680 0.082
AR 0.178 0.631 0.733 0.058 0.164 0.435 0.653 0.103
IKNN 0.158 0.510 0.796 0.009 0.148 0.363 0.757 0.010
Algorithm MRR@5 HR@5 covas POP@5 MRR@3 HR@3 MRR@1 HR@1
GRU4REC 0.219 0.384 0.101 0.088 0.195 0.280 0.132 0.132

0.183 0.308 0.636 0.110 0.167 0.238 0.113 0.113

0.184 0.325 0.652 0.110 0.165 0.241 0.107 0.107

0.172 0.300 0.639 0.023 0.155 0.225 0.104 0.104

0.160 0.316 0.585 0.082 0.137 0.215 0.081 0.081

0.154 0.304 0.595 0.101 0.133 0.208 0.077 0.077
S-KNN 0.151 0.298 0.592 0.103 0.130 0.205 0.076 0.076
SF-SKNN 0.145 0.284 0.593 0.104 0.126 0.199 0.072 0.072
AR 0.143 0.278 0.517 0.170 0.125 0.198 0.070 0.070
IKNN 0.131 0.242 0.673 0.010 0.117 0.179 0.073 0.073

Publications 207

Performance Comparison of Neural and Non-Neural
Approaches to Session-based Recommendation

Malte Ludewig
TU Dortmund, Germany
malte.ludewig@tu-dortmund.de

Sara Latifi
University of Klagenfurt, Austria
sara.latifi@aau.at

ABSTRACT

The benefits of neural approaches are undisputed in many appli-
cation areas. However, today’s research practice in applied ma-
chine learning—where researchers often use a variety of baselines,
datasets, and evaluation procedures—can make it difficult to un-
derstand how much progress is actually achieved through novel
technical approaches. In this work, we focus on the fast-developing
area of session-based recommendation and aim to contribute to a
better understanding of what represents the state-of-the-art.

To that purpose, we have conducted an extensive set of experi-
ments, using a variety of datasets, in which we benchmarked four
neural approaches that were published in the last three years against
each other and against a set of simpler baseline techniques, e.g.,
based on nearest neighbors. The evaluation of the algorithms under
the exact same conditions revealed that the benefits of applying
today’s neural approaches to session-based recommendations are
still limited. In the majority of the cases, and in particular when
precision and recall are used, it turned out that simple techniques
in most cases outperform recent neural approaches. Our findings
therefore point to certain major limitations of today’s research
practice. By sharing our evaluation framework publicly, we hope
that some of these limitations can be overcome in the future.

CCS CONCEPTS

+ Information systems — Recommender systems.

KEYWORDS

Session-based Recommendation; Evaluation; Reproducibility

ACM Reference Format:

Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2019. Perfor-
mance Comparison of Neural and Non-Neural Approaches to Session-based
Recommendation. In Thirteenth ACM Conference on Recommender Systems
(RecSys ’19), September 16-20, 2019, Copenhagen, Denmark. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3298689.3347041

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys '19, Sep ber 16-20, 2019, Copenhagen, Denmark

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6243-6/19/09...$15.00
https://doi.org/10.1145/3298689.3347041

Noemi Mauro
University of Torino, Italy
noemi.mauro@unito.it

Dietmar Jannach
University of Klagenfurt, Austria
dietmar.jannach@aau.at

1 INTRODUCTION

In recent years, we could observe an increased research interest
in session-based recommendation problems. In such settings, the
problem is not to make relevance predictions for items given the
users’ long-term preferences, but to make recommendations given
only a few user interactions in an ongoing session [19]. While such
scenarios have been addressed in the literature previously, e.g.,
for web usage prediction [18], they have recently received more
attention, e.g., due to the availability of public datasets.

From a technical perspective, almost all session-based algorithms
proposed in recent years are based on deep learning (“neural”)
architectures. A landmark work in this area is the GRU4REC method,
which is based on Recurrent Neural Networks (RNNs) [4, 5]. Today,
GRU4REC is often used as a baseline algorithm in experimental
evaluations. However, recent research [7, 15] indicates that simpler
methods based on nearest-neighbor techniques can outperform
GRU4REC in terms of certain accuracy measures. Therefore, when
new neural algorithms are published and benchmarked against
GRU4REC alone, it is not clear whether or not these new methods
are actually leading to progress beyond the more simple techniques.

This problem of unclear progress in applied machine learning is
not entirely new. In the information retrieval (IR) field, for example,
researchers already found in 2009 that the improvements reported
over the years “don’t add up” [1]. Recent analyses [10, 16] fur-
thermore indicate that some neural approaches that were recently
published at top conferences do not outperform long-established
baseline methods, when these are well tuned. The reasons for this
non-progress lie in the choice of the baselines used in the experimen-
tal evaluations or the limited efforts by the authors to fine-tune the
baselines. Sometimes, another problem is the lack of reproducibil-
ity of the results. Today, publishing the code of the algorithms is
more and more encouraged. However, often the code used for data
pre-processing, data splitting, hyper-parameter optimization, and
evaluating is not provided. Given that many of these implementa-
tion details can affect accuracy, it is often very challenging to make
reliable conclusions.

With this work, our goal is to shed light on the progress in the
area of session-based recommendation algorithms. We report the
results of an in-depth comparison of four recent neural algorithms
and a set of mostly simpler baseline algorithms. All algorithms were
benchmarked under identical settings within an evaluation frame-
work that we built upon the code from [5]. Our results indicate that
the progress that is achieved with neural approaches is sometimes

Publications 209

RecSys ’19, September 16-20, 2019, Copenhagen, Denmark

very limited, and that well-tuned baselines often outperform even
the latest complex models.

Generally, these observations call for improved research prac-
tices, as discussed previously in [12]. The availability of an eval-
uation environment for reproducible research can be one piece
of this puzzle. We therefore publicly share our evaluation frame-
work, which includes also code for data splitting, hyper-parameter
optimization and a number of additional metrics.

2 BENCHMARKED ALGORITHMS

We have considered the four neural approaches shown in Table 1 in
our comparison. We selected them by systematically scanning the
proceedings of top-ranked conference series of the last three years.
We only included works for which the source code was available
and which did not use side information.

Table 1: Neural Recommendation Strategies

GRU4REC GRU4REC [5] was the first neural approach that employed
(ICLR’16, RNNs for session-based recommendation. The technique was
CIKM'18)

later on improved using more effective loss functions [4].

NARM This model extends GRU4REC and improves its session model-

(CIKM'17) ing with the introduction of an attention mechanism. This
also proved to be advantageous in the NLP field [8].

STAMP In contrast to NARM, this model does not rely on an RNN

(KDD'18) anymore. Instead, the session is modeled solely with an at-
tention mechanism in order to improve both effectiveness
and efficiency [13].

NEXTITNET This recent model also discards RNNs to model user ses-

(WSDM'19) gjons. In contrast to sTamp, convolutional neural networks

are adopted with a few domain-specific enhancements [21].

