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Abstract
The physical and virtual connectivity of systems via flows of energy, material, infor-
mation, etc., steadily increases. This paper deals with systems of sub-systems that 
are connected by networks of shared resources that have to be balanced. For the 
optimal operation of the overall system, the couplings between the sub-systems must 
be taken into account, and the overall optimum will usually deviate from the local 
optima of the sub-systems. However, for reasons, such as problem size, confidential-
ity, resilience to breakdowns, or generally when dealing with autonomous systems, 
monolithic optimization is often infeasible. In this contribution, iterative distributed 
optimization methods based on dual decomposition where the values of the objec-
tive functions of the different sub-systems do not have to be shared are investigated. 
We consider connected dynamic systems that share resources. This situation arises 
for continuous processes in transient conditions between different steady states and 
in inherently discontinuous processes, such as batch production processes. This 
problem is challenging since small changes during the iterations towards the satis-
faction of the overarching constraints can lead to significant changes in the arc struc-
tures of the optimal solutions for the sub-systems. Moreover, meeting endpoint con-
straints at free final times complicates the problem. We propose a solution strategy 
for coupled semi-batch processes and compare different numerical approaches, the 
sub-gradient method, ADMM, and ALADIN, and show that convexification of the 
sub-systems around feasible points increases the speed of convergence while using 
second-order information does not necessarily do so. Since sharing of resources has 
an influence on whether trajectory dependent terminal constraints can be satisfied, 
we propose a heuristic for the computation of free final times of the sub-systems 
that allows the dynamic sub-processes to meet the constraints. For the example of 
several semi-batch reactors which are coupled via a bound on the total feed flow 
rate, we demonstrate that the distributed methods converge to (local) optima and 
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highlight the strengths and the weaknesses of the different distributed optimization 
methods.

Keywords  Distributed optimization · Dual methods · Dual decomposition · 
Trajectory optimization · Semi-batch reactors · ADMM · ALADIN · Sharing of 
resources

1  Introduction

The physical and virtual connectivity of systems steadily increases in order to 
increase throughput, performance, and safety (Engell et al. 2016). The resources 
that connect the different sub-systems can be flows of energy, flows of material, 
flows of information, or more specific constraints, as quantitative restrictions for 
hazardous substances, or certificates, as e.g. a given amount of CO2-certificates 
that cannot be exceeded (Rius-Sorolla et al. 2020).

Of special interest are systems where the resources are not only shared bilater-
ally but among several sub-systems. Such system arise in the process industry, 
where several units are connected via networks of energy and material (Jose and 
Ungar 2000; Wenzel et al. 2017), in power systems, where the economic dispatch 
between different electricity generation facilities has to be coordinated to satisfy 
the network demands (Wang et  al. 1995; Zhang et  al. 2013) or where demand 
response of small loads such as residential smart appliances are integrated into 
the network (Gatsis and Giannakis 2013; Safdarian et  al. 2014), in information 
technology, for instance when coordinating bandwidth between different agents 
(Hasan et al. 2014; Koutsopoulos and Iosifidis 2010), or when coordinating dif-
ferent autonomous systems such as robots or vehicles to maintain connectivity 
constraints (Cortés et al. 2004; Galceran and Carreras 2013).

The challenge with such systems is that often a monolithic optimization is not 
possible. The optimization of a whole chemical site with different ownership of 
the plants, for instance, requires a limited flow of information to maintain the 
confidentiality of business data or technical information such as prices, produc-
tion targets, capacities, efficiencies, etc. Another reason is that in many cases the 
autonomy and decision-making power should remain with the respective sub-
systems, which is not the case if a third party explicitly determines the operating 
conditions and the coordination of the resources between the sub-systems. If the 
scale of the resulting optimization problem is large, transparency of the results 
can be limited, as root causes are difficult to trace across sub-system boundaries 
(Tang et al. 2018). Furthermore, the implementation of monolithic solutions for 
resource allocation requires the separation of the models from the sub-systems, 
which constitutes an additional source of error if the models have to be main-
tained in different locations. Lastly, if the optimization is carried out for control 
purposes, solutions that reflect the modularity of the system and provide redun-
dancy are often more desirable than a monolithic optimization (Camponogara 
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et al. 2002; Cheng et al. 2007; Christofides et al. 2013; Farokhi et al. 2014; Maes-
tre and Negenborn 2014; Scattolini 2009; Van Parys and Pipeleers 2017).

As a consequence, interconnected systems are often optimized on two levels: On 
the sub-system level, each sub-system tries to maximize its performance accord-
ing to given boundary conditions, and on the system-wide or coordinator level, 
where the optimal allocation of shared resources is performed (Mesarovic et  al. 
1970). Such bilevel problems can be solved via iterative distributed optimization 
approaches, i.e. primal-based and dual-based decomposition methods which are 
compared for instance in Conejo et al. (2006), Palomar and Chiang (2006, 2007). 
The most suitable methods to tackle the aforementioned challenges, in particular the 
confidentiality issue, are dual-based decomposition methods where the coordinator 
broadcasts information such as prices to the different sub-systems, whereupon these 
respond with their estimated usage of the shared resources, and the coordinator iter-
atively adapts the prices until the resource balances are met.

While methods for the distributed optimization of steady state problems have 
been thoroughly investigated, dynamic systems have mostly been considered in 
the context of distributed model predictive control. Most of the work in this area 
considers the control of continuous processes with linear dynamics, cf. the sur-
vey in Negenborn and Maestre (2014). To the authors’ knowledge, little work has 
been done to compare different distributed optimization methods for coordinating 
resources among distributed dynamic systems.

The application that we discuss here is the dynamic resource allocation for cou-
pled chemical reactors that are operated in semi-batch mode, i.e., some substances 
are filled into the reactor at the start while others are dosed during the batch run. 
At the end of the batch run, the reaction mixture which contains the desired prod-
uct is withdrawn. We focus on how to share a limited amount of a resource, in this 
case, the feed flow to the reactors between the semi-batch reactors, in order to deter-
mine an optimal overall operation for given initial conditions and a given production 
schedule. This is a common challenge in the process industry when large quantities 
of products are produced in multi-product multi-batch plants and suitable production 
sequences have to be defined and executed (Nie et al. 2015).

1.1 � Contribution

The goal of this contribution is to provide a distributed optimization strategy for 
semi-batch processes with end-point constraints that are subject to overarching con-
straints and to compare different algorithms for the distributed allocation of shared 
resources between dynamic systems. We restrict ourselves to dual based methods 
that do not require the knowledge of the objective values of the sub-systems. Addi-
tionally to the sub-gradient method and ADMM, we apply the augmented Lagran-
gian based algorithm for distributed non-convex optimization (ALADIN) and adapt 
it so that it can also handle overarching inequality constraints as they arise for sys-
tems that share finite amounts of resources.

The challenge in solving these type of problems is that significant change in the arc 
structure, i.e. changes in the active sets of the constraints of the sub-systems for small 
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changes in the dual variables occur during the iterations of the dual-based distributed 
optimization methods.

We present a heuristic approach for the solution of such resource allocation 
problems for dynamic systems with terminal constraints and free final times, such 
that the different sub-systems meet the constraints in the presence of overarching 
resource constraints.

1.2 � Notation

Sub-system related vectors xi ∈ ℝ
ni , i ∈ 1,… ,N , are stacked into one large vector 

x = [xT
1
, xT

2
,… , xT

N
]T ∈ ℝ

n of variables on the system level. The subscript i is used 
as indicator for the different sub-systems throughout the paper. The superscript (k) 
indicates the current iteration k. To index the j-th element of a vector x, the notation 
x[j] is used.

The Eucledian norm of a vector x is indicated by ‖x‖2 . The infinity norm of a vec-
tor x ∈ ℝ

m is defined by ‖x‖∞ = max {�x[1]�,… , �x[m]�} , where |⋅| is the absolute 
value of a scalar and the max operator followed by {⋅} indicates the element-wise 
maximum of the set.

2 � Theoretical background

First, a general mathematical problem formulation for a single dynamic system is 
presented, which is then extended to several systems that share a common resource. 
The extended problem is put into a standard form and algorithms for the distributed 
solution of the problem are introduced.

2.1 � Problem formulation for a sub‑system trajectory

A general dynamic or trajectory optimization problem over a fixed time interval 
t ∈ [t0, tf ] can be written as follows: 

(1a)
min
u(t)

∀t ∈ [t0, tf ]

(
�
(
�(tf )

)
+ ∫

tf

t0

�(�(t), u(t), t)dt

)
,

(1b)s.t. 𝜒̇(t) = F(𝜒(t), u(t), t), t ∈ [t0, tf ],

(1c)�(t0) = �0,

(1d)P(�(t), u(t), t) ≤ 0, t ∈ [t0, tf ],

(1e)T
(
�(tf )

) ≤ 0.
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 In dynamic optimization, there is a distinction between state variables �(t) and 
inputs u(t) to the system. From the inputs u(t) and the initial condition, �(t0) = �0 , 
the state variables can be computed using the model equation Eq. 1b. Thus u(t) are 
the degree of freedom, while �(t) are the dependent variables. The goal is to find the 
best inputs such that the constraints are satisfied and some performance measure of 
the resulting trajectory is maximized or minimized.

The objective is given in the Bolza form which consists of a scalar performance 
measure at the end of the horizon, �  , and an integral part that tracks some scalar 
performance measure over the whole path of the trajectory, � . Similar to the objec-
tive, the constraints are defined as terminal constraints ( Ti ) and path constraints ( Pi ) 
(Sargent 2000).

