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Abstract
We present an inertia-augmented relaxed micromorphic model that enriches the relaxed micromorphic model previ-
ously introduced by the authors via a term Curl Ṗ in the kinetic energy density. This enriched model allows us to obtain
a good overall fitting of the dispersion curves while introducing the new possibility of describing modes with negative
group velocity that are known to trigger negative refraction effects. The inertia-augmented model also allows for more
freedom on the values of the asymptotes corresponding to the cut-offs. In the previous version of the relaxed micro-
morphic model, the asymptote of one curve (pressure or shear) is always bounded by the cut-off of the following curve
of the same type. This constraint does not hold anymore in the enhanced version of the model. While the obtained
curves’ fitting is of good quality overall, a perfect quantitative agreement must still be reached for very small wavelengths
that are close to the size of the unit cell.
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1. Introduction
Metamaterials are materials whose mechanical properties go beyond those of classical materials thanks to their
heterogeneous microstructure. They can show unusual static/dynamic responses such as negative Poisson’s ratio
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Table 1. Size, bulk material constants and wave speed for polyethylene unit cell where κB is the plane strain bulk modulus.a

a ρ κB μB cp,B cs,B

(mm) (kg/m2) (MPa) (MPa) (m/s) (m/s)
20 900 3160 262 1950 540

aThe relations between the wave speed and the elastic constants are cp =
√

κB+μB
ρ

=
√

λB+2μB
ρ

and cs =
√

μB
ρ

, while the plane strain bulk modulus

is κB = λB + μB.

[1], twist or bend in response to being pushed or pulled [2,3], band gaps [4–7], cloaking [8,9], focusing [10,11],
channeling [12,13], negative refraction [14–16], etc. The working frequency of each metamaterial strongly
depends on the characteristic size and the geometry of the underlying unit cell, as well as on the choice of the
base material. In this paper, we present a labyrinthine metamaterial that, thanks to the use of a polymer-based
material and an optimized distribution of mass inside the unit cell (see Figure 1), gives rise to a wide acoustic
band gap with characteristic unit cell’s size of the order of centimeters. Conceptually, similar geometries have
already been explored in literature [17–22].

The direct finite element modeling of structures build up with this labyrinthine metamaterial is unfeasible
due to the extremely tight meshing that would be needed to correctly cover the narrow strips of material inside
each unit cell. It is thus apparent the need for a homogenized model to use this type of very promising metama-
terials in actual engineering designs. Various homogenization techniques have been developed with the purpose
of providing rigorous predictions of the macroscopic metamaterial’s mechanical response when the properties of
the base materials and their spatial distribution are known. These homogenization approaches have been shown
to be useful in describing the overall behavior of metamaterials in the static and quasi-static regimes [23–35] as
well as, more recently, in the dynamic regime [36–47]. However, these models are often unsuited to deal with
finite-size metamaterials, because they are based on upscaling techniques valid for unbounded media. Because
of that finite-size metamaterials’ structures are mostly investigated via finite element simulations which are
performed using directly the microstructured material [48]. The downside of this approach is that the computa-
tional cost quickly becomes unsustainable (especially for unit cells as the one presented in this paper), although
the propagation patterns obtained are very accurate. This heavily limits the possibility of exploring large-scale
or very convoluted geometric meta-structures.

To overcome this problem and open up the possibility of designing complex meta-structures using the meta-
material presented in this paper as a basic building block, we propose to use an inertia-augmented relaxed
micromorphic model. This model is based on the relaxed micromorphic model that we previously established
[49–53] and has been augmented with a new inertia term accounting for coupled space-time derivatives of the
micro-distortion tensor. The relaxed micromorphic model has extensively proven its efficacy in describing the
broadband behavior of many infinite and finitesize metamaterials [52–56] and is extended in this paper so as
to be able to account for negative group velocity which was not the case before. We will show that the pro-
posed model is able to describe well the labyrinthine metamaterial’s response for a large range of frequencies
(going beyond the first band gap) and wave numbers (approaching the size of the unit cell) and for all direc-
tions of propagation with a limited number of frequency- and scale-independent constitutive parameters. The
new inertia-augmented term will be shown to trigger modes with negative group velocities that are known to
be associated with negative refraction phenomena. The results presented in this paper will allow us to shortly
present new designs of finite-size labyrinthine metamaterials’ structures that can control elastic energy in the
acoustic regime for eventual subsequent re-use.

1.1. A polyethylene-based metamaterial for acoustic control

In this section, we present a new unit cell’s design that gives rise to a metamaterial for acoustic control. This
unit cell is designed to achieve a band gap at relatively low frequencies (600 − 2000 Hz) so that application for
acoustic control can be targeted. The unit cell considered is made out of polyethylene, cf. Table 1. Compared
to aluminium or titanium, which we used for the metamaterials studied in literature [54–56], polyethylene gives
rise to lower wave speeds, thus allowing band-gap phenomena to appear at lower frequencies.

A further lowering of the band gap is obtained through the adoption of a labyrinth-type geometry, cf. Fig-
ure 1. This structure presents a tetragonal symmetry and thus features a reduced number of parameters with
respect to a fully anisotropic system. The circular center of the unit cell is connected by thin bars allowing the
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Figure 1. Geometry of the unit cell. Left: details of one unit cell (rotated by 45◦) showing the tetragonal symmetry. For a = 20mm
as the size of the unit size we consider later, both the bars and holes have a thickness of 0.4mm each. Right: a 3 × 3 section of the
metamaterial made up of this unit cell (red dashed square).

heavier center to move easily, thus giving rise to local resonance phenomena of relatively low frequencies while
additionally providing a very soft macro-material behavior.

2. Relaxed micromorphic modeling of finite-size metamaterials
We briefly recall the weak and strong form of the governing equations of both classical Cauchy and relaxed
micromorphic continua. The Lagrangian Lc for the classical Cauchy model is

Lc (∇u, u̇) = 1

2
ρ‖u̇‖2 − 1

2
〈C sym ∇u, sym∇u〉 , (1)

where u is the displacement field, 〈·, ·〉 : Rn×n × Rn×n → R is the scalar product, ρ is the apparent mass density,
and C is the classical fourth-order elasticity tensor. The Lagrangian Lm for the relaxed micromorphic model
enhanced with the micro-inertia term Curl Ṗ is [52–55]1

Lm

(
u̇, ∇u̇, Ṗ, Curl Ṗ, ∇u, P, Curl P

) = 1

2
ρ‖u̇‖2 + 1

2
〈Jm sym Ṗ, sym Ṗ〉 + 〈Jc skew Ṗ, skew Ṗ〉 (2)

+ 1

2
〈Te sym ∇u̇, sym ∇u̇〉 + 1

2
〈Tc skew ∇u̇, skew ∇u̇〉

+ 1

2
〈Ms sym Curl Ṗ, sym Curl Ṗ〉 + 1

2
〈Ma skew Curl Ṗ, skew Curl Ṗ〉

− 1

2
〈Ce sym(∇u − P), sym(∇u − P)〉

− 1

2
〈Cc skew(∇u − P), skew(∇u − P)〉 − 1

2
〈Cmicro sym P, sym P〉

− 1

2
〈Ls sym Curl P, sym Curl P〉 − 1

2
〈La skew Curl P, skew Curl P〉,

where u ∈ R3 is the macroscopic displacement field; P ∈ R3×3 is the non-symmetric micro-distortion tensor; ρ
is the macroscopic apparent density; Jm, Jc, Te, Tc, Ms, Ma are fourth-order micro-inertia tensors; and Ce, Cc,
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Cmicro, Ls, and La are fourth-order elastic tensors (for more details see Appendix 1).2 The action functional Ai

of the considered continuum can be defined based on the Lagrangian function Li and the external work Ui as

Ac =
∫

�×[0,T]

Lc dxdt −
T∫

0

U ext
c dt , and Am =

∫
�×[0,T]

Lm dxdt −
T∫

0

U ext
m dt , (3)

for classical Cauchy and relaxed micromorphic media, respectively. In equation (3), � ⊂ R3 is the domain of the
considered continuum in its reference configuration and [0, T ] is a time interval during which the deformation of
the continuum is observed. In the case of a conservative system, the virtual work of internal actions W int

i = δLi

can be defined as the first variation of the Lagrangian function, while the virtual work of external actions
Wext

i = δU ext
i is given as the first variation of the external work. In formulas, we have

δAc =
T∫

0

W int
c dt −

T∫
0

Wext
c dt , and δAm =

T∫
0

W int
m dt −

T∫
0

Wext
m dt , (4)

for classical Cauchy and relaxed micromorphic media, respectively. In equation (4), the variation operator δ
indicates that the variation must be taken with respect to the unknown kinematics fields (u for Cauchy media
and (u, P) for the relaxed micromorphic model). Following classical variational calculus, the strong form of the
bulk equations of motion and the Neumann boundary conditions for the Cauchy and the relaxed micromorphic
model can be obtained via a least action principle stating that the first variation of the action functional must be
vanishing. In absence of external body loads, the application of a least-action principle to Cauchy and relaxed
micromorphic models gives the following equilibrium equation: [49, 53, 54]

ρ ü = Div σ , σ := C sym ∇u , (5)

for the classical Cauchy model, and

ρ ü − Div σ̂ = Div σ̃ , σ̄ = σ̃ − s − Curl m − Curl m̂ , (6)

for the relaxed micromorphic model, where we set

σ̃ := Ce sym(∇u − P) + Cc skew(∇u − P), σ̂ := Te sym ∇ü + Tc skew ∇ü ,

σ̄ := Jm sym P̈ + Jc skew P̈ , s := Cmicro sym P , (7)

m := Ls sym Curl P + La skew Curl P , m̂ := Ms sym Curl P̈ + Ma skew Curl P̈ .

