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Introduction

This cumulative dissertation consists of three self-contained papers all contributing to the cointe-
grating regression literature. Cointegrating regression analyses seek to analyze the long-run rela-
tionship between integrated (i. e., stochastically trending) processes. They play an important role
in, e. g., macroeconomics, environmental economics, and finance, see, e. g., Benati et al. (2021),
Wagner (2015), and Rad et al. (2016) for recent examples. More recently, cointegration-based
methods have been proven to be useful in physics (Dahlhaus et al., 2018) and in the analysis of
climate change (Phillips et al., 2020).

It is well known in the literature that existing approaches to conduct inference in cointegrating
regressions can lead to severe size distortions in finite samples, especially when the data are char-
acterized by large levels of error serial correlation and regressor endogeneity. This makes the tests
unreliable in many empirical applications involving stochastically trending variables. To address
this issue, this dissertation suggests procedures to reduce these size distortions at the cost of only
small power losses under the alternatives.

Each chapter of this dissertation focuses on a particular subfield of the cointegrating regression
literature. Chapter 1 is devoted to classical linear cointegrating regressions, i. e., regressions that
contain integrated processes as regressors. It combines traditional and self-normalized Wald-type
test statistics with a vector autoregressive sieve bootstrap to reduce size distortions of hypothe-
sis tests on the cointegrating vector. To asymptotically justify this method, the chapter proves
bootstrap consistency for the traditional and self-normalized test statistics under mild conditions.
Monte Carlo simulations complementing the asymptotic results show tremendous reductions in
size distortions when bootstrap critical values replace asymptotic critical values. Finally, the em-
pirical illustration indicates that the bootstrap makes a difference when analyzing the validity of
the Fisher effect in OECD countries.

Chapter 2, on the other hand, focuses on panels of cointegrating polynomial regressions, i. e.,
panels of regressions that include an integrated process and its powers as regressors. It derives
the asymptotic properties of a group-mean fully modified OLS estimator and of t-type and Wald-
type tests based upon it in a fixed cross-section and large time series dimension. Treating the
cross-section dimension as fixed allows us to derive cross-section dependence robust test statistics
for very general dependence structures. Moreover, the proposed group-mean fully modified OLS
estimator and the tests based upon it are invariant to potential non-zero deterministic drifts in
the integrated regressors. Both cross-section dependence and non-zero drifts are often observed in
empirical applications and the simulation results show that the proposed methods perform very
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well in these situations. Finally, the empirical illustration shows that accounting for cross-section
dependence and deterministic trends makes a difference when analyzing environmental Kuznets
curves for carbon dioxide emissions.

Chapters 1 and 2 derive the results under the premise that a (linear or polynomial) cointegrating
relationship between the left-hand side variable and the regressors exists, i. e., the regression errors
are assumed to be stationary. In contrast, Chapter 3 is devoted to testing for such a (linear)
cointegrating relationship between a fixed number of integrated processes. In particular, it derives
asymptotic theory for an existing nonparametric variance ratio unit root test (originally proposed
to test for an unit root in an observed univariate time series) when applied to regression residuals. A
simulation study complements the theoretical analyzes and indicates some performance advantages
of the variance ratio test compared to established no-cointegration tests. Finally, an empirical
illustration to cryptocurrencies shows the usefulness of the variance ratio test in practice.

The bibliographic details of the three chapters are as follows:

1. Reichold, K., Jentsch, C. (2023). Bootstrap Inference in Cointegrating Regressions: Tradi-
tional and Self-Normalized Test Statistics. Revised and Resubmitted to Journal of Business
& Economic Statistics.

(a) An earlier working paper version (with a different title) is available on arXiv: arXiv
e-print 2204.01373.

(b) The first working paper version (with a different title) is available as SFB 823 Discussion
Paper, TU Dortmund: http://dx.doi.org/10.17877/DE290R-21854.

2. Wagner, M., Reichold, K. (2023). Panel Cointegrating Polynomial Regressions: Group-Mean
Fully Modified OLS Estimation and Inference.

(a) A slightly modified version is published in Econometric Reviews, Volume 42, Issue 4,
pp. 358–392, https://doi.org/10.1080/07474938.2023.2178141.

(b) An earlier working paper version is available as SFB 823 Discussion Paper, TU Dort-
mund: http://dx.doi.org/10.17877/DE290R-19664.

3. Reichold, K. (2023). A Residuals-Based Nonparametric Variance Ratio Test for Cointegra-
tion. Reject and Resubmit, Journal of Time Series Analysis.

(a) Earlier working paper versions are available on arXiv: arXiv e-print 2211.06288.

Although all chapters contribute to the cointegrating regression literature, overlap is marginal, as
each chapter focuses on a different subfield within the cointegrating regression literature (compare
the discussion above). However, it is unavoidable that some basic arguments used to derive asymp-
totic theory are similar across chapters. A complete list of references, provided at the end of this
dissertation, replaces the list of references of each individual chapter. All simulations have been
performed in MATLAB. Corresponding code and supplementary material are available upon request.
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Chapter 1

Bootstrap Inference in Cointegrating
Regressions: Traditional and
Self-Normalized Test Statistics

Abstract

Traditional tests of hypotheses on the cointegrating vector are well known to suffer from severe size distor-
tions in finite samples, especially when the data are characterized by large levels of endogeneity or error
serial correlation. To address this issue, we combine a vector autoregressive (VAR) sieve bootstrap to con-
struct critical values with a self-normalization approach that avoids direct estimation of long-run variance
parameters when computing test statistics. To asymptotically justify this method, we prove bootstrap con-
sistency for the self-normalized test statistics under mild conditions. In addition, the underlying bootstrap
invariance principle allows us to prove bootstrap consistency also for traditional test statistics based on
popular modified OLS estimators. Simulation results show that using bootstrap critical values instead of
asymptotic critical values reduces size distortions associated with traditional test statistics considerably,
but combining the VAR sieve bootstrap with self-normalization can lead to even less size distorted tests at
the cost of only small power losses. We illustrate the usefulness of the VAR sieve bootstrap in empirical
applications by analyzing the validity of the Fisher effect in 19 OECD countries.

1.1 Introduction

Cointegration methods have been and are widely used to analyze long-run relationships between
stochastically trending variables in many areas such as macroeconomics, environmental economics,
and finance, see, e. g., Benati et al. (2021), Wagner (2015), and Rad et al. (2016) for recent
examples. In addition to these classical fields of application, cointegration methods have recently
proven to be useful to describe phenomena in physics (Dahlhaus et al., 2018) and climate change
(Phillips et al., 2020).

It is standard practice in empirical applications to test linear restrictions on the cointegrating vec-
tor by means of traditional Wald-type test statistics based on a suitable consistent estimator of
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1. Bootstrap Inference in Cointegrating Regressions: Traditional and Self-Normalized Test
Statistics

the cointegrating vector and on a nonparametric kernel estimator of a long-run variance parameter
for standardization. In the presence of endogeneity, the limiting distribution of the OLS estimator
is contaminated by second order bias terms making the estimator unsuitable for standard asymp-
totic inference. The literature provides several endogeneity corrected estimators with a zero-mean
Gaussian mixture limiting distribution allowing for asymptotically valid inference based on chi-
squared critical values. The most popular estimators are the dynamic OLS (D-OLS) estimator
(Phillips and Loretan, 1991; Saikkonen, 1991; Stock and Watson, 1993), the fully modified OLS
(FM-OLS) estimator (Phillips and Hansen, 1990), and the integrated modified OLS (IM-OLS)
estimator (Vogelsang and Wagner, 2014). Tests based upon these estimators are implemented in
several software packages and are thus easy to apply in applications. However, they are all well
known to be severely size distorted in finite samples, especially when the data are characterized by
large levels of endogeneity or error serial correlation. Similar problems are also observed for tests
based on alternative estimators proposed in, e. g., Phillips (2014) and Hwang and Sun (2018).

To address these size distortions, this paper combines a vector autoregressive (VAR) sieve bootstrap
to construct critical values with a self-normalization approach that avoids direct estimation of the
long-run variance parameter when computing test statistics. In particular, we discuss three self-
normalized Wald-type test statistics based on the tuning parameter free IM-OLS estimator, which
do not rely on a consistent tuning parameter dependent long-run variance estimator but still possess
a pivotal limiting distribution under the null hypothesis. The concept of self-normalization has
been proven to be useful in the analysis of stationary time series (see, e. g., Kiefer et al., 2000; Shao,
2010a; Shao, 2015) but has not received much attention in the cointegrating regression literature
as an alternative to traditional test statistics. As we will see in Section 1.3.2, self-normalization is
closely related to, but does not need to be a special case of, the fixed-b approach of Vogelsang and
Wagner (2014).

In contrast, the nowadays classical VAR sieve bootstrap (Kreiss, 1992; Bühlmann, 1997; Papar-
oditis, 1996) has already been applied to cointegrating regressions in various setups. Psaradakis
(2001), inspired by the seminal work of Li and Maddala (1997), shows the superior performance
when VAR sieve bootstrap critical values replace chi-squared critical values for the traditional
Wald-type test based on the FM-OLS estimator (without asymptotically justifying the approach).
Park (2002) proves an invariance principle for the bootstrap process under the assumption that
the errors form a linear process with i.i.d. increments. The invariance principle allows Chang et al.
(2006) to prove consistency of the VAR sieve bootstrap for the traditional Wald-type test statistic
based on the D-OLS estimator. Although the bootstrap leads to considerable performance advan-
tages over the tests based on asymptotic critical values, it is rarely used in empirical applications.

Alternative bootstrap approaches studied in the cointegrating regression literature are the station-
ary bootstrap (SB) of Politis and Romano (1994) and the residual-based block bootstrap (RBB)
of Paparoditis and Politis (2003), which have been proven to be consistent for the limiting distri-
bution of the OLS estimator of the cointegrating vector in Shin and Hwang (2013) and Jentsch
et al. (2015), respectively. Moreover, the dependent wild bootstrap (DWB) of Shao (2010b) has
been proven to be useful when testing for unit roots (Rho and Shao, 2019), but has not been
asymptotically justified in cointegrating regressions yet. In contrast to selecting the order of the
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1.1. Introduction

VAR sieve for the VAR sieve bootstrap, however, choosing a suitable geometric distribution for
the SB, a suitable block size for the RBB, or a suitable combination of kernel and bandwidth for
the DWB seem to be rather challenging tasks in empirical applications.

To prove consistency of the VAR sieve bootstrap for the self-normalized test statistics, we derive
a bootstrap invariance principle under mild conditions. In particular, in contrast to Park (2002)
and Chang et al. (2006), we allow for uncorrelated but not necessarily independent white noise
increments. The bootstrap invariance principle might thus be of independent interest and allows
us to prove bootstrap consistency also for the traditional Wald-type test statistics based on the
D-OLS, FM-OLS, and IM-OLS estimators. With respect to the traditional Wald-type test statistic
based on the D-OLS estimator, this paper thus extends the results in Chang et al. (2006). Finally,
we should emphasize that one of the self-normalized test statistics proposed in this paper has a
pivotal limiting null distribution only in case the number of linearly independent restrictions on the
cointegrating vector is equal to the dimension of the cointegrating vector. Thus, for this particular
test statistic, the VAR sieve bootstrap is key to allow for asymptotically valid inference also for a
smaller number of linearly independent restrictions on the cointegrating vector.

The theoretical analysis is complemented by a detailed simulation study assessing the finite sample
performance of the traditional and self-normalized tests based on VAR sieve bootstrap critical val-
ues. The results reveal tremendous performance advantages of traditional tests based on bootstrap
critical values over those based on chi-squared critical values even for small sample sizes. In addi-
tion, we find that the self-normalized tests based on asymptotic critical values are considerably less
size distorted than the traditional tests based on asymptotic critical values for small to medium
levels of endogeneity and error serial correlation at the cost of only small power losses under the
alternative. For large levels of endogeneity and error serial correlation, however, self-normalization
alone is less advantageous. In these cases, the VAR sieve bootstrap improves the performance of
the self-normalized tests considerably, with two of the self-normalized tests often outperforming
the traditional tests based on bootstrap critical values.

Finally, we demonstrate the usefulness of the VAR sieve bootstrap in applications by analyzing the
validity of the Fisher effect in 19 OECD countries in the three decades prior to the Covid-19 crisis.
The Fisher effect states that inflation and the short-term nominal interest rate are in a one-for-
one relationship. It is backed by many theoretical models but often rejected in empirical studies,
possibly because of the poor performance of estimators and tests in the presence of highly persistent
errors typically observed in Fisher equations (Caporale and Pittis, 2004; Westerlund, 2008). Indeed,
we find that the traditional and self-normalized tests based on asymptotic critical values tend to
reject the Fisher effect for several countries, whereas the tests based on bootstrap critical values
indicate the validity of the Fisher effect for almost all countries under consideration.

The paper proceeds as follows: Section 1.2 introduces the model and its underlying assumptions.
Section 1.3 reviews the construction of traditional test statistics and discusses three self-normalized
test statistics. Section 1.4 presents the VAR sieve bootstrap procedure to construct critical values
for the traditional and self-normalized test statistics and proves its asymptotic validity in each
case. Section 1.5 assesses the finite sample performance of the proposed methods and Section 1.6
contains the empirical illustration. Section 1.7 summarizes and concludes. All proofs are relegated
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1. Bootstrap Inference in Cointegrating Regressions: Traditional and Self-Normalized Test
Statistics

to the Appendix.

Notation: ⌊x⌋ denotes the integer part of x ∈ R, |A|F = (tr(A′A))1/2 denotes the Frobenius norm
of a real matrix A, and diag(·) denotes a (block) diagonal matrix with diagonal elements specified
throughout. With w−→ and p−→ we denote weak convergence and convergence in probability,
respectively, as T → ∞, with P denoting the underlying probability measure. Convergence in
the bootstrap probability space is denoted by w∗

−→ and p∗
−→, with P∗ denoting the corresponding

probability measure and E∗(·) denoting the expectation with respect to P∗ (conditional on the
data). Throughout, random variables in the bootstrap probability space are indicated by the
superscript “∗”.

1.2 The Model and Assumptions

We consider the cointegrating regression model

yt = x′
tβ + ut, (1.1)

xt = xt−1 + vt, (1.2)

for observations t = 1, . . . , T , where yt is a scalar time series and xt is an m × 1 vector of time
series. For notational brevity, we set x0 = 0 and exclude deterministic components from (1.1).
Nevertheless, incorporating deterministic components (fulfilling the condition in equation (14) in
Vogelsang and Wagner, 2014) is straightforward and the accompanying software code allows to
handle the more general case. To derive asymptotic theory, we have to impose assumptions on the
process {wt}t∈Z := {[ut, v′

t]′}t∈Z.

Assumption 1.1. Let {wt}t∈Z be an R1+m-valued, strictly stationary, and purely nondeterministic
stochastic process of full rank with E(wt) = 0 and E(|wt|aF ) < ∞ for some a > 2. The autocovari-
ance matrix function Γ(·) of {wt}t∈Z fulfills

∑︁∞
h=−∞(1 + |h|)k|Γ(h)|F < ∞ for some k ≥ 3/2. For

the spectral density matrix f(·) of {wt}t∈Z there exists a constant c > 0 such that min σ(f(λ)) ≥ c

for all frequencies λ ∈ (−π, π], where σ(f(λ)) denotes the spectrum of f(·) at frequency λ.

Assumption 1.1 is similar to Assumption A in Meyer and Kreiss (2015). The short memory
condition implies a continuously differentiable spectral density f , which is particularly bounded
from below and from above, uniformly for all frequencies λ ∈ (−π, π]. As shown in Meyer and
Kreiss (2015), a process fulfilling Assumption 1.1 does always possess the one-sided representations

Φ(L)wt = εt and wt = Ψ(L)εt, (1.3)

where {εt}t∈Z is a strictly stationary uncorrelated but not necessarily independent white noise
process with positive definite covariance matrix Σ and L denotes the backward shift operator.
For Φ(z) := Im+1 −

∑︁∞
j=1 Φjzj and Ψ(z) := Im+1 + ∑︁∞

j=1 Ψjzj it holds that det(Φ(z)) ̸= 0 and
det(Ψ(z)) ̸= 0 for all |z| ≤ 1 and ∑︁∞

j=1(1 + j)k|Φj |F < ∞ and ∑︁∞
j=1(1 + j)k|Ψj |F < ∞ for the k

from Assumption 1.1.
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1.2. The Model and Assumptions

Assumption 1.2. The process {wt}t∈Z has absolutely summable cumulants up to order four. More
precisely, it holds for all j = 2, . . . , 4 and a = [a1, . . . , aj ]′ ∈ {1, . . . , m + 1}j, that∑︁∞

h2,...,hj=−∞ |cuma(0, h2, . . . , hj)| < ∞, where cuma(0, h2, . . . , hj) denotes the j-th joint cumulant
of wa1,0, wa2,h2 , . . . , waj ,hj

and wi,t denotes the i-th element of wt.

Let Ω denote the long-run covariance matrix of {wt}t∈Z, i. e.,

Ω =
[︄
Ωuu Ωuv

Ωvu Ωvv

]︄
= 2πf(0) =

∞∑︂
h=−∞

E(w0w′
h) = Ψ(1)ΣΨ(1)′.

From Σ > 0 and det(Ψ(1)) ̸= 0 it follows that Ω > 0. In particular, positive definiteness of Ωvv

rules out cointegration among the elements of xt. For later usage, we also define the one-sided
long-run covariance matrix ∆ := ∑︁∞

h=0 E(w0w′
h) and partition it analogously to Ω. Finally, we

assume an invariance principle to hold for {wt}t∈Z.

Assumption 1.3. Let {wt}t∈Z fulfill

BT (r) := T −1/2
⌊rT ⌋∑︂
t=1

wt
w−→ B(r) =

[︄
Bu(r)
Bv(r)

]︄
= Ω1/2W (r), 0 ≤ r ≤ 1, (1.4)

where W (r) = [Wu·v(r), Wv(r)′]′ is an (1 + m)-dimensional vector of independent standard Brow-
nian motions.

In the following, it is convenient to work with Ω1/2 of the form

Ω1/2 =

⎡⎣Ω1/2
u·v Ωuv(Ω−1/2

vv )′

0 Ω1/2
vv

⎤⎦ ,

such that Ω1/2(Ω1/2)′ = Ω, where Ωu·v := Ωuu − ΩuvΩ−1
vv Ωvu is the variance of the scalar Brownian

motion Bu·v(r) := Bu(r) − Bv(r)′Ω−1
vv Ωvu.

In contrast to the assumptions in Park (2002) and Chang et al. (2006), Assumption 1.1 does
explicitly not ask for invertibility or causality of the process {wt}t∈Z with respect to an indepen-
dent white noise process. Instead, in this paper, the process {εt}t∈Z is an uncorrelated but not
necessarily independent white noise process. Assumption 1.2 is of technical nature and satisfied
if, e. g., {wt}t∈Z is α-mixing with strong-mixing coefficients α(j) such that E(|wt|4+δ

F ) < ∞ and∑︁∞
j=1 j2α(j)δ/(4+δ) < ∞ for some δ > 0, see, e. g., Shao (2010b, p. 221). In particular, Assump-

tion 1.2 requires the existence of fourth moments of {wt}t∈Z. To establish meaningful asymptotic
theory, Assumptions 1.1 and 1.2 have to be complemented by an invariance principle in Assump-
tion 1.3. This general formulation of an invariance principle allows for various concepts of choice
to quantify weak forms of dependence of the process {wt}t∈Z. These include classical approaches
as, e. g., several variants of mixing properties, mixingale-type sequences, and linear processes (see,
e. g., Merlevède et al., 2006, for an overview). In addition, the general formulation also allows for
more modern approaches that cover, e. g., the general notion of weakly dependent stationary time
series discussed in Doukhan and Wintenberger (2007) or physical dependence (Wu, 2007).

7
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Statistics

1.3 Testing General Linear Hypotheses

1.3.1 Modified OLS Estimation

The OLS estimator ˆ︁βOLS :=
(︂∑︁T

t=1 xtx
′
t

)︂−1∑︁T
t=1 xtyt of β in (1.1) is (rate-T ) consistent, but in the

presence of endogeneity its limiting distribution is contaminated by second order bias terms. This
makes the OLS estimator infeasible for conducting inference based on (simulated) quantile tables
of (non)standard distributions. As already mentioned in the introduction, the literature provides
several modified estimators which allow for standard asymptotic inference. In the following, we
focus on the popular D-OLS, FM-OLS, and IM-OLS estimators. To fix notation, let us briefly
review the construction of the estimators.

In comparison with the OLS estimator, the FM-OLS approach rests upon two transformations.
First, yt is replaced by y+

t := yt − v′
t
ˆ︁Ω−1

vv
ˆ︁Ωvu, where

ˆ︁Ω =
[︄ˆ︁Ωuu

ˆ︁Ωuvˆ︁Ωvu
ˆ︁Ωvv

]︄
:= T −1

T∑︂
i=1

T∑︂
j=1

K
(︃ |i − j|

bT

)︃[︄ˆ︁uOLS,i

vi

]︄ [︄ˆ︁uOLS,j

vj

]︄′

(1.5)

denotes a nonparametric kernel estimator of Ω based on the OLS residuals ˆ︁uOLS,t in (1.1) and the
first differences of xt. Here and in the following, K (·) denotes a kernel weighting function and bT

a bandwidth parameter. The second transformation requires additive correction factors, given by
T ˆ︁∆+

vu, with ˆ︁∆+
vu := ˆ︁∆vu − ˆ︁∆vv

ˆ︁Ω−1
vv
ˆ︁Ωvu, where

ˆ︁∆ =
[︄ ˆ︁∆uu

ˆ︁∆uvˆ︁∆vu
ˆ︁∆vv

]︄
:= T −1

T∑︂
i=1

T∑︂
j=i

K
(︃ |i − j|

bT

)︃[︄ˆ︁uOLS,i

vi

]︄ [︄ˆ︁uOLS,j

vj

]︄′

. (1.6)

With these definitions in place, the FM-OLS estimator of β in (1.1) is defined asˆ︁βFM :=
(︂∑︁T

t=1 xtx
′
t

)︂−1 (︂∑︁T
t=1 xty

+
t − T ˆ︁∆+

vu

)︂
. Under Assumption 1.3 and under some technical

assumptions on the kernel function K (·) and on the bandwidth parameter bT ensuring consistency
of ˆ︁Ω and ˆ︁∆ (see, e. g., Jansson, 2002), Phillips and Hansen (1990) show that

T
(︂ˆ︁βFM − β

)︂
w−→ Ω1/2

u·v
(︂
Ω−1/2

vv

)︂′
(︃∫︂ 1

0
Wv(r)Wv(r)′dr

)︃−1 ∫︂ 1

0
Wv(r)dWu·v(r). (1.7)

Conditional upon Wv(r), the limiting distribution of the FM-OLS estimator is Gaussian with
zero-mean and covariance matrix Ωu·v

(︂
Ω−1/2

vv

)︂′ (︂∫︁ 1
0 Wv(r)Wv(r)′dr

)︂−1
Ω−1/2

vv .

Let us now turn to the D-OLS estimator. Assumption 1.1 allows to write

ut =
∞∑︂

j=−∞
π′

jvt−j + et, (1.8)

where et is a zero-mean stationary process with E
(︂
etv

′
t−j

)︂
= 0 for all j ∈ Z and ∑︁∞

j=−∞ |πj |F < ∞
(cf. Saikkonen, 1991). Replacing ut in (1.1) with the term on the right-hand side of (1.8) and
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truncating the infinite sum at both ends yields

yt = x′
tβ +

L2∑︂
j=−L1

π′
jvt−j + ˜︁et, (1.9)

t = L2 + 1, . . . , T − L1, where ˜︁et := et + ∑︁
j<−L1,j>L2 π′

jvt−j and L1, L2 ≥ 0. To eliminate the
error introduced by truncating the infinite sum in (1.8) asymptotically, the numbers of leads and
lags have to go to infinity with sample size such that limT →∞ T 1/2∑︁

j<−L1,j>L2 |πj |F = 0 and
limT →∞ T −1(L3

1 + L3
2) = 0. In practice, the numbers of leads and lags are typically chosen by

minimizing an information criterion (see, e. g., Choi and Kurozumi, 2012). The D-OLS estimatorˆ︁βD of β in (1.1) is then defined as the OLS estimator of β in (1.9). Under Assumptions 1.1 – 1.3
it follows that T

(︂ˆ︁βD − β
)︂

converges to the limiting distribution given in (1.7), i. e., the limiting
distributions of the FM-OLS estimator and the D-OLS estimator coincide (Saikkonen, 1991).

Finally, the IM-OLS estimator ˆ︁βIM of β in (1.1) proposed in Vogelsang and Wagner (2014) is
defined as the OLS estimator of β in the augmented partial sums regression

Sy
t = Sx′

t β + x′
tγ + Su

t = Z ′
tθ + Su

t , (1.10)

where Sy
t := ∑︁t

s=1 ys, Sx
t := ∑︁t

s=1 xs, Su
t := ∑︁t

s=1 us, Zt := [Sx′
t , x′

t]′, and θ := [β′, γ′]′. Adding xt

to the partial sums regression serves as an endogeneity correction, which is similar in spirit to the
leads and lags augmentation in D-OLS estimation but avoids tuning parameter choices. Denoting
the OLS estimator of θ in (1.10) with ˆ︁θIM := [ˆ︁β′

IM, ˆ︁γ′
IM]′, Vogelsang and Wagner (2014, Theorem 2)

show that it holds under Assumption 1.3 that the limiting distribution of ˆ︁θIM is given by⎡⎣ T
(︂ˆ︁βIM − β

)︂
ˆ︁γIM − Ω−1

vv Ωvu

⎤⎦ w−→ Ω1/2
u·v
(︁
Π′)︁−1 Z, (1.11)

where Π := diag
(︂
Ω1/2

vv , Ω1/2
vv

)︂
, Z :=

(︂∫︁ 1
0 g(r)g(r)′dr

)︂−1 ∫︁ 1
0 [G(1) − G(r)] dWu·v(r),

g(r) := [
∫︁ r

0 Wv(s)′ds, Wv(r)′]′, and G(r) :=
∫︁ r

0 g(s)ds. As both xt and Su
t are I(1) processes,

the correlation between Bv(r) and Bu(r) is soaked up in the long-run population regression vec-
tor Ω−1

vv Ωvu. Therefore, the correct centering parameter for ˆ︁γIM in the presence of endogeneity is
Ω−1

vv Ωvu rather than the population value γ = 0. Conditional upon Wv(r), the limiting distribution
in (1.11) is Gaussian with zero-mean and covariance matrix Ωu·vVIM, where VIM = (Π′)−1 ˜︁VIMΠ−1

and

˜︁VIM :=
(︃∫︂ 1

0
g(r)g(r)′dr

)︃−1 (︃∫︂ 1

0
[G(1) − G(r)] [G(1) − G(r)]′ dr

)︃(︃∫︂ 1

0
g(r)g(r)′dr

)︃−1
.

1.3.2 Traditional and Self-Normalized Test Statistics

The zero mean Gaussian mixture limiting distributions of the modified estimators allow for stan-
dard asymptotic inference based on chi-squared critical values. In the following, we focus on testing
s ≤ m linearly independent restrictions on β ∈ Rm in (1.1) summarized as H0: R1β = r0 versus
H1: R1β ̸= r0, where R1 ∈ Rs×m has full row rank s and r0 ∈ Rs. It is standard practice in
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applications to consider traditional Wald-type tests of the form, using generic notation,

τ(ˆ︁Ωu·v) :=
(︂
R1 ˆ︁β − r0

)︂′ [︂
R1 ˆ︁Ωu·v ˆ︁V R′

1

]︂−1 (︂
R1 ˆ︁β − r0

)︂
, (1.12)

where ˆ︁β ∈ {ˆ︁βD, ˆ︁βFM, ˆ︁βIM}, ˆ︁V is the sample covariance matrix of ˆ︁β, and ˆ︁Ωu·v := ˆ︁Ωuu − ˆ︁Ωuv
ˆ︁Ω−1

vv
ˆ︁Ωvu

is a consistent kernel estimator of Ωu·v. Whenever necessary, the choice of the estimator is made
clear by adding the corresponding subscript to τ(ˆ︁Ωu·v). For the FM-OLS estimator ˆ︁V is given by
the inverse of ∑︁T

t=1 xtx
′
t and for the D-OLS estimator ˆ︁V is defined similarly taking into account the

augmentation in (1.9). For the IM-OLS estimator ˆ︁V is given by the upper left (m×m)-dimensional
block element of the (2m × 2m)-dimensional matrix

ˆ︁VIM :=
(︄

T∑︂
t=1

ZtZ
′
t

)︄−1(︄ T∑︂
t=1

ctc
′
t

)︄(︄
T∑︂

t=1
ZtZ

′
t

)︄−1

, (1.13)

where c1 := SZ
T and ct := SZ

T − SZ
t−1, with SZ

t := ∑︁t
j=1 Zj , for t = 2, . . . , T . In each case, it follows

that τ(ˆ︁Ωu·v) w−→ χ2
s, where χ2

s denotes a chi-square distribution with s degrees of freedom (see
Phillips and Hansen, 1990; Saikkonen, 1991; Vogelsang and Wagner, 2014).

It is well known in the literature that these traditional tests suffer from severe size distortions in
finite samples, especially when the data are characterized by large levels of endogeneity or error
serial correlation. Clearly, these size distortions are explained by the poor approximation quality
of the chi-squared distribution to the finite sample distributions of the traditional test statistics in
these cases.

One way to address this issue is the fixed-b approach of Vogelsang and Wagner (2014) based on the
tuning parameter free IM-OLS estimator. It allows to tabulate critical values corresponding to the
kernel and bandwidth choices made when estimating Ωu·v. However, their simulation results reveal
that the performance of the test is still sensitive to the choice of b = bT /T ∈ (0, 1]. A promising
alternative approach is the concept of self-normalization, which has not received much attention in
the cointegrating regression literature as an alternative to traditional test statistics. The main idea
of self-normalization is to replace a tuning parameter dependent estimator of a long-run variance
parameter in the construction of a test statistic with a quantity that is asymptotically proportional
to this particular long-run variance parameter and can be directly computed from the data without
requiring tuning parameter choices.

Because its construction is completely tuning parameter free, the IM-OLS estimator serves as a nat-
ural starting point for developing self-normalized Wald-type tests in cointegrating regressions. To
simplify the expression of asymptotic results, we rewrite the null hypothesis in terms of the correct
centering parameter for ˆ︁θIM, given by [β′,

(︁
Ω−1

vv Ωvu
)︁′]′. To this end, define R2 := [R1, 0s×m] ∈ Rs×2m

such that the null hypothesis reads as R1β = R2[β′,
(︁
Ω−1

vv Ωvu
)︁′]′ = r0. Clearly, the auxiliary coeffi-

cient vector γ is not restricted under the null hypothesis and, in particular, Ω−1
vv Ωvu does not have

to be estimated. Moreover, define

τIM(κ) :=
(︂
R2ˆ︁θIM − r0

)︂′ [︂
R2κˆ︁VIMR′

2

]︂−1 (︂
R2ˆ︁θIM − r0

)︂
, (1.14)
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1.3. Testing General Linear Hypotheses

which is identical to τIM(ˆ︁Ωu·v) defined in (1.12) in case κ = ˆ︁Ωu·v. Inspired by Kiefer et al. (2000),
a straightforward choice for the self-normalizer is given by ˆ︁η := T −2∑︁T

t=2

(︂∑︁t
s=2 ∆ ˆ︁Su

s

)︂2
, where

∆ ˆ︁Su
t := ˆ︁Su

t − ˆ︁Su
t−1, t = 2, . . . , T , are the first differences of the OLS residuals ˆ︁Su

t := Sy
t − Z ′

t
ˆ︁θIM in

the augmented partial sums regression (1.10). The proof of Proposition 1.1 below reveals that the
self-normalizer converges weakly to Ωu·v

∫︁ 1
0 (Wu·v(s) − g(s)′Z)2 dr, i. e., its limiting distribution is

scale dependent on Ωu·v. Choosing κ = ˆ︁η in (1.14) thus removes the nuisance parameter Ωu·v

asymptotically, without estimating it directly. The resulting test statistic is closely related to, but
not a special case of, the ˜︂W statistic considered in Vogelsang and Wagner (2014), compare the
discussion in Remark 1.2 below.

Proposition 1.1. Let the data be generated by (1.1) and (1.2) and let {wt}t∈Z satisfy Assump-
tion 1.3. Then, under the null hypothesis, its holds that

τIM(ˆ︁η) w−→

(︂
R2 (Π′)−1 Z

)︂′
(R2VIMR′

2)−1
(︂
R2 (Π′)−1 Z

)︂
∫︁ 1

0 (Wu·v(r) − g(r)′Z)2 dr
=: GSN. (1.15)

The limiting null distribution in Proposition 1.1 is a ratio of two random variables. It is straight-
forward to verify that the marginal distribution of the numerator is χ2

s, whereas the marginal
distribution of the denominator is nonstandard but free of any nuisance parameters. However,
it follows from Vogelsang and Wagner (2014, Lemma 2) that numerator and denominator are
correlated with the correlation depending on nuisance parameters through Π. Hence, tabulating
asymptotic critical values for τIM(ˆ︁η) is not possible in general.

Remark 1.1. In the special case where the number of linearly independent restrictions on β equals
the dimension of β (i. e., in case s = m), it follows from the definition of R2, invertibility of R1,
and simple algebra that(︂

R2
(︁
Π′)︁−1 Z

)︂′ (︁
R2VIMR′

2
)︁−1

(︂
R2
(︁
Π′)︁−1 Z

)︂
= Z(1)′ ˜︁VIM(1, 1)−1Z(1),

where ˜︁VIM(1, 1) denotes the upper left (m × m)-dimensional block element of the (2m × 2m)-
dimensional matrix ˜︁VIM and Z(1) denotes the vector of the first m elements of Z. Thus, R2 and
Π cancel out algebraically and the correlation between numerator and denominator of the limit-
ing distribution in (1.15) becomes nuisance parameter free. Table 1.4 in Appendix 1.8.1 provides
asymptotically valid critical values for τIM(ˆ︁η) in case s = m for m = 1, . . . , 4.

The use of τIM(ˆ︁η) in applications is restricted to the case s = m. We offer two solutions to overcome
this limitation. One solution adjusts the residuals ˆ︁Su

t such that numerator and denominator of
the limiting distribution of the self-normalized test statistic become independent of each other,
which results in a pivotal limiting null distribution. The adjustment coincides with the adjustment
proposed in Vogelsang and Wagner (2014, p. 746) to allow for fixed-b asymptotics. The second
solution, which leaves the test statistic unchanged, is the VAR sieve bootstrap for constructing
critical values proposed in Section 1.4.

For the adjustment of the IM-OLS residuals, first define ˜︁Zt := t
∑︁T

s=1 Zs −
∑︁t−1

j=1
∑︁j

s=1 Zs, t =
1, . . . , T , and let ˜︁Z⊥

t denote the residuals from the regression of ˜︁Zt on Zt. The adjusted residuals
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ˆ︁Su⊥
t are then obtained by regressing ˆ︁Su

t on ˜︁Z⊥
t . Based on the adjusted residuals, we define the al-

ternative self-normalizer as ˆ︁η⊥ := T −2∑︁T
t=2

(︂∑︁t
s=2 ∆ ˆ︁Su⊥

s

)︂2
. This self-normalizer is closely related

to, but not a special case of, the kernel estimator of Ωu·v proposed in Vogelsang and Wagner (2014,˜︁σ2∗
u·v in their notation), which allows for fixed-b inference and is defined as (in our notation)

˜︁Ω⊥
u·v := T −1

T∑︂
i=1

T∑︂
j=1

K
(︃ |i − j|

bT

)︃
∆ ˆ︁Su⊥

i ∆ ˆ︁Su⊥
j . (1.16)

In case K (·) is the Bartlett kernel and bT = T , similar algebraic arguments as used in Cai and
Shintani (2006, Proof of Lemma 1) show that ˜︁Ω⊥

u·v is equal to

˜︁η⊥ := ˆ︁η⊥ + T −2
T∑︂

t=2

(︄
t∑︂

s=2
∆ ˆ︁Su⊥

s −
T∑︂

s=2
∆ ˆ︁Su⊥

s

)︄2

, (1.17)

which also serves as a suitable self-normalizer. In fact, the self-normalized test statistic τIM(˜︁η⊥)
coincides with the fixed-b Wald-type test statistic of Vogelsang and Wagner (2014, ˜︂W ∗ in their
notation) based on the Bartlett kernel and bandwidth equal to sample size.

Remark 1.2. Similar algebraic arguments as used above reveal that ˆ︁η is closely related to, but
not a special case of, the kernel estimator of Ωu·v based on ∆ ˆ︁Su

t rather than ∆ ˆ︁Su⊥
t (denoted

as ˜︁σ2
u·v in the notation of Vogelsang and Wagner, 2014, and leading to their ˜︂W statistic) because∑︁T

s=2 ∆ ˆ︁Su
t ̸= 0 in general. Further note that neither ˜︁σ2

u·v nor ˜︁σ2∗
u·v (in the notation of Vogelsang and

Wagner, 2014) are consistent estimators of Ωu·v under standard kernel and bandwidth assumptions.
In this respect, self-normalization in cointegrating regressions is different from self-normalization
in regressions with stationary time series, where prominent self-normalizers are related to consis-
tent (under standard kernel and bandwidth assumptions) kernel estimators of long-run variance
parameters (cf., e. g., Kiefer and Vogelsang, 2002; Shao, 2015). Finally, note that OLS residuals
in (1.1) are not suitable for self-normalization because limiting distributions of functions of OLS
residuals will typically be contaminated by second order bias terms.

The following proposition derives the limiting null distribution of the self-normalized test statistic
τIM(ˆ︁η⊥). For completeness, it also presents the limiting null distribution of τIM(˜︁η⊥), which coin-
cides with the limiting null distribution of the ˜︂W ∗ test statistic of Vogelsang and Wagner (2014,
Theorem 3) based on the Bartlett kernel and bandwidth equal to sample size.

Proposition 1.2. Let the data be generated by (1.1) and (1.2) and let {wt}t∈Z satisfy Assump-
tion 1.3. Then, under the null hypothesis, it holds that

τIM(ˆ︁η⊥) w−→ χ2
s∫︁ 1

0 (Wu·v(r) − h(r)′Q)2 dr
=: G⊥

SN, (1.18)

τIM(˜︁η⊥) w−→ χ2
s∫︁ 1

0 (Wu·v(r) − h(r)′Q)2 dr +
∫︁ 1

0

[︂
W u·v(r) − h(r)′Q

]︂2
dr

=: ˜︁G⊥
SN, (1.19)

where Q :=
(︂∫︁ 1

0 h(r)h(r)′dr
)︂−1 ∫︁ 1

0 [H(1) − H(r)] dWu·v(r), H(r) :=
∫︁ r

0 h(s)ds,

h(r) :=
[︂
g(r)′,

∫︁ r
0 [G(1) − G(s)]′ ds

]︂′
, W u·v(s) := Wu·v(s) − Wu·v(1), and h(s) := h(s) − h(1).
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In (1.18) as well as in (1.19) it holds that the χ2
s-distributed random variable in the numerator is

independent of the denominator.

The limiting null distributions of τIM(ˆ︁η⊥) and τIM(˜︁η⊥) are nonstandard but free of any nuisance
parameters and only depend on the number of restrictions under the null hypothesis and the
number of integrated regressors. Hence, simulating asymptotic critical values is straightforward.
Tables 1.5 and 1.6 in Appendix 1.8.1 provide asymptotic critical values for s ≤ m and m = 1, . . . , 4.

Remark 1.3. Jin et al. (2006) propose FM-OLS based test statistics with a kernel estimator of Ωu·v

based on the FM-OLS residuals and bandwidth equal to sample size. This can be labeled “partial”
self-normalization, as the corresponding limiting null distribution accounts for kernel and bandwidth
choices to estimate Ωu·v but not for tuning parameter choices related to the FM-OLS estimator.
Choosing the IM-OLS estimator instead overcomes this limitation and thus leads to “full” self-
normalization (compare also the discussion in Vogelsang and Wagner, 2014, on “partial” fixed-b
vs. “full” fixed-b theory).

1.3.3 Local Asymptotic Power

This section analyzes the asymptotic power properties of the traditional and self-normalized Wald-
type tests under local alternatives. To ease exposition of the main arguments, we restrict our
attention to the single regressor case (m = 1) and consider the null hypothesis H0: β = β0. Under
local alternatives H1: β = β0 + c T −1, c ∈ R, the limiting distribution of the traditional IM-OLS
based Wald-type test statistic is given by

τIM(ˆ︁Ωu·v) w−→ ˜︁VIM(1, 1)−1
(︂
c Ω−1/2

u·v Ω1/2
vv + Z(1)

)︂2
, (1.20)

with ˜︁VIM(1, 1) and Z(1) as defined in Remark 1.1. The limiting distributions of the traditional
FM-OLS and D-OLS based Wald-type test statistics under local alternatives coincide and follow
analogously. The limiting distribution of the self-normalized test statistic τIM(ˆ︁η⊥) under local
alternatives is given by

τIM(ˆ︁η⊥) w−→
(︃∫︂ 1

0

(︁
Wu·v(r) − h(r)′Q

)︁2
dr ˜︁VIM(1, 1)

)︃−1 (︂
c Ω−1/2

u·v Ω1/2
vv + Z(1)

)︂2
, (1.21)

with analogous results for τIM(ˆ︁η) and τIM(˜︁η⊥). For c = 0, the limiting distributions coincide with
those derived under the null hypothesis in Section 1.3.2 and local asymptotic power of the tests
at the nominal α level is equal to α. For c ̸= 0, local asymptotic power of the tests depends
on c Ω−1/2

u·v Ω1/2
vv . In particular, it follows from the definition of Ωu·v that local asymptotic power

of the tests decreases as the variability in the regression errors increases. To assess the effect of
the location parameter c, we plot the simulated power curves as a function of c in Figure 1.1 for
Ω−1/2

u·v Ω1/2
vv = 1.

For all tests, power increases symmetrically as c moves away from zero. The traditional FM-
OLS and D-OLS based tests have identical local asymptotic power, which is somewhat larger
than local asymptotic power of the traditional IM-OLS based test. This is not surprising because
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Figure 1.1: Asymptotic power of the traditional and self-normalized Wald-type tests for H0: β = β0
at the nominal 5% level under local alternatives β = β0 + c T −1.
Note: The power curves for τFM(ˆ︁Ωu·v) and τD(ˆ︁Ωu·v) coincide.

the IM-OLS estimator seems to be asymptotically less efficient than the FM-OLS and D-OLS
estimators (cf. Vogelsang and Wagner, 2014, Proposition 2). In general, local asymptotic power of
the self-normalized tests is similar to but slightly below local asymptotic power of the traditional
IM-OLS based test. This is consistent with the findings in the stationary time series literature,
where self-normalization is well known to lead to minor power losses (see, e. g., Kiefer et al., 2000;
Shao, 2015). Among the self-normalized tests, τIM(ˆ︁η⊥) performs best, while τIM(ˆ︁η) has some
performance advantages over τIM(˜︁η⊥) for small to medium deviations from the null hypothesis,
but τIM(˜︁η⊥) catches up as c becomes larger.

1.4 Bootstrap Inference

This section proposes a VAR sieve bootstrap procedure to construct empirical critical values for the
traditional and self-normalized Wald-type test statistics. Under the null hypothesis, the bootstrap
distribution is expected to serve as a better approximation to the finite sample distributions of
these test statistics than the corresponding limiting distributions, especially when the data are
characterized by large levels of endogeneity or error serial correlation.

The representation in (1.3) suggests to approximate {wt}t∈Z = {[ut, v′
t]′}t∈Z by a sequence of VAR

processes with increasing order q → ∞ as T → ∞. These VAR approximations can be bootstrapped
using the VAR sieve bootstrap. Since ut is unknown, we fit a finite order VAR to ˆ︁wt := [ˆ︁ut, v′

t]′,
t = 1, . . . , T , where ˆ︁ut := yt − x′

t
ˆ︁β denote the residuals in (1.1) based on ˆ︁β ∈ {ˆ︁βD, ˆ︁βFM, ˆ︁βIM}.

Noticeably, it suffices that T
(︂ˆ︁β − β

)︂
= OP(1), such that using, e. g., ˆ︁β = ˆ︁βOLS is also possible.

In the following, let ˆ︁Φ1(q), . . . , ˆ︁Φq(q) denote the solution of the sample Yule-Walker equations in
the regression of ˆ︁wt on ˆ︁wt−1, . . . , ˆ︁wt−q, t = q + 1, . . . , T , and denote the corresponding residuals byˆ︁εt(q) := ˆ︁wt −

∑︁q
j=1

ˆ︁Φj(q) ˆ︁wt−j . The Yule-Walker estimator is a natural choice, as any finite order
VAR estimated by the Yule-Walker estimator is causal and invertible in finite samples, which will
be particularly important in the proof of Theorem 1.1 below. The bootstrap scheme to construct
critical values consists of four steps and is defined as follows.

Step 1: Obtain the bootstrap sample (ε∗
t )T

t=1 by randomly drawing T times with replacement
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from the centered residuals
(︂ˆ︁εt(q) − ˆ︁εT (q)

)︂T

t=q+1
, where ˆ︁εT (q) := (T −q)−1∑︁T

t=q+1 ˆ︁εt(q), and

construct (w∗
t )T

t=1 recursively as w∗
t = ˆ︁Φ1(q)w∗

t−1 + . . . + ˆ︁Φq(q)w∗
t−q + ε∗

t , given initial values
w∗

1−q, . . . , w∗
0. Partition w∗

t = [u∗
t , v∗′

t ]′ analogously to wt and define x∗
t := ∑︁t

s=1 v∗
s .

Step 2: Generate data under the null hypothesis H0: R1β = r0 by defining y∗
t := x∗′

t
ˆ︁βr + u∗

t ,
where ˆ︁βr denotes the restricted version of ˆ︁β fulfilling R1 ˆ︁βr = r0.

Step 3: Compute ˆ︁β in y∗
t := x∗′

t β + u∗
t and construct the corresponding test statistic for

H0: R1β = r0.

Step 4: Let α denote the desired nominal size of the test. Repeat the previous steps B times,
such that (B + 1)(1 − α) is an integer. Reject the null hypothesis if the test statistic based
on the original observations is greater than the (B + 1)(1 − α)-th largest realization of the
test statistics based on bootstrap observations.

For later usage, let τ∗
FM(ˆ︁Ω∗

u·v), τ∗
D(ˆ︁Ω∗

u·v), and τ∗
IM(ˆ︁Ω∗

u·v) denote the traditional Wald-type test statis-
tics corresponding to the three modified estimators based on bootstrap observations constructed
in Step 3. In particular, note that ˆ︁Ω∗

u·v denotes the estimator of Ωu·v based on bootstrap obser-
vations. Plugging in the long-run variance estimator based on the original observations, ˆ︁Ωu·v, is
also possible, but unreported simulation results reveal that this is slightly disadvantageous for
the performance of the bootstrap tests in finite samples. Analogously, let τ∗

IM(ˆ︁η∗), τ∗
IM(ˆ︁η⊥∗), and

τ∗
IM(˜︁η⊥∗) denote the self-normalized Wald-type test statistics based on bootstrap observations.

Remark 1.4. To eliminate the dependence of the results on the initial values of w∗
s , 1 − q ≤ s ≤ 0

in applications, we suggest to generate a sufficiently large number of w∗
t ’s and keep the last T of

them only.

Remark 1.5. The restricted IM-OLS estimator of β is given by

ˆ︁βr
IM :=

[︄
Im

0m×m

]︄′
⎛⎜⎝ˆ︁θIM −

(︄
T∑︂

t=1
ZtZ

′
t

)︄−1

R′
2

⎡⎣R2

(︄
T∑︂

t=1
ZtZ

′
t

)︄−1

R′
2

⎤⎦−1 (︂
R2ˆ︁θIM − r0

)︂⎞⎟⎠ .

The restricted FM-OLS and D-OLS estimators are obtained analogously.

Remark 1.6. Please note that using the restricted estimator employed in Step 2 also in the con-
struction of ˆ︁wt has adverse effects under the alternative (cf., e. g., van Giersbergen and Kiviet,
2002; Paparoditis and Politis, 2005).

To derive asymptotic theory, we have to posit the following technical assumption on the order of
the VAR sieve (cf. Assumption 4′ and Remark 7 in Palm et al., 2010).

Assumption 1.4. Let q → ∞ such that q = o((T/ ln(T ))1/3) as T → ∞.

