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Abstract

Selective laser melting (SLM) has gained large interest due to advanced manufacturing possibilities. However, the growing
potential also necessitates reliable predictions of structures in particular regarding their long-term behaviour. The constitutive
and structural response is thereby challenging to reproduce, due to the complex material behaviour. This motivates the aims
of this contribution: To establish a material model that accounts for the behaviour of the different phases occurring during
SLM but that still allows the use of (basic) process simulations. In particular, the present modelling framework explicitly takes
into account the mass fractions of the different phases, their mass densities, and specific inelastic strain contributions. The
thermomechanically fully coupled framework is implemented into the software Abaqus. The numerical examples emphasise
the capabilities of the framework to predict, e.g., the residual stresses occurring in the final part. Furthermore, a postprocessing
of averaged inelastic strains is presented yielding a micromechanics-based motivation for inherent strains.

Keywords Additive manufacturing - Finite element method - Abaqus - Residual stress - Phase transformations

1 Introduction

Additive manufacturing (AM) refers to processes where a
part is fabricated by sequential addition of material rather
than by subtractive manufacturing or moulding. Thus, the
final part has little geometrical and material restrictions. Cus-
tomised parts can be produced within a reasonably low cost
range and comparative short amount of time. AM is often
called a near-net-shaping technique, as the part is directly
built based on a computer aided design (CAD) model. The
CAD model is then converted into a standard triangulation
language (STL) format which is widely used for all AM
machines. It represents the geometry of the CAD model by
a simple mesh. This file is digitally sliced into thin cross-
sectional layers and can then be constructed by the chosen
AM process. The layering is carried out through deposition
and bonding of these layers. Thus, no tools are required to ini-
tiate the AM process (except for necessary post-processing).
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Nowadays, there are various technologies, differing in the
used material (mostly powder or wire), in the heat source
and in the procedure in general.

In this contribution, the focus lies on the selective laser
melting (SLM) process, also referred to as laser powder-bed
fusion as summarised in, e.g. [14], where a work piece is
manufactured in a—in this case—metal powder bed. The
process uses a laser beam as the heat source to selectively
melt the metallic powder particles of the layer according to
the CAD model. The material then re-solidifies after a cool-
ing period. Afterwards, the building platformis lowered and a
new layer of powder is applied. This process is repeated until
the final geometry of the work piece is achieved. A detailed
view of the three specific material states—powder, melting
pool, and re-solidified material—is shown in Fig. 1 for the
SLM process. Hence, it is possible to manufacture parts by
melting metallic powder in a layer-upon-layer technique. It
also improves lightweight construction due to the possibility
of arbitrarily shaped parts. Especially the aerospace and auto-
motive sector, as well as the biomedical sector investigate the
SLM process.

So far, the prediction of the influence of the additive man-
ufacturing process on the properties of the final workpiece
is still challenging. The temperature gradients and cooling
rates present will vary significantly depending on the posi-
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Fig.1 Detailed view of the SLM process, referring to the three different
material states, namely powder, molten pool and re-solidified material.
(Color figure online)

tion of the laser beam and the considered particle. In addition,
the three different states of the material exhibit significantly
different mass densities so that the phase changes evoke
relevant process-induced eigenstrains. Furthermore, inhomo-
geneously distributed thermal strains are present. Overall,
these inelastic strains cause eigenstresses which may have
a major impact on the properties of the final workpiece,
in particular with respect to the long-term behaviour and
its lifetime. In addition, these eigenstresses of the part are
directly affected by the various process parameters. So far,
experiments have mostly been used to identify the optimal
parameter configuration on a purely empirical level. There-
fore, simulations with physically well-motivated models are
necessary in order to gain a deeper understanding of the rela-
tion between process parameters and the quality of the SLM
part.

Over the last twenty years, starting with [44], differ-
ent approaches for simulations using the Finite Element
(FE) method have been available in literature regarding the
modelling of the SLM process on a small scale: purely ther-
mal models, see for example [12,15,26,29,30,38,42,45] and
more sophisticated thermomechanical small strain models,
re. [11,16,22,36,37,43,49,51]. Thermomechanical models
enable the prediction of residual stresses and the geometry, as
well as the influence on scanning strategies. Within these con-
tributions, there are different approaches to model the phase
changes, i.e. [22] enhances the Stefan-Neumann equation and
[26] uses a mathematical phase change function calibrated by
experiments. In [39], a purely thermal model is used which
explicitly incorporates two state variables for both the phase
and the porosity. This enables the capturing of the consol-
idation of the material. However, most researchers use the

@ Springer

melting point temperature to indicate the phase changes, so
that these are purely temperature driven.