The Neumann boundary condition for the classical Cauchy model are

tc := σn = text
c , (8)

with text
c as the externally applied traction vector and n as the outward-pointing normal to the boundary, and for

the relaxed micromorphic model

tm := (̃σ + σ̂ ) n = text
m and τ := (m + m̂) × n = τ ext , (9)

where text
m is the generalized traction vector, τ ext is the double traction second-order tensor, and the cross product

× is understood row-wise. In absence of curvature terms (Ls = La = Ms = Ma = 0), the boundary condition
(9)2 involving τ must not be assigned on the boundary.

As it is well known, Dirichlet-type boundary conditions can also be alternatively considered in the form
u = uext for Cauchy media, while u = uext and P × n = φext for the relaxed micromorphic model where n is the
outward-pointing normal vector to the surface and φext is an assigned second-order tensor.
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2.1. Tetragonal symmetry / shape of elastic tensors (in Voigt notation)

In the following equation (10), we report the elastic tensors expressed in Voigt notation for the tetragonal class
of symmetry3, where only the parameters involved under the plane strain hypothesis are explicitly presented.
Thereby, the symbol 
 indicates that the specific entry do not intervene under the plane strain hypothesis.4 The
class of symmetry has been chosen accordingly with the symmetry of the unit cell presented in Figure 1, under
the assumption that the same class of symmetry applies both at the micro- and the macro-scale.

Ce =

⎛⎜⎜⎜⎜⎝
κe + μe κe − μe 
 . . . 0
κe − μe κe + μe 
 . . . 0


 
 
 . . . 0
...

...
...

. . .
0 0 0 μ∗

e

⎞⎟⎟⎟⎟⎠ , Cmicro =

⎛⎜⎜⎜⎜⎝
κm + μm κm − μm 
 . . . 0
κm − μm κm + μm 
 . . . 0


 
 
 . . . 0
...

...
...

. . .
0 0 0 μ∗

m

⎞⎟⎟⎟⎟⎠ ,

Jm = ρL2
c

⎛⎜⎜⎜⎜⎝
κγ + γ1 κγ − γ1 
 . . . 0
κγ − γ1 κγ + γ1 
 . . . 0


 
 
 . . . 0
...

...
...

. . .
0 0 0 γ ∗

1

⎞⎟⎟⎟⎟⎠ , Te = ρL2
c

⎛⎜⎜⎜⎜⎝
κγ + γ 1 κγ − γ 1 
 . . . 0
κγ − γ 1 κγ + γ 1 
 . . . 0


 
 
 . . . 0
...

...
...

. . .
0 0 0 γ ∗

1

⎞⎟⎟⎟⎟⎠ ,

Ls = L2
c

⎛⎜⎜⎜⎜⎜⎝

 
 
 . . . 0

 
 
 . . . 0

 
 
 . . . 0
...

...
...

α1 0 0
0 α1 0

0 0 0 0 0 


⎞⎟⎟⎟⎟⎟⎠ , Ms = ρL4
c

⎛⎜⎜⎜⎜⎜⎝

 
 
 . . . 0

 
 
 . . . 0

 
 
 . . . 0
...

...
...

β1 0 0
0 β1 0

0 0 0 0 0 


⎞⎟⎟⎟⎟⎟⎠ , (10)

Cc =
(


 0 0
0 
 0
0 0 4μc

)
, Jc = ρL2

c

(

 0 0
0 
 0
0 0 4γ2

)
, Tc = ρL2

c

(

 0 0
0 
 0
0 0 4γ 2

)
,

La = L2
c

(
4α2 0 0

0 4α2 0
0 0 


)
, Ma = ρL4

c

(
4β2 0 0

0 4β2 0
0 0 


)
.

It is emphasized that the matrix representation of Ls, La, Ms, and Ma differs from the others since the non-
zero terms in (Curl P)ij and in (Curl Ṗ)ij are the “out-of-plane curvatures” related to the indexes i = 1, 2 and
j = 3. To better explain this fact, we consider the shape of Curl m given by

P =
(• • 0

• • 0
0 0 0

)
, Curl P =

(
0 0 •
0 0 •
0 0 0

)
, (11)

m = (Ls + La) Curl P =
(

0 0 •
0 0 •
• • 0

)
, Curl m =

(• • 0
• • 0
0 0 •

)
.

Note that the structure of Curl m̂ = Curl
(
(Ms + Ma)Curl P̈

)
is identical.

As it can be seen from equation (11)4, even if the sym/skew decomposition is enforced in the constitutive law
(we recall that Ls, La, Ms, and Ma have minor symmetries, see Appendix 1), it is not guaranteed that the term
Curl m appearing in the equilibrium equations (6) will retain only in-plane components for the most general
constitutive tensor belonging to the tetragonal symmetry class. In order to avoid this out-of-plane contribution,
we must impose one of the following conditions:

α2 = α1 ∧ β2 = β1 or P22 = 0 . (12)

Since the condition (12)2 is not desirable because it prevents the presence of pressure waves, the condition
(12)1 will be adopted. This choice, while reducing the number of parameters in the model, does not reduce the
number of the independent ones for Curl P and Curl Ṗ as shown in Appendix 1.
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Furthermore, we can always compute the parameters5 of the meso-scale depending on the micro-parameters
and a new set of macro-parameters [51,54,57]:

Ce = Cmicro (Cmicro − Cmacro)−1
Cmacro , (13)

where Cmacro has the same structure of Cmicro and Ce. For the tetragonal class of symmetry in 2D, relation (13)
particularizes to

μe = μm μM

μm − μM
, κe = κm κM

κm − κM
, μ∗

e = μ∗
m μ∗

M

μ∗
m − μ∗

M

, (14)

In the limit of infinitesimal small unit cells or rather of an indefinitely large body, these macro-parameters are
obtained as the homogenization to a classical Cauchy material [51,57] and can directly be obtained by the slope
of the acoustic curves at the origin, cf. section 5.2. Throughout this paper, all material parameters introduced
will be positive to guarantee the positive definiteness of their corresponding tensors.

3. Dispersion curves
We assume a plane strain6 time-harmonic ansatz for the displacement u and the micro-distortion tensor P

vj = �j e
i(k1 x1+k2 x2−ω t), (15)

where vj represents the generic component of u or P, �j is a scalar amplitude, (k1, k2)T = k (sin φ, cos φ)T are
the wave vector components with φ as the angle giving the direction of propagation, k the wave vector length,
and ω is the frequency.

Substituting the ansatz (15) in the equilibrium equations (6), we obtain the homogeneous algebraic linear
system

A� = 0 (16)

where A = A(ω, k, φ) ∈ C6×6 is the acoustic tensor which depends on the frequency ω, the wave vector length
k, the angle of propagation φ, all the constitutive parameters in equation (10), and � ∈ R6 is the vector of
amplitudes.7 The non-trivial solutions of the system (16) are obtained when A is singular, i.e. when det A = 0,
which provides relations between k = k(ω, φ) (or ω = ω(k, φ)), the so-called dispersion relations.

The acoustic tensor can be written as follows:

A =
(

B1 C1
C2 B2

)
, (17)

where (B1, B2, C1, C2) ∈ C3×3.
Since det A = det(B1) det(B2 − C2B−1

1 C1) [58], it is clear that the determinant of A becomes the product of
the two independent factors det B1 and det B2 if either C1 = 0 or C2 = 0. If the reference system is chosen to be
aligned with the direction of the wave vector (i.e. φ = θ , with θ the angle of rotation of the reference system),
the sub-matrices C1 and C2 expressions are as follows:

C1 = sin(4θ)

2

⎛⎝ k2
(
qe − L2

cρqγ ω2
)

ikqe ikqe

−ikqe −ρL2
c qγ ω2 + qe + qm −ρL2

c qγ ω2 + qe + qm

ikqe ρL2
c qγ ω2 − qe − qm ρL2

c qγ ω2 − qe − qm

⎞⎠ , (18)

C2 = sin(4θ)

2

⎛⎝ k2
(
qe − L2

cρqγ ω2
)

ikqe −ikqe

−ikqe −ρL2
c qγ ω2 + qe + qm ρL2

c qγ ω2 − qe − qm

−ikqe −ρL2
c qγ ω2 + qe + qm ρL2

c qγ ω2 − qe − qm

⎞⎠ ,

where qe = μe − μ∗
e , qm = μm − μ∗

m , qγ = γ1 − γ ∗
1 , and qγ = γ 1 − γ ∗

1. It is highlighted that, since the
constitutive law for the curvature terms CurlP and CurlṖ depends on just one parameter, they are isotropic, and
this makes the matrices C1 and C2 independent with respect αi and βi, while the expressions of the latters in B1
and B2 are not affected by the rotation of the reference system.

From equation (18) it is possible to deduce that the condition for which C1 = C2 = 0 (one of the two would
be already enough) is θ = (π n)/4 with n ∈ N. This means that, when the reference system is aligned with
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the direction of wave propagation, and both are aligned with a symmetry axes of the material, the determinant
det A = det(B1) det(B2) is the product of two independent factors.

These two independent factors can be associated with pure-pressure waves det(B1) and pure-shear waves
det(B2).