We are now in the position to prove the following bootstrap invariance principle, which is the key
ingredient to prove bootstrap consistency for the limiting null distributions of the traditional and
self-normalized test statistics.
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Theorem 1.1. Let the data be generated by (1.1) and (1.2), {wt}t∈Z satisfy Assumptions 1.1–1.3,
and q fulfill Assumption 1.4. Then it holds that

T −1/2
⌊rT ⌋∑︂
t=1

w∗
t

w∗
−→ Ψ(1)Σ1/2W (r), 0 ≤ r ≤ 1, in P,

where Ψ(1)Σ1/2W (r) has covariance matrix Ω.

Theorem 1.1 extends the bootstrap invariance principle of Park (2002, Theorem 3.3) in the sense
that {εt}t∈Z has to be an uncorrelated but not necessarily independent white noise process and
may thus be of independent interest. Nevertheless, generating the bootstrap quantities (ε∗

t )T
t=1

by drawing independently with replacement from the centered residuals
(︂ˆ︁εt(q) − ˆ︁εT (q)

)︂T

t=q+1
still

allows to capture the entire second order dependence structure of {wt}t∈Z, which is in our context
both necessary and sufficient for the bootstrap to be consistent. This stems from the fact that
the dependence structures in the limiting null distributions of the traditional and self-normalized
Wald-type test statistics depend only on the second moments of {wt}t∈Z and, with respect to
second moments, independence and uncorrelatedness are indistinguishable.

The following theorem shows that the VAR sieve bootstrap is consistent for the limiting null
distributions of the traditional and self-normalized Wald-type test statistics.

Theorem 1.2. Let the data be generated by (1.1) and (1.2), {wt}t∈Z satisfy Assumptions 1.1–1.3,
and q fulfill Assumption 1.4. Then, under both the null hypothesis and the alternative, it holds that
τ∗

FM(ˆ︁Ω∗
u·v) w∗

−→ χ2
s, τ∗

D(ˆ︁Ω∗
u·v) w∗

−→ χ2
s, τ∗

IM(ˆ︁Ω∗
u·v) w∗

−→ χ2
s, τ∗

IM(ˆ︁η∗) w∗
−→ GSN, τ∗

IM(ˆ︁η⊥∗) w∗
−→ G⊥

SN, and
τ∗

IM(˜︁η⊥∗) w∗
−→ ˜︁G⊥

SN in P.

Theorem 1.2 asymptotically justifies the use of VAR sieve bootstrap critical values to conduct
inference in cointegrating regresssions based on traditional and self-normalized Wald-type test
statistics. In particular, the bootstrap allows to use the self-normalized test statistic τIM(ˆ︁η) for
all s ≤ m, as it accounts for the nuisance parameter dependent correlation structure between
numerator and denominator of its limiting null distribution. With respect to the traditional Wald-
type test statistic based on the D-OLS estimator, Theorem 1.2 extends the results in Chang et al.
(2006) in the sense that the process {εt}t∈Z is allowed to be an uncorrelated but not necessarily
independent white noise process.

Remark 1.7. The VAR sieve bootstrap also allows to employ the “textbook” OLS test statistic

τOLS(ˆ︁σ2
u) :=

(︂
R1 ˆ︁βOLS − r0

)︂′
[︃
R1ˆ︁σ2

u

(︂∑︁T
t=1 xtx

′
t

)︂−1
R′

1

]︃−1 (︂
R1 ˆ︁βOLS − r0

)︂
, where

ˆ︁σ2
u := T −1∑︁T

t=1 ˆ︁u2
OLS,t, which leads to asymptotically valid inference based on chi-squared crit-

ical values only in the absence of endogeneity and error serial correlation. However, the finite
sample performance of the test turns out to be unsatisfactory (cf. the discussion in Section 1.5).

1.5 Finite Sample Performance

We generate data according to (1.1) and (1.2) with m = 2 regressors, i. e., yt = x1tβ1 + x2tβ2 + ut,
xit = xi,t−1 + vit, i = 1, 2, for t = 1, . . . , T , where β1 = β2 = 1 and xi0 = 0. The regression errors
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ut and the first differences of the stochastic regressors vit are generated as

ut = ρ1ut−1 + et + ϕet−1 + ρ2(ν1t + ν2t), u−100 = 0,

vit = νit + 0.5νi,t−1, νi,−100 = 0, i = 1, 2,

for t = −99, . . . , 0, 1, . . . , T , where t = −99, . . . , 0 serves as a burn-in period to ensure stationarity.
The parameters ρ1 and ρ2 control the level of error serial correlation and the extent of endogeneity,
respectively. For ϕ ̸= 0 the error process contains a first order moving average component. To
construct et, ν1t, and ν2t we first generate three independent univariate stationary GARCH(1,1)
processes ξjt = σjtεjt, j = 1, 2, 3, where σ2

jt = a0 + a1ξ2
j,t−1 + b1σ2

j,t−1, with ξ2
j,−100 = 1, σ2

j,−100 = 1,
[ε1t, ε2t, ε3t]′ ∼ N (0, I3) i.i.d. across t, a1, b1 ≥ 0, a1 + b1 < 1, and a0 := 1 − a1 − b1, such that
E(ξjt) = 0 and E(ξ2

jt) = E(σ2
jt) = 1. We then set [et, ν1t, ν2t]′ = L[ξ1t, ξ2t, ξ3t]′, where L is the lower

triangular matrix of the Cholesky decomposition of the matrix with all main diagonal elements
equal to one and all off-diagonal elements equal to ρ3. In the following we set ρ3 = 0.2 to impose
some weak (cross-sectional) correlation between the three GARCH processes. To mimic typical
empirical GARCH patterns, we set a1 = 0.05 and b1 = 0.94 (cf. Brüggemann et al., 2016, p. 77).
The order 1 ≤ q ≤ ⌊T 1/3⌋ =: qmax of the VAR sieve is chosen as the one that minimizes either the
AIC or the BIC computed on the evaluation period t = qmax+1, . . . , T (Kilian and Lütkepohl, 2017,
p. 56). We present results for T ∈ {75, 100, 250}, ρ1 = ρ2 ∈ {0, 0.3, 0.6, 0.9} and ϕ ∈ {0, 0.3, 0.9}.
In all cases, the number of Monte Carlo and bootstrap replications is 3,000 and 499, respectively.

Let us start with analyzing the empirical null rejection probabilities of the traditional and self-
normalized Wald-type tests based on asymptotic critical values under the null hypothesis H0: β1 =
1, β2 = 1. The results are benchmarked against the textbook OLS test τOLS(ˆ︁σ2

u), which leads
to asymptotically valid inference only in case ρ1 = ρ2 = ϕ = 0, and against Johansen’s (1995)
parametric likelihood ratio (LR) test based on the reduced rank quasi maximum likelihood (QML)
estimator in a vector error correction model (VECM) for Xt := [yt, x1t, x2t]′ (see Appendix 1.8.2
for more details). The order of the VECM is selected by either AIC or BIC. To select the numbers
of leads and lags for the construction of the D-OLS estimator, we follow Choi and Kurozumi (2012)
and use BIC (which appears to be the most successful criterion in reducing its RMSE) and the
upper bounds used in their simulation study (results based on AIC are qualitatively similar). With
respect to long-run covariance matrix estimation, we present results for the Bartlett kernel and
the quadratic spectral (QS) kernel together with the corresponding data-dependent bandwidth
selection rules of Andrews (1991).

Table 1.1 shows the well known size distortions of the traditional tests whenever ρ1, ρ2 is large,
or T is small. These size distortions can be almost as severe as those of the textbook OLS test.
In contrast, the self-normalized tests are considerably less size-distorted than the traditional tests
for ρ1, ρ2 < 0.9 and even outperform the LR tests in this case. Because the performance of the
IM-OLS estimator is comparable with the performance of the D-OLS and FM-OLS estimators
in terms of bias and RMSE (see Table 1.7 in Appendix 1.8.2), IM-OLS estimation combined
with self-normalization serves as a serious alternative to traditional inference in cointegrating
regressions. For ρ1, ρ2 = 0.9, however, self-normalization becomes less advantageous, reflecting the
poor performance of endogeneity corrections in finite samples when the level of endogeneity and
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Table 1.1: Empirical sizes of the tests for H0: β1 = 1, β2 = 1 at 5% level based on asymptotic critical values

Traditional tests
Self-normalized tests Bartlett kernel QS kernel LR tests

ϕ ρ1, ρ2 τOLS(ˆ︁σ2
u) τIM(˜︁η⊥) τIM(ˆ︁η⊥) τIM(ˆ︁η) τD(ˆ︁Ωu·v) τFM(ˆ︁Ωu·v) τIM(ˆ︁Ωu·v) τD(ˆ︁Ωu·v) τFM(ˆ︁Ωu·v) τIM(ˆ︁Ωu·v) LR(AIC) LR(BIC)

Panel A: T = 75
0 0 0.06 0.04 0.03 0.03 0.13 0.15 0.11 0.17 0.20 0.14 0.13 0.10

0.3 0.25 0.08 0.05 0.05 0.15 0.21 0.14 0.15 0.23 0.14 0.14 0.15
0.6 0.69 0.15 0.13 0.08 0.24 0.40 0.19 0.23 0.43 0.18 0.16 0.18
0.9 0.97 0.66 0.75 0.36 0.42 0.83 0.69 0.54 0.88 0.77 0.27 0.25

0.3 0 0.16 0.06 0.04 0.04 0.15 0.18 0.13 0.17 0.21 0.15 0.14 0.11
0.3 0.34 0.09 0.07 0.06 0.16 0.23 0.15 0.16 0.25 0.15 0.15 0.16
0.6 0.69 0.16 0.15 0.09 0.25 0.41 0.22 0.27 0.44 0.23 0.19 0.18
0.9 0.96 0.65 0.72 0.35 0.46 0.81 0.69 0.63 0.89 0.80 0.32 0.30

0.9 0 0.25 0.07 0.05 0.05 0.16 0.19 0.15 0.17 0.23 0.16 0.18 0.15
0.3 0.39 0.10 0.08 0.07 0.20 0.26 0.18 0.22 0.30 0.19 0.20 0.17
0.6 0.67 0.17 0.16 0.10 0.28 0.41 0.26 0.33 0.49 0.31 0.23 0.20
0.9 0.94 0.62 0.69 0.33 0.52 0.79 0.70 0.73 0.90 0.83 0.39 0.37

Panel B: T = 100
0 0 0.06 0.04 0.03 0.04 0.11 0.13 0.10 0.14 0.17 0.12 0.10 0.08

0.3 0.27 0.07 0.05 0.05 0.13 0.18 0.13 0.12 0.20 0.13 0.11 0.12
0.6 0.69 0.12 0.11 0.07 0.22 0.35 0.16 0.21 0.35 0.16 0.13 0.13
0.9 0.98 0.54 0.64 0.29 0.44 0.77 0.59 0.53 0.82 0.65 0.20 0.17

0.3 0 0.16 0.06 0.04 0.05 0.12 0.16 0.12 0.13 0.18 0.13 0.11 0.10
0.3 0.35 0.09 0.07 0.06 0.14 0.20 0.14 0.14 0.21 0.14 0.12 0.12
0.6 0.69 0.14 0.13 0.08 0.24 0.35 0.19 0.24 0.38 0.19 0.15 0.12
0.9 0.96 0.52 0.62 0.29 0.48 0.76 0.59 0.60 0.84 0.69 0.25 0.22

0.9 0 0.25 0.07 0.05 0.05 0.14 0.18 0.13 0.14 0.19 0.14 0.14 0.14
0.3 0.41 0.09 0.08 0.06 0.17 0.23 0.16 0.18 0.25 0.17 0.15 0.14
0.6 0.67 0.14 0.14 0.08 0.26 0.36 0.22 0.28 0.42 0.25 0.18 0.15
0.9 0.94 0.50 0.59 0.27 0.53 0.74 0.60 0.70 0.86 0.74 0.31 0.27

Panel C: T = 250
0 0 0.06 0.04 0.03 0.04 0.08 0.09 0.07 0.09 0.10 0.08 0.07 0.06

0.3 0.26 0.06 0.05 0.05 0.10 0.12 0.09 0.09 0.11 0.08 0.08 0.05
0.6 0.70 0.07 0.06 0.06 0.12 0.21 0.10 0.11 0.19 0.10 0.09 0.05
0.9 0.98 0.19 0.26 0.12 0.23 0.58 0.26 0.26 0.60 0.29 0.11 0.09

0.3 0 0.16 0.05 0.04 0.05 0.09 0.10 0.08 0.09 0.10 0.08 0.08 0.07
0.3 0.35 0.06 0.05 0.06 0.11 0.13 0.10 0.10 0.12 0.09 0.09 0.06
0.6 0.69 0.08 0.07 0.06 0.14 0.21 0.11 0.13 0.21 0.11 0.09 0.06
0.9 0.98 0.20 0.27 0.13 0.29 0.56 0.29 0.33 0.60 0.34 0.12 0.12

0.9 0 0.25 0.06 0.05 0.05 0.10 0.12 0.09 0.09 0.11 0.09 0.09 0.10
0.3 0.40 0.07 0.05 0.06 0.12 0.15 0.11 0.11 0.14 0.10 0.10 0.10
0.6 0.67 0.08 0.08 0.07 0.15 0.22 0.13 0.15 0.23 0.13 0.10 0.12
0.9 0.96 0.21 0.28 0.14 0.35 0.54 0.32 0.43 0.62 0.41 0.14 0.16

error serial correlation is large. Among the self-normalized tests, the test based on ˆ︁η performs
best. In particular, adjusting the IM-OLS residuals to remove the correlation between numerator
and denominator in the limiting null distribution of τIM(ˆ︁η) has adverse effects on the performance
of the test, especially for ρ1, ρ2 = 0.9.

Let us now turn to the performance of the tests based on bootstrap critical values. Table 1.2
shows that replacing asymptotic critical values with VAR sieve bootstrap critical values (based on
AIC) improves the performance of the traditional tests considerably throughout and also reduces
the size distortions of the self-normalized tests, especially in case ρ1, ρ2 = 0.9. The bootstrap is
thus able to account for finite sample effects of both endogeneity corrections and tuning parameter
choices. Results based on BIC are similar, compare Table 1.8 in Appendix 1.8.2. Performance
differences between traditional and self-normalized tests are negligible for small to medium values
of ρ1, ρ2. For ρ1, ρ2 = 0.9, however, the test based on the D-OLS estimator in combination with
the Bartlett kernel often performs best among the traditional tests, while the tests based on ˆ︁η and
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˜︁η⊥ perform best among the self-normalized tests and often also perform slightly better than the
D-OLS test for sample sizes larger than T = 75 irrespective of the kernel choice. In case T = 75,
the D-OLS test based on the Bartlett kernel performs slightly better than the self-normalized test
based on ˆ︁η, which in turn performs slightly better than the D-OLS test based on the QS kernel.
Compared to the LR test based on bootstrap critical values (as proposed in Cavaliere et al., 2015)
the traditional and self-normalized tests perform very well as long as ρ1, ρ2 < 0.9, but lead to larger
size distortions when ρ1, ρ2 = 0.9 and T ∈ {75, 100}. However, the reduced rank QML estimator
is well known to occasionally produce estimates that are far away from the true parameter values
(see, e. g., Brüggemann and Lütkepohl, 2005). Thus, it is not surprising that the reduced rank
QML estimator has a very large bias and an extremely large RMSE in case ρ1, ρ2 = 0.9 and
T ∈ {75, 100} compared to the (modified) OLS estimators, see Table 1.7 in Appendix 1.8.2. This
susceptibility to producing outliers can lead to misleading test decisions based on the LR test in
applications.

Table 1.2 also contains the empirical null rejection probabilities of the test statistic τIM(1), whose
limiting null distribution is given by Ωu·vχ2

2, in conjunction with VAR sieve bootstrap critical values.
The test generally performs worse than the traditional and self-normalized tests. This indicates
that removing the long-run variance parameter Ωu·v asymptotically – either by direct estimation or
by self-normalization – is beneficial in finite samples. Similarly, the traditional and self-normalized
tests also outperform the textbook OLS test, with the differences being most pronounced for
ρ1, ρ2 = 0.9. Thus, it is advantageous to first to account for endogeneity and error serial correlation
in the construction of the test statistic before using the VAR sieve bootstrap to construct critical
values. We observe similar results also for other choices of the GARCH parameters a1, b1, and ρ3.
In particular, the tests based on bootstrap critical values are considerably less size distorted than
those based on asymptotic critical values even in case et, v1t, and v2t are i.i.d. standard normal and
independent of each other (a1 = b1 = ρ3 = 0), compare Tables 1.9 and 1.10 in Appendix 1.8.2.

To analyze the properties of the tests under deviations from the null hypothesis, we generate data
for β1 = β2 ∈ [1, 1.2] using 21 values on a grid with mesh size 0.01. To account for the large
performance differences under the null hypothesis, we follow Cavaliere et al. (2015, p. 826) and
present results based on asymptotic and bootstrap critical values corresponding to the nominal
size ˜︁α that yields empirical null rejection probabilities equal to 5% under the null hypothesis. All
size-corrected power curves thus start at 0.05 for β1 = β2 = 1. Figure 1.2 displays illustrative size-
corrected power curves of the self-normalized test statistics, the traditional test statistics based
on the Bartlett kernel and the LR test statistic based on AIC in combination with asymptotic
critical values (top row) and bootstrap critical values (bottom row) for ρ1, ρ2 ∈ {0.3, 0.6, 0.9} in
case T = 100 and ϕ = 0.3. For ρ1, ρ2 = 0.3 the results are in line with the local asymptotic power
results analyzed in Section 1.3.3. The traditional tests based on the FM-OLS and D-OLS estimators
are slightly more powerful than the traditional test based on the IM-OLS estimator, which in turn
is slightly more powerful than the self-normalized tests. Moreover, the self-normalized tests are as
powerful as the LR test. The power loss when replacing asymptotic critical values with bootstrap
critical values is negligible for all tests. Increasing ρ1, ρ2 reduces power of the tests without altering
the relative performance differences with one exception. For ρ1, ρ2 ∈ {0.6, 0.9} the LR test is
considerably less powerful than the traditional and self-normalized tests, irrespective of whether
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Table 1.2: Empirical sizes of the tests for H0: β1 = 1, β2 = 1 at 5% level based on bootstrap critical values

Traditional tests
Self-normalized tests Bartlett kernel QS kernel LR tests

ϕ ρ1, ρ2 τ∗
OLS(ˆ︁σ2

u) τ∗
IM(1) τ∗

IM(˜︁η⊥) τ∗
IM(ˆ︁η⊥) τ∗

IM(ˆ︁η) τ∗
D(ˆ︁Ωu·v) τ∗

FM(ˆ︁Ωu·v) τ∗
IM(ˆ︁Ωu·v) τ∗

D(ˆ︁Ωu·v) τ∗
FM(ˆ︁Ωu·v) τ∗

IM(ˆ︁Ωu·v) LR∗(AIC) LR∗(BIC)
Panel A: T = 75
0 0 0.07 0.10 0.07 0.07 0.07 0.06 0.06 0.07 0.05 0.05 0.07 0.06 0.07

0.3 0.09 0.12 0.08 0.07 0.08 0.06 0.06 0.08 0.06 0.05 0.08 0.07 0.11
0.6 0.12 0.16 0.09 0.09 0.08 0.09 0.08 0.09 0.09 0.07 0.09 0.07 0.13
0.9 0.33 0.53 0.24 0.28 0.19 0.14 0.22 0.25 0.18 0.24 0.28 0.08 0.09

0.3 0 0.06 0.10 0.07 0.06 0.07 0.06 0.06 0.07 0.05 0.05 0.06 0.07 0.07
0.3 0.08 0.13 0.07 0.07 0.08 0.06 0.06 0.08 0.06 0.05 0.08 0.06 0.10
0.6 0.11 0.18 0.09 0.09 0.09 0.09 0.07 0.10 0.08 0.07 0.09 0.07 0.12
0.9 0.31 0.53 0.24 0.27 0.19 0.16 0.22 0.26 0.21 0.24 0.29 0.09 0.11

0.9 0 0.09 0.16 0.09 0.10 0.09 0.07 0.08 0.10 0.05 0.06 0.09 0.09 0.09
0.3 0.10 0.19 0.10 0.11 0.10 0.08 0.08 0.11 0.07 0.06 0.09 0.08 0.09
0.6 0.14 0.24 0.12 0.13 0.11 0.10 0.08 0.13 0.09 0.07 0.12 0.08 0.11
0.9 0.31 0.55 0.26 0.29 0.21 0.18 0.23 0.27 0.24 0.24 0.30 0.09 0.11

Panel B: T = 100
0 0 0.07 0.08 0.07 0.07 0.07 0.05 0.06 0.07 0.04 0.05 0.06 0.06 0.06

0.3 0.08 0.10 0.07 0.07 0.07 0.06 0.06 0.08 0.06 0.05 0.07 0.06 0.09
0.6 0.11 0.13 0.08 0.08 0.07 0.09 0.06 0.09 0.08 0.06 0.09 0.06 0.09
0.9 0.29 0.44 0.17 0.22 0.15 0.15 0.18 0.19 0.17 0.18 0.21 0.07 0.06

0.3 0 0.07 0.09 0.07 0.06 0.07 0.05 0.06 0.07 0.04 0.05 0.06 0.06 0.06
0.3 0.07 0.10 0.07 0.07 0.07 0.06 0.06 0.08 0.06 0.05 0.07 0.07 0.08
0.6 0.10 0.15 0.08 0.09 0.08 0.09 0.07 0.10 0.09 0.06 0.09 0.08 0.07
0.9 0.28 0.44 0.18 0.22 0.16 0.17 0.18 0.20 0.20 0.20 0.22 0.09 0.08

0.9 0 0.09 0.13 0.09 0.09 0.08 0.07 0.07 0.09 0.05 0.06 0.08 0.08 0.10
0.3 0.10 0.16 0.10 0.10 0.09 0.08 0.08 0.10 0.07 0.06 0.09 0.08 0.09
0.6 0.13 0.21 0.10 0.11 0.10 0.10 0.09 0.11 0.10 0.07 0.10 0.07 0.07
0.9 0.28 0.46 0.19 0.23 0.17 0.19 0.19 0.22 0.23 0.19 0.24 0.09 0.09

Panel C: T = 250
0 0 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.05 0.05

0.3 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.04
0.6 0.08 0.09 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.05 0.06 0.06 0.03
0.9 0.13 0.19 0.08 0.10 0.08 0.09 0.09 0.09 0.10 0.10 0.10 0.06 0.06

0.3 0 0.07 0.07 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.05 0.06
0.3 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.07 0.04
0.6 0.08 0.09 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.04
0.9 0.14 0.20 0.08 0.10 0.08 0.10 0.10 0.10 0.11 0.10 0.11 0.07 0.08

0.9 0 0.08 0.08 0.06 0.07 0.06 0.05 0.07 0.07 0.05 0.06 0.07 0.06 0.09
0.3 0.08 0.10 0.07 0.07 0.07 0.06 0.07 0.07 0.05 0.06 0.07 0.06 0.08
0.6 0.10 0.12 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.06 0.07 0.06 0.09
0.9 0.16 0.24 0.09 0.12 0.10 0.12 0.11 0.11 0.13 0.09 0.12 0.06 0.10

Notes: Superscript “∗” signifies the use of bootstrap critical values. The VAR sieve bootstrap is based on AIC.

it is based on asymptotic or bootstrap critical values. The difference is even more pronounced for
T = 75 but becomes smaller as the sample size increases. The small size distortions of the LR test
based on bootstrap critical values under the null hypothesis are thus accompanied by relatively
low power under the alternative. With respect to the moving average component in the regression
errors, we find that power of the tests is generally largest for ϕ = 0 and becomes smaller as ϕ

increases. The effect is most pronounced for the LR test, especially for T ∈ {75, 100}. Increasing
the sample size is clearly beneficial for all tests, especially in case ρ1, ρ2 = 0.9, compare Figure 1.3
in Appendix 1.8.2, which shows the results for T = 250. Finally, note that size-corrected power of
the self-normalized tests is not necessarily lower than size-corrected power of the traditional tests,
see, e. g., Figure 1.4 in Appendix 1.8.2 for ρ1, ρ2 = 0.9, which shows the size-corrected power curves
of the traditional tests based on the QS kernel (and of the LR test based on BIC).
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Figure 1.2: Size-corrected power of the tests for H0: β1 = 1, β2 = 1 at 5% level based on asymptotic
critical values (top row) and bootstrap critical values (bottom row) for T = 100 and ϕ = 0.3.
Note: Long-run variance parameters are estimated using the Bartlett kernel and the VAR sieve bootstrap is based
on AIC.

1.6 Empirical Illustration: The Fisher Effect

Many empirical studies suggest that inflation πt and the short-term nominal interest rate it do
not cointegrate with the slope of inflation being equal to one. This finding is at odds with the
Fisher effect, which is backed by many theoretical models (see, e. g., Westerlund, 2008, for a brief
description of underlying economic theory). The errors ut in the Fisher equation it = α + βπt + ut,
t = 1, . . . , T , are likely to be highly persistent even in case cointegration between πt and it prevails.
Consequently, the Fisher effect might be rejected even if it exists because traditional tests are prone
to severe size distortions in this case (cf., e. g., Caporale and Pittis, 2004; Westerlund, 2008). Since
self-normalization is less advantageous when the errors are highly persistent, we expect similar
results also for the self-normalized tests.

This section illustrates the usefulness of the VAR sieve bootstrap when analyzing the validity of the
Fisher effect. We consider the relationship between inflation and the short-term nominal interest
rate for 19 OECD countries between 1990Q1 and 2019Q4 (T = 120) using quarterly data (measured
at annual rates in percentages) obtained from the OECD databases Economic Outlook and Main
Economic Indicators (see Table 1.3 for details). As a simple persistence measure of the regression
errors in the Fisher equation, we regress the OLS residuals on their first lag. The empirical first
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order autocorrelations lie between 0.88 and 0.95 – indeed indicating highly persistent errors.

To shed some light on the integratedness of the variables, we employ the augmented Dickey-Fuller
(ADF) test based on generalized least squares (GLS) demeaning (Elliott et al., 1996) and the KPSS
test (Kwiatkowski et al., 1992). All tests in this section are carried out at the nominal 10% level
and the bandwidth for long-run variance estimation is always selected with the data-dependent
rule of Andrews (1991). Results for the short-term interest rates are unambiguous. The ADF-GLS
test (based on AIC with a maximum of five lags) does not reject the null hypothesis of a unit root
for any country, whereas the KPSS test (based on the Bartlett kernel) rejects the null hypothesis
of stationarity for all countries except Iceland, see Table 1.11 in Appendix 1.8.3. The table also
presents evidence for a unit root in inflation, but the results are less persuasive. The ADF-GLS
test rejects the null hypothesis of a unit root for five countries and the KPSS test decides in favor
of stationarity for eleven countries. However, only for Austria, Belgium, and Ireland do both tests
decide in favor of stationarity. The results are in line with some parts of the literature questioning
an exact unit root in inflation (see, e. g., Jensen, 2009). Nevertheless, it is common practice in
applications to treat both the interest rate and the inflation rate as integrated processes of order
one (cf., e. g., Caporale and Pittis, 2004, p. 35). To test for cointegration, we employ the group-
mean and pooled panel no-cointegration tests developed in Westerlund (2008). The tests are more
powerful than single equation no-cointegration tests, especially in the presence of highly persistent
errors. Using again the Bartlett kernel for long-run variance estimation, both tests reject the null
hypothesis of no-cointegration. The results are robust to different choices for the maximal number
of common factors. Moreover, we obtain similar results when the test statistics are constructed
under the restriction that β = 1, which already provides some evidence for the validity of the
Fisher effect in the individual countries.

We now test the null hypothesis β = 1 for all countries separately using the same test statistics as
already analyzed in Section 1.5. Table 1.3 summarizes the results. In all but two countries, at least
one of the nine tests rejects the validity of the Fisher effect when using asymptotic critical values.
Moreover, for six countries at least five tests decide against the Fisher effect. Using VAR sieve
bootstrap critical values based on AIC (with 499 replications) instead yields different results, with
those based on BIC – reported in Table 1.12 in Appendix 1.8.3 – being similar. For 14 countries
none of the tests rejects the validity of the Fisher effect and for additional four countries at most
two tests reject the Fisher effect. Hence, after accounting for highly persistent errors, the empirical
results support the Fisher effect in OECD countries, which is consistent with many theoretical
models. Finally, note that for Italy all bootstrap tests reject the null hypothesis, which serves as
strong evidence against the validity of the Fisher effect in this particular country.

1.7 Summary and Conclusions

To address the severe size distortions of hypotheses tests in cointegrating regressions, this paper
combines a VAR sieve bootstrap to construct critical values with a self-normalization approach that
avoids direct estimation of long-run variance parameters when computing test statistics. To prove
bootstrap consistency, we derive a bootstrap invariance principle which allows for uncorrelated
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Table 1.3: Realizations of test statistics for H0: β = 1

Traditional tests
Self-normalized tests Bartlett kernel QS kernel

Country τIM(˜︁η⊥) τIM(ˆ︁η⊥) τIM(ˆ︁η) τD(ˆ︁Ωu·v) τFM(ˆ︁Ωu·v) τIM(ˆ︁Ωu·v) τD(ˆ︁Ωu·v) τFM(ˆ︁Ωu·v) τIM(ˆ︁Ωu·v)
Australia 75.03 553.76 5.22 0.04 1.00 4.66 0.04 0.81 4.10
Austria 1387.15 2779.14 52.04 0.98 2.76 4.20 0.78 2.30 3.31
Belgium 945.79 3215.69 31.43 0.34 1.22 4.34 0.26 1.26 3.32
Canada 780.87 1506.10 49.42 0.03 1.21 6.86 0.03 0.84 6.55
Germany 1543.31 3428.59 87.20 3.03 6.77 7.02 2.50 5.56 5.78
Denmark 57.10 188.85 1.68 0.68 4.47 1.38 0.59 4.21 1.20
Spain 221.66 271.51 135.61 4.64 18.63 16.51 4.31 16.65 15.33
Finland 396.46 796.37 73.81 0.35 4.08 8.61 0.30 3.40 7.30
France 214.28 1532.73 97.37 2.13 6.30 9.87 1.77 4.97 8.23
United Kingdom 429.67 1324.88 18.83 0.31 1.41 2.03 0.29 1.73 1.90
Ireland 23.67 88.01 2.00 0.04 0.07 0.75 0.03 0.13 0.60
Iceland 15.17 17.59 1.90 1.47 1.63 2.47 1.21 1.33 2.04
Italy 481.56 736.29 254.43 14.64 36.67 33.04 14.84 37.03 33.50
Netherlands 193.87 671.68 57.02 1.29 0.90 3.75 1.16 0.45 3.37
Norway 370.22 813.18 44.70 0.02 0.48 4.42 0.02 0.25 4.31
New Zealand 159.91 432.83 2.00 0.13 0.67 1.62 0.10 0.57 1.27
Sweden 368.28 1542.48 24.60 0.24 0.93 5.94 0.25 0.64 6.29
United States 206.56 405.61 53.45 1.12 1.10 4.62 0.95 0.92 3.92
South Africa 16.43 30.25 3.35 0.54 0.38 0.60 0.50 0.24 0.56

Notes: Bold numbers indicate significance at the nominal 10% level based on asymptotic critical values, whereas
underlined numbers indicate significance at the nominal 10% level based on VAR sieve bootstrap critical values using
AIC. The inflation rates and short-term interest rates are available on https://data.oecd.org/price/inflation-cpi.htm and
https://data.oecd.org/interest/short-term-interest-rates.htm, respectively (Accessed: March 24, 2022).

but not necessarily independent white noise increments and might be of independent interest. In
particular, it allows us to prove bootstrap consistency also for traditional test statistics based
on popular modified OLS estimators. Simulation results show that the VAR sieve bootstrap
reduces size distortions of hypotheses tests in cointegrating regressions considerably, with two self-
normalized test statistics often outperforming the traditional test statistics at the cost of only
small power losses. Among the traditional test statistics, the one based on the D-OLS estimator in
combination with the Bartlett kernel performs best and turns out to be the closest competitor to the
self-normalized test statistics. For the QS kernel, however, the D-OLS based test statistic becomes
less competitive. Finally, the empirical illustration demonstrates that replacing asymptotic critical
values with VAR sieve bootstrap critical values when analyzing the validity of the Fisher effect in
OECD countries leads to alternative conclusions, which are more in line with economic theory.

Possible extensions of the proposed methods to, e. g., panels of cointegrating regressions are cur-
rently under investigation. Finally, note that a crucial assumption of the paper is that the regressors
possess an exact unit root, while parts of the literature already allow for nearly integrated regres-
sors (see, e. g., Phillips and Magdalinos, 2009; Müller and Watson, 2013; Hwang and Valdes, 2023).
However, extending the VAR sieve bootstrap to this setting is not straightforward at all, as con-
structing bootstrap regressors requires some knowledge of the true local to unity parameters, which
are not consistently estimable. Whether the approaches in Phillips et al. (2001), Phillips (2022),
or Hwang and Valdes (2023) help to overcome this limitation will be examined in future research.
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1.8 Appendix

1.8.1 Asymptotic Critical Values

To simulate asymptotic critical values for the self-normalized test statistics, we approximate stan-
dard Brownian motions with normalized sums of 10,000 i.i.d. standard normal random variables
and approximate the corresponding integrals accordingly. We tabulate critical values based on
10,000 Monte Carlo replications for various choices of m and s and different deterministic regres-
sors in the model yt = d′

tδ + x′
tβ + ut. Table 1.4 displays critical values for τIM(ˆ︁η) in case s = m,

whereas Tables 1.5 and 1.6 display critical values for τIM(ˆ︁η⊥) and τIM(˜︁η⊥), respectively, for s ≤ m.
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Table 1.4: Asymptotic critical values for τIM(ˆ︁η)

% s = m = 1 s = m = 2 s = m = 3 s = m = 4
Panel A: No deterministic regressors
90.0 36.52 122.05 239.61 399.56
95.0 56.59 166.72 311.99 505.48
97.5 78.72 216.55 385.87 628.92
99.0 120.18 286.41 490.05 759.33
Panel B: dt = 1
90.0 63.80 168.27 304.10 476.69
95.0 95.47 232.12 392.99 593.92
97.5 134.95 291.93 487.56 712.47
99.0 186.28 379.48 597.20 870.72
Panel C: dt = [1, t]′

90.0 90.33 207.46 361.72 541.86
95.0 133.13 281.36 457.89 682.79
97.5 183.47 355.65 562.45 804.92
99.0 243.48 460.43 708.85 967.07
Panel D: dt = [1, t, t2]′

90.0 115.03 244.49 416.04 602.70
95.0 165.89 329.89 526.60 756.21
97.5 216.76 398.40 633.99 892.73
99.0 289.76 510.98 799.74 1060.42
Panel E: dt = [1, t, t2, t3]′

90.0 136.71 290.12 462.65 673.86
95.0 197.68 375.53 583.50 849.22
97.5 263.32 465.10 713.27 992.71
99.0 351.88 581.93 891.45 1206.54

Notes: Critical values depend on the deterministic regres-
sors in the model yt = d′

tδ + x′
tβ + ut. In the absence of

deterministic regressors, the model reduces to (1.1). s de-
notes the number of linearly independent restrictions under
the null hypothesis on the coefficients corresponding to the
m integrated regressors xt.
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Table 1.5: Asymptotic critical values for τIM(ˆ︁η⊥)

m = 1 m = 2 m = 3 m = 4
% s = 1 s = 1 s = 2 s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 s = 4

Panel A: No deterministic regressors
90.0 96.54 166.42 293.57 236.48 419.51 578.76 314.30 556.36 756.59 943.89
95.0 142.94 244.30 401.14 350.09 567.82 744.79 471.73 741.97 964.69 1175.09
97.5 193.92 336.23 519.00 488.99 704.00 899.24 634.50 907.73 1174.09 1411.81
99.0 277.97 453.55 666.54 654.89 880.21 1137.23 849.80 1188.62 1462.50 1738.58
Panel B: dt = 1
90.0 134.97 208.54 363.71 276.67 496.62 666.96 364.40 637.85 862.48 1063.50
95.0 201.02 305.08 501.62 410.92 661.96 863.81 535.71 818.80 1084.90 1312.78
97.5 275.28 406.10 620.11 561.97 819.51 1050.81 707.94 1018.90 1318.49 1579.26
99.0 393.49 558.42 807.29 749.96 1054.24 1301.78 942.26 1342.73 1612.33 1889.18
Panel C: dt = [1, t]′

90.0 190.66 257.02 446.54 329.87 574.89 782.45 403.32 704.21 959.97 1203.93
95.0 279.53 375.36 606.18 475.42 764.00 1012.18 582.17 926.78 1211.47 1485.34
97.5 377.44 496.59 757.11 655.43 980.47 1234.03 774.90 1148.83 1474.29 1780.90
99.0 533.19 666.36 950.33 906.94 1227.60 1507.77 1038.12 1492.33 1790.50 2138.93
Panel D: dt = [1, t, t2]′

90.0 210.50 272.01 481.06 348.76 606.70 831.37 425.58 742.19 1010.63 1268.76
95.0 305.52 395.48 649.51 519.21 815.02 1056.50 634.84 976.08 1287.99 1567.06
97.5 413.25 535.90 797.93 684.90 1037.40 1311.09 817.63 1230.69 1535.12 1842.51
99.0 563.99 725.63 990.81 962.61 1313.25 1633.04 1056.64 1562.85 1890.96 2224.02
Panel E: dt = [1, t, t2, t3]′

90.0 232.81 301.71 534.19 376.05 636.88 884.17 457.80 774.69 1057.38 1341.91
95.0 337.10 443.42 699.16 539.19 850.73 1128.92 659.33 1022.97 1370.91 1668.09
97.5 463.23 577.35 872.26 723.96 1082.00 1377.80 865.86 1295.33 1651.39 1973.51
99.0 630.98 793.15 1088.12 1009.81 1407.99 1656.51 1162.26 1628.12 2003.57 2447.55

Note: See notes to Table 1.4.

26



1.8. Appendix

Table 1.6: Asymptotic critical values for τIM(˜︁η⊥)

m = 1 m = 2 m = 3 m = 4
% s = 1 s = 1 s = 2 s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 s = 4

Panel A: No deterministic regressors
90.0 31.17 55.66 101.62 77.15 143.61 201.83 104.41 190.12 265.10 341.34
95.0 50.05 86.11 140.29 119.69 200.58 271.42 156.84 267.78 360.27 441.01
97.5 70.10 119.77 186.17 166.98 262.92 342.76 224.47 346.51 448.52 541.91
99.0 105.10 170.54 246.93 242.51 349.84 448.97 326.05 450.10 571.11 678.05
Panel B: dt = 1
90.0 45.01 71.31 125.68 92.46 169.99 236.01 122.22 217.80 309.88 387.55
95.0 68.35 104.56 175.27 139.80 238.75 317.78 188.00 304.88 400.09 495.37
97.5 98.76 146.22 232.64 202.26 315.59 406.82 266.13 378.18 491.60 590.77
99.0 146.11 213.20 299.64 299.57 405.54 523.10 346.66 490.62 625.07 739.01
Panel C: dt = [1, t]′

90.0 62.20 87.00 153.96 111.39 200.06 276.88 134.81 244.37 335.37 432.73
95.0 95.29 130.06 217.87 168.89 275.45 366.57 208.49 331.73 444.18 552.70
97.5 135.63 178.04 287.62 232.76 355.40 457.69 282.60 426.11 557.58 673.97
99.0 191.58 248.13 359.29 335.84 469.64 611.68 379.30 554.57 711.90 851.77
Panel D: dt = [1, t, t2]′

90.0 68.57 91.02 164.53 117.45 212.78 295.20 144.32 260.53 358.65 455.70
95.0 104.75 137.19 227.99 177.22 292.15 391.81 216.69 356.30 479.79 585.59
97.5 146.06 190.77 293.31 251.60 382.53 501.02 294.84 463.69 597.52 720.36
99.0 207.70 271.29 383.54 369.29 517.33 649.04 407.87 598.79 747.23 879.40
Panel E: dt = [1, t, t2, t3]′

90.0 76.23 100.00 181.90 126.90 224.69 313.29 154.82 271.37 373.04 482.67
95.0 115.24 153.14 255.47 192.13 309.00 413.24 230.12 365.11 496.19 619.74
97.5 158.92 212.59 331.46 267.33 397.29 519.51 317.70 470.32 638.75 786.57
99.0 232.98 291.22 428.16 376.51 531.63 673.24 433.59 630.16 823.91 959.16

Note: See notes to Table 1.4.
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1.8.2 Additional Finite Sample Results

Johansen’s Likelihood Ratio Test

The data generating process (DGP) in Section 1.5 can be expressed as Xt = Π1Xt−1 + ϵt, where
Xt = [yt, x1t, x2t]′, ϵt = A−1

0 [ut, v1t, v2t]′, and Π1 = A−1
0 A1, with

A0 :=

⎡⎢⎢⎣
1 −β1 −β2

0 1 0
0 0 1

⎤⎥⎥⎦ and A1 :=

⎡⎢⎢⎣
0 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ .

The corresponding error correction model of order k ≥ 1 with one cointegrated relation is given by

∆Xt = ab′Xt−1 +
k−1∑︂
l=1

Γl∆Xt−l + ϵt, (1.22)

where ∆Xs := Xs − Xs−1, a = [−1, 0, 0]′ and b = [1, −β1, −β2]′. The order 1 ≤ k ≤ ⌊T 1/3⌋ =: kmax

is determined by either AIC or BIC computed on the evaluation period t = kmax + 1, . . . , T (cf.
Kilian and Lütkepohl, 2017, p. 56). Testing the null hypothesis H0: β1 = 1, β2 = 1 in the DGP in
Section 1.5 corresponds to testing the null hypothesis H0: b = [1, −1, −1]′ in (1.22). The reduced
rank QML estimator of Johansen (1995) is used to estimate b and the null hypothesis is tested
by means of the LR test statistic of Johansen (1995). If the assumptions in Johansen (1995)
are fulfilled, the LR test statistic follows a chi-squared distribution with two degrees of freedom
asymptotically under the null hypothesis.