2.2 � Problem formulation for multiple trajectories with shared inputs

The problem of interest in this paper is to optimize N trajectories for N sub-sys-
tems that share resources and start as well as end their operation possibly at different 
times. This can be formulated as the following dynamic optimization problem: 

 The considered time interval is given by tmin = min
{
t0,1,… , t0,N

}
 and 

tmax = max
{
tf ,1,… , tf ,N

}
 . The objective is to minimize the sum of the individual 

objectives. The variables �i and ui belong to sub-system i exclusively, can only be 
manipulated by the respective sub-system, and, except for coupling via the overarch-
ing constraints Eq. 2b, have no impact on the other sub-systems. Due to the different 

(2a)

min
ui(t)

∀(t, i) ∈ ([tmin, tmax], {1,… ,N})

∑
i∈{1,…,N}

(
�i

(
�i(tf ,i)

)
+ ∫

tf ,i

t0,i

�i

(
�i(t), ui(t), t

)
dt

)
,

(2b)s.t.
∑

i∈{1,…,N}

ui(t) ≤ ushared,max(t), t ∈ [tmin, tmax],

(2c)
𝜒̇i(t) = Fi

(
𝜒i(t), ui(t), t

)
,

t ∈ [t0,i, tf ,i], ∀i ∈ {1,… ,N},

(2d)�i(t0,i) = �0,i, ∀i ∈ {1,… ,N},

(2e)
Pi

(
�i(t), ui(t), t

) ≤ 0,

t ∈ [t0,i, tf ,i], ∀i ∈ {1,… ,N},

(2f)Ti
(
�i(tf ,i)

) ≤ 0, ∀i ∈ {1,… ,N},

(2g)ui(t) = 0, t ∉ [t0,i, tf ,i], ∀i ∈ {1,… ,N}.
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starting and final times of the trajectories, when the trajectory of sub-system i is not 
active, its use of the resource is fixed at 0 via Eq. 2g.

2.3 � Numerical solution methods for trajectory optimization

The problems given in Eqs. 1 and 2 can be solved using different approaches: Direct 
optimization methods, methods based on Pontryagin’s minimum principle, and 
methods that are based on the Hamilton–Jacobi–Bellman equations (Bellman 1957; 
Bertsekas 1995; Pontryagin 2018; von Stryk and Bulirsch 1992). Depending on the 
selected method, the level of discretization can be chosen: All quantities can be con-
sidered infinite-dimensional in time, only the inputs can be discretized, or addition-
ally to the inputs also the states can be fully discretized. If the inputs are discretized, 
they are usually considered to be piece-wise constant or piece-wise linear within the 
discretization elements. An overview of the solution methods as well as discretiza-
tion levels is given in Betts (1998) and Srinivasan et al. (2003).

While there are also other efficient methods, as, e.g., parsimonious input para-
metrization (Rodrigues and Bonvin 2019), direct methods are used here, since they 
are best suited to handle the overarching constraints Eq. 2b as well as to get reliable 
numerical solutions (Srinivasan et  al. 2003). When the inputs are discretized into 
equidistant intervals of duration �t , there are three options to solve such a problem 
using the direct method: The first option is control vector parametrization, where 
the states remain continuously defined for every point in time and are determined by 
integration. The degrees of freedom for the optimization are the values of the inputs. 
The second is the simultaneous approach, where, additionally to the inputs, also the 
states are fully discretized such that a sparse large non-linear program (NLP) results 
(Biegler 2007). Since also the states are degrees of freedom, only when the NLP 
has been solved, the resulting trajectory satisfies the model equations. On the other 
hand, this method often shows to be more robust. The third option is multiple shoot-
ing, in which the time is divided into several intervals, where in each interval control 
vector parametrization is used to determine the solution. Matching of the states at 
the ends of the intervals is forced by an additional boundary condition (Bock and 
Plitt 1985). In this contribution, control vector parametrization is applied and a con-
stant stepsize 4th-order Runge-Kutta method is used for integration, because this 
renders all derivatives, of objective as well as of the constraints, dependent only on 
the inputs.

2.4 � Discretized problem formulation

The discretization of the problem in Eq. 1 can be done as described in the previ-
ous subsection, however, for the problem formulation with multiple trajectories and 
shared inputs, synchronization of time between the different trajectories needs to be 
assured. Only if the starting and ending times are on the same time grid as the dis-
cretization of the inputs, the overarching constraints can be enforced at every point 
in time. The starting and ending times are thus expressed as multiples of the shared 
minimum discretization duration �t via the following relationship:
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For each sub-system i, the sets of points �i = {Ni,0,… ,Ni,f − 1} are defined as 
counterparts to the continuous time intervals [t0,i, tf ,i].

Similar to the continuous case, Nmin and Nmax are defined as the minimum and 
maximum over all sub-systems i of Ni,0 and Ni,f  . This leads to the following problem 
formulation: 

 In this formulation, p is the discrete time index. Note that in this case the models F̃i 
are defined implicitly, connecting the old and the new states. This is used to express 
numerical integration or full discretization. Furthermore, it should be noted that the 
path constraints Pi are only defined at the grid points.

The resulting optimization problem is non-convex, which is in general a NP-hard 
problem that can have multiple local minima (Esposito and Floudas 2000; Papamichail 
and Adjiman 2002).

(3)ti,0 = Ni,0 �t,

(4)ti,f = Ni,f �t.

(5a)

min
�i,p, ui,p,

∀(p, i) ∈ ({Nmin,… ,Nmax}, {1,… ,N})

∑
i∈{1,…,N}

(
�i(�i,Ni,f

) +
∑
p∈�i

�i

(
�i,p, ui,p,�t, p

))
,

(5b)
s.t.

∑
i∈{1,…,N}

ui,p ≤ ushared,max,p,

∀p ∈ {Nmin,… ,Nmax},

(5c)
F̃i

(
𝜒i,p,𝜒i,p+1, ui,p,𝛥t, p

)
= 0,

∀p ∈ 𝛹i, i ∈ {1,… ,N},

(5d)�i,Ni,0
= �0,i, ∀i ∈ {1,… ,N},

(5e)
Pi

(
�i,p, ui,p,�t, p

) ≤ 0,

∀p ∈ �i, i ∈ {1,… ,N},

(5f)Ti

(
�i,Ni,f

) ≤ 0, ∀i ∈ {1,… ,N},

(5g)ui,p = 0, ∀p ∉ �i, i ∈ {1,… ,N}.
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2.5 � Problem formulation in the standard form of distributed optimization

The problem of optimizing trajectories with shared resources across system boundaries 
from Eq. 5 can be written in the standard form of a general sharing problem, cf. Boyd 
et al. (2010), 

 The variables xi comprise the inputs and the states of the sub-systems, 
dim(xi) = dim(�i) + dim(ui) . The inputs of the trajectory optimization problem 
described in the previous subsection are given by the linear mapping ui = Aixi , with 
ui = [ui,Ni,0

, ui,Ni,1
,… , ui,Ni,f−1

]T . The state variables are given by �i = Bixi , with 
�i = [�i,Ni,0

,�i,Ni,1
,… ,�i,Ni,f

]T . The initial conditions, model equations, and system-
specific constraints are described by the ngi-dimensional inequality constraint func-
tion gi . The dimension of the overarching constraints is m, i.e., 
dim(b) = dim(Aixi) = dim(ui) = dim(ushared,max) = m.

2.6 � Necessary conditions of optimality for distributed optimization

For this problem in standard form, the Lagrangian of the problem is given by Bert-
sekas (1999):

where � are the Lagrange multipliers corresponding to the overarching constraints 
in Eq. 6b and �i are the Lagrange multipliers for the sub-system specific constraints 
in Eq. 6c. Using the Lagrangian, the first-order necessary conditions of optimality 
(Karush-Kuhn-Tucker conditions) can be expressed as: 

(6a)min
xi, ∀i∈{1,…,N}

∑
i∈{1,…,N}

fi(xi),

(6b)s.t.
∑

i∈{1,…,N}

Aixi ≤ b,

(6c)gi(xi) ≤ 0, i ∈ {1,… ,N}.

(7)

L(x, �,�) ∶=
∑

i∈{1,…,N}

(
fi(xi)

)
+ �T

( ∑
i∈{1,…,N}

Aixi − b

)
+

∑
i∈{1,…,N}

(
�T
i
(gi(xi))

)
,

=
∑

i∈{1,…,N}

(
fi(xi) + �TAixi −

1

N
�Tb + �T

i
(gi(xi))

)
,

=
∑

i∈{1,…,N}

Li(xi, �,�i),

(8a)∇xi
Li(xi, �,�i) = 0, ∀i ∈ {1,… ,N},

(8b)gi(xi) ≤ 0, ∀i ∈ {1,… ,N},
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 The interesting property of these conditions is that Eqs.  8a–8c can be evaluated 
independently for each sub-system i and only Eqs. 8d and 8e require coordination 
between the different sub-systems.

2.7 � Distributed solution algorithms based on the dual problem

While the Eqs.  8 can be solved monolithically via state of the art solvers, in this 
contribution methods that exploit the distributed structure of the problem are 
investigated.

We focus on hierarchical methods, where all sub-system specific decisions are 
taken in a distributed fashion and only on the coordination layer, the satisfaction 
of the overarching constraints Eqs. 8d and 8e is enforced. These methods are also 
known as dual methods, which make use of the dual variables or Lagrange multi-
pliers. In our case, the dual variables of interest are the ones corresponding to the 
overarching constraints, i.e. �.

Using the solution to Eqs. 8a–8c, written as infxi, �i≥0 Li(xi, �,�i) , the dual func-
tion can then be defined:

Using this dual function of � , the optimality condition can be expressed as finding 
the maximum of d(�) with � ≥ 0 , which is called the dual problem:

Due to the infimum in Eq. 9, the dual function is in general not known explicitly. 
However, according to Danskin’s theorem (Bertsekas 1999), a sub-gradient can be 
determined at � via:

In this contribution, we compare iterative methods for the maximization of the dual 
which do not require the explicit knowledge of the value of the dual function and 
thus of the different individual objectives. As measures of convergence, we define 
two criteria. The primal feasibility, �Primal , is a measure of the satisfaction of the 
overarching constraints of the original problem. At the same time, due to Eq. 11 and 

(8c)�i ≥ 0, ∀i ∈ {1,… ,N},

(8d)
N∑
i=1

Aixi − b ≤ 0,

(8e)� ≥ 0.

(9)d(�) = inf
x, �≥0L(x, �,�) =

∑
i∈{1,…,N}

inf
xi, �i≥0

Li(xi, �,�i).

(10)max
�≥0 d(�).

(11)�d(�) = �
∑

i∈{1,…,N}

inf
xi, �i≥0

Li(xi, �,�i) =
∑

i∈{1,…,N}

Aixi(�) − b.
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the fact that the dual is always concave, it is also a measure of the vanishing of the 
gradient (Boyd and Vandenberghe 2004).