In particular, this allows us to reduce the order of the dispersion polynomial by

det A = p(k2, k4, k6, k8, ω2, ω4, ω6, ω8, ω10, ω12) = p1(k2, k4, ω2, ω4, ω6)p2(k2, k4, ω2, ω4, ω6) , (19)

where p1 and p2 are of the form

pi = c0 k2 + c1 k4 − (c2 + c3 k2 + c4 k4) ω2 + (c5 + c6 k2 + c7 k4) ω4 − (c8 + c9 k2 + c10 k4) ω6, (20)

easing the calculation of the roots of these polynomials significantly, i.e. the expressions of the dispersion curves.
It is noted that we can always consider k(ω), instead of ω(k), for shorter analytical expression as we must only
solve a quadratic equation (in k2) and not a third-order polynomial (in ω2) but use ω(k) for easier plotting and
its natural split in three distinct expressions for each dispersion curve.

4. New considerations on the relaxed micromorphic parameters
In this section, we draw some useful considerations about the consistency of the relaxed micromorphic model
with respect to a change of unit cell’s size and of the material properties of the base material. The model’s
consistency is checked against a standard Bloch–Floquet analysis of the wave propagation performed using
the unit cell described in section 1.1 with built in periodic Bloch–Floquet boundary conditions from Comsol
Multiphysics®.

The following two connections between the properties of the unit cell and the behavior of the dispersion
curves can be drawn:

• The dispersion curves scale proportionally in ω with respect to the speed of the wave of the bulk material
composing the unit cell;

• The dispersion curves scale inversely in both ω and k with respect to the size of the unit cell.

Both results are useful to avoid repeating the time-consuming fitting procedure when changing the size of
the cell and the base material’s properties while keeping the unit cell’s geometry unchanged.

4.1. Consistency of the relaxed micromorphic model with respect to a change in the unit cell’s bulk material
properties

The dispersive properties of a microstructured isotropic Cauchy material depend exclusively and linearly on
the wave speeds of the bulk material once its geometry is fixed. Indeed, as it is well known, the dispersion
relatives can be always written as ω = kci, i = {p, s}, where cp and cs are the pressure and shear wave speeds,
respectively, defined as follows:

cp :=
√

κM + μM

ρ
, cs :=

√
μM

ρ
, k = ω

ci
, i = {p, s} . (21)

This implies that by scaling the elastic coefficients by a constant a and the density by another constant b, we
have

c̃p := cp

√
a

b
, c̃s := cs

√
a

b
, k =

√
b

a

ω

ci
, i = {p, s} . (22)

Therefore, the response of an effective model should also change accordingly. Thus, we observe that by
multiplying all the relaxed micromorphic elastic coefficients (Ce, Cc, Cmicro, Ls, La) by a constant a and the
apparent density ρ by another constant b, we can rewrite equation (20) as8

a3(c0 k2 + c1 k4) − a2 b(c2 + c3 k2 + c4 k4) ω2 + ab2 (c5 + c6 k2 + c7 k4) ω4 (23)

−b3 (c8 + c9 k2 + c10 k4) ω6 = 0 .
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By collecting a3 we obtain

a3

⎡⎣(c0 k2 + c1 k4) − (c2 + c3 k2 + c4 k4)

(
ω

√
b

a

)2

+ (c5 + c6 k2 + c7 k4)

(
ω

√
b

a

)4

(24)

−(c8 + c9 k2 + c10 k4)

(
ω

√
b

a

)6
⎤⎦ = 0 ,

from which we can introduce a scaled frequency ω̃ = ω

√
b
a . Increasing the stiffness (a) or decreasing the density

(b) of the base material will cause an overall shifting of the dispersion curves toward lower frequencies.
This is consistent with what is observed looking at the dispersion properties of a microstructured material’s

unit cell obtained via a Bloch–Floquet analysis. In the case for which a = b, the roots of equation (24) do
not change at all. Thanks to this identification, we can now easily change the material constituting the unit cell
(without changing the geometry) by scaling the material parameters accordingly without repeating the whole
fitting process. In particular, all the cut-offs and asymptotes will be scaled by a quantity

√ a
b .

We explicitly remark again that scaling the macroscopic apparent density ρ of the unit cell by a factor b > 0
will change the frequency ω by the factor 1√

b
, i.e. the frequency is inversely proportional to the square root of

the density of the unit cell. The wavenumber k is invariant under changing the macroscopic apparent density
since the periodicity of the unit cell remains unaltered.

4.2. Consistency of the relaxed micromorphic model with respect to a change in the unit cell’s size

While keeping the geometry and the material unaltered, the dispersion properties of a microstructured isotropic
Cauchy material are inversely proportional to the size of its unit cell, meaning that halving the size of the unit
cell will double the frequency response for each value of the length k of the wave vector, which also changes
with the same inverse proportionality since it represents the spatial periodicity of the structure. This can be
easily retrieved by performing standard Bloch–Floquet analysis.

In order to obtain this behavior with the relaxed micromorphic model, we must scale the elastic curvature
tensors (Ls, La) and all the micro-inertia tensors (Jm, Jc,Te, Tc) by the square of the size of the unit cell, and the
micro-inertia curvature tensors (Ms, Ma) by the fourth power of the size of the unit cell.

To prove this, we consider a change in the size of the unit cell by some arbitrary factor t > 0, which requires
the scaling of the characteristic length Lc (which is now considered to be equal to the size of the unit cell) by
the same factor t. Assuming that all the other material parameters used remain constant, in equation (20) we
substitute Lc → tLc (see the coefficients in Appendices 2–4)

c0 k2 + t2 c1 k4 − c2ω2 + t2 c3 k2ω2 + t4 c4 k4ω2 + t2 c5ω4 (25)

+ t4 c6 k2ω4 + t6 c7 k4ω4 − t4 c8ω6 + t6 c9 k2ω6 + t8 c10 k4ω6 = 0 .

We can now collect 1
t2

in equation (25) arriving at

1

t2

[
c0(tk)2 + c1 (tk)4 − c2 (tω)2 + c3 (tk)2(tω)2 + c4 (tk)4(tω)2 + c5 (tω)4 (26)

+ c6 (tk)2(tω)4 + c7 (tk)4(tω)4 − c8 (tω)6 + c9 (tk)2(tω)6 + c10 (tk)4(tω)6
] = 0 .

It is clear to see from the comparison between equations (25) and (26) that their roots are simply linearly
scaled with respect the factor t. This result enables the choice of having Lc equal to the size of the unit cell
and thus allows us to change the latter in the microstructured material considered without needing to repeat the
whole fitting procedure.

In particular, scaling the size Lc of the unit cell by the factor t > 0 will change the frequency ω and
wavenumber k by the factor 1

t , i.e. the frequency and wavenumber are reverse proportional to the size of the unit
cell. This simple observation allows to perform the fitting procedure for the relaxed micromorphic model only
once for each geometry of the unit cell: changing the size of the unit cell will result in an automatic fitting when
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Table 2. Cut-off expressions for the pressure waves (left) and for the shear waves (right).

0◦ 45◦ 0◦ 45◦

Shear
ω2 = ωss
ω3 = ωr

ω2 = ωs
ω3 = ωr

Pressure
ω2 = ωs
ω3 = ωp

ω2 = ωss
ω3 = ωp

Table 3. Numerical values of the asymptotes via Bloch–Floquet analysis using Comsol Multiphysics®.

0◦ 45◦ 0◦ 45◦

340.42 Hz 606.31 Hz 581.95 Hz 689.20 Hz
Shear 637.79 Hz 689.21 Hz Pressure 2040.81 Hz 1883.97 Hz

2078.39 Hz 2375.78 Hz 2156.21 Hz 2376.45 Hz

suitably rescaling ω and k where none of the material parameters (except Lc) must be changed. Note that the
slopes at the origin of the dispersion curves do not change when changing the size of the unit cell while keeping
the geometry fixed.

4.3. Relaxed micromorphic cut-offs

The cut-offs of the dispersion curves play an important role in fitting the material parameters of the relaxed
micromorphic model [51, 54, 57]. For the convenience of the reader, we show the calculations of the analytic
expressions again. In the case k = 0, the dispersion relation (20) simplifies into

−c2 ω2 + c5 ω4 − c8 ω6 = 0 ⇐⇒ ω2

(
ω4 − c5

c8
ω2 + c2

c8

)
= 0

⇐⇒ ω2
1 = 0 , ω2

2,3 =
c5 ±

√
c2

5 − 4c2c8

2c8
. (27)

The coefficients c2, c5, c8 depend on the elastic parameters μm, κm, μ∗
m, μc, μe, κe, μ∗

e ; the micro-inertia
parameters κγ , γ1, γ ∗

1 , γ2; the macroscopic apparent density ρ; and characteristic length Lc but are independent
of the parameters for Curl P, ∇u, and Curl Ṗ, cf. Appendix 2.

Equations (27) can be simplified as in Table 2 with

ωr =
√

μc

ρL2
c γ2

, ωs =
√

μe + μm

ρL2
c γ1

, ωss =
√

μ∗
e + μ∗

m

ρL2
c γ

∗
1

, ωp =
√

κe + κm

ρL2
c κγ

. (28)

We recognize that the expressions ωs and ωss change from pressure to shear and shear to pressure, respec-
tively, when going from 0◦ to 45◦ of incidence. Since the dispersion curves of the unit cell have two cut-offs
that coincide, we chose them to be ωs and ωss. Therefore, we introduce the following relation:

ωs = ωss ⇐⇒ μe + μm

γ1
= μ∗

e + μ∗
m

γ ∗
1

. (29)

The values of these cut-offs have been fixed according to Comsol Multiphysics®simulations as

ωr = 554.61 Hz , ωs = ωss = 2011.83 Hz , ωp = 2048.19 Hz , (30)

and the values of last points from Comsol Multiphysics®are used to fix the asymptotes, cf. Table 3.