Estimator and Test Performance
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Table 1.7: Bias and RMSE of the estimators of β1

Bias × 100 RMSE × 100
FM-OLS QML FM-OLS QML

ϕ ρ1, ρ2 OLS IM-OLS D-OLS Bartlett QS AIC BIC OLS IM-OLS D-OLS Bartlett QS AIC BIC
Panel A: T = 75
0 0 0.38 -0.25 -0.27 0.04 0.11 -0.05 -0.17 3.12 5.15 3.52 3.28 3.42 15.31 3.61

0.3 2.05 -0.25 -0.08 0.66 0.79 -0.45 -0.21 5.64 7.29 4.91 5.02 5.38 19.79 5.92
0.6 6.91 0.88 1.65 3.64 3.70 -6.82 -0.67 13.24 12.72 11.68 11.12 11.97 374.48 39.17
0.9 30.40 19.63 12.69 24.93 25.00 -606.33 10.47 46.55 58.08 46.22 48.09 55.54 31796.03 950.30

0.3 0 0.62 -0.28 -0.18 0.13 0.19 0.39 -0.23 4.05 6.67 4.46 4.24 4.42 20.65 4.93
0.3 2.39 -0.28 0.10 0.87 1.00 0.42 -0.51 6.91 9.46 7.43 6.50 6.93 23.56 16.41
0.6 7.45 0.91 1.52 4.16 4.30 1.25 -2.15 15.05 16.45 16.59 13.63 14.75 77.59 161.73
0.9 31.84 20.44 12.89 26.44 26.37 75.50 -43.35 50.91 68.99 58.15 54.10 88.03 6141.08 1687.86

0.9 0 1.11 -0.35 0.09 0.34 0.41 -0.66 -0.28 5.98 9.74 8.06 6.27 6.56 20.00 8.05
0.3 3.06 -0.33 0.35 1.37 1.51 -0.95 0.61 9.54 13.83 12.87 9.56 10.16 76.13 16.51
0.6 8.52 0.96 1.60 5.14 5.59 -3.55 11.10 18.96 23.95 26.29 18.48 19.82 354.12 485.48
0.9 34.72 22.08 13.54 29.43 29.69 -31.68 -41.48 60.55 92.30 83.42 66.97 122.62 4171.58 4348.58

Panel B: T = 100
0 0 0.33 -0.07 -0.15 0.05 0.09 0.13 0.01 2.36 3.91 2.37 2.38 2.46 6.22 2.71

0.3 1.60 -0.03 0.03 0.45 0.51 -0.14 0.03 4.29 5.55 3.25 3.55 3.72 9.96 4.20
0.6 5.36 0.74 1.53 2.48 2.44 -2.05 -2.25 10.25 9.71 6.63 7.76 8.25 115.53 115.31
0.9 25.50 14.76 11.97 20.06 20.35 -54.65 -26.69 39.15 45.30 33.92 39.03 42.27 3497.87 1741.91

0.3 0 0.54 -0.07 -0.07 0.12 0.15 0.02 0.00 3.08 5.07 2.97 3.09 3.18 3.97 3.65
0.3 1.90 -0.01 0.19 0.60 0.65 0.09 0.05 5.30 7.20 4.21 4.62 4.84 11.40 6.16
0.6 5.85 0.83 1.71 2.92 2.94 -5.09 -6.13 11.72 12.56 8.85 9.67 10.28 289.60 290.91
0.9 26.89 15.60 12.88 21.49 22.36 12.16 27.51 42.85 53.98 42.04 44.37 50.19 903.93 1264.81

0.9 0 0.97 -0.06 0.12 0.30 0.31 0.24 0.03 4.57 7.39 4.42 4.56 4.71 9.54 5.14
0.3 2.50 0.03 0.49 1.00 1.05 0.06 0.60 7.36 10.51 6.40 6.84 7.18 21.90 8.02
0.6 6.83 1.01 2.04 3.72 3.86 -1.24 -15.58 14.86 18.27 13.33 13.42 14.37 168.09 920.77
0.9 29.67 17.27 14.19 24.28 25.81 123.50 -44.37 50.98 72.40 58.58 55.89 66.60 4255.25 1543.85

Panel C: T = 250
0 0 0.14 0.01 -0.06 0.02 0.02 0.01 0.02 0.91 1.59 0.91 0.91 0.92 0.95 0.93

0.3 0.68 0.03 0.02 0.12 0.12 0.01 -0.01 1.69 2.27 1.25 1.33 1.35 1.38 1.37
0.6 2.39 0.21 0.46 0.79 0.69 0.04 -0.23 4.33 3.96 2.38 2.80 2.84 2.50 2.53
0.9 13.50 5.01 4.25 8.83 8.67 -0.17 -1.89 20.99 17.71 11.78 17.39 18.36 15.07 18.51

0.3 0 0.23 0.02 -0.03 0.04 0.04 0.01 0.02 1.19 2.07 1.14 1.18 1.19 1.25 1.21
0.3 0.81 0.05 0.10 0.17 0.16 -0.00 0.05 2.08 2.95 1.61 1.74 1.77 1.83 1.80
0.6 2.61 0.24 0.55 0.93 0.84 0.01 -0.12 4.93 5.14 3.06 3.54 3.63 3.33 3.31
0.9 14.26 5.32 4.98 9.64 9.82 -1.37 -2.71 22.81 21.88 14.73 19.96 21.40 36.14 105.98

0.9 0 0.41 0.04 0.08 0.09 0.09 0.02 0.03 1.77 3.02 1.67 1.74 1.77 1.91 1.79
0.3 1.07 0.07 0.25 0.30 0.29 0.07 0.04 2.90 4.30 2.41 2.58 2.65 2.87 2.64
0.6 3.04 0.31 0.75 1.21 1.15 0.03 -0.01 6.21 7.50 4.44 5.01 5.19 6.09 4.76
0.9 15.77 5.95 6.43 11.20 11.85 5.25 -0.65 26.78 30.54 20.66 25.18 27.23 290.19 54.54

Note: Results for β2 are similar and therefore not reported. QML denotes the reduced rank quasi maximum likelihood estimator of Johansen
(1995).
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1. Bootstrap Inference in Cointegrating Regressions: Traditional and Self-Normalized Test
Statistics

Table 1.8: Empirical sizes of the tests for H0: β1 = 1, β2 = 1 at 5% level based on bootstrap critical values

Traditional tests
Self-normalized tests Bartlett kernel QS kernel LR tests

ϕ ρ1, ρ2 τ∗
OLS(ˆ︁σ2

u) τ∗
IM(1) τ∗

IM(˜︁η⊥) τ∗
IM(ˆ︁η⊥) τ∗

IM(ˆ︁η) τ∗
D(ˆ︁Ωu·v) τ∗

FM(ˆ︁Ωu·v) τ∗
IM(ˆ︁Ωu·v) τ∗

D(ˆ︁Ωu·v) τ∗
FM(ˆ︁Ωu·v) τ∗

IM(ˆ︁Ωu·v) LR∗(AIC) LR∗(BIC)
Panel A: T = 75
0 0 0.06 0.08 0.06 0.06 0.06 0.05 0.06 0.07 0.05 0.05 0.06 0.06 0.07

0.3 0.09 0.10 0.07 0.06 0.07 0.06 0.06 0.07 0.06 0.05 0.06 0.07 0.11
0.6 0.13 0.12 0.07 0.07 0.06 0.08 0.08 0.07 0.08 0.07 0.07 0.07 0.13
0.9 0.34 0.48 0.20 0.24 0.16 0.12 0.22 0.22 0.16 0.25 0.26 0.08 0.09

0.3 0 0.05 0.07 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.07 0.07
0.3 0.06 0.08 0.05 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.10
0.6 0.08 0.10 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.12
0.9 0.26 0.45 0.15 0.17 0.14 0.11 0.19 0.19 0.18 0.24 0.26 0.09 0.11

0.9 0 0.03 0.06 0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.06 0.09 0.09
0.3 0.05 0.09 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.08 0.09
0.6 0.07 0.14 0.06 0.07 0.07 0.07 0.06 0.08 0.07 0.07 0.08 0.08 0.11
0.9 0.24 0.47 0.18 0.20 0.16 0.15 0.20 0.21 0.22 0.24 0.29 0.09 0.11

Panel B: T = 100
0 0 0.06 0.07 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.06

0.3 0.09 0.08 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.05 0.07 0.06 0.09
0.6 0.12 0.09 0.06 0.06 0.06 0.08 0.07 0.06 0.08 0.07 0.07 0.06 0.09
0.9 0.29 0.36 0.14 0.18 0.13 0.12 0.17 0.16 0.15 0.20 0.19 0.07 0.06

0.3 0 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.06 0.06 0.06
0.3 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.08
0.6 0.07 0.07 0.04 0.05 0.05 0.06 0.05 0.06 0.07 0.06 0.06 0.08 0.07
0.9 0.21 0.34 0.12 0.13 0.11 0.12 0.14 0.15 0.17 0.19 0.19 0.09 0.08

0.9 0 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.08 0.10
0.3 0.06 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.08 0.09
0.6 0.09 0.13 0.07 0.07 0.07 0.08 0.07 0.08 0.08 0.06 0.08 0.07 0.07
0.9 0.25 0.40 0.16 0.19 0.15 0.17 0.17 0.19 0.22 0.19 0.23 0.09 0.09

Panel C: T = 250
0 0 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.3 0.08 0.06 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.06 0.05 0.06 0.04
0.6 0.09 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.03
0.9 0.12 0.17 0.07 0.09 0.08 0.08 0.10 0.09 0.08 0.09 0.09 0.06 0.06

0.3 0 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06
0.3 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.07 0.04
0.6 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.07 0.04
0.9 0.12 0.20 0.08 0.10 0.08 0.10 0.10 0.10 0.11 0.09 0.10 0.07 0.08

0.9 0 0.09 0.09 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.09
0.3 0.10 0.12 0.07 0.07 0.07 0.07 0.07 0.08 0.06 0.06 0.07 0.06 0.08
0.6 0.12 0.13 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.06 0.07 0.06 0.09
0.9 0.18 0.23 0.10 0.12 0.10 0.12 0.11 0.11 0.13 0.10 0.11 0.06 0.10

Notes: Superscript “∗” signifies the use of bootstrap critical values. The VAR sieve bootstrap is based on BIC.
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Table 1.9: Empirical sizes of the tests for H0: β1 = 1, β2 = 1 at 5% level based on asymptotic critical values in the i.i.d. case (a1 = b1 = ρ3 = 0)

Traditional tests
Self-normalized tests Bartlett kernel QS kernel LR tests

ϕ ρ1, ρ2 τOLS(ˆ︁σ2
u) τIM(˜︁η⊥) τIM(ˆ︁η⊥) τIM(ˆ︁η) τD(ˆ︁Ωu·v) τFM(ˆ︁Ωu·v) τIM(ˆ︁Ωu·v) τD(ˆ︁Ωu·v) τFM(ˆ︁Ωu·v) τIM(ˆ︁Ωu·v) LR(AIC) LR(BIC)

Panel A: T = 75
0 0 0.06 0.04 0.02 0.03 0.13 0.16 0.11 0.17 0.20 0.14 0.12 0.09

0.3 0.21 0.07 0.05 0.05 0.16 0.20 0.14 0.17 0.23 0.15 0.14 0.13
0.6 0.60 0.16 0.14 0.09 0.25 0.35 0.23 0.25 0.37 0.22 0.17 0.19
0.9 0.95 0.63 0.70 0.35 0.49 0.79 0.66 0.60 0.84 0.73 0.30 0.32

0.3 0 0.15 0.06 0.04 0.04 0.15 0.18 0.13 0.17 0.21 0.15 0.13 0.09
0.3 0.30 0.09 0.07 0.06 0.18 0.22 0.17 0.18 0.24 0.17 0.16 0.14
0.6 0.60 0.18 0.16 0.09 0.27 0.36 0.25 0.29 0.40 0.27 0.20 0.19
0.9 0.93 0.61 0.67 0.33 0.52 0.77 0.66 0.67 0.85 0.76 0.36 0.36

0.9 0 0.23 0.07 0.05 0.05 0.17 0.20 0.15 0.18 0.22 0.16 0.18 0.14
0.3 0.34 0.10 0.08 0.06 0.21 0.26 0.19 0.23 0.29 0.21 0.21 0.18
0.6 0.58 0.19 0.17 0.10 0.29 0.38 0.29 0.35 0.45 0.34 0.25 0.22
0.9 0.90 0.59 0.64 0.30 0.55 0.74 0.68 0.76 0.87 0.82 0.42 0.41

Panel B: T = 100
0 0 0.06 0.04 0.02 0.03 0.11 0.14 0.10 0.14 0.17 0.12 0.10 0.08

0.3 0.23 0.07 0.05 0.05 0.14 0.18 0.14 0.14 0.18 0.13 0.11 0.11
0.6 0.62 0.12 0.11 0.08 0.24 0.31 0.19 0.23 0.31 0.18 0.13 0.14
0.9 0.96 0.50 0.60 0.27 0.51 0.73 0.57 0.58 0.79 0.64 0.23 0.21

0.3 0 0.16 0.05 0.04 0.05 0.13 0.15 0.12 0.14 0.17 0.13 0.11 0.09
0.3 0.32 0.08 0.06 0.06 0.16 0.19 0.15 0.15 0.20 0.14 0.12 0.12
0.6 0.61 0.14 0.13 0.09 0.25 0.32 0.22 0.25 0.33 0.22 0.15 0.14
0.9 0.94 0.50 0.58 0.27 0.53 0.71 0.58 0.66 0.81 0.69 0.28 0.26

0.9 0 0.24 0.07 0.05 0.05 0.15 0.17 0.13 0.15 0.18 0.14 0.14 0.14
0.3 0.36 0.09 0.07 0.06 0.19 0.22 0.17 0.19 0.24 0.17 0.16 0.16
0.6 0.59 0.14 0.14 0.09 0.27 0.33 0.25 0.31 0.37 0.28 0.19 0.16
0.9 0.90 0.49 0.56 0.25 0.56 0.69 0.59 0.73 0.84 0.74 0.34 0.32

Panel C: T = 250
0 0 0.05 0.04 0.03 0.04 0.08 0.09 0.07 0.08 0.10 0.08 0.07 0.06

0.3 0.23 0.05 0.05 0.05 0.10 0.12 0.09 0.09 0.11 0.09 0.08 0.06
0.6 0.61 0.08 0.07 0.06 0.16 0.19 0.11 0.14 0.17 0.10 0.09 0.05
0.9 0.96 0.20 0.26 0.13 0.31 0.52 0.28 0.33 0.55 0.31 0.12 0.07

0.3 0 0.15 0.05 0.04 0.05 0.09 0.11 0.09 0.08 0.10 0.08 0.07 0.07
0.3 0.31 0.06 0.05 0.05 0.10 0.13 0.10 0.09 0.12 0.09 0.08 0.06
0.6 0.60 0.08 0.08 0.06 0.16 0.20 0.13 0.15 0.19 0.12 0.10 0.06
0.9 0.94 0.21 0.27 0.13 0.35 0.50 0.31 0.40 0.54 0.36 0.13 0.11

0.9 0 0.23 0.05 0.05 0.05 0.10 0.12 0.09 0.09 0.11 0.09 0.09 0.11
0.3 0.36 0.06 0.05 0.06 0.11 0.15 0.11 0.11 0.14 0.10 0.10 0.10
0.6 0.59 0.09 0.09 0.07 0.17 0.21 0.15 0.16 0.21 0.14 0.10 0.11
0.9 0.91 0.22 0.27 0.14 0.40 0.48 0.35 0.47 0.57 0.42 0.17 0.18
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Table 1.10: Empirical sizes of the tests for H0: β1 = 1, β2 = 1 at 5% level based on bootstrap critical values in the i.i.d. case (a1 = b1 = ρ3 = 0)

Traditional tests
Self-normalized tests Bartlett kernel QS kernel LR tests

ϕ ρ1, ρ2 τ∗
OLS(ˆ︁σ2

u) τ∗
IM(1) τ∗

IM(˜︁η⊥) τ∗
IM(ˆ︁η⊥) τ∗

IM(ˆ︁η) τ∗
D(ˆ︁Ωu·v) τ∗

FM(ˆ︁Ωu·v) τ∗
IM(ˆ︁Ωu·v) τ∗

D(ˆ︁Ωu·v) τ∗
FM(ˆ︁Ωu·v) τ∗

IM(ˆ︁Ωu·v) LR∗(AIC) LR∗(BIC)
Panel A: T = 75
0 0 0.06 0.09 0.06 0.06 0.07 0.05 0.06 0.07 0.04 0.05 0.06 0.06 0.06

0.3 0.08 0.11 0.07 0.07 0.07 0.06 0.06 0.07 0.05 0.05 0.06 0.07 0.09
0.6 0.12 0.16 0.08 0.09 0.08 0.08 0.08 0.09 0.08 0.07 0.08 0.06 0.13
0.9 0.33 0.48 0.23 0.26 0.20 0.16 0.23 0.24 0.20 0.23 0.26 0.08 0.14

0.3 0 0.06 0.09 0.07 0.06 0.07 0.05 0.06 0.07 0.04 0.05 0.06 0.06 0.06
0.3 0.07 0.12 0.07 0.07 0.07 0.06 0.06 0.07 0.05 0.05 0.07 0.07 0.08
0.6 0.11 0.17 0.09 0.09 0.09 0.08 0.07 0.09 0.07 0.06 0.08 0.07 0.11
0.9 0.30 0.48 0.22 0.25 0.19 0.16 0.21 0.24 0.22 0.22 0.28 0.09 0.12

0.9 0 0.09 0.16 0.09 0.09 0.10 0.07 0.08 0.09 0.05 0.06 0.08 0.09 0.09
0.3 0.10 0.19 0.10 0.11 0.10 0.08 0.08 0.11 0.06 0.06 0.09 0.08 0.09
0.6 0.13 0.25 0.13 0.14 0.12 0.09 0.09 0.13 0.08 0.07 0.11 0.09 0.10
0.9 0.28 0.51 0.24 0.28 0.19 0.19 0.21 0.25 0.24 0.22 0.28 0.10 0.11

Panel B: T = 100
0 0 0.06 0.08 0.06 0.06 0.06 0.05 0.06 0.06 0.04 0.05 0.06 0.06 0.06

0.3 0.08 0.09 0.06 0.06 0.07 0.06 0.06 0.07 0.05 0.05 0.06 0.06 0.07
0.6 0.11 0.13 0.07 0.07 0.07 0.08 0.07 0.08 0.07 0.06 0.07 0.07 0.10
0.9 0.28 0.39 0.17 0.20 0.14 0.15 0.18 0.18 0.18 0.18 0.20 0.07 0.08

0.3 0 0.06 0.08 0.06 0.06 0.07 0.05 0.05 0.06 0.04 0.05 0.06 0.06 0.06
0.3 0.07 0.10 0.07 0.06 0.07 0.06 0.06 0.07 0.05 0.05 0.06 0.06 0.07
0.6 0.10 0.14 0.08 0.08 0.08 0.08 0.07 0.09 0.07 0.06 0.08 0.07 0.08
0.9 0.27 0.39 0.17 0.20 0.15 0.17 0.18 0.19 0.20 0.18 0.21 0.09 0.08

0.9 0 0.09 0.13 0.08 0.08 0.08 0.06 0.07 0.08 0.05 0.06 0.07 0.08 0.10
0.3 0.10 0.15 0.09 0.09 0.09 0.07 0.08 0.09 0.06 0.06 0.08 0.07 0.10
0.6 0.12 0.21 0.10 0.10 0.10 0.09 0.08 0.11 0.08 0.07 0.09 0.07 0.08
0.9 0.25 0.42 0.18 0.21 0.16 0.18 0.17 0.20 0.22 0.17 0.23 0.09 0.10

Panel C: T = 250
0 0 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.04 0.05 0.06 0.05 0.05

0.3 0.06 0.07 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.04
0.6 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.03
0.9 0.14 0.18 0.07 0.10 0.07 0.09 0.10 0.09 0.09 0.09 0.09 0.06 0.04

0.3 0 0.06 0.07 0.05 0.06 0.06 0.05 0.06 0.06 0.04 0.05 0.06 0.05 0.05
0.3 0.06 0.07 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.06 0.05
0.6 0.08 0.08 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.07 0.06 0.04
0.9 0.15 0.19 0.07 0.09 0.08 0.10 0.10 0.09 0.11 0.09 0.10 0.07 0.06

0.9 0 0.07 0.08 0.06 0.07 0.06 0.05 0.07 0.07 0.05 0.06 0.06 0.07 0.09
0.3 0.08 0.09 0.06 0.07 0.07 0.05 0.07 0.07 0.05 0.06 0.07 0.06 0.08
0.6 0.09 0.11 0.07 0.07 0.07 0.07 0.07 0.08 0.06 0.06 0.07 0.06 0.08
0.9 0.16 0.23 0.09 0.11 0.09 0.12 0.10 0.11 0.12 0.09 0.11 0.06 0.09

Note: See notes to Table 1.2.
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Figure 1.3: Size-corrected power of the tests for H0: β1 = 1, β2 = 1 at 5% level based on asymptotic
critical values (top row) and bootstrap critical values (bottom row) for T = 250 and ϕ = 0.3.
Note: See note to Figure 1.2.
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Figure 1.4: Size-corrected power of the tests for H0: β1 = 1, β2 = 1 at 5% level based on asymptotic
critical values (top row) and bootstrap critical values (bottom row) for T = 100 and ϕ = 0.3.
Note: Long-run variance parameters are estimated using the QS kernel and the VAR sieve bootstrap is based on
AIC.
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1.8.3 Additional Empirical Results

Table 1.11: Realizations of test statistics

it πt

Country ADF-GLS KPSS ADF-GLS KPSS
Australia 0.17 0.53 -0.68 0.24
Austria -0.12 0.40 -1.99 0.30
Belgium 0.28 0.41 -1.91 0.24
Canada -0.41 0.48 -0.83 0.26
Germany -0.25 0.40 -2.08 0.35
Denmark 0.06 0.44 -0.69 0.39
Spain 1.11 0.39 -0.19 0.48
Finland 0.19 0.46 -0.40 0.32
France 0.01 0.41 -0.92 0.38
United Kingdom -0.02 0.43 -1.34 0.32
Ireland -0.38 0.54 -2.13 0.31
Iceland -0.46 0.31 -0.28 0.11
Italy 0.18 0.38 -0.26 0.43
Netherlands -0.13 0.40 -2.54 0.44
Norway -0.37 0.45 -1.18 0.17
New Zealand 0.18 0.44 -0.61 0.21
Sweden 0.48 0.42 -0.63 0.34
United States -0.80 0.36 -1.11 0.55
South Africa -0.67 0.38 -0.65 0.40

Note: Bold numbers indicate significance at the nominal 10%
level.
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Table 1.12: Realizations of test statistics for H0: β = 1

Traditional tests
Self-normalized tests Bartlett kernel QS kernel

Country τIM(˜︁η⊥) τIM(ˆ︁η⊥) τIM(ˆ︁η) τD(ˆ︁Ωu·v) τFM(ˆ︁Ωu·v) τIM(ˆ︁Ωu·v) τD(ˆ︁Ωu·v) τFM(ˆ︁Ωu·v) τIM(ˆ︁Ωu·v)
Australia 75.03 553.76 5.22 0.04 1.00 4.66 0.04 0.81 4.10
Austria 1387.15 2779.14 52.04 0.98 2.76 4.20 0.78 2.30 3.31
Belgium 945.79 3215.69 31.43 0.34 1.22 4.34 0.26 1.26 3.32
Canada 780.87 1506.10 49.42 0.03 1.21 6.86 0.03 0.84 6.55
Germany 1543.31 3428.59 87.20 3.03 6.77 7.02 2.50 5.56 5.78
Denmark 57.10 188.85 1.68 0.68 4.47 1.38 0.59 4.21 1.20
Spain 221.66 271.51 135.61 4.64 18.63 16.51 4.31 16.65 15.33
Finland 396.46 796.37 73.81 0.35 4.08 8.61 0.30 3.40 7.30
France 214.28 1532.73 97.37 2.13 6.30 9.87 1.77 4.97 8.23
United Kingdom 429.67 1324.88 18.83 0.31 1.41 2.03 0.29 1.73 1.90
Ireland 23.67 88.01 2.00 0.04 0.07 0.75 0.03 0.13 0.60
Iceland 15.17 17.59 1.90 1.47 1.63 2.47 1.21 1.33 2.04
Italy 481.56 736.29 254.43 14.64 36.67 33.04 14.84 37.03 33.50
Netherlands 193.87 671.68 57.02 1.29 0.90 3.75 1.16 0.45 3.37
Norway 370.22 813.18 44.70 0.02 0.48 4.42 0.02 0.25 4.31
New Zealand 159.91 432.83 2.00 0.13 0.67 1.62 0.10 0.57 1.27
Sweden 368.28 1542.48 24.60 0.24 0.93 5.94 0.25 0.64 6.29
United States 206.56 405.61 53.45 1.12 1.10 4.62 0.95 0.92 3.92
South Africa 16.43 30.25 3.35 0.54 0.38 0.60 0.50 0.24 0.56

Notes: Bold numbers indicate significance at the nominal 10% level based on asymptotic critical values, whereas underlined
numbers indicate significance at the nominal 10% level based on VAR sieve bootstrap critical values using BIC.
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1.8.4 Proofs of Main Results

Proof of Proposition 1.1. Vogelsang and Wagner (2014, Lemma 2) show that

T −1/2
⌊rT ⌋∑︂
t=2

∆ ˆ︁Su
t

w−→ Ω1/2
u·v
(︁
Wu·v(r) − g(r)′Z

)︁
, 0 ≤ r ≤ 1.

The continuous mapping theorem thus yields

ˆ︁η = T −1
T∑︂

t=2

(︄
T −1/2

t∑︂
s=2

∆ ˆ︁Su
s

)︄2
w−→ Ωu·v

∫︂ 1

0

(︁
Wu·v(r) − g(r)′Z

)︁2
dr

and the final result follows from standard arguments similar to those used in Vogelsang and Wagner
(2014, Proof of Theorem 3). □

Proof of Proposition 1.2. The result for τIM(ˆ︁η⊥) follows with the same arguments as used in
the proof of Proposition 1.1 by noting that

T −1/2
⌊rT ⌋∑︂
t=2

∆ ˆ︁Su⊥
s

w−→ Ω1/2
u·v
(︁
Wu·v(r) − h(r)′Q

)︁
, 0 ≤ r ≤ 1,

as shown in Lemma 2 in Vogelsang and Wagner (2014). Moreover, τIM(˜︁η⊥) coincides with the ˜︂W ∗

test statistic in Vogelsang and Wagner (2014) based on the Bartlett kernel and b = 1. The result
thus follows from Theorem 3 in Vogelsang and Wagner (2014). □

The proof of the remaining results relies on the following lemma.

Lemma 1.1. With the definitions in Section 1.4 it holds under Assumptions 1.1–1.4 that

max
q+1≤t≤T

| ˆ︁wt − wt|F = OP(T −1/2) (1.23)

and

q1/2
q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F = OP(q3/T ) = oP(1), (1.24)

where ˜︁Φ1(q), . . . , ˜︁Φq(q) denote the solution of the sample Yule-Walker equations in the regression
of wt on wt−1, . . . , wt−q, t = q + 1, . . . , T .

Proof. See Appendix 1.8.5.

The following two key ingredients in the proof of Lemma 1.1 are also useful hereafter. First, it
holds under Assumptions 1.1 and 1.4 that

q3/2 sup
1≤j≤q

|˜︁Φj(q) − Φj(q)|F = q3/2OP((ln(T )/T )1/2) = OP(1), (1.25)

compare Meyer and Kreiss (2015, Remark 3.3.), where Φ1(q), . . . , Φq(q) denote the solution of the
population Yule-Walker equations based on the true moments. Second, under Assumption 1.1 with
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k ≥ 3/2, there exist constants q0 ∈ N and c < ∞ such that

q∑︂
j=1

(1 + j)k|Φj(q) − Φj |F ≤ c
∞∑︂

j=q+1
(1 + j)k|Φj |F , (1.26)

for all q ≥ q0 and the right-hand side converges to zero as q → ∞, see Meyer and Kreiss (2015,
Lemma 3.1).1

We use Lemma 1.1 to prove the following two lemmas, which are then used to prove Lemma 1.4.

Lemma 1.2. It holds under Assumptions 1.1–1.4 that

E∗ (|ε∗
t |aF ) = (T − q)−1

T∑︂
t=q+1

|ˆ︁εt(q) − ˆ︁εT (q)|aF = OP(1) in P,

for the a > 2 from Assumption 1.1.

Proof. See Appendix 1.8.5.

Lemma 1.3. It holds under Assumptions 1.1–1.4 that

E∗ (︁ε∗
t ε∗′

t

)︁
= (T − q)−1

T∑︂
t=q+1

(︂ˆ︁εt(q) − ˆ︁εT (q)
)︂ (︂ˆ︁εt(q) − ˆ︁εT (q)

)︂′
= Σ + oP(1) in P.

Proof. See Appendix 1.8.5.

Lemma 1.4. It holds under Assumptions 1.1–1.4 that

W ∗
T (r) := T −1/2

⌊rT ⌋∑︂
t=1

ε∗
t

w∗
−→ Σ1/2W (r), 0 ≤ r ≤ 1, in P,

with Σ1/2(Σ1/2)′ = Σ.

Proof. See Appendix 1.8.5.

Proof of Theorem 1.1. Using similar arguments as Palm et al. (2010, p. 670), it follows that

T −1/2
⌊rT ⌋∑︂
t=1

w∗
t =

⎛⎝I −
q∑︂

j=1

ˆ︁Φj(q)

⎞⎠−1

W ∗
T (r) + T −1/2(w∗

0 − w∗
⌊rT ⌋),

where w∗
t−1 :=

(︂
I −

∑︁q
j=1

ˆ︁Φj(q)
)︂−1∑︁q

i=1

(︂∑︁q
j=i

ˆ︁Φj(q)
)︂

w∗
t−i. Given Lemma 1.4, it remains to show

that

I −
q∑︂

j=1

ˆ︁Φj(q) p−→ Φ(1) (1.27)

1This result is known as the generalized Baxter’s inequality, see Baxter (1962) and Hannan and Deistler (1988,
p. 269).
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and

P∗
(︃

max
0≤t≤T

|T −1/2w∗
t |F > δ

)︃
= oP(1). (1.28)

We first show (1.27). From Lemma 1.1, (1.25), and (1.26) we obtain

|I −
q∑︂

j=1

ˆ︁Φj(q) − Φ(1)|F ≤
q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F +

q∑︂
j=1

|˜︁Φj(q) − Φj(q)|F

+
q∑︂

j=1
|Φj(q) − Φj |F +

∞∑︂
j=q+1

|Φj |F

≤
q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F + q sup

1≤j≤q
|˜︁Φj(q) − Φj(q)|F

+ c
∞∑︂

j=q+1
|Φj |F +

∞∑︂
j=q+1

|Φj |F

= oP(1) + oP(1) + o(1) + o(1) = oP(1).

To prove (1.28), note that it follows from strict stationarity of {w∗
t }t∈Z and Markov’s inequality,

that

P∗
(︃

max
0≤t≤T

|T −1/2w∗
t |F > δ

)︃
≤

T∑︂
t=0

P∗
(︂
|T −1/2w∗

t |F > δ
)︂

≤ (T + 1)P∗
(︂
|T −1/2w∗

t |F > δ
)︂

≤ δ−a(T 1−a/2 + T −a/2)E∗ (|w∗
t |aF ) ,

with the a > 2 from Assumption 1.1, compare Park (2002, p. 486). Similarly as in Palm et al.
(2010, p. 671), we obtain

E∗ (|w∗
t |aF ) ≤ c (m + 1)a/2−1

⎛⎝ ∞∑︂
j=0

|ˆ︁Ψj(q)|2F

⎞⎠a/2

E∗ (|ε∗
t |aF ) ,

for some constant c and ˆ︁Ψj(q) := ∑︁∞
i=j+1

ˆ︁Ψi(q), where the matrices ˆ︁Ψj(q) are determined by the
power series expansion of the inverse of I−

∑︁q
j=1

ˆ︁Φj(q)zj . As discussed in Palm et al. (2010, p. 671),
it follows that ∑︁∞

j=0 |ˆ︁Ψj(q)|2F = OP(1) if we can show that ∑︁q
j=1 j1/2|ˆ︁Ψj(q)|F = OP(1), which in
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turn holds if ∑︁q
j=1 j1/2|ˆ︁Φj(q)|F = OP(1). Using again Lemma 1.1, (1.25), and (1.26), we obtain

q∑︂
j=1

j1/2|ˆ︁Φj(q)|F ≤
q∑︂

j=1
j1/2|ˆ︁Φj(q) − ˜︁Φj(q)|F +

q∑︂
j=1

j1/2|˜︁Φj(q) − Φj(q)|F

+
q∑︂

j=1
j1/2|Φj(q) − Φj |F +

q∑︂
j=1

j1/2|Φj |F

≤ q1/2
q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F + q1/2

q∑︂
j=1

|˜︁Φj(q) − Φj(q)|F

+
q∑︂

j=1
(1 + j)|Φj(q) − Φj |F +

q∑︂
j=1

j1/2|Φj |F

≤ q1/2
q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F + q3/2 sup

1≤j≤q
|˜︁Φj(q) − Φj(q)|F

+
q∑︂

j=1
(1 + j)|Φj(q) − Φj |F +

q∑︂
j=1

j1/2|Φj |F

= oP(1) + OP(1) + o(1) + O(1) = OP(1).

This completes the proof, since E∗ (|ε∗
t |aF ) = OP(1) by Lemma 1.2 for the a > 2 from Assump-

tion 1.1. □

Proof of Theorem 1.2. Given the invariance principle for {w∗
t }t∈Z in Theorem 1.1, it follows

with similar arguments as used in the proofs of Propositions 1.1 and 1.2 that τ∗
IM(ˆ︁η∗) w∗

−→ GSN,
τ∗

IM(ˆ︁η⊥∗) w∗
−→ G⊥

SN, and τ∗
IM(˜︁η⊥∗) w∗

−→ ˜︁G⊥
SN in P.

Let us now turn to the traditional Wald-type test statistics. We first prove that the kernel estimator
of Ω based on the bootstrap sample, defined as

ˆ︁Ω∗ =
[︄ˆ︁Ω∗

uu
ˆ︁Ω∗

uvˆ︁Ω∗
vu

ˆ︁Ω∗
vv

]︄
:= T −1

T∑︂
i=1

T∑︂
j=1

K
(︃ |i − j|

bT

)︃ ˆ︁w∗
OLS,i ˆ︁w∗′

OLS,j , (1.29)

where ˆ︁w∗
OLS,t := [ˆ︁u∗

OLS,t, v∗′
t ]′, with ˆ︁u∗

OLS,t denoting the OLS residuals in the bootstrap regression
y∗

t = x∗′
t β + u∗

t , converges in p∗
−→ to Ω in P. To this end, let f∗(·) denote the spectral density

matrix of {w∗
t }t∈Z, i. e.,

f∗(λ) :=

⎛⎝ ∞∑︂
j=−∞

ˆ︁Ψj(q)eijλ

⎞⎠ f∗
ε (λ)

⎛⎝ ∞∑︂
j=−∞

ˆ︁Ψj(q)e−ijλ

⎞⎠
=

⎛⎝I −
q∑︂

j=1

ˆ︁Φj(q)eijλ

⎞⎠−1

f∗
ε (λ)

⎛⎝I −
q∑︂

j=1

ˆ︁Φj(q)e−ijλ

⎞⎠−1

, (1.30)

with ˆ︁Ψj(q) as defined in the proof of Theorem 1.1 and f∗
ε (λ) := (2π)−1E∗ (ε∗

t ε∗′
t ) denoting the spec-

tral density matrix of {ε∗
t }t∈Z. It follows from Chang et al. (2006, Lemma A.3) that supλ |f∗(λ) −

f(λ)|F
p∗

−→ 0 in P. In particular, for λ = 0, we obtain |Ω∗ − Ω|F
p∗

−→ 0 in P, where Ω∗ = 2πf∗(0)
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and Ω = 2πf(0). Hence,

|ˆ︁Ω∗ − Ω|F ≤ |ˆ︁Ω∗ − Ω∗|F + |Ω∗ − Ω|F = |ˆ︁Ω∗ − Ω∗|F + oP(1). (1.31)

It thus remains to show that |ˆ︁Ω∗ − Ω∗|F
p∗

−→ 0 in P, but this follows under standard kernel
and bandwidth assumptions similarly as in Jansson (2002). Consistency of ˆ︁Ω∗ implies ˆ︁Ω∗

u·v =ˆ︁Ω∗
uu − ˆ︁Ω∗

uv

(︂ˆ︁Ω∗
vv

)︂−1 ˆ︁Ω∗
vu

p∗
−→ Ωu·v in P. Together with the invariance principle for {w∗

t }t∈Z in
Theorem 1.1 it thus follows from similar arguments as used in Vogelsang and Wagner (2014, Proof
of Theorem 3) that τ∗

IM(ˆ︁Ω∗
u·v) w∗

−→ χ2
s in P. Now, let z∗

t := ∑︁t
s=1 w∗

s . Analogously to the proof of
Lemma 3.4 in Chang et al. (2006), we obtain

T −2
T∑︂

t=1
z∗

t z∗′
t

w∗
−→

∫︂ 1

0
B(r)B(r)′dr in P,

T −1
T∑︂

t=1
z∗

t−1w∗′
t

w∗
−→

∫︂ 1

0
B(r)dB(r)′ + ∆ in P.

It is thus straightforward to show that τ∗
FM(ˆ︁Ω∗

u·v) w∗
−→ χ2

s in P. Finally, to prove the result for the
traditional Wald-type test statistic based on the D-OLS estimator, note that Chang et al. (2006)
verify that a representation as in (1.8) also holds for the bootstrap errors, i. e., we have

u∗
t =

∞∑︂
j=−∞

π∗′
j v∗

t−j + e∗
t in P,

where E∗
(︂
e∗

t v∗′
t−j

)︂
= 0 for all j ∈ Z and ∑︁∞

j=−∞ |π∗
j |F < ∞ in P. It thus follows from Chang et al.

(2006, Theorem 3.7) that τ∗
D(ˆ︁Ω∗

u·v) w∗
−→ χ2

s in P. □

1.8.5 Proofs of Auxiliary Results

Proof of Lemma 1.1. The solution of the sample Yule-Walker equations in the regression of wt

on wt−1, . . . , wt−q, t = q + 1, . . . , T , can be written in compact form as a ((m + 1) × q(m + 1))-
dimensional matrix

˜︁Φ(q) := [˜︁Φ1(q), . . . , ˜︁Φq(q)] = ˜︁Γ ˜︁G−1,

with the ((m + 1) × q(m + 1))-dimensional matrix ˜︁Γ :=
[︂˜︁Γ(1), . . . , ˜︁Γ(q)

]︂
, the (q(m + 1) × q(m + 1))-

dimensional matrix ˜︁G :=
(︂˜︁Γ(s − r)

)︂
r,s=1,...,q

and the ((m + 1) × (m + 1))-dimensional empirical
autocovariance matrix of w1, . . . , wT at lag −q + 1 ≤ h ≤ q, given by

˜︁Γ(h) := T −1
min{T,T −h}∑︂

t=max{1,1−h}
(wt+h − wT )(wt − wT )′,

where wT := T −1∑︁T
t=1 wt. Analogously, the solution of the sample Yule-Walker equations in the
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regression of ˆ︁wt on ˆ︁wt−1, . . . , ˆ︁wt−q, t = q + 1, . . . , T , can be written in compact form as

ˆ︁Φ(q) := [ˆ︁Φ1(q), . . . , ˆ︁Φq(q)] = ˆ︁Γ ˆ︁G−1,

with ˆ︁Γ :=
[︂ˆ︁Γ(1), . . . , ˆ︁Γ(q)

]︂
, ˆ︁G :=

(︂ˆ︁Γ(s − r)
)︂

r,s=1,...,q
and ˆ︁Γ(h) the empirical autocovariance matrix

of ˆ︁w1, . . . , ˆ︁wT at lag −q+1 ≤ h ≤ q. Taking the difference of ˜︁Φ(q) and ˆ︁Φ(q), adding and subtractingˆ︁Γ ˜︁G−1 and using

˜︁G−1 − ˆ︁G−1 = ˜︁G−1( ˆ︁G − ˜︁G) ˆ︁G−1

leads to

ˆ︁Φ(q) − ˜︁Φ(q) = ˆ︁Γ ˜︁G−1( ˜︁G − ˆ︁G) ˆ︁G−1 − (˜︁Γ − ˆ︁Γ) ˜︁G−1

Hence, we have to consider ˜︁G − ˆ︁G in more detail (˜︁Γ − ˆ︁Γ works similarly). A typical block element
of ˜︁G − ˆ︁G is

˜︁Γ(h) − ˆ︁Γ(h) = T −1
min{T,T −h}∑︂

t=max{1,1−h}
(wt+h − wT )(wt − wT )′

− T −1
min{T,T −h}∑︂

t=max{1,1−h}
( ˆ︁wt+h − ˆ︁wT )( ˆ︁wt − ˆ︁wT )′

= T −1
min{T,T −h}∑︂

t=max{1,1−h}
(wt+h − wT )(wt − ˆ︁wt − (wT − ˆ︁wT ))′

− T −1
min{T,T −h}∑︂

t=max{1,1−h}
( ˆ︁wt+h − wt+h − ( ˆ︁wT − wT ))( ˆ︁wt − ˆ︁wT )′

= A1(h) − A2(h),

with an obvious definition for A1(h) and A2(h). Let us consider A1(h) in more detail (A2(h) works
similarly). Using ˆ︁wt = [ˆ︁ut, v′

t]′ and ˆ︁ut = yt −x′
t
ˆ︁β together with the model equations (1.1) and (1.2),

we get

wt − ˆ︁wt =
[︄
ut − ˆ︁ut

0m×1

]︄
=
[︄
yt − x′

tβ − (yt − x′
t
ˆ︁β)

0m×1

]︄
=
[︄
x′

t(ˆ︁β − β)
0m×1

]︄
. (1.32)

Before we continue, note that the last equality implies

max
1≤t≤T

| ˆ︁wt − wt|F ≤ T −1/2 max
1≤t≤T

|T −1/2xt|F |T
(︂ˆ︁β − β

)︂
|F = OP(T −1/2),

since T
(︂ˆ︁β − β

)︂
= OP(1) and max1≤t≤T |T −1/2xt|F = sup0≤r≤1 |T −1/2x⌊rT ⌋|F converges by As-

sumption 1.3 and the continuous mapping theorem to sup0≤r≤1 |Bv(r)|F = OP(1). This proves (1.23).
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We now proceed with the proof of (1.24). From (1.32) we obtain

A1(h) = T −1
min{T,T −h}∑︂

t=max{1,1−h}
(wt+h − wT )

[︄
(xt − xT )′(ˆ︁β − β)

0m×1

]︄′

= T −1
min{T,T −h}∑︂

t=max{1,1−h}
(wt+h − wT )[(xt − xT )′(ˆ︁β − β), 01×m]

= ˜︁Γw,x(h)(ˆ︁β − β)e′
1,

where ˜︁Γw,x(h) := T −1∑︁min{T,T −h}
t=max{1,1−h}(wt+h − wT )(xt − xT )′ is ((m + 1) × m)-dimensional and

e1 := [1, 01×m]′ is the first (m + 1)-dimensional unit vector. Denoting the part of ˜︁G − ˆ︁G that
consists of block-entries A1(h) by ˜︁G1 − ˆ︁G1, we get

˜︁G1 − ˆ︁G1 =
[︂˜︁Γw,x(s − r)(ˆ︁β − β)e′

1

]︂
r,s=1,...,q

= ˜︁Γw,x(Iq ⊗ ((ˆ︁β − β)e′
1)),

where ˜︁Γw,x := (˜︁Γw,x(s − r))r,s=1,...,q is (q(m + 1) × qm)-dimensional. For the second factor we have

|Iq ⊗ ((ˆ︁β − β)e′
1)|F =

√︃
tr
(︂
(Iq ⊗ ((ˆ︁β − β)e′

1))′Iq ⊗ ((ˆ︁β − β)e′
1)
)︂

=
√︃

tr
(︂
Iq ⊗ (e1(ˆ︁β − β)′(ˆ︁β − β)e′

1

)︂
)

=

⌜⃓⃓⎷tr
(︄

Iq ⊗ diag
(︄

m∑︂
i=1

(ˆ︁βi − βi)2, 0, . . . , 0
)︄)︄

=

⌜⃓⃓⎷q
m∑︂

i=1
(ˆ︁βi − βi)2

= q1/2T −1|T (ˆ︁β − β)|F
= OP (q1/2T −1).

Next, let us consider ˜︁Γw,x in more detail. Recall that wt = [ut, v′
t]′ and xt = ∑︁t

k=1 vk. To avoid
lengthy index notation, w.l.o.g. we can assume that m = 1 and consider the second element of wt

only (the first element works similarly). We thus consider the scalar quantity

˜︁Γw,x(h) = T −1
min{T,T −h}∑︂

t=max{1,1−h}
(vt+h − vT )

⎛⎝ t∑︂
k=1

vk − T −1
T∑︂

i=1

i∑︂
j=1

vj

⎞⎠ .

Taking the expectation of the squared Frobenius norm of the corresponding (q × q)-dimensional
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matrix ˜︁Γw,x and combining the sums over r and s, leads to

E(|˜︁Γw,x|2F )

=
q∑︂

r,s=1
T −2

min{T,T −(s−r)}∑︂
t1,t2=max{1,1−(s−r)}

E

⎡⎣(vt1+s−r − vT )

⎛⎝ t1∑︂
k1=1

vk1 − T −1
T∑︂

i1=1

i1∑︂
j1=1

vj1

⎞⎠
× (vt2+s−r − vT )

⎛⎝ t2∑︂
k2=1

vk2 − T −1
T∑︂

i2=1

i2∑︂
j2=1

vj2

⎞⎠⎤⎦
= T −2

q−1∑︂
h=−q+1

(q − |h|)
min{T,T −h}∑︂

t1,t2=max{1,1−h}
E

⎡⎣(vt1+h − vT )

⎛⎝ t1∑︂
k1=1

vk1 − T −1
T∑︂

i1=1

i1∑︂
j1=1

vj1

⎞⎠
× (vt2+h − vT )

⎛⎝ t2∑︂
k2=1

vk2 − T −1
T∑︂

i2=1

i2∑︂
j2=1

vj2

⎞⎠⎤⎦ .

Note that the last expectation is of the form E(ABCD) with E(A) = E(B) = E(C) = E(D) =
0. Hence, by using common rules for joint cumulants of centered random variables (see, e. g.,
Brillinger, 1981), we get

E(ABCD)

= cum(A, B, C, D) + E(AB)E(CD) + E(AC)E(BD) + E(AD)E(BC)

= cum(A, B, C, D) + Cov(A, B)Cov(C, D) + Cov(A, C)Cov(B, D)

+ Cov(A, D)Cov(B, C),

where Cov(·, ·) denotes the covariance of two random variables. Hence, the first term corresponding
to the fourth-order cumulant becomes

T −2
q−1∑︂

h=−q+1
(q − |h|)

min{T,T −h}∑︂
t1,t2=max{1,1−h}

cum

⎛⎝vt1+h − vT ,
t1∑︂

k1=1
vk1 − T −1

T∑︂
i1=1

i1∑︂
j1=1

vj1 ,

vt2+h − vT ,
t2∑︂

k2=1
vk2 − T −1

T∑︂
i2=1

i2∑︂
j2=1

vj2

⎞⎠ ,

leading to 24 = 16 terms when exapnding the cumulant. Exemplarily, for the absolute value of the
first one (the others work similarly), we get from the common calculation rules for cumulants

|T −2
q−1∑︂

h=−q+1
(q − |h|)

min{T,T −h}∑︂
t1,t2=max{1,1−h}

cum

⎛⎝vt1+h,
t1∑︂

k1=1
vk1 , vt2+h,

t2∑︂
k2=1

vk2

⎞⎠ |

≤ T −2
q−1∑︂

h=−q+1
|q − |h||

min{T,T −h}∑︂
t1,t2=max{1,1−h}

t1∑︂
k1=1

t2∑︂
k2=1

|cum (vt1+h, vk1 , vt2+h, vk2) |

≤ q

T 2

q−1∑︂
h=−q+1

T∑︂
t1,t2=1

T∑︂
k1,k2=1

|cum (vt1+h, vk1 , vt2+h, vk2) |.

By combining the sums over t1 and t2 and those over k1 and k2, respectively, the above term
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becomes

q

T 2

q−1∑︂
h=−q+1

T −1∑︂
l=−(T −1)

min{T,T −l}∑︂
s=max{1,1−l}

T −1∑︂
i=−(T −1)

min{T,T −i}∑︂
j=max{1,1−i}

|cum (vs+l+h, vj+i, vs+h, vj) |

≤ q

T 2

q−1∑︂
h=−q+1

T −1∑︂
i,l=−(T −1)

T∑︂
s,j=1

|cum (vs+l+h, vj+i, vs+h, vj) |

≤ q

T 2

q−1∑︂
h=−q+1

T −1∑︂
i,l=−(T −1)

T −1∑︂
k=−(T −1)

min{T,T −k}∑︂
r=max{1,1−k}

|cum (vr+k+l+h, vr+i, vr+k+h, vr) |

≤ q

T

q−1∑︂
h=−q+1

T −1∑︂
i,l=−(T −1)

T −1∑︂
k=−(T −1)

|cum (vk+l+h, vi, vk+h, v0) |,

where we also combined the sums over s and j and made use of the (strict) stationarity of {vt}t∈Z.
Finally, combining the sums over h and k, we obtain the bound

q

T

T +q−2∑︂
r=−(T +q−2)

(2q − 1)
T −1∑︂

i,l=−(T −1)
|cum (vr+l, vi, vr, v0) |

≤ 2q2

T

2T +q−3∑︂
j=−(2T +q−3)

T +q−2∑︂
r=−(T +q−2)

T −1∑︂
i=−(T −1)

|cum (vj , vi, vr, v0) |

≤ 2q2

T

∞∑︂
j,i,r=−∞

|cum (vj , vi, vr, v0) | = O(q2T −1),

due to the summability condition imposed on the fourth order cumulants in Assumption 1.2.
Hence, this term vanishes asymptotically. However, the leading term is the term corresponding to
Cov(A, B)Cov(C, D). That is, we have to consider

T −2
q−1∑︂

h=−q+1
(q − |h|)

min{T,T −h}∑︂
t1,t2=max{1,1−h}

Cov(vt1+h − vT ,
t1∑︂

k1=1
vk1 − T −1

T∑︂
i1=1

i1∑︂
j1=1

vj1)

× Cov(vt2+h − vT ,
t2∑︂

k2=1
vk2 − T −1

T∑︂
i2=1

i2∑︂
j2=1

vj2)

=
q−1∑︂

h=−q+1
(q − |h|)

⎛⎝T −1
min{T,T −h}∑︂

t=max{1,1−h}
Cov(vt+h − vT ,

t∑︂
k=1

vk − T −1
T∑︂

i=1

i∑︂
j=1

vj)

⎞⎠2

.

Hence, we have to compute

T −1
min{T,T −h}∑︂

t=max{1,1−h}
Cov(vt+h − vT ,

t∑︂
k=1

vk − T −1
T∑︂

i=1

i∑︂
j=1

vj).

This leads to four terms to consider, which can be treated with similar arguments. For the first
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term we get

T −1
min{T,T −h}∑︂

t=max{1,1−h}
Cov(vt+h,

t∑︂
k=1

vk) = T −1
min{T,T −h}∑︂

t=max{1,1−h}

t∑︂
k=1

γv(t + h − k),

where γv(h) is the covariance of the one-dimensional process (still assumed for notational brevity)
{vt}t∈Z at lag h. E. g., for h ≥ 0 it holds that

T −1
T −h∑︂
t=1

t∑︂
k=1

γv(t + h − k) = T −1
T −1∑︂
j=h

(T − j)γv(j) ≤
T −1∑︂
j=h

γv(j)

and its absolute value can be bounded by ∑︁∞
j=−∞ |γv(j)| < ∞ due to the second-order cumulant

condition imposed in Assumption 1.2. Similar arguments yield the same bound for h < 0 and for
the other three terms. Hence, the term of E(|˜︁Γw,x|2F ) that corresponds to Cov(A, B)Cov(C, D) is
of order O(q2).

In total we thus have E(|˜︁Γw,x|2F ) = O(q2). Note that we have proven this result for m = 1. However,
as m is fixed, the result also holds for m > 1. Therefore, we obtain for the (q(m + 1) × qm)-
dimensional matrix ˜︁Γw,x that |˜︁Γw,x|F = OP(q). It follows that | ˜︁G1 − ˆ︁G1|F = OP(q)OP (q1/2T −1) =
OP(q3/2T −1) and similarly also | ˜︁G − ˆ︁G|F = OP(q)OP(q1/2T −1) = OP(q3/2T −1).

Further, we have to consider ˜︁G−1. In the following, let µmin(A) and µmax(A) denote the smallest
and largest eigenvalue of a matrix A, respectively, and define the (q(m+1)×q(m+1))-dimensional
matrix G := (Γ(s − r))r,s=1,...,q. Similar to the above, using the fourth-order cumulant condition
from Assumption 1.2, we can show that | ˜︁G − G|F = OP(qT −1/2) = oP(1). Then, to show bounded-
ness in probability of ˜︁G−1 (similar for ˆ︁G−1), for all ϵ > 0, we have to find a K < ∞ and a T0 < ∞
both large enough such that it holds for all T > T0 that

P(| ˜︁G−1|2 > K) < ϵ,

where |A|2 denotes the spectral norm of a matrix A. Let ϵ > 0. Then, due to positive semi-
definiteness of ˜︁G by construction and invertibility, see Meyer and Kreiss (2015, Lemma 3.4 and
Remark 3.2), we have positive definiteness of ˜︁G and, consequently, of ˜︁G−1. Hence,

P(| ˜︁G−1|2 > K) =P(µmax( ˜︁G−1) > K) = P(µ−1
min( ˜︁G) > K)

=P(µmin( ˜︁G) <
1
K

, | ˜︁G − G|2 ≥ δ)

+ P(µmin( ˜︁G) <
1
K

, | ˜︁G − G|2 < δ).

Further, as | ˜︁G − G|2 ≤ | ˜︁G − G|F = oP(1), for any δ > 0, we can choose T0 large enough to have
P(| ˜︁G − G|2 ≥ δ) ≤ ϵ. Thus, the first term on the right-hand side can be bounded by P(| ˜︁G − G|2 ≥
δ) ≤ ϵ. Now consider the second term. As ˜︁G, G, and hence also ˜︁G − G are symmetric with real-
valued entries, these matrices are Hermitian such that Weyl’s theorem (see, e. g., Theorem 4.3.1 in
Horn and Johnson, 2012) applies, leading to the inequality µmin(G) + µmin( ˜︁G − G) ≤ µmin( ˜︁G). It
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follows that

P(µmin( ˜︁G) <
1
K

, | ˜︁G − G|2 < δ)

≤ P(µmin(G) + µmin( ˜︁G − G) <
1
K

, | ˜︁G − G|2 < δ)

= P(µmin(G) <
1
K

− µmin( ˜︁G − G), | ˜︁G − G|2 < δ).