The effect of volume shrinkage of the powder bed due
to porosity has been investigated in [12] by using a purely
thermal model. In [16,37] a thermomechanical model is
used, where a pseudo-thermal expansion is implemented
to take into account not only the thermal expansion of the
material, but also the shrinkage of the powder bed. The advan-
tage of a thermomechanical model and the difference in the
temperature evolution is also stated in [16]. In [48], a ther-
momechanical finite deformation framework is developed to
predict the melting and solidification process on the powder
scale.

For industrial usage, the influence of process parameters,
product quality and the prediction of deformation and resid-
ual stresses still remains challenging for a physically real
component. Researchers are presently focusing on advanced
models for the numerical investigation of rather large parts
in contrary to a single-line melt tracks. On the one hand,
high performing FE-algorithms are developed to speed up
computation time, for example in [27,33,34]. On the other
hand, the models are simplified at the macro scale: Multi-
scale approaches where the micro, meso, and macro scale are
taken into account, as for example described in [9,24,28]. In
particular, simulating each layer at the same time is used
to speed up the process, see for example [17]. A similar
approach is the inherent strain method which was first intro-
duced for metal welding applications in [21,50]. This method
is now applied to additive manufacturing processes, see for
instance [24,31,40,41]. The challenge in using this method
lies in the determination of the inherent strains, either through
simulation or experiments. Altogether, there are different for-
mulations available for the simulation of the micro and macro
scale with help of the FE method. However, from our point
of view, no frameworks exist which take into account the
mechanical material model and phase change in a physically
well-motivated approach.

Based on the framework for solid-solid phase transforma-
tions in shape memory alloys, see e.g. [3], this contribution
focuses on the advancement of the model presented in [2].
The model is based on the explicit consideration of phase
energy densities, where each state of the material—powder,
molten and re-solidified—is a single phase (see Fig. 1). Dur-
ing the transformation process, the material first melts and
then solidifies. These phase energy densities are combined
by using a specific homogenisation assumption which yields
the averaged energy density—and with this the constitu-
tive model—for the possible phase mixture. Several inelastic
strain contributions are taken into account within the mate-
rial models of the single phases. More precisely speaking,
viscous strains and transformation strains are considered in
the molten phase as well as thermal strains, plastic strains,
and transformation strains in the solid phase. The trans-
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formation strains are introduced as material constants and
capture the significant change of the mass densities during
the phase changes. The internal state variables including the
mass fractions of the different phases are calculated by using
thermomechanically consistent evolution equations solved
at the material point level. The formulation of the material
model as well as the FE model consider full thermomechan-
ical coupling. The present investigations aim at the accurate
prediction of essential process-induced quantities such as
eigenstresses. Furthermore, the present modelling frame-
work could be used to calculate effective inherent strains
which could then be used in simpler yet faster process sim-
ulations.

This article is set up as follows: A brief summary of the
thermomechanical field equations is given Sect. 2, where a
focus is set on the thermomechanical coupling and mechan-
ical dissipation contributions. In Sect. 3, the phase energy
densities and the irreversible strains are specified to introduce
the constitutive material model which is based on mass frac-
tions. We provide deeper insight into the local algorithm and
Abaqus implementation of the framework at hand in Sect. 4.
Calculations at the material point level designed to yield a
proof of concept as well as representative three-dimensional
boundary value problems are studied in Sect. 5, before we
finally conclude our findings in Sect. 6.

2 Thermomechanical framework

This section provides general information on the kinematics
and the thermodynamically fully coupled balance equations.
Atthis stage, the small strain theory is considered to be appro-
priate. Thus, the linearised strain measure

e:=- [Vu+[Vul'] (D

1
2
with the displacement field denoted as u is applied. In gen-
eral, the total strains can be decomposed additively as follows

e =g 4 &l 2)

into an elastic part € and an irreversible part &™. The
irreversible strains describe inelastic effects e.g. viscous,
thermal or plastic strains and the combination thereof, and
transformation strains, i.e. eigenstrains, capturing the phase
transformation of the material, as explained in subsequent
sections.