Here we highlight that xi is a function of � . If all elements of �Primal are equal to 
0, the overarching constraints are satisfied. Additionally to the primal feasibility, 
which measures the satisfaction of the constraints, also a measure of convergence is 
required, in order to prevent termination when a solution is primal feasible, but not 
optimal yet. The dual feasibility, �Dual , can be interpreted as the satisfaction of the 
optimality criterion for the dual problem, i.e., the gradient approaching the 0 vector. 
Thus we define the dual feasibility as the finite difference approximation of the gra-
dient of the dual function.

This second feasibility criterion is a measure of how far the solution can deviate 
from active overarching constraints and is essential for inequality constrained prob-
lems, since primal feasibility can always be achieved by sufficiently large Lagrange 
multipliers. This ensures that the solution not only satisfies 

∑N

i=1
Aix

(k)

i
− b ≤ � but 

also 
∑N

i=1
Aix

(k)

i
[j] − b[j] ≥ −� for all active overarching constraints j. Only if a solu-

tion is primal and dual feasible, a saddle point to the Lagrangian that satisfies the 
conditions of optimality is found.

Since we can optimize numerically only with a certain numerical error, we define 
a set of x∗, �∗ , and �∗ to be optimal if the following holds:

where �Feas,Primal and �Feas,Dual are the desired numerical tolerances and xi minimizes 
the objective of sub-system i.

2.7.1 � Sub‑gradient method

The simplest method for the maximization of the dual is to follow the direction of 
the steepest ascent, i.e., to use the direction of the sub-gradient (Shor 2012). Here 
the challenge is the selection of a suitable stepsize. Since the dual function may be 
a non-smooth function, which depends on the solution structure of the different tra-
jectories, the stepsize selection criteria for non-smooth optimization derived in Nest-
erov (2004, p. 142) should be satisfied. 

(12)�Primal[j] = max

{
0,

( ∑
i∈{1,…,N}

Aixi(�) − b

)
[j]

}
, j ∈ {1,… ,m}.

(13)�Dual[j] =
|�+[j] − �[j]|

�[j]
,

{x∗, �∗,�∗} = {x, �,� ∣ ‖‖�Primal
‖‖∞ ≤ �Feas,Primal ∧

‖‖�Dual
‖‖∞ ≤ �Feas,Dual},

(14a)𝛼k > 0,

(14b)�k
→ 0,
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 Since the impact of small changes in the dual variables is not the same for all vari-
ables �[j], j ∈ {1,… ,m} , a scheme is needed that adapts the stepsizes individually.

While there exist methods to evaluate the optimal stepsize at the current point 
using the Lipschitz constant, as explained in Bertsekas and Tsitsiklis (1989) and 
Kozma et  al. (2014), determining the constant is difficult since the dual cannot 
be evaluated explicitly. Furthermore, since this constant is not valid globally, the 
stepsizes either have to be adapted during the maximization of the dual or be cho-
sen conservatively enough to be valid throughout the domain of the dual function.

The sub-gradient method can be considered as alternating local optimization 
of the sub-systems and adaptation of the Lagrange multipliers on the coordination 
layer. We propose to decrease the stepsize of a specific overarching constraint 
every time the sign of the corresponding element of 

∑N

i=1
Aixi(�) − b changes. 

This is equivalent to the inequality constraint becoming active or inactive respec-
tively. Specifically the following adaptation of � is used (cf. Algorithm 1, line 8):

If one of the stepsizes is too large and it has an influence on the Lagrange multi-
plier (note that if a constraint is inactive, the multiplier is fixed at 0), then this leads 
inevitably to a diminishing of the stepsize in this direction. The factor � in Algo-
rithm 1 prevents the stepsize from decreasing too fast due to oscillating responses 
while maintaining the stepsize as large as possible if consecutive steps have the 
same direction. 

(14c)
∞∑
k=0

�k = ∞.

(15)

�(k)[j] =

�
�Decrease �

(k−1)[j], if,
�∑N

i=1
Aix

(k)

i
− b

�
[j]
�∑N

i=1
Aix

(k−1)

i
− b

�
[j] ≤ 0,

�(k−1)[j], otherwise.
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Other possible selections of � can be found in Nesterov (2004). Regardless 
of the selection of the stepsize, the provable convergence rate for strictly convex 
problems is at best O(1∕k).

2.7.2 � ADMM

A more robust method is the alternating direction method of multipliers (ADMM) 
Boyd et al. (2010). It uses the augmented Lagrangian:

Additionally to the linear penalty term, the deviation from a feasible use of the 
shared resources zi is penalized quadratically. Essentially, the penalty terms convex-
ify the problems around points that satisfy the overarching constraints, which accel-
erates the initial convergence. The variables zi are determined on the coordinator 
level and are a projection of the current responses of the different sub-systems onto 
the feasible region. The stepsize � for the update of the Lagrange multipliers is �

N
 in 

the case of ADMM. However, since additionally to the prices also the zi determine 
the response of the systems, the dual feasibility is redefined as:

The convergence rate for convex problems is also O(1∕k) (Hong and Luo 2017; 
Kozma et al. 2014). 

(16)L�,i(xi, �,�i, zi) = Li(xi, �,�i) +
�

2
‖‖Aixi − zi

‖‖22.

(17)�Dual[j] = �

(
N∑
i=1

|||Aix
(k)

i
[j] − z

(k)

i
[j]
|||
)
.
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In Algorithm  2 the unscaled version of ADMM for equality constrained shar-
ing problems is shown, cf. Boyd et al. (2010, p. 59). When adapting the algorithm to 
the inequality constraint problem considered here, the dual variables need to satisfy 
� ≥ 0 and the z-variables need to be adjusted depending on whether the overarching 
constraints are active or not. When they are active, the same update as in Algorithm 2 
applies, however, if the constraints are not active, the references zi are based on the 
previous solutions of the sub-systems. This penalty is required since otherwise only 
some variables are quadratically penalized possibly leading to cyclic solution changes 
in subsequent iterations. We present ADMM including a new and efficient update step 
to compute the z-variables for inequality constrained problems in Algorithm  3. To 
improve convergence, different and variable penalty parameters � are used for each con-
straint. The penalty parameters are adapted at step 10 of Algorithm 3 using the scheme 
in Wang and Liao (2001):

The factor � is the maximally allowed difference between primal and dual feasibil-
ity before the penalty parameter is adapted to rebalance the proportion. The param-
eters 𝜏Incrase > 1 and 𝜏Decrease < 1 adjust the penalty parameter � if necessary. The 
update ensures that primal and dual feasibility are kept in balance or, in other terms, 
that far away from the optimum large changes in � are made. Close to the optimum, 

(19)�(k)[j] =

⎧⎪⎨⎪⎩

�Incrase �
(k−1)[j], if �

(k)

Primal
[j] ≥ � �

(k)

Dual
[j],

�Decrease �
(k−1)[j], if � �

(k)

Primal
[j] ≤ �

(k)

Dual
[j],

�(k−1)[j], otherwise.
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the changes are reduced and additionally the quadratic penalization is decreased, to 
ensure that the solution without the quadratic penalty also satisfies the overarching 
constraints.

2.7.3 � ALADIN

Another method that uses the augmented Lagrangian is the augmented Lagrangian 
based algorithm for distributed non-convex optimization in Houska et  al. (2016). 
Different to ADMM, here the reference values for all variables of sub-system i are 
penalized for deviating from the reference zi:

Additionally to reporting the consumption of the shared resources, the sub-sys-
tems also report their derivatives of the objective and of the active constraints with 
respect to the local decision variables to the coordination layer in each iteration k. 
The Hessian and gradient approximations are then calculated using the constraint 
Jacobian information C(k)

i
 ( CActive(k)

i
 ) of the (active) constraints from Eq. 6c:

where C(k)

i
= ∇xi

gi(xi)|xi=x(k)i

 . The modified gradient and Hessian approximation are:

With this information of the sub-systems, instead of doing straight projections onto 
the feasible set, prices and reference values ( zi ) are determined via a quadratic pro-
gram that approximates the objective functions and active constraints of the sub-sys-
tems. The algorithm can be seen as a combination of sequential quadratic program-
ming (SQP) and ADMM. The benefit of using more information from the different 
sub-systems on the coordinator level is in general a faster convergence. In Houska 
et al. (2016) it is shown that in theory super-linear to quadratic convergence rates are 
possible.

(20)L�,i(xi, �,�i, zi) = Li(xi, �,�i) +
�

2
‖‖xi − zi

‖‖22.

(21)

C
Active(k)

i
[l, ∶] =

{
C
(k)

i
[l, ∶], if gi(x

(k)

i
)[l] = 0,

0, otherwise,
for l ∈ {1,… , ngi},∀i ∈ {1,… ,N},

(22)

(23)H
(k)

i
≈∇2

xi

(
fi(xi) + �T

i
gi(xi)

)|||xi=x(k)i
, �i=�

(k)

i

.
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The update of the Lagrange multipliers � is done differently compared to the pre-
vious two methods without sub-gradient information. Instead, the Lagrange multi-
pliers from the overarching constraints �QP in the QP are used in the update step. 
The algorithm for equality constrained problems as proposed in Houska et al. (2016) 
is given in Algorithm 4. The dual feasibility is defined as follows:

The parameters �i ∈ [0, 1] can be used to adjust the behaviour of the algorithm to 
match frequent changes of the active set. Houska et al. (2016) provide an additional 
scheme that utilizes the objective values of the sub-systems, based on which these 
parameters can be adapted in each iteration to guarantee the convergence to a local 
minimum. The scheme is not considered in this work, because essentially a mono-
lithic optimization is carried out to determine the parameters.

Since trajectory optimization problems with overarching inequality constraints 
are considered, Eq. 24b is changed to an inequality constraint and the algorithm 
is modified accordingly. The solution to trajectory optimization problems con-
sists of different arcs, which correspond to active constraints. Since these con-
straints ultimately act on the inputs, Eq. 24c fixes all �zi for the inputs in the QP. 