From symmetry of ˜︁G − G we get that the eigenvalues of ( ˜︁G − G)′( ˜︁G − G) are exactly the squared
eigenvalues of ˜︁G − G. Hence, the bound

| ˜︁G − G|2 =
√︂

µmax(( ˜︁G − G)′( ˜︁G − G)) < δ

implies also µmin( ˜︁G − G) ≥ −δ such that the last right-hand side can be bounded by

P
(︃

µmin(G) <
1
K

+ δ, | ˜︁G − G|2 < δ

)︃
≤ P

(︃
µmin(G) <

1
K

+ δ

)︃
. (1.33)

Next, note that µmin(G) ≥ ˜︁c for some constant ˜︁c > 0 by Assumption 1.1. Therefore, the right-hand
side in (1.33) becomes zero if we choose δ < ˜︁c/2 small enough and K > 2/˜︁c large enough, such
that 1

K + δ < ˜︁c. This completes the proof of | ˜︁G−1|2 = OP(1). Furthermore, from Assumption 1.1
we also get | ˜︁G|2 = OP(1) and similarly | ˆ︁G|2 = OP(1) and | ˆ︁G|2 = OP(1). Altogether, it holds that

| ˜︁Φ(q) − ˆ︁Φ(q)|2 ≤ |˜︁Γ − ˆ︁Γ|2| ˜︁G−1|2 + |ˆ︁Γ|2| ˜︁G−1|2| ˜︁G − ˆ︁G|2| ˆ︁G−1|2

≤ | ˜︁G − ˆ︁G|2
(︂
| ˜︁G−1|2 + | ˆ︁G|2| ˜︁G−1|2| ˆ︁G−1|2

)︂
≤ | ˜︁G − ˆ︁G|F

(︂
| ˜︁G−1|2 + | ˆ︁G|2| ˜︁G−1|2| ˆ︁G−1|2

)︂
= OP(q3/2T −1) (OP(1) + OP(1)OP(1)OP(1))

= OP(q3/2T −1).

Since ˜︁Φ(q) − ˆ︁Φ(q) is ((m + 1) × q(m + 1))-dimensional and m is fixed, it follows that (see, e. g.
Gentle, 2007)

| ˜︁Φ(q) − ˆ︁Φ(q)|F ≤
√

m + 1 | ˜︁Φ(q) − ˆ︁Φ(q)|2 = OP(q3/2T −1).

This implies

q1/2
q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F ≤ q3/2| ˜︁Φ(q) − ˆ︁Φ(q)|F = OP(q3T −1),

which is oP(1) since q3T −1 = o(1) by Assumption 1.4. □

In the proofs of Lemma 1.2 and 1.3 we repeatedly use the fact that by convexity it holds that
|
∑︁k

i=1 zi|a ≤ ka−1∑︁k
i=1 |zi|a, for all a, k ≥ 1.

Proof of Lemma 1.2. Let ˜︁εt(q) := wt −
∑︁q

j=1
˜︁Φj(q)wt−j , t = q + 1, . . . , T , denote the Yule-

Walker residuals in the regression of wt on wt−1, . . . , wt−q, t = q + 1, . . . , T and define ˜︁εT (q) :=
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(T − q)−1∑︁T
t=q+1 ˜︁εt(q).2 For q + 1 ≤ t ≤ T we have

|ˆ︁εt(q) − ˆ︁εT (q)|aF
≤
(︂
|ˆ︁εt(q) − ˜︁εt(q)|F + |˜︁εt(q) − ˜︁εT (q)|F + |ˆ︁εT (q) − ˜︁εT (q)|F

)︂a

≤

⎛⎝|ˆ︁εt(q) − ˜︁εt(q)|F + |˜︁εt(q) − ˜︁εT (q)|F + (T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˜︁εt(q)|F

⎞⎠a

≤ 3a−1

⎛⎝|ˆ︁εt(q) − ˜︁εt(q)|aF + |˜︁εt(q) − ˜︁εT (q)|aF +

⎛⎝(T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˜︁εt(q)|F

⎞⎠a⎞⎠ .

Hence,

(T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˆ︁εT (q)|aF

≤ 3a−1

⎛⎝(T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˜︁εt(q)|aF + (T − q)−1

T∑︂
t=q+1

|˜︁εt(q) − ˜︁εT (q)|aF

+

⎛⎝(T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˜︁εt(q)|F

⎞⎠a⎞⎠
= 3a−1

⎛⎝FT,a + (T − q)−1
T∑︂

t=q+1
|˜︁εt(q) − ˜︁εT (q)|aF + (FT,1)a

⎞⎠ ,

where FT,a := (T − q)−1∑︁T
t=q+1 |ˆ︁εt(q) − ˜︁εt(q)|aF . Let us consider FT,a in more detail. For q + 1 ≤

2In the following, a denotes the fixed a > 2 from Assumption 1.1. However, the results also hold for ˜︁a, with
1 ≤ ˜︁a < a.
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t ≤ T we have

|ˆ︁εt(q) − ˜︁εt(q)|F

= | ˆ︁wt −
q∑︂

j=1

ˆ︁Φj(q) ˆ︁wt−j − (wt −
q∑︂

j=1

˜︁Φj(q)wt−j)|F

= | ˆ︁wt − wt −
q∑︂

j=1

(︂ˆ︁Φj(q) − ˜︁Φj(q) + ˜︁Φj(q)
)︂

( ˆ︁wt−j − wt−j + wt−j) +
q∑︂

j=1

˜︁Φj(q)wt−j |F

= | ˆ︁wt − wt −
q∑︂

j=1

(︂ˆ︁Φj(q) − ˜︁Φj(q)
)︂

( ˆ︁wt−j − wt−j + wt−j) −
q∑︂

j=1

˜︁Φj(q) ( ˆ︁wt−j − wt−j) |F

≤ max
1≤t≤T

| ˆ︁wt − wt|F +
q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F | ˆ︁wt−j − wt−j |F

+
q∑︂

j=1
|˜︁Φj(q)|F | ˆ︁wt−j − wt−j |F +

q∑︂
j=1

|ˆ︁Φj(q) − ˜︁Φj(q)|F |wt−j |F

≤ max
1≤t≤T

| ˆ︁wt − wt|F + max
1≤t≤T

| ˆ︁wt − wt|F
q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F

+ max
1≤t≤T

| ˆ︁wt − wt|F
q∑︂

j=1
|˜︁Φj(q)|F +

√
m + 1q| ˆ︁Φ(q) − ˜︁Φ(q)|F q−1

q∑︂
j=1

|wt−j |F ,

where we have used that

|ˆ︁Φj(q) − ˜︁Φj(q)|F ≤ | ˆ︁Φ(q) − ˜︁Φ(q)|F |[0, Im+1, 0]′|F =
√

m + 1| ˆ︁Φ(q) − ˜︁Φ(q)|F .

Therefore,

|ˆ︁εt(q) − ˜︁εt(q)|aF

≤ 4a−1

⎛⎝(︃ max
1≤t≤T

| ˆ︁wt − wt|F
)︃a

+
(︃

max
1≤t≤T

| ˆ︁wt − wt|F
)︃a
⎛⎝ q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F

⎞⎠a

+
(︃

max
1≤t≤T

| ˆ︁wt − wt|F
)︃a
⎛⎝ q∑︂

j=1
|˜︁Φj(q)|F

⎞⎠a

+
(︂√

m + 1q| ˆ︁Φ(q) − ˜︁Φ(q)|F
)︂a

⎛⎝q−1
q∑︂

j=1
|wt−j |F

⎞⎠a⎞⎠ .

It follows that

FT,a ≤ 4a−1

⎛⎝(︃ max
1≤t≤T

| ˆ︁wt − wt|F
)︃a

+
(︃

max
1≤t≤T

| ˆ︁wt − wt|F
)︃a
⎛⎝ q∑︂

j=1
|ˆ︁Φj(q) − ˜︁Φj(q)|F

⎞⎠a

+
(︃

max
1≤t≤T

| ˆ︁wt − wt|F
)︃a
⎛⎝ q∑︂

j=1
|˜︁Φj(q)|F

⎞⎠a

+
(︂√

m + 1q| ˆ︁Φ(q) − ˜︁Φ(q)|F
)︂a

(T − q)−1
T∑︂

t=q+1

⎛⎝q−1
q∑︂

j=1
|wt−j |F

⎞⎠a⎞⎠ .
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From Lemma 1.1 we have max1≤t≤T | ˆ︁wt−wt|F = OP(T −1/2) and∑︁q
j=1 |ˆ︁Φj(q)−˜︁Φj(q)|F = OP(q5/2T −1).

Moreover, the proof of Lemma 1.1 shows that q| ˆ︁Φ(q)− ˜︁Φ(q)|F = OP(q5/2T −1). Further, by (1.25), (1.26)
and Assumption 1.1 we have

q∑︂
j=1

|˜︁Φj(q)|F ≤
q∑︂

j=1
|˜︁Φj(q) − Φj(q)|F +

q∑︂
j=1

|Φj(q) − Φj |F +
q∑︂

j=1
|Φj |F

≤ q sup
1≤j≤q

|˜︁Φj(q) − Φj(q)|F + c
∞∑︂

j=q+1
|Φj |F +

∞∑︂
j=1

|Φj |F

= OP(1).

Finally, note that

(T − q)−1
T∑︂

t=q+1

⎛⎝q−1
q∑︂

j=1
|wt−j |F

⎞⎠a

≤ (T − q)−1
T∑︂

t=q+1
q−aqa−1

q∑︂
j=1

|wt−j |aF

= (T − q)−1q−1
T∑︂

t=q+1

q∑︂
j=1

|wt−j |aF

≤ (T − q)−1
T −1∑︂
t=1

|wt|aF ,

where the last inequality follows from the fact that each element in the double sum occurs at most
q times, i. e., ∑︁T

t=q+1
∑︁q

j=1 |wt−j |aF ≤ q
∑︁T −1

t=1 |wt|aF . From supt∈Z E (|wt|aF ) < ∞ (by stationarity of
{wt}t∈Z) and Markov’s inequality, it follows that (T − q)−1∑︁T −1

t=1 |wt|aF = OP(1). In total, we thus
have FT,a = OP((q5/2T −1)a) = oP(1). Therefore,

(T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˆ︁εT (q)|aF ≤ 3a−1

⎛⎝(T − q)−1
T∑︂

t=q+1
|˜︁εt(q) − ˜︁εT (q)|aF + oP(1)

⎞⎠ .

It thus remains to show that (T −q)−1∑︁T
t=q+1 |˜︁εt(q)− ˜︁εT (q)|aF = OP(1). We now follow Park (2002,

Proof of Lemma 3.2) and Palm et al. (2010, Proof of Lemma 2). Define εt(q) := εt+∑︁∞
j=q+1 Φjwt−j

and note that

(T − q)−1
T∑︂

t=q+1
|˜︁εt(q) − ˜︁εT (q)|aF

= (T − q)−1
T∑︂

t=q+1
|˜︁εt(q) − εt(q) + εt(q) − εt + εt − ˜︁εT (q)|aF

≤ 4a−1 (AT,a + BT,a + CT,a + DT,a) ,
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where

AT,a := (T − q)−1
T∑︂

t=q+1
|εt|aF ,

BT,a := (T − q)−1
T∑︂

t=q+1
|εt(q) − εt|aF = (T − q)−1

T∑︂
t=q+1

|
∞∑︂

j=q+1
Φjwt−j |aF ,

CT,a := (T − q)−1
T∑︂

t=q+1
|˜︁εt(q) − εt(q)|aF ,

DT,a := (T − q)−1
T∑︂

t=q+1
|˜︁εT (q)|aF = |˜︁εT (q)|aF = |(T − q)−1

T∑︂
t=q+1

˜︁εt(q)|aF .

We first consider BT,a. Note that E (|BT,a|F ) ≤ supt∈Z E (|εt(q) − εt|aF ). It follows from Minkowski’s
inequality that

E (|εt(q) − εt|aF ) = E

⎛⎝|
∞∑︂

j=q+1
Φjwt−j |aF

⎞⎠ =

⎛⎜⎝
⎡⎣E
⎛⎝|

∞∑︂
j=q+1

Φjwt−j |aF

⎞⎠⎤⎦1/a
⎞⎟⎠

a

≤

⎛⎝ ∞∑︂
j=q+1

[E (|Φjwt−j |aF )]1/a

⎞⎠a

≤

⎛⎝ ∞∑︂
j=q+1

[E (|Φj |aF |wt−j |aF )]1/a

⎞⎠a

≤

⎛⎝ ∞∑︂
j=q+1

|Φj |F [E (|wt−j |aF )]1/a

⎞⎠a

≤

⎛⎝ ∞∑︂
j=q+1

|Φj |F

[︄
sup
t∈Z

E (|wt|aF )
]︄1/a

⎞⎠a

≤ sup
t∈Z

E (|wt|aF )

⎛⎝ ∞∑︂
j=q+1

|Φj |F

⎞⎠a

.

From Assumption 1.1 we have supt∈Z E (|wt|aF ) < ∞ and ∑︁∞
j=q+1 |Φj |F = o(1). Markov’s inequal-

ity thus yields BT,a = oP(1). Analogously, E (|AT,a|F ) ≤ supt∈Z E (|εt|aF ). Using Minkowski’s
inequality, we have as above

E (|εt|aF ) = E

⎛⎝|wt −
∞∑︂

j=1
Φjwt−j |aF

⎞⎠ ≤ 2a−1

⎛⎝E (|wt|aF ) + E

⎛⎝|
∞∑︂

j=1
Φjwt−j |aF

⎞⎠⎞⎠
≤ 2a−1

⎛⎝sup
t∈Z

E (|wt|aF ) + E

⎛⎝|
∞∑︂

j=1
Φjwt−j |aF

⎞⎠⎞⎠
≤ 2a−1 sup

t∈Z
E (|wt|aF )

⎛⎝1 +

⎛⎝ ∞∑︂
j=1

|Φj |F

⎞⎠a⎞⎠ < ∞.

Markov’s inequality finally yields AT,a = OP(1). We now turn to CT,a. By definition,

˜︁εt(q) = wt −
q∑︂

j=1

˜︁Φj(q)wt−j = εt(q) −
q∑︂

j=1

(︂˜︁Φj(q) − Φj

)︂
wt−j

= εt(q) −
q∑︂

j=1

(︂˜︁Φj(q) − Φj(q)
)︂

wt−j −
q∑︂

j=1
(Φj(q) − Φj) wt−j .
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Hence,

|˜︁εt(q) − εt(q)|aF ≤ 2a−1

⎛⎝|
q∑︂

j=1

(︂˜︁Φj(q) − Φj(q)
)︂

wt−j |aF + |
q∑︂

j=1
(Φj(q) − Φj) wt−j |aF

⎞⎠ .

It follows that CT,a = 2a−1 (C1T,a + C2T,a), where

C1T,a := (T − q)−1
T∑︂

t=q+1
|

q∑︂
j=1

(︂˜︁Φj(q) − Φj(q)
)︂

wt−j |aF ,

C2T,a := (T − q)−1
T∑︂

t=q+1
|

q∑︂
j=1

(Φj(q) − Φj) wt−j |aF .

We consider both terms separately. First note that

C1T,a ≤ qa−1(T − q)−1
T∑︂

t=q+1

q∑︂
j=1

|˜︁Φj(q) − Φj(q)|aF |wt−j |aF

≤ qa−1
(︄

sup
1≤j≤q

|˜︁Φj(q) − Φj(q)|F
)︄a

(T − q)−1
T∑︂

t=q+1

q∑︂
j=1

|wt−j |aF

≤
(︄

q sup
1≤j≤q

|˜︁Φj(q) − Φj(q)|F
)︄a

(T − q)−1
T −1∑︂
t=1

|wt|aF ,

where the third inequality follows again from the fact that ∑︁T
t=q+1

∑︁q
j=1 |wt−j |aF ≤ q

∑︁T −1
t=1 |wt|aF .

As (T −q)−1∑︁T −1
t=1 |wt|aF = OP(1) it follows from (1.25) that C1T,a = oP(1). Moreover, Minkowski’s

inequality yields

E (|C2T,a|F ) = (T − q)−1
T∑︂

t=q+1
E

⎛⎝|
q∑︂

j=1
(Φj(q) − Φj) wt−j |aF

⎞⎠
= (T − q)−1

T∑︂
t=q+1

⎛⎜⎝
⎡⎣E
⎛⎝|

q∑︂
j=1

(Φj(q) − Φj) wt−j |aF

⎞⎠⎤⎦1/a
⎞⎟⎠

a

≤ (T − q)−1
T∑︂

t=q+1

⎛⎝ q∑︂
j=1

[E (| (Φj(q) − Φj) wt−j |aF )]1/a

⎞⎠a

≤ (T − q)−1
T∑︂

t=q+1
sup
t∈Z

E (|wt|aF )

⎛⎝ q∑︂
j=1

|Φj(q) − Φj |F

⎞⎠a

= sup
t∈Z

E (|wt|aF )

⎛⎝ q∑︂
j=1

|Φj(q) − Φj |F

⎞⎠a

.

From (1.26) and Markov’s inequality it follows that C2T,a = oP(1). In total we thus have CT,a =
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oP(1). Finally, we consider DT,a. It holds that (T − q)−1∑︁T
t=q+1 ˜︁εt(q) = D1T + D2T + D3T , where

D1T := (T − q)−1
T∑︂

t=q+1
εt,

D2T := (T − q)−1
T∑︂

t=q+1
(εt(q) − εt),

D3T := (T − q)−1
T∑︂

t=q+1
(˜︁εt(q) − εt(q)).

By Chebyshev’s weak law of large numbers (White, 2001, p. 25) it holds that D1T
p−→ E (εt) = 0,

i. e., D1T = oP(1). Moreover, |D2T |F ≤ BT,1 = oP(1) and |D3T |F ≤ CT,1 = oP(1). By the
continuous mapping theorem we thus have DT = oP(1). This completes the proof. □

Proof of Lemma 1.3. It follows from Assumption 1.2 that

|(T − q)−1
T∑︂

t=q+1
εtε

′
t − Σ|F = oP(1).

Therefore,

|E∗ (︁ε∗
t ε∗′

t

)︁
− Σ|F ≤ |E∗ (︁ε∗

t ε∗′
t

)︁
− (T − q)−1

T∑︂
t=q+1

εtε
′
t|F + oP(1).

Moreover,

|E∗ (︁ε∗
t ε∗′

t

)︁
− (T − q)−1

T∑︂
t=q+1

εtε
′
t|F

= |(T − q)−1
T∑︂

t=q+1

(︂ˆ︁εt(q) − ˆ︁εT (q)
)︂ (︂ˆ︁εt(q) − ˆ︁εT (q)

)︂′
− εtε

′
t|F

= |(T − q)−1
T∑︂

t=q+1

(︃[︂(︂ˆ︁εt(q) − ˆ︁εT (q)
)︂

− εt

]︂ (︂ˆ︁εt(q) − ˆ︁εT (q)
)︂′

+εt

[︂(︂ˆ︁εt(q) − ˆ︁εT (q)
)︂

− εt

]︂′)︃
|F

≤ E1T + E2T ,

where

E1T = (T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˆ︁εT (q) − εt|F |ˆ︁εt(q) − ˆ︁εT (q)|F ,

E2T = (T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˆ︁εT (q) − εt|F |εt|F .
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The Cauchy-Schwarz inequality yields

E1T ≤

⎛⎝(T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˆ︁εT (q) − εt|2F (T − q)−1

T∑︂
t=q+1

|ˆ︁εt(q) − ˆ︁εT (q)|2F

⎞⎠1/2

,

E2T ≤

⎛⎝(T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˆ︁εT (q) − εt|2F (T − q)−1

T∑︂
t=q+1

|εt|2F

⎞⎠1/2

.

From the proof of Lemma 1.2 we have (T−q)−1∑︁T
t=q+1 |εt|2F = AT,2 = OP(1) and (T−q)−1∑︁T

t=q+1 |ˆ︁εt(q)−ˆ︁εT (q)|2F = OP(1). It thus remains to show that (T − q)−1∑︁T
t=q+1 |ˆ︁εt(q) − ˆ︁εT (q) − εt|2F = oP(1). To

this end note that

|ˆ︁εt(q) − ˆ︁εT (q) − εt|F

≤ |ˆ︁εt(q) − ˜︁εt(q)|F + |˜︁εt(q) − (wt −
q∑︂

j=1
Φj(q)wt−j)|F

+ |wt −
q∑︂

j=1
Φj(q)wt−j − εt|F + |ˆ︁εT (q)|F

= |ˆ︁εt(q) − ˜︁εt(q)|F + |
q∑︂

j=1

(︂˜︁Φj(q) − Φj(q)
)︂

wt−j |F

+ |
q∑︂

j=1
(Φj(q) − Φj) wt−j |F + |

∞∑︂
j=q+1

Φjwt−j |F + |ˆ︁εT (q)|F .

Hence,

|ˆ︁εt(q) − ˆ︁εT (q) − εt|2F

≤ 5

⎛⎝|ˆ︁εt(q) − ˜︁εt(q)|2F + |
q∑︂

j=1

(︂˜︁Φj(q) − Φj(q)
)︂

wt−j |2F

+|
q∑︂

j=1
(Φj(q) − Φj) wt−j |2F + |

∞∑︂
j=q+1

Φjwt−j |2F + |ˆ︁εT (q)|2F

⎞⎠ .

In the notation of the proof of Lemma 1.2, we obtain

(T − q)−1
T∑︂

t=q+1
|ˆ︁εt(q) − ˆ︁εT (q) − εt|2F ≤ 5

(︂
FT,2 + C1T,2 + C2T,2 + BT,2 + |ˆ︁εT (q)|2F

)︂
= 5|ˆ︁εT (q)|2F + oP(1).

From ˆ︁εt(q) = ˆ︁εt(q) − ˜︁εt(q) + ˜︁εt(q) − εt(q) + εt(q) − εt + εt, with εt(q) as defined in the proof of
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Lemma 1.2, it follows that

|ˆ︁εT (q)|F ≤ |(T − q)−1
T∑︂

t=q+1
ˆ︁εt(q) − ˜︁εt(q)|F + |(T − q)−1

T∑︂
t=q+1

˜︁εt(q) − εt(q)|F

+ |(T − q)−1
T∑︂

t=q+1
εt(q) − εt|F + |(T − q)−1

T∑︂
t=q+1

εt|F

≤ FT,1 + CT,1 + BT,1 + |D1T |F = oP(1).

This completes the proof. □

Proof of Lemma 1.4. Given Lemma 1.2 and Lemma 1.3, the result follows immediately from
Einmahl (1987), compare Chang et al. (2006, p. 714).3 □

3For more details we refer to the pre-print of Palm et al. (2010), which is available on
https://www.stephansmeekes.nl/research (Accessed: January 11, 2023).
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Chapter 2

Panel Cointegrating Polynomial
Regressions: Group-Mean Fully
Modified OLS Estimation and
Inference

Abstract

We develop group-mean fully modified OLS estimation and inference for panels of cointegrating polynomial
regressions, i. e., regressions that include an integrated process and its powers as explanatory variables. The
stationary errors are allowed to be serially correlated, the integrated regressors – allowed to contain drifts – to
be endogenous and, as usual in the panel literature, we include individual specific fixed effects and also allow
for individual specific time trends. We consider a fixed cross-section dimension and asymptotics in the time
dimension only. Within this setting we develop cross-section dependence robust inference for the group-
mean estimator. In both the simulations as well as an illustrative application estimating environmental
Kuznets curves for carbon dioxide emissions we compare our group-mean fully modified OLS approach with
a recently proposed pooled FM-OLS approach.

2.1 Introduction

We develop group-mean fully modified OLS (FM-OLS) estimation and inference for panels of coin-
tegrating polynomial regressions (CPRs) in a large time (T → ∞) and finite cross-section (N
fixed) setting. Cointegrating polynomial regressions, a term coined by Wagner and Hong (2016),
include deterministic variables as well as integrated processes, potentially with drifts, and their
powers as regressors. The stochastic regressors are allowed to be endogenous and the station-
ary errors are allowed to be serially correlated. For notational brevity we only discuss a simple
specification, the cubic CPR with only one integrated regressor, see (2.1) and (2.2) below. The
cubic and – probably even more so – the quadratic single regressor CPR are the most widely-used
specifications for the analysis of, e. g., environmental Kuznets curves (EKCs). Thus, considering
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the cubic case simplifies notation considerably whilst containing all elements required for a typical
EKC analysis. All results extend, at the price of increased notational rather than mathematical
complexity, straightforwardly to higher order powers and multiple integrated regressors, compare
for a pure time series setting in Wagner and Hong (2016). With respect to deterministic regres-
sors we consider individual specific intercepts only or individual specific intercepts and individual
specific linear trends; also this can be generalized without additional mathematical complexities
to more general deterministic regressors.

The paper is closely related to de Jong and Wagner (2022), who consider pooled FM-OLS-type
estimators for CPRs in a setting with both a large cross-section and time dimension and with
a cross-sectional i.i.d. structure. Considering a finite cross-section dimension and asymptotic
analysis only for a large time series dimension renders it, of course, impossible to develop a joint
or sequential asymptotic normality result for the group-mean FM-OLS estimator.1 However, the
finite cross-section dimension offers some room to consider a more general setting than de Jong and
Wagner (2022) in two important ways: First, we allow for the presence of drifts, i. e., linear time
trends, in the integrated regressors, which are a prominent feature in many macroeconomic and
financial time series. The presence of drifts, as is known from standard unit root and cointegration
analysis, see, e. g., West (1988), can lead to asymptotic normality of estimated coefficients even
in the time series unit root case. We show that similar results holds also in the CPR case, in
which higher order polynomial trends are the dominant features of the powers of the integrated
regressors with drifts. It turns out that whether and if so for which slope coefficients asymptotic
normality prevails, depends in addition to the presence of drifts also upon the presence or absence of
individual specific linear trends in the regression model. In this respect it is important to note that
for applying the developed estimators and tests no knowledge concerning the presence or absence of
drifts is required. Second, we allow for very general forms of cross-section dependence by providing
robust test statistics that lead to asymptotically valid inference despite cross-section dependence.
As is well-known, for macro-panels, which is an important difference to classical micro-panels, the
assumption of cross-sectional independence is very likely unrealistic. Consequently, being able to
perform cross-section dependence robust inference in conjunction with our group-mean estimator
increases applicability substantially, nota bene without the need to posit a specific model for cross-
section dependence like, e. g., a factor structure.

In a simulation study we compare the group-mean estimators, both OLS and FM-OLS, with the
pooled FM-OLS estimator of de Jong and Wagner (2022). In addition to assessing estimator per-
formance we also compare the performance, i. e., null rejection probabilities and “size-corrected”
power, of a variety of tests based upon these estimators. Many of the results are as expected and
in line with asymptotic theory, e. g., the strong negative effects of error serial correlation, endo-
geneity and cross-section dependence on the performance of the estimators, where – as expected

1Given that many macro panel data sets have a small cross-section dimension, e. g., also two of the data sets
used in our illustration with six and 19 countries, it is not ex ante clear that it is always necessary or beneficial
to consider large cross-section dimensions. Of course, in situations with N large compared to T , asymptotics in
N in addition to T is important and useful. One main value added that large N asymptotics provides – at the
standard

√
N -rate – in addition to large T asymptotics, is unconditional asymptotic normality of estimators (under

appropriate assumptions). Of course, in case of large N , especially large with respect to T , asymptotics in N is an
important aspect. However, unconditional asymptotic normality is not necessary for asymptotic standard inference,
which can be based on a conditional asymptotic normality results when only T → ∞.
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– the group-mean OLS estimator is most strongly affected. By construction, the pooled FM-OLS
estimator leads in most cases to the smallest bias and RMSE. The overall conclusion for hypothesis
testing is to use the cross-section robust version of tests based on the group-mean FM-OLS estima-
tor. These tests are, by construction, least affected by cross-section dependence and are much less
affected than, e. g., the test based on the pooled FM-OLS estimator by large values of error serial
correlation and regressor endogeneity (and are the only ones asymptotically valid in the presence
of cross-section dependence). Furthermore, even in the absence of cross-section dependence, the
cross-section robust test statistics perform at least at par with the non-robust counterparts. Alto-
gether, this makes the cross-section robust tests based on the group-mean FM-OLS estimator the
preferred choice.

We briefly illustrate the developed methodology by estimating environmental Kuznets curves for
carbon dioxide emissions using the same data sets as de Jong and Wagner (2022), i. e., two long
data sets with N = 6 and N = 19 countries and about T = 130 observations over time and one
wide data set with N = 89 countries and T = 54 observations over time. The EKC hypothesis
postulates an inverse U-shaped relationship between measures of economic development, typically
GDP per capita, and measures of pollution or emissions. The term EKC refers by analogy to the
inverted U-shaped relationship between the level of economic development and income inequality
postulated by Simon Kuznets (1955) in his 1954 presidential address to the American Economic
Association.2 A key finding in our illustrative application is that cross-section robust inference
makes a difference. The coefficient to the third order power of the logarithm of GDP per capita
is significantly different from zero only for the wide data set, both with or without individual
specific linear trends included. Relying only upon standard inference indicates the necessity for a
cubic specification also for the two long data sets for one of the specifications. The group-mean
FM-OLS-based turning points for the long data sets are larger than those found in de Jong and
Wagner (2022) for the N = 6 data set and very similar for the N = 19 data set. For the wide
data set group-mean FM-OLS estimation leads to very small or no turning points. For this data
set pooled estimation leads to more plausible results.

The paper is organized as follows: Section 2.2 presents the setting, the assumptions and the theo-
retical results, separated – for didactic reasons – in three subsections according to different settings
concerning the absence or presence of drifts. Section 2.3 contains some illustrative simulation re-
sults. Section 2.4 briefly illustrates the method by estimating EKCs for carbon dioxide emissions
using, as mentioned above, the same data sets as de Jong and Wagner (2022) and Section 2.5
briefly summarizes and concludes. The proofs are relegated to Appendix A and Appendix B
provides the country list for the wide data set. Supplementary Material available upon request
contains additional simulation results.

2The empirical EKC literature started about 30 years ago, with early important contributions including Grossman
and Krueger (1993) or Holtz-Eakin and Selden (1995). Early survey papers like Stern (2004) or Yandle et al. (2004)
already count more than 100 refereed publications, with the number growing steadily since then. For more discussion
on the empirical literature and theoretical underpinnings of the EKC see, e. g., Wagner (2015). Inverted U-shaped
relationships also feature prominently in modelling the relationship between energy or material intensity and GDP
per capita (see, e. g., Labson and Crompton, 1993; Malenbaum, 1978). In the exchange rate target zone literature
predictive regressions involving an exchange rate and its powers as explanatory variables are widely used (see,
e. g., Darvas, 2008; Svensson, 1992). In either of these literatures typically only quadratic or cubic polynomials
are considered. Thus, also from this perspective it suffices to describe the estimator in this paper for the cubic
specification.
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We use the following notation: ⌊x⌋ denotes the integer part of x ∈ R and diag(·) denotes a
diagonal matrix. With ⇒, p−→ and d−→ we denote weak convergence, convergence in probability
and convergence in distribution, respectively, as T → ∞. Brownian motion with variance specified
in the context is denoted by B(r) and W (r) denotes a standard Wiener process. Var(z) denotes
the covariance matrix of a vector z and Cov(z1, z2) denotes the cross-covariance matrix of two
vectors z1 and z2.

2.2 Theory

As mentioned in the introduction, in this paper we discuss the cubic specification with a single
unit root regressor only. With respect to deterministic regressors, we allow for either individual
specific intercepts (i. e., fixed effects) only or individual specific intercepts and individual specific
linear time trends. The integrated regressors xit potentially contain individual specific drifts µi,
i. e.,:

yit = αi + δit + xitβ1 + x2
itβ2 + x3

itβ3 + uit, (2.1)

xit = µi + xi,t−1 + vit. (2.2)

Mainly to relate the paper to de Jong and Wagner (2022), see the discussion below Assumption 2.3,
we use the same assumptions as in that (companion) paper. Thus, we assume that the cross-
sectionally independent error processes {ηit}t∈Z := {(uit, vit)′}t∈Z are random linear processes
fulfilling a functional central limit theorem similar to Phillips and Moon (1999, Lemma 3), i. e.,:

1√
T

⌊rT ⌋∑︂
t=1

ηit ⇒ Bi(r) = Ω1/2
i Wi(r), 0 ≤ r ≤ 1, (2.3)

where Wi(r) := (Wui(r), Wvi(r))′, with Bi(r) partitioned analogously, is a bivariate standard
Wiener process. The random long-run covariance matrices are partitioned as:

Ωi :=
(︄

Ωuiui Ωuivi

Ωviui Ωvivi

)︄
. (2.4)

For later usage we also define the half long-run covariance matrices partitioned analogously, i. e.,:

∆i :=
(︄

∆uiui ∆uivi

∆viui ∆vivi

)︄
, (2.5)

with consequently Ωi = ∆i +∆′
i −Σi, where Σi is the random contemporaneous covariance matrix.

More specifically, this leads to the assumption:

Assumption 2.1. The random processes {ηit}t∈Z are independent across i = 1, . . . , N , the random
matrices (∆i, Σi) are independent of the Wiener processes Wi(r) for i = 1, . . . , N and Ωi is positive
definite almost surely for i = 1, . . . , N .

Given the primary focus on the slope parameter vector β := (β1, β2, β3)′, it is convenient to use
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uniform notation, ỹit and X̃it, for both demeaned and demeaned and linearly detrended variables.
In the demeaning only case, we thus have:

ỹit := yit − ȳi. = yit − 1
T

T∑︂
t=1

yit, (2.6)

with analogously defined quantities for xit (and its powers), uit and vit. Stacking defines:

X̃it :=

⎛⎜⎜⎝
x̃it˜︂x2

it˜︂x3
it

⎞⎟⎟⎠ =

⎛⎜⎜⎝
xit − xi.

x2
it − x2

i.

x3
it − x3

i.

⎞⎟⎟⎠ . (2.7)

In case of demeaning and linear detrending, we have, using generic notation zit, for yit, xit and its
powers:

z̃it := zit − 4T − 6t + 2
T − 1 zi. − −6T + 12t − 6

(T − 1)(T + 1)

T∑︂
t=1

(︃
t

T

)︃
zit, (2.8)

leading to a correspondingly demeaned and detrended stacked vector X̃it, with ũit and ṽit again
defined analogously.3

The exact form of the results depends, in addition to the specification of the deterministic com-
ponents in the regression equation, also on whether the regressors xit include a (non-zero) drift or
not. It is therefore convenient to structure the discussion according to the following cases: zero
drifts µi = 0, i = 1, . . . , N , non-zero drifts µi ̸= 0, i = 1, . . . , N and the general case µi ∈ R,
i = 1, . . . , N .

2.2.1 Zero Drifts

To complete the formulation of the assumptions required in this case, define
GT := diag(T −1, T −3/2, T −2) and Ai :=

(︂
1, 2

∫︁ 1
0 Bvi(r)dr, 3

∫︁ 1
0 B2

vi
(r)dr

)︂′
. To capture the effects of

demeaning, demeaning and linear detrending – or of the “removal” of more general trend functions
– define for an (integrable stochastic process) P (r) and an asymptotically regular trend function
D(r) for 0 ≤ r ≤ 1:

P̃ (r) := P (r) − D(r)
(︃∫︂ 1

0
D(s)D(s)′ds

)︃−1 ∫︂ 1

0
D(s)P (s)ds, (2.9)

which for the case of demeaning, of course, simplifies to P̃ (r) = P (r)−
∫︁ 1

0 P (s)ds.4 The notation al-
lows to (generically) define B̃vi(r) :=

(︂
B̃vi(r), ˜︃B2

vi
(r), ˜︃B3

vi
(r)
)︂′

, corresponding to the deterministic
specification considered. Using this notation we assume:

Assumption 2.2. For i = 1, . . . , N and 0 ≤ r ≤ 1 it holds that:
3Clearly, more general (asymptotically) regular trend functions can be considered, e. g., higher order polynomial

time trends. A trend function D(r), 0 ≤ r ≤ 1 is called asymptotically regular, if
∫︁ 1

0 D(r)D(r)′dr is positive definite.
4As is well-known, in case of demeaning and linear detrending, P̃ (r) = P (r) − (4 − 6r)

∫︁ 1
0 P (s)ds − (−6 +

12r)
∫︁ 1

0 sP (s)ds.
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(a) T 1/2GT X̃i⌊rT ⌋⇒B̃vi(r),

(b) GT
∑︁T

t=1 X̃itũit
d−→
∫︁ 1

0 B̃vi(r)dBui(r) + ∆viuiAi,

(c) GT
∑︁T

t=1 X̃itvit
d−→
∫︁ 1

0 B̃vi(r)dBvi(r) + ∆viviAi,

with all quantities converging jointly.

As usual in fully modified OLS type estimation, consistent non-parametric kernel estimators of
long-run covariances and half long-run covariances – based on the OLS residuals ûit from (2.1)
and vit = ∆xit – are required. This in turn requires appropriate kernel and bandwidth choices,
compare, e. g., Jansson (2002).5

Assumption 2.3. The cross-sectionally independent estimators ∆̂i and Σ̂i satisfy ∆̂i
p−→ ∆i and

Σ̂i
p−→ Σi for i = 1, . . . , N . By definition, this implies cross-sectional independence and consistency

of Ω̂i := ∆̂i + ∆̂′
i − Σ̂i for i = 1, . . . , N .

For brevity we abstain from formulating primitive assumptions that generate our Assumptions 2.2
and 2.3 that are, in fact, convergence results. The literature provides several – by now well-
understood – routes to derive these results from primitive assumptions using near epoch dependence
concepts, martingale difference sequences or linear processes (see, e. g., de Jong, 2002; Ibragimov
and Phillips, 2008; Park and Phillips, 2001). Our formulations and assumptions are similar to
de Jong and Wagner (2022) who in turn build upon Phillips and Moon (1999). However, in a
finite N setting, as considered in this paper, one can replace the random linear process framework
without any (substantial) loss with more classical assumptions as posited, e. g., in Wagner and
Hong (2016) in a time series setting. As discussed below in Remark 2.4, the random linear process
framework provides fundamental value added only in case of N → ∞, see also the discussion in
de Jong and Wagner (2022).

We are now ready to define the group-mean fully modified OLS estimator as the cross-sectional
average of the individual specific fully modified OLS estimators (as developed in Wagner and
Hong, 2016) of the coefficient vector β. More precisely, we define for i = 1, . . . , N the FM-OLS
estimator of β from the i-th cross-section member – computed from individual specifically demeaned
or individual specifically demeaned and linearly detrended data – as:

β̂
+(i) :=

(︄
T∑︂

t=1
X̃itX̃

′
it

)︄−1(︄ T∑︂
t=1

X̃itỹ
+
it − Ci

)︄
, (2.10)

where ỹ+
it := ỹit − ∆xitΩ̂

−1
vivi

Ω̂viui and Ci := ∆̂+
viui

(︂
T, 2∑︁T

t=1 xit, 3∑︁T
t=1 x2

it

)︂′
, with ∆̂+

viui
:= ∆̂viui −

∆̂viviΩ̂
−1
vivi

Ω̂viui .6 The cross-sectional average of β̂
+(i) defines the group-mean fully modified OLS

5To maintain cross-sectional independence of the individual specific estimators, the long-run covariance matrix
estimators need to be cross-sectionally independent as well. The asymptotic analysis considered in de Jong and
Wagner (2022), with also N → ∞ after T → ∞, allows for more flexibility in this respect.

6Note that performing FM-OLS calculations for a time series dimension ranging from t = 1, . . . , T implicitly
assumes that observations are available for t = 0, . . . , T as the construction of ỹ+

it implies that one loses the first
observation.
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estimator:

β̂
+ := 1

N

N∑︂
i=1

β̂
+(i). (2.11)

The following proposition derives its asymptotic distribution as the time series dimension T → ∞,
for fixed cross-section dimension N .

Proposition 2.1. Let the data be generated by (2.1) and (2.2) with µi = 0, i = 1, . . . , N and let
Assumptions 2.1, 2.2 and 2.3 be in place. Then it holds for T → ∞, conditional upon ∆i, Σi and
Wvi(r) for i = 1, . . . , N , that:

G−1
T

(︂
β̂

+ − β
)︂

d−→ N
(︂
0, V +

)︂
, (2.12)

where N
(︁
0, V +)︁ denotes a normal distribution with expectation zero and conditional covariance

matrix:

V + := 1
N2

N∑︂
i=1

Ωui·vi

(︃∫︂ 1

0
B̃vi(r)B̃vi(r)′dr

)︃−1
= 1

N2

N∑︂
i=1

Ωui·viM̃
−1
ii , (2.13)

with Ωui·vi
:= Ωuiui − ΩuiviΩ−1

vivi
Ωviui > 0 given by the conditional variance of Bui·vi(r) := Bui(r) −

ΩuiviΩ−1
vivi

Bvi(r) and M̃ ii defined by the last equality.

Under our assumptions, the natural consistent estimator of V + is:

V̂
+ := 1

N2

N∑︂
i=1

Ω̂ui·vi

(︄
GT

T∑︂
t=1

X̃itX̃
′
itGT

)︄−1

= G−1
T Ŝ

+
G−1

T , (2.14)

with Ω̂ui·vi
:= Ω̂uiui − Ω̂uiviΩ̂

−1
vivi

Ω̂viui and Ŝ
+ defined by the last equality.

The conditional normal limit in conjunction with the availability of a consistent estimator of the
covariance matrix as given in (2.14) leads to standard asymptotic inference. To obtain standard
asymptotic behavior of hypothesis tests, we have to take into account that the components of
the vector β̂

+ converge at different rates, an issue discussed in detail, e. g., in Sims et al. (1990,
Section 4) or Wagner and Hong (2016, Section 2.2, p. 1297). It suffices to assume that the constraint
matrix fulfills the (asymptotic) restriction posited in the following corollary.

Corollary 2.1. Let the data be generated by (2.1) and (2.2) with µi = 0, i = 1, . . . , N , and let
Assumptions 2.1, 2.2 and 2.3 be in place. Consider s linearly independent restrictions collected in:

H0 : Rβ = r, (2.15)

with R ∈ Rs×3, r ∈ Rs and assume that there exists a non-singular matrix GR ∈ Rs×s such that
limT →∞ GRRGT = R∗, with R∗ ∈ Rs×3 of rank s. Then it holds under the null hypothesis that the
Wald-type statistic:

W + :=
(︂
Rβ̂

+ − r
)︂′ (︂

RŜ
+

R′
)︂−1 (︂

Rβ̂
+ − r

)︂
(2.16)
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is chi-squared distributed with s degrees of freedom as T → ∞. In case s = 1, of course, also a
t-type test can be considered:

t+ := Rβ̂
+ − r√︂

RŜ
+

R′
, (2.17)

which is under the null hypothesis asymptotically standard normally distributed as T → ∞.

Inference on αi and δi is also possible. Similarly, as an observation for later when drifts are consid-
ered, also inference on µi using, e. g., augmented Dickey-Fuller type regressions can be performed.

Remark 2.1. The group-mean estimator is robust to many forms of cross-section dependence, i. e.,
it remains consistent with a zero mean Gaussian mixture limiting distribution despite cross-section
dependence. Of course, the covariance matrix of the asymptotic distribution changes – depending
upon the form and extent of cross-section dependence. Given that we consider a fixed N setting,
it suffices to simply consider a multivariate version of our assumptions ensuring joint convergence
of all quantities for i = 1, . . . , N .

The key quantity required for “robust” inference is (a consistent estimator of) the asymptotic co-
variance matrix of the group-mean FM-OLS estimator in case of cross-section dependence. To this
end denote with M̃ ij :=

∫︁ 1
0 B̃vi(r)B̃vj(r)′dr and with Ωui·vi;uj ·vj the “constant” in the quadratic

covariation of the processes Bui·vi(r) and Buj ·vj (r).7 The asymptotic covariance matrix of the
group-mean estimator given in (2.11) changes from the expression given in (2.13) to the “sand-
wich” form:

V +
rob := 1

N2

N∑︂
i,j=1

Ωui·vi;uj ·vj M̃
−1
ii M̃ ijM̃

−1
jj . (2.18)

It is important to note that the above result allows for very general forms of cross-section depen-
dencies, as long as V +

rob is invertible. As an (extreme) example, consider the case xit = xt for
i = 1, . . . , N , i. e., the integrated regressor is the same for all cross-section members, which is
an extreme form of cross-unit cointegration, compare Wagner and Hlouskova (2010). In this case
M̃ ii = M̃ jj = M̃ ij = M̃ for i, j = 1, . . . , N and V +

rob =
(︂

1
N2
∑︁N

i,j=1 Ωui·v;uj ·v
)︂

M̃
−1, using simpli-

fied notation ∆xt = vt in Ω. The term in brackets simplifies in this case to 1
N2 1′

N Ωu·v1N , with
1N := [1, . . . , 1]′ ∈ RN and Ωu·v = Ωuu − ΩuvΩ−1

vv Ωvu. Thus, positive definiteness of Ωu·v is in
this example sufficient for robust inference. This example highlights the wide applicability of robust
inference based on the group-mean estimator, without having to posit a model for cross-section
dependence, e. g., common stochastic trends or a factor structure.8

7Given that we consider the quadratic covariation between Brownian motions, this constant is of course simply
the covariance between Bui·vi (1) and Buj ·vj (1).

8We abstain from positing an explicit set of assumptions for brevity as the discussion in the remark makes clear
that any set of sufficient assumptions has to extend the marginal assumptions posited so far to hold jointly with
cross-section dependence allowed for. Clearly, in the presence of cross-section dependence the estimators of the joint
long-run covariance matrix cannot will not feature cross-sectional independence by construction, compare Footnote 5.
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A consistent estimator of the asymptotic covariance matrix V +
rob is given by:

V̂
+
rob := 1

N2

N∑︂
i,j=1

Ω̂ui·vi;uj ·vj

(︄
GT

T∑︂
t=1

X̃itX̃
′
itGT

)︄−1(︄
GT

T∑︂
t=1

X̃itX̃
′
jtGT

)︄(︄
GT

T∑︂
t=1

X̃jtX̃
′
jtGT

)︄−1

= G−1
T

1
N2

N∑︂
i,j=1

Ω̂ui·vi;uj ·vj

(︄
T∑︂

t=1
X̃itX̃

′
it

)︄−1(︄ T∑︂
t=1

X̃itX̃
′
jt

)︄(︄
T∑︂

t=1
X̃jtX̃

′
jt

)︄−1

G−1
T

=: G−1
T Ŝ

+
robG

−1
T , (2.19)

with Ŝ
+
rob defined by the last equality. Since Ωui·vi;uj ·vj = Ωuiuj −ΩuiviΩ−1

vivi
Ωviuj −Ωujvj Ω−1

vjvj
Ωvjui +

ΩuiviΩ−1
vivi

Ωvivj Ω−1
vjvj

Ωvjuj , we obtain the estimator Ω̂ui·vi;uj ·vj by replacing the unknown long-run
variances and covariances in the expression just given for Ωui·vi;uj ·vj by consistent estimators.
“Robust” Wald-type and t-type test statistics can now be defined similarly to the Wald-type and
t-type test statistics defined in (2.16) and (2.17), with Ŝ

+
rob as defined in (2.19) in place of Ŝ

+, i. e.:

W +
rob :=

(︂
Rβ̂

+ − r
)︂′ (︂

RŜ
+
robR

′
)︂−1 (︂

Rβ̂
+ − r

)︂
(2.20)

t+
rob := Rβ̂

+ − r√︂
RŜ

+
robR

′
, (2.21)

which are under the null hypothesis asymptotically chi-squared distributed with s degrees of freedom
and standard normally distributed, respectively, as T → ∞.