To simulate the underlying SLM-process, a fully coupled
thermomechanical model is proposed. The problem at hand is
based on the balance of linear momentum and on the energy
equation which follows from the first law of thermodynamics,

ie.
0=V.o+b, 3)
0=-V-g+r4+0:6—pé, “)

respectively. In these equations, o denotes the stress tensor,
b describes the body forces, g represents the heat flux vector,
reXt denotes the external heat supply, p is the mass density
and e symbolises the specific internal energy. The absolute
temperature is denoted by 6. In general, notation e is used to
describe the time derivative of the respective quantity e. As
this work proceeds, all body forces shall be neglected, i.e.
b=0.

In the following, the second law of thermodynamics,
respectively the entropy inequality, is used to introduce
the internal dissipation. As proposed by [10], the specific
Helmbholtz free energy ¥ shall be used for a thermodynamic
consistent derivation. In order to reformulate the problem
depending on the temperature 6 as state variable rather
than the entropy s, the specific Helmholtz free energy ¥
is obtained via the Legendre transformation

e=W¥+s0, (5)
=é=W+s0+50. (6)
In general, the Helmholtz free energy ¥ (e, 6, V) depends on
the total strains &, the temperature & and—at this point not

further specified—on internal variables ). With this at hand,
the time derivative of the Helmholtz free energy results in

W W . AW .
= b+ —eV. 7

W=—:8
de 30 v

Following the Colemann-Noll procedure, cf. [10], the
entropy inequality

s >0 (8)

is used and, combining (8) with the energy equation (4), the
second law of thermodynamics reads

1
pgs-_rext+v.q_5q.vezo. )

This can be reformulated in terms of the dissipation sym-
bolised with D and split into a mechanical and thermal part,
ie.

D= Dmech + Dtherm > 0. (10)

Moreover, each contribution is assumed to be non negative.
This results in the Fourier inequality for the thermal contri-
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bution on the one hand,

1
Diherm = —511 -Vo >0, (11)
and in the Clausius-Planck inequality on the other,
Dmech:9p~§_rem+v'q20- (12)

By recalling (4) and using (6), it is possible to reformulate
(12) such that

Diech =0 6 —psh —pW. (13)

Inserting (7) into (13) and rearranging terms for the purpose
of simplification results in

W ) ov ] . w
o-_pg 1E—p s—|—¥ 9—,OW.VZO, (14)

where e represents a generalised scalar product. Following
the lines of the Coleman-Noll procedure, the constitutive
equations based on the Helmholtz free energy density can
be directly extracted, i.e.

oy
o=p_, (15)

e

o
=——. 16
s Py (16)

From this, the definition of entropy and stresses can be deter-
mined in a straightforward manner. As a further abbreviation,
the driving forces

Fe L4 (17)

Ty

of the internal variables are introduced. Substituting these
results into (14) finally leads to the reduced form of the
mechanical dissipation as

Dinech = F oV > 0. (18)

With these derivations at hand, (4) can be rewritten in the
more convenient form

0=—V.-qg+r™—pch
+ Dimech +60 9 [0 : € — Diech |, (19)

where the specific heat capacity is defined by

92w
c=—6 TETR (20)

In the following sections, itis assumed that the (unspecific)
Helmholtz free energy density is defined as v = p ¥.

@ Springer

3 Constitutive framework

The thermomechanical material model based on phase
energy densities is introduced in this section. The over-
all material behaviour is determined according to a phase
transformation model. Furthermore, the specifications of the
thermal problem are introduced. Altogether, both models are
thermomechanically fully coupled.

3.1 Phase energy densities

As already indicated in Sect. 1, each state of the material
is represented by an energy density. Altogether, the mate-
rial response of the complete model is determined with the
help of a homogenisation approach, rather than by relying on
solely temperature-dependent material parameters. At this
point, three distinct phases representing the different states
of the material, namely powder, molten, and re-solidified, are
explicitly taken into account. All of these phases are modelled
as a solid continuum, which may be arguable in particular for
the molten phase with respect to the (viscous) solid approach
and for the powder phase regarding the continuum ansatz.
Motivations for these simplifications are, however, provided
in the subsequent sections.