As baselines we use the five techniques that were also used in
[15], as well as a recent, more complex approach based on con-
text trees (cT) [17]. All baselines methods shown in Table 2 have
the advantage that they can take new interactions immediately
into account without retraining, and they only have a small set
of parameters to tune. Furthermore, scalability can be ensured for
the neighborhood-based techniques through adequate sampling
as discussed in [7]. We initially considered additional neural ap-
proaches such as [2, 9, 11, 14], but we did not include them in our
evaluation for different reasons, e.g., because the source code was
not available, or the algorithm also uses side information. We also
did not consider sequential approaches like [3, 6, 20], because they
are not really designed for session-based scenarios or require user
IDs in the datasets.

Table 2: Baseline Strategies

AR Learns and applies association rules of size two. Works by simply
counting pairwise item co-occurrences in the training sessions.
SR Similar to AR, but learns sequential rules of size two, i.e., it counts

how often one item appeared after another (possibly with ele-
ments in between) in the training sessions.

S-KNN A session-based nearest-neighbor technique. Every item in the
session is assumed to be equally important when computing
similarities.

vs-KNN Like s-KNN, but uses a similarity function that puts more empha-
sis on the more recent events in a session.

CcT This technique is based on context trees. It is non-parametric
and showed promising results in [17].

210 Publications

Ludewig et al.

3 DATASETS AND EVALUATION APPROACH
3.1 Datasets

We conducted experiments with seven datasets, four from the e-
commerce domain and three from the music domain, see Table 3.
Six of these datasets are publicly available. These datasets were also
used for the comparison of algorithms in [8, 15] and [13].

Table 3: Datasets

RSC15 E-commerce dataset used in the 2015 ACM RecSys Challenge.
RETAIL An e-commerce dataset from the company Retail Rocket.
DIGI An e-commerce dataset shared by the company Diginetica.

ZALANDO A non-public dataset consisting of interaction logs from the
European fashion retailer Zalando.

30MU Music listening logs obtained from Last.fm.

NOWP Music listening logs obtained from Twitter.

AOTM A public music dataset containing music playlists.

Some previous works on session-based recommendation use a
single training-test split in their evaluation or very small subsets of
the original datasets (e.g., only V64 of the RSC15 dataset) [4, 5, 8, 13].
In our work, we followed the approach of [15] and created, for
each dataset, five subsets contiguous in time to be able to make
multiple measurements in order to minimize the risk of random
effects. Table 4 shows the average characteristics of these multiple
subsets. Pointers to the resulting datasets and the train-test splits
used in the experiments can be found online!, together with the
code of our evaluation framework. For all datasets, we removed
sessions that contained only one interaction.

Table 4: Characteristics of the datasets. The values are aver-
aged over all five splits.

Dataset RSC15 RETAIL DIGI ZALANDO 30MU NOWP AOTM
Actions 5.4M 210k 264k 4.5M 640k 271k 307k
Sessions 1.4M 60k 55k 365k 37k 27k 22k
Items 29k 32k 32k 189k 91k 75k 91k
Days covered 31 27 31 90 90 90 90
Actions/Session 3.95 3.54 478 12.43 17.11 10.04 14.02
Items/Session 3.17 2.56 4.01 8.39 14.47 9.38 14.01
Actions/Day 175k 8k 8.5k 50k 7k 3.0k 3.4k
Sessions/Day 44k 22k 17k 4k 300 243 243

3.2 Experimental Procedure

Hyper-Parameter Optimization. We tuned the hyper-parameters
for all methods for each dataset systematically, using a subset of
the training data—covering the same amount of days as the test
set—for validation. As the training process can be time-consuming
and the parameter space is large, we applied a random optimization
approach with 100 iterations as in [4, 8, 13] (50 iterations for NARM)
to find a suitable set of parameters. All models were optimized for
the Mean Reciprocal Rank (MRR@20). The ranges and the final
values of the hyper-parameters for each dataset can be found online.

Protocol and Metrics. Similar to [4, 5] and other works, we used
the last n days of each dataset as test data and the rest for train-
ing. For each session in the test data, we incrementally “revealed”
one interaction after the other. After each revealed interaction, we

!https://rn5L.github.io/session-rec/index.html

Performance Comparison of Approaches to Session-based Recommendation

computed recommendation lists and then compared the recommen-
dations with the still hidden elements in the session.

In [5], where GRU4REC was proposed, and in subsequent works,
the evaluation procedure is based on measuring to what extent an
algorithm is able to predict the immediate next item in a session.
Their corresponding measurement of the Hit Rate (HR@20) and
the MRR@20 is therefore based on the existence of this next item
in a given top-n recommendation list. In reality, however, usually
more than one item is shown and being able to identify more than
one relevant item for a given session is typically favorable over
just predicting the immediate next one correctly. In this work, we
therefore focus on traditional precision, recall, and mean average
precision (MAP) measures, which consider all items that appear in
the currently hidden part of the session as relevant. As the neural
approaches are not explicitly designed to predict multiple items and
for the sake of completeness, we report both types of measurements.

4 RESULTS

E-Commerce Domain. Table 5 shows the results for the domain
of e-commerce.? On the RETAIL and the DIGI dataset, the nearest
neighbor methods led to the highest accuracy results—averaged
across folds—on all measures. For the ZALANDO dataset, neighbor-
hood methods were again best, except for the MRR. The differences
to the best complex model are in many cases significant.

Only for the RSC15 dataset we can observe that a neural method
(NARM) is able to consistently outperform our best baseline vs-KNN
on all measures. Interestingly, however, it is one of the earlier neural
methods in this comparison. The results for the RSC15 dataset are
generally different from the other results. The cT method, for exam-
ple, was very competitive on the MRR for this dataset. sTamp, while
being a very recent method, was not among the top performers
except for this dataset. Given these observations, it seems that the
RSC15 dataset has some unique characteristics that are different
from the other e-commerce datasets.

For the larger ZALANDO and RSC15 datasets, we do not include
measurements for the most recent NEXTITNET method. We found
that the method does not scale well and we could not complete the
hyper-parameter tuning process within weeks on our machines
(also for two music datasets).

Music Domain. Table 6 shows the results for the music domain.
The results are mostly aligned with the e-commerce results. On
all datasets, the nearest-neighbor methods outperform all other
techniques on precision, recall, MAP, and the hit rate. In terms of
the MRR measure, the non-neural cT method consistently leads to
the highest values. The simple sk method is again competitive in
terms of the MRR, and GRU4REC as well as NARM are again among
the top-performing neural approaches. The neighborhood methods
in all cases are not in the leading positions in terms of the MRR and
even lead to the lowest MRR performance on the AOTM dataset.
The sTamP method can consistently be found at the lower ranks in
this comparison.

2The highest value across all techniques is printed in bold; the highest value obtained
by the other family of algorithms—baseline or complex model—is underlined. Stars in-
dicate significant differences according to a Student’s t-test with Bonferroni correction
between the best-performing techniques from each category. *: p<0.05, ##: p<0.01.

RecSys '19, September 16-20, 2019, Copenhagen, Denmark

Table 5: Results for e-commerce datasets. The best values ob-
tained for complex models and baselines are highlighted.?