(25)�Dual[j] = �

(
N∑
i=1

|||x
(k)

i
[j] − z

(k)

i
[j]
|||
)
.
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Therefore, the equality constraint Eq. 24c is changed to inequality, such that the 
variables �zi are degrees of freedom. If the reference variables zi resulting from 
the QP are infeasible, the Hessian of the sub-systems may become indefinite, 
which occurs mainly at the beginning of the scheme, when the QP approxima-
tions of the active constraints do not reflect the actual solution. Positive definite-
ness of H(k)

i
 is required for ALADIN (Houska et al. 2016) and therefore we pro-

pose the following strategy to enforce this condition: The elements on the main 
diagonal are increased by �I , where I is the identity matrix. Since having high 
values for � penalizes large changes in �zi , this value is decreased with the num-
ber of iterations until H(k)

i
 becomes indefinite. Then � remains fixed at this value, 

or is increased in subsequent iterations, if the Hessian is still indefinite.
Another challenge that arises from trajectory optimization is that small 

changes in the Lagrange multipliers of the overarching constraints � can change 
the active set of the sub-systems. In order to be able to reach the correct active 
set, the stepsize of the algorithm possibly has to be infinitesimal. Thus, also the 
�i are adapted in each iteration. Eq. 24b is modified to account for smaller values 
of �1 , such that the new reference variables zi are always feasible according to the 
coordinator level QP. In Algorithm 5, the different steps of ALADIN, adjusted to 
inequality constrained problems, are given. 
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2.7.4 � Other methods

There are a variety of other dual based methods. For instance the ones introduced in 
Maxeiner and Engell (2020) or Wenzel et al. (2016), where, similar to the sub-gradient 
method, only Lagrange multipliers and the usage of the shared resources are exchanged. 
However, these methods are designed for equality constrained shared resource alloca-
tion problems.

Other methods, e.g. those presented in Kozma et al. (2014) and Nesterov (2004), use 
the objective values of the individual sub-systems. In this contribution, we focus on the 
presented methods, since they do not require the knowledge of the objective values of 
the individual sub-systems. Hence, they can be applied to solve problems where due to 
confidentiality the profit of the sub-systems cannot be openly communicated.

3 � Problem formulation for multiple trajectories with shared inputs 
and free final times

Due to the overarching constraint on the sharing of the resources, the terminal states 
of the trajectories change. With fixed final times, boundary conditions on the terminal 
state which are infeasible due to the overarching resource-sharing constraints, cannot 
be satisfied. Thus, additional degrees of freedom that enable the satisfaction of the ter-
minal constraints, i.e., free final times, are needed.

The standard approach to include the final time as an optimization variable in tra-
jectory optimization is time scaling. The time horizon is scaled to the interval [0, 1], 
discretized, and multiplied with the final time which is a continuous variable that is 
minimized. The number of discretization intervals stays constant, but the lengths of the 
discretization intervals change. The downside of this approach, for the considered sce-
nario with sharing of resources, is that the constraints on the shared resources cannot 
be enforced exactly anymore, because the discretization intervals are not synchronized 
between the sub-systems.

Another possibility is to adjust the number of intervals. Then, the length of the dis-
cretization intervals is fixed and the shared resource constraints can be enforced across 
all systems. As a result, the additional optimization variable, the number of discrete 
intervals, is of integer type (Van den Broeck et al. 2011).

In the following, we use the latter approach and consider a single terminal constraint 
for each sub-system that is feasible without the overarching constraint but not neces-
sarily when it is present. The resulting problem of trajectory optimization with shared 
resources and free final times for the different trajectories can be written as the follow-
ing mixed-integer non-linear program (MINLP): 

(27a)

min
𝜒i,p, ui,p,

(yi,p, ŷi,p) ∈ {0, 1},

∀(p, i) ∈

({Nmin,… ,Nmax}, {1,… ,N})

∑
i∈{1,…,N}

∑
p∈ℕ

(
ŷi,p𝛶i(𝜒i,p) + yi,p𝛩i

(
𝜒i,p, ui,p,𝛥t, p

))
,
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 The binary variables yi,p and ŷi,p are used for each sub-system i to indicate in 
which intervals p the trajectory is active ( yi,p ) and in which interval p the trajectory 

(27b)
s.t.

∑
i∈{1,…,N}

ui,p ≤ ushared,max,p,

∀p ∈ {Nmin,… ,Nmax},

(27c)
F̃i

(
𝜒i,p,𝜒i,p+1, ui,p,𝛥t, p

)
= 0,

∀p ∈ {p�|yi,p� = 1}, i ∈ {1,… ,N},

(27d)�i,Ni,0
= �0,i, ∀i ∈ {1,… ,N},

(27e)
Pi

(
�i,p, ui,p,�t, p

) ≤ 0,

∀p ∈ {p�|yi,p� = 1}, i ∈ {1,… ,N},

(27f)
Ti
(
�i,p

) ≤ yi,pM,

∀p ∈ {Nmin,… ,Nmax}, i ∈ {1,… ,N},

(27g)
Ti
(
�i,p

) ≥ (yi,p − 1)M + 1∕M,

∀p ∈ {Nmin,… ,Nmax}, i ∈ {1,… ,N},

(27h)
p − Ni,0 ≤ yi,pM,

∀p ∈ {Nmin,… ,Nmax}, i ∈ {1,… ,N},

(27i)
p − Ni,0 ≥ (yi,p − 1)M + 1∕M,

∀p ∈ {Nmin,… ,Nmax}, i ∈ {1,… ,N},

(27j)
zi,p+1 ≥ yi,p − yi,p+1,

∀p ∈ {Nmin,… ,Nmax}, i ∈ {1,… ,N},

(27k)
zi,p+1 ≤ yi,p + yi,p+1,

∀p ∈ {Nmin,… ,Nmax}, i ∈ {1,… ,N},

(27l)
zi,p+1 ≤ 1 − yi,p+1,

∀p ∈ {Nmin,… ,Nmax}, i ∈ {1,… ,N},

(27m)ui,p = 0, ∀p ∈ {p�|yi,p� = 0}, i ∈ {1,… ,N}.
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satisfies the terminal constraints ( ̂yi,p ). The connection between continuous and 
binary variables is done using the Big M method (Nemhauser and Wolsey 1988).

Different to the problem given in Eqs. 5, Nmax is not the maximum of Ni,f  but must 
be a sufficiently large integer such that the problem is feasible, i.e., that all trajectories 
can satisfy the terminal constraint when the resources are shared.

The problem given in Eqs. 27 can be solved monolithically using an MINLP solver. 
Since in this contribution distributed solutions are sought, another way to handle the 
binary variables is to use the heuristic described in Van den Broeck et al. (2011), where 
the minimum interval for which the terminal constraint is satisfied is found iteratively. 
The iterative process of determining the final interval is included into the scheme for 
the satisfaction of the overarching constraints.

Each sub-system updates its number of intervals via the following equation:

The adaptation is done if at least one of the terminal constraints cannot be reached 
with the given final times. As an additional criterion, the number of iterations 
between two adaptations is increased by 1 each time the final times are adapted.

As the changes in the discrete variables become less frequent, the influence of their 
adaptation vanishes and the distributed optimization methods converge.

Since the objectives are in general not smooth with respect to discrete changes of 
the final time, the objective functions of the sub-systems should be scaled with their 
respective final times, i.e. by dividing the objective by the final time, in order to reduce 
the effect of the discrete changes.

4 � Semi‑batch reactor case study

In this paper, we consider a modified version of the isothermal semi-batch reactor with 
a safety constraint example from Ubrich et al. (1999). This reactor has been widely used 
as a benchmark in the trajectory optimization literature, e.g., Srinivasan et al. (2003).

A first-order reaction is considered, in which the following reaction occurs:

Previous to the reaction, the reactor is filled with the amount V0,i cA,0,i of reactant A. 
The dosage profile of reactant B is a degree of freedom and hence the feed rates ui(t) 
are the manipulated variables. The ordinary differential equations that describe the 
trajectories of the states in each reactor i are:

(28)Ni,f =

⎧
⎪⎨⎪⎩

Ni,f + 1, if Ti

�
𝜒i,Ni,f

�
> 0,

Ni,f − 1, if Ti

�
𝜒i,Ni,f−1

� ≤ 0,

Ni,f , otherwise.

∀i ∈ {1,… ,N}.

A + B → C.

(29)
dcA,i(t)

dt
= −k cA,i(t) cB,i(t) −

ui(t)

Vi(t)
cA,i(t),
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The trajectories of each reactor i need to satisfy the following constraints:

•	 Limitation of the feed rate of the reactant B by uMax,i,
•	 The path constraint that the adiabatic temperature rise in the reactor is limited 

 which poses a constraint on the concentration cB,i(t) within the reactor,
•	 The path constraint on the volume of the reactor, which requires that the reac-

tion volume cannot exceed the maximum available reactor volume VMax,i.

As a terminal constraint, the amount of C must be above the desired thresh-
old nC,Des,i . This amount can be calculated via nC,i(t) = cA,0,iV0,i − cA,i(t)Vi(t) . In 
Table 1, all case study specific numerical values are given.

In trajectory optimization, different criteria can be selected as economically 
motivated objectives, e.g.:

•	 Maximization of the valuable product at the end of the batch time, which 
yields the maximum material efficiency.

•	 Minimization of the time necessary to produce a certain amount of valuable 
product, which yields as many batches as possible per time.

•	 Maximization of productivity, i.e., the amount of valuable product divided by 
the batch time.

Here, the maximization of the throughput of product C is chosen as the optimiza-
tion criterion for each reactor i:

In Fig. 1 the optimal trajectories of the states and the input of a single semi-
batch reactor without overarching constraints are shown for an input discretiza-
tion interval of 4 h. On the left, the trajectories of the states are shown and the 
trajectory of the amount of final product is shown. The effective constraints on 
the quantities are indicated by the thin horizontal lines in the same line style. On 
the right, the input trajectory is shown. One can see the presence of different arcs, 
i.e., the presence of different active constraints. At first, the maximum feed rate 
constraint is active, then the temperature at cooling failure limits the feed rate 

(30)
dcB,i(t)

dt
= −k cA,i(t) cB,i(t) −

ui(t)

Vi(t)

(
cB,in,i − cB,i(t)

)
,

(31)
dVi(t)

dt
= ui(t).