5. Fitting of the relaxed micromorphic parameters: the particular case of vanishing
curvature (without Curl P and Curl Ṗ)

In the numerical applications considered in this work, we start without considering the tensors Ls, Lc and
Ms, Mc, i.e. we neglect the effect of Curl P and Curl Ṗ on the dynamic regime. This fundamentally changes
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Figure 2. The fitting of the dispersion curves (black line) includes information about the slope at zero and the asymptotes (blue
lines), while the remaining shape comes automatically. The Bloch–Floquet analysis used in Comsol Multiphysics® can only evaluate up to
the periodicity limit k = 1

2Lc
(black dots) which causes a slight gap between the dispersion curves at k = 1

2Lc
and their corresponding

asymptotes (red part).

the shape of the analytical expression (20) resulting in a new polynomial p(k2, ω2, ω4, ω6) with reduced order
of k. Assuming that the wavenumber is always positive, we only have one single expression k(ω) describing all
three dispersion curves:

c0 k2 − (c2 + c∗
3 k2)ω2 + (c5 + c∗

6 k2)ω4 − (c8 + c∗
9 k2)ω6 = 0 , k = ω

√
c2 − c5ω2 + c8ω4

c0 − c∗
3 ω2 + c∗

6ω4 − c∗
9ω6

. (31)

The coefficients c0, c2, c∗
3, c5, c∗

6, c8, c∗
9 used9 have a different expression at 0◦ and 45◦ angle of incidence as

well as for pressure and shear waves and are included in Appendix 2. The structure of k(ω) in equation (31)2
can be also reported as a non-linear classic dispersion relation k = ω

cp/s(ω) with a frequency dependent group

velocity cp/s.

5.1. Asymptotes

Instead of fitting dispersion curves pointwise, we focus on using the analytical expression of the cut-offs (k = 0)
and of the asymptotes (k → ∞). The explicit expression of the cut-offs is already discussed in section 4.3. We
use a similar approach to calculate the asymptotes as well by considering the limit k → ∞ where only the terms
with the highest order of k are important. Thus, we arrive at

c0 − c∗
3 ω2 + c∗

6 ω4 − c∗
9 ω6 = 0 ⇐⇒ ω6 − c∗

6

c∗
9

ω4 + c∗
3

c∗
9

ω2 − c0

c9
= 0 . (32)

In contrast to the analytical expression of the cut-offs, we are not able to simplify the asymptotes’ expression
in a feasible way. This is mainly due to the fact that we must solve a third-order polynomial while we only had
two non-zero cut-offs each before.

Since the dispersion curves of the unit cell obtained via Bloch–Floquet analysis are by nature periodic, the
limit for k → ∞ is per se meaningless when considering the Bloch–Floquet approach. The value for k = 1

2Lc

(with Lc the size of the unit cell) is the periodicity limit. On the other hand, this limit has, of course, meaning for
a continuum model like the relaxed micromorphic model. To reconcile these two limits in the fitting procedure,
we will impose that the limit k → ∞ for our continuum model will coincide with the periodicity limit of the
Bloch–Floquet curves k = 1

2Lc
. This strategy allows us to preserve the width of the band gap, cf. Figure 2.

5.2. Fitting

We start the fitting with the macroscopic apparent density ρ and values of the macro parameters κM, μM, μ∗
M, i.e.

the material constants necessary for the classical homogenization of an infinite large micromorphic material.
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Table 4. Numerical values of the macroscopic apparent density ρ and the elastic macro-parameters κM, μM, μ∗
M for our unit cell

when considering polyethylene as base material.

Lc ρ κM μM μ∗
M

(mm) (kg/m3) (kPa) (kPa) (kPa)
20 361.2 352.2 200 99.36

Table 5. Dependence of the asymptotes of the dispersion curves on the free material parameters as function of the direction of
propagation (0◦/45◦) and type of wave (shear/pressure).

Pressure Shear

0◦ κm, κγ , μm, γ 1 μc, γ 2, μ∗
m, γ ∗

1
45◦ κm, κγ , μ∗

m, γ ∗
1 μc, γ 2, μm, γ 1

For an anisotropic Cauchy material, the speed of the acoustic waves is

cp =
√

κM + μM

ρ
, cs =

√
μ∗

M

ρ
, (33)

cp =
√

κM + μ∗
M

ρ
, cs =

√
μM

ρ
,

where cp, cs are the speed of pressure and shear wave, respectively, for 0◦ of incidence, while cp, cs describe an
incidence angle of 45◦. For the tetragonal class of symmetry we choose, it holds

c2
p + c2

s = κM + μM + μ∗
M

ρ
= c2

p + c2
s , (34)

reducing the system of equations to just three independent quantities. For the relaxed micromorphic model, we
fit these macro parameters by the slope of the corresponding acoustic dispersion curves at k = 0

μM = c2
s ρ , μ∗

M = c2
s ρ , κM = (c2

p − c2
s )ρ = (c2

p − c2
s )ρ . (35)

The remaining unknown density ρ is given by the material and geometry of the cell we used (see Figure 1)
and is directly computed as ρ = ρ

Atotal−Avoids
Atotal

with ρ as the density of polyethylene and Atotal, Avoids being the
area of the whole cell and its voids, respectively. We list the numerical values in Table 4.

As a second step, we use the analytical expressions for the cut-offs (28) and calculate

κγ = κe + κm

ρL2
c ω

2
p

, γ1 = μe + μm

ρL2
c ω

2
s

, (36)

γ ∗
1 = μ∗

e + μ∗
m

ρL2
c ω

2
ss

, γ2 = μc

ρL2
c ω

2
r

.

Thus, we can reduce the system of independent variables by the four inertia parameters κγ , γ1, γ ∗
1 , γ2. Note

again that we implied ωs = ωss, see section 4.3.
As the third step, we use the analytic expression of the asymptotes for 0◦ and 45◦ resulting in 12 expressions

in total which is more than the number of independent parameters remaining. Thus, we fit the last eight remain-
ing parameters, namely the micro parameters κm, μm, μ∗

m, μc and inertia parameters κγ , γ 1, γ ∗
1, γ 2, numerically,

by minimizing the square error of the analytical expressions (32) and their corresponding numerical values

from Comsol Multiphysics®
(

for k = 1
2Lc

for 0◦ and k = 1√
2Lc

for 45◦
)

. Thereby, we utilize the fact that each

group of asymptotes only depend on four independent parameters to speed up the calculations, as summarized
in Table 5.
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Table 6. Obtained numerical values of the relaxed micromorphic model without curvature fitted for the metamaterial whose unit
cell is given in Figure 1.

κm μm μ∗
m μc κe μe μ∗

e

(kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

546.0 286.9 175.04 15.24 992.8 664.4 229.9

κγ γ 1 γ ∗
1 γ 2 κγ γ1 γ ∗

1 γ2

6.928 0.496 0.523 2.092 2.541 0.407 1.628 0.692

Figure 3. Dispersion curves ω(k) for 0◦(left) and 45◦(right) with pressure curves colored in yellow and shear in blue. The dots are
the points computed with Comsol Multiphysics® while the smooth curves show the analytical expression of the dispersion curves for
the relaxed micromorphic model without curvature, i.e. for α1 = β1 = 0. The values of the curve’s horizontal asymptotes are also
shown with dashed lines.

We calculate these values with Mathematica using the NMinimize-algorithm with the inbuilt method Ran-
domSearch running in a loop for multiple times. Here, we must start with reasonable initial values for all
parameters involved. Note that it is always possible to imply Cmicro = 2Cmacro as a conservative first guess
implying

Ce = Cmicro (Cmicro − Cmacro)−1
Cmacro = 2 Cmacro (2 Cmacro − Cmacro)−1

Cmacro = 2 Cmacro , (37)

i.e. simplifying the starting expressions10 by Ce = Cmicro.
We list the numerical values of all parameters obtained via the fitting procedure presented in this section of

the relaxed micromorphic model in Table 6.

5.3. Discussion

The fitting shown in Figure 3 behaves well for all frequencies ω and wavenumber k for 0◦ of incidence but
looses some precision for an incidence angle of 45◦ especially for higher values of k. This calls for a fur-
ther generalization of the relaxed micromorphic model which will be object of following papers. In any case,
the achieved overall precision already allows us to explore the dispersive metamaterial’s characteristics at a
satisfactory level.

The absence of higher-order terms (Curl P and Curl Ṗ) caused the reduction to a single expression k(ω)
describing all three dispersion curves in one, cf. equation (31). Thus, for every frequency ω, there is exactly one
wavenumber k which may be imaginary if the term inside the root is negative. For the plots here, we only show
k(ω) where the expression is real-valued and ignore imaginary k(ω) which arise in the band gap and for higher
frequencies. Moreover, we cannot have two distinct wavenumbers with the same frequency which implies that
all curves are monotonic. For every group of dispersion curves, e.g. the three pressure waves for 45◦ incidence,
each individual curve is bounded by the others. Starting with the acoustic curves, their asymptote must be below
the cut-off of the lower optic curve of the same type (pressure or shear), while the asymptote of the lower optic
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curves is bounded from above by the cut-off of the highest optic curve. In particular, self-intersection between
two pressure or two shear curves is not possible with this simplified version of the relaxed micromorphic model.