Metrics MAP@20 P@20 R@20 ‘ HR@20 MRR@20
RETAIL
S-KNN 0.0283 0.0532 0.4707 0.5788 0.3370
VS-KNN 0.0278 0.0531 0.4632 0.5745 0.3395
GRU4REC 0.0272 0.0502 0.4559 0.5669 0.3237
NARM 0.0239 0.0440 0.4072 0.5549 0.3196
STAMP 0.0229 0.0428 0.3922 0.4620 0.2527
AR 0.0205 0.0387 0.3533 0.4367 0.2407
SR 0.0194 0.0362 0.3359 0.4174 0.2453
NEXTITNET 0.0173 0.0320 0.3051 0.3779 0.2038
CcT 0.0162 0.0308 0.2902 0.3632 0.2305
DIGI
S-KNN *%0.0255 %0.0596 %%0.3715 %0.4748 0.1714
VS-KNN 0.0249 0.0584 0.3668 0.4729 %%0.1784
GRU4REC 0.0247 0.0577 0.3617 0.4639 0.1644
NARM 0.0218 0.0528 0.3254 0.4188 0.1392
STAMP 0.0201 0.0489 0.3040 0.3917 0.1314
AR 0.0189 0.0463 0.2872 0.3720 0.1280
SR 0.0164 0.0406 0.2517 0.3277 0.1216
NEXTITNET 0.0149 0.0380 0.2416 0.2922 0.1424
CcT 0.0115 0.0294 0.1860 0.2494 0.1075
ZALANDO
VS-KNN 0.0158 0.0740 *x0.1956 | **0.5162 0.2487
S-KNN 0.0157 0.0738 0.1891 0.4352 0.1724
NARM 0.0144 0.0692 0.1795 0.4598 0.2248
GRU4REC 0.0143 0.0666 0.1797 0.4925 0.3069
SR 0.0136 0.0638 0.1739 0.4824 0.3043
AR 0.0133 0.0631 0.1690 0.4665 0.2579
cT 0.0118 0.0564 0.1573 0.4561 0.2993
STAMP 0.0104 0.0515 0.1359 0.3687 0.2065
RSC15
NARM *%0.0357 #x0.0735 *x0.5109 *0.6751 0.3047
STAMP 0.0344 0.0713 0.4979 0.6654 0.3033
VS-KNN 0.0341 0.0707 0.4937 0.6512 0.2872
GRU4REC 0.0334 0.0682 0.4837 0.6480 0.2826
SR 0.0332 0.0684 0.4853 0.6506 0.3010
AR 0.0325 0.0673 0.4760 0.6361 0.2894
S-KNN 0.0318 0.0657 0.4658 0.5996 0.2620
CcT 0.0316 0.0654 0.4710 0.6359 0.3072

Summary of Accuracy Measurements. Overall, across the domains
we can observe that only in one single case—when using the RSC15
dataset—a rather early complex model was able to outperform
relatively simple baselines. In the large majority of the cases in
particular the neighborhood-based methods are better than newer
neural approaches in terms of precision, recall, MAP, the hit rate
and, in two cases also in terms of the MRR. When considering only
the immediate next item for evaluation, and when using the MRR,
the ranking of the algorithm often changes compared to the other
measures. No consistent pattern was, however, found in terms of
this measurement across the domains and datasets.

Some of the more recent approaches like NEXTITNET or STAMP
often performed worse than GRU4REC according to our evaluation.
In the original papers, they won such a comparison, although with
different data subsets and evaluation procedures as in [4]. In the end,

Publications 211

RecSys ’19, September 16-20, 2019, Copenhagen, Denmark Ludewig et al.
Table 6: Results for the music domain datasets Table 7: Running times
Metrics MAP@20 P@20 R@20 \ HR@20 MRR@20 Training Predicting (ms)
Algorithm RSC15 ZALANDO RSC15 ZALANDO
NOWP
GRU4REC (on GPU) 0.8%h 1.51h 8.81 30.06
VS-KNN #60.0193 #+0.0664 ++0.1828 | +0.2534 0.0810 stame (on GPU) 1.25h 7.61h 1379 51.84
NARM (on GPU) 4.36h 12.9%h 9.72 28.69
S-KNN 0.0186 0.0655 0.1809 0.2450 0.0687 NEXTITNET (on GPU) 26.3%h B 3.98 -
AR 0.0166 0.0564 0.1544 0.2076 0.0710
SR 00133 00466 01366 | 02002 0.1052 SR (on CPU) 17:35 2375 340 866
VS-KNN (on CPU) 10.71s 5485 1642 26.00
NARM 00118 00463 0.1274 0.1849 0.0894 e1 (on CPU) 591m 210h 57.66 327.83
GRU4REC 0.0116 0.0449 0.1361 0.2261 0.1076
STAMP 0.0111 0.0455 0.1245 0.1919 0.0897 P
or 0.0065 0.0287 0.0893 0.1679 0.1094 needs more than one day for training on a GPU even for datasets of
modest size. When datasets are used that comprise a larger set of
30MU items, e.g., the one from Zalando, the performance differences are
VS-KNN #%0.0309 #%0.1090 %%0.2347 | %+0.3830 0.1162 even more pronounced. The cT method is generally fast enough
S-KNN 0.0290 0.1073 0.2217 0.3443 0.0898 when predicting for the RSC15 dataset, but it slows down rapidly
AR 0.0254 0.0886 0.1930 0.3088 0.0960 when the number of items increases.
SR 0.0240 0.0816 0.1937 0.3327 0.2410
NARM 0.0155 0.0675 0.1486 0.2956 0.1945 Coverage and Popularity Bias. Previous work has indicated that
GRU4REC 0.0150 0.0617 0.1529 0.3273 0.2369 some methods, in particular the simpler ones, can have a tendency
STAMP 0.0093 0.0411 0.0875 0.1539 0.0819 to recommend more popular items [15]. At the same time, some
cT 0.0058 0.0308 0.0885 0.2882 %0.2502 algorithms can focus their recommendations on a small set of items
AOTM that are recommended to everyone, which can be undesired in
certain domains and lead to limited personalization.
S-KNN #%0,0037 *x0.0139 %x0.0390 | *+0.0417 0.0054
To identify such potential differences, we measured the popular-
VS-KNN 0.0032 0.0116 0.0312 0.0352 0.0057 ity bi £ h aleorithm b ing th . lized
AR 0.0018 0.0076 0.0200 0.0233 0.0059 ity bias of each algorithm by averaging the min-max normalize
SR 0.0010 0.0047 0.0134 0.0186 0.0074 popularity values of the recommended items in the top-20 recom-
NARM 0.0009 0.0050 0.0146 0.0202 0.0088 mendations. Furthermore, we determined the fraction of items that
cr 0.0006 0.0043 0.0126 0.0191 #%x0.0111 ever appeared in the generated top-20 recommendations (coverage).
NEXTITNET 0.0004 0.0024 0.0071 0.0139 0.0065 The general tendencies across datasets are as follows. In terms
STAMP 0.0003 0.0020 0.0063 0.0128 0.0088 of the popularity bias, cT is usually very different from the other
GRU4REC 0.0003 0.0020 0.0063 0.0130 0.0074 methods, and it focuses much more on popular items. For the other

it seems that progress in neural session-based recommendation is
still limited, and the various reported improvements over the land-
mark GRU4REC method are seemingly not enough to consistently
outperform much simpler techniques.