Remark 2.2. In panel data settings often rather than individual specific time trends, time ef-
fects are considered – most commonly in conjunction with individual effects – in a two-way ef-
fects specification. Time effects also do not invalidate consistency of the group-mean estimator.
However, the limiting distribution is in this case contaminated by second order bias terms re-
lated to the presence of cross-sectional averages of time series limits. In the two-way case, with
individual specific intercepts and time effects, the transformed regressor vector, e. g., is given by
X̌it := X̃it − 1

N

∑︁N
j=1 X̃jt, with X̃it, i = 1, . . . , N as defined in (2.7). This leads to a partial sum

limit (compare Assumption 2.2) of the form T 1/2GT X̌i⌊rT ⌋ ⇒ B̃vi(r) − 1
N
∑︁N

j=1 B̃vj(r) =: B̌vi(r).
Thus, the cross-section dependence induced by two-way demeaning shows up in the limit partial
sum processes, which in turn leads to second order bias terms also in the limit of GT

∑︁T
t=1 X̌itǔ

+
it ,

with ǔ+
it := ǔit − ∆xitΩ̂

−1
vivi

Ω̂viui and ǔit := ũit − 1
N

∑︁N
j=1 ũjt. Under appropriate assumptions

1
N

∑︁N
j=1 B̃vj(r) fulfills a law of large numbers for N → ∞. A corresponding result is the basis for

the derivation of the large N and large T asymptotic distribution of the pooled estimator in de Jong
and Wagner (2022) in the two-way effects case.

Remark 2.3. Considering time effects in a cross-sectionally homogenous case, with ∆i = ∆ a.s.
and Σi = Σ a.s for i = 1, . . . , N , allows to alternatively adjust the group-mean estimator to achieve
asymptotically valid inference by using y̌+

it := y̌it −∆x̌itΩ̂
−1
vv Ω̂vu, where y̌it := ỹit − 1

N

∑︁N
j=1 ỹjt, with
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ỹit as defined in (2.6) for i = 1, . . . , N , as transformed dependent variable and:9

Či := ∆̂+
vu

⎛⎝(︃N − 1
N

)︃2
(︄

T, 2
T∑︂

t=1
xit, 3

T∑︂
t=1

x2
it

)︄′

+ 1
N2

∑︂
j ̸=i

(︄
T, 2

T∑︂
t=1

xjt, 3
T∑︂

t=1
x2

jt

)︄′⎞⎠ (2.22)

as additive correction term when estimating the parameters of the i-th equation with FM-OLS. This
leads to the following homogeneous group-mean estimator:

β̌
+
HOM := 1

N

N∑︂
i=1

β̌
+(i), (2.23)

where:

β̌
+(i) :=

(︄
T∑︂

t=1
X̌itX̌

′
it

)︄−1(︄ T∑︂
t=1

X̌ity̌
+
it − Či

)︄
, i = 1, . . . , N. (2.24)

The asymptotic (conditional) covariance matrix of the homogenous group-mean FM-OLS estimator
is given by V +

HOM := Ωu·v
1

N2
∑︁N

i=1 M̃
−1
ii , compare (2.13). The homogenous versions of the Wald-

and t-type statistics follow straightforwardly.

Remark 2.4. Note that under (additional) assumptions that ensure the existence of required mo-
ments, in particular of E(Ωui·viM̃

−1
ii ), it follows in case of cross-sectional independence that:

√
NG−1

T

(︂
β̂

+ − β
)︂

d−→ N
(︂
0,E(Ωui·viM̃

−1
ii )
)︂

, (2.25)

as N → ∞ after T → ∞. An estimator of the covariance matrix of this limiting distribution is
given by NV̂

+, with V̂
+ the “finite N” covariance matrix estimator given below Proposition 2.1

in (2.14).

2.2.2 Non-Zero Drifts

Let us now consider the case with non-zero drifts, i. e., µi ̸= 0, i = 1, . . . , N . In this case, the
integrated regressor:

xit = µi + xi,t−1 + vit = µit +
t∑︂

s=1
vis + xi0 = µit + xo

it + xi0, (2.26)

is asymptotically dominated by the deterministic linear trend µit rather than the stochastic trend
xo

it := ∑︁t
s=1 vis. For later usage define X̃

o
it similarly to X̃it in (2.7), with xo

it and its powers in place
of xit and its powers.

The implications of the dominance of a deterministic trend component on unit root and cointe-
gration analysis have been investigated in the linear time series case already by West (1988), and,
in the context of FM-OLS estimation, in Phillips and Hansen (1990, Remark (e), p. 105). For the

9In this case, e. g., the homogenous long-run covariance matrix Ω can be estimated by the cross-sectional average of
individual specific long-run covariance matrix estimators, i. e., Ω̂ := 1

N

∑︁N

i=1 Ω̂i; and similarly for the other required
matrices.
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second and third powers of xit, the higher order deterministic (monomial) quadratic or cubic time
trends are the dominant elements. This, of course, leads to similar asymptotic normality results
as that of West (1988) in a linear cointegration setting. However, in our context, the deterministic
trend will not be dominant in x̃it, when both demeaning and linear detrending take place. In this
case the deterministic component is exactly annihilated in the demeaned and detrended variable
x̃it. Consequently, in this case, the coefficient to the first power of the integrated regressor will
have a unit root type asymptotic distribution rather than a normal asymptotic distribution.10

It is maybe worth mentioning that the presence of non-zero drifts µi ̸= 0 does not imply changes
in the construction of the transformed dependent variable ỹ+

it . Commencing from ∆xit = µi + vit

immediately leads to:

ỹ+
it = ỹit − ∆xitΩ̂

−1
vivi

Ω̂viui = ỹit − vitΩ̂
−1
vivi

Ω̂viui − µiΩ̂
−1
vivi

Ω̂viui . (2.27)

This in turn implies that ũ+
it = ũit − vitΩ̂

−1
vivi

Ω̂viui − µiΩ̂
−1
vivi

Ω̂viui . Consequently, the scaled partial
sum process 1√

T

∑︁⌊rT ⌋
t=1 ũ+

it diverges, being non-centered. Nevertheless, ∑︁T
t=1 X̃it = 0 implies that

– after appropriate scaling – the cross product term ∑︁T
t=1 X̃itũ

+
it converges (conditionally) to a

Gaussian mixture limit (with integrator and integrand independent of each other) plus an additive
bias term to be subtracted. This is the key result allowing for asymptotically valid inference based
upon the group-mean FM-OLS estimator. Thus, the definition and computation of group-mean
FM-OLS estimator is unaffected by or invariant to the presence of non-zero drifts.

Remark 2.5. In relation to the above, a word of caution may be in order concerning long-run
covariance estimation, typically based on the OLS residuals ûit of (2.1) in conjunction with the
first difference ∆xit of xit. If one uses, as is sometimes done, an estimator that does not center the
variables prior to autocovariance estimation, the resultant estimator will diverge due to non-zero
expectation µi of ∆xit. By construction ûit does not have to be centered in any of our specifications
as they all include at least an intercept as deterministic variable. If it is known that µi = 0, also
∆xit need not be centered.

Extending Proposition 2.1 to the case of non-zero drifts requires the definition of a few addi-
tional quantities, including the scaling matrices HT := diag

(︂
T −3/2, T −5/2, T −7/2

)︂
and KT :=

diag
(︂
T −1, T −5/2, T −7/2

)︂
. Furthermore, for i = 1, . . . , N define:

Ji(r) :=

⎛⎜⎜⎝
µi

µ2
i

µ3
i

⎞⎟⎟⎠
⎛⎜⎜⎝

r − 1/2
r2 − 1/3
r3 − 1/4

⎞⎟⎟⎠ =: D(µi)

⎛⎜⎜⎝
r − 1/2
r2 − 1/3
r3 − 1/4

⎞⎟⎟⎠ (2.28)

Li(r) :=

⎛⎜⎜⎝
1

µ2
i

µ3
i

⎞⎟⎟⎠
⎛⎜⎜⎝

B̃vi(r)
r2 − r + 1/6

r3 − 9/10r + 1/5

⎞⎟⎟⎠ =: E(µi)

⎛⎜⎜⎝
B̃vi(r)

r2 − r + 1/6
r3 − 9/10r + 1/5

⎞⎟⎟⎠ (2.29)

10For a full analysis of the impacts of the presence of deterministic trends in the regression equation and/or the
regressors for a more general cointegrating polynomial regression specification – in the time series case – see Reichold
and Wagner (2022).
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Proposition 2.2. Let the data be generated by (2.1) and (2.2) with µi ̸= 0, i = 1, . . . , N and let
Assumptions 2.1, 2.2 for X̃

o
it and 2.3 be in place.

(i) In case individual specific intercepts but no individual specific linear trends are included
in (2.1), it holds for T → ∞, conditional upon ∆i and Σi for i = 1, . . . , N that:

H−1
T

(︂
β̂

+ − β
)︂

d−→ N
(︂
0, V +

α

)︂
, (2.30)

with V +
α := 1

N2
∑︁N

i=1 Ωui·vi

(︂∫︁ 1
0 Ji(r)Ji(r)′dr

)︂−1
for i = 1, . . . , N .

(ii) In case individual specific intercepts and linear trends are included in (2.1), it holds for
T → ∞, conditional upon ∆i, Σi and Wvi(r) for i = 1, . . . , N that:

K−1
T

(︂
β̂

+ − β
)︂

d−→ N
(︂
0, V +

α,δ

)︂
, (2.31)

with V +
α,δ := 1

N2
∑︁N

i=1 Ωui·vi

(︂∫︁ 1
0 Li(r)Li(r)′dr

)︂−1
for i = 1, . . . , N .

Proposition 2.2 shows that the two cases – with or without individual specific trends – lead to
different asymptotic distributions of the group-mean FM-OLS estimator. Case (i), without indi-
vidual specific trends, leads to a West-type asymptotic normality result for all elements of β, more
clearly (unconditionally) visible in case ∆i and Σi are considered non-random. It is convenient to
rewrite V +

α as:

V +
α = 1

N2

N∑︂
i=1

Ωui·vi

⎛⎜⎜⎝D(µi)

⎛⎜⎜⎝
1/12 1/12 3/40
1/12 4/45 1/12
3/40 1/12 9/112

⎞⎟⎟⎠D(µi)

⎞⎟⎟⎠
−1

(2.32)

This leads immediately to two estimators of V +
α , one similar to the estimator V̂

+ given in (2.14)
and the second commencing from the closed form expression for the limit result, i. e.:

V̂
+
α := 1

N2

N∑︂
i=1

Ω̂ui·vi

(︄
HT

T∑︂
t=1

X̃itX̃
′
itHT

)︄−1

= H−1
T Ŝ

+
H−1

T , (2.33)

and:

Ṽ
+
α := 1

N2

N∑︂
i=1

Ω̂ui·vi

⎛⎜⎜⎝D(µ̂i)

⎛⎜⎜⎝
1/12 1/12 3/40
1/12 4/45 1/12
3/40 1/12 9/112

⎞⎟⎟⎠D(µ̂i)

⎞⎟⎟⎠
−1

, (2.34)

with, e. g., µ̂i := 1
T

∑︁T
t=1 ∆xit.

In case (ii), with individual specific intercepts and linear trends included, the coefficient to x̃it

has, as mentioned above, a unit root type limiting distribution and only the coefficients to the
higher order powers have a West-type asymptotic normal distribution. This implies that a “direct”
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estimator of V +
α,δ, similar in spirit to Ṽ

+
α , can only be constructed for the lower 2 × 2 block, i. e.:

V̂
+
α,δ := 1

N2

N∑︂
i=1

Ω̂ui·vi

(︄
KT

T∑︂
t=1

X̃itX̃
′
itKT

)︄−1

= K−1
T Ŝ

+
K−1

T , (2.35)

and:

Ṽ
+
α,δ := 1

N2

N∑︂
i=1

Ω̂ui·vi

⎛⎜⎜⎝
1

T 2
∑︁T

t=1(x̃it)2 1
T 7/2

∑︁T
t=1 x̃it

˜︂x2
it

1
T 9/2

∑︁T
t=1 x̃it

˜︂x3
it

1
T 7/2

∑︁T
t=1 x̃it

˜︂x2
it µ̂4

i /180 µ̂5
i /120

1
T 9/2

∑︁T
t=1 x̃it

˜︂x3
it µ̂5

i /120 9µ̂6
i /700

⎞⎟⎟⎠
−1

. (2.36)

The above considerations lead to the following corollary summarizing the test options in case of
non-zero drifts.

Corollary 2.2. Let the data be generated by (2.1) and (2.2) with µi ̸= 0, i = 1, . . . , N and
let Assumptions 2.1, 2.2 for X̃

o
it and 2.3 be in place. Consider s linearly independent restrictions

collected in H0 : Rβ = r, with R ∈ Rs×3, r ∈ Rs and assume that there exists a non-singular matrix
GR ∈ Rs×s and a matrix R∗ ∈ Rs×3 of rank s such that limT →∞ GRRHT = R∗ (in the individual
specific intercepts only case) or limT →∞ GRRKT = R∗ (in the individual specific intercepts and
linear trends case).

In both, the individual specific intercepts only and the individual specific intercepts and linear trends
cases, the Wald- and (in case s = 1) t-type statistics:

W + =
(︂
Rβ̂

+ − r
)︂′ (︂

RŜ
+

R′
)︂−1 (︂

Rβ̂
+ − r

)︂
(2.37)

t+ = Rβ̂
+ − r√︂

RŜ
+

R′
, (2.38)

already defined in (2.16) and (2.17), are under the null hypothesis chi-squared distributed with s

degrees of freedom and standard normally distributed, respectively, as T → ∞.

Furthermore, in the individual specific intercepts only case, the test statistics can alternatively
(asymptotically equivalently) be defined as:

W +
α :=

(︂
Rβ̂

+ − r
)︂′ (︂

RS̃
+
α R′

)︂−1 (︂
Rβ̂

+ − r
)︂

(2.39)

t+
α := Rβ̂

+ − r√︂
RS̃

+
α R′

, (2.40)

with S̃
+
α := HT Ṽ

+
α HT .

In the individual specific intercepts and linear trends case, the test statistics can alternatively
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(asymptotically equivalently) be defined as:

W +
α,δ :=

(︂
Rβ̂

+ − r
)︂′ (︂

RS̃
+
α,δR′

)︂−1 (︂
Rβ̂

+ − r
)︂

(2.41)

t+
α,δ := Rβ̂

+ − r√︂
RS̃

+
α,δR′

, (2.42)

with S̃
+
α,δ := KT Ṽ

+
α,δKT . Under the null hypothesis the four additionally considered test statistics

are asymptotically are asymptotically chi-squared or standard normally distributed, respectively, as
T → ∞.

Remark 2.6. Similar to Remark 2.1 in Subsection 2.2.1, the results can be extended to allow
for cross-section dependence; based again upon any suitable modification of the assumptions to
ensure the necessary joint convergence results. The precise form of the asymptotic results will
depend upon the deterministic components in (2.1). With individual specific intercepts only, the
covariance matrix of the asymptotic distribution is in case of cross-section dependence given by:

V +
α,rob := 1

N2

N∑︂
i,j=1

Ωui·vi;uj ·vj

(︃∫︂ 1

0
Ji(r)Ji(r)′dr

)︃−1 ∫︂ 1

0
Ji(r)Jj(r)′dr

(︃∫︂ 1

0
Jj(r)Jj(r)′dr

)︃−1

= 1
N2

N∑︂
i,j=1

Ωui·vi;uj ·vj

⎛⎜⎜⎝D(µi)

⎛⎜⎜⎝
1/12 1/12 3/40
1/12 4/45 1/12
3/40 1/12 9/112

⎞⎟⎟⎠D(µj)

⎞⎟⎟⎠
−1

. (2.43)

In case that both individual specific intercepts and linear trends are included in (2.1), the covariance
matrix of the asymptotic distribution is given by:

V +
α,δ,rob := 1

N2

N∑︂
i,j=1

Ωui·vi;uj ·vj

(︃∫︂ 1

0
Li(r)Li(r)′dr

)︃−1 ∫︂ 1

0
Li(r)Lj(r)′dr

(︃∫︂ 1

0
Lj(r)Lj(r)′dr

)︃−1

=: 1
N2

N∑︂
i,j=1

Ωui·vi;uj ·vj C(i, j), (2.44)

with C(i, j) defined by the last equality. Considering again:

Ŝ
+
rob = 1

N2

N∑︂
i,j=1

Ω̂ui·vi;uj ·vj

(︄
T∑︂

t=1
X̃itX̃

′
it

)︄−1(︄ T∑︂
t=1

X̃itX̃
′
jt

)︄(︄
T∑︂

t=1
X̃jtX̃

′
jt

)︄−1

, (2.45)

as defined already in (2.19), immediately leads to consistent estimators in both cases, given by
V̂

+
α,rob := H−1

T Ŝ
+
robH

−1
T or V̂

+
α,δ,rob := K−1

T Ŝ
+
robK

−1
T , respectively. Entirely analogously to Remark 2.1,

using Ŝ
+
rob in the definition of the robust test statistics W +

rob and t+
rob (in case s = 1) given in (2.20)

and (2.21), leads to chi-squared and standard normal inference, respectively, as T → ∞.

Note for completeness that the test statistics W +
α and t+

α defined in (2.39) and (2.40) in Corol-
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lary 2.2 can also be “robustified” straightforwardly. Considering:

Ṽ
+
α,rob := 1

N2

N∑︂
i,j=1

Ω̂uiv̇i;uj ·vj

⎛⎜⎜⎝D(µ̂i)

⎛⎜⎜⎝
1/12 1/12 3/40
1/12 4/45 1/12
3/40 1/12 9/112

⎞⎟⎟⎠D(µ̂j)

⎞⎟⎟⎠
−1

(2.46)

and S̃
+
α,rob := HT Ṽ

+
α,robHT allows to define:

W +
α,rob :=

(︂
Rβ̂

+ − r
)︂′ (︂

RS̃
+
α,robR

′
)︂−1 (︂

Rβ̂
+ − r

)︂
(2.47)

t+
α,rob := Rβ̂

+ − r√︂
RS̃

+
α,robR

′
. (2.48)

Analogously, W +
α,δ and t+

α,δ can be “robustified” by constructing a “direct” estimator of V +
α,δ,rob. To

be precise, Ṽ
+
α,δ defined in (2.36) has to be replaced by:

Ṽ
+
α,δ,rob := 1

N2

N∑︂
i,j=1

Ω̂ui·vi;uj ·vj C̃(i, j) := 1
N2

N∑︂
i,j=1

Ω̂ui·vi;uj ·vj Ã(i)−1B̃(i, j)Ã(j)−1 (2.49)

Ã(i) :=

⎛⎜⎜⎝
1

T 2
∑︁T

t=1(x̃it)2 1
T 7/2

∑︁T
t=1 x̃it

˜︂x2
it

1
T 9/2

∑︁T
t=1 x̃it

˜︂x3
it

1
T 7/2

∑︁T
t=1 x̃it

˜︂x2
it µ̂4

i /180 µ̂5
i /120

1
T 9/2

∑︁T
t=1 x̃it

˜︂x3
it µ̂5

i /120 9µ̂6
i /700

⎞⎟⎟⎠ , i = 1, . . . , N, (2.50)

B̃(i, j) :=

⎛⎜⎜⎝
1

T 2
∑︁T

t=1 x̃itx̃jt
1

T 7/2
∑︁T

t=1 x̃it
˜︂x2
jt

1
T 9/2

∑︁T
t=1 x̃it

˜︂x3
jt

1
T 7/2

∑︁T
t=1 x̃it

˜︂x2
jt µ̂2

i µ̂2
j/180 µ̂2

i µ̂3
j/120

1
T 9/2

∑︁T
t=1 x̃it

˜︂x3
jt µ̂3

i µ̂2
j/120 9µ̂3

i µ̂3
j/700

⎞⎟⎟⎠ , i, j = 1, . . . , N. (2.51)

Based upon this, defining S̃
+
α,δ,rob := KT Ṽ

+
α,robKT leads to the robust versions of the “direct” test

statistics, i. e.:

W +
α,δ,rob :=

(︂
Rβ̂

+ − r
)︂′ (︂

RS̃
+
α,δ,robR

′
)︂−1 (︂

Rβ̂
+ − r

)︂
(2.52)

t+
α,δ,rob := Rβ̂

+ − r√︂
RS̃

+
α,δ,robR

′
. (2.53)

Under the null hypothesis the test statistics are asymptotically chi-squared or standard normally
distributed, respectively, as T → ∞.

Remark 2.7. In case of individual specific intercepts in (2.1) only, also the OLS estimator allows
for asymptotically valid standard inference, as noted by West (1988) in the context of linear time
series cointegrating regressions. Proper scaling by a consistent estimator of the long-run variance
of the errors uit suffices. Therefore, in this case one can consider a group-mean OLS estimator:

β̂ := 1
N

N∑︂
i=1

β̂(i), (2.54)
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with:

β̂(i) :=
(︄

T∑︂
t=1

X̃itX̃
′
it

)︄−1 T∑︂
t=1

X̃itỹit, i = 1, . . . , N. (2.55)

Under the assumptions of Proposition 2.2 it holds for T → ∞, conditional upon ∆i and Σi for
i = 1, . . . , N , that:

H−1
T

(︂
β̂ − β

)︂
d−→ N

(︄
0,

1
N2

N∑︂
i=1

Ωuiui

(︃∫︂ 1

0
Ji(r)Ji(r)′dr

)︃−1)︄
(2.56)

Therefore, exactly as discussed in Corollary 2.2, group-mean OLS based Wald- and t-type test
statistics can be defined using two different estimators of the covariance matrix, analogous to using
either Ŝ

+ or S̃
+
α , where in both matrices Ω̂ui·vi is replaced by Ω̂uiui for i = 1, . . . , N . More precisely,

constructing:

Ŝ := 1
N2

N∑︂
i=1

Ω̂uiui

(︄
T∑︂

t=1
X̃itX̃

′
it

)︄−1

(2.57)

S̃α := 1
N2

N∑︂
i=1

Ω̂uiuiHT

⎛⎜⎜⎝D(µ̂i)

⎛⎜⎜⎝
1/12 1/12 3/40
1/12 4/45 1/12
3/40 1/12 9/112

⎞⎟⎟⎠D(µ̂i)

⎞⎟⎟⎠
−1

HT , (2.58)

with, as before, HT = diag(T −3/2, T −5/2, T −7/2), D(µ̂i) = diag(µ̂i, µ̂2
i , µ̂3

i ) and Ω̂uiui an estimator
of the long-run variance of uit, allows to define corresponding Wald- and (in case s = 1) t-type
statistics:

W :=
(︂
Rβ̂ − r

)︂′ (︂
RŜR′

)︂−1 (︂
Rβ̂ − r

)︂
(2.59)

t := Rβ̂ − r√︁
RŜR′

, (2.60)

and

Wα :=
(︂
Rβ̂ − r

)︂′ (︂
RS̃αR′

)︂−1 (︂
Rβ̂ − r

)︂
(2.61)

tα := Rβ̂ − r√︂
RS̃αR′

. (2.62)

Furthermore, similar to Remarks 2.1 and 2.6, cross-section dependence can be accommodated, i. e.,
the group-mean OLS estimator can also be used to perform robust inference, again in two ways.
One variant is given by:

Wrob :=
(︂
Rβ̂ − r

)︂′ (︂
RŜrobR

′
)︂−1 (︂

Rβ̂ − r
)︂

(2.63)

trob := Rβ̂ − r√︂
RŜrobR′

, (2.64)
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with Ŝrob similar to Ŝ
+
rob as defined in (2.19), but with Ω̂uiuj in place of Ω̂ui·vi;uj ·vj . The second

possibility resembles the result discussed in Remark 2.6. The corresponding test statistics are given
by:

Wα,rob :=
(︂
Rβ̂ − r

)︂′ (︂
RS̃α,robR

′
)︂−1 (︂

Rβ̂ − r
)︂

(2.65)

tα,rob := Rβ̂ − r√︂
RS̃α,robR′

, (2.66)

with S̃α,rob similar to S̃
+
α,rob, but with Ω̂uiuj in place of Ω̂ui·vi;uj ·vj in Ṽ

+
α,rob as defined in (2.46).

Under the null hypothesis all considered test statistics are asymptotically chi-squared or standard
normally distributed, respectively, as T → ∞.

2.2.3 Zero or Non-Zero Drifts

We are now ready to discuss the “general” case concerning drifts, with drifts present or absent in
any cross-section member. It is important to stress again that for using the developed estimators
and tests based upon them no knowledge concerning the presence or absence of drifts is required.
As in the previous subsection it is convenient to first discuss the case with individual specific
intercepts only on the one hand and the case with individual specific intercepts and linear trends
on the other hand separately.

In the individual specific intercepts only case, it follows from a combination of the results of
Propositions 2.1 and 2.2 that the asymptotic behavior of the group-mean estimator only depends
on the individual specific estimators β̂

+(i) calculated from cross-section members with zero drifts,
since these converge at a slower rate than the estimators corresponding to cross-section members
with non-zero drifts in the integrated regressor. It is clear that this “sorts out itself” in the limiting
distributions and there are no implications for either the definition or the useage of the considered
test statistics.

In case of individual specific intercepts and linear trends, Proposition 2.2 shows that the coefficient
to the first power of the integrated regressor, β1, is estimated with (the standard unit root) rate T ,
irrespective of whether a non-zero drift is present or not. Therefore, the limiting distribution of the
first component of β̂

+ will depend upon all cross-section member specific estimates of β1. For β2

and β3, the situation is exactly as in the individual specific intercepts only case, with the limiting
distribution only depending upon the individual specific estimators corresponding to cross-section
members with zero drifts in the integrated regressor.

For notational convenience only, consider the cross-section members ordered in i = 1, . . . , N0

cross-section members with zero drifts and i = N0 + 1, . . . , N cross-section members with non-zero
drifts; noting that N0 can range from zero (non-zero drifts in all cross-section members) to N (all
cross-section members with zero drifts in xit). Furthermore, define the following scaling matrices:

QT :=
{︄

GT if N0 > 0
HT if N0 = 0

and RT :=
{︄

GT if N0 > 0
KT if N0 = 0

. (2.67)

73



2. Panel Cointegrating Polynomial Regressions: Group-Mean Fully Modified OLS Estimation and
Inference

Proposition 2.3. Let the data be generated by (2.1) and (2.2) with µi ∈ R, i = 1, . . . , N and let
Assumptions 2.1, 2.2 for X̃

o
it and 2.3 be in place.

(i) In case individual specific intercepts but no individual specific linear trends are included
in (2.1), it holds for T → ∞, conditional upon ∆i, Σi and Wvi(r) for i = 1, . . . , N that:

Q−1
T

(︂
β̂

+ − β
)︂

d−→ N
(︂
0, V +

N0

)︂
, (2.68)

with:

V +
N0

:=

⎧⎨⎩ 1
N2
∑︁N0

i=1 Ωui·vi

(︂∫︁ 1
0 B̃vi(r)B̃vi(r)′dr

)︂−1
if N0 > 0

V +
α if N0 = 0

. (2.69)

(ii) In case individual specific intercepts and linear trends are included in (2.1), it holds for
T → ∞, conditional upon ∆i, Σi and Wvi(r) for i = 1, . . . , N that:

R−1
T

(︂
β̂

+ − β
)︂

d−→ N
(︂
0, V +

N0

)︂
, (2.70)

with:

V +
N0

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N2
∑︁N0

i=1 Ωui·vi

(︂∫︁ 1
0 B̃vi(r)B̃vi(r)′dr

)︂−1

+ 1
N2
∑︁N

i=N0+1 Ωui·vi

⎛⎜⎜⎜⎝
(︂∫︁ 1

0 Li(r)Li(r)′dr
)︂−1

[1,1]
0 0

0 0 0
0 0 0

⎞⎟⎟⎟⎠ if N0 > 0

V +
α,δ if N0 = 0

, (2.71)

with [1,1] indicating the (1, 1) element of the (3 × 3 inverted) matrix.

The second term in the covariance matrix V +
N0

in item (ii) in case N0 > 0 reflects the above-
mentioned fact that the coefficient to the first power of the integrated regressor is estimated at
rate T irrespective of whether the drift is zero or non-zero – as in either case linear detrending
removes a potential deterministic linear trend from the corresponding regressor. The asymptotic
distribution immediately leads to Wald- and t-type test statistics.

Corollary 2.3. Let the data be generated by (2.1) and (2.2) with µi ∈ R, i = 1, . . . , N and let
Assumptions 2.1, 2.2 for X̃

o
it and 2.3 be in place. Consider s linearly independent restrictions

collected in H0 : Rβ = r with R ∈ Rs×3, r ∈ Rs and assume that there exists a non-singular
matrix GR ∈ Rs×s and a matrix R∗ ∈ Rs×3 of rank s such that limT →∞ GRRQT = R∗ (in
the individual specific intercepts only case) or limT →∞ GRRRT = R∗ (in the individual specific
intercepts and linear trends case). In both, the individual specific intercepts only and the individual
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specific intercepts and linear trends case, the Wald- and (in case s = 1) t-type statistics:

W =
(︂
Rβ̂

+ − r
)︂′ (︂

RŜ
+

R′
)︂−1 (︂

Rβ̂
+ − r

)︂
, (2.72)

t = Rβ̂
+ − r√︂

RŜ
+

R′
(2.73)

already defined in (2.16) and (2.17), are under the null hypothesis chi-squared distributed with s

degrees of freedom and standard normally distributed, respectively, as T → ∞.

Remark 2.8. As in the previous subsections, cf. Remarks 2.1 and 2.6, the group-mean FM-
OLS estimator remains consistent with a zero mean (conditional) normal limiting distribution in
case of cross-section dependencies; with the assumptions correspondingly adjusted. The key input
for performing “robust” inference is again a consistent estimator of the covariance matrix of the
asymptotic distribution.

In case individual specific intercepts only are included (2.1), the asymptotic covariance matrix is
in case of cross-section dependence given by:

V +
N0,rob :=

{︄ 1
N2
∑︁N0

i,j=1 Ωui·vi;uj ·vj M̃
−1
ii M̃ ijM̃

−1
jj if N0 > 0

V +
α,rob if N0 = 0

. (2.74)

In case both individual specific intercepts and linear trends are included in (2.1), the asymptotic
covariance matrix is given by:

V +
N0,rob :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N2
∑︁N0

i,j=1 Ωui·vi;uj ·vj M̃
−1
ii M̃ ijM̃

−1
jj

+ 1
N2
∑︁N

i,j=N0+1 Ωui·vi;uj ·vj

⎛⎜⎜⎝
C(i, j)[1,1] 0 0

0 0 0
0 0 0

⎞⎟⎟⎠
+ 1

N2
∑︁N0

i=1
∑︁N

j=N0+1 Ωui·vi;uj ·vj

⎛⎜⎜⎝
F(i, j)[1,1] 0 0

0 0 0
0 0 0

⎞⎟⎟⎠ if N0 > 0

+ 1
N2
∑︁N

i=N0+1
∑︁N0

j=1 Ωui·vi;uj ·vj

⎛⎜⎜⎝
K(i, j)[1,1] 0 0

0 0 0
0 0 0

⎞⎟⎟⎠
V +

α,δ,rob if N0 = 0

, (2.75)

with:

F(i, j) :=
(︃∫︂ 1

0
B̃vi(r)B̃vi(r)′dr

)︃−1 ∫︂ 1

0
B̃vi(r)Lj(r)′dr

(︃∫︂ 1

0
Lj(r)Lj(r)′dr

)︃−1
, (2.76)

K(i, j) :=
(︃∫︂ 1

0
Li(r)Li(r)′dr

)︃−1 ∫︂ 1

0
Li(r)B̃vj(r)′dr

(︃∫︂ 1

0
B̃vj(r)B̃vj(r)′dr

)︃
, (2.77)

for i, j = 1, . . . , N .

For performing robust inference, however, the fact that the asymptotic covariance matrices are
case-dependent with respect to both N0 and whether or not individual specific linear trends are
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included in (2.1), has no consequences. The robust test statistics W +
rob and t+

rob defined in (2.20)
and (2.21), using Ŝ

+
rob defined in (2.19), lead to chi-squared respectively standard normal inference

under the null hypothesis as T → ∞. This follows using similar arguments as in Proposition 2.3
and Corollary 2.3.

We abstain from a detailed discussion of constructing test statistics based on “direct” estimators of
the covariance matrix. Doing so would in practice necessitate knowledge concerning the presence
or absence of non-zero drifts in the integrated regressors in the individual cross-section members.
Whilst this knowledge, as unlikely as this may be, could in some applications indeed be available
and one could construct individual specific “direct” estimators, we do not provide – notationally
more cumbersome rather than mathematically more complicated – details here. For the same
reason we also abstain from considering OLS rather than FM-OLS estimation in the cross-section
members with non-zero drifts and do not define a mixed OLS-FM-OLS group-mean estimator. The
corresponding analysis is again notationally more cumbersome rather than mathematically more
complex.

2.3 Finite Sample Performance

We generate, commencing from de Jong and Wagner (2022), data according to (2.1) and (2.2),
i. e.:

yit = αi + δit + xitβ1 + x2
itβ2 + x3

itβ3 + uit, (2.78)

xit = µi + xi,t−1 + vit, xi0 = 0, (2.79)

with slope parameters β1 = 5, β2 = −3 and β3 = 0.3. The regression errors uit and vit are
generated as:

uit = ρ1iui,t−1 + εit + ρ2iνit, (2.80)

vit = 0.1 (νit + 0.5νi,t−1) , (2.81)

with (ε1t, . . . , εNt)′ ∼ N (0, Σ) and (ν1t, . . . , νNt)′ ∼ N (0, Σ), i.i.d. across t = 0, 1, . . . , T , where:

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 ρ3 . . . ρ3

ρ3 1 . . . ...
... . . . . . . ρ3

ρ3 . . . ρ3 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.82)

The parameters ρ1i and ρ2i control the level of serial correlation in the error terms uit and the
extent of regressor endogeneity, respectively, whereas the parameter ρ3 controls the extent of cross-
section dependence. The parameters ρi1, ρi2 are cross-sectionally i.i.d. and independent of (εit, νit)′,
t = 1, . . . , T . In particular we consider ρ1i = ρ1 + U1i and ρ2i = ρ2 + U2i with U1i, U2i i.i.d. uniform
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random variables over the interval [−0.05, 0.05], with ρ1, ρ2 ∈ {0, 0.3, 0.6, 0.9}.11 Furthermore, we
consider also ρ3 ∈ {0, 0.3, 0.6, 0.9}. The individual effects αi are i.i.d. N (−45, 5) and independent
of all other random quantities. For the individual specific time trends we consider two cases: (i)
δi = 0 for i = 1, . . . , N and (ii) δi i.i.d. N (−0.01, 0.01), independent of all other random quantities.
In the former case the variables are demeaned and in the second case the variables are demeaned
and linearly detrended for the construction of the estimators, compare (2.10) and (2.11).

With respect to drifts, µi, we consider three cases: Two boundary cases, one with all drift parame-
ters equal to zero, i. e., µi = µ = 0, and one with all drift parameters equal to µi = µ = 0.02.12 Fur-
thermore, we consider an “intermediate case”, with half of the individual-specific drifts equal to zero
and the other half equal to 0.02. The simulation setting covers all combinations of N ∈ {10, 20, 100}
and T ∈ {100, 250, 500}. For every considered setting, the number of replications is 5,000 and all
test decisions are performed at the 5% nominal level. The reported results rely upon long-run
covariance estimation using the Bartlett kernel in conjunction with the data-dependent bandwidth
rule of Andrews (1991). As indicated already in the introduction, the Supplementary Material
contains a number of additional tables and figures.

We start by considering Bias and root mean squared error (RMSE) of three estimators: The group-
mean OLS estimator, labelled β̂, the group-mean FM-OLS estimator β̂

+ and the pooled FM-OLS
estimator of de Jong and Wagner (2022), labelled β̂

+
P .13 In general, see as an illustration the results

for β1, with µi ̸= 0 for i = 1, . . . , N , in Tables 2.1 and 2.2, the presence of individual specific trends
adversely affects estimator performance, both in terms of bias and RMSE. This almost necessarily
implies, as will be seen also below, a corresponding detrimental impact also on test performance.14

As expected, increasing the sample size, either the cross-section dimension N or (with a stronger
positive effect) the time series dimension T leads to improved performance. As also expected,
increasing any of the ρ-parameters that govern error serial correlation, regressor endogeneity or
cross-section dependence, respectively, leads to performance deterioration. In this respect it turns
out that RMSE is more strongly affected by cross-section dependence than bias, which does not
react strongly to cross-section dependence. By construction, as the pooled FM-OLS estimator
estimates only one set of slope coefficients, the pooled FM-OLS estimator mostly outperforms the
group-mean FM-OLS estimator both in terms of bias and RMSE. Only for β1 in the individual
specific intercepts only case, see Tables 2.1 and 2.2, the group-mean FM-OLS estimator leads in
several case to smaller bias than the pooled FM-OLS estimator (more pronounced for large ρ-values
and smaller sample sizes), albeit in conjunction with higher RMSE. However, this is not the case

11The addition of cross-sectionally i.i.d. random variables to the coefficients ρ1 and ρ2 is a simple way of generating
data in a random linear process fashion. Considering non-random ρ1i and ρ2i leads, as expected, to very similar
results.
Our way of introducing cross-section dependence is inspired by Wagner and Hlouskova (2010) who consider three
specifications for modelling cross-section dependence. We consider their constant correlation setting.

12Setting all non-zero drift parameters equal to 0.02 is for simplicity only. The results are very similar when the
non-zero drifts are independently drawn from the interval [0.01, 0.03]. The point value for µ = 0.02 and the interval
[0.01, 0.03] are inspired by the arithmetic means of the annual GDP per capita growth rates for 19 countries in the
long data set analyzed in Section 2.4. The country-specific arithmetic means range from 0.013 to 0.024, and the
arithmetic mean over all countries of the country-specific mean growth rates is equal to 0.018.

13de Jong and Wagner (2022) do not consider the case of individual specific linear trends but consider time effects,
compare Remark 2.2. It is straightforward to adjust – and implement – the pooled FM-OLS estimator to include
individual specific (linear) time trends, using demeaned and linearly detrended observations.

14Tables 7 and 8 in the Supplementary Material provide the corresponding results for µi = 0 for i = 1, . . . , N .
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Table 2.1: Bias and RMSE of the estimators of β1 in the individual specific intercepts only case
with non-zero drifts.

N = 10 N = 20 N = 100

T ρ1, ρ2 β̂1 β̂
+
1 β̂

+
P,1 β̂1 β̂

+
1 β̂

+
P,1 β̂1 β̂

+
1 β̂

+
P,1

Bias, ρ3 = 0
100 0 −0.01 −0.01 −0.00 −0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.23 0.04 0.01 0.24 0.05 0.01 0.24 0.05 0.01
0.6 0.88 0.21 0.10 0.90 0.22 0.09 0.90 0.22 0.08
0.9 3.23 0.54 0.94 3.24 0.52 0.95 3.23 0.57 0.89

250 0 0.00 0.00 0.00 0.00 0.00 −0.00 −0.00 −0.00 −0.00
0.3 0.08 0.01 0.00 0.08 0.01 0.00 0.08 0.01 0.00
0.6 0.36 0.06 0.03 0.36 0.06 0.03 0.36 0.06 0.02
0.9 1.79 0.24 0.33 1.78 0.24 0.31 1.79 0.25 0.30

500 0 0.00 0.00 −0.00 −0.00 −0.00 −0.00 0.00 0.00 −0.00
0.3 0.03 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00
0.6 0.14 0.02 0.01 0.14 0.02 0.01 0.14 0.02 0.01
0.9 0.86 0.13 0.11 0.86 0.12 0.11 0.87 0.14 0.10

Bias, ρ3 = 0.9
100 0 −0.02 −0.02 −0.01 −0.03 −0.02 −0.02 0.00 0.00 0.01

0.3 0.21 0.02 0.00 0.20 0.01 −0.01 0.24 0.05 0.03
0.6 0.86 0.18 0.11 0.86 0.17 0.10 0.90 0.23 0.15
0.9 3.23 0.39 0.68 3.22 0.35 0.72 3.28 0.47 0.90

250 0 −0.00 −0.00 −0.00 −0.01 −0.01 −0.00 −0.00 −0.00 0.00
0.3 0.08 0.01 0.00 0.08 −0.00 0.00 0.08 0.01 0.01
0.6 0.36 0.06 0.03 0.35 0.05 0.03 0.36 0.07 0.04
0.9 1.78 0.22 0.23 1.77 0.17 0.22 1.81 0.22 0.27

500 0 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 0.00 0.00 −0.00
0.3 0.03 0.00 0.00 0.03 −0.00 −0.00 0.03 0.00 −0.00
0.6 0.14 0.02 0.01 0.13 0.01 0.00 0.14 0.02 0.01
0.9 0.84 0.10 0.09 0.85 0.10 0.07 0.84 0.12 0.09

RMSE, ρ3 = 0
100 0 0.47 0.48 0.11 0.33 0.33 0.07 0.15 0.15 0.03

0.3 0.66 0.63 0.16 0.50 0.44 0.10 0.31 0.20 0.04
0.6 1.32 0.97 0.29 1.14 0.71 0.19 0.95 0.37 0.10
0.9 4.03 2.69 1.37 3.66 1.95 1.14 3.32 1.04 0.93

250 0 0.14 0.14 0.05 0.10 0.10 0.03 0.04 0.04 0.01
0.3 0.21 0.19 0.07 0.16 0.14 0.05 0.10 0.06 0.02
0.6 0.50 0.33 0.13 0.44 0.24 0.09 0.38 0.12 0.04
0.9 2.15 1.16 0.65 1.97 0.85 0.49 1.83 0.46 0.34

500 0 0.05 0.05 0.03 0.04 0.04 0.02 0.02 0.02 0.01
0.3 0.08 0.08 0.04 0.06 0.05 0.02 0.04 0.02 0.01
0.6 0.20 0.13 0.07 0.17 0.09 0.04 0.15 0.05 0.02
0.9 1.06 0.54 0.32 0.95 0.39 0.23 0.89 0.22 0.13

RMSE, ρ3 = 0.9
100 0 1.10 1.11 0.63 1.05 1.06 0.57 1.03 1.04 0.53

0.3 1.50 1.46 0.84 1.41 1.40 0.77 1.38 1.36 0.71
0.6 2.54 2.25 1.34 2.40 2.13 1.23 2.32 2.05 1.14
0.9 6.46 6.37 4.13 6.14 5.82 3.73 5.95 5.58 3.42

250 0 0.35 0.35 0.24 0.35 0.35 0.22 0.35 0.35 0.22
0.3 0.50 0.49 0.34 0.50 0.49 0.31 0.50 0.48 0.30
0.6 0.95 0.82 0.57 0.96 0.82 0.53 0.95 0.81 0.51
0.9 3.48 2.87 2.04 3.50 2.85 1.93 3.44 2.79 1.84

500 0 0.14 0.14 0.11 0.14 0.14 0.10 0.14 0.14 0.10
0.3 0.21 0.20 0.15 0.21 0.20 0.15 0.21 0.20 0.15
0.6 0.42 0.35 0.27 0.41 0.35 0.25 0.43 0.35 0.25
0.9 1.84 1.41 1.05 1.80 1.38 1.01 1.85 1.40 1.00

Note: The column labels β̂1, β̂
+
1 and β̂

+
P,1 denote the group-mean OLS estimator, the group-mean FM-OLS estimator

and the pooled FM-OLS estimator, respectively, of β1.

for β2 and β3, see Tables 9 to 16 in the Supplementary Material, and should thus not be over-
interpreted. Increasing values of ρ1, ρ2 lead to performance advantages of group-mean FM-OLS
over group-mean OLS with – as expected – basically no differences between these two estimators
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Table 2.2: Bias and RMSE of the estimators of β1 in the individual specific intercepts and linear
trends case with non-zero drifts.

N = 10 N = 20 N = 100

T ρ1, ρ2 β̂1 β̂
+
1 β̂

+
P,1 β̂1 β̂

+
1 β̂

+
P,1 β̂1 β̂

+
1 β̂

+
P,1

Bias, ρ3 = 0
100 0 −0.01 −0.01 −0.00 −0.00 0.00 −0.00 0.00 0.00 0.00

0.3 0.31 0.10 0.03 0.32 0.11 0.03 0.32 0.11 0.02
0.6 1.23 0.67 0.30 1.25 0.69 0.27 1.24 0.69 0.25
0.9 4.69 3.96 2.91 4.73 3.97 2.82 4.73 3.99 2.74

250 0 0.00 0.00 0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00
0.3 0.13 0.03 0.01 0.13 0.03 0.01 0.13 0.03 0.01
0.6 0.58 0.24 0.10 0.57 0.23 0.09 0.57 0.23 0.08
0.9 3.06 2.22 1.34 3.02 2.19 1.25 3.04 2.21 1.18

500 0 0.00 0.00 0.00 −0.00 −0.00 −0.00 0.00 0.00 0.00
0.3 0.06 0.01 0.00 0.06 0.01 0.00 0.07 0.01 0.00
0.6 0.30 0.10 0.04 0.30 0.09 0.03 0.30 0.10 0.03
0.9 1.92 1.23 0.60 1.92 1.23 0.56 1.94 1.25 0.53

Bias, ρ3 = 0.9
100 0 −0.03 −0.03 −0.02 −0.03 −0.03 −0.02 0.01 0.01 0.01

0.3 0.29 0.08 0.04 0.28 0.07 0.03 0.32 0.12 0.07
0.6 1.21 0.65 0.46 1.20 0.63 0.44 1.25 0.71 0.49
0.9 4.75 4.01 3.53 4.73 3.94 3.46 4.75 4.09 3.56

250 0 −0.00 0.00 −0.00 −0.01 −0.01 −0.00 −0.00 0.00 0.00
0.3 0.13 0.03 0.02 0.12 0.02 0.01 0.13 0.03 0.02
0.6 0.58 0.24 0.16 0.56 0.22 0.15 0.58 0.24 0.17
0.9 3.07 2.25 1.84 3.00 2.15 1.76 3.11 2.27 1.82

500 0 −0.00 −0.00 −0.00 −0.01 −0.01 −0.01 0.00 0.00 0.00
0.3 0.06 0.01 0.01 0.06 0.00 −0.00 0.06 0.01 0.01
0.6 0.29 0.09 0.07 0.30 0.09 0.06 0.29 0.10 0.07
0.9 1.89 1.21 0.94 1.94 1.23 0.93 1.91 1.25 0.93

RMSE, ρ3 = 0
100 0 0.49 0.50 0.14 0.34 0.35 0.09 0.15 0.15 0.04

0.3 0.72 0.66 0.20 0.55 0.47 0.13 0.38 0.23 0.06
0.6 1.59 1.20 0.45 1.44 0.99 0.35 1.28 0.75 0.27
0.9 5.19 4.54 3.11 4.99 4.29 2.91 4.78 4.06 2.75

250 0 0.15 0.15 0.07 0.10 0.10 0.04 0.05 0.05 0.02
0.3 0.25 0.21 0.09 0.19 0.15 0.06 0.14 0.07 0.03
0.6 0.69 0.42 0.19 0.63 0.34 0.14 0.59 0.26 0.09
0.9 3.31 2.51 1.52 3.14 2.33 1.34 3.06 2.24 1.20

500 0 0.06 0.06 0.03 0.04 0.04 0.02 0.02 0.02 0.01
0.3 0.11 0.08 0.05 0.09 0.06 0.03 0.07 0.03 0.01
0.6 0.34 0.17 0.09 0.32 0.14 0.07 0.30 0.11 0.04
0.9 2.05 1.39 0.72 1.98 1.31 0.63 1.95 1.27 0.55

RMSE, ρ3 = 0.9
100 0 1.15 1.16 0.70 1.09 1.11 0.64 1.06 1.07 0.60

0.3 1.57 1.52 0.95 1.49 1.46 0.88 1.44 1.41 0.82
0.6 2.77 2.44 1.60 2.64 2.32 1.49 2.54 2.23 1.39
0.9 7.19 6.73 5.27 6.95 6.39 4.97 6.75 6.27 4.83

250 0 0.37 0.37 0.27 0.36 0.37 0.26 0.37 0.37 0.25
0.3 0.54 0.52 0.38 0.54 0.51 0.36 0.53 0.51 0.35
0.6 1.11 0.90 0.67 1.11 0.89 0.64 1.11 0.90 0.62
0.9 4.39 3.67 2.90 4.34 3.59 2.79 4.37 3.62 2.75

500 0 0.16 0.16 0.13 0.15 0.15 0.12 0.16 0.16 0.12
0.3 0.24 0.22 0.18 0.23 0.22 0.17 0.24 0.22 0.17
0.6 0.54 0.40 0.32 0.53 0.40 0.31 0.54 0.41 0.31
0.9 2.68 2.04 1.59 2.67 2.01 1.54 2.69 2.03 1.54

Note: See note to Table 2.1.

for ρ1, ρ2 = 0.