On the other hand, we observe that for the numerical values from Comsol Multiphysics® the asymptote of
the acoustic shear wave at 45◦ should be slightly higher than the cut-off of the lower optic curve with 581.95 Hz
and 554.61 Hz, respectively. In addition, assuming that all micro parameters κm, μm, μ∗

m (see Table 6) are larger
than their corresponding macro counterparts κM, μM, μ∗

M, we did not manage to generate decreasing dispersion
curves as observed for the lower optic pressure wave for an angle of incidence of 45◦ . This effect can instead
be achieved when considering mixed space-time derivatives on the micro-distortion tensor P, cf. section 7.

When the relative positions of the curves allow to fit the cut-offs and the asymptotes of each curve separately
(e.g. for an incidence angle of 0◦ shown here), the simplified version of the relaxed micromorphic model used
does indeed show very good results. We want to emphasize that we only used the limit cases k = 0 (cut-offs)
and k → ∞ (asymptotes) for the fitting procedure but have an appreciable approximation for all values of k, ω.

6. Fitting of the relaxed micromorphic parameters with curvature (with Curl P)
To gain more freedom on the dispersion curves shape, we will now consider the addition of Curl P resulting in
a higher-order polynomial in k which enables up to two distinct values of k for every ω ∈ R+. At first, we still
neglect Curl Ṗ resulting in the slightly reduced characteristic polynomial

c0 k2 + c1 k4 − (c2 + c3 k2 + c∗
4 k4) ω2 + (c5 + c∗

6 k2 + c∗
7 k4) ω4 − (c8 + c∗

9 k2) ω6 = 0 . (38)

The characteristic polynomial is of second order regarding k2 which, assuming k > 0, results in two distinct
roots

k1,2 = −c0 + c3ω
2 − c6ω4 − c∗

9 ω6 ±√−4(c1 + c∗
4 ω2 + c7ω4)(−c2 + c5ω4 + c8ω6) + (c0 − c3ω2 + c∗

6 ω4 + c9ω6)2

2(c1 + c∗
4 ω2 + c∗

7 ω4)
(39)

describing the dispersion relation. The coefficients c0, c1, c2, c3, c∗
4, c5, c∗

6, c∗
7, c8, c∗

9 used11 for the expression
above change from 0◦ to 45◦ as well as for considering pressure and shear waves are included in the Appendix 3.

6.1. Asymptotes

Because the cut-offs are independent of the coefficients with higher order of k, they do not change with the
addition of Curl P. Instead, the expressions of the asymptotes hugely differ compared to the expression without
Curl P discussed before. We only include the terms with the highest order of k available and compute

c1 − c∗
4 ω2 + c∗

7 ω4 = 0 ⇐⇒ ω4 − c∗
4

c∗
7

ω2 + c1

c∗
7

= 0

⇐⇒ ω2
1,2 = c∗

4 ±√
(c∗

4)2 − 4c1c∗
7

2c∗
7

. (40)

Surprisingly, the asymptotes with Curl P are significantly simpler because we must only solve a second-order
polynomial instead of a third-order polynomial needed for the cut-offs and the asymptotes without Curl P. We
now only have four distinct horizontal asymptotes (two shear and two pressure) in contrast to six before, which
means that we must allow that the two curves (one shear and one pressure) will tend to infinity for high values
of k, and our choice falls on the two highest optic curves. The same reasoning about the use of the asymptote in
section 5.1 is applied here besides for the two highest optic curves that do not have a horizontal asymptote.

6.2. Fitting

The fitting procedure starts exactly as described in section 5.2. As a first step, we fit the macro parameters
κM, μM, μ∗

M using the slopes of the dispersion curves for k = 0 which results in the same values as before.
Following this, we express the micro-inertia κγ , γ1, γ ∗

1 , γ2 as a function of the numerical values of the cut-
offs and the remaining independent material parameters. Overall, we arrive at four unknown micro parameters
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Table 7. Dependence of the asymptotes of the dispersion curves on the free material parameters as function of the direction of
propagation (0◦ /45◦ ) and type of wave (shear/pressure).

Pressure Shear

0◦ κm, κγ , μm, γ 1 μc, γ 2, μ∗
m, γ ∗

1
45◦ κm, κγ , μ∗

m, γ ∗
1 μc, γ 2, μm, γ 1

Table 8. Numerical values of the relaxed micromorphic model with Curl P fitted for the metamaterial whose unit cell is given in
Figure 1.

κm μm μ∗
m μc κe μe μ∗

e α1

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

1.674 20.04 8.748 15.33 4465 202.4 100.5 14.34

κγ γ 1 γ ∗
1 γ 2 κγ γ1 γ ∗

1 γ2

6.932 5.82 404.4 0.672 3.496 34.61 345 15.13

κm, μm, μ∗
m, μc; four unknown inertia parameters κγ , γ 1, γ ∗

1, γ 2; and the new elastic parameter α1 belonging to
Curl P.

Although the expressions of the asymptotes are different from the ones without the Curl P, we still have the
same split between the parameters, resulting in four independent parameters for every group of asymptotes, cf.
Table 7.

In particular, all eight expressions are independent on α1 and thus Curl P. Hence, we have no analytic expres-
sions to assign a value to this parameter. Note that the dispersion curves itself (in particular, their shape) still
depend on α1 but the cut-offs and asymptotes remain independent of this parameter. Because we miss the higher
optic curves asymptotes, we introduce four new expressions as a replacement, by considering k = 1

2Lc
at 0◦

and 1√
2Lc

at 45◦ (instead of k → ∞) for the corresponding curves, i.e. the highest value for k for which we

still have numerical values using Bloch–Floquet analysis. Note again that Lc is always the size of the unit cell.
These “pseudo-asymptotes” depend on the same parameters as their corresponding acoustic and lower optic
curve asymptotes (cf. Table 7) and the additional independent parameter α1. The analytical expression is again
too large to be included here but depend on all the coefficients c0, . . . , c∗

9 of the dispersion polynomial (38), cf.
Appendix 3.

We list the numerical values of all parameters used for the fitting of the micromorphic model in Table 8.

6.3. Discussion

The fitting shown in Figure 4 including the curvature Curl P is worse compared to the one without, cf. Figure 3
and Table 8. This is mainly because we lost the higher optic curves asymptotes. Additionally, the shape of the
curves which comes automatically by fitting all material parameters using only the cut-offs and asymptotes
does not match properly with the data computed numerically with Comsol Multiphysics®. Most importantly, the
fitting with Curl P shows the additional challenge of asymptotes that are approached at a very high wavenumber
k � 1√

2Lc
resulting in a poor fit for values of k between zero and the size of the unit cell, even if the slopes

of the acoustic curves close to zero are well fitted. In particular, the acoustic shear wave is notably too slow at
approaching its limit. Increasing α1 substantially helps for lower frequencies but causes a much higher "pseudo-
asymptote", i.e. a worse fit for higher frequencies. To show this, we did a second fit only using the asymptotes
of the acoustic and lower optic curves with α1 as an independent parameter set by hand, cf. Figure 5.

Most other values remain at the same magnitude but are slightly higher, cf. Table 9. In future works, we will
consider an enhanced relaxed micromorphic model to better describe these effects.
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Figure 4. Dispersion curves ω(k) for 0◦ (left) and 45◦ (right) with pressure curves colored in yellow and shear in blue. The dots
are the points computed with Comsol Multiphysics® while the smooth curves show the analytical expression of the dispersion curves
for the relaxed micromorphic model for β1 = 0. The values of the curve’s horizontal asymptotes are also shown with dashed lines.

Figure 5. Dispersion curves ω(k) for 0◦ (left) and 45◦ (right) with pressure curves colored in yellow and shear in blue. The dots
are the points computed with Comsol Multiphysics® while the smooth curves show the analytical expression of the dispersion curves
for the relaxed micromorphic model for β1 = 0. The values of the curve’s horizontal asymptotes are also shown with dashed lines.

Table 9. Second set of alternative numerical values of the relaxed micromorphic model with Curl P fitted for the metamaterial
whose unit cell is given in Figure 1.

κm μm μ∗
m μc κe μe μ∗

e α1

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

1.418 20.04 8.936 15.61 468.4 202.4 100.5 240.0

κγ γ 1 γ ∗
1 γ 2 κγ γ1 γ ∗

1 γ2

3.616 9.552 408.0 4.288 3.116 34.61 351.2 15.45

7. Fitting of the relaxed micromorphic parameters with enhanced kinetic energy
(with Curl Ṗ)

We now include Curl Ṗ which reintroduces the third asymptote by considering the full dispersion polynomial

c0 k2 + c1 k4 − (c2 + c3 k2 + c4 k4) ω2 + (c5 + c6 k2 + c7 k4) ω4 − (c8 + c9 k2 + c10 k4) ω6 = 0 , (41)

with coefficients c0, . . . , c10 depending on all the material parameters described before and β1 belonging to
Curl Ṗ, cf. Appendix 4.
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Table 10. Dependence of the asymptotes of the dispersion curves on the free material parameters as function of the direction of
propagation (0◦ /45◦ ) and type of wave (shear/pressure).