(32)�Tad(t) = min
{
cA,i(t), cB,i(t)

} (−�HR)

� cp
,

(33)�i(�i,Ni,f
) = −

nC,i,f

ti,f
= −

cA,i,0V0,i − cA,i,f Vi,f

(Ni,f − Ni,0)�t
.
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until the feeding needs to be stopped because the maximum volume of the reac-
tion mixture is reached.

In the case of a single semi-batch reactor, the terminal constraint is satisfied after 17 
discrete elements of duration �t = 4 h.

Additionally to the individual limitations of the feed flows, we consider a coupling 
of the reactors via an overarching constraint on the joint feed flow rate of the reactant B:

(34)
∑

i∈{1,…,N}

ui,p ≤ ushared,max, ∀p ∈ {Nmin,… ,Nmax}.

Table 1   Case study specific 
parameters for all reactors i 

Symbol Value Unit

cA,0,i 2.0 mol/l
cB,0,i 0.0 mol/l
cC,0,i 0.0 mol/l
V0,i 0.45 l
k 0.0482 l/(mol h)
�Tad 20 K
−�HR∕(� ⋅ cp) 80.0 (l K)/mol
cB,in,i 1.2 mol/l
umin,i 0.0 l/h
umax,i 0.04 l/h
Vmax,i 1.2 l
nC,Des,i 0.6 mol
ushared,max 0.05 l/h

(a) (b)

Fig. 1   Optimal trajectories for a single semi-batch reactor without overarching constraints for a time dis-
cretization of �t = 4 h. On the left, the evolution of the states cA,1, cB,1 and V1 as well as of the amount of 
final product nC,1 is shown. On the right, the corresponding input profile is shown. The thin lines corre-
spond to the constraints on the variables
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The maximum combined feed flow rate for all reactors is considered to be constant. 
Dualizing this overarching constraint Eq. 34 according to Eq. 7 yields the following 
integral cost term in the objectives of the sub-systems:

4.1 � Validation of the solutions

All subsequent distributed solutions are compared to the monolithic solutions of the 
same problem. In the case of free final times, instead of solving the MINLP, all pos-
sible solutions for the final interval Ni,f  that end no later than 3 intervals from the 
unconstrained solution are enumerated and used as the benchmark for the evaluation 
of the different distributed solutions.

For the iterative methods with the augmented Lagrangian term, upon conver-
gence, the solutions are validated with � = 0 in order to ensure that the constraints 
are satisfied even without penalty parameters and thus the corresponding Lagrange 
multipliers satisfy the necessary conditions of optimality.

5 � Numerical results

The performance of the different methods is evaluated using the following three 
criteria:

•	 required number of iterations,
•	 evolution of the primal infeasibility over the iterations,
•	 objective value at convergence.

All scenarios were evaluated using the optimization parameters given in Table  2, 
which were determined empirically. The optimization problems are solved in Python 
using IPOPT as NLP solver and the CasADi toolbox for the computation of the 
derivatives (Andersson et al. 2018; Wächter and Biegler 2006).

In the following, all reactors have the same properties and initial conditions, 
which is not required in general. Different scenarios are generated by changing the 
number of reactors, the time discretization �t , and the starting times of the reactors. 
Three reactors starting at 0 �t , 1 �t , and 2 �t are indicated by the starting sequence 
[0, 1, 2].

5.1 � Comparison of the methods for fixed final times

In the following, first the results for fixed final times are discussed. Since changing 
the fixed final time has only a minor influence on the arc structure of the solution as 
long as feeding is completed within the considered time horizon, it is not varied.

(35)�i

(
�i,p, ui,p,�t, p

)
= �[p]ui,p, ∀p ∈ {Nmin,… ,Nmax}.
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At first, different scenarios that are generated by varying the starting times of 
the reactors are considered. Since it is possible to generate scenarios without active 
overarching constraints, which do not require any coordination, only scenarios where 
the overarching input constraint is active in at least two intervals are considered.

In Fig.  2 the final distribution of the input between the different sub-systems 
and the corresponding trajectories of the states are shown for three reactors start-
ing at the same time, i.e. [0, 0, 0]. The input is discretized into piece-wise constant 
intervals of �t = 4  h and the final times for all of the reactors are fixed at 20 �t . 
In Fig. 2b, the inputs ui are stacked on top of each other. Input u1 is the difference 
between ū1 and the baseline at 0, input u2 is the difference between ū2 and ū1 , and 
u3 is the difference between ū3 and ū2 . This plot shows how the resources are dis-
tributed between the different sub-systems over time and that the shared resource 
constraint can be satisfied. This is a special case due to the same starting time and 
the equal distribution of the feedrate ( ui ), wherefore all trajectories in response to 
the prices are the same. The corresponding state profile is displayed in Fig. 2a. It 
is worth mentioning that the structure of the optimal solutions of the sub-systems 
(reactors) changes in the distributed optimization. As the maximum feed rate is no 

Table 2   Parameters for the dif-
ferent distributed optimization 
methods

General

�Feas,Primal 10−5

�Feas,Dual 10−5

MaxIter 5 × 104

�(0) 0

Sub-gradient method

�0 1
� 0.8
�Decrease 0.98

ADMM

�0 1
z0 0
�Decrease 0.98
�Increase 1.02
� 2

ALADIN

� 10
z0 0
� 107

�1 0.995
�2 0.995
�3 0.995
� 0.9
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longer reached, the first arc now is a sensitivity seeking arc, and the constraint on 
the adiabatic temperature becomes only active at 44 h. So for most of the batch time, 
the solution of the subsystem problems is not at the constraints, the constraint on the 
feed is dualized and only enforced by the coordination via the price of the feed.

Figure  3 shows the evolution of the Lagrange multipliers corresponding to the 
overarching constraints on the shared resources in the maximization of the dual for 
the three different methods. In Fig. 3a, the spikes ate the beginning of the evolution 
of the Lagrange multipliers for the sub-gradient method result from the adaptation 
of the stepsizes to the specific problem. Once the stepsizes are adequate, the prices 
converge to the values of the monolithic optimization. For ADMM, the prices con-
verge more quickly towards the optimal ones compared to the sub-gradient method, 
however, the increasing number of active overarching constraints as well as the 
balancing of primal and dual feasibility result in oscillations towards the optimal 

(a) (b)

Fig. 2   Optimal input trajectories for three reactors starting at [0, 0, 0] (right). Resulting trajectories of the 
states and the amount of product C for reactors 1, 2, and 3, which are equal due to the same starting time 
and equal distribution of the input (left)

(a) (b) (c)

Fig. 3   Evolution of the Lagrange multipliers �(k)[j], j ∈ {1,… ,m} for three reactors starting at [0, 0, 0] 
for the different methods to maximize the dual over the iterations k 
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Lagrange multipliers, as can be seen in Fig. 3b. In Fig. 3c, the prices are adapted 
according to the ALADIN method, which is based on the derivatives at the currently 
active set of local inequalities, i.e., the active input and path constraints of all reac-
tors. After a few iterations, the approximated active set is close to the actual one, and 
the prices converge towards the optimal Lagrange multipliers quickly.

Another interesting scenario that is further examined results for the starting times 
[0,  0,  2]. The optimized input trajectories are shown for the different methods in 
Fig. 4. It can be seen that the shared resource constraint, indicated by the dashed 
line is satisfied for all methods, however, not all methods yield the same trajectories. 
Nonetheless, the objective values agree up to the 5th significant digit. Thus, the dif-
ference in the trajectories can be explained as different local optima that all satisfy 
(within the specified accuracy) the necessary conditions of optimality.

In Fig. 5, the corresponding evolutions of the primal feasibilities (infinity norm) 
are shown. As can be seen in Fig. 5a, in this scenario the sub-gradient method first 
converges to a point at which a further adaptation of the Lagrange multipliers, 
shown in Fig. 6a, does not have an effect on the primal feasibility. This is due to a set 

(a) (b)

(c) (d)

Fig. 4   Resulting distribution of the resources for three reactors starting at [0, 0, 2]
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of local constraints being active. Once this active set changes before iteration 2000, 
the primal feasibility decreases further and the method converges towards a feasible 
solution.

For ADMM, the primal feasibility does not steadily decrease but oscillates. Due 
to the second optimality criterion of dual feasibility, the scheme continues to iterate 
even when the overarching constraints are satisfied for all intervals. As can be seen 
in Fig. 6b, starting from iteration 20, the Lagrange multipliers oscillate around their 
final values before they converge.

Similar to ADMM, ALADIN decreases the infinity norm of the primal feasi-
bility quickly, cf. Fig. 5c. Thereafter, the primal feasibility spikes either when the 
active set in the QP approximation changes or when new overarching constraints 
become active. The latter can be seen in Fig. 6c by the new non-zero Lagrange 
multipliers. The former is only indirectly visible by the significant changes in 
the Lagrange multipliers. The initial spike in the Lagrange multipliers � results 

(a) (c)(b)

Fig. 5   Evolution of the primal infeasibility over the iterations for the three methods for scenario [0, 0, 2]

(a) (b) (c)

Fig. 6   Evolution of the Lagrange multipliers over the iterations for the three methods for scenario 
[0, 0, 2]
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from �QP being calculated based on the wrong active set in the coordinator level 
QP. Different from the [0, 0, 0] scenario, several iterations are necessary for the 
Lagrange multipliers, cf. Fig. 5c, to converge to the values that yield the inputs in 
Fig. 4d.

In Table  3, the results for different scenarios are given. The scenarios are per-
mutations of the starting times between 0 and 8 h. The objective value is scaled 
by a factor of − 1000, such that higher values correspond to better objectives. This 
table is continued in Table 5 with the remaining permutations of the starting times 
between 0 and 16 h. If the objective value of a distributed method is slightly bet-
ter than that of the monolithic solution method, this results from the overarching 
constraints being satisfied only to the specified tolerance �Feas . The monolithic solu-
tion is accurate to the precision of IPOPT, which is set to 10−12 . Feeding slightly 
more into the reactors leads to these small differences in the objective values. Even 
though it is mostly not reflected in the objective values, the resulting trajectories for 
the inputs do not always have the same arc structure. In addition to the objective 
values, also the number of necessary iterations, with the value of the best distrib-
uted method highlighted in bold, as well as the numbers of coordinated intervals (# 
Coord. Ints.), i.e., intervals with active overarching constraints, are shown.