The (asymptotic) implications of the absence or presence of drifts manifest themselves also in
the finite sample results. In the individual specific intercepts only case, bias and RMSE of all
components of the OLS and FM-OLS group-mean estimators of β are smaller in the presence
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than in the absence of drifts; compare, e. g., for β1 Table 2.1 with Table 7 in the Supplementary
Material. Exactly in line with asymptotic theory (Proposition 2.3), bias and RMSE of the OLS
and FM-OLS group-mean estimators of β1 are not affected by the absence or presence of drifts
in the individual specific intercepts and linear trends case, compare Table 2.2 with Table 8 in the
Supplementary Material.

To assess test performance we consider in total five different test statistics evaluated under the
null hypothesis by means of empirical null rejection probabilities and under a sequence of 20
alternatives by means of “size-corrected” power. We consider two test statistics based on the
group-mean OLS estimator: The first is a textbook version of a group-mean OLS estimator based
test, labelled WT B, using in Ŝ, as defined in (2.57), instead of Ω̂uiui a textbook variance estimator
given by σ̂2

ui
= 1

T

∑︁T
t=1 û2

it. This test serves as a “textbook” OLS test benchmark and leads to
asymptotically valid inference only when ρi1 = ρi2 = ρ3 = 0 for i = 1, . . . , N . The second group-
mean OLS based test statistic is Wrob as defined in (2.63). As discussed in Remark 2.7, asymptotic
validity of this test for all values of the ρ-parameters hinges critically upon drifts being present in
all cross-section members, which in practice is almost certainly unknown. We, of course, consider
both standard and robust inference based on the group-mean OLS estimator, i. e., W + as defined
in (2.16) and W +

rob as defined in (2.20). Finally, for comparison, we also include the Wald-type test
based on the pooled estimator of de Jong and Wagner (2022), labelled as W +

P .15 Specifically, we
consider the null hypothesis H0 : β1 = 5, β2 = −3, β3 = 0.3. To assess power, we generate data
for a sequence of 20 alternative values for the vector β. Reflecting the different convergence rates
of the components of β, we choose (including also the null values) 21 equidistant values for β1 in
the interval [5, 7], for β2 in the interval [−3, −2] and for β3 in the interval [0.3, 0.7]. The selection
of tests does not include the “direct” tests as they do not provide any extra value added. The
simulations have shown that for small values of T they are very conservative, with empirical null
rejection probabilities often very close to zero, and for large values of T their performance is (as
expected) very similar to the performance of their “non-direct” counterparts.

As indicated already above, also the tests – as an immediate consequence of estimator performance
– generally perform better in the individual specific intercepts only case than when also linear trends
are included. This effect becomes more pronounced for increasing ρ-parameters, see and compare,
e. g., Tables 2.3 and 2.4 for the results in case µi ̸= 0, i = 1, . . . , N .16 Many of the observed
features are in line with expectations: First, size distortions increase with increasing ρ-parameters.
This effect occurs most visibly for WTB, which, as mentioned, only leads to asymptotically valid
inference in case all ρ-parameters are equal to zero. If N is large compared to T , we observe
the phenomenon of “size-divergence” (see, e. g., Wagner and Hlouskova, 2010), i. e., increasing size
distortions for increasing N and fixed (small) T .17 The (relative) behavior of W + and W +

rob is also
as expected: Both tests are, by construction, less adversely affected than, e. g., W when ρi1, ρi2

increase, at least for small values of ρ3. Increasing ρ3 leads to smaller size distortions – partly

15For the pooled estimator the so-called “standard” covariance estimator is used, see de Jong and Wagner (2022)
for details.

16Tables 17 and 18 in the Supplementary Material provide the corresponding results for µi = 0 for i = 1, . . . , N .
The absence or presence of drifts exhibits very limited impact on the null rejection probabilities.

17The test based on the pooled estimator of de Jong and Wagner (2022) is particularly strongly affected by
size-divergence.
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substantially smaller size distortions – of W +
rob than of W +. This indicates that “robust” inference

indeed works. The group-mean OLS-based robust test Wrob is much less affected by increasing ρ3

than one would expect, with this being driven by our DGP that generates strong contemporaneous
cross-section dependence for large values of ρ3. The test based on the pooled FM-OLS estimator
of de Jong and Wagner (2022) is very strongly adversely affected by cross-section dependence,
visible already for ρ3 = 0.3. W +

P is strongly outperformed by W +
rob and even by Wrob in case

of cross-section dependence. Altogether, in case of unknown forms of error serial correlation,
regressor endogeneity and cross-section dependence, W +

rob is the overall best performing test with
the smallest size distortions under the null hypothesis. W +

rob performs similarly to W + even when
all ρ-parameters are equal to zero and is thus, from the null rejection probabilities perspective, the
best choice.

We close the simulation section by looking at “size-corrected” power. Figures 2.1 and 2.2 display
results for T = 100, ρ1, ρ2 = 0.6 and µi ̸= 0, i = 1, . . . , N for the individual specific intercepts only
and the individual specific intercepts and linear trends cases, respectively.18 Some observations
emerge: First, whilst the empirical null rejection probabilities are hardly affected by the absence or
presence of drifts, size corrected power is higher when all drifts are non-zero. Second, larger values
of ρi1, ρi2 lead to smaller size-corrected power. Third, size-corrected power increases unequivocally
with an increasing time dimension T , whereas increasing N has only minor impact on size-corrected
power in case of cross-section dependence. Fourth, effectively by construction, the test based on the
pooled estimator of de Jong and Wagner (2022) exhibits the highest size-corrected power (which,
however, has to be seen in conjunction with the very large size distortions in case of cross-section
dependence). Fifth, size-corrected power is often the second highest for W +

rob and is for large values
of ρ3 closely followed by size-corrected power of Wrob. These findings, in conjunction with the
behavior under the null hypothesis, lead to the conclusion that in applications, where one typically
does not know the dependence structure, it is the best choice to use W +

rob, i. e., the robust version
of the group-mean FM-OLS based test statistic.19

2.4 An Illustration: The Environmental Kuznets Curve for Car-
bon Dioxide Emissions

In this section we briefly illustrate the group-mean FM-OLS estimator as well as inference based
upon it by estimating environmental Kuznets curves (EKCs) for carbon dioxide (CO2) emissions.
The dependent variable is the logarithm of per capita CO2 emissions and the explanatory variables
are log per capita GDP and its powers. We consider both the quadratic and the cubic specification
as well as the inclusion of individual specific intercepts only and of both individual specific intercepts
and linear trends. Long-run covariance estimation uses the Bartlett kernel and the Andrews (1991)
bandwidth selection rule.

We use exactly the same data as de Jong and Wagner (2022). These are the long data set with

18Figures 4 and 5 in the Supplementary Material provide the corresponding results for µi = 0 for i = 1, . . . , N .
19Note that even in the absence of cross-section dependence, i. e., ρ3 = 0, the “non-robust” version of the Wald-type

test, W +, does not have larger size-corrected power than W +
rob.
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Table 2.3: Empirical null rejection probabilities of Wald-type tests for H0 : β1 = 5, β2 = −3, β3 =
0.3 in the individual specific intercepts only case with non-zero drifts.

N = 10 N = 20 N = 100
T ρ1, ρ2 WT B Wrob W + W +

rob W +
P WT B Wrob W + W +

rob W +
P WT B Wrob W + W +

rob W +
P

ρ3 = 0
100 0 0.06 0.07 0.08 0.08 0.06 0.07 0.08 0.09 0.09 0.07 0.06 0.07 0.07 0.07 0.06

0.3 0.22 0.11 0.12 0.12 0.11 0.25 0.13 0.13 0.13 0.11 0.40 0.25 0.11 0.11 0.11
0.6 0.58 0.20 0.15 0.15 0.18 0.67 0.27 0.15 0.14 0.20 0.95 0.68 0.16 0.16 0.35
0.9 0.89 0.29 0.26 0.25 0.55 0.94 0.32 0.24 0.23 0.71 1.00 0.54 0.34 0.23 0.99

250 0 0.05 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.05
0.3 0.26 0.11 0.10 0.11 0.09 0.27 0.12 0.10 0.10 0.08 0.47 0.25 0.09 0.09 0.08
0.6 0.69 0.22 0.13 0.13 0.12 0.77 0.32 0.12 0.12 0.12 0.99 0.81 0.14 0.12 0.16
0.9 0.97 0.39 0.23 0.22 0.30 0.99 0.47 0.21 0.18 0.36 1.00 0.86 0.29 0.17 0.76

500 0 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05
0.3 0.25 0.09 0.09 0.09 0.08 0.28 0.10 0.09 0.09 0.08 0.45 0.22 0.08 0.08 0.07
0.6 0.69 0.19 0.11 0.11 0.10 0.77 0.27 0.10 0.10 0.10 0.99 0.77 0.12 0.10 0.10
0.9 0.98 0.40 0.20 0.20 0.19 0.99 0.51 0.20 0.18 0.22 1.00 0.92 0.28 0.13 0.41

ρ3 = 0.3
100 0 0.13 0.07 0.15 0.08 0.21 0.18 0.08 0.21 0.08 0.33 0.41 0.07 0.43 0.08 0.70

0.3 0.33 0.12 0.22 0.13 0.28 0.40 0.14 0.27 0.13 0.41 0.67 0.17 0.49 0.13 0.75
0.6 0.66 0.21 0.26 0.17 0.36 0.74 0.24 0.31 0.17 0.49 0.94 0.41 0.52 0.18 0.81
0.9 0.91 0.33 0.37 0.31 0.63 0.94 0.35 0.41 0.29 0.75 0.99 0.44 0.62 0.32 0.94

250 0 0.18 0.06 0.20 0.06 0.26 0.28 0.06 0.29 0.06 0.41 0.61 0.06 0.62 0.06 0.79
0.3 0.44 0.11 0.27 0.11 0.32 0.55 0.12 0.36 0.11 0.47 0.81 0.13 0.67 0.10 0.82
0.6 0.78 0.21 0.31 0.15 0.36 0.86 0.25 0.40 0.15 0.50 0.97 0.36 0.69 0.14 0.84
0.9 0.97 0.38 0.42 0.27 0.51 0.98 0.40 0.47 0.24 0.64 1.00 0.50 0.72 0.25 0.91

500 0 0.25 0.06 0.25 0.06 0.32 0.40 0.06 0.41 0.06 0.51 0.76 0.06 0.76 0.06 0.87
0.3 0.52 0.09 0.31 0.10 0.37 0.65 0.10 0.46 0.10 0.55 0.88 0.11 0.79 0.10 0.89
0.6 0.82 0.17 0.35 0.13 0.39 0.89 0.19 0.50 0.12 0.57 0.97 0.25 0.81 0.13 0.89
0.9 0.98 0.35 0.46 0.23 0.46 0.99 0.39 0.58 0.24 0.63 1.00 0.45 0.83 0.22 0.91

ρ3 = 0.6
100 0 0.30 0.08 0.33 0.09 0.40 0.43 0.07 0.45 0.08 0.58 0.76 0.07 0.78 0.08 0.89

0.3 0.52 0.14 0.41 0.15 0.48 0.62 0.13 0.52 0.13 0.64 0.88 0.14 0.80 0.14 0.91
0.6 0.78 0.22 0.45 0.21 0.54 0.85 0.23 0.56 0.19 0.69 0.97 0.28 0.82 0.20 0.93
0.9 0.95 0.37 0.56 0.38 0.72 0.96 0.38 0.63 0.38 0.84 0.99 0.43 0.87 0.42 0.97

250 0 0.41 0.06 0.43 0.07 0.48 0.56 0.06 0.58 0.06 0.66 0.86 0.06 0.86 0.07 0.93
0.3 0.64 0.11 0.49 0.12 0.53 0.77 0.10 0.64 0.11 0.71 0.94 0.12 0.88 0.11 0.94
0.6 0.87 0.20 0.54 0.17 0.57 0.93 0.21 0.67 0.16 0.74 0.99 0.25 0.89 0.17 0.95
0.9 0.98 0.38 0.63 0.32 0.68 0.99 0.38 0.73 0.32 0.81 1.00 0.42 0.91 0.33 0.96

500 0 0.50 0.06 0.51 0.06 0.55 0.68 0.06 0.68 0.06 0.73 0.92 0.06 0.93 0.06 0.96
0.3 0.73 0.10 0.56 0.10 0.60 0.84 0.10 0.72 0.10 0.77 0.97 0.10 0.94 0.10 0.96
0.6 0.91 0.16 0.59 0.14 0.62 0.95 0.16 0.75 0.14 0.78 0.99 0.17 0.95 0.14 0.97
0.9 0.99 0.34 0.69 0.26 0.67 1.00 0.35 0.80 0.28 0.82 1.00 0.35 0.96 0.26 0.98

ρ3 = 0.9
100 0 0.66 0.09 0.68 0.10 0.70 0.81 0.08 0.83 0.09 0.84 0.97 0.09 0.98 0.10 0.98

0.3 0.80 0.15 0.74 0.17 0.75 0.90 0.13 0.86 0.16 0.87 0.99 0.15 0.98 0.16 0.99
0.6 0.92 0.22 0.78 0.25 0.79 0.96 0.21 0.88 0.25 0.89 1.00 0.23 0.99 0.25 0.99
0.9 0.98 0.44 0.84 0.50 0.87 0.99 0.44 0.91 0.49 0.94 1.00 0.45 0.98 0.50 0.99

250 0 0.71 0.06 0.73 0.06 0.73 0.86 0.06 0.87 0.06 0.88 0.98 0.06 0.98 0.07 0.99
0.3 0.86 0.10 0.77 0.12 0.78 0.94 0.10 0.89 0.11 0.91 0.99 0.11 0.99 0.12 0.99
0.6 0.95 0.18 0.81 0.17 0.80 0.98 0.17 0.91 0.17 0.91 1.00 0.18 0.99 0.18 0.99
0.9 1.00 0.38 0.85 0.38 0.85 1.00 0.39 0.93 0.38 0.93 1.00 0.40 0.99 0.38 0.99

500 0 0.76 0.05 0.76 0.06 0.77 0.89 0.06 0.89 0.06 0.90 0.99 0.06 0.99 0.06 0.99
0.3 0.89 0.09 0.80 0.09 0.80 0.95 0.10 0.91 0.10 0.91 0.99 0.09 0.99 0.10 0.99
0.6 0.96 0.14 0.82 0.13 0.82 0.99 0.15 0.92 0.14 0.92 1.00 0.14 0.99 0.13 0.99
0.9 1.00 0.31 0.86 0.28 0.85 1.00 0.32 0.94 0.29 0.94 1.00 0.32 0.99 0.28 0.99

Note: The column labels are as defined in the main text of Section 2.3.
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Table 2.4: Empirical null rejection probabilities of Wald-type tests for H0 : β1 = 5, β2 = −3, β3 =
0.3 in the individual specific intercepts and linear trends case with non-zero drifts.

N = 10 N = 20 N = 100
T ρ1, ρ2 WT B Wrob W + W +

rob W +
P WT B Wrob W + W +

rob W +
P WT B Wrob W + W +

rob W +
P

ρ3 = 0
100 0 0.06 0.08 0.09 0.09 0.07 0.07 0.08 0.09 0.09 0.07 0.06 0.07 0.08 0.08 0.07

0.3 0.26 0.16 0.14 0.15 0.13 0.30 0.19 0.15 0.15 0.14 0.55 0.39 0.15 0.15 0.15
0.6 0.74 0.40 0.30 0.30 0.35 0.83 0.53 0.36 0.35 0.47 0.99 0.94 0.71 0.65 0.94
0.9 0.98 0.81 0.83 0.82 0.99 1.00 0.90 0.92 0.91 1.00 1.00 1.00 1.00 1.00 1.00

250 0 0.06 0.06 0.06 0.07 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06
0.3 0.35 0.18 0.12 0.12 0.10 0.42 0.23 0.11 0.11 0.09 0.77 0.58 0.12 0.12 0.10
0.6 0.91 0.62 0.29 0.29 0.21 0.96 0.78 0.36 0.35 0.26 1.00 1.00 0.76 0.70 0.65
0.9 1.00 0.94 0.92 0.91 0.89 1.00 0.98 0.97 0.97 0.98 1.00 1.00 1.00 1.00 1.00

500 0 0.05 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.06 0.05
0.3 0.42 0.20 0.09 0.09 0.09 0.55 0.32 0.10 0.10 0.08 0.95 0.85 0.12 0.11 0.08
0.6 0.98 0.78 0.24 0.24 0.14 1.00 0.95 0.35 0.33 0.16 1.00 1.00 0.82 0.76 0.40
0.9 1.00 0.99 0.94 0.93 0.70 1.00 1.00 1.00 0.99 0.89 1.00 1.00 1.00 1.00 1.00

ρ3 = 0.3
100 0 0.11 0.08 0.15 0.09 0.17 0.17 0.08 0.20 0.09 0.28 0.39 0.08 0.42 0.09 0.63

0.3 0.35 0.16 0.22 0.15 0.24 0.44 0.18 0.28 0.15 0.37 0.72 0.25 0.50 0.15 0.71
0.6 0.79 0.42 0.40 0.32 0.45 0.86 0.49 0.49 0.37 0.59 0.98 0.71 0.77 0.47 0.89
0.9 0.99 0.81 0.86 0.83 0.97 0.99 0.87 0.92 0.89 0.99 1.00 0.97 0.99 0.98 1.00

250 0 0.16 0.06 0.17 0.07 0.20 0.24 0.06 0.26 0.07 0.33 0.58 0.06 0.59 0.06 0.75
0.3 0.50 0.17 0.25 0.12 0.26 0.61 0.19 0.34 0.12 0.39 0.87 0.26 0.66 0.12 0.78
0.6 0.92 0.56 0.42 0.28 0.37 0.96 0.65 0.56 0.32 0.52 1.00 0.81 0.83 0.39 0.87
0.9 1.00 0.90 0.91 0.87 0.89 1.00 0.93 0.95 0.91 0.97 1.00 0.98 1.00 0.97 1.00

500 0 0.19 0.06 0.20 0.06 0.25 0.33 0.06 0.34 0.06 0.41 0.72 0.06 0.73 0.06 0.82
0.3 0.59 0.17 0.27 0.10 0.29 0.72 0.21 0.41 0.11 0.47 0.93 0.29 0.77 0.10 0.85
0.6 0.97 0.65 0.41 0.22 0.36 0.99 0.76 0.57 0.25 0.53 1.00 0.88 0.88 0.32 0.89
0.9 1.00 0.96 0.93 0.86 0.78 1.00 0.98 0.97 0.93 0.92 1.00 0.99 1.00 0.97 1.00

ρ3 = 0.6
100 0 0.30 0.08 0.34 0.10 0.39 0.44 0.08 0.48 0.09 0.59 0.78 0.08 0.80 0.09 0.89

0.3 0.54 0.15 0.43 0.17 0.48 0.66 0.16 0.55 0.16 0.66 0.90 0.19 0.83 0.16 0.91
0.6 0.85 0.38 0.57 0.33 0.61 0.90 0.41 0.67 0.33 0.75 0.99 0.51 0.89 0.38 0.94
0.9 0.99 0.78 0.88 0.79 0.95 1.00 0.81 0.93 0.83 0.98 1.00 0.89 0.99 0.90 1.00

250 0 0.40 0.07 0.42 0.07 0.46 0.56 0.06 0.58 0.07 0.66 0.88 0.06 0.88 0.06 0.93
0.3 0.68 0.15 0.50 0.13 0.53 0.80 0.14 0.64 0.12 0.71 0.95 0.16 0.90 0.12 0.94
0.6 0.94 0.42 0.61 0.25 0.61 0.97 0.45 0.73 0.25 0.76 1.00 0.51 0.93 0.27 0.95
0.9 1.00 0.83 0.91 0.79 0.90 1.00 0.85 0.95 0.81 0.95 1.00 0.90 0.99 0.84 1.00

500 0 0.47 0.06 0.48 0.06 0.52 0.67 0.06 0.67 0.06 0.73 0.93 0.06 0.93 0.06 0.96
0.3 0.74 0.13 0.55 0.10 0.57 0.85 0.14 0.72 0.10 0.76 0.98 0.15 0.95 0.12 0.97
0.6 0.97 0.42 0.64 0.19 0.62 0.98 0.45 0.78 0.19 0.79 1.00 0.50 0.96 0.21 0.97
0.9 1.00 0.85 0.91 0.71 0.84 1.00 0.87 0.95 0.73 0.94 1.00 0.91 0.99 0.78 0.99

ρ3 = 0.9
100 0 0.67 0.10 0.70 0.11 0.71 0.83 0.09 0.86 0.10 0.87 0.98 0.10 0.98 0.10 0.98

0.3 0.83 0.16 0.77 0.18 0.77 0.92 0.16 0.89 0.17 0.89 0.99 0.17 0.98 0.18 0.99
0.6 0.94 0.31 0.83 0.32 0.83 0.97 0.32 0.91 0.32 0.91 1.00 0.34 0.99 0.33 0.99
0.9 1.00 0.72 0.94 0.75 0.95 1.00 0.73 0.97 0.76 0.98 1.00 0.75 0.99 0.77 1.00

250 0 0.72 0.06 0.73 0.07 0.74 0.87 0.07 0.88 0.07 0.89 0.98 0.07 0.98 0.07 0.99
0.3 0.87 0.12 0.78 0.12 0.79 0.94 0.12 0.91 0.13 0.91 0.99 0.13 0.99 0.13 0.99
0.6 0.97 0.27 0.83 0.21 0.83 0.99 0.27 0.92 0.22 0.93 1.00 0.28 0.99 0.23 0.99
0.9 1.00 0.69 0.94 0.66 0.94 1.00 0.69 0.97 0.66 0.97 1.00 0.70 1.00 0.68 1.00

500 0 0.77 0.06 0.77 0.06 0.78 0.89 0.06 0.89 0.06 0.90 0.99 0.06 0.99 0.06 0.99
0.3 0.90 0.10 0.81 0.10 0.81 0.96 0.11 0.91 0.10 0.92 1.00 0.10 0.99 0.11 0.99
0.6 0.98 0.23 0.84 0.16 0.84 0.99 0.24 0.93 0.16 0.93 1.00 0.26 0.99 0.16 0.99
0.9 1.00 0.64 0.94 0.54 0.93 1.00 0.65 0.97 0.54 0.97 1.00 0.67 1.00 0.55 1.00

Note: See note to Table 2.3.
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Figure 2.1: Size corrected power of the tests for T = 100 and ρ1, ρ2 = 0.6 in the individual specific
intercepts only case with non-zero drifts.
Note: The axis label ∆β indicates, see also the description in the main text, the difference between the parameter
vector under the null hypothesis and for the considered alternatives, i. e., βH1 = β + j × ∆β, with β = (5, −3, 0.3)′,
∆β = (0.1, 0.05, 0.02)′ and j = 0, 1, . . . , 20 (displayed on the horizontal axis).

N = 19 countries for T = 136 years and the wide data set with N = 89 countries and T = 54 years.
The long data set has originally been used in Wagner et al. (2020) and ranges from 1878 – 2013 for
19 early industrialized countries.20 We also consider a subset comprising six of these 19 countries
analyzed in more detail in a seemingly unrelated regressions setting in Wagner et al. (2020). These
six countries are Austria (AT), Belgium (BE), Finland (FI), the Netherlands (NL), Switzerland
(CH) and the United Kingdom (UK), with data for these countries available from 1870 – 2013,
leading to a sample size of T = 144. The country list for the wide data set, with time span 1960 –

20The 19 countries are given by Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy,
Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom and USA. Note
that the data are in fact available from 1870 onwards, with the exception of CO2 emissions for New Zealand.
Considering all 19 countries with 1878 as starting point is merely done to use exactly the same balanced panel
data set as de Jong and Wagner (2022). Of course, whether the panel is balanced or not is irrelevant even from a
computational perspective for group-mean estimation. A detailed description of the data including the sources is
contained in Wagner et al. (2020).
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Figure 2.2: Size corrected power of the tests for T = 100 and ρ1, ρ2 = 0.6 in the individual specific
intercepts and linear trends only case with non-zero drifts.
Note: See note to Figure 2.1.

2013, is available in Table 2.6 in Appendix 2.6.2.

Table 2.5 shows all estimation results – including “standard” and “robust” t-statistics – as well
as the implied turning points (TPs). To facilitate comparison with de Jong and Wagner (2022)
also the TPs obtained in that paper are included in the rows labeled “TP de J&W”. The upper
panel considers individual specific intercepts only and the lower panel considers individual specific
intercepts and linear trends. The left block-column shows the results for the quadratic specification
and the right block-column shows the results for the cubic specification. The first question to be
addressed concerns the polynomial degree of the EKC, i. e., whether a cubic specification has to
be considered or the quadratic specification suffices. With respect to this question it turns out
that robust inference leads to different conclusions than standard inference. For both N = 6 and
N = 19 the use of robust inference leads to insignificant coefficients to the third power of the
logarithm of per capita GDP; for both the intercept only and the intercept and trend case. For
the wide data set with N = 89 the cubic specification is required, in the sense that both standard
and – more importantly – robust t-statistics indicate significance of the third order coefficient for
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Table 2.5: Group-mean fully modified OLS EKC estimation results

quadratic specification cubic specification
N = 6 N = 19 N = 89 N = 6 N = 19 N = 89

Individual specific intercepts only
β1 7.63 8.24 9.16 −26.22 0.46 1061.85

(9.66) (15.38) (3.26) (−1.65 ) (0.04) (2.53)
[6.06] [6.46] [3.06] [−1.03] [0.02] [2.46]

β2 −0.38 −0.42 −0.44 3.43 0.43 −148.79
(−8.65) (−13.98) (−2.44) (1.92 ) (0.33) (−2.72)
[−5.43] [−5.83] [−2.30] [1.20] [0.14] [−2.65]

β3 −0.14 −0.03 6.80
(−2.13) (−0.64) (2.84)
[−1.33] [−0.27] [2.78]

TP GM 20,951 19,470 35,596 16,854 19,587 4,211
548 1 510

TP de J&W 14,051 20,054 531,260 – – 43,231
– – 443

Individual specific intercepts and linear trends
β1 9.92 8.74 11.54 15.83 26.69 −952.79

(15.58) (18.58) (4.72) (1.57) (2.87) (−2.75)
[12.22] [8.16] [4.11] [1.18] [1.45] [−2.77]

β2 −0.48 −0.43 −0.59 −1.18 −2.51 114.93
(−14.06) (−17.38) (−3.86) (−1.04) (−2.43) (2.55)
[−10.95] [−7.41] [−3.40] [−0.78] [−1.21] [2.56]

β3 0.03 0.08 −4.71
(0.67) (2.11) (−2.40)
[0.50] [1.03] [−2.42]

TP GM 33,743 25,889 17,027 1.2 × 107 – –
94,276 – –

TP de J&W 23,967 26,284 72,329 – – 29,519
– – 578

Notes: “Standard” t-statistics, defined (2.17), in parentheses and “robust” t-statistics, defined in (2.21), in square
brackets. Italic numbers indicate significance at the 10% nominal level and bold numbers indicate significance
at the 5% significance level. The turning points based on the group-mean estimator (TP GM) are computed as
exp
(︂

− β̂1
2β̂2

)︂
in the quadratic case and as exp

(︂
− β̂2

3β̂3
(±1)(− β̂1

3β̂3
+ ( β̂2

3β̂3
)2)1/2

)︂
in the cubic case. The symbol “–”

indicates the absence of turning points for the estimated polynomial. The row labeled “TP de J&W” contains the
turning points given in de Jong and Wagner (2022, Tables 7–8) using the pooled FM-OLS estimator in a slightly
different specification with, in the lower panel, (common) time effects instead of individual specific linear time trends.

both specifications of the deterministic component.

Based on the above, we focus on the findings with the quadratic specification for the N = 6 and
N = 19 data sets. For both specifications of the deterministic components, the coefficient to the
squared logarithm of per capita GDP is (significantly) negative, with both standard and robust
t-statistics. For N = 6, the turning points differ substantially between the group-mean estimator
and the pooled estimator of de Jong and Wagner (2022) and are substantially larger for the group-
mean estimator. For N = 19 the differences in the turning points between the group-mean and
pooled estimators are negligible.21

21The sample range for the N = 6 data set is from 1,725 to 26,102 and for the N = 19 data set the sample range
is from 794 to 31,933 (measured in 1990 Geary-Khamis dollars). Therefore the group-mean turning point when
including individual specific intercepts and linear trends is out of sample for the N = 6 data set.
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Figure 2.3: Scatter plot and estimated EKC relationship for CO2 emissions over the period 1870–
2013 for the N = 6 data set.
Notes: The curves display the results of inserting 144 equidistant points from the sample range of ln(GDP) in the
quadratic relationship estimated with group-mean fully modified OLS estimator and adding the individual specific
intercepts (top panel) or the individual specific intercepts and linear time trends (bottom panel), with corresponding
values of the time trend given by t = 1, . . . , 144.

Figure 2.3 shows the impact of including individual specific linear trends (in the lower graph)
in addition to individual specific intercepts only (in the upper graph) on the estimated EKCs
for N = 6. Including individual specific linear time trends (obviously) leads to a better fit, in
particular for Finland and Switzerland, both for the low GDP values, i. e., for the beginning of the
sample period, and the high GDP values, i. e., for the end of the sample period. Thus, the different
“average levels” of log per capita emissions are well captured by the individual specific intercepts,
the individual specific trends allow in addition to account to some extent for “curvature differences”
across countries. On the question of poolability of the EKC across these countries see also Wagner
et al. (2020), who in fact only find evidence for – in the words of that paper – partial poolability
of the slope coefficients for Belgium, the Netherlands and the UK. Against this background this
empirical section is to be interpreted merely as an illustration. For larger values of N , of course,
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the seemingly unrelated regressions based analysis of Wagner et al. (2020) is not feasible and one
needs to resort to panel-type methods of one kind or another with the corresponding cross-sectional
pooling imposed.

Let us close this illustration section with a brief look at the cubic specification results for the
N = 89 wide data set. One striking feature for this data set is that the signs of the coefficient to
the third power differ between the two specifications of the deterministic component, with β3 > 0
in the intercept only case and β3 < 0 in the intercept and linear trend case.22 The group-mean
estimator leads to two turning points at small values in the intercept only case, with the larger
turning point corresponding to U-type behavior, and to a monotonic relationship in the intercept
and linear trend specification. For the wide data set it thus appears that the pooled estimator
leads to – notwithstanding all issues concerning poolability – more “useful” turning points.

2.5 Summary and Conclusions

This paper extends the toolkit for parameter estimation and inference in panels of cointegrating
polynomial regressions with a group-mean fully modified OLS approach, which complements the
pooled FM-OLS approach of de Jong and Wagner (2022). The consideration of a group-mean rather
than a pooled estimation approach is not the only difference between the two papers. The present
paper gains a lot of mileage from considering a fixed cross-section setting, which allows to include
two features not considered in de Jong and Wagner (2022). First, we allow for the (potential)
presence of drifts in the integrated regressors, which increases applicability substantially. Second,
we provide cross-section “robust” inference for the group-mean OLS and FM-OLS estimators.
Asymptotically valid inference is, as discussed, possible under minimal restrictions on the form and
extent of cross-section dependence. No specific model of cross-section dependence, e. g., a factor
structure, has to be posited. It is important to stress again that computation of the developed
estimators and tests does not require any knowledge concerning the presence or absence of drifts
and/or cross-section dependence.

The simulation results are, by and large, as expected, with one important exception regarding
hypothesis testing: Using the cross-section robust version of the group-mean FM-OLS estimator
based tests is unequivocally the best choice, as the robust version of the tests performs at least
as good as the non-robust version of the tests even in the absence of cross-section dependence.
The test based on the pooled estimator of de Jong and Wagner (2022) is very strongly adversely
affected by cross-section dependence.

The illustrative application conveys two messages: First, cross-section robust inference makes a
difference. In our illustration it indicates, unlike standard inference, that the quadratic specification
is sufficient for the long data sets and that a cubic formulation is only required for the wide data
set. The wide data set with N = 89 (larger than T = 54) indicates potential advantages of the
pooled estimator in case of large cross-section dimension compared to the time series dimension,

22β3 > 0 implies that the fitted polynomial diverges to plus infinity for log per capita GDP tending to infinity.
Consequently, in case of turning points being present, the larger turning point corresponds to U-type rather than an
inverted U-type behavior. Note for completeness, see de Jong and Wagner (2022, Table 8), that the pooled estimator
leads to negative third order coefficients for both specifications for this data set.
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i. e., benefits of resorting to an asymptotic approximation also in the cross-section dimension.

Two (related) issues remain open for future research: First, an analysis of the asymptotic behavior
of the group-mean estimator in the two-way fixed effects case, i. e., with both individual and
time specific fixed effects. This will require, second, asymptotic analysis in a large time and
large cross-section setting, which is in any case important for panels with N large compared to
T . Letting N → ∞ requires that potential cross-section dependence will have to be considered
more restrictively than in our fixed N setting; not only with respect to robust inference but also
for obtaining, e. g., a sequential (unconditional) asymptotic normality result for the estimated
coefficients.
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2.6 Appendix

2.6.1 Proofs

Proof of Proposition 2.1. The starting point is:

G−1
T

(︂
β̂

+ − β
)︂

= 1
N

N∑︂
i=1

G−1
T

(︂
β̂

+(i) − β
)︂

= 1
N

N∑︂
i=1

(︄
GT

T∑︂
t=1

X̃itX̃
′
itGT

)︄−1(︄
GT

T∑︂
t=1

X̃itũ
+
it − GT Ci

)︄
, (2.83)

with:

ũ+
it := ũit − ∆xitΩ̂

−1
vivi

Ω̂viui = ũit − (µi + vit)Ω̂
−1
vivi

Ω̂viui . (2.84)

Since µi = 0 for all i = 1, . . . , N , it follows directly from Assumptions 2.2 and 2.3 that:

GT

T∑︂
t=1

X̃itX̃
′
itGT

d−→
∫︂ 1

0
B̃vi(r)B̃vi(r)′dr, (2.85)
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GT

T∑︂
t=1

X̃itũ
+
it

d−→
∫︂ 1

0
B̃vi(r)dBui·vi(r) + ∆+

viui
Ai, (2.86)

and:

GT Ci
d−→ ∆+

viui
Ai, (2.87)

where ∆+
viui

:= ∆viui − ∆viviΩ−1
vivi

Ωviui and Ai as given in the main text, with all quantities
converging jointly. This immediately implies – for the parameter estimator corresponding to the
i-th equation – that:

G−1
T

(︂
β̂

+(i) − β
)︂

d−→
(︃∫︂ 1

0
B̃vi(r)B̃vi(r)′dr

)︃−1 ∫︂ 1

0
B̃vi(r)dBui·vi(r). (2.88)

Conditional upon ∆i, Σi and Wvi(r) the limiting distribution given in (2.88) is normal with ex-
pectation zero and covariance matrix Ωui·vi

(︂∫︁ 1
0 B̃vi(r)B̃vi(r)′dr

)︂−1
. Cross-sectional independence

(Assumption 2.1) thus implies the – conditional upon ∆i, Σi and Wvi(r) for i = 1, . . . , N – asymp-
totic normality result for the group-mean FM-OLS estimator given in the main text in (2.12)
and (2.13). □

Proof of Corollary 2.1. Under the null hypothesis the Wald-type statistic given in (2.16) is
equal to:

W + =
(︂
(GRRGT )G−1

T (β̂+ − β)
)︂′ (︂

(GRRGT )V̂ +(GRRGT )′
)︂−1

×
(︂
(GRRGT )G−1

T (β̂+ − β)
)︂

. (2.89)

With the (asymptotic) restriction on the constraint matrix R posited in the main text in place and
with V̂

+ = G−1
T Ŝ

+
G−1

T converging in distribution to V +, it follows from Proposition 2.1 that:

W + d−→ (R∗Z)′
(︂
R∗V +R∗′

)︂−1
(R∗Z) , (2.90)

with Z conditionally N (0, V +) distributed. This shows the conditional – and hence unconditional
– asymptotic chi-squared null distribution of the Wald-type statistic. In case s = 1 analogous
arguments lead to the result for the t-type test. □

Proof of Remark 2.1. Similar arguments as used in the proof of Proposition 2.1 show that:

G−1
T

(︂
β̂

+ − β
)︂

d−→ 1
N

N∑︂
i=1

(︃∫︂ 1

0
B̃vi(r)B̃vi(r)′dr

)︃−1 ∫︂ 1

0
B̃vi(r)dBui·vi(r). (2.91)
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Conditional upon ∆, Σ and Wv(r) the limiting distribution given in (2.91) is normal with expec-
tation zero and covariance matrix:

Var
{︄

1
N

N∑︂
i=1
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0
B̃vi(r)B̃vi(r)′dr
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= 1
N2

N∑︂
i,j=1
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0
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)︃−1 ∫︂ 1

0
B̃vi(r)dBui·vi(r),

(︃∫︂ 1

0
B̃vj (r)B̃vj (r)′dr

)︃−1 ∫︂ 1

0
B̃vj(r)dBuj·vj(r)

}︄

= 1
N2

N∑︂
i,j=1

Ωui·vi;uj ·vj M̃
−1
ii M̃ ijM̃

−1
jj = V +

rob, (2.92)

where M̃ ij =
∫︁ 1

0 B̃vi(r)B̃vj(r)′dr and Ωui·vi;uj ·vj is the constant in the quadratic covariation of the
processes Bui·vi(r) and Buj ·vj (r) and is defined in the main text.

It is straightforward to verify that V̂
+
rob = G−1

T Ŝ
+
robG−1

T converges in distribution to V +
rob. Therefore,

the null limiting distributions of W +
rob and t+

rob can be derived with exactly the same arguments as
used in the proof of Corollary 2.1. □

Proof of Proposition 2.2. We first consider the case with individual specific intercepts but no
individual specific linear trends included in (2.1). The proof for the case with both individual
specific intercepts and individual specific linear trends included in (2.1) is considered afterwards
and is based upon similar arguments.

(i) Similar to the proof of Proposition 2.1 the starting point is given by:
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i=1
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+
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. (2.93)

By definition of ũ+
it (see, e. g., the proof of Proposition 2.1) it follows that:

T∑︂
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=
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Ω̂viui), (2.94)
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where the last equality follows from the fact that by construction ∑︁T
t=1 X̃it = 0. This implies:
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X̃it(ũit − vitΩ̂
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vivi

Ω̂viui) − HT Ci

)︄
. (2.95)

As the deterministic trends (asymptotically) dominate the elements of X̃it, it follows that
T 1/2HT X̃i⌊rT ⌋⇒Ji(r), HT

∑︁T
t=1 X̃itũit

d−→
∫︁ 1

0 Ji(r)dBui(r),
HT

∑︁T
t=1 X̃itvit

d−→
∫︁ 1

0 Ji(r)dBvi(r) and HT Ci = oP(1), with all quantities converging jointly,
with Ji(r) as defined in the main text in (2.28).23 This immediately implies – for the param-
eter estimator from the i-th equation – that:
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0
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Conditional upon ∆i, Σi and Wvi(r) the limiting distribution given in (2.96) is normal with
expectation zero and covariance matrix Ωui·vi

(︂∫︁ 1
0 Ji(r)Ji(r)′dr

)︂−1
. Cross-sectional indepen-

dence (Assumption 2.1) thus implies the – conditional upon ∆i, Σi and Wvi(r) for i = 1, . . . , N

– asymptotic normality result for the group-mean estimator given in the main text in (2.30).

(ii) Analogously, the starting point for showing (2.31) is given by:

K−1
T

(︂
β̂

+ − β
)︂

= 1
N

N∑︂
i=1

K−1
T

(︂
β̂

+(i) − β
)︂

= 1
N

N∑︂
i=1

(︄
KT

T∑︂
t=1

X̃itX̃
′
itKT

)︄−1(︄
KT

T∑︂
t=1

X̃itũ
+
it − KT Ci

)︄
. (2.97)

As described in the main text, as a result of demeaning and linear detrending, the linear
trend that asymptotically dominates xit is exactly annihilated in x̃it. This is reflected in
the following joint convergence results that can be derived with similar calculations as in
Reichold and Wagner (2022, Proof of Lemma 2). First, T 1/2KT X̃i⌊rT ⌋⇒Li(r), with Li(r) as
defined in the main text in (2.29). Moreover:

KT

T∑︂
t=1

X̃itũit
d−→
∫︂ 1

0
Li(r)dBui(r) + (∆viui , 0, 0)′, (2.98)

KT

T∑︂
t=1

X̃itvit
d−→
∫︂ 1

0
Li(r)dBvi(r) + (∆vivi , 0, 0)′, (2.99)

and KT Ci
d−→ (∆+

viui
, 0, 0)′. The remaining parts of the proof are similar to the corresponding

parts of the proof of (i) and are therefore omitted. □

23For more details we refer to Reichold and Wagner (2022, Lemma 2).
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Proof of Corollary 2.2. The proof is based on similar arguments as the proof of Corollary 2.1
and therefore omitted. □

Proof of Remark 2.6. For sake of brevity we only consider the individual specific intercepts
only case here in detail. The proof is entirely analogous for the individual specific intercepts and
linear trends case.

It follows from the proof of Proposition 2.2 that:

H−1
T

(︂
β̂

+ − β
)︂

d−→ 1
N

N∑︂
i=1

(︃∫︂ 1

0
Ji(r)Ji(r)′dr

)︃−1 ∫︂ 1

0
Ji(r)dBui·vi(r). (2.100)

Conditional upon ∆, Σ and Wv(r) the limiting distribution given in (2.100) is normal with expec-
tation zero and covariance matrix:

Var
{︄

1
N

N∑︂
i=1

(︃∫︂ 1

0
Ji(r)Ji(r)′dr

)︃−1 ∫︂ 1

0
Ji(r)dBui·vi(r)

}︄

= 1
N2

N∑︂
i,j=1

Cov
{︄(︃∫︂ 1

0
Ji(r)Ji(r)′dr

)︃−1 ∫︂ 1

0
Ji(r)dBui·vi(r),

(︃∫︂ 1

0
Jj(r)Jj(r)′dr

)︃−1 ∫︂ 1

0
Jj(r)dBuj ·vj (r)

}︄

= 1
N2

N∑︂
i,j=1

Ωui·vi;uj ·vj

⎛⎜⎜⎝D(µi)

⎛⎜⎜⎝
1/12 1/12 3/40
1/12 4/45 1/12
3/40 1/12 9/112

⎞⎟⎟⎠D(µj)

⎞⎟⎟⎠
−1

= V +
α,rob,

where Ωui·vi;uj ·vj is the constant in the quadratic covariation of the processes Bui·vi(r) and Buj ·vj (r)
and is defined in the main text.

It is straightforward to verify that both V̂
+
α,rob = H−1

T Ŝ
+
robH−1

T and:

Ṽ
+
α,rob = 1

N2

N∑︂
i,j=1

Ω̂uiv̇i;uj ·vj

⎛⎜⎜⎝D(µ̂i)

⎛⎜⎜⎝
1/12 1/12 3/40
1/12 4/45 1/12
3/40 1/12 9/112

⎞⎟⎟⎠D(µ̂j)

⎞⎟⎟⎠
−1

(2.101)

converge in distribution to V +
α,rob. Therefore, the limiting distributions of W +

rob and W +
α,rob can be

shown to be chi-squared with s degrees of freedom under the null hypothesis using exactly the
same arguments as in the proof of Corollary 2.1. Similarly, in case s = 1, t+

rob and t+
α,rob can be

shown to be asymptotically standard normally distributed under the null hypothesis. □

Proof of Proposition 2.3. The case N0 = 0 is contained in the (proof of) Proposition 2.2. The
results for N0 > 0 follow from combining the results of Propositions 2.1 and 2.2. As in the proof
of Proposition 2.2, we commence with the individual specific intercepts only case before turning
to the individual specific intercepts and linear trends case.

(i) First note that the appropriate scaling matrix for the individual specific estimators β̂
+(i)

calculated from cross-section members with zero drifts in the integrated regressor is GT ,
whereas the appropriate scaling matrix for the individual specific estimators β̂

+(i) calculated
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from cross-section members with non-zero drifts in the integrated regressor is HT . This
implies:

G−1
T

(︂
β̂

+ − β
)︂

= 1
N

N∑︂
i=1

G−1
T

(︂
β̂

+(i) − β
)︂

= 1
N

N0∑︂
i=1

G−1
T

(︂
β̂

+(i) − β
)︂

+ 1
N

N∑︂
i=N0+1

G−1
T HT H−1

T

(︂
β̂

+(i) − β
)︂

= 1
N

N0∑︂
i=1

G−1
T

(︂
β̂

+(i) − β
)︂

+ oP(1), (2.102)

where the last equality follows from G−1
T HT = diag(T −1/2, T −1, T −3/2) and

H−1
T

(︂
β̂

+(i) − β
)︂

= OP(1) for i = N0 + 1, . . . , N . Hence, the asymptotic behavior of the

group-mean estimator only depends on the individual specific estimators β̂
+(i) calculated

from cross-section members with zero drifts in the integrated regressor, since these converge
at a slower rate than the estimators corresponding to cross-section members with non-zero
drifts. The rest of the proof is analogous to the proof of Proposition 2.1 and therefore omitted.

(ii) As in (i), the appropriate scaling matrix depends upon the absence or presence of a non-zero
drift in the integrated regressor. In the former case the appropriate scaling matrix is again
given by GT , whereas it is given by KT in the presence of a non-zero drift. Therefore:

G−1
T

(︂
β̂

+ − β
)︂

= 1
N

N∑︂
i=1

G−1
T

(︂
β̂

+(i) − β
)︂

= 1
N

N0∑︂
i=1

G−1
T

(︂
β̂

+(i) − β
)︂

+ 1
N

N∑︂
i=N0+1

G−1
T KT K−1

T

(︂
β̂

+(i) − β
)︂

= 1
N

N0∑︂
i=1

G−1
T

(︂
β̂

+(i) − β
)︂

+ 1
N

N∑︂
i=N0+1

⎡⎢⎢⎣
T
(︂
β̂

+
1 (i) − β1

)︂
oP(1)

oP(1)

⎤⎥⎥⎦ , (2.103)

where β̂
+
1 (i) denotes the first element of β̂

+(i). The last equality follows from G−1
T KT =

diag(1, T −1, T −3/2) and K−1
T

(︂
β̂

+(i) − β
)︂

= OP(1), for i = N0 + 1, . . . , N . In contrast to (i),

the limiting distribution of the first component of β̂
+ depends upon all cross-section member

specific estimates of β1, reflecting the fact that the coefficient to the first power of the inte-
grated regressor is estimated at rate T irrespective of whether the drift is zero or non-zero
– as in any case linear detrending removes a potentially present linear trend from the corre-
sponding regressor. For the coefficients β2 and β3, the situation is exactly as in (i), with the
limiting distribution only depending upon the individual specific estimators corresponding to
cross-section members with zero drifts in the integrated regressor, since these are converging
at a slower rate than the estimators corresponding to cross-section members with non-zero
drifts. The rest of the proof is similar to the proof of Proposition 2.1 and therefore omitted.
□
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Proof of Corollary 2.3. The proof is based on similar arguments as the proofs of Corollary 2.1
and 2.2 and therefore omitted. □

Proof of Remark 2.8. The case N0 = 0 has already been considered in the proof of Remark 2.6.
The results for N0 > 0 follow from combining the results of Proposition 2.3 and Remark 2.1,
compare also the proofs of Remarks 2.1 and 2.6. The proof is therefore omitted. □
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2.6.2 Country List for the Wide Data Set

Table 2.6: Country list for the wide data set.

Albania Algeria Angola Argentina Australia
Austria Bahrain Barbados Belgium Bolivia
Brazil Bulgaria Cambodia Cameroon Canada
Chile China Colombia Costa Rica Cote d’Ivoire
Cyprus Denmark Dominican Republic DR Congo Ecuador
Egypt Ethiopia Finland France Germany
Ghana Greece Guatemala Hong Kong Hungary
Iceland India Indonesia Iran Iraq
Ireland Israel Italy Jamaica Japan
Jordan Kenya Luxembourg Madagascar Mali
Malta Mexico Morocco Mozambique Myanmar
Netherlands New Zealand Niger Nigeria Norway
Pakistan Peru Philippines Poland Portugal
Romania Saudi Arabia Senegal Singapore South Africa
South Korea Spain Sri Lanka Saint Lucia Sudan
Sweden Switzerland Syria Tanzania Trinidad and Tobago
Tunisia Turkey Uganda United Kingdom United States
Uruguay Venezuela Vietnam Yemen
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Chapter 3

A Residuals-Based Nonparametric
Variance Ratio Test for Cointegration

Abstract

This paper derives asymptotic theory for Breitung’s (2002, Journal of Econometrics 108, 343–363) nonpa-
rameteric variance ratio unit root test when applied to regression residuals. The test requires neither the
specification of the correlation structure in the data nor the choice of tuning parameters. Compared with
popular residuals-based no-cointegration tests, the variance ratio test is less prone to size distortions but
has smaller local asymptotic power. However, this paper shows that local asymptotic power properties do
not serve as a useful indicator for the power of residuals-based no-cointegration tests in finite samples. In
terms of size-corrected power, the variance ratio test performs relatively well and, in particular, does not
suffer from power reversal problems detected for, e. g., the frequently used augmented Dickey-Fuller type
no-cointegration test. An application to daily prices of cryptocurrencies illustrates the usefulness of the
variance ratio test in practice.