Pressure Shear

0◦ κm, κγ , μm, γ 1 μc, γ 2, μ∗
m, γ ∗

1
45◦ κm, κγ , μ∗

m, γ ∗
1 μc, γ 2, μm, γ 1

Superimposed α1, β1 α1, β1

7.1. Asymptotes

Again, the cut-offs are independent on the coefficients with higher order of k and thus they do not change with
respect to the two previous cases. For the asymptotes we only consider the terms with the highest order of k
available and compute

c1 − c4ω2 + c7ω4 − c10ω6 = 0 ⇐⇒ ω6 − c7

c10
ω4 + c4

c10
ω2 − c1

c10
= 0 . (42)

We have again three asymptotes (the roots of a third-order polynomial) which, in general, causes the ana-
lytical expressions to be impractical rather quickly. However, in this case, it is possible to find one root by
hand

c1 − c4ω2 + c7ω4 − c10ω6 = 0 ⇐⇒
(

1 − ρL2
c

β1

α1
ω2

)
(c1 − c∗

4 ω2 + c∗
7 ω4) (43)

with c∗
4 and c∗

7 from the dispersion relation (38) without Curl Ṗ which holds because

ρL2
c

β1

α1
c1 = c4 − c∗

4 and ρL2
c

β1

α1
c∗

4 = c7 − c∗
7 and ρL2

c

β1

α1
c∗

7 = c10 (44)

for all combinations of shear/pressure and 0◦ /45◦ angle of incidence. This is remarkable because it allows us to
use the same analytical expressions for the acoustic and lower optic asymptotes from the calculations without
Curl Ṗ of section 6, while the general expressions of the dispersion curves differ because of the addition of new
terms. Second, the third asymptote

ω3 =
√

α1

ρL2
c β1

(45)

is identical for shear and pressure and invariant under change of angle of incidence. The same reasoning about
the use of the asymptote in section 5.1 is applied here.

7.2. Fitting

The fitting starts as described in the sections before, using cut-offs and the slope of acoustic waves for k = 0
to reduce the number of independent parameters. Here we arrive at the same four unknown micro parameters
κm, μm, μ∗

m, μc and four unknown inertia parameters κγ , γ 1, γ ∗
1, γ 2 with the additional elastic parameter α1, β1

belonging to Curl P and Curl Ṗ, respectively. For the latter, we choose the acoustic pressure and lower optic
shear curves as the one with the superimposed asymptote. The former are determined numerically using the
remaining asymptotes (eight in total), see also Table 10.

However, because the analytical expression (45) of these four highest asymptotes is identical, while, in
general, the numerical values from Comsol Multiphysics® can be distinct, we will arrive at the average of
these four asymptotes. Moreover, we can only fix the ratio α1

β1
which leaves us with one last free parameter, i.e.

independent of the values of all cut-offs and asymptotes, which we fit by hand.
We list the numerical values of all parameters used in the micromorphic model in Table 11.
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Table 11. Numerical values for the relaxed micromorphic model with enhanced kinetic and potential energy terms (Curl P, Curl Ṗ)
for the metamaterial whose unit cell is given in Figure 1.

κm μm μ∗
m μc κe μe μ∗

e α1

(MPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (Pa)

35.22 228.4 27.67 110.7 355.8 1635 973.6 597.4

κγ γ 1 γ ∗
1 γ 2 κγ γ1 γ ∗

1 γ2 β1

1.168 2.004 2.276 0.820 58.68 3.188 1.184 1.856 1.345·10−2

Figure 6. Dispersion curves ω(k) for 0◦ (left) and 45◦ (right) with pressure curves colored in yellow and shear in blue. The dots
are the points computed with Comsol Multiphysics® while the smooth curves show the analytical expression of the dispersion curves
for the relaxed micromorphic model. The values of the curve’s horizontal asymptotes are also shown with dashed lines.

7.3. Discussion

The introduction of Curl Ṗ increases the quality of fitting again (see Figure 6) with the recovery of the higher
optic curve asymptote, while the remaining free parameter α1, β1 can improve the shape of the curves. In par-
ticular, we can fit a dispersion curve with negative group velocity perfectly, the lower optic pressure curve for
45◦ , for the first time.

The fitting of the other curves is slightly worse compared to the calculations without curvature terms, and
it is mainly due to the degenerated shape of Curl Ṗ and Curl P in a plane problem, resulting in an isotropic
behavior with only a single independent parameter. This causes four asymptotes to coincide.

We will not discuss in a fourth section the fitting with an enhanced kinetic energy with Curl Ṗ but without
the curvature Curl P, since it leads to a degenerate dispersion polynomial p(k, ω) similar to the one described in
section 6 resulting in only four configurable horizontal asymptotes for shear and pressure each. However, while
we lost the higher optic asymptotes by adding Curl P without Curl Ṗ, the case with Curl Ṗ and without curvature
Curl P instead forces the limits of the one curve to zero as it can be seen as a limit case of expression (45), i.e.
α1 → 0.

8. Summary of the obtained results
Comparing the results of sections 5–7, the first approach which does not include Curl P and Curl Ṗ shows
the best agreement to the numerical values from Comsol Multiphysics® overall. At the same time, it must be
noted that this simplified model without any curvature terms is only capable of describing monotonic dispersion
curves with three disjointed domains for the three pressure waves and three disjointed domains for the three
shear waves (crossing between pressure and shear waves is allowed, while it is not allowed between curves of
the same type). The latter property can be easily deduced from equation (31)2 which guarantees that for each
value of ω there can only be one value of k.
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Figure 7. Mean squared error between the analytic expressions from the relaxed micromorphic model and their corresponding
numerical values from Comsol Multiphysics®while changing the scaling coefficient t for different material parameters. Left: the static
parameters κm, μm, μ∗

m, μc are colored in orange, blue, green, and purple, while the dashed red line shows the impact of scaling
Cmicro as a whole. Right: the dynamic parameters κγ , γ 1, γ ∗

1, γ 2 are colored in orange, blue, green, and purple, while the dashed red
line shows the impact of scaling Te as a whole.

In order to remove this constraint, the dispersion relation p(k, ω) = 0 must contain higher order terms of
the wavenumber k to allow the overlapping of the domains of curves of the same kind. To this aim, we started
considering the full relaxed micromorphic model (with Curl P) and then augmented it with a new inertia term
(Curl Ṗ). The comparison of the analytic expression of the asymptotes with or without Curl Ṗ shown in equation
(43) suggests that, when a new term is added to the elastic energy density, it is always better to include the
corresponding dynamic part as well. In particular, considering Curl P without its counterpart Curl Ṗ or vice
versa causes missing terms in the dispersion polynomial p(k, ω) = 0 resulting in fewer horizontal asymptotes.

While the model without curvature terms gives the best quantitative agreement (see Figure 3), the augmented
relaxed micromorphic model still gives a good agreement and opens up the important possibility of decreasing
modes with negative group velocity, cf. Figure 6. Note that Curl P and Curl Ṗ degenerate for planar problems:
for both terms, it just remains a single independent constitutive parameter (α1 and β1) restricting the class of
symmetry for their constitutive tensors to the isotropic one.

We want to emphasize that the main focus of this work is not the result of the fitting of the three different
approaches per se, but the semi-analytical fitting algorithm itself and the underlying consistency of the relaxed
micromorphic model with respect to the material properties and some of the geometrical characteristic of the
metamaterial that it represents. Using the complex but analytically defined expressions of the asymptotes, we
can find a numerical fit of all material parameters by only giving the numerical values computed with Comsol
Multiphysics® and the apparent mass density ρ of the unit cell. Note that we only use the cut-offs k = 0 and
asymptotes k → ∞ for calculating the material parameters while the shape of the curves for intermediate values
of k comes automatically.

The routine is completely written with Mathematica allowing us to use symbolic calculations. The essential
part of the fitting procedure uses the inbuilt algorithm NMinimize (with the Method RandomSearch) to minimize
the mean square error of the asymptotes between the relaxed micromorphic model and the numerical values of
the finite element approach in Comsol Multiphysics®. Therefore, in general, if a local minimum is found, it is
not guaranteed that it corresponds to a global optimum as well.

In order to better understand the nature of the minimization problem, we visualize the impact of each param-
eter thanks to Figure 7 for the case without Curl P and Curl Ṗ of section 5.2: given a set of material constants
values, we move one parameter at the time and plot the impact on the error for the asymptotes.

It is crucial to state here that the expression of the coefficients shown in Appendices 2–4 are a priori
constrained by the relations described in section 5.2 which reduces the number of independent parameters.
This guarantees that the values of the cut-offs will not change if the micro parameters change because the
corresponding micro-inertia parameters κγ , γ1, γ ∗

1 , γ2 are automatically scaled as well.
When considering the impact of the different independent parameters on the fitting error of the asymptotes,

visible dissimilarity arises. While most coefficients show a simple behavior with one distinct minimum, the
impact on the dispersion curves of the parameters μ∗

m and γ ∗
1 is very small. In addition to the numerical difficulty
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caused by a vanishing gradient, it suggests finding additional quantities to constrain these material parameters,
e.g. use a static test to fix μ∗

m beforehand. Overall, the minimum problem behaves remarkably well given its
simple shape, which is in accordance with the fact that the fitting procedure always converges to very similar
values of the parameters regardless of their initial guess.

9. Conclusion and perspectives
We presented an inertia-augmented relaxed micromorphic model that enhances the model proposed in
[52–56] via the addition of a term Curl Ṗ in the kinetic energy. We then used this model to describe the dynam-
ical behavior of a labyrinthine metamaterial and compared its predictability when setting all curvature terms
to zero, when setting only Curl Ṗ to zero and when considering the full model (including Curl P and Curl Ṗ).
The model’s efficiency is tested by comparing the obtained dispersion curves to the ones issued via a standard
Bloch–Floquet analysis. We find that the model without curvature terms gives the best average behavior (when
considering the whole set of frequencies and wave numbers). However, this reduced model shows two main
drawbacks: (1) it cannot give rise to curves with negative group velocity and (2) the horizontal asymptote of
each curve is bounded by the cut-off of the following one. This implies a limitation of the fitting quality at
higher wave numbers for some directions of propagation. To remove these constraints, the full model (includ-
ing Curl P and Curl Ṗ) can be used. The fitting that we obtained with the full model remains of good quality
(although precision is sometimes lowered point-wise) and we could perfectly describe (for the first time in a
micromorphic framework) a higher-frequency mode with negative group velocity. The constraint concerning
the asymptotes’ boundedness is also removed in the full model, but a perfect fitting at higher wavenumbers
cannot still be achieved due to a lack of extra microscopic degrees of freedom that are needed (at least for some
directions) for a perfect fitting at wavelengths approaching the size of the unit cell.