The material model is based on the averaged Helmholtz
free energy density v, where additively decomposed energy
densities ¥; each of which consists of two parts, are chosen
for each phase denoted by the index i. The first part describes
the mechanical energy density wime‘:h, while the second part
wfal is a purely caloric contribution due to the temperature
dependence of the material model. This results in an energy
density

Vi = et g, 1)

where the index i refers to all possible phases. The mechan-
ical part of the energy density is defined as

1)0_mech o
i T

[ei — e%“] ' E; : [e,- — e%“] , (22)

| =

whereas the caloric part is a function of temperature and spe-
cific material parameters and which is to be defined later.
While €; denote the total strains of each phase, s%“ describe
the irreversible strains and E; represents an fourth-order elas-
ticity tensor of the respective phase. The influence of the
caloric part and the irreversible strains are visualised in Fig. 2.
Each energy density represents a potential well which is
shifted due to wical and s}”. In the following paragraphs, the
corresponding phase energy densities 1; will be discussed in
detail.
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Fig.2 Influence of the different contributions on the phase energy den-
sities

3.1.1 Powder phase

Powder particles are assumed to move freely due to the high
degree of porosity between the powder grains. Therefore, the
material behaves solely elastic. It has to be kept in mind that
only compression strains are admissible within the powder
particles. In the framework at hand, the powder is modelled as
a continuum with a significantly higher compliance than the
solid material. Overall, the powder shall not undergo states of
high stress or strain level. In the initial state, only the powder
phase is present. In addition, due to the high porosity of the
powder phase, any thermal strains are neglected for this state
of the material. Thus, the powder is considered as the parent
phase so that no irreversible strains are incorporated for this
phase, i.e. € = 0. The energy density of the powder is

pow
approximated by
1
Ypow = 5 €pow * Epow * €pow
__ pref
ow
— Cpow 0 1n(6) + Lpow ngfp’ (23)
pow

where cpow = ppow € is the weighted heat capacity of the
powder, and where Lpow = ppow L describes the weighted
latent heat of the powder at a constant reference temperature
eggiv. The weighted values are calculated by the mass density
of the powder ppow and the specific value of the heat capacity
c and latent heat L, respectively.

3.1.2 Molten phase

The molten phase shall also be approximated as a solid type
phase. This behaviour is assumed to be appropriate, as the
molten pool is only present for a brief time span. Fluid
effects like the Marangoni flow are therefore neglected. How-
ever, to include a fluid-like behaviour of the molten pool
in the material model, a viscous strain contribution &5, is

mel
included, which shall be used to enable full stress relaxation

within the molten phase. Furthermore, the mass density of
the three phases varies considerably. To take into account the
shrinkage from the powder material to the molten phase, a
transformation strain e;/2* is incorporated. Both irreversible
strains will be further defined in what follows. Overall, an
additive split of the irreversible strains is used for the molten
phase, i.e.

Ehmel = Emel’ + Emal- 24)
As the molten phase is the high temperature phase, the influ-
ence of the latent heat is only integrated into the powder
and re-solidified phase. With this at hand, the specific energy
density of the molten phase is defined as

1 . .
VYimel = 3 [emel - e}{fel]  Emel [emel - e}ffel]

— Cme1 0 In(0), (25)

with the heat capacity defined as c¢pe] = pPmel ¢ and the mass
density of the molten phase denoted as ppe].

3.1.3 Re-solidified phase

An additive decomposition of the irreversible strains into
three parts is chosen according to

irr __ _th pl trans
€50l = €50l + €501 + €50l (26)

for the re-solidified phase. The transformation strains e

take into account the volume changes of the material during
the phase transition from the molten phase to the re-solidified
phase due to the changing mass densities. In contrast to
the previously introduced phases, two further inelastic strain
contributions are considered. Plastic deformation can arise
due to high eigenstrains after the phase transformation and
due to high temperature gradients present. A plastic strain
tensor ef(l)l is used to capture this behaviour whose evolution
will be further defined in Sect. 3.4. Furthermore, thermal
strains e;}(‘)l are considered in the re-solidified phase to take
into account inelastic strains stemming from the high tem-
perature changes during the process. These strains will be
further defined in Sect. 3.5. Finally, the energy density of the
re-solidified phase is defined by analogy with the previously
introduced energies as

1 i i Hyol
. . . hard42
Ysol = E I:ssol - slsrorl] D Esol ¢ [esol - 31521] + 2 [ksgf ]
ref

m_ 27)

ref
sol

— Cs01 0 In(0) + Lo

The heat capacity and the latent heat are defined in an
analogous manner as cso] = Psol ¢ and Lgo] = pso1 L. The
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mass density of the solid phase is denoted by pgo1. In addi-
tion, Hyo defines the hardening modulus of the solid phase,
whereas k?g]rd indicates the accumulated equivalent plastic
strain related to isotropic hardening.