4.1 Additional Observations

Scalability. Scalability can be an issue for some of the complex
models, with GRU4REC being among the faster approaches. The
authors of stamp and NARM, for example, use only V4 or V64 of
the RSC15 dataset in their own experiments. Similarly, the largest
dataset used for the evaluation of NEXTITNET has about 2 million
sessions, which is a fraction of the original RSC15 dataset.

We measured the runtimes of training and prediction for all
methods in all experiments. As an example, we report the results
for RSC15 and ZALANDO in terms of the training time for one split
and the average time needed to generate a recommendation list®.

Methods like sr or vs-KNN do not learn complex models. They
only need some time to count co-occurrences or prepare data struc-
tures. Also, the cT technique can be efficiently initialized. Training
GRU4REC on one data split on our hardware took less than an hour.
sTaMP needed only slightly more time than GRU4REC, but NARM was
four times slower. Finally, the most recent convolutional NEXTITNET
method seems to be limited in terms of practical applicability as it

3Times were measured on a workstation computer with an Intel Core i7-4790k proces-
sor and a Nvidia Geforce GTX 1080 Ti graphics card (Cuda 10.1/CuDNN 7.5).

212 Publications

methods, no clear ranking was found across datasets. In many cases,
however, GRU4REC is among the methods that recommend the least
popular (or: most novel) items. GRU4REC also often has the highest
and sTAMP the lowest coverage. vs-KNN is similar to the other neural
approaches in terms of coverage.

5 CONCLUSIONS

Our work indicates that even though a number of papers on session-
based recommendations were published at very competitive con-
ferences in the last years, progress seems to be still limited (or
only phantom progress) despite the increasing computational com-
plexity of the models. Similar to the IR domain, one main problem
seems to lie in the choice of the baselines, and our work points to a
potentially major limitation of today’s research practice.

A general phenomenon in that context is that previous non-
neural approaches—as well as simpler methods—are often disre-
garded in empirical evaluations, and only neural methods are used
as baselines despite their possibly unclear competitiveness.

In some papers, little is also said about hyper-parameter opti-
mization for the baselines. In addition, the code which is used in
the optimization and evaluation procedures is not always shared,
making reproducibility an issue. With our work, we provide a frame-
work based on the work from [5, 15], where various algorithms can
be benchmarked under the exact same conditions, using different
evaluation schemes. Overall, we hope that this environment is help-
ful for other researchers to achieve higher levels of reproducibility
and faster progress in this area.

Performance Comparison of Approaches to Session-based Recommendation RecSys '19, September 16-20, 2019, Copenhagen, Denmark

REFERENCES [10] Jimmy Lin. 2019. The Neural Hype and Comparisons Against Weak Baselines.
[1] Timothy G. Armstrong, Alistair Moffat, William Webber, and Justin Zobel. 2009. SI_GIR Fo.rum 52, Z G'fm‘ 2(_)1_9)’ 40-51. .
Improvements That Don’t Add Up: Ad-hoc Retrieval Results Since 1998. In Pro- [11] Xiang Lin, Shuzi Niu, Yigiao Wang, and Yuchepg Li. 2018. Kiplet Recurrent
ceedings of the 18th ACM Conference on Information and Knowledge Management Neural Networks for Sequential Recommendation. In Proceedings of the 41st
(CIKM "09). 601-610. International ACM SIGIR Conference on Research & Development in Information
[2] Gabriel de Souza Pereira Moreira, Felipe Ferreira, and Adilson Marques da Cunha. Retrieval (SIG_IR 18). 1057-1060. . X X X
2018. News Session-Based Recommendations using Deep Neural Networks. [12] Zacha.ry C. Lipton .and]ac.ob Steinhardt. 2018. Troubling Trends in Machine
In Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems Le.arrur‘lg Sgholarshlp. aerv:1807.03?.a41 Prese.nt.ed at ICML ’18: The Debates.
(DLRS) '18. [13] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: Short-
[3] Hailin Fu, Jianguo Li, Jiemin Chen, Yong Tang, and Jia Zhu. 2018. Sequence-Based Term Attention/Memory Priority Model for Session-based Recommendation.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’18). 1831-1839.
[14] Pablo Loyola, Chen Liu, and Yu Hirate. 2017. Modeling User Session and Intent
with Top-k Gains for Session-based Recommendations. In Proceedings of the 27th with an Attention-based Encoder-Decoder Architecture. In Proceedings of the

ACM International Conference on Information and Knowledge Management (CIKM Eleventh ACM Conference on Recommender Systems (RecSys "17). 147-151.
18). 843-852. [15] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-based Rec-

ommendation Algorithms. User-Modeling and User-Adapted Interaction 28, 4-5
(2018), 331-390.
Dietmar Jannach Maurizio Ferrari Dacrema, Paolo Cremonesi. 2019. Are We
Really Making Much Progress? A Worrying Analysis of Recent Neural Recommen-
2018. Improving Sequential Recommendation with Knowledge-Enhanced Mem- dation Approach’es. In Proceedings of the 13th ACM Conference on Recommender
ory Networks. In Proceedings of the 41st International ACM SIGIR Conference on Sy.sler?ts (ReCSYS 19)‘ X .
Research & Development in Information Retrieval (SIGIR *18). 505-514. [17] Fei Mi and Boi Faltings. 2018. Context Tree for Adaptive Session-based Recom-
[7] Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Networks mendation. CoRR (2018). aerV:1896‘03733 . .
Meet the Neighborhood for Session-Based Recommendation. In Proceedings of [18] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. 2002. Using

Recommendation with Bidirectional LSTM Network. In Advances in Multimedia
Information Processing (PCM ’18). 428-438.
[4] Balazs Hidasi and Alexandros Karatzoglou. 2018. Recurrent Neural Networks

[5] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In
Proceedings International Conference on Learning Representations (ICLR ’16). [16]
[6] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y. Chang.

the Eleventh ACM Conference on Recommender Systems (RecSys '17). 306-310. Sequential.and NonfSe.quential Patterns in Predict.iv.e Web Usage Mining Tasks.
[8] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017. In Prt.)ceedmgs International Canferenc(? on Datz'z Mining (ICDM °02). 669-672.
Neural Attentive Session-based Recommendation. In Proceedings of the 2017 ACM [19] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
on Conference on Information and Knowledge Management (CIKM ’17). 1419-1428. A.wa‘re Recommender Systems. Comput,. Surveys 51 (2018), }_36' Issue 4. X
[9] Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, and Enhong Chen. 2018. [20]]1‘ax1 Tang anr:l Ke Wang. 2018. Persona}llzed Top-N Seguentlal Recommendation
Learning from History and Present: Next-item Recommendation via Discrim- via Conyolutlonal Sequence Embedding. In Pre Uceeidfngs of the E;leventh ACM
inatively Exploiting User Behaviors. In Proceedings of the 24th ACM SIGKDD Intfmatmnal Conference on Web Search and D.“m Mmm.g (WSDM "18). 565-573.
International Conference on Knowledge Discovery & Data Mining (KDD ’18). 1734~ [21] Ff‘]le Yuan, Alexandros. Karatzoglou, I.oanms Arapa.kls, Joemon M. Jose, and
1743, Xiangnan He. 2019. A Simple Convolutional Generative Network for Next Item

Recommendation. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining (WSDM ’19). 582-590.