We also tested the model’s performances by considering only Curl P and not Curl Ṗ. The fitting quality is
visibly worsening, thus suggesting that, when introducing a term in the strain energy, its dynamical counterpart
in the kinetic energy should be always considered as well.

In addition to the fitting comparison presented in the present paper, one main result that we present here is
the fitting procedure itself that has been automatized to a big extent by asking only the cut-offs and asymptotes
to be imposed a priori. This has been done by imposing the exact value of the cut-offs and minimizing the
asymptotes’ mean square error compared to the exact numerical values issued via Bloch–Floquet analysis. The
rest of the curves’ fitting follows directly.

The routine for the fitting procedure is written with Mathematica allowing us to use symbolic calculations.
The essential part of the routine uses the built-in algorithm NMinimize (with the Method RandomSearch) to
minimize the asymptote’s mean square error. We finally checked whether the found local minimum is also a
global minimum. We found that all the elastic parameters achieve a global minimum in the computed configu-
ration, but μ∗

m and γ ∗
1 seem to have little effect on the overall fitting after a certain threshold. This result seems

to suggest that the values of these parameters should be eventually fixed beforehand with the help of extra
independent static and/or dynamic tests.

Based on the findings of this paper, we will briefly present some insight that will give directions to the
follow-up research:

• Further enhance the relaxed micromorphic model via the addition of extra microscopic degrees of freedom
to increase its precision at very small wavelengths (approaching the unit cell’s size);

• Design complex large-scale meta-structures that control elastic energy using the new labyrinthine meta-
material as a basic building block. This design would not be otherwise possible due to the huge number of
degrees of freedom resulting from the meshing of all the tiny elements contained in the labyrinthine unit
cells;

• Study negative refraction phenomena in meta-structures including the new labyrinthine metamaterial as a
basic building block;

• Design complex structures for wave control simultaneously including the different metamaterials that were
characterized via the relaxed micromorphic model until now.
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Notes

1. Here we target a complete expression of the Lagrangian that was not considered in literature [52–55] to show the effect on the
predictability of the dispersion curves provided by each term.

2. The tensors Jm, Te, Ce, Cmicro, Ls and Ms have a minor symmetry
(
A(ij)(kl) = A(ji)(kl) = A(ij)(lk) = A(ji)(lk)

)
, while Jc, Tc,

Cc, La, and Ma have a minor anti-symmetry
(
B[ij][kl] = −B[ji][kl] , B[ij][kl] = −B[ij][lk], B[ij][kl] = B[ji][lk]

)
, for instance, we

can write 〈Jm sym Ṗ, sym Ṗ〉 + 〈Jc skew Ṗ, skew Ṗ〉 = 〈(Jm + Jc)Ṗ, Ṗ〉.
3. The dimensions of the matrix representation of elastic and micro-inertia tensors are (Ce, Cmicro, Jm, Te, Ls, Ms) ∈ R6×6 and

(Cc, Jc, Tc, La, Ma) ∈ R3×3. In the previous works [51,55,57], the parameters in Jm and Jc were referred as ηi or ρL2
i , and the

parameters in Te, Tc as ηi or ρL
2
i .

4. We retain the plane strain hypothesis in the remainder of the paper.
5. We write “m” for “micro” and “M” for “macro” for the corresponding elastic parameters to shorten the following expressions.
6. The components of u and P depend only on {x1, x2} and u3 = P13 = P31 = P23 = P32 = P33 = 0.
7. It is remarked that this is only possible since the condition (12) is satisfied.
8. Scaling the density ρ automatically scale all the micro-inertia terms too since all of them are already proportional to it.
9. The notation c∗

i throughout the following sections indicates that enhancing the model, i.e. reintroducing the neglected tensors
for Curl P and Curl Ṗ, changes c∗

i by the addition of new terms. In contrast, the notation ci without an asterisk indicates that the
coefficient is complete in the sense that it remains unchanged when including Curl P and Curl Ṗ as well.

10. Even though the name of the elastic tensors (micro-, meso-, macro-) suggests that the values of Ce should be bounded by Cmicro
from above and Cmacro from below, this is not the case in general. For a very simple unit cell whose structure differs little from
the homogeneous cell, Cmicro is very similar to Cmacro implying that Ce = Cmicro (Cmicro −Cmacro)−1Cmacro tends to infinity.
Thus, Ce is not an elastic tensor in the classical sense and very large values impose sym P ≈ sym ∇u.

11. The notation c∗
i still indicates that the coefficient is missing components belonging to the neglected tensor for Curl Ṗ, while ci

without an asterisk states that the coefficient is the same of the enhanced relaxed micromorphic model with Curl Ṗ.
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Appendix 1

Most general fourth-order tensor belonging to the tetragonal symmetry class

Considering the following quadratic form
Y = 〈LD, D〉 , (46)

where L is a fourth-order tensor and D is a second-order one, the most general form of L, if it belongs to the
tetragonal symmetry class written in Voigt notation, is

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 �5 �6 0 0 0 0 0 0
�5 �1 �6 0 0 0 0 0 0
�6 �6 �2 0 0 0 0 0 0
0 0 0 �3 + �7 + �9 �3 − �7 0 0 0 0
0 0 0 �3 − �7 �3 + �7 − �9 0 0 0 0
0 0 0 0 0 �3 + �7 + �9 �3 − �7 0 0
0 0 0 0 0 �3 − �7 �3 + �7 − �9 0 0
0 0 0 0 0 0 0 �4 + �8 �4 − �8
0 0 0 0 0 0 0 �4 − �8 �4 + �8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (47)

where the order of the element of the vector associated with the quadratic form 46 is

d = (D11, D22, D33, D23, D32, D13, D31, D12, D21)T . (48)

If we now split the tensor D in its symmetric and skew-symmetric part, the corresponding vector in Voigt
notation is

ds = (D11, D22, D33, D23 + D32, D13 + D31, D12 + D21)T , da = 1

2
(D23 − D32, D13 − D31, D12 − D21)T .

(49)
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Because of the class of symmetry considered, it is necessary to take into account a mixed constitutive matrix
that couples the symmetric and skew-symmetric part of D in order to build back the quadratic form Y

Y = 〈LD, D〉 = 〈Ld, d〉 = 〈Ls ds, ds〉 + 〈La da, da〉 + 2〈Lmix ds, da〉 (50)

where

Ls =

⎛⎜⎜⎜⎜⎜⎝
�1 �5 �6 0 0 0
�5 �1 �6 0 0 0
�6 �6 �2 0 0 0
0 0 0 �3 0 0
0 0 0 0 �3 0
0 0 0 0 0 �4

⎞⎟⎟⎟⎟⎟⎠ , La =
(

4�7 0 0
0 4�7 0
0 0 4�8

)
, Lmix =

(
0 0 0 �9 0 0
0 0 0 0 �9 0
0 0 0 0 0 0

)
.

(51)

Only the coefficient �9 couples the symmetric and skew-symmetric part of D, and it produces works just for
out-of-plane deformation if a plane strain problem (x1Ox2) is considered, which means that it is not involved in
the constitutive relations for both the gradient of the displacement ∇u and the micro-distortion tensor P, while
it is for the Curl P or for Curl Ṗ. Nevertheless, the quadratic form Y when D = Curl P (see equation (11)) under
a plane strain hypothesis is

Y = (�3 + �7 + �9)
(
(Curl P)2

13 + (Curl P)2
23

)
(52)

which depends on just one cumulative coefficient. This makes the coupling coefficient �9 and the skew-
symmetric coefficient �7 redundant.

Appendix 2

Coefficients for the dispersion curves without Curl P

For the relaxed micromorphic model without curvature, we arrived equation (31) at the dispersion polynomial

c0 k2 − (c2 + c∗
3 k2) ω2 + (c5 + c∗

6 k2) ω4 − (c8 + c∗
9 k2) ω6 (53)

We list the coefficients (c0, c2, c∗
3, c5, c∗

6, c8, c∗
9)T .