3.1 Introduction

Analyzing the relationship between stochastically trending (economic) time series in a single-
equation regression framework entails the risk of obtaining misleading spurious regression results
(Granger and Newbold, 1974; Phillips, 1986). Practitioners thus rely on statistical tests to assess
whether the time series are cointegrated. In this context, it is popular in applications to employ
so-called no-cointegration tests for the null hypothesis of no cointegration against the alternative
of cointegration based on regression residuals estimated by ordinary least squares (OLS).

Alternative approaches include, e. g., single-equation cointegration tests based on conditional error
correction models (e. g., Kremers et al., 1992; Zivot, 2000) and system-based tests (e. g., Phillips
and Ouliaris, 1990; Johansen, 1991; Shintani, 2001; Breitung, 2002; Harris and Poskitt, 2004; Cai
and Shintani, 2006). System-based approaches have the advantage that they do not require the
specification of a left-hand side variable and may also allow to test for the number of (linearly
independent) cointegrating relations in the system. If, however, there exist reasons for a specific

97



3. A Residuals-Based Nonparametric Variance Ratio Test for Cointegration

choice of the left-hand side variable, it is convenient and intuitively appealing to analyze the
relationship between the variables in a single-equation framework.

Among the most popular residuals-based no-cointegration tests are the parametric augmented
Dickey-Fuller (ADF, Dickey and Fuller, 1979; Said and Dickey, 1984) type test, proposed in Engle
and Granger (1987) and asymptotically justified in Phillips and Ouliaris (1990), the semiparametricˆ︁Zα test (Phillips, 1987; Phillips and Ouliaris, 1990), and the parametric MSB test (Perron and
Ng, 1996; Pesavento, 2007).1 The three tests share the common feature that they require the
choice of tuning parameters (e. g., the number of lags in an auxiliary regression and/or kernel and
bandwidth choices to estimate a long-run variance parameter) to accommodate the correlation
structure in the data. Although these tuning parameter choices allow for asymptotically valid
inference, they are likely to have adverse effects on the performance of the tests in finite samples.

In contrast, this paper proposes a nonparametric no-cointegration test, which requires neither the
specification of the correlation structure in the data nor the choice of tuning parameters. The test
is an extension of Breitung’s (2002) nonparametric variance ratio unit root test (originally applied
to observed univariate time series) to regression residuals.2 The test statistic is easy to compute
as it is defined as a (re-scaled) ratio between the sample variances of the regression residuals and
their partial sums. Under the null hypothesis, the sample variances converge to random variables
whose distributions are scale dependent on the same long-run variance parameter. This makes the
limiting null distribution of the test statistic nuisance parameter free without estimating the long-
run variance parameter directly. Under the alternative of cointegration, the test statistic converges
to zero at rate equal to sample size, which makes the test consistent. In the following, we refer to
the test as the (nonparametric) variance ratio (no-cointegration) test.3

The paper derives asymptotic theory for the variance ratio no-cointegration test in a setting that
allows for the presence of deterministic time trends both in the regression equation and in the
regressors. In the presence of deterministic components, we derive the asymptotic properties of the
variance ratio no-cointegration test under both OLS detrending and general least squares (GLS)
detrending. Moreover, the paper compares the variance ratio test in terms of local asymptotic
power, empirical size and size-corrected power with the ADF, ˆ︁Zα and MSB tests in a detailed
simulation study.

We follow, e. g., Pesavento (2007) and Perron and Rodríguez (2016) and impose a directional
restriction on the model, which excludes cointegration between the right-hand side variables. In
this case, local asymptotic power of the variance ratio test and its competitors is a function of
a single nuisance parameter, R2, which measures the long-run correlation between the regression
errors and the regressors (cf. Pesavento, 2004; 2007). In addition, we construct a simulation setting
that allows to analyze the effects of different short-run dynamics in the data generating process

1The MSB test and the ˆ︁Zα test are popular representatives of the class of M tests (Stock, 1999; Perron and
Ng, 1996; Ng and Perron, 2001) and the class of Z tests (Phillips and Perron, 1988), respectively.

2Breitung’s (2002) test, in turn, is a generalization of the unit root test of Shin and Schmidt (1992).
3Please note that Westerlund (2005) has extended Breitung’s (2002) unit root test to test for cointegration in

panel data. However, little is known about the asymptotic and finite sample properties of Breitung’s (2002) unit
root test when applied to regression residuals in a pure time series setting. In particular, the nonparametric variance
ratio no-cointegration test is not considered in the two insightful contributions of Pesavento (2007) and Perron and
Rodríguez (2016).
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(DGP) on the performance of the tests in finite samples while controlling for effects of R2. This
justifies a comparison between local asymptotic power of the tests and their power in finite samples.
The results reveal that local asymptotic power properties do not serve as a useful indicator for
the performance of residuals-based no-cointegration tests in finite samples and we explain why
Pesavento (2007, p. 127) and Perron and Rodríguez (2016, p. 99) come to opposing conclusions.

Finally, an empirical illustration applies the variance ratio test and its competitors to daily prices
of the four cryptocurrencies with highest market capitalization. Test decisions are heterogeneous
across tests, but the variance ratio test, the ADF test, and the ADF test based on a modified
information criterion provide reliable evidence for the presence of cointegration between the four
cryptocurrencies with the highest market capitalization. The results are in line with those in related
literature pointing towards the presence of cointegrating relationships in the cryptocurrency market
(cf., e. g. Keilbar and Zhang, 2021; Bykhovskaya and Gorin, 2022b).

The paper proceeds as follows: Section 3.2 introduces the model and its underlying assumptions.
Section 3.3 defines the variance ratio no-cointegration test under OLS- and GLS detrending and
derives its asymptotic properties. Section 3.4 analyzes the performance of the variance ratio test
in finite samples and Section 3.5 contains the empirical illustration. Section 3.6 summarizes and
concludes. All proofs are relegated to the Appendix, which also contains additional asymptotic
and finite sample results. Supplementary Material, available on the author’s homepage, provides
further finite sample results.

Throughout, ⌊x⌋ denotes the integer part of a real number x, 1m denotes the m-dimensional vector
of ones and Im denotes the (m×m)-dimensional identity matrix. The symbols p−→ and w−→ signify
convergence in probability and weak convergence, respectively, as the sample size T → ∞.

3.2 The Model and Assumptions

We consider the model

xt = µ + xt−1 + vt = x0 + µt +
t∑︂

s=1
vs (3.1)

yt = d′
tτ + x′

tβ + ut (3.2)

ut = ρut−1 + ξt, (3.3)

for t = 1, . . . , T , where {yt}t∈Z is a scalar integrated process, {xt}t∈Z is a m-dimensional vector of
integrated processes with potentially non-zero deterministic drift µ ∈ Rm, and u0 = OP(1).4 The
p-dimensional vector dt contains the deterministic components included in the model. Under the
null hypothesis ρ = 1 the error {ut}t∈Z is an integrated process, i. e., there exists no cointegrating
relation between {yt}t∈Z and {xt}t∈Z. Under the alternative |ρ| < 1, however, the error process
{ut}t∈Z is stationary and {yt}t∈Z and {xt}t∈Z are cointegrated with (normalized) cointegrating
vector [1, −β′]′, β ̸= 0.

4For the asymptotic results in this paper it in fact suffices to assume T −1/2u0 = oP(1). Section 3.4.3 analyzes the
impact of a large initial value u0 of order T 1/2 on the finite sample performance of the variance ratio test.
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Assumption 3.1. Let {wt}t∈Z := {[ξt, v′
t]′}t∈Z be a strictly stationary and ergodic process with

E(wt) = 0, finite covariance matrix E (wtw
′
t) > 0 and continuous spectral density matrix fww(λ)

on (−π, π]. Moreover, {wt}t∈Z fulfills a functional central limit theorem of the form

T −1/2
⌊rT ⌋∑︂
t=1

wt
w−→ B(r) = Ω1/2W (r), 0 ≤ r ≤ 1, (3.4)

where W (r) = [Wξ·v(r), Wv(r)′]′ is an (1+m)-dimensional vector of independent standard Brownian
motions and

Ω =
[︄
Ωξξ Ωξv

Ωvξ Ωvv

]︄
:= 2πfww(0) > 0 (3.5)

denotes the long-run covariance matrix of {wt}t∈Z.

In particular, positive definiteness of Ωvv rules out cointegration among the elements of {xt}t∈Z.
To express asymptotic results, it is convenient to work with

Ω1/2 =

⎡⎣Ω1/2
ξ·v Ωξv(Ω−1/2

vv )′

0 Ω1/2
vv

⎤⎦ , (3.6)

where Ωξ·v := Ωξξ − ΩξvΩ−1
vv Ωvξ, such that Ω1/2(Ω1/2)′ = Ω. For later usage, we partition B(r) =

[Bξ(r), Bv(r)′]′ analogously to the partitioning of W (r).

The asymptotic results depend on the specification of the deterministic components in (3.1)
and (3.2). This paper considers three different cases: no deterministics (D0), intercept only (D1)
and intercept and linear trend (D2). In case D0, we set x0 = µ = 0 and remove dtτ from (3.2).
In case D1, we allow for x0 = OP(1) and set µ = 0 and dt = 1. Finally, in case D2, we allow for
x0 = OP(1) and a deterministic trend in xt and set dt = [1, t]′.5

3.3 Asymptotic Theory

3.3.1 Preliminary Data Detrending

If deterministic components are included in (3.2), it is standard practice in applications to first
detrend zt := [yt, x′

t]′ according to the choice of dt using ordinary least squares (OLS). In this case,
the OLS detrended time series are defined as

˜︁z′
t = [˜︁yt, ˜︁x′

t] := z′
t − d′

t

(︄
T∑︂

s=1
dsd′

s

)︄−1 T∑︂
s=1

dsz′
s. (3.7)

5Perron and Rodríguez (2016) also consider the case with a deterministic trend in the regressors but only a
constant (rather than a constant and a linear trend) in the regression. Following Pesavento (2007), we abstain
from considering this case as it implies that the limiting null distributions of the test statistics depend on the
drift parameter µ being exactly zero or not – and thus leaves the opportunity of choosing wrong critical values in
applications. Considering more general deterministic components, e. g., polynomial time trends, in (3.2) and/or (3.1)
is also possible but beyond the scope of this paper.
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In case D1 and D2 the definition reduces to ˜︁zt = zt − T −1∑︁T
s=1 zs and

˜︁zt = zt − 4T − 6t + 2
T − 1

1
T

T∑︂
s=1

zs − −6T + 12t − 6
(T − 1)(T + 1)

T∑︂
s=1

(︃
s

T

)︃
zs, (3.8)

respectively. For notational brevity, we define ˜︁zt = [˜︁yt, ˜︁x′
t]′ := zt in case D0. With these definitions

in place, it follows from (3.2) that

˜︁yt = ˜︁x′
tβ + ˜︁ut, (3.9)

where ˜︁ut is defined analogously to ˜︁zt. The OLS residuals in (3.9) are given by

ˆ︁ut := ˜︁yt − ˜︁x′
t
ˆ︁β = ˜︁ut − ˜︁x′

t

(︂ˆ︁β − β
)︂

= ˜︁ut − ˜︁x′
t

(︄
T∑︂

s=1
˜︁xs˜︁x′

s

)︄−1 T∑︂
s=1

˜︁xs˜︁us, (3.10)

where ˆ︁β denotes the OLS estimator of β in (3.9).

To capture the asymptotic effects of detrending, define for a potentially multivariate integrable
stochastic process P (r), 0 ≤ r ≤ 1, the detrended process ˜︁P (r) = P (r) −

∫︁ 1
0 P (s)ds in case D1 and˜︁P (r) = P (r)−(4−6r)

∫︁ 1
0 P (s)ds−(12r−6)

∫︁ 1
0 sP (s)ds in case D2. In case D0, we set ˜︁P (r) := P (r).

Remark 3.1. Perron and Rodríguez (2016) suggest to use GLS detrended data rather than OLS
detrended data in cases D1 and D2 to increase local asymptotic power of residuals-based no-
cointegration tests. For ρ̄ := 1 + c̄/T , with some constant c̄ ≤ 0, define zρ̄

t := zt − ρ̄zt−1 and
dρ̄

t := dt − ρ̄dt−1, t = 2, . . . , T . The GLS detrended variables are constructed as ˜︁y(GLS)
t := yt − d′

tˆ︁τ∗

and ˜︁x(GLS)
t := xt − ˆ︁Ψ∗′

x dt, where [ˆ︁τ∗, ˆ︁Ψ∗
x] := (Dρ̄′Dρ̄)−1Dρ̄′Z ρ̄, with Dρ̄ := [d1, dρ̄

2, . . . , dρ̄
t ]′ and

Z ρ̄ := [z1, zρ̄
2 , . . . , zρ̄

T ]′.6 The corresponding test statistics are then based on the OLS residualsˆ︁u(GLS)
t in the regression ˜︁y(GLS)

t = ˜︁x(GLS)′
t β + ˜︁u(GLS)

t , where ˜︁u(GLS)
t := ut − d′

t(ˆ︁τ∗ − τ) + ˆ︁β′ ˆ︁Ψ∗′
x dt.

In what follows, the main text focuses in cases D1 and D2 on OLS detrended data, whereas a series
of remarks is dedicated to the use of GLS detrended data.

3.3.2 The Variance Ratio Test

Typically, residuals-based no-cointegration tests require tuning parameter choices (e. g., the number
of lags in an auxiliary regression and/or kernel and bandwidth choices to estimate a long-run
variance parameter) to accommodate the correlation structure in the data. Various simulation
results indicate that these tuning parameter choices can affect the finite sample performance of
no-cointegration tests considerably. This is particularly unfavorable in situations where different
tuning parameter choices lead to different test decisions.

To obtain a tuning parameter free no-cointegration test, we apply the nonparametric variance ratio
test of Breitung (2002), originally proposed to test for a unit root in an observed univariate time
series, to the OLS residuals ˆ︁ut defined in (3.10), i. e., based on OLS detrended data. The variance

6Including d1 and z1 in the definitions of Dρ̄ and Z ρ̄, respectively, is important, see, e. g., Breitung and Taylor
(2003).
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ratio test statistic is thus defined as

VR :=
T −2∑︁T

t=1

(︂∑︁t
s=1 ˆ︁us

)︂2

∑︁T
t=1 ˆ︁u2

t

=
ˆ︁ηT

T −2∑︁T
t=1 ˆ︁u2

t

, (3.11)

where ˆ︁ηT := T −4∑︁T
t=1

(︂∑︁t
s=1 ˆ︁us

)︂2
.

In contrast to, e. g., the MSB and ˆ︁Zα test statistics, the variance ratio test statistic does not depend
on a consistent estimator of the long-run variance parameter Ωξ·v. Instead, it depends on a random
variable ˆ︁ηT , whose limiting null distribution is, as we shall see in the proof of Proposition 3.1, scale
dependent on Ωξ·v. In this sense, the variance ratio test statistic may be interpreted as a self-
normalized version of the MSB test statistic.7 Scale dependence of the limiting null distribution
of ηT on Ωξ·v is key to obtain a nuisance parameter free limiting distribution of the variance ratio
test statistic under the null hypothesis of no cointegration.

Proposition 3.1. Let {xt}t∈Z, {yt}t∈Z, and {ut}t∈Z be generated by (3.1), (3.2), and (3.3), re-
spectively, and let {wt}t∈Z satisfy Assumption 3.1. Then it holds under the null hypothesis of no
cointegration (ρ = 1) in cases D0, D1, and D2 that

VR w−→
∫︁ 1

0

(︂∫︁ r
0
˜︂W +

ξ·v(s)ds
)︂2

dr∫︁ 1
0

(︂˜︂W +
ξ·v(r)

)︂2
dr

, (3.12)

where

˜︂W +
ξ·v(r) := ˜︂Wξ·v(r) − ˜︂Wv(r)′

(︃∫︂ 1

0
˜︂Wv(s)˜︂Wv(s)′ds

)︃−1 ∫︂ 1

0
˜︂Wv(s)˜︂Wξ·v(s)ds. (3.13)

The limiting null distribution of the variance ratio test statistic is nonstandard but free of any
nuisance parameters. It only depends on the dimension m of xt, through the dimension of Wv(r),
and on the deterministic component in (3.2), as the detrended processes appear in the limit.8

We proceed with analyzing the behavior of the variance ratio test statistic under the alternative
of cointegration.

Proposition 3.2. Let {xt}t∈Z, {yt}t∈Z, and {ut}t∈Z be generated by (3.1), (3.2), and (3.3), respec-
tively, and let {wt}t∈Z satisfy Assumption 3.1. Then it holds under the alternative of cointegration
(|ρ| < 1) in cases D0, D1, and D2 that VR = OP(T −1).

Proposition 3.2 shows that in the presence of cointegration, the variance ratio test statistic con-
verges to zero at rate equal to sample size. Hence, the variance ratio test is a left-tailed test,
rejecting the null hypothesis of no cointegration in favor of the alternative of cointegration for
small (i. e., close to zero) realizations of VR. Table 3.4 in Appendix 3.7.1 provides corresponding
asymptotic critical values in cases D0, D1, and D2 for m = 1, . . . , 5.

7This self-normalizing feature of the variance ratio test fits well to the (bootstrap-assisted) self-normalized testing
approach of Reichold and Jentsch (2022) for hypotheses on the cointegrating vector.

8The limiting null distribution derived in Proposition 3.1 differs from the limiting null distribution derived in
Breitung (2002, Prop. 3), reflecting the application of the variance ratio test to regression residuals rather than to
an observed (potentially detrended) univariate time series.
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Remark 3.2. The variance ratio test applied to the residuals from the regression with GLS de-
trended data is defined as VR(GLS) := T −2∑︁T

t=1

(︂∑︁t
s=1 ˆ︁u(GLS)

s

)︂2
/
∑︁T

t=1

(︂ˆ︁u(GLS)
t

)︂2
, with ˆ︁u(GLS)

t as
defined in Remark 3.1. Remarks 3.3 and 3.4 in Section 3.3.3 derive the limiting distribution of
VR(GLS) both under the null hypothesis of no cointegration and under local alternatives and also
provide some guidance on the choice of c̄.

3.3.3 Local Asymptotic Power

To analyzes the performance of the variance ratio test statistic under local alternatives, we set
ρ = ρT = 1 + c/T , with c ≤ 0, in (3.3). For c = 0, the regression errors {ut}t∈Z are integrated of
order one, i. e., there is no cointegration between {yt}t∈Z and {xt}t∈Z. Under the local alternative
c < 0, the error process {ut}t∈Z is a near unit root process such that T −1/2u⌊rT ⌋

w−→ Ω1/2
ξ·v Jc

ξ·v(r),
0 ≤ r ≤ 1, where

Jc
ξ·v(r) :=

∫︂ r

0
e(r−s)cd

(︃
Wξ·v(s) +

√︂
R2/(1 − R2)W v(s)

)︃
, (3.14)

is an Ornstein-Uhlenbeck process, with R2 := Ω−1
ξξ ΩξvΩ−1

vv Ωvξ = 1 − Ωξ·v/Ωξξ and W v(r) :=
m−1/21′

mWv(r) (cf., e. g., Perron and Rodríguez, 2016, Lemma 5.1). The coefficient R2 lies be-
tween zero and one and measures the squared long-run correlation between the regression errors
{ut}t∈Z and the regressors {xt}t∈Z. Pesavento (2004; 2007) shows analytically that R2 is the only
nuisance parameter affecting local asymptotic power of the ADF, MSB, and ˆ︁Zα tests. The fol-
lowing propositions shows that R2 is also the only nuisance parameter affecting local asymptotic
power of the variance ratio test.

Proposition 3.3. Let {xt}t∈Z and {yt}t∈Z be generated by (3.1) and (3.2), respectively and let
{ut}t∈Z be generated by (3.3) with ρ = ρT = 1 + c/T , where c ≤ 0. Let {wt}t∈Z satisfy Assump-
tion 3.1. Then it holds for the variance ratio test statistic in cases D0, D1, and D2 that

VR w−→ GVR,c :=
∫︁ 1

0

(︂∫︁ r
0
˜︁Jc,+
ξ·v (s)ds

)︂2
dr∫︁ 1

0

(︂ ˜︁Jc,+
ξ·v (r)

)︂2
dr

, (3.15)

where

˜︁Jc,+
ξ·v (r) := ˜︁Jc

ξ·v(r) − ˜︂Wv(r)′
(︃∫︂ 1

0
˜︂Wv(s)˜︂Wv(s)′ds

)︃−1 ∫︂ 1

0
˜︂Wv(s) ˜︁Jc

ξ·v(s)ds. (3.16)

Proposition 3.3 shows that the limiting distribution of the variance ratio test statistic under local
alternatives depends on the location parameter c, the number of regressors m and on the nuisance
parameter R2. Local asymptotic power of the variance ratio test at the nominal level α is given by
the probability that GVR,c is smaller than the α-quantile of the limiting null distribution of VR. For
c = 0, GVR,c coincides with the limiting null distribution given in Proposition 3.1, i. e., local asymp-
totic power at c = 0 is equal to α. To ease comparisons between the limiting distribution of the vari-
ance ratio test and the limiting distributions of the tests considered in Pesavento (2007) under local
alternatives, rewrite GVR,c =

(︂˜︁κ′ ˜︁Cc˜︁κc

)︂
/
(︂˜︁κ′ ˜︁Ac˜︁κc

)︂
, where ˜︁Cc :=

∫︁ 1
0

(︂∫︁ r
0
˜︂Wc(s)ds

)︂ (︂∫︁ r
0
˜︂Wc(s)ds

)︂′
dr,
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˜︁Ac :=
∫︁ 1

0
˜︂Wc(r)˜︂Wc(r)′dr, ˜︁κ′

c = [1, −
∫︁ 1

0
˜︂Wv(r)′ ˜︁Jc

ξ·v(r)dr
(︂∫︁ 1

0
˜︂Wv(r)˜︂Wv(r)′dr

)︂−1
], and˜︂Wc(r) := [ ˜︁Jc

ξ·v(r), ˜︂Wv(r)′]′.9

Remark 3.3. In case of GLS detrending, it follows from Perron and Rodríguez (2016, Lemma 5.3)
and similar arguments as used in Perron and Rodríguez (2016, Proof of Theorem 5.2) and in the
proof of Proposition 3.1 that the variance ratio test statistic converges under the local alternative
ρ = ρT = 1 + c/T , where c ≤ 0, to

VR(GLS) w−→ G(GLS)
VR,c (c̄) := κ

(GLS)′
c C

(GLS)
c κ

(GLS)
c

κ
(GLS)′
c A

(GLS)
c κ

(GLS)
c

, (3.17)

with A
(GLS)
c , C

(GLS)
c and κ

(GLS)
c defined analogously to ˜︁Ac, ˜︁Cc and ˜︁κc, respectively: ˜︁Jc

ξ·v(r) and˜︂Wv(r) have to be replaced by Jc
ξ·v(r) and Wv(r), respectively, in case D1 and with Jc

ξ·v(r) −(︂
λJc

ξ·v(1) + 3(1 − λ)
∫︁ 1

0 sJc
ξ·v(s)ds

)︂
r and Wv(r) −

(︂
λWv(1) + 3(1 − λ)

∫︁ 1
0 sWv(s)ds

)︂
r, respectively,

in case D2, where λ := (1− c̄)/(1− c̄+ c̄2/3) and c̄ as chosen in Remark 3.1. In case D1, G(GLS)
VR,c (c̄)

does not depend on c̄ and coincides with GVR,c as defined in Proposition 3.3 in case D0. The
limiting null distribution of the variance ratio test based on GLS detrending is given by G(GLS)

VR,0 (c̄).

Remark 3.4. To provide some guidance on the choice of c̄, we follow Perron and Rodríguez (2016,
p. 93) and choose c̄ such that P

(︂
G(GLS)

VR,c̄ (c̄) < q0.05(c̄)
)︂

= 0.5 when R2 = 0.4, where qα(c̄) satisfies

P
(︂
G(GLS)

VR,0 (c̄) < qα(c̄)
)︂

= 0.05.10 Table 3.3 in Appendix 3.7.1 displays the values of c̄ in cases
D1 and D2 for m = 1, . . . , 5. Given these values of c̄, Table 3.4 in Appendix 3.7.1 tabulates the
corresponding critical values qα(c̄) for the variance ratio test based on GLS detrended data.

Figure 3.1 illustrates the local asymptotic power curve of the variance ratio test at the nominal
5% level (in cases D1 and D2 based on OLS detrended and GLS detrended data) for m = 1 and
R2 ∈ {0, 0.4, 0.8}. In case of GLS detrending, c̄ is chosen as suggested in Table 3.3 in Appendix 3.7.1
– with results being qualitatively similar for other choices of c̄. The figure also displays the local
asymptotic power curves of the ADF test, the ˆ︁Zα test, and the MSB test based on OLS detrended
data derived in Pesavento (2007) and the local asymptotic power curve of the ADF and MSB tests
based on GLS detrended data derived in Perron and Rodríguez (2016), with the value of c̄ as
suggested in Perron and Rodríguez (2016, Table 1).11

9In this notation, the limiting distributions of the ADF, ˆ︁Zα and MSB statistics under local alternatives

are given by c

(︁
κ̃′

c˜︁Acκ̃c

)︁1/2

(κ̃′
cDκ̃c)1/2 + κ̃′

c˜︁Bcκ̃c

(κ̃′
cDκ̃c)1/2

(︁
κ̃′

c˜︁Acκ̃c

)︁1/2 , c + κ̃′
c˜︁Bcκ̃c

κ̃′
c˜︁Acκ̃c

, and
(︁

κ̃′
c˜︁Acκ̃c

)︁1/2

(κ̃′
cDκ̃c)1/2 , respectively, with ˜︁Bc :=

∫︁ 1
0
˜︂Wc(r)d

(︂
(Wξ·v(s) +

√︁
R2/(1 − R2)W v(s)

)︂
, D :=

[︃
1 + δ̄

′
δ̄ δ̄

′

δ̄ Im

]︃
and δ̄

′ := Ω−1/2
ξ·v Ωξv(Ω−1/2

vv )′, see Pesavento

(2007, Theorem 1), where we corrected a typo in the limiting distribution of ˆ︁Zα. By definition, it holds that
δ̄

′
δ̄ = R2/(1 − R2).
10See also the discussion in Nielsen (2009, p. 1528).
11Perron and Rodríguez (2016) derive, among others, the limiting distributions of the ADF, ˆ︁Zα, and MSB tests

based on GLS detrended data under local alternatives. However, the analytical expressions of the limiting distri-
butions of the ADF test and the ˆ︁Zα test (the ˆ︁Zρ̂ test in their notation) in Theorem 5.2 contain typos. The square
root should be removed from the numerator in the second term of the limiting distribution of the ADF test and
from both the numerator and the denominator in the second term of the limiting distribution of the ˆ︁Zα test (cf.
Pesavento, 2007, Theorem 1). The results in Figure 3.1 are based on the corrected version of the limiting distribution
of the ADF test.
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As expected, local asymptotic power of all tests decreases when R2 increases, with the power loss
being least pronounced in case D0 and most pronounced in case D2. Figure 3.1 further reveals that
local asymptotic power of the ADF test (in the presence of deterministics based on OLS detrended
data), the ˆ︁Zα test, and the MSB test is very similar throughout and considerably larger than local
asymptotic power of the variance ratio test, irrespective of whether the variance ratio test is based
on OLS detrended data or GLS detrended data.12

In cases D1 and D2, GLS detrending increases local asymptotic power of the variance ratio test for
R2 = 0.8, but this power improvement seems to be negligible when compared with local asymptotic
power of the other tests considered here. On the contrary, for R2 = 0 local asymptotic power
of the variance ratio test based on GLS detrended data is much smaller than local asymptotic
power of its OLS-based counterpart. For R2 = 0.4, GLS detrending seems to lead to minor power
improvements for small values of c, but as c moves further away from zero GLS detrending becomes
disadvantageous. We conclude that in terms of local asymptotic power, the variance ratio test does
not benefit from GLS detrending, which is in line with the findings in Breitung and Taylor (2003)
and Nielsen (2009) for Breitung’s (2002) unit root test applied to observed univariate time series. In
contrast, GLS detrending improves local asymptotic power of the ADF and MSB tests considerably
throughout, which is in line with the findings in Perron and Rodríguez (2016). Finally, note that
results for other values of m are qualitatively similar, with local asymptotic power being lower
overall for larger values of m.

The results clearly demonstrate that the ADF, ˆ︁Zα, and MSB tests outperform the variance ratio
test in terms of local asymptotic power. These power losses might not come as a surprise, given
the self-normalizing property of the variance ratio test and the fact that self-normalized tests are
well known for having smaller local asymptotic power than their (semi-)parametric counterparts
(cf., e. g., Shao, 2015). However, local asymptotic power analyses are unable to reveal finite sam-
ple effects of both different short-run dynamics in the DGP and tuning parameter choices. The
next section complements the local asymptotic power analysis with a careful assessment of the
performance of the tests in finite samples.

3.4 Finite Sample Performance

We generate data according to (3.1) and (3.2) with m = 1 regressor, i. e.,

xt = µ + xt−1 + vt = x0 + µt +
t∑︂

s=1
vs, (3.18)

yt = d′
tτ + xtβ + ut, (3.19)

12Hosseinkouchack (2014) analyzes local asymptotic power of Breitung’s (2002) unit root test when applied to an
observed (potentially OLS detrended) univariate time series and finds similar power losses.
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Figure 3.1: Asymptotic power of the tests at the nominal 5% level for H0: ρ = 1 under the local
alternative ρ = ρT = 1 + c/T in cases D0 (first column), D1 (second column), and D2 (third
column) for m = 1.
Note: The results are based on 10,000 Monte Carlo replications and standard Brownian motions are approximated
by normalized partial sums of 10,000 i.i.d. standard normal random variables.

for t = 1, . . . , T . The regression errors are generated as ut = ρut−1 + ξt using the following five
different short-run dynamics:

ξt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εt (IID)

ϕξt−1 + εt (AR)

εt − θεt−1 (MA)

ϕξt−1 + εt − θεt−1 (ARMA)
√

htεt, ht = (1 − a1 − a2) + a1ξ2
t−1 + a2ht−1 (GARCH),

for t = −99, . . . , 0, 1, . . . , T .13 The vectors [εt, vt]′, are i.i.d. across t and follow a zero-mean

bivariate normal distribution with covariance matrix Σ :=
[︄

1 σεv

σεv 1

]︄
. To ensure stationarity of ξt,

the parameter values are restricted to |ϕ|, |θ| < 1 and a1 + a2 < 1, with a1, a2 ≥ 0. In the IID and
GARCH cases, the long-run covariance matrix of [ξt, vt]′ is given by ΩIID = ΩGARCH = Σ, whereas

13We set u−100 = ξ−100 = 0 and h−100 = 1. The period t = −99, . . . , 0 serves as a burn-in period to eliminate
these starting-value effects. Section 3.4.3 analyzes the effect of a large initial value u0 on the performance of the
tests in finite samples.
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in the ARMA case it is given by ΩARMA :=

⎡⎣ (1−θ)2

(1−ϕ)2
(1−θ)σεv

1−ϕ
(1−θ)σεv

1−ϕ 1

⎤⎦. In the AR and MA cases, the

long-run covariance matrices ΩAR and ΩMA can be directly deduced from ΩARMA by setting θ and
ϕ, respectively, equal to zero. Although the long-run covariance matrix of [ξt, vt]′ differs across
types of short-run dynamics, the only nuisance parameter affecting local asymptotic power of the
residuals-based no-cointegration tests, i. e., R2 (compare the discussion in Section 3.3.3), is equal
to σ2

εv in each case. The DGP thus allows to analyze the effects of different short-run dynamics in
ξt on the performance of residuals-based no-cointegration tests in finite samples while controlling
for effects of R2.14 In contrast, the local asymptotic power analysis in Section 3.3.3 only allows to
assess the effect of R2.

Remark 3.5. Pesavento (2007, p. 127) and Perron and Rodríguez (2016, p. 99) state that local
asymptotic power results serve as a useful indicator for the performance of residuals-based no-
cointegration tests in finite samples. However, Pesavento (2007) only considers a DGP similar to
our IID case, while Perron and Rodríguez (2016) allow the errors to be serially correlated – using
a vector autoregression model of order one to generate [ξt, vt]′ – but restrict the diagonal and off-
diagonal elements of the long-run covariance matrix of [ξt, vt]′ to one and a constant r, respectively,
such that R2 = r2. Perron and Rodríguez (2016, p. 99) correctly point out that holding the long-run
covariance matrix fixed implies that changes in the autoregressive parameters are compensated by
changes in the covariance matrix of [ξt, vt]′. Consequently, changes in the autoregressive parameters
do not affect the performance of the tests in their DGP. In contrast, we shall see below that the
DGP considered in this paper is able to detect severe effects of different short-run dynamics on the
performance of residuals-based no-cointegration tests. The finite sample results in this section thus
differ considerably from the local asymptotic power results in Section 3.3.3.

Parameters are chosen as follows: In all cases, we set β = 1. Moreover, we set ϕ, θ ∈ {0.3, 0.6, 0.9}
in the AR and MA models, (ϕ, θ) ∈ {(0.3, 0.6), (0.3, 0.3), (0.6, 0.3)} in the ARMA model, and
(a1, a2) ∈ {(0.05, 0.94), (0.01, 0.98)} in the GARCH model. In addition, we set x0 = 0 and µ = 0
in case D0, x0 = 1, µ = 0 and τ = 1 in case D1, and x0 = 1, µ = 1 and τ = [1, 1]′ in case D2.
We present results for R2 ∈ {0, 0.4, 0.8} by choosing σεv ≥ 0 accordingly and T ∈ {100, 250}. All
results are based on 5,000 Monte Carlo replications and all tests are carried out at the nominal 5%
level.

We compare the variance ratio test with the ADF test, the MSB test, and the ˆ︁Zα test in terms
of empirical size and size-corrected power. In cases D1 and D2, the tests are based on OLS
detrended data. In addition, we also consider the variance ratio test and the ADF test based
on GLS detrended data, indicated by the superscript “(GLS)”, where c̄ is chosen as suggested in
Table 3.3 in Appendix 3.7.1 and in Table 1 of Perron and Rodríguez (2016), respectively.

In contrast to the variance ratio test, the ADF, MSB, and ˆ︁Zα tests require tuning parameter
choices. The number of lags for the ADF test and the MSB test is selected using AIC. For the
ADF test and its GLS-version, we also analyze the results based on a modified AIC (MAIC)
criterion proposed in Ng and Perron (2001) for unit root testing in an observed univariate time

14Controlling for effects of R2 allows to compare the finite sample results in this section with the local asymptotic
power results obtained in Section 3.3.3.
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series, taking into account further modifications suggested in Perron and Qu (2007).15 We also
analyze the performance of the GLS-version of the MSB test in combination with the MAIC. The
use of MAIC is indicated by the superscript “∗”. For both information criteria, the minimal number
of lags is zero and the maximal number of lags is restricted to not exceed ⌊12(T/100)1/4⌋, the upper
bound suggested in Perron and Qu (2007).16 The ˆ︁Zα test is based on a kernel estimator of a long-
run variance parameter. We present results for the quadratic spectral (QS) kernel together with
the corresponding data-dependent bandwidth-selection rule of Andrews (1991).17 For convenience,
Appendix 3.7.4 describes the construction of the ADF, MSB, and ˆ︁Zα tests in more detail.18

3.4.1 Empirical Size

Table 3.1 presents empirical sizes of the tests under the null hypothesis of no cointegration (ρ = 1)
in cases D1 and D2 for T = 100. The results directly reveal that the performance of the tests
depends heavily on the short-run dynamics in ξt. In particular, size distortions in the MA and
ARMA cases can be more severe than in the IID, AR, and GARCH cases. Moreover, relative to
the IID case with R2 = 0, changing the short-run dynamics in ξt can have much larger adverse
effects on the performance of the tests than increasing R2 to 0.8.

Focusing on the performance of the different tests in detail reveals that the variance ratio test is
less size-distorted than the ADF and MSB tests. The variance ratio test often also outperforms theˆ︁Zα test, especially in the MA case with θ < 0.9 and in the ARMA(0.3,0.6) case. GLS detrending
worsens the performance of the variance ratio test, especially in case D2, and of the ADF test, but
the GLS detrended version of the ADF test in combination with the MAIC performs relatively
well. Similarly, the GLS detrended version of the MSB test in combination with the MAIC has
much smaller size distortions than the MSB test, but it tends to be very conservative.

Comparing the ADF test with the ADF∗ test reveals that using the MAIC criterion is also advan-
tageous under OLS detrending. In most cases, the variance ratio test and the ADF∗ test perform
similarly, but the ADF∗ test has some performance advantages over the variance ratio test in the
MA case with θ > 0.3 and in the ARMA(0.3,0.6) case. These performance advantages are the
more pronounced the larger R2.

Increasing the sample size reduces the size distortions of the tests, especially for VR(GLS) in case
D2, and makes the MSB(GLS)∗ less conservative, compare Table 3.6 in Appendix 3.7.2, which
presents the results for T = 250. Beyond that, the results are qualitatively similar to those for

15Perron and Qu (2007) suggest to construct the ADF statistic based on GLS detrended data and to determine
the number of lags in the auxiliary regression based on OLS detrended data.

16The Supplementary Material provides results based on BIC and MBIC, with MBIC defined analogously to MAIC
(compare Section 3.7.4 in the Appendix). The tests based on MBIC perform similar to those based on MAIC. In
contrast, the tests based on BIC are more prone to severe size distortions than those based on AIC, but often
reveal some power advantages compared to their AIC based counterparts. These differences in size-corrected power,
however, do not alter the overall picture emerging from the discussion in Section 3.4.2. In particular, the tests based
on both BIC and MBIC suffer from similar power reversal problems as observed for the tests based on AIC and
MAIC in Section 3.4.2.

17Using the Bartlett kernel instead of the QS kernel often leads to slightly larger size distortions.
18When the ADF and MSB tests are used in applications, it seems to be more popular to perform OLS detrending

rather than GLS detrending and employing the AIC or BIC rather than the MAIC or MBIC. The following results
thus also allow to assess whether practitioners should stick to these “default” choices or not.
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T = 100. Overall, the findings also hold in case D0, although the variance ratio test seems to be
rather conservative in this case even for T = 250, compare Table 3.5 in Appendix 3.7.2.

3.4.2 Size-Corrected Power

To analyze the finite sample properties of the tests under deviations from the null hypothesis, we
generate data under the alternatives ρ = ρT = 1 + c/T using an equidistant grid of 21 points over
the interval [0, 60] for the values of −c.19 To account for the large performance differences between
the tests in terms of empirical sizes under the null hypothesis (c = 0), the analysis focuses on
size-corrected (empirical) power. To this end, test decisions are based on case-specific empirical
critical values obtained from simulations under the null hypothesis rather than on asymptotic
critical values. All size-corrected power curves thus start at the nominal 5% level.

Size-corrected power of the tests decreases when R2 becomes larger. However, for all three de-
terministic specifications different short-run dynamics in ξt can have more adverse effects on the
performance of the tests than increasing R2 from zero to 0.8. Figure 3.2 presents the size-corrected
power curves of the tests for the different short-run dynamics in case D2 with T = 100 and
R2 = 0.4.20 For most short-run dynamics, the ˆ︁Zα test performs best, while the MSB test performs
worse. The ranking of the remaining tests is highly case dependent.

In general, the variance ratio test performs relatively well and much better than suggested by the
local asymptotic power results. In particular, it outperforms the MSB(GLS)∗ test and both the OLS
and GLS versions of the ADF∗ test – thus its biggest competitors under the null hypothesis – in
the MA cases and in the ARMA(0.3,0.6). In the MA case with θ = 0.9, the variance ratio test
is even the most powerful test, but this result should be interpreted with caution, as all tests are
heavily size-distorted in this case. In other cases, the variance ratio test is less powerful than its
competitors for small deviations from the null hypothesis but outperforms the MSB(GLS)∗ test and
both the OLS and GLS versions of the ADF∗ test for larger deviations from the null hypothesis.21

Importantly, for some short-run dynamics, the power curves of the MSB(GLS)∗ test and both the
OLS and GLS versions of the ADF∗ test reveal power reversal problems. This phenomenon is well
known in the unit root literature for the MSB and ADF tests in combination with the AIC criterion
in the MA case with a large θ. However, the MAIC criterion has been introduced as a possible
way to prevent this degeneracy (cf. the discussion in Perron and Qu, 2007). Comparing the power
curves of the ADF∗ and ADF(GLS)∗ tests with those of the ADF and ADF(GLS) tests reveals that
using the MAIC criterion rather than the AIC criterion indeed prevents power reversal problems
associated with the ADF test in the MA case with θ = 0.9.22 In other cases, however, the tests
based on MAIC still suffer from power reversal problems (e. g., in the AR case with ϕ = 0.6 and

19Note that the alternatives move closer to the null hypothesis as the sample size increases. Hence, for (very)
large sample sizes, the size-corrected power results should match the local asymptotic power results in Figure 3.1,
irrespective of the short-run dynamics in ξt.

20Results in case D0 and D1 are qualitatively similar. The Supplementary Material (Figures E.1 – E.18 and E.28
– E.45) provides figures similar to Figure 3.2 for all three deterministic specifications and all combinations of R2 and
T .

21For some short-run dynamics the power curves of all tests considered can decline slightly below α for small
deviations from the null, especially for R2 = 0.8. This is in line with the local asymptotic power curves in Figure 3.1.

22In the MA case with θ = 0.9 the MSB(GLS)∗ test still suffers from power reversal problems.
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Table 3.1: Empirical sizes of the tests in cases D1 and D2 for T = 100.

AR MA ARMA GARCH
R2 Test IID 0.3 0.6 0.9 0.3 0.6 0.9 (0.3,0.6) (0.3,0.3) (0.6,0.3) (0.05,0.94) (0.01,0.98)
Deterministic specification D1
0 VR 0.05 0.04 0.03 0.01 0.07 0.16 0.72 0.10 0.05 0.03 0.05 0.05

VR(GLS) 0.12 0.11 0.08 0.03 0.15 0.26 0.82 0.19 0.12 0.09 0.12 0.12
ADF 0.08 0.07 0.07 0.05 0.13 0.23 0.83 0.24 0.08 0.06 0.09 0.08
ADF(GLS) 0.11 0.10 0.09 0.06 0.17 0.26 0.70 0.28 0.11 0.09 0.11 0.11
ADF∗ 0.04 0.02 0.02 0.02 0.05 0.07 0.34 0.08 0.04 0.01 0.04 0.04
ADF(GLS)∗ 0.06 0.03 0.03 0.01 0.08 0.10 0.37 0.12 0.06 0.02 0.06 0.06
MSB 0.11 0.14 0.14 0.15 0.14 0.21 0.77 0.22 0.11 0.14 0.12 0.11
MSB(GLS)∗ 0.02 0.02 0.03 0.03 0.04 0.05 0.27 0.08 0.02 0.01 0.03 0.02ˆ︁Zα 0.05 0.02 0.01 0.01 0.19 0.72 1.00 0.33 0.05 0.01 0.05 0.05

0.4 VR 0.05 0.04 0.03 0.01 0.07 0.19 0.78 0.11 0.05 0.03 0.05 0.05
VR(GLS) 0.12 0.11 0.09 0.05 0.16 0.29 0.85 0.20 0.12 0.09 0.12 0.12
ADF 0.08 0.08 0.08 0.05 0.14 0.28 0.87 0.26 0.08 0.07 0.09 0.08
ADF(GLS) 0.11 0.11 0.10 0.07 0.17 0.29 0.75 0.28 0.11 0.09 0.11 0.11
ADF∗ 0.04 0.02 0.03 0.02 0.05 0.07 0.38 0.08 0.04 0.02 0.04 0.04
ADF(GLS)∗ 0.06 0.03 0.03 0.02 0.08 0.10 0.42 0.12 0.06 0.03 0.06 0.06
MSB 0.12 0.14 0.14 0.14 0.14 0.24 0.82 0.25 0.12 0.14 0.12 0.12
MSB(GLS)∗ 0.03 0.02 0.03 0.03 0.04 0.05 0.30 0.08 0.03 0.02 0.03 0.03ˆ︁Zα 0.06 0.03 0.03 0.02 0.21 0.79 1.00 0.39 0.06 0.02 0.06 0.06

0.8 VR 0.05 0.05 0.06 0.01 0.09 0.31 0.87 0.15 0.05 0.05 0.05 0.05
VR(GLS) 0.12 0.12 0.14 0.06 0.18 0.43 0.93 0.26 0.12 0.12 0.12 0.12
ADF 0.08 0.10 0.16 0.06 0.15 0.41 0.92 0.33 0.08 0.11 0.10 0.08
ADF(GLS) 0.11 0.13 0.20 0.10 0.19 0.40 0.79 0.35 0.11 0.15 0.12 0.11
ADF∗ 0.04 0.04 0.07 0.03 0.05 0.10 0.45 0.10 0.04 0.05 0.04 0.04
ADF(GLS)∗ 0.06 0.06 0.11 0.05 0.08 0.14 0.48 0.14 0.06 0.07 0.06 0.06
MSB 0.11 0.13 0.16 0.12 0.16 0.35 0.89 0.32 0.11 0.14 0.12 0.12
MSB(GLS)∗ 0.03 0.03 0.06 0.03 0.04 0.06 0.36 0.09 0.03 0.04 0.03 0.03ˆ︁Zα 0.06 0.07 0.14 0.04 0.36 0.95 1.00 0.59 0.06 0.08 0.06 0.06

Deterministic specification D2
0 VR 0.05 0.04 0.02 0.00 0.09 0.26 0.93 0.14 0.05 0.03 0.06 0.05

VR(GLS) 0.30 0.26 0.20 0.07 0.36 0.59 0.99 0.45 0.30 0.22 0.30 0.30
ADF 0.10 0.10 0.08 0.05 0.19 0.35 0.91 0.35 0.10 0.08 0.10 0.10
ADF(GLS) 0.14 0.13 0.12 0.07 0.23 0.37 0.85 0.39 0.14 0.11 0.14 0.14
ADF∗ 0.03 0.01 0.02 0.01 0.06 0.09 0.51 0.11 0.03 0.01 0.04 0.03
ADF(GLS)∗ 0.06 0.02 0.03 0.01 0.08 0.12 0.54 0.15 0.06 0.01 0.06 0.06
MSB 0.15 0.20 0.22 0.25 0.19 0.28 0.85 0.27 0.15 0.22 0.17 0.15
MSB(GLS)∗ 0.01 0.01 0.03 0.03 0.04 0.06 0.42 0.09 0.01 0.01 0.02 0.01ˆ︁Zα 0.04 0.01 0.00 0.00 0.24 0.87 1.00 0.43 0.04 0.00 0.05 0.04

0.4 VR 0.05 0.04 0.03 0.00 0.09 0.30 0.94 0.15 0.05 0.03 0.05 0.05
VR(GLS) 0.30 0.26 0.22 0.08 0.38 0.64 0.99 0.47 0.30 0.23 0.30 0.30
ADF 0.11 0.10 0.09 0.05 0.20 0.40 0.92 0.38 0.11 0.09 0.11 0.11
ADF(GLS) 0.14 0.13 0.11 0.08 0.23 0.41 0.86 0.41 0.14 0.11 0.14 0.14
ADF∗ 0.04 0.01 0.02 0.01 0.06 0.10 0.48 0.11 0.04 0.01 0.04 0.04
ADF(GLS)∗ 0.06 0.02 0.03 0.01 0.09 0.14 0.51 0.16 0.06 0.01 0.06 0.06
MSB 0.16 0.19 0.20 0.23 0.19 0.33 0.86 0.30 0.16 0.21 0.17 0.16
MSB(GLS)∗ 0.02 0.01 0.02 0.03 0.04 0.07 0.39 0.10 0.02 0.01 0.02 0.02ˆ︁Zα 0.04 0.01 0.01 0.00 0.28 0.93 1.00 0.48 0.04 0.01 0.05 0.05

0.8 VR 0.05 0.05 0.06 0.00 0.11 0.48 0.98 0.20 0.05 0.04 0.05 0.05
VR(GLS) 0.29 0.29 0.32 0.09 0.43 0.81 1.00 0.56 0.29 0.28 0.30 0.29
ADF 0.11 0.11 0.15 0.04 0.22 0.57 0.93 0.47 0.11 0.11 0.11 0.11
ADF(GLS) 0.13 0.15 0.20 0.06 0.25 0.55 0.86 0.48 0.13 0.15 0.14 0.14
ADF∗ 0.04 0.03 0.05 0.01 0.06 0.14 0.45 0.14 0.04 0.03 0.04 0.04
ADF(GLS)∗ 0.06 0.05 0.08 0.01 0.09 0.18 0.48 0.18 0.06 0.05 0.06 0.06
MSB 0.16 0.17 0.17 0.17 0.21 0.48 0.88 0.41 0.16 0.17 0.17 0.16
MSB(GLS)∗ 0.02 0.02 0.03 0.01 0.04 0.10 0.36 0.12 0.02 0.01 0.02 0.02ˆ︁Zα 0.05 0.05 0.09 0.00 0.46 1.00 1.00 0.70 0.05 0.05 0.05 0.05

Note: The superscripts “(GLS)” and “∗” indicate GLS detrending instead of OLS detrending and the use of MAIC instead
of AIC, respectively.
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3.4. Finite Sample Performance

in the ARMA case with ϕ = 0.6 and θ = 0.3) and perform worse than those based on AIC (e. g.,
in the IID and GARCH cases).