3.2 Specification of transformation strains

The transformation strains ™" of the molten and re-
solidified phases shall be introduced next, as they are solely
dependent on the transformation process and on material
parameters previously introduced. These strains shall capture
the volume changes of the material during phase transitions
due to the different mass densities. In fact, the validity of the
small strain theory needs to be carefully scrutinised in view
of physically plausible transformation strains. Initially, the
material solely consists of powder with the mass contribu-
tion dmy, thus

dVp = , (28)

Hypothetically assuming that this infinitesimal volume ele-
ment of the parent powder phase fully transforms into one
of the other phases, i.e. molten and re-solidified material, the
volume of the new phase is given by

_ dmg

av, = = [1 + tr(e"™)] d V. (29)

Here it is assumed that the mass contribution dm is constant

(conservation of mass). Using (28) and (29) together with
. ; 6 .

the physically sound assumption of 3" being purely vol-

umetric, these transformation strains are specifically given

by

el — [—p bow _ 1} I, (30)
3L pe

where I corresponds to the second order identity tensor. This
results in the transformation strains

1[p
trans pow
e =—|—=1]|1 31

mel 3 |:pmel j| S

for the molten phase and

1 [ ppow
trans po
. =—|—=1]|1 32
Esol 3 |:losol :| ( )

for the re-solidified phase.
3.3 Homogenisation via convexification

In the context of additive manufacturing and the related phase
changes of the underlying material, the mass densities of the
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powder, molten phase and re-solidified material differ signif-
icantly. Thus, conservation of mass does not coincide with
conservation of volume. The volume consequently cannot be
used as a conserved quantity and the homogenisation algo-
rithm needs to be reformulated accordingly.

Material models for solid-solid phase transformation, see,
e.g. [3,4,23,25], mainly use the respective volume fractions
as state variables and as conserved quantity. This is moti-
vated by the fact that the mass densities of, e.g., austenite
and martensite can be considered identical. Therefore, the
algorithm has in general been introduced with respect to vol-
ume fractions

d i
4V 33
Sz ave (33)

where dV,y denotes the (infinitesimal) initial volume and
where dV; is the corresponding volume of the respective
phase.

First of all, the averaged energy density ¥ is introduced
via a volume averaging as

Nph

V=) & (34)
i=1

subjectto 0 < & < 1 and Zi & =1 as constraints for the
volume fraction. The number of phases is given by 7pn. The
volume—also the mass for equal mass densities—is hereby
used as conserved quantity. Furthermore, an additional con-
straint in terms of the compatibility condition

Nph

r€=s—Z§iei=0 (35)
i=0

has to be considered.

For the application at hand, the algorithm needs to be
enhanced and re-formulated with respect to the mass frac-
tions

dm,-

¢ = dmy” (36)

These mass fractions can be related to the volume fractions
via

_pidVi  pi&dVy
dmg dmy

_ &idmg
pidVo’

i & 37

For the sake of consistency, the algorithm shall now be devel-
oped based on mass fractions and on the averaged mass
specific energy ¥. While working with mass fractions ¢;,
some adaptions to the aforementioned approach have to be
made. The overall energy ¥ is analogously calculated via a
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linear mixture rule of the mass specific phases ¥, thus v |
n n W]_
[ Xphjcw v thjsw (38)
- : 1 2 dmO . 1 L
i=1 i=1
where the relation between the volume and mass specific
energy density {; = p; ¥; still holds. The use of mass frac-
tions in particular affects the compatibility condition
ph \ €
rf=e—Yy e =0, (39)
i=1 Fig. 3 Qualitative illustration of the convex hull C¥ of two energy
potential wells ¥ and ¥,
as well as
Nph of the powder phase. Due to the physical behaviour of powder
0<¢ <1 and Z ;=1 (40) particles, the melting of powder is not reversible. Thus,

i=1

as constraints for the mass fractions. One can see the simi-
larities between (38) and (34). This is advantageous for the
implementation, as will be explained in Sect. 4.2.

For the specific material model at hand, three phases are
present so that npy, = 3, namely powder, molten pool and
solid. The averaged or, in other words, effective energy den-
sity explicitly used in the present modelling framework is
given by

v=— [Spow Ypow (epOWv .. ) + Emel Ymel (Emel, - - -)

dmyg
+ &sol Ysol (Esols - - )] - (41)

This averaged energy density has to be minimised subject to
the constraints regarding the domain of feasible mass frac-
tions ¢, € A with

A= {O <o =1, fpow + Cmel + fsol = 1} (42)

and the domain of the admissible strain distributions €, € £
with

&= {;pow €pow 1 Cmel €mel + {sol Esol = €} . (43)

This constrained minimisation problem results in the so
called convexification of ¥, i.e.