The number of coordinated intervals correlates with the objective value since if 
fewer intervals need to be coordinated, this means that for more intervals there is no 
active constraint on the usage of the resources. It is no surprise that the scenarios 
where the starting times are further apart as well as when the reactors start later, cf. 
[0, 0, 2] and [0, 2, 2], have a better objective value. The latter results from the fact 
that �nC,i∕�t decreases once the path constraints on cB,i is active.

The influence of the granularity of the time discretization on the number of nec-
essary iterations depends on several factors. In general, it can be said that increas-
ing the discretization interval �t leads on the average to fewer intervals that have 
to be coordinated and the number of reactor specific constraints that can be active 
decreases significantly. This can be seen by comparing the results of �t = 4 h with 
the results in Tables  6 and 7 in the Appendix, where the time discretization is 
changed to �t = 8 h and �t = 16 h, respectively.

The average number of iterations for the sub-gradient method approximately 
halves if the time discretization interval is doubled. For all three discretizations, the 
sub-gradient method has the highest variance. For ADMM the number of iterations 
is similarly reduced, however, the method converges much more consistently, i.e., 
the different scenarios do not influence the number of iterations as much as for the 
other methods. ALADIN exhibits a larger spread for the time discretizations �t = 4 
h and �t = 8 h, however, requires significantly fewer iterations for �t = 16 h. An 
example, where ALADIN requires many iterations is scenario [0, 1, 4], where the 
evolution of the primal infeasibility and of the Lagrange multipliers are shown in 
Fig. 7. Between iteration 30 and 140, the stepsize is too large for the algorithm to 
find the correct QP approximation. Once this set is found, the algorithm converges, 
however with small steps, such that another 60 iterations are required.

Varying the number of reactors does not make the problem significantly harder. 
For instance, changing the number of reactors while maintaining their starting posi-
tion (e.g., [0], [0,  0,  0] and [0,  0,  0,  0,  0,  0]) and adapting the available amount 
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Table 3   Results for �t = 4 h and fixed final times

N
i,0 Method Objective N

i,f # Coord. Ints. Iterations

[0, 0, 0] Monolithic 22.9866 [20, 20, 20] 11 1
[0, 0, 0] Sub-gradient 22.9871 [20, 20, 20] 11 2161
[0, 0, 0] ADMM 22.9855 [20, 20, 20] 11 81
[0, 0, 0] ALADIN 22.9866 [20, 20, 20] 11 27
[0, 0, 1] Monolithic 23.3897 [20, 20, 20] 11 1
[0, 0, 1] Sub-gradient 23.3901 [20, 20, 20] 11 1844
[0, 0, 1] ADMM 23.3897 [20, 20, 20] 11 162
[0, 0, 1] ALADIN 23.3897 [20, 20, 20] 11 73
[0, 0, 2] Monolithic 23.8303 [20, 20, 20] 11 1
[0, 0, 2] Sub-gradient 23.8308 [20, 20, 20] 11 2505
[0, 0, 2] ADMM 23.8303 [20, 20, 20] 11 142
[0, 0, 2] ALADIN 23.8303 [20, 20, 20] 11 70
[0, 1, 1] Monolithic 23.6869 [20, 20, 20] 10 1
[0, 1, 1] Sub-gradient 23.6873 [20, 20, 20] 10 994
[0, 1, 1] ADMM 23.6870 [20, 20, 20] 10 134
[0, 1, 1] ALADIN 23.6869 [20, 20, 20] 10 66
[0, 1, 2] Monolithic 24.1285 [20, 20, 20] 10 1
[0, 1, 2] Sub-gradient 24.1289 [20, 20, 20] 10 836
[0, 1, 2] ADMM 24.1282 [20, 20, 20] 10 111
[0, 1, 2] ALADIN 24.1285 [20, 20, 20] 10 62
[0, 2, 2] Monolithic 24.4583 [20, 20, 20] 9 1
[0, 2, 2] Sub-gradient 24.4587 [20, 20, 20] 9 812
[0, 2, 2] ADMM 24.4582 [20, 20, 20] 9 147
[0, 2, 2] ALADIN 24.4583 [20, 20, 20] 9 70

(a) (b)

Fig. 7   Evolution of the primal infeasibility and the Lagrange multipliers over the iterations of ALADIN 
for scenario [0, 1, 4], where only when the �i are small enough, the method converges
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ushared,max accordingly, i.e., by multiplication with the new number of reactors 
divided by the old one, does not influence the necessary number of iterations, except 
for the initial phase, since the solution has the same structure. This can be seen in 
Fig. 8a–c, where the structure of the imbalances is similar.

The difference in the final numbers of iterations results from the difference in the 
initial imbalance and the different adaptation of the stepsizes � . The evolution of the 
prices and of the final structure of the solution are similar.

If however ushared,max is kept constant while the number of reactors is changed, 
the structure of the solution and the trajectory of the multipliers change, cf. Fig. 8d, 
where the maximum amount of ushared,max = 0.05 l/h is distributed between only two 
reactors.

5.2 � Comparison of the methods for variable final times

The three methods are also compared for problems with enforced terminal con-
straints. The final times are initialized as in the previous case but changed during the 
optimization.

Additionally to the properties from the previous subsection, the points in time 
when the final time changes can be evaluated. In Figs. 9 and 10, the evolution of the 
final times and of the Lagrange multipliers is shown for scenario [0, 0, 2]. It can be 
seen that the distributed methods converge in the considered cases to the same final 
times. In the case of the sub-gradient method, as a result of the high fluctuations in 
the Lagrange multipliers at the beginning, also the final times change significantly 
until the stepsizes are adjusted accordingly. The large numbers of required itera-
tions are caused by infinitesimal stepsizes resulting from the automatic adaptation 
of the stepsizes. For ADMM significantly fewer changes can be observed. ALADIN 
finds the vicinity of the optimal Lagrange multipliers even more quickly, and fewer 
changes in the final times occur. The number of iterations stays in a similar range 
as for the case with fixed final times, which can be seen in Table 4 and the resulting 
distribution of the feed rate between the reactors can be seen in Fig. 11.

In Table 4, as an additional column, the satisfaction of the terminal constraint at 
convergence is added. The solutions deviate more from the monolithic optimization 
for the case with free final times. However, for the considered cases and also the 
ones in the Tables 8, 9, and 10, the heuristic finds feasible solutions. Similarly as 
with the fixed final times, the smaller �t is, the more often the distributed solution 
methods converge to the monolithic solution.
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(a)

(d)(c)

(b)

Fig. 8   Evolution of the primal feasibilities using the sub-gradient method for different numbers of reac-
tors and available amounts of the shared resource ushared,max

(a) (b) (c)

Fig. 9   Evolution of the final times for scenario [0, 0, 2] with free final times
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6 � Discussion

In the following, the results for the distributed optimization methods as well as for 
the free final times heuristic are discussed and analyzed. By coordinating the shared 
resource consumption between the individual reactors using Lagrange multipliers, 
the structure of the optimal solutions for the individual reactors may change. In this 
case, additional sensitivity seeking arcs arise instead of constraint seeking arcs. So 
the example shows that both constraint seeking arcs and sensitivity seeking arcs in 
the sub-problems can be handled.

Since in most cases trajectory optimization is not convex and thus part of a prob-
lem class for which few general statements can be made, a qualitative evaluation of 
the suitability of the methods is done.

6.1 � Comparison of the distributed optimization methods

While for ALADIN an extension exists that guarantees convergence to a local 
minimum using de facto monolithic optimization steps to determine �1 , �2 , and 
�3 , for ADMM and for the sub-gradient method no proofs exist that these meth-
ods necessarily converge in the non-convex case. Furthermore, it should be noted 
that all the considered methods based on dual decomposition are infeasible path 
methods such that only at convergence, the resulting trajectories satisfy the over-
arching constraints. Nonetheless, in all considered scenarios the distributed opti-
mization methods found feasible solutions with respect to the overarching con-
straints and converged to at least a local minimum using the parameters given in 
Table 2.

The sub-gradient method for inequality constrained problems adapts the step-
sizes automatically, which has the advantage that no prior information on the 

(a) (b) (c)

Fig. 10   Evolution of the Lagrange multipliers for scenario [0, 0, 2] with free final times
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(a) (b) (c)

Fig. 11   Resulting input profiles for the reactors for scenario [0, 0, 2] with free final times

Table 4   Results for �t = 4 h and variable final times

N
i,0 Method Objective N

i,f Feasible # Coord. Ints. Iterations

[0, 0, 0] Monolithic 22.9866 [20, 20, 20] True 11 1
[0, 0, 0] Sub-gradient 22.9867 [20, 20, 20] True 11 723
[0, 0, 0] ADMM 22.9857 [20, 20, 20] True 11 135
[0, 0, 0] ALADIN 22.9866 [20, 20, 20] True 11 27
[0, 0, 1] Monolithic 23.9684 [17, 20, 21] True 9 1
[0, 0, 1] Sub-gradient 23.8424 [19, 19, 20] True 11 29987
[0, 0, 1] ADMM 23.8418 [19, 19, 20] True 11 108
[0, 0, 1] ALADIN 23.8418 [19, 19, 20] True 11 64
[0, 0, 2] Monolithic 24.3662 [17, 20, 21] True 10 1
[0, 0, 2] Sub-gradient 24.2821 [19, 19, 20] True 11 14550
[0, 0, 2] ADMM 24.2815 [19, 19, 20] True 11 215
[0, 0, 2] ALADIN 24.2816 [19, 19, 20] True 11 70
[0, 1, 1] Monolithic 24.0409 [17, 21, 21] True 9 1
[0, 1, 1] Sub-gradient 24.0412 [17, 21, 21] True 9 740
[0, 1, 1] ADMM 23.9167 [19, 20, 20] True 10 65
[0, 1, 1] ALADIN 23.9180 [19, 20, 20] True 10 60
[0, 1, 2] Monolithic 24.6857 [18, 19, 21] True 9 1
[0, 1, 2] Sub-gradient 24.3585 [19, 20, 20] True 10 6869
[0, 1, 2] ADMM 24.3559 [18, 20, 21] True 9 130
[0, 1, 2] ALADIN 24.0952 [19, 20, 21] True 10 70
[0, 2, 2] Monolithic 24.7730 [17, 20, 22] True 8 1
[0, 2, 2] Sub-gradient 24.4374 [18, 21, 21] True 8 820
[0, 2, 2] ADMM 24.4377 [18, 21, 21] True 8 129
[0, 2, 2] ALADIN 24.4377 [18, 21, 21] True 8 206
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different sub-systems is required. This comes at the cost that for each scenario 
and for each optimization run a significant number of iterations is required to 
determine the stepsizes, which are conservative enough such that the active set 
of the inequality constraints on the shared resources stays mostly the same. Once 
these stepsizes are found, the method converges slowly and the final number of 
iterations can vary significantly, especially if local constraints are active, which 
can prevent improvements of the solution for many iterations as seen for instance 
in Fig. 5a. While one might conclude from Tables 3 and 4 that the sub-gradient 
method requires significantly more iterations for the free final times, the continu-
ation in Tables 5 and 8 shows that this is not true. High numbers of necessary 
iterations are caused by the small stepsizes resulting from the scheme in Eq. 15.