Publications 213

User-Centric Evaluation of Session-Based Recommendations
for an Automated Radio Station

Malte Ludewig
TU Dortmund, Germany
malte ludewig@tu-dortmund.de

ABSTRACT

The creation of an automated and virtually endless playlist given a
start item is a common feature of modern media streaming services.
When no past information about the user’s preferences is available,
the creation of such playlists can be done using session-based rec-
ommendation techniques. In this case, the recommendations only
depend on the start item and the user’s interactions in the current
listening session, such as “liking” or skipping an item.

In recent years, various novel session-based techniques were
proposed, often based on deep learning. The evaluation of such
approaches is in most cases solely based on offline experimentation
and abstract accuracy measures. However, such evaluations cannot
inform us about the quality as perceived by users. To close this
research gap, we have conducted a user study (N=250), where the
participants interacted with an automated online radio station. Each
treatment group received recommendations that were generated by
one of five different algorithms. Our results show that comparably
simple techniques led to quality perceptions that are similar or even
better than when a complex deep learning mechanism or Spotify’s
recommendations are used. The simple mechanisms, however, often
tend to recommend comparably popular tracks, which can lead to
lower discovery effects.

CCS CONCEPTS

« Information systems — Recommender systems; Collabo-
rative filtering; Music retrieval.

KEYWORDS

Session-based Recommendation; Music Recommendation; Quality
Perception

ACM Reference Format:

Malte Ludewig and Dietmar Jannach. 2019. User-Centric Evaluation of
Session-Based Recommendations for an Automated Radio Station. In Thir-
teenth ACM Conference on Recommender Systems (RecSys '19), September
16-20, 2019, Copenhagen, Denmark. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3298689.3347046

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys '19, Sep ber 16-20, 2019, Copenhagen, Denmark

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6243-6/19/09...$15.00
https://doi.org/10.1145/3298689.3347046

Dietmar Jannach
University of Klagenfurt, Austria
dietmar.jannach@aau.at

1 INTRODUCTION

Modern online media streaming services often provide the function-
ality of an automated radio or playlist, where users provide a start
item (e.g., a song or a video), and the system then automatically
plays a virtually endless list of related items. In some cases, for
example, on YouTube or Spotify, users can also give feedback on
the played items, e.g., by “liking” them, by explicitly expressing
that they are not interested, or by skipping to the next item. In the
best case, this feedback is immediately taken into account by the
system, leading to an update of the items in the playing queue.

In case the system is used by a new or anonymous user, playlists
can be generated with session-based recommendation techniques
[23]. These approaches do not require long-term preference profiles
but are able to make recommendations solely based on the most
recent interactions of a user. Due to their practical importance also
in other domains, e.g., in e-commerce settings, a number of algo-
rithmic proposals for session-based recommendation were made
over the years. Technically, different strategies can be applied from
traditional association rule mining, over nearest neighbor methods,
to recent deep learning based techniques [10, 15, 16].

In the research literature, the comparison of session-based recom-
mendation techniques is mostly based on offline experimentation. A
recent comparison of techniques in [18], to some surprise, indicated
that comparably simple approaches often work at least as good as
one of today’s more complex state-of-the-art techniques in terms of
measures like precision and recall. Given these results, the question
arises if such simple techniques only perform well when using such
measures or if they are actually able to generate recommendations
that are also perceived to be of high quality by users.

To address this question, alongside an offline evaluation, we con-
ducted a between-subjects user study (N=250), where participants
interacted with an online radio application that was developed for
the experiment. The participants could provide a start track and
then received automated recommendations. We compared five al-
gorithms, which included both simple and more complex ones, and
the recommendations retrieved through Spotify’s API. We analyzed
both the participants’ observed behavior (e.g., in terms of the num-
ber of liked or skipped tracks) as well as the answers they provided
in a post-task questionnaire.

One main outcome of the study is that some simple methods are
comparable or even better in terms of their quality perception than
complex ones, which means simple methods are not only competi-
tive in offline evaluations. However, the tested simpler methods, by
design, often recommend more popular tracks, which might lead to
fewer opportunities for item discovery. Beyond the specific aspects
investigated in the study, our work therefore emphasizes the known
need for multi-faceted evaluation approaches and the consideration
of domain-specific aspects when comparing algorithms.

Publications 215

RecSys '19, September 16-20, 2019, Copenhagen, Denmark

2 RELATED WORK

2.1 Next-Track Recommendation Algorithms

A simple technique to determine the next tracks to play is to count
track co-occurrences in past sessions and apply a recommenda-
tion scheme of the form “Customers who bought ... also bought
...”. Such an approach can be considered to be one of the simplest
session-based techniques, which is widely used in practical applica-
tions and which, depending on the domain, can already lead to good
performance [18]. Over the years, however, a variety of more elab-
orate next-item prediction techniques for different domains were
proposed, from sequential pattern mining over Markov models,
embedding-based approaches, and, most recently, to deep learning
techniques [4, 8, 9, 15, 16, 21, 25].

In particular in the music domain, also application-specific tech-
niques were applied. Recent research for example showed that
recommending popular tracks from artists that are similar to those
that the user currently listens to can be quite effective, both in terms
of accuracy measures [3] and in terms of the users’ quality percep-
tion [13]. Similarly, also quite simple nearest-neighbor techniques
proved to be effective not only in the music domain, but also in oth-
ers, e.g., in e-commerce [18]. However, such neighborhood-based
methods can exhibit a bias to recommend mostly popular items.
The authors of [19] therefore propose to adjust the ranking of items
based on their popularity.

In our study, we will compare algorithms of different families.
Specifically, we consider one deep learning technique, an artist-
based collaborative method, a popularity-aware nearest-neighbor
technique, as well as simple item co-occurrences. In addition, we
consider the recommendations by a commercial service, in our case
the recommendations provided through Spotify’s APL

2.2 User Studies

Differently from recent user studies that are focusing on specific
aspects of recommendations—such as item similarity [27], presenta-
tion aspects [26], the inaction of users [29] or the effects of playlist
recommenders on users [12]—our goal is to assess the quality per-
ception of different session-based recommendation algorithms in a
realistic scenario.

The number of user studies on the perception of music recom-
mendations is comparably low. The two most similar examples
of past research are [1] and [13]. In [1], the authors compared a
number of “playlisting” approaches through a user study. In their
experiment, the participants evaluated entire playlists—two at a
time—as produced by different algorithm for a given seed song.
They included collaborative techniques, an artist-based one, as well
as Apple’s iGenius system. In [13], in contrast, the participants
did not assess a set of generated playlists, but had to indicate the
suitability of four alternative tracks as possible continuations for a
given playlist. From a technical viewpoint, the authors considered
two neighborhood-based techniques and an artist-based one when
determining the possible continuations.

While these two studies share some similarities with our work,
their focus and experiment designs were different. Instead of eval-
uating entire playlists or individual continuations, our goal is to
assess the users’ quality perceptions in a more interactive setting
that is common on modern music streaming sites. Specifically, in

216 Publications

Malte Ludewig and Dietmar Jannach

our study, the participants can give immediate feedback to the cur-
rently played tracks and the system will then automatically update
the recommendations accordingly. Similar to [1], we also include a
commercial playlisting service in our study. And, like in [13], we
contrast offline accuracy results with the users’ quality perceptions.