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 (μeκmμm + κe (κm (μe + μm) + μeμm))
4ρ (κe + κm) (μe + μm)

4ρL2
c

((
κ̄γ + γ 1

)
(κe + κm) (μe + μm) + γ1 (μeκm + κe (μe + κm)) + κγ (κe (μe + μm) + μeμm)

)
4ρ2L2

c

(
κγ (μe + μm) + γ1 (κe + κm)

)
4ρ2L4

c

(
κγ

(
κ̄γ + γ 1

)
(μe + μm) + γ1

((
κ̄γ + γ 1

)
(κe + κm) + κγ (κe + μe)

))
4γ1ρ

3L4
cκγ

4γ1ρ
3L6

cκγ

(
κ̄γ + γ 1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(54)

Shear 0◦ : ⎛⎜⎜⎜⎜⎜⎜⎜⎝

4μcμ
∗
eμ

∗
m

4ρμc

(
μ∗

e + μ∗
m

)
4ρL2

c

(
μc

(
γ 2

(
μ∗

e + μ∗
m

)+ γ ∗
1

(
μ∗

e + μ∗
m

)+ γ ∗
1 μ∗

e

)+ γ2

(
μc

(
μ∗

e + μ∗
m

)+ μ∗
eμ

∗
m

))
4ρ2L2

c

(
μcγ

∗
1 + γ2

(
μ∗

e + μ∗
m

))
4ρ2L4

c

(
γ 2μcγ

∗
1 + μcγ

∗
1 γ ∗

1 + γ2γ 2

(
μ∗

e + μ∗
m

)+ γ2γ
∗
1

(
μ∗

e + μ∗
m

)+ γ2γ
∗
1

(
μ∗

e + μc

))
4γ2ρ

3L4
cγ

∗
1

4γ2ρ
3L6

cγ
∗
1

(
γ ∗

1 + γ 2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(55)
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Pressure 45◦ :⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
(
κmμ∗

eμ
∗
m + κe

(
κm

(
μ∗

e + μ∗
m

)+ μ∗
eμ

∗
m

))
4ρ (κe + κm)

(
μ∗

e + μ∗
m

)
4L2

cρ((κe + κm)(γ ∗
1 μ∗

e + γ ∗
1(μ∗

e + μ∗
m) + κγ μ∗

e + κγ μ∗
m) + γ ∗

1 κeκm + κγ μ∗
eμ

∗
m + κγ κe(μ∗

e + μ∗
m))

4ρ2L2
c

(
κγ

(
μ∗

e + μ∗
m

)+ γ ∗
1 (κe + κm)

)
4ρ2L4

c

(
κγ

(
κ̄γ

(
μ∗

e + μ∗
m

)+ γ ∗
1μ

∗
e + γ ∗

1μ
∗
m + κeγ

∗
1 + γ ∗

1 μ∗
e

)+ γ ∗
1 (κe + κm)

(
γ ∗

1 + κ̄γ

))
4ρ3L4

cκγ γ ∗
1

4ρ3L6
cκγ γ ∗

1

(
γ ∗

1 + κ̄γ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(56)

Shear 45◦ : ⎛⎜⎜⎜⎜⎜⎜⎜⎝

4μcμeμm
4ρμc (μe + μm)

4ρL2
c ((γ 1 + γ 2) μc (μe + μm) + γ1μcμe + γ2 (μc (μe + μm) + μeμm))

4ρ2L2
c (γ1μc + γ2 (μe + μm))

4ρ2L4
c (γ1 ((γ 1 + γ 2) μc + γ2 (μc + μe)) + γ2 (γ 1 + γ 2) (μe + μm))

4γ1γ2ρ
3L4

c
4γ1γ2ρ

3 (γ 1 + γ 2) L6
c

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(57)

Appendix 3

Coefficients for the dispersion curves with Curl P

For the relaxed micromorphic model with Curl P but without Curl Ṗ, we arrived equation (38) at the dispersion
polynomial

c0 k2 + c1 k4 − (c2 + c3 k2 + c∗
4 k4) ω2 + (c5 + c∗

6 k2 + c∗
7 k4) ω4 − (c8 + c


9 k2) ω6 (58)

The coefficients c0, c2, c5, c8, c9 are identical to the one given in the section above without Curl P. Thus, we
list (c1, c3, c∗

4, c∗
6, c∗

7)T using c∗
3 and c∗

6 to shorten some expressions.
Pressure 0◦ :⎛⎜⎜⎜⎜⎝

2α1L2
c (κe + μe) (κm + μm)

c∗
3 + 2ρα1L2

c (κe + μe + κm + μm)
2ρα1L4

c

(
γ 1 (κe + μe + κm + μm) + κ̄γ (κe + μe + κm + μm) + (

κγ + γ1

)
(κe + μe)

)
c∗

6 + 2ρ2α1L4
c

(
κγ + γ1

)
2ρ2α1L6

c

(
κγ + γ1

) (
κ̄γ + γ 1

)

⎞⎟⎟⎟⎟⎠ (59)

Shear 0◦ : ⎛⎜⎜⎜⎜⎝
2α1L2

cμ
∗
m

(
μ∗

e + μc

)
c∗

3 + 2ρα1L2
c

(
μ∗

e + μ∗
m + μc

)
2ρα1L4

c

(
γ 2

(
μ∗

e + μ∗
m + μc

)+ γ ∗
1

(
μ∗

e + μ∗
m + μc

)+ (
γ ∗

1 + γ2

) (
μ∗

e + μc

))
c∗

6 + 2ρ2α1L4
c

(
γ ∗

1 + γ2

)
2ρ2α1L6

c

(
γ ∗

1 + γ2

) (
γ ∗

1 + γ 2

)

⎞⎟⎟⎟⎟⎠ (60)

Pressure 45◦ :⎛⎜⎜⎜⎜⎝
2α1L2

c

(
μ∗

e + κe

) (
μ∗

m + κm

)
c∗

3 + 2ρα1L2
c

(
μ∗

e + μ∗
m + κe + κm

)
2ρα1L4

c

(
κ̄γ

(
μ∗

e + μ∗
m + κe + κm

)+ γ ∗
1

(
μ∗

e + μ∗
m + κe + κm

)+ (
γ ∗

1 + κγ

) (
μ∗

e + κe

))
c∗

6 + 2ρ2α1L4
c

(
γ ∗

1 + κγ

)
2ρ2α1L6

c

(
γ ∗

1 + κγ

) (
γ ∗

1 + κ̄γ

)

⎞⎟⎟⎟⎟⎠ (61)

Shear 45◦ : ⎛⎜⎜⎜⎝
2α1L2

cμm (μc + μe)
c∗

3 + 2ρα1L2
c (μc + μe + μm)

2ρα1L4
c (γ 1 (μc + μe + μm) + γ 2 (μc + μe + μm) + (γ1 + γ2) (μc + μe))

c∗
6 + 2 (γ1 + γ2) ρ2α1L4

c
2 (γ1 + γ2) ρ2 (γ 1 + γ 2) α1L6

c

⎞⎟⎟⎟⎠ (62)
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Appendix 4

Coefficients for the dispersion curves with Curl Ṗ

For the relaxed micromorphic model with curvature, we arrived equation (41) at the dispersion polynomial

c0 k2 + c1 k4 − (c2 + c3 k2 + c4 k4) ω2 + (c5 + c6 k2 + c7 k4) ω4 − (c8 + c9 k2 + c10 k4) ω6 (63)

The coefficients c0, c1, c2, c3, c5, c6, c8 are identical to the one given in the section above without Curl Ṗ.
Thus, we list (c4, c6, c7, c9, c10)T using c∗

4, c∗
6, c∗

7, c∗
9 as the coefficients from previous sections above to shorten

the expressions.
Pressure 0◦ :⎛⎜⎜⎜⎜⎝

c∗
4 + 2ρβ1L4

c (κe + μe) (κm + μm)
c∗

6 + 2ρ2β1L4
c (κe + μe + κm + μm)

c∗
7 + 2ρ2β1L6

c

(
γ 1 (κe + μe + κm + μm) + κ̄γ (κe + μe + κm + μm) + (

κγ + γ1

)
(κe + μe)

)
c∗

9 + 2ρ3β1L6
c

(
κγ + γ1

)
2ρ3β1L8

c

(
κγ + γ1

) (
κ̄γ + γ 1

)

⎞⎟⎟⎟⎟⎠ (64)

Shear 0◦ : ⎛⎜⎜⎜⎜⎝
c∗

4 + 2ρβ1L4
cμ

∗
m

(
μ∗

e + μc

)
c∗

6 + 2ρ2β1L4
c

(
μ∗

e + μ∗
m + μc

)
c∗

7 + 2ρ2β1L6
c

(
γ 2

(
μ∗

e + μ∗
m + μc

)+ γ ∗
1

(
μ∗

e + μ∗
m + μc

)+ (
γ ∗

1 + γ2

) (
μ∗

e + μc

))
c∗

9 + 2ρ3β1L6
c

(
γ ∗

1 + γ2

)
2ρ3β1L8

c

(
γ ∗

1 + γ2

) (
γ ∗

1 + γ 2

)

⎞⎟⎟⎟⎟⎠ (65)

Pressure 45◦ :⎛⎜⎜⎜⎜⎝
c∗

4 + 2ρβ1L4
c

(
μ∗

e + κe

) (
μ∗

m + κm

)
c∗

6 + 2ρ2β1L4
c

(
μ∗

e + μ∗
m + κe + κm

)
c∗

7 + 2ρ2β1L6
c

(
κ̄γ

(
μ∗

e + μ∗
m + κe + κm

)+ γ ∗
1

(
μ∗

e + μ∗
m + κe + κm

)+ (
γ ∗

1 + κγ

) (
μ∗

e + κe

))
c∗

9 + 2ρ3β1L6
c

(
γ ∗

1 + κγ

)
2ρ3β1L8

c

(
γ ∗

1 + κγ

) (
γ ∗

1 + κ̄γ

)

⎞⎟⎟⎟⎟⎠ (66)

Shear 45◦ : ⎛⎜⎜⎜⎝
c∗

4 + 2ρβ1L4
cμm (μc + μe)

c∗
6 + 2ρ2β1L4

c (μc + μe + μm)
c∗

7 + 2ρ2β1L6
c (γ 1 (μc + μe + μm) + γ 2 (μc + μe + μm) + (γ1 + γ2) (μc + μe))

c∗
9 + 2 (γ1 + γ2) ρ3β1L6

c
2 (γ1 + γ2) ρ3 (γ 1 + γ 2) β1L8

c

⎞⎟⎟⎟⎠ (67)