The benefit of the sub-gradient method is its simplicity. The augmentation of the 
objective function can be interpreted economically as the cost for use of the shared 
resource and on the coordination layer, the update mechanism matches supply and 
demand via the prices.

While ADMM does not need more information from the different sub-systems 
than the sub-gradient method, it introduces artificial penalization terms to regular-
ize the deviations from feasible solutions. This comes with the advantage of a sig-
nificantly improved speed of convergence in the considered cases. Whether this is 
acceptable depends on the situation: if distribution is mostly used as a tool to distrib-
ute the computational load or to robustify the optimization, it will probably not mat-
ter. If the goal is to coordinate the sub-systems while they only optimize their local 
cost function, it may not be acceptable.

ALADIN uses much more information from the different sub-systems, includ-
ing state variables as well as derivatives of objective and active constraints, to 
create QP approximations. As a consequence, ALADIN converges in most cases 
significantly faster than the other methods, which is also described in the lit-
erature by Engelmann and Faulwasser (2019) and Jiang et al. (2017). However, 
this works only when the QP approximations are accurate. In distributed trajec-
tory optimization there are two factors that can make the approximation difficult: 
highly non-linear constraints and changing active sets. The former one is the 
result of the non-linear model equations. The second results from the fact that 
small changes in the Lagrange multipliers can completely change the active set 
or the arc structure of the solutions. As long as the active set is not correct, �QP 
will not be optimal and ALADIN will not converge. Thus, an adaptive scheme 
for the stepsizes was presented in Algorithm 5 that, by decreasing the stepsize 
with the number of iterations, prevents oscillation between different active sets.

In the original ALADIN paper (Houska et  al. 2016), the authors recommend 
that a sufficiently large penalty parameter � has to be chosen for the method to 
converge with a super-linear rate. We found that for the considered problems, 
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choosing � too large resulted in indefinite Hessian matrices Hi  . The difficulty to 
choose � and � results from the following trade-off: If � is chosen large, then the 
Lagrange multipliers �i of the local constraints of the different sub-systems can 
become large, if the zi variables are not feasible, which in turn can lead to negative 
definite Hessian matrices Hi  . Since Hi  must be positive definite for the coordi-
nator level QP to yield meaningful updates of � and zi , the parameter � , which 
increases the eigenvalues, must be selected sufficiently large. If however � is large, 
then the coordinator level QP will yield very small �zi , which again yields small 
steps towards the optimum. Thus an adaptive scheme was used to prevent indefi-
nite Hessian matrices while eventually allowing larger changes in the reference 
variables zi.

These adaptations to ALADIN were made to ensure convergence for all consid-
ered scenarios, which is, of course, a trade-off since without these adaptations many 
scenarios converge much faster.

In general, in some real settings, sharing the gradients of the local objectives 
may not be acceptable, as this may allow the coordinator to decipher the local cost 
structure.

6.2 � Evaluation of the heuristic for the satisfaction of the terminal constraints

In all considered scenarios with free final times, the terminal constraints were 
satisfied for the distributed solutions. This can in general not be guaranteed and 
including this check along with primal and dual feasibility as a convergence crite-
rion can prevent convergence. We thus recommend for the application of distrib-
uted optimization with free final times to check the feasibility of all sub-problems 
at convergence of the distributed optimization method. If this is not satisfied upon 
convergence, a fallback to a search space with worse objectives can be imple-
mented. For the considered case study, this could, for example, be to increase the 
final times for all sub-systems and re-optimize without adapting the final times, 
which would eventually guarantee the satisfaction of the terminal constraint. 
Other fallbacks could be to allocate 1/N of the shared resources to each reactor or 
to partly disaggregate the profiles.

With respect to the necessary number of required iterations to converge, it can 
be said that the proposed strategy to adapt the final times can be integrated into the 
iterative methods without a significant influence on the overall number of iterations.

7 � Conclusions

In this contribution, different methods for distributed trajectory optimization, in 
which the objective values of the sub-systems are not shared, were investigated. As 
an example, the trajectories of semi-batch reactors that are connected via overarch-
ing constraints on the feed rates were optimized. We evaluated and compared differ-
ent methods based on the optimization of the trajectory of a benchmark semi-batch 
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reactor and showed that for the considered case, convergence to local minima was 
achieved. Furthermore, a heuristic was proposed to include the final times of the dif-
ferent trajectories as degrees of freedom. Since the considered problem is not con-
vex, a quantitative analysis of the results was done and possible obstacles for the 
application of the distributed optimization methods to other trajectory optimization 
problems were pointed out. In the distributed optimization, the structure of the arcs 
of the optimal solution may be different from the structure of the solutions for the 
sub-system problems as constraints for the sub-problems are now dualized.

The three investigated methods, the sub-gradient method, ADMM, and ALA-
DIN, provide different trade-offs between sharing of information and rate of conver-
gence. As expected, in general it can be said that the more information is exchanged 
between the coordination level and the sub-system level, the faster the methods 
converge. Since ADMM showed a consistent rate of convergence and it requires no 
additional information from the sub-systems beyond the resource consumptions, it is 
recommended as the first choice for distributed trajectory optimization problems if 
confidentiality is of importance.

The results can also be applied in various other domains where resources have 
to be allocated or shared between different dynamic systems, e.g., in the coordina-
tion of plug-in electric vehicles, the coordination of autonomous robots, distributed 
control, etc.

Future work will focus on improving the convergence of ALADIN for problems 
with overarching inequality constraints by better exploiting the available informa-
tion on the active sets from the sub-problems. There are other techniques than SQP, 
e.g. interior point or active set methods, which might be adapted to the application 
with ALADIN to enable faster convergence to the correct active set. Furthermore, 
the characteristics of the trajectory optimization problems which can be solved with 
the proposed methods, or more specifically, what structure of arcs and what type of 
terminal constraints can be coordinated, should be investigated.
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Table 5   Results for �t = 4 h and fixed final times

N
i,0 Method Objective N

i,f # Coord. Ints. Iterations

[0, 0, 3] Monolithic 24.3068 [20, 20, 20] 11 1
[0, 0, 3] Sub-gradient 24.3072 [20, 20, 20] 11 24174
[0, 0, 3] ADMM 24.3073 [20, 20, 20] 11 97
[0, 0, 3] ALADIN 24.3068 [20, 20, 20] 11 161
[0, 0, 4] Monolithic 24.7824 [20, 20, 20] 10 1
[0, 0, 4] Sub-gradient 24.7821 [20, 20, 20] 10 1797
[0, 0, 4] ADMM 24.7784 [20, 20, 20] 10 82
[0, 0, 4] ALADIN 24.7823 [20, 20, 20] 10 194
[0, 1, 3] Monolithic 24.6082 [20, 20, 20] 10 1
[0, 1, 3] Sub-gradient 24.6086 [20, 20, 20] 10 1022
[0, 1, 3] ADMM 24.6081 [20, 20, 20] 10 125
[0, 1, 3] ALADIN 24.6082 [20, 20, 20] 10 177
[0, 1, 4] Monolithic 25.1012 [20, 20, 20] 9 1
[0, 1, 4] Sub-gradient 25.1008 [20, 20, 20] 9 1040
[0, 1, 4] ADMM 25.1010 [20, 20, 20] 9 105
[0, 1, 4] ALADIN 25.1011 [20, 20, 20] 9 205
[0, 2, 3] Monolithic 24.9415 [20, 20, 20] 9 1
[0, 2, 3] Sub-gradient 24.9417 [20, 20, 20] 9 655
[0, 2, 3] ADMM 24.9414 [20, 20, 20] 9 143
[0, 2, 3] ALADIN 24.9414 [20, 20, 20] 9 188
[0, 2, 4] Monolithic 25.4444 [20, 20, 20] 9 1
[0, 2, 4] Sub-gradient 25.4447 [20, 20, 20] 9 1029
[0, 2, 4] ADMM 25.4443 [20, 20, 20] 9 118
[0, 2, 4] ALADIN 25.4444 [20, 20, 20] 9 87
[0, 3, 3] Monolithic 25.1019 [20, 20, 20] 8 1
[0, 3, 3] Sub-gradient 25.1023 [20, 20, 20] 8 594
[0, 3, 3] ADMM 25.1020 [20, 20, 20] 8 137
[0, 3, 3] ALADIN 25.1019 [20, 20, 20] 8 98
[0, 3, 4] Monolithic 25.6230 [20, 20, 20] 8 1
[0, 3, 4] Sub-gradient 25.6228 [20, 20, 20] 8 429
[0, 3, 4] ADMM 25.6232 [20, 20, 20] 8 124
[0, 3, 4] ALADIN 25.6230 [20, 20, 20] 8 155
[0, 4, 4] Monolithic 25.7596 [20, 20, 20] 8 1
[0, 4, 4] Sub-gradient 25.7600 [20, 20, 20] 8 849
[0, 4, 4] ADMM 25.7575 [20, 20, 20] 8 90
[0, 4, 4] ALADIN 25.7596 [20, 20, 20] 8 56
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Table 6   Results for �t = 8 h and fixed final times