With respect to preliminary data detrending, the results suggest that the GLS versions of the ADF
and ADF∗ tests perform similarly to the OLS versions of the test, whereas the GLS version of the
variance ratio test is often (considerably) less powerful than the OLS version.23 On the other hand,
the MSB(GLS)∗ test is in most cases clearly more powerful than the MSB test.

Finally, increasing the sample size is beneficial for the power of the tests, but results for T = 250
are qualitatively similar, see, e. g., Figure 3.6 in Appendix 3.7.2 in case D2 with R2 = 0.4. It
is noteworthy that short-run dynamics in ξt even have adverse effects – including power reversal
problems for the ADF tests and the MSB(GLS)∗ test – on the power of the tests for larger sample
sizes, especially in case D2 with R2 = 0.8. However, as T increases, short-run dynamics in ξt

become less pervasive such that the size-corrected power results approach the local asymptotic
power results analyzed in Section 3.3.3, see, e. g., the results for T = 1,000 in case D2 with
R2 = 0.4 in Figure 3.7 in Appendix 3.7.2.24 In general, we notice that for small to medium sample
sizes, the finite sample performance of the tests are dominated by the short-run dynamics in ξt

such that size-corrected power results deviate considerably from local asymptotic power results.
Pesavento (2007) and Perron and Rodríguez (2016) do not detect these discrepancies between the
finite sample performance of the tests and the local asymptotic power results because their DGPs
only allow for very mild effects of short-run dynamics (compare the discussion in Remark 3.5). As
the sample size increases, the short-run dynamics in ξt become less important and the performance
of the tests is then dominated by R2. In this case, size-corrected power results are more similar
to local asymptotic power results. The sample size required for a sufficient degree of similarity
between finite sample results and local asymptotic power results generally increases with the order
of the deterministic component and R2, i. e., the required sample size is much smaller in case D0
with R2 = 0 than in case D2 with R2 = 0.8.

To provide an overall assessment, it is important to note that residuals-based no-cointegration tests
are used to avoid analyzing the relationship between stochastically trending (economic) variables
in a spurious regression framework. For practitioners, small upward size distortions may thus
have a higher weight in the overall assessment of the general performance of the tests than high
power under the alternative. We thus conclude that both the variance ratio test and the ADF∗

test perform best among the tests considered in this simulation study and thus may be deemed
useful for testing for cointegration in applications. However, practitioners should be aware of the
individual specific shortcomings of the tests.25

23The local asymptotic power results suggest that the GLS version of the variance ratio test is generally more
powerful than its OLS version for R2 = 0.8. However, the finite sample results do not reveal a similar advantage of
the GLS version over the OLS version in terms of size-corrected power, compare Figure 3.5 in Appendix 3.7.2 for the
size-corrected power curves in case D2 for T = 100 and note that results in case D1 are similar, compare Figure E.6
in the Supplementary Material. For T = 250, GLS detrending even seems to be disadvantageous in cases D1 and
D2, compare Figures E.15 and E.18 in the Supplementary Material.

24Figures E.19 – E.27 in the Supplementary Material show the results for T = 1,000 and all values of R2 in cases
D0, D1, and D2. Moreover, Figures E.46 – E.54 show the results for the ADF and MSB tests based on (M)BIC.

25To make the analysis more robust against individual specific shortcomings of the tests, practitioners could use a
Fisher-type combination test or a “union-of-rejections” decision rule (cf. Bayer and Hanck, 2013).
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3. A Residuals-Based Nonparametric Variance Ratio Test for Cointegration

3.4.3 A Large Initial Value u0

Several contributions in related literature highlight strong effects of a large initial value u0 on
the power of unit root (see, e. g., Harvey et al., 2009, and references therein) and residuals-based
no-cointegration (see, e. g., Perron and Rodríguez, 2016) tests. To comment briefly on the effect
of a large (in a well-defined sense) initial value u0 on the power of the variance ratio test, we use
the same set-up as before but generate initial values u0 of order T 1/2.26 To this end, we follow
Harvey et al. (2009) and Perron and Rodríguez (2016) and generate u0 as u0 = λu/(1 − ρ2

T )1/2,
where ρT = 1 + c/T , c < 0, and λu is a fixed constant.27 We compare the performance of the
variance ratio test with the performance of the tests already analyzed in the previous subsections.
To simplify the comparison with the size-corrected power curves discussed in Section 3.4.2, we
again consider size-corrected power results of the tests, using the same empirical critical values as
in the previous subsection.

Figure 3.3 presents the results for c = −20, T = 100 and R2 = 0.4 in case D2. Again, the
performance of the tests highly depends on the short-run dynamics in ξt. In the MA case with
θ = 0.9 and in the ARMA(0.3,0.6) case, size-corrected power of all tests decreases as λu moves away
from zero, whereas in the AR case with ϕ = 0.9, size-corrected power of the tests is rather unaffected
by changes in λu. In the majority of cases, however, size-corrected power of the ADF and of the
ADF∗ tests increases as λu moves away from zero, with clear performance advantages of ADF∗

over ADF, whereas power of the other tests decreases for larger initial values u0.28 These adverse
effects are more pronounced for the GLS-versions of the tests than for their OLS counterparts,
which fits well to the findings in Perron and Rodríguez (2016). Noticeably, the VR test is, except
for the MA and ARMA(0.3,0.6) cases, rather unaffected by initial values u0 corresponding to small
to medium values of λu. Results for T = 250 and/or other choices of c and R2 are qualitatively
similar and we observe comparable effects also in case D1.

26It is clear from the proof of Proposition 3.1 that u0 does not affect the distribution of the VR statistic under the
null hypothesis in cases D1 and D2, neither in the limit nor in finite samples. In case D0, however, an initial value
u0 of order T 1/2 does affect the distribution of the VR statistic under the null hypothesis both in finite samples and
in the limit. Since in applications an intercept is typically included in (3.2), we do not comment upon this issue any
further.

27Effects in case u0 is drawn from a normal distribution with mean zero and variance λ2
u/(1 − ρ2

T ) are less
pronounced.

28Replacing (M)AIC with (M)BIC in the construction of the ADF and MSB tests yields similar results.
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3.5. Empirical Illustration
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Figure 3.4: OLS detrended log prices of cryptocurrencies from June 21, 2019 to February 25, 2020.

3.5 Empirical Illustration

This illustration considers daily closing prices (in U.S. dollar) of cryptocurrencies. In particular, we
test for cointegration between the four cryptocurrencies with the highest market capitalization (as
of February 25, 2020, excluding stable coins), namely Bitcoin (BTC), Ethereum (ETH), XRP and
Bitcoin Cash (BCH). We focus on the latest T = 100, T = 200 and T = 250 time points of the data
set analyzed in detail in Keilbar and Zhang (2021), which ends in February 25, 2020.29 Figure 3.4
shows the OLS detrended logarithms of the T = 250 daily prices of the four cryptocurrencies
between June 21, 2019 and February 25, 2020. Keilbar and Zhang (2021) find evidence that the
four series are integrated of order one. In addition, maybe apart from the beginning of the period,
Figure 3.4 indicates a strong co-movement of the four series.

We choose Bitcoin (i. e., the cryptocurrency with the highest market capitalization) as the left-hand
side variable and calculate the nine test statistics considered in the previous section allowing for a
deterministic time trend (D2). Table 3.2 provides the results for the three periods. For each period,

Table 3.2: Realizations of test statistics

VR VR(GLS) ADF ADF(GLS) ADF∗ ADF(GLS)∗ MSB MSB(GLS)∗ ˆ︁Zα

T = 100 0.0010 0.0020 -4.5413 -4.0909 -4.5413 -4.0909 0.1430 0.1465 -31.6678
T = 200 0.0012 0.0087 -5.0965 -4.3508 -4.5956 -3.9285 0.1050 0.1362 -43.6046
T = 250 0.0045 0.0420 -5.2109 -3.5599 -5.3029 -3.5599 0.1214 0.1486 -42.7777

Notes: Bold numbers indicate significance at the 5% level. The superscripts “(GLS)” and “∗” indicate GLS
detrending instead of OLS detrending and the use of MAIC instead of AIC, respectively. Except for the ADF(GLS)

test and the MSB test in the T = 200 period, significance of results does not change when (M)BIC replaces
(M)AIC. The ˆ︁Zα test is based on the QS kernel. Using the Bartlett kernel instead leads to similar results.

29The data set is available on https://github.com/QuantLet/CryptoDynamics/blob/master/
CryptoDynamics_Series/logprice.csv (accessed: September 4, 2022). Choosing the three (nested) periods is merely to
analyze the relationship for different sample sizes similar to those used in Section 3.4. This should not be interpreted
as a monitoring strategy.
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3. A Residuals-Based Nonparametric Variance Ratio Test for Cointegration

test decisions at the 5% significance level are heterogeneous across tests. The ADF and ADF∗ tests
reject the null hypothesis of no cointegration in all three periods, whereas the ADF(GLS)∗ test and
the MSB(GLS)∗ test never reject. For the T = 100 and T = 200 periods, the test decisions of
the VR test are in line with the those of the ADF and ADF∗ tests, but for the T = 250 period
the VR test leads to an opposing result. Comparing the values of the test statistics between the
T = 200 and the T = 250 periods reveals that the ADF and ADF∗ test statistics decrease (i. e.,
become more significant) as the sample size increases, whereas the remaining seven test statistics
– including the VR statistic – increase (i. e., become less significant). Thus, it seems that a more
detailed analysis is needed to decide whether the series are cointegrated in the T = 250 period or
not. On the other hand, in light of the simulation results in Section 3.4, the results in the T = 100
and T = 200 periods seem to provide reliable evidence for the presence of cointegration.30

For investors, the presence of a cointegrating relationship between the four cryptocurrencies with
the highest market capitalization clearly complicates diversification of their cryptocurrency port-
folios. On the other hand, it allows them to use a cointegration-based trading strategy to increase
profits (cf, e. g., Leung and Nguyen, 2019; Keilbar and Zhang, 2021).

3.6 Summary and Conclusions

This paper derives asymptotic theory for Breitung’s (2002) nonparametric variance ratio unit root
test when applied to regression residuals and analyzes its asymptotic and finite sample properties
in this case. The results reveal that the variance ratio test has smaller local asymptotic power
than its competitors. However, in finite samples, short-run dynamics in the errors can have severe
effects on the performance of the tests both under the null hypothesis and under the alternative.
In terms of empirical size, the variance ratio test and the ADF test based on a modified AIC
(BIC) perform best and, in particular, outperform the ADF test based on the (unmodified) AIC
(BIC). As both tests also perform relatively well in terms of size-corrected power, they may be
deemed useful for testing for cointegration in applications. In particular, both test behave nicely
in the important case where the regression errors have a moving average component with a small
negative coefficient. However, practitioners should be aware that under some short-run dynamics
the variance ratio test can be less powerful than its competitors under small deviations from the
null hypothesis (but then quickly catches up), whereas the ADF test is prone to power reversal
problems for larger deviations from the null hypothesis – whether or not the AIC (BIC) is modified.
Finally, an empirical illustration testing for cointegration between daily prices of cryptocurrencies
shows the usefulness of the variance ratio test in practice.

Future research could strive to make the ADF test (and the MSB test) more robust against power
reversal problems. Moreover, it might be possible to increase local asymptotic power of the variance
ratio test by extending Nielsen’s (2009) family of unit root tests – which contains Breitung’s (2002)
test as a special case – to cointegration testing. However, this comes at the cost of introducing
an index parameter to be chosen by the practitioner. A detailed simulation study then needs to

30Using different methods and a larger number of cryptocurrencies Keilbar and Zhang (2021) and Bykhovskaya
and Gorin (2022b) also find evidence for cointegration in the cryptocurrency market.
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assess whether increasing local asymptotic power of the variance ratio test is also beneficial for its
finite sample performance both under the null hypothesis and under the alternative.
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3.7 Appendix

3.7.1 Values of c̄ and Asymptotic Critical Values

Table 3.3: Values of c̄ for the variance ratio GLS test

m

Deterministic specification 1 2 3 4 5
D1 -40.25 -46.25 -53.75 -55.75 -60.00
D2 -48.25 -55.25 -56.50 -65.00 -68.75

Notes: The values of c̄ correspond to the local alternatives against which the variance
ratio test based on GLS detrended data has asymptotic power equal to one-half at
the nominal 5% level when R2 = 0.4. The results are based on 10,000 Monte Carlo
replications and standard Brownian motions are approximated by normalized partial
sums of 10,000 i.i.d. standard normal random variables.
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Table 3.4: α-quantiles of the limiting null distribution of the vari-
ance ratio test statistic

m 1.0% 2.5% 5.0% 7.5% 10.0% 15.0%
D0 (without detrending) and D1 with GLS detrending
1 0.00487 0.00672 0.00908 0.01139 0.01364 0.01818
2 0.00367 0.00484 0.00619 0.00735 0.00863 0.01077
3 0.00258 0.00328 0.00422 0.00509 0.00597 0.00745
4 0.00207 0.00261 0.00327 0.00387 0.00446 0.00547
5 0.00158 0.00201 0.00256 0.00299 0.00342 0.00422
D1 with OLS detrending
1 0.00344 0.00458 0.00579 0.00680 0.00772 0.00936
2 0.00242 0.00313 0.00379 0.00437 0.00491 0.00587
3 0.00175 0.00224 0.00278 0.00314 0.00349 0.00418
4 0.00141 0.00174 0.00211 0.00241 0.00267 0.00310
5 0.00112 0.00137 0.00164 0.00185 0.00204 0.00242
D2 with OLS detrending
1 0.00166 0.00213 0.00259 0.00296 0.00328 0.00384
2 0.00130 0.00168 0.00201 0.00228 0.00253 0.00291
3 0.00106 0.00131 0.00159 0.00179 0.00197 0.00228
4 0.00092 0.00111 0.00130 0.00146 0.00159 0.00184
5 0.00077 0.00092 0.00110 0.00122 0.00132 0.00152
D2 with GLS detrending
1 0.00363 0.00512 0.00668 0.00807 0.00926 0.01164
2 0.00274 0.00354 0.00468 0.00563 0.00649 0.00807
3 0.00220 0.00278 0.00354 0.00415 0.00468 0.00582
4 0.00165 0.00209 0.00267 0.00318 0.00363 0.00442
5 0.00133 0.00168 0.00214 0.00255 0.00287 0.00348

Notes: The variance ratio test is a left-tailed test rejecting the null hypothesis
of no cointegration for realizations of the test statistic smaller than the α-
quantile. m denotes the number of stochastic regressors in (3.2). Under GLS
detrending, critical values in case D1 do not depend on c̄, whereas critical
values in case D2 depend on c̄ and those reported here correspond to the
values of c̄ given in Table 3.3. Critical values are based on 10,000 Monte Carlo
replications and standard Brownian motions are approximated by normalized
partial sums of 10,000 i.i.d. standard normal random variables.
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3.7.2 Additional Results

Table 3.5: Empirical sizes of the tests in case D0 for T = 100 and T = 250.

AR MA ARMA GARCH
R2 Test IID 0.3 0.6 0.9 0.3 0.6 0.9 (0.3,0.6) (0.3,0.3) (0.6,0.3) (0.05,0.94) (0.01,0.98)
T = 100
0 VR 0.02 0.01 0.01 0.01 0.02 0.03 0.17 0.02 0.02 0.01 0.02 0.02

ADF 0.08 0.07 0.07 0.06 0.10 0.14 0.43 0.14 0.08 0.07 0.08 0.08
ADF∗ 0.05 0.04 0.04 0.04 0.06 0.06 0.14 0.07 0.05 0.04 0.05 0.05
MSB 0.04 0.04 0.04 0.05 0.05 0.07 0.33 0.07 0.04 0.04 0.04 0.04ˆ︁Zα 0.03 0.02 0.01 0.01 0.07 0.30 0.89 0.13 0.03 0.01 0.03 0.03

0.4 VR 0.01 0.01 0.01 0.01 0.01 0.03 0.17 0.02 0.01 0.01 0.01 0.01
ADF 0.07 0.08 0.07 0.07 0.10 0.13 0.45 0.13 0.07 0.07 0.07 0.07
ADF∗ 0.05 0.04 0.05 0.05 0.06 0.06 0.15 0.07 0.05 0.05 0.05 0.05
MSB 0.03 0.04 0.04 0.04 0.04 0.07 0.34 0.07 0.03 0.04 0.03 0.03ˆ︁Zα 0.02 0.02 0.02 0.02 0.07 0.31 0.89 0.12 0.03 0.02 0.02 0.02

0.8 VR 0.01 0.01 0.01 0.01 0.01 0.03 0.18 0.01 0.01 0.01 0.01 0.01
ADF 0.08 0.08 0.10 0.09 0.09 0.14 0.47 0.13 0.07 0.08 0.08 0.07
ADF∗ 0.05 0.06 0.07 0.06 0.06 0.06 0.17 0.07 0.05 0.05 0.05 0.05
MSB 0.02 0.03 0.03 0.04 0.03 0.07 0.37 0.06 0.02 0.03 0.02 0.02ˆ︁Zα 0.02 0.02 0.04 0.03 0.07 0.34 0.89 0.13 0.02 0.02 0.02 0.02

T = 250
0 VR 0.02 0.02 0.02 0.02 0.02 0.03 0.14 0.03 0.02 0.02 0.02 0.02

ADF 0.06 0.06 0.05 0.04 0.07 0.09 0.32 0.09 0.06 0.05 0.06 0.06
ADF∗ 0.04 0.04 0.03 0.03 0.05 0.05 0.11 0.05 0.04 0.03 0.05 0.04
MSB 0.03 0.03 0.03 0.03 0.04 0.05 0.17 0.06 0.03 0.03 0.04 0.03ˆ︁Zα 0.03 0.02 0.02 0.01 0.07 0.31 0.94 0.14 0.03 0.02 0.03 0.03

0.4 VR 0.02 0.02 0.02 0.02 0.02 0.03 0.16 0.02 0.02 0.02 0.02 0.02
ADF 0.06 0.06 0.06 0.06 0.07 0.10 0.36 0.09 0.06 0.05 0.06 0.06
ADF∗ 0.04 0.04 0.04 0.04 0.05 0.06 0.14 0.05 0.04 0.04 0.05 0.05
MSB 0.02 0.03 0.03 0.03 0.03 0.04 0.21 0.05 0.03 0.03 0.03 0.03ˆ︁Zα 0.03 0.02 0.02 0.03 0.07 0.35 0.95 0.15 0.03 0.02 0.03 0.03

0.8 VR 0.01 0.01 0.01 0.02 0.02 0.03 0.18 0.02 0.01 0.01 0.01 0.01
ADF 0.06 0.07 0.10 0.12 0.08 0.11 0.42 0.10 0.06 0.08 0.06 0.06
ADF∗ 0.05 0.05 0.06 0.09 0.05 0.06 0.20 0.06 0.05 0.06 0.05 0.05
MSB 0.02 0.02 0.05 0.07 0.03 0.03 0.28 0.04 0.02 0.03 0.02 0.02ˆ︁Zα 0.02 0.03 0.08 0.09 0.08 0.43 0.96 0.18 0.02 0.04 0.03 0.02

Note: The superscript “∗” indicates the use of MAIC instead of AIC.
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Table 3.6: Empirical sizes of the tests in cases D1 and D2 for T = 250.

AR MA ARMA GARCH
R2 Test IID 0.3 0.6 0.9 0.3 0.6 0.9 (0.3,0.6) (0.3,0.3) (0.6,0.3) (0.05,0.94) (0.01,0.98)
Deterministic specification D1
0 VR 0.05 0.05 0.04 0.02 0.06 0.10 0.56 0.08 0.05 0.04 0.06 0.05

VR(GLS) 0.10 0.10 0.09 0.06 0.11 0.15 0.55 0.12 0.10 0.09 0.10 0.10
ADF 0.06 0.06 0.05 0.04 0.08 0.12 0.61 0.12 0.06 0.05 0.07 0.06
ADF(GLS) 0.06 0.06 0.05 0.04 0.08 0.12 0.43 0.13 0.06 0.05 0.07 0.06
ADF∗ 0.04 0.03 0.02 0.01 0.04 0.04 0.16 0.05 0.04 0.02 0.04 0.04
ADF(GLS)∗ 0.04 0.04 0.03 0.01 0.05 0.05 0.16 0.06 0.04 0.02 0.04 0.04
MSB 0.07 0.08 0.08 0.08 0.09 0.11 0.48 0.14 0.07 0.08 0.08 0.07
MSB(GLS)∗ 0.03 0.03 0.03 0.02 0.04 0.03 0.04 0.05 0.03 0.02 0.04 0.03ˆ︁Zα 0.06 0.03 0.02 0.00 0.15 0.64 1.00 0.31 0.06 0.02 0.06 0.06

0.4 VR 0.05 0.05 0.05 0.03 0.06 0.12 0.66 0.08 0.05 0.05 0.06 0.05
VR(GLS) 0.10 0.10 0.10 0.07 0.12 0.17 0.62 0.13 0.10 0.10 0.11 0.10
ADF 0.06 0.06 0.06 0.05 0.08 0.14 0.71 0.14 0.06 0.05 0.07 0.06
ADF(GLS) 0.07 0.07 0.07 0.06 0.09 0.14 0.49 0.14 0.07 0.06 0.08 0.07
ADF∗ 0.04 0.03 0.03 0.03 0.04 0.05 0.22 0.05 0.04 0.03 0.04 0.04
ADF(GLS)∗ 0.05 0.04 0.04 0.03 0.05 0.06 0.22 0.06 0.05 0.03 0.04 0.05
MSB 0.07 0.08 0.09 0.08 0.10 0.12 0.60 0.15 0.07 0.08 0.09 0.07
MSB(GLS)∗ 0.04 0.04 0.04 0.03 0.05 0.03 0.07 0.05 0.04 0.03 0.03 0.03ˆ︁Zα 0.06 0.04 0.04 0.03 0.18 0.74 1.00 0.36 0.06 0.03 0.06 0.06

0.8 VR 0.05 0.05 0.06 0.06 0.07 0.19 0.83 0.10 0.05 0.06 0.06 0.05
VR(GLS) 0.10 0.10 0.11 0.12 0.12 0.25 0.74 0.15 0.10 0.10 0.10 0.10
ADF 0.06 0.07 0.14 0.13 0.09 0.21 0.89 0.17 0.06 0.09 0.07 0.06
ADF(GLS) 0.07 0.08 0.15 0.18 0.10 0.20 0.61 0.17 0.07 0.10 0.08 0.07
ADF∗ 0.04 0.04 0.06 0.08 0.04 0.05 0.41 0.06 0.04 0.04 0.04 0.03
ADF(GLS)∗ 0.04 0.05 0.08 0.12 0.05 0.07 0.39 0.07 0.04 0.06 0.04 0.04
MSB 0.07 0.09 0.16 0.17 0.10 0.15 0.83 0.18 0.07 0.11 0.09 0.07
MSB(GLS)∗ 0.03 0.04 0.07 0.11 0.04 0.02 0.18 0.05 0.03 0.05 0.04 0.03ˆ︁Zα 0.06 0.08 0.19 0.16 0.29 0.94 1.00 0.57 0.06 0.10 0.06 0.06

Deterministic specification D2
0 VR 0.05 0.05 0.03 0.01 0.07 0.15 0.83 0.10 0.05 0.04 0.06 0.05

VR(GLS) 0.13 0.12 0.11 0.05 0.15 0.23 0.65 0.18 0.13 0.11 0.14 0.13
ADF 0.07 0.07 0.06 0.04 0.10 0.18 0.79 0.19 0.07 0.06 0.08 0.07
ADF(GLS) 0.08 0.08 0.07 0.05 0.11 0.18 0.62 0.19 0.08 0.07 0.09 0.08
ADF∗ 0.04 0.03 0.03 0.01 0.04 0.05 0.24 0.06 0.04 0.01 0.04 0.04
ADF(GLS)∗ 0.05 0.04 0.03 0.01 0.06 0.07 0.25 0.07 0.05 0.02 0.04 0.04
MSB 0.09 0.11 0.12 0.14 0.12 0.15 0.68 0.19 0.09 0.12 0.10 0.09
MSB(GLS)∗ 0.03 0.04 0.03 0.03 0.05 0.03 0.11 0.06 0.03 0.01 0.03 0.03ˆ︁Zα 0.05 0.03 0.01 0.00 0.21 0.83 1.00 0.43 0.05 0.01 0.06 0.06

0.4 VR 0.05 0.05 0.04 0.01 0.07 0.19 0.91 0.10 0.05 0.04 0.05 0.05
VR(GLS) 0.13 0.12 0.11 0.07 0.15 0.25 0.69 0.19 0.13 0.11 0.13 0.13
ADF 0.08 0.08 0.07 0.05 0.11 0.20 0.87 0.19 0.08 0.06 0.09 0.08
ADF(GLS) 0.08 0.08 0.08 0.06 0.12 0.21 0.68 0.20 0.08 0.07 0.09 0.09
ADF∗ 0.04 0.03 0.03 0.02 0.04 0.05 0.29 0.06 0.04 0.02 0.04 0.04
ADF(GLS)∗ 0.05 0.04 0.03 0.02 0.06 0.06 0.29 0.08 0.05 0.02 0.05 0.05
MSB 0.08 0.11 0.11 0.11 0.12 0.16 0.79 0.20 0.08 0.11 0.11 0.09
MSB(GLS)∗ 0.03 0.03 0.03 0.02 0.04 0.03 0.15 0.06 0.03 0.02 0.03 0.03ˆ︁Zα 0.06 0.03 0.03 0.01 0.25 0.91 1.00 0.51 0.06 0.02 0.06 0.06

0.8 VR 0.05 0.06 0.07 0.03 0.09 0.32 0.99 0.15 0.05 0.06 0.05 0.06
VR(GLS) 0.13 0.13 0.15 0.13 0.16 0.35 0.73 0.22 0.13 0.13 0.13 0.13
ADF 0.07 0.09 0.18 0.09 0.12 0.32 0.96 0.25 0.07 0.11 0.08 0.07
ADF(GLS) 0.08 0.10 0.19 0.12 0.13 0.29 0.76 0.25 0.08 0.13 0.09 0.08
ADF∗ 0.04 0.04 0.07 0.04 0.04 0.06 0.44 0.06 0.04 0.05 0.04 0.04
ADF(GLS)∗ 0.05 0.05 0.08 0.07 0.06 0.07 0.42 0.08 0.05 0.06 0.05 0.04
MSB 0.09 0.11 0.19 0.12 0.13 0.22 0.92 0.25 0.09 0.13 0.10 0.09
MSB(GLS)∗ 0.03 0.04 0.07 0.05 0.04 0.02 0.24 0.06 0.03 0.05 0.03 0.03ˆ︁Zα 0.06 0.08 0.21 0.07 0.42 1.00 1.00 0.76 0.06 0.10 0.06 0.05

Note: See note to Table 3.1.
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3. A Residuals-Based Nonparametric Variance Ratio Test for Cointegration

3.7.3 Proofs

The proofs frequently use the fact that in cases D1 and D2 the deterministic component dt fulfills

lim
T →∞

T 1/2ADd⌊rT ⌋ = D(r), 0 ≤ r ≤ 1, (3.20)

with
∫︁ 1

0 D(r)D(r)′dr > 0, where AD = T −1/2 and D(r) = 1 in case D1 and AD = diag
(︂
T −1/2, T −3/2

)︂
and D(r) = [1, r]′ in case D2. The (transposed) potentially multivariate detrended stochastic pro-
cess ˜︁P (r), introduced in Section 3.3.1, can thus be written more generally as

˜︁P (r)′ = P (r)′ − D(r)′
(︃∫︂ 1

0
D(s)D(s)′ds

)︃−1 ∫︂ 1

0
D(s)P (s)′ds. (3.21)

Proof of Proposition 3.1. Under the null hypothesis of no cointegration (ρ = 1), it holds
that ut = u0 + ∑︁t

s=1 ξs. In cases D1 and D2, the regression errors in (3.9) are given by ˜︁ut =∑︁t
s=1 ξs − d′

t

(︂∑︁T
s=1 dsd′

s

)︂−1∑︁T
s=1 ds

∑︁s
l=1 ξl. Under Assumption 3.1, we thus obtain

T −1/2˜︁u⌊rT ⌋ = T −1/2
⌊rT ⌋∑︂
t=1

ξt − d′
⌊rT ⌋

(︄
T∑︂

t=1
dtd

′
t

)︄−1 T∑︂
t=1

dtT
−1/2

t∑︂
s=1

ξs

= T −1/2
⌊rT ⌋∑︂
t=1

ξt −
(︂
T 1/2ADd⌊rT ⌋

)︂′
(︄

T −1
T∑︂

t=1

(︂
T 1/2ADdt

)︂ (︂
T 1/2ADdt

)︂′
)︄−1

× T −1
T∑︂

t=1

(︂
T 1/2ADdt

)︂
T −1/2

t∑︂
s=1

ξs

w−→ Bξ(r) − D(r)′
(︃∫︂ 1

0
D(s)D(s)′ds

)︃−1 ∫︂ 1

0
D(s)Bξ(s)ds

= ˜︁Bξ(r). (3.22)

By construction, it holds that Bξ(r) = Ω1/2
ξ·v Wξ·v(r) + Ωξv(Ω−1/2

vv )′Wv(r), which implies ˜︁Bξ(r) =
Ω1/2

ξ·v
˜︂Wξ·v(r)+Ωξv(Ω−1/2

vv )′˜︂Wv(r). Analogously, it follows from (3.4) and the fact that OLS detrend-
ing annihilates x0 (and µt) in xt that

T −1/2˜︁x′
⌊rT ⌋ = T −1/2x′

⌊rT ⌋ − d′
⌊rT ⌋

(︄
T∑︂

t=1
dtd

′
t

)︄−1 T∑︂
t=1

dtT
−1/2x′

t

= T −1/2

⎛⎝⌊rT ⌋∑︂
t=1

vt

⎞⎠′

− d′
⌊rT ⌋

(︄
T∑︂

t=1
dtd

′
t

)︄−1 T∑︂
t=1

dtT
−1/2

(︄
t∑︂

s=1
vs

)︄′

w−→ Bv(r)′ − D(r)′
(︃∫︂ 1

0
D(s)D(s)′ds

)︃−1 ∫︂ 1

0
D(s)Bv(s)′ds

= ˜︁Bv(r)′, (3.23)
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3.7. Appendix

where it follows from Bv(r) = Ω1/2
vv Wv(r) that ˜︁Bv(r) = Ω1/2

vv
˜︂Wv(r). In case D0, it holds that, using

the notation ˜︁P (r) = P (r),

T −1/2˜︁u⌊rT ⌋ = T −1/2u0 + T −1/2u⌊rT ⌋ = T −1/2
⌊rT ⌋∑︂
t=1

ξt + oP(1)

w−→ ˜︁Bξ(r) = Ω1/2
ξ·v
˜︂Wξ·v(r) + Ωξv(Ω−1/2

vv )′˜︂Wv(r), (3.24)

and

T −1/2˜︁x′
⌊rT ⌋ = T −1/2x′

⌊rT ⌋
w−→ ˜︁Bv(r)′ = Ω1/2

vv
˜︂Wv(r)′. (3.25)

In cases D0, D1, and D2, it thus holds for the OLS residuals ˆ︁ut defined in (3.10) that

T −1/2ˆ︁u⌊rT ⌋ = T −1/2˜︁u⌊rT ⌋ − T −1/2˜︁x′
⌊rT ⌋

(︄
T −1

T∑︂
t=1

T −1/2˜︁xtT
−1/2˜︁x′

t

)︄−1

T −1
T∑︂

t=1
T −1/2˜︁xtT

−1/2˜︁ut

w−→ ˜︁Bξ(r) − ˜︁Bv(r)′
(︃∫︂ 1

0
˜︁Bv(s) ˜︁Bv(s)′ds

)︃−1 ∫︂ 1

0
˜︁Bv(s) ˜︁Bξ(s)ds

= Ω1/2
ξ·v
˜︂W +

ξ·v(r), (3.26)

with ˜︂W +
ξ·v(r) as defined in the main text. For the denominator of the variance ratio test statistic

it directly follows that

T −2
T∑︂

t=1
ˆ︁u2

t = T −1
T∑︂

t=1
(T −1/2ˆ︁ut)2 w−→ Ωξ·v

∫︂ 1

0

(︂˜︂W +
ξ·v(r)

)︂2
dr. (3.27)

Analogously,

T −3/2
⌊rT ⌋∑︂
t=1

ˆ︁ut = T −1
⌊rT ⌋∑︂
t=1

T −1/2ˆ︁ut
w−→ Ω1/2

ξ·v

∫︂ r

0
˜︂W +

ξ·v(s)ds. (3.28)

For the numerator of the variance ratio test statistic we thus obtain

ˆ︁ηT = T −1
T∑︂

t=1

(︄
T −3/2

t∑︂
s=1

ˆ︁us

)︄2
w−→ Ωξ·v

∫︂ 1

0

(︃∫︂ r

0
˜︂W +

ξ·v(s)ds

)︃2
dr, (3.29)

Since the vector of numerator and denominator of the variance ratio test statistic can be expressed
as a continuous functional of T −1/2ˆ︁u⌊rT ⌋ up to an error of oP(1), the weak convergence results
in (3.27) and (3.29) hold jointly (cf., e. g., Phillips, 1987, Proof of Lemma 1). The limiting null
distribution of the variance ratio test statistic stated in the proposition thus follows from the
continuous mapping theorem and the fact that the scalar long-run variance parameter Ωξ·v > 0
in (3.27) and (3.29) cancels out. □

Proof of Proposition 3.2. Under the alternative of cointegration (|ρ| < 1), it holds that ˆ︁ut =˜︁ut − ˜︁x′
t(ˆ︁β − β), where T (ˆ︁β − β) = OP(1), see, e. g., Phillips and Hansen (1990). The proof works

similarly under all three deterministic specifications. We consider the case D0, where ˜︁ut = ut and˜︁xt = xt. For notational brevity, define uo
t := ∑︁t−1

j=0 ρjξt−j , such that ut = ρtu0 + uo
t . For the
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3. A Residuals-Based Nonparametric Variance Ratio Test for Cointegration

denominator of the variance ratio test statistic it holds that

T −1
T∑︂

t=1
ˆ︁u2

t = T −1
T∑︂

t=1

(︂
ρtu0 + uo

t − x′
t(ˆ︁β − β)

)︂2

= u0T −1
T∑︂

t=1

(︂
ρ2
)︂t

+ 2u0T −1
T∑︂

t=1
ρt
(︂
uo

t − x′
t(ˆ︁β − β)

)︂

+ T −1
T∑︂

t=1

(︂
uo

t − x′
t(ˆ︁β − β)

)︂2
. (3.30)

Since ∑︁∞
t=0

(︁
ρ2)︁t is a geometric series and u0 = OP(1) it follows that the first term in (3.30) is

oP(1). Next, note that

⃓⃓
T −1

T∑︂
t=1

ρt
(︂
uo

t − x′
t(ˆ︁β − β)

)︂ ⃓⃓
≤ T −1

T∑︂
t=1

⃓⃓
ρtuo

t

⃓⃓
+ T −1

T∑︂
t=1

⃓⃓
ρt
(︂
x′

t(ˆ︁β − β)
)︂ ⃓⃓

. (3.31)

It follows from Markov’s inequality, stationarity of uo
t and the fact that ∑︁∞

t=0 |ρ|t is a geometric
series that T −1∑︁T

t=1 |ρtuo
t | = oP(1). From

T −1
T∑︂

t=1

⃓⃓
ρt
(︂
x′

t(ˆ︁β − β)
)︂ ⃓⃓

≤ T −3/2
T∑︂

t=1

⃓⃓ xt√
T

⃓⃓⃓⃓
T (ˆ︁β − β)

⃓⃓
= OP(T −1/2) (3.32)

it thus follows that also the second term in (3.30) is oP(1). Therefore,

T −1
T∑︂

t=1
ˆ︁u2

t = T −1
T∑︂

t=1

(︂
uo

t − x′
t(ˆ︁β − β)

)︂2
+ oP(1)

= T −1
T∑︂

t=1
(uo

t )2 − 2T −1
(︄

T −1
T∑︂

t=1
uo

t xt

)︄′

T
(︂ˆ︁β − β

)︂

+ T −1T
(︂ˆ︁β − β

)︂′
(︄

T −1
T∑︂

t=1

xt√
T

x′
t√
T

)︄
T
(︂ˆ︁β − β

)︂
+ oP(1)

= T −1
T∑︂

t=1
(uo

t )2 + oP(1), (3.33)

since T −1∑︁T
t=1

xt√
T

x′
t√
T

= OP(1) by Assumption 3.1 in combination with the continuous mapping
theorem and T −1∑︁T

t=1 uo
t xt = OP(1) (see, e. g., Phillips and Hansen, 1990). By Assumption 3.1,

{ξt}t∈Z is strictly stationary and ergodic and E
(︁
ξ2

t

)︁
< ∞. This implies that {uo

t }t∈Z and thus also
{(uo

t )2}t∈Z are strictly stationary and ergodic (White, 2001, Theorem 3.35) and that E
(︂
(uo

t )2
)︂

<

∞. It thus follows from the law of large numbers for strictly stationary and ergodic time series
(White, 2001, Theorem 3.34) that

T −1
T∑︂

t=1
ˆ︁u2

t = T −1
T∑︂

t=1
(uo

t )2 + oP(1) p−→ E((uo
1)2), (3.34)

where 0 < E((uo
1)2) < ∞.
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Turning to the numerator of the variance ratio test statistic, we note that

T −1/2
⌊rT ⌋∑︂
t=1

ˆ︁ut = T −1/2
⌊rT ⌋∑︂
t=1

uo
t −

⎛⎝T −1
⌊rT ⌋∑︂
t=1

xt√
T

⎞⎠′

T
(︂ˆ︁β − β

)︂
+ oP(1), (3.35)

since ∑︁∞
t=0 ρt is a geometric series. The Beveridge-Nelson decomposition (Phillips and Solo, 1992)

yields T −1/2∑︁⌊rT ⌋
t=1 uo

t
w−→ (1 − ρ)−1Bξ(r). The second term in (3.35) is also OP(1), with a

limit that is different from (1 − ρ)−1Bξ(r). Hence, T −1/2∑︁⌊rT ⌋
t=1 ˆ︁ut = OP(1), which implies that

T −2∑︁T
t=1

(︂∑︁t
s=1 ˆ︁us

)︂2
= OP(1). In total, we thus have

VR = T −1
T −2∑︁T

t=1

(︂∑︁t
s=1 ˆ︁us

)︂2

T −1∑︁T
t=1 ˆ︁u2

t

= OP(T −1), (3.36)

as stated in the proposition. □

Proof of Proposition 3.3. Under the local alternative ρ = ρT = 1+c/T , with c ≤ 0, it holds that
T −1/2u⌊rT ⌋

w−→ Ω1/2
ξ·v Jc

ξ·v(r), 0 ≤ r ≤ 1, with Jc
ξ·v(r) as defined in the main text (cf., e. g., Perron

and Rodríguez, 2016, Lemma 5.1). In cases D1 and D2, it follows that T −1/2˜︁u⌊rT ⌋
w−→ Ω1/2

ξ·v
˜︁Jc
ξ·v(r),

0 ≤ r ≤ 1, where

˜︁Jc
ξ·v(r) = Jc

ξ·v(r) − D(r)′
(︃∫︂ 1

0
D(s)D(s)′ds

)︃−1 ∫︂ 1

0
D(s)Jc

ξ·v(s)ds. (3.37)

Analogously, in case D0, it holds that, using the notation ˜︁P (r) = P (r), T −1/2˜︁u⌊rT ⌋
w−→ Ω1/2

ξ·v
˜︁Jc
ξ·v(r) =

Ω1/2
ξ·v Jc

ξ·v(r), 0 ≤ r ≤ 1. The rest of the proof is similar to the proof of Proposition 3.1 and therefore
omitted. □

Proof of Remark 3.3. Perron and Rodríguez (2016, Lemma 5.3) show that ˜︁u(GLS)
t , as defined in

Remark 3.1, fulfills T −1/2˜︁u(GLS)
⌊rT ⌋

w−→ Ω1/2
ξ·v Jc,GLS

ξ·v (r), 0 ≤ r ≤ 1, where Jc,GLS
ξ·v (r) is given by Jc

ξ·v(r) in
case D1 and by
Jc

ξ·v(r) −
(︂
λJc

ξ·v(1) + 3(1 − λ)
∫︁ 1

0 sJc
ξ·v(s)ds

)︂
r in case D2, with λ as defined in the main text. The

rest of the proof uses similar arguments as the proof of Theorem 5.2 in Perron and Rodríguez
(2016) and the proof of Proposition 3.1 and is therefore omitted. □

3.7.4 Computation of the ADF, MSB and ˆ︁Zα Tests

Test Statistics

Given the regression residuals ˆ︁ut, t = 1, . . . , T , as defined in (3.10), the ADF test statistic, the
MSB test statistic, and the ˆ︁Zα test statistic are defined as follows:31

• The ADF statistic is defined as the usual t-test statistic for testing b0 = 0 in the auxiliary

31In case of GLS detrending, the test statistics are defined by replacing ˆ︁ut with ˆ︁u(GLS)
t .
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regression

∆ˆ︁ut = b0ˆ︁ut−1 +
p∑︂

j=1
πj∆ˆ︁ut−j + rtp, (3.38)

t = p+2, . . . , T . The lag parameter p is determined by means of information criteria, compare
the discussion in Section 3.7.4.

• Let ˆ︁πj denote the estimates of πj obtained by estimating (3.38) with OLS and let ˆ︁rtp denote
the corresponding residuals. The MSB statistic is then defined as

MSB :=
(︄

T −2∑︁T
t=1 ˆ︁u2

tˆ︁s2

)︄1/2

, (3.39)

where ˆ︁s2 := ˆ︁s2
rp/(1 − ˆ︁π(1))2, with ˆ︁s2

rp := T −1∑︁T
t=p+2 ˆ︁r2

tp and ˆ︁π(1) := ∑︁p
j=1 ˆ︁πj .

• To define the ˆ︁Zα statistic, consider the auxiliary regression

ˆ︁ut = αˆ︁ut−1 + kt (3.40)

t = 2, . . . , T . Let ˆ︁α and ˆ︁kt denote the OLS estimate of α and the corresponding OLS residuals,
respectively. Define s2

k := (T − 1)−1∑︁T
t=2

ˆ︁k2
t and

s2
T b := s2

k + 2(T − 1)−1
bT∑︂

h=1
K
(︃

h

bT

)︃ T∑︂
t=h+2

ˆ︁kt
ˆ︁kt−h, (3.41)

where the kernel function K (·) and the bandwidth parameter bT fulfill some technical as-
sumptions, see, e. g., Andrews (1991), Newey and West (1994) and Jansson (2002) for details.
The ˆ︁Zα statistic is then defined as

ˆ︁Zα := (T − 1)(ˆ︁α − 1) − 1
2
(︂
s2

T b − s2
k

)︂(︄
(T − 1)−2

T∑︂
t=2

ˆ︁u2
t−1

)︄−1

. (3.42)

The three tests are left-tailed tests, rejecting the null hypothesis of no cointegration if the realization
of the statistic is smaller than the corresponding critical value. Asymptotically valid critical values
for the ADF and ˆ︁Zα statistics in cases D0, D1, and D2 are tabulated in Phillips and Ouliaris (1990),
whereas for the MSB statistic we use (unreported) critical values based on own simulations.32

Information Criteria

Implementing the ADF and MSB tests requires the specification of the lag parameter 0 ≤ p ≤ pmax

in the auxiliary regression (3.38). This is typically achieved by means of information criteria
evaluated on exactly the same period t = pmax+2, . . . , T for each choice of p (Kilian and Lütkepohl,

32In case of GLS detrending, critical values for the ADF and MSB statistics are tabulated in Perron and Rodríguez
(2016).
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2017, p. 56). The AIC and the BIC are defined as

AIC(p) := log(ˆ︁s2
rpmax) + 2p

T
(3.43)

and

BIC(p) := log(ˆ︁s2
rpmax) + p log(T )

T
, (3.44)

respectively, where ˆ︁s2
rpmax = T −1∑︁T

t=pmax+2 ˆ︁r2
tp, with ˆ︁rtp denoting the OLS residuals in (3.38).33 Ng

and Perron (2001) and Perron and Qu (2007) propose a modified AIC (MAIC) criterion. Applied
to the regression residuals ˆ︁ut – in the presence of deterministic components always based on OLS
detrended data, even in case the test statistic is constructed using GLS detrended data – the MAIC
becomes

MAIC(p) := log((T − pmax)−1T ˆ︁s2
rpmax) + 2(p + τT (p))

T − pmax
, (3.45)

where τT (p) :=
(︂
(T − pmax)−1T ˆ︁s2

rpmax

)︂−1 ˆ︁b2
0
∑︁T

t=pmax+2 ˆ︁u2
t−1, with ˆ︁b0 denoting the OLS estimate of

b0 in (3.38). A similarly modified version of the BIC is then given by

MBIC(p) := log((T − pmax)−1T ˆ︁s2
rpmax) + log(T − pmax)(p + τT (p))

T − pmax
. (3.46)

33We follow Kilian and Lütkepohl (2017, p. 56) and use ˆ︁s2
rpmax rather than (T − p)−1Tˆ︁s2

rpmax .
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Conclusion

This cumulative dissertation proposes procedures to perform more reliable inference in different
types of regressions involving stochastically trending variables. Although each chapter is devoted
to a specific subfield of the cointegrating regression literature, the proposed methods share a
common ground, which makes them suitable to be combined or extended to other settings involving
stochastically trending variables. The chapter-specific conclusions at the end of each chapter have
already discussed some promising and explicit directions for future research.

In addition, several other methodological challenges arise in the era of high-dimensional data. For
example, it might be interesting to extend the nonparametric variance ratio test for cointegration,
analyzed in Chapter 3, to settings where the number of integrated processes is allowed to increase
with sample size T (potentially in the form of a system-based test rather than a test within a
regression framework). A useful starting point seems to be the system-based test for the cointegra-
tion rank proposed in Breitung (2002, Section 5). To allow the dimension of the system to increase
with sample size, the methodology proposed in Bykhovskaya and Gorin (2022a; 2022b) could be
extended to this particular test statistic.

Another interesting direction of future research is the development of a LASSO-type estimator in
so-called predictive (or even high-dimensional) cointegrating regressions that (i) selects the relevant
regressors, (ii) estimates the corresponding coefficients consistently, and (iii) allows for standard
asymptotic inference when testing restrictions on the coefficients corresponding to the relevant
regressors. Lee et al. (2022) and Koo et al. (2020) have already proposed LASSO-type estimators
fulfilling conditions (i) and (ii) in the predictive and high-dimensional cointegrating regression
settings, respectively. However, in the presence of endogeneity, the limiting distributions of their
estimators are contaminated by second order bias terms reflecting the dependence structure in
the data. To eliminate the second order bias terms, it seems to be promising to extend the
integrated modified OLS approach of Vogelsang and Wagner (2014), already employed in Chapter 1
to construct self-normalized test statistics, to predictive (or even high-dimensional) cointegrating
regressions and combine the approach with the LASSO-type approaches of Lee et al. (2022) or Koo
et al. (2020).

These interesting directions of future research in the contexts of predictive and high-dimensional
cointegrating regressions are currently under investigation by the author of this dissertation and
additional co-authors.
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