C¥ = inf inf ¥, (44)
Le€A €,€E

Thus, C¥ is also known as the convex hull, which is quali-
tatively visualised in Fig. 3.

In contrast to standard solid-solid phase transformation,
an additional constraint is necessary regarding the evolution

Zpow < 0 (45)

has to be fulfilled in addition to (42).

At this point, only the determination of the optimal strains
shall be discussed. The evolution equations of the mass frac-
tions will be considered in detail in Sect. 3.4. The strain states
in each phase shall minimise the averaged specific energy
density while considering (43). The aforementioned minimi-
sation problem subject to the respective equality constraint
can be solved with help of a Lagrangian

L=V +Lr:rf (46)

with the Lagrange multipliers contained in A. Accordingly,
the necessary conditions for the minimisation are determined
as

Oepou £ =0, 0L =0, 0c,L=0. (47)
It is possible to derive an explicit expression for the opti-
mal strain distributions by using (47) and by solving these
equations with respect to the Lagrange multipliers

IR
" pe dEe

(48)

After taking into account (43) and (48), the following ana-
lytical results are obtained for the respective optimal strains
of each phase

6‘Eow =E": [ppow Esol : Enel : €el] ) 49)
é‘;wl =E': [pmel Esol : Epow : Eel] + sir;re]’ (50)
ezol =E": [Psol Emel : Epow : eel] + €isr(§1, (51
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with the abbreviation

E= Cpow Ppow Esol © Emel + Smel Pmel Esol © Epow
=+ &sol Psol Epow: Emel, (52)
el

&7 =€ — {mel einrlrel — &sol 6‘i£1~ (53)
Finally, the overall stress

az%zdﬂiq:?:eel (54)
e %)

can be determined in a compact form by using the abbrevia-

tion E* = Ego) : Enel : Esol. The consolidated notation for

(49)-(51) and (54) can only be derived in case E, is an

isotropic tensor. This assumption seems to be appropriate

for the material at hand, as defined in Sect. 5.

3.4 Evolution equations

In line with, e.g., [7], it is possible to derive evolution equa-
tions for state variables )V from a dissipation function C, i.e.

WY +09,C=—Toyr, (55)

with the consistency parameter I" and the generalised
inequality constraint 7 < 0. For specific cases, it may be more
convenient to use the dual dissipation function C* instead.
This quantity depends on the driving force

v

F="

(56)

and can be computed by applying the Legendre-Fenchel
transformation

C*=max [FV-C}. (57)
1%

As an alternative to (55), the evolution equation is then given
by

V—05C"=—Tdyr. (58)
This concept is now applied in order to derive the evolution

equations for the model-specific independent internal state
variables

i 1
V = {&mel, €nmat» Esol, 51> keal }- (59)
The mass fraction of the powder is substituted by

Cpow =1- Cmel — &sol (60)

@ Springer

according to conservation of mass. As the volume and mass
fractions can be converted into one another, compare (37), the
following framework is derived based on volume fractions &,.
This enables the enforcement of the minimisation based on
the Helmholtz free energy y without weighting the equation
itself with the respective mass density p,. The stresses can
then be calculated in a straightforward manner via (54).

3.4.1 Volume fractions

In view of establishing evolution equations for the volume
fractions &ne1 and &g, the dissipation function

§
7] . . .
05 = T [Eha + &+ & (61)

is introduced together with the inequality constraints

Fmel = —&mel < 0, (62)
Fsol = —&so1 <0, (63)
rpow = —1 + &mel + Csol <0, (64)

ra = Gpow <0, (65)

derived from (42). The evolution of phase fractions is sup-
posed to occur over a finite temperature range rather than
jumping from zero to one at a specific temperature. There-
fore, this development is considered dissipative. Altogether,
two Biot-equations

_]:émel + aémelcg = —Inel aémel "mel — Fpow aé‘mel "pow

- FA aSmel N (66)
_Fésol + 3S‘SOICS = —Tol 8Eso] T'sol — Fpow aésol Tpow
- FA aEsol A (67)

are carried out which govern the evolution of the independent
volume fractions. In this case,

Fl=-
T T

(68)

refers to the driving force based on the free energy density
v,

3.4.2 Viscous strains

The evolution of viscous strains egil within the molten pool is
determined via a visco-elastic and thus rate dependent primal
dissipation function

vis
cvis — nx;el ||€-v1s ”2 (69)

mel
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- vis
€mel

Fig. 4 Explanation of the standard driving force F'i* taking into

account the whole domain, in contrast to the local driving force ]—']2‘;

being effective in the molten phase p; (grey), whereas p; (white) cor-
responds to all other possible phases present, also including p>