Outside the music domain, various user studies on the quality
perception of recommenders were made in the past, e.g., for the
movie domain [6, 28]. Recent insights show that it is important
that study participants actually “consume” the items they assess
[11, 17], which is also the case in our study.

Generally, user studies often rely on user-centric evaluation
frameworks as proposed in [14] and [22]. While we do not directly
apply these general frameworks in our very specific setup, we partly
based our questionnaire items on the considerations presented in
these frameworks.

3 STUDY DESIGN

Our main research goal is to understand how different algorithms
affect the quality perception of users. Therefore, we developed an
own online radio station to conduct the corresponding study.

3.1 Tasks for Participants

(1) Before using the radio, the participants were informed about
their tasks and the expected duration of the study. They were also
asked to provide informed consent to the terms of the study.

(2) They were then directed to a search interface, where they
could enter a query to find a start track. They could listen to excerpts
of the retrieved tracks and select one of them to start the radio.

Figure 1: Radio Interface

(3) After this selection, the main radio application was started,
see Figure 1. The radio then played the 30-seconds representative
track excerpts provided by Spotify. Besides pausing the track and
skipping to the next track, the participants could also use a “thumbs
up” button to express that they like the current track. At all times,
the radio interface provided a visual cue for the users that indicates
that there is a list of upcoming tracks. This list was updated after a
“thumbs up” or skip action, i.e., the participants received feedback
that their actions had an effect.

For each played track, the participants were also asked to pro-
vide information if (i) they already knew the track, (ii) if the track
matched the previously liked tracks, and (iii) if they liked the track
in general, see Figure 2. Proceeding to the next track was only pos-
sible after the responses for each track were provided. Overall, each
participant was asked to interact with and rate at least 15 tracks.

User-Centric Evaluation of Session-Based Recommendations

Do You know the track?* Yes (] No

Completely Disagree Completely Agree

Does the track match the previously liked tracks?*
O O O O O
Do you like the track in general?*

O O O 6 O

Finish Study

Figure 2: Rating Interface

(4) Once enough tracks were listened to, the participants could
proceed to finish the study. In this final part, the participants were
asked 11 questions (using 7-point Likert-type items) about their
quality perceptions and intention to share or reuse the system.
Table 1 shows these 11 questions, where the additional question
Q8 is an attention check to assess if the participants answered
the questionnaire with care. Furthermore, we asked four questions
about their music enthusiasm (not shown in the table).

Table 1: Questions about Users’ Quality Perceptions

Question

Q1 1liked the automatically generated radio station.

Q2 The radio suited my general taste in music.

Q3 The tracks on the radio musically matched the track I selected in the beginning.
Q4 The radio was tailored to my preferences the more positive feedback I gave.

Q5 The radio was diversified in a good way.
Q6 The tracks on the radio surprised me.
Q7 I discovered some unknown tracks that I liked in the process.

Q8 Tam participating in this study with care so I change this slider to two.

Q9 I would listen to the same radio station based on that track again.
Q10 Iwould use this system again, e.g., with a different first song.
Q11 Iwould recommend this radio station to a friend.

Q12 Iwould recommend this system to a friend.

3.2 Recommendation Strategies

The independent variable in our study is the assigned recommen-
dation algorithm!. We employed five different strategies (see Table
2) and relied on Spotify’s Million Playlist Dataset?, abbreviated as
MPD, as a basis for the recommendations.

Playing several tracks of the same artists within a short period of
time is uncommon for automated radio stations. Since most tested
methods are not designed to take this domain particularity into ac-
count, we designed a diversifying post-processing strategy, which
we applied to all playlists returned by the algorithms. Specifically,
we made sure that there are no artist repetitions within the next
3 tracks by re-ranking the tracks in the playlist. For the recom-
mendations returned by Spotify’s API, we furthermore removed
tracks that did not appear in the MPD dataset. Thereby, we guaran-
teed a fair comparison of the techniques, in which all approaches
recommend from the same catalog of items.

We optimized the hyper-parameters for the different strategies
in an offline experiment on a subset of the MPD dataset. From a
random sub-sample of 100,000 playlists we randomly selected 2,000
playlists as a validation set, while using the remaining playlists for
model training. Parameter tuning was performed with a randomized
search strategy in 100 iterations to find the best configuration for
the mean reciprocal rank at list length 5.

!We used a round-robin assignment scheme as done in [13].
Zhttps://recsys-challenge.spotify.com/

RecSys '19, September 16-20, 2019, Copenhagen, Denmark

Table 2: Tested Recommendation Strategies

AR A simple method based on association rules of length two, see [18].

CAGH Recommends the greatest hits of artists similar to those liked in the cur-
rent session [3]. The similarity is based on artist co-occurrences in user-
provided playlists and approximated with matrix factorization.

GRU4REC A recent session-based algorithm based on Recurrent Neural Networks
(v2.0) [9]. The algorithm hyper-parameters were optimized for the mean
reciprocal rank at list length 5.

S-KNN A session-based nearest-neighbor approach proposed in [19] that lowers
the predicted relevance scores for highly popular items. We used 500 as
the number of neighbors, and set the sample size to 1000.

sPOTIFY ~ Recommendations in this treatment group were retrieved in real time
from Spotify’s API Tracks that are not present in the MPD were excluded
from the recommendations.

4 RESULTS

We have recruited 316 participants over Amazon’s Mechanical Turk
crowdsourcing platform (“Masters” only), ending up with reliable
submissions from 250 unique users, i.e., 50 in each treatment group.
The remaining submissions were eliminated as the users did not
pass the attention check. On average, the participants needed about
15 minutes to complete the task. A majority of the users (nearly 80%)
was from the US; over 50% of the participants were aged between
25 and 34.

On average and across all treatment groups, the participants
listened to around 16 tracks (slightly above the minimum require-
ment), with an average pure listening time of 5.5 minutes. There
were no significant differences in these respects.

Number of likes. The average number of likes per user were as
follows: SPOTIFY: 4.48, GRU4REC: 5.36, CAGH: 5.38, S-KNN: 5.63, AR:
6.48. The AR method led to significantly® more likes than cacHh,
SPOTIFY, and GRU4REC (p<0.05). Furthermore, the s-KNN method
received 5.6 likes on average, which was significantly higher than
sPOTIFY as well. All other differences were not significant.

Popularity. Looking at the average popularity of the recom-
mended tracks*, we found that sPoTIFY’s and GRU4REC’s recom-
mendations were the least popular ones while Ar and cAGH tend
to recommend mostly popular items. Generally, the number of re-
ceived likes per playlist highly correlates with the average track
popularity of a list (r=0.89).

Individual Track Ratings. Table 3 shows our observations regard-
ing the feedback for the individual tracks as shown in Figure 2.
In terms of the percentage of already known tracks, we see that
Spotify’s recommendations are significantly less often known (or:
more novel) than those of the other techniques.