N
i,0 Method Objective N

i,f # Coord. Ints. Iterations

[0, 0, 0] Monolithic 22.9654 [10, 10, 10] 5 1
[0, 0, 0] Sub-gradient 22.9659 [10, 10, 10] 5 388
[0, 0, 0] ADMM 22.9648 [10, 10, 10] 5 54
[0, 0, 0] ALADIN 22.9654 [10, 10, 10] 5 14
[0, 0, 1] Monolithic 23.8082 [10, 10, 10] 5 1
[0, 0, 1] Sub-gradient 23.8086 [10, 10, 10] 5 407
[0, 0, 1] ADMM 23.8083 [10, 10, 10] 5 119
[0, 0, 1] ALADIN 23.8082 [10, 10, 10] 5 59
[0, 0, 2] Monolithic 24.7570 [10, 10, 10] 5 1
[0, 0, 2] Sub-gradient 24.7566 [10, 10, 10] 5 424
[0, 0, 2] ADMM 24.7541 [10, 10, 10] 5 54
[0, 0, 2] ALADIN 24.7570 [10, 10, 10] 5 17
[0, 1, 1] Monolithic 24.4477 [10, 10, 10] 4 1
[0, 1, 1] Sub-gradient 24.4476 [10, 10, 10] 4 283
[0, 1, 1] ADMM 24.4476 [10, 10, 10] 4 96
[0, 1, 1] ALADIN 24.4477 [10, 10, 10] 4 49
[0, 1, 2] Monolithic 25.4168 [10, 10, 10] 4 1
[0, 1, 2] Sub-gradient 25.4170 [10, 10, 10] 4 222
[0, 1, 2] ADMM 25.4167 [10, 10, 10] 4 91
[0, 1, 2] ALADIN 25.4168 [10, 10, 10] 4 45
[0, 2, 2] Monolithic 25.7437 [10, 10, 10] 4 1
[0, 2, 2] Sub-gradient 25.7441 [10, 10, 10] 4 457
[0, 2, 2] ADMM 25.7417 [10, 10, 10] 4 65
[0, 2, 2] ALADIN 25.7437 [10, 10, 10] 4 28

Table 7   Results for �t = 16 h and fixed final times

N
i,0 Method Objective N

i,f # Coord. Ints. Iterations

[0, 0, 0] Monolithic 22.9238 [5, 5, 5] 2 1
[0, 0, 0] Sub-gradient 22.9237 [5, 5, 5] 2 210
[0, 0, 0] ADMM 22.9230 [5, 5, 5] 2 33
[0, 0, 0] ALADIN 22.9238 [5, 5, 5] 2 13
[0, 0, 1] Monolithic 24.6118 [5, 5, 5] 2 1
[0, 0, 1] Sub-gradient 24.6118 [5, 5, 5] 2 237
[0, 0, 1] ADMM 24.6099 [5, 5, 5] 2 38
[0, 0, 1] ALADIN 24.6118 [5, 5, 5] 2 13
[0, 1, 1] Monolithic 25.5165 [5, 5, 5] 2 1
[0, 1, 1] Sub-gradient 25.5164 [5, 5, 5] 2 75
[0, 1, 1] ADMM 25.5168 [5, 5, 5] 2 75
[0, 1, 1] ALADIN 25.5165 [5, 5, 5] 2 14
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Appendix B: Results for different �t and variable final times

See Tables 8, 9 and 10.

Table 8   Results for �t = 4 h and variable final times

N
i,0 Method Objective N

i,f Feasible # Coord. Ints. Iterations

[0, 0, 3] Monolithic 24.8066 [17, 20, 21] True 10 1
[0, 0, 3] Sub-gradient 24.4615 [19, 19, 21] True 10 1084
[0, 0, 3] ADMM 24.4619 [19, 19, 21] True 10 118
[0, 0, 3] ALADIN 24.4619 [19, 19, 21] True 10 139
[0, 0, 4] Monolithic 25.2852 [17, 20, 21] True 10 1
[0, 0, 4] Sub-gradient 24.9375 [19, 19, 21] True 10 1410
[0, 0, 4] ADMM 24.9382 [19, 19, 21] True 10 107
[0, 0, 4] ALADIN 24.9379 [19, 19, 21] True 10 111
[0, 1, 3] Monolithic 24.8795 [17, 21, 21] True 9 1
[0, 1, 3] Sub-gradient 24.7980 [18, 20, 21] True 9 855
[0, 1, 3] ADMM 24.7976 [18, 20, 21] True 9 167
[0, 1, 3] ALADIN 24.5378 [19, 20, 21] True 10 69
[0, 1, 4] Monolithic 25.3548 [17, 21, 21] True 9 1
[0, 1, 4] Sub-gradient 25.2783 [19, 19, 21] True 9 4253
[0, 1, 4] ADMM 25.2275 [18, 19, 22] True 9 149
[0, 1, 4] ALADIN 25.2278 [18, 19, 22] True 9 69
[0, 2, 3] Monolithic 25.2458 [17, 20, 22] True 8 1
[0, 2, 3] Sub-gradient 25.1343 [18, 20, 21] True 8 944
[0, 2, 3] ADMM 25.1346 [18, 20, 21] True 8 149
[0, 2, 3] ALADIN 24.8794 [18, 21, 21] True 8 69
[0, 2, 4] Monolithic 25.6565 [17, 21, 21] True 8 1
[0, 2, 4] Sub-gradient 25.3178 [18, 20, 22] True 8 512
[0, 2, 4] ADMM 25.3174 [18, 20, 22] True 8 164
[0, 2, 4] ALADIN 25.3175 [18, 20, 22] True 8 70
[0, 3, 3] Monolithic 24.8544 [17, 21, 23] True 7 1
[0, 3, 3] Sub-gradient 24.5231 [18, 22, 22] True 8 3696
[0, 3, 3] ADMM 24.5235 [18, 22, 22] True 8 128
[0, 3, 3] ALADIN 24.5234 [18, 22, 22] True 8 279
[0, 3, 4] Monolithic 25.3294 [17, 21, 23] True 7 1
[0, 3, 4] Sub-gradient 25.2256 [18, 21, 22] True 8 4792
[0, 3, 4] ADMM 25.2254 [18, 21, 22] True 8 164
[0, 3, 4] ALADIN 25.2253 [18, 21, 22] True 8 216
[0, 4, 4] Monolithic 25.1476 [17, 22, 23] True 7 1
[0, 4, 4] Sub-gradient 24.8901 [17, 23, 23] True 7 3429
[0, 4, 4] ADMM 25.0983 [18, 22, 22] True 7 74
[0, 4, 4] ALADIN 24.8904 [17, 23, 23] True 7 126
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Table 9   Results for �t = 8 h and variable final times

N
i,0 Method Objective N

i,f Feasible # Coord. Ints. Iterations

[0, 0, 0] Monolithic 23.4769 [9, 10, 10] True 5 1
[0, 0, 0] Sub-gradient 22.9659 [10, 10, 10] True 5 383
[0, 0, 0] ADMM 22.9642 [10, 10, 10] True 5 42
[0, 0, 0] ALADIN 22.9654 [10, 10, 10] True 5 14
[0, 0, 1] Monolithic 24.3123 [9, 10, 10] True 5 1
[0, 0, 1] Sub-gradient 23.8086 [10, 10, 10] True 5 392
[0, 0, 1] ADMM 23.8083 [10, 10, 10] True 5 120
[0, 0, 1] ALADIN 23.8082 [10, 10, 10] True 5 60
[0, 0, 2] Monolithic 25.1245 [9, 9, 11] True 5 1
[0, 0, 2] Sub-gradient 25.1250 [9, 9, 11] True 5 480
[0, 0, 2] ADMM 25.1244 [9, 9, 11] True 5 77
[0, 0, 2] ALADIN 24.1294 [10, 10, 11] True 5 37
[0, 1, 1] Monolithic 24.4652 [9, 10, 11] True 4 1
[0, 1, 1] Sub-gradient 23.9615 [9, 11, 11] True 4 299
[0, 1, 1] ADMM 23.9608 [9, 11, 11] True 4 49
[0, 1, 1] ALADIN 23.9611 [9, 11, 11] True 4 32
[0, 1, 2] Monolithic 25.3043 [9, 10, 11] True 4 1
[0, 1, 2] Sub-gradient 25.3046 [9, 10, 11] True 4 364
[0, 1, 2] ADMM 25.3044 [9, 10, 11] True 4 94
[0, 1, 2] ALADIN 25.3043 [9, 10, 11] True 4 53
[0, 2, 2] Monolithic 25.0878 [9, 11, 11] True 3 1
[0, 2, 2] Sub-gradient 24.5917 [10, 11, 11] True 4 728
[0, 2, 2] ADMM 24.5917 [10, 11, 11] True 4 104
[0, 2, 2] ALADIN 24.0845 [9, 12, 12] True 3 74

Table 10   Results for �t = 16 h and variable final times

N
i,0 Method Objective N

i,f Feasible # Coord. Ints. Iterations

[0, 0, 0] Monolithic 22.9238 [5, 5, 5] True 2 1
[0, 0, 0] Sub-gradient 22.9238 [5, 5, 5] True 2 209
[0, 0, 0] ADMM 22.9230 [5, 5, 5] True 2 33
[0, 0, 0] ALADIN 22.9238 [5, 5, 5] True 2 13
[0, 0, 1] Monolithic 23.4988 [5, 5, 6] True 2 1
[0, 0, 1] Sub-gradient 23.4988 [5, 5, 6] True 2 224
[0, 0, 1] ADMM 23.4971 [5, 5, 6] True 2 38
[0, 0, 1] ALADIN 23.4988 [5, 5, 6] True 2 20
[0, 1, 1] Monolithic 23.4040 [5, 6, 6] True 2 1
[0, 1, 1] Sub-gradient 23.4042 [5, 6, 6] True 2 181
[0, 1, 1] ADMM 23.4037 [5, 6, 6] True 2 55
[0, 1, 1] ALADIN 23.4040 [5, 6, 6] True 2 18
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