Therein, nggl denotes a viscosity related material constant.
For this evolution equation, no inequality constraints have to
be taken into account, therefore the right hand side in (55)
equals zero when applied to the evolution of viscous strain
contributions. In general, the driving force is calculated via
(56), such that the standard driving force for the viscous
strains is defined as
oy
A%
mel

FYS = — = lmel 0. (70)

Here, the driving force 7" equals the stress tensor weighted
with ¢mel. However, this driving force is a quantity aver-
aged over a domain due to the homogenisation framework
applied, whereas the domain can contain multiple phases and
changing mass fractions, as visualised in Fig. 4. This domain
corresponds to an infinitesimal surrounding of a material
point. As a consequence, a local driving force

pis o L W (71)

loc - is
Cmel 065,

has to be defined that affects only the molten phase within
the domain considered, see Fig. 4 and also Remark 1. This
driving force is incorporated into the evolution equation, such
that

Vi 1
€£2l = 5 o. (72)
mel

The viscous strains incorporate a fluid-like response, as a
complete relaxation of the stresses is enabled.

3.4.3 Plastic strains

For the rate-independent evolution of the plastic strains es(l)l as
well as of the variable k;‘j{d related to the isotropic hardening,

the following dual dissipation function

CP' =10 =0 (73)
is used. In the aforementioned equation, A denotes the
Lagrange multiplier and @ refers to the yield function. Fol-

lowing the same argumentation as in the previous section,
the yield function

d = 5(]:1%1@ Kloc) (74)

depends on the local driving forces

1 9y
L (75)
pl
Csol 33501
1 3% ésol hard
Kloc i= ——— ——— = —— H k2, 76
loc ool 9 k?glrd Zool sol Kgol ( )

which yields the associated evolution equation for the plastic
strains

= 22 (77)
sol — T pl
8’ﬁ.lOC
and for the hardening variable
. 0P
fhard — 5 ) (78)
sol 9 Kloc

The yield function is specifically chosen as

|| P! 2y
¢ = H}-loc,dev - \/; [Gsol - Kloc] (79)
2 &sol
= o] -3 [asyol + 22 H kl‘gfd] , (80)
where osyol refers to the yield stress of the solid phase and

where ¢V := o — % tr(e) I denotes the deviator of the quan-

tity o. With this, the flow direction can then be specified as

9®
b= = 81)
9 FP llogevl

loc

together with 0® /9«10 = /2/3.

Remark 1 In general, a driving force F = —dy ¢ is cal-
culated for all internal variables V. However, the evolution
of the internal state variables V' of the corresponding mate-
rial only depends on the local driving force Fjqc, as discussed
before. In contrast, the mechanical dissipation entry Dyechy =
FV regards the complete driving force, as the thermody-
namic consistent driving force F is already weighted within
Dinech due to the homogenisation approach applied for ¥.

@ Springer



1330

Computational Mechanics (2020) 66:1321-1342

3.5 Heat effects

All standard heat transfer mechanisms, particularly heat
expansion, conduction, radiation and convection, are con-
sidered within the model formulation and shall be briefly
discussed in what follows. With respect to the heat expan-
sion model and related thermal strains 322)1, a standard linear
relation

el 1= ool [0 — rer] 1 . (82)

is used, where o) represents the (isotropic) heat expansion
coefficient of the solid phase and where 6, denotes the ref-
erence temperature. The heat expansion of the powder and
molten phase is negligible compared to the expansion of the
solid phase.

In addition, a standard isotropic Fourier-type form is used
for the heat conduction model, viz.

Geona = —k VO T. (83)

In this relation,

—1

-~ Cpow Cmel Esol i|

k= + =4 = (84)
|:kp0w kmel ksol

represents the averaged heat conduction coefficient of the
phase mixture according to a Reuss-type homogenisation
with k, as the respective heat conductivity of each phase.