When asking participants to what extent each track matches
the previously liked ones, we observe that s-kNN and caGH work
best, while AR leads to recommendations that match the current
playlist the least. The differences between s-kNN and the methods
AR, GRU4REC, and SPOTIFY are significant (p<0.05).

Finally, looking at the average track “rating” in general, the dif-
ferences between the algorithms are small. Somewhat surprisingly,
the tracks produced by the AR method were the least liked ones,
often with a significant difference, even though the average track

3Throughout the work, we use one-way ANOVA and a subsequent Tukey post-hoc
test when the pre-requisites for these tests are fulfilled. Otherwise, we applied a
Kruskal-Wallis test and a subsequent Mann-Whitney-U test.

4Computed based on the number of track occurrences in the MPD dataset.

Publications 217

RecSys ’19, September 16-20, 2019, Copenhagen, Denmark

popularity was the highest and they received the most like state-
ments. This phenomenon can be explained when looking at the
mode of the answers. The most frequent response (mode) was 1 for
AR, whereas it was 7 for all other recommendation strategies. This
means that AR probably recommended many “controversial” tracks
that the users did not like even though they are very popular, e.g.,
because they matched previous tracks the least.

Table 3: Statistics for Item-Specific Questions (Mean and
Standard Deviations)

Track matches Like the track

Algorithm Track known (%) the playlist in general
AR 8.61 4.06 £1.60 4.34 +1.37
CAGH 10.83 5.15 £1.14 5.03 £1.22
GRU4REC 9.30 4.61 £1.52 4.94 +1.31
S-KNN 10.13 5.31 £1.04 4.94 £1.06
SPOTIFY 7.00 4.72 £1.13 4.69 £1.07

Post-Task Questionnaire. For the Questions Q1 to Q12, we looked
mostly at the median and mode values® and analyzed differences
with the non-parametric tests.

For Q1, we found that the recommendations of s-KNN (median:
6)° were significantly more liked than those of AR, GRU4REC and
SPOTIFY (p<0.05) and were perceived to be slightly better also than
caGH. All methods matched the user’s general taste well (Q2), with
median values of 5 (AR, SPOTIFY) or 6 (other methods). The values
for AR were significantly lower than for CAGH, s-KNN, and GRU4REC.

The general pattern that AR performs worst and s-KNN best was
also found for Q3, where s-kKNN performed significantly better at
finding tracks that match the seed track than AR and also GRU4REC.
Regarding the adaptiveness of the radio upon user feedback (Q4),
the median values were generally comparably high, ranging be-
tween 5 and 6. The analysis revealed that only AR performed signif-
icantly worse than CAGH, s-KNN, and SPOTIFY.

No differences between the group were found however regarding
the diversification of the radio (Q5) and the surprise level (Q6). In
terms of the discovery of unknown but liked tracks (Q7), sPOTIFY
excelled. The responses were higher than for CAGH, S-KNN, GRU4REC,
and AR (p<0.1). For the other methods, no significant differences
could be found.

Regarding the last block of questions (Q9 to Q12) about the
users’ intention to reuse the system or recommend it to friends, the
values for s-KNN, CAGH and SPOTIFY are slightly higher than for
the other techniques. The differences between these three methods
and AR were always significant (p<0.05). For Q10 and Q12, the
responses for s-KNN and cAGH were also significantly higher than
for GRU4REC.

4.1 Offline Accuracy vs. User Experience

The final goal of our work was to compare the users’ quality per-
ception with accuracy results obtained from offline experiments,
since previous work [2, 5, 7, 20, 24] suggests that there can be a
discrepancy. We therefore evaluated the different algorithms using

Using means for single Likert-scale type items is considered potentially unreliable
even though we only used labels for the ends of the numerical scale.
©A full table of the results is provided as auxiliary material in the ACM Digital Library.

218 Publications

Malte Ludewig and Dietmar Jannach

five random sub-samples of the MPD dataset following the same
procedure as for the parameter optimization described in Section
3.2. Furthermore, we applied the sequential evaluation protocol
from [9]. In our work, we measure precision (P) and recall (R) in the
usual way, comparing the list of recommended items with the next
tracks in the playlist. In addition, we report the specific measure-
ment method used in [9], which only considers the immediate next
item, using the hit rate (HR) and the mean reciprocal rank (MRR).
In order to design the evaluation as close as possible to the online
application, we only proceeded through the first 15 entries of each
test playlist to match the number of necessary interactions in the
study.

Table 4: Offline Results
Algorithm P@5 R@5 HR@5 MRR@5
S-KNN 0.271 0.044 0.137 0.077
GRU4REC 0.161 0.028 0.151 0.096
AR 0.234 0.037 0.135 0.081
CAGH 0.172 0.024 0.052 0.026
SPOTIFY 0.009 0.001 0.002 0.001

Table 4 shows that the ranking of the algorithms depends on the
choice of the measurement method. The results indicate that the
usual precision and recall measurement correlates better with our
observations of the users’ perception, with the s-kNN method lead-
ing to the best results in the offline experiment. The performance
of SPOTIFY is very low in this comparison. In some ways, this is
in line with the observations from the user study, which indicates
that sPOTIFY’s algorithm seems to be more optimized for discovery
than for precision or recall on historical data.

5 SUMMARY OF FINDINGS

We have conducted a user study that investigates the quality per-
ception of adaptive music recommendations in an automated radio
station and have contrasted the findings with an offline experiment.
To our knowledge, this is the first study of this type in the context
of session-based recommendation techniques.

Bearing in the mind that the number of participants might be
a possible limitation of this work, the main findings of the study
are as follows. First, using a comparably simple nearest-neighbor
technique led to radio stations that were favorable, in more than
one dimension, over a station that was built on a more complex
deep learning technique. Second, the AR method, which recom-
mended the most popular tracks, led to the highest number of likes,
but was performing poorly in most other dimensions; optimizing
and evaluating algorithms based on explicit like statements can
therefore be misleading. Third, SPOTIFY’s algorithm was better than
all other methods in helping users discover new tracks they like. At
the end, no differences in the participants’ intention to re-use or rec-
ommend the system were found. The ability of sPoTIFY’s algorithm
to support discovery might therefore compensate other aspects
where the algorithm did not excel. Fourth, the offline experiments
indicate that precision and recall can be indicative of the quality
of the recommendations to some extent. In general, however, the
good quality perception of sPOTIFY’s algorithm despite the very low
offline accuracy results emphasizes that factors other than accuracy
can be decisive for the long-term adoption of a system.

User-Centric Evaluation of Session-Based Recommendations

REFERENCES

(11
[2]

(3]
[4]
(5]

[6

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Luke Barrington, Reid Oda, and Gert R. G. Lanckriet. 2009. Smarter than Genius?
Human Evaluation of Music Recommender Systems. In Proc. ISMIR "09. 357-362.
Joran Beel and Stefan Langer. 2015. A Comparison of Offline Evaluations, Online
Evaluations, and User Studies in the Context of Research-Paper Recommender
Systems. In Proc. TPDL ’15.

Geoffray Bonnin and Dietmar Jannach. 2014. Automated Generation of Music
Playlists: Survey and Experiments. Comput. Surveys 47, 2 (2014), 26:1-26:35.
Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten Joachims. 2012.
Playlist Prediction via Metric Embedding. In Proc. KDD ’12. 714-722.

Paolo Cremonesi, Franca Garzotto, and Roberto Turrin. 2012. Investigating the
Persuasion Potential of Recommender Systems from a Quality Perspective: An
Empirical Study. Transactions on Interactive Intelligent Systems 2, 2, Article 11
(June 2012), 11:1-11:41 pages.

Michael D. Ekstrand, F. Maxwell Harper, Martijn C. Willemsen, and Joseph A.
Konstan. 2014. User Perception of Differences in Recommender Algorithms. In
Proc. RecSys ’14. 161-168.

Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin,
and Amr Huber. 2014. Offline and Online Evaluation of News Recommender
Systems at Swissinfo.ch. In Proc. RecSys '14.

Negar Hariri, Bamshad Mobasher, and Robin Burke. 2014. Context Adaptation in
Interactive Recommender Systems. In Proc. RecSys '14. 41-48. http://doi.acm.
org/10.1145/2645710.2645753

Balazs Hidasi and Alexandros Karatzoglou. 2017. Recurrent Neural Networks
with Top-k Gains for Session-based Recommendations. CoRR abs/1706.03847
(2017).

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In Proc.
ICLR ’16.

Dietmar Jannach, Lukas Lerche, and Michael Jugovac. 2015. Item Familiarity as a
Possible Confounding Factor in User-Centric Recommender Systems Evaluation.
i-com Journal of Interactive Media 14, 1 (2015), 29-39.

Iman Kamehkhosh, Geoffray Bonnin, and Dietmar Jannach. 2019. Effects of
Recommendations on the Playlist Creation Behavior of Users. User Modeling and
User-Adapted Interaction May (2019).

Iman Kamehkhosh and Dietmar Jannach. 2017. User Perception of Next-Track
Music Recommendations. In Proc. UMAP ’17.

Bart P. Knijnenburg, Martijn C. Willemsen, Zeno Gantner, Hakan Soncu, and
Chris Newell. 2012. Explaining the user experience of recommender systems.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]
[28]

[29]

RecSys '19, September 16-20, 2019, Copenhagen, Denmark

User Modeling and User-Adapted Interaction 22, 4 (2012), 441-504.

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural Attentive Session-based Recommendation. In Proc. CIKM ’17. 1419-1428.

Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: Short-
Term Attention/Memory Priority Model for Session-based Recommendation. In
Proc. KDD ’18. 1831-1839.

Benedikt Loepp, Tim Donkers, Timm Kleemann, and Jiirgen Ziegler. 2018. Impact
of Item Consumption on Assessment of Recommendations in User Studies. In
Proc. RecSys ’18. 49-53.

Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-based Rec-
ommendation Algorithms. User-Modeling and User-Adapted Interaction 28, 4-5
(2018), 331-390.

Malte Ludewig, Iman Kamehkhosh, Nick Landia, and Dietmar Jannach. 2018. Ef-
fective Nearest-Neighbor Music Recommendations. In Proc. RecSys °18 Challenge
Workshop at ACM RecSys.

Andrii Maksai, Florent Garcin, and Boi Faltings. 2015. Predicting Online Perfor-
mance of News Recommender Systems Through Richer Evaluation Metrics. In
Proc. RecSys '15.

Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. 2002. Using
Sequential and Non-Sequential Patterns in Predictive Web Usage Mining Tasks.
In Proc. ICDM "02. 669-672.

Pearl Pu, Li Chen, and Rong Hu. 2011. A User-centric Evaluation Framework for
Recommender Systems. In Proc. RecSys '11. 157-164.

Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
Aware Recommender Systems. Comput. Surveys 51 (2018), 1-36. Issue 4.

Marco Rossetti, Fabio Stella, and Markus Zanker. 2016. Contrasting Offline and
Online Results when Evaluating Recommendation Algorithms. In Proc. RecSys '16.

Guy Shani, David Heckerman, and Ronen 1. Brafman. 2005. An MDP-Based
Recommender System. Journal of Machine Learning Researh 6 (2005), 1265-1295.

Longgi Yang, Michael Sobolev, Christina Tsangouri, and Deborah Estrin. 2018.
Understanding User Interactions with Podcast Recommendations Delivered via
Voice. In Proc. RecSys '18. 190-194.

Yuan Yao and F. Maxwell Harper. 2018. Judging Similarity: A User-centric Study
of Related Item Recommendations. In Proc. RecSys '18. 288-296.

Yuan Yao and F. Maxwell Harper. 2018. Judging Similarity: A User-centric Study
of Related Item Recommendations. In Proc. RecSys '18. 288-296.

Qian Zhao, Martijn C. Willemsen, Gediminas Adomavicius, F. Maxwell Harper,

and Joseph A. Konstan. 2018. Interpreting User Inaction in Recommender Systems.
In Proc. RecSys '18. 40-48.

Publications

219

	Titlepage
	Abstract
	1 Introduction
	1.1 From Explicit to Implicit Feedback
	1.2 Sequence-Aware, Session-Aware, and Session-Based Recommendation
	1.3 Evaluation in Session-Aware and Session-Based Recommendation
	1.3.1 Offline Evaluation
	1.3.2 User Studies and Field Tests

	1.4 Research Questions
	1.5 Structure of the Thesis
	1.6 Publications
	1.6.1 Covered Publications
	1.6.2 Research Competitions

	2 Comparison of Session-Based Recommendation Techniques
	2.1 Session-Based Recommendation Abstraction
	2.2 Technical Approaches
	2.2.1 Frequent-Pattern Mining
	2.2.2 Nearest-Neighbor Techniques
	2.2.3 Factorization-Based Approaches
	2.2.4 Neural Networks
	2.2.5 Further Related Work

	2.3 Evaluation Scheme
	2.3.1 General Setup
	2.3.2 Explored Datasets

	2.4 Multi-Dimensional Comparison
	2.4.1 Accuracy Measures
	2.4.2 Additional Quality Criteria
	2.4.3 Alternative Evaluation Setups

	2.5 Users' Perception of Session-based Recommendations
	2.5.1 Study Design
	2.5.2 Compared Techniques
	2.5.3 Observations

	3 Exploring Session-Awareness in E-Commerce
	3.1 Success Factors in Session-Aware Fashion Recommendation
	3.1.1 Analysis of Success Factors
	3.1.2 Operationalizing the Success Factors

	3.2 Session-Aware Personalized Search
	3.2.1 Research Setup
	3.2.2 Compared Algorithms
	3.2.3 Findings

	4 Summary & Conclusions
	Bibliography
	List of Figures
	List of Tables
	Publications
	Determining Characteristics of Successful Recommendations from Log Data: A Case Study
	Investigating Personalized Search in E-Commerce
	Session-Based Item Recommendation in E-Commerce: On Short-Term Intents, Reminders, Trends and Discounts
	When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation
	A Comparison of Frequent Pattern Techniques and a Deep Learning Method for Session-Based Recommendation
	Evaluation of Session-Based Recommendation Algorithms
	Performance Comparison of Neural and Non-Neural Approaches to Session-Based Recommendation
	User-Centric Evaluation of Session-Based Recommendations for an Automated Radio Station