Moreover, heat convection and radiation are regarded on
the outer boundaries. In a standard manner, heat convection
is considered by

qconv = —h [Osurt — Oamb], (85)

where h refers to the convective heat transfer coefficient,
i.e. the reference film coefficient. Furthermore, 0, and Ok
denote the surface and ambient (sink) temperature, respec-
tively. In addition, radiation heat flow can be given by

Grad = —Oboltz €emiss [[9 — 071 — [Oamp — ez]‘*] . (86)

with opor, = 1.38064852 x 1072 m?kgs™2K~! corre-
sponding to the Stefan-Boltzmann constant, €enmiss being the
emissivity coefficient, 9 defining the value of absolute zero
on the specific temperature scale used and with 62 referring
to the ambient temperature of the surrounding media. For fur-
ther insight into the heat transfer mechanism the interested
reader is referred to, e.g., [6].

As introduced in (19) and (20), the balance equations
depend on the effective specific heat capacity which is here

@ Springer

given by
Ci=—005,¥
A%
= — [§pow Cpow 1 Emel Cmel + Esol Csol] — X - (87)
dmg

It is worth noting that the specific heat capacity is dependent
on the volume fraction &, rather than on the mass fraction &,.
This is due to the direct dependence of the effective specific
heat capacity with the averaged specific energy . Besides,
quantity x stems from the thermoelastic coupling via the
thermal strains in the solid phase and is defined as

= Gy, %o ¢2E7" ) (1L (88)

X
However, in the present framework, this contribution turns

out to be negligible due to the dependence on the square of
the heat expansion coefficient.

4 Implementation and algorithmic
treatment

The framework at hand has been realised with help of the
commercial FE-based software Abaqus. For the FE imple-
mentation, not only the time discretisation and the evolution
of the volume fractions are necessary, but various user sub-
routines also need to be specified to implement the present
modelling framework. For example, the constitutive model
defined in Sect. 3 has to be incorporated into Abaqus via
the subroutine UMAT, whereas the thermal material model is
adapted within UMATHT. In general, the strong form of the
energy balance is defined as

pé=—V.q+r* (89)

in Abaqus, see [13], where r* symbolises all effective
heat sources. Following the derivations in Sect. 2, some
differences are visible. Overall, the heat sources in a ther-
momechanical problem can be additively decomposed into
the sum of external heat supply rex; and the volumetric heat
generation caused by mechanical working of the material

Fmech = Dmech +60 99 [0 1 & — Diech | - (90)
This results in

1™ = Text + 'mech- oD
All terms contributing to rpech are calculated within the

user subroutine UMAT as contributions to the variable RPL
as defined in [13]. In a thermomechanical analysis, this
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contribution—if specified—is automatically added to the
external heat sources. In doing so, it is possible to directly
include the influence of mechanical working and dissipation
in Abaqus. To complete the model, the moving heat flux
representing the laser beam is added in the user subroutine
DFLUX. In addition, an internal strategy of Abaqus (*Model
Change) is used to model the layer construction during the
SLM process. For further information, see [2] and the refer-
ences cited therein.

4.1 Global finite-element-based algorithm

In this section, the discretised weak forms of (3) and (19)
as introduced in Sect. 2 are defined, where the contributions
from both mechanical equilibrium in the absence of mechan-
ical body forces and heat equation for a thermomechanically
fully coupled system are considered. The completely discre-
tised weak form can be given by

A[/ th;dso—/ a-VxNXdVo:|=0, (92)
aBe e

/ q,,NgdSo—i—/ q - VNS dvy
C:ll aBe Be
+/er°’“Nng0—/BEpEéNng0

+ 5 Dhinech Ng‘ dVo

+9/ 30 : & — Dimech] N dVo} =0, (93)

where A denotes the assembly operator, N%, and N g sym-
bolise the corresponding set of shape functions, p refers to
the current density, see also Remark 2, surface tractions per
unit area are represented by ¢ = o - n and the heat flux vec-
tor is given by g, = —q - n, with n describing the outward
normal unit vector. The derivation of the discretised weak
form is given in the Appendix A.

Remark 2 In analogy to (41), the current density is defined
as 0 = Cpow Ppow + Cmel Pmel + Lsol Psol- At the beginning of
the simulation, the material completely consists of powder
material, thus p := ppow. The effective density obviously
changes during the process due to the evolution of the mass
fractions. This can be implemented within the user subroutine
UMATHT, where the density is artificially adapted, cf. the
explanations in [2].

4.2 Local algorithm

In general, all time derivatives e are approximated by a for-
ward difference quotient

o n ["“. - ”.] /At (94)

wherein "e refers to the previous and "*le to the current
time step of the quantity e. The time increment is defined as
At = "1t — "¢ This time discretisation is applied not only
for the temperature and strain field rate, §andé, respectively,
but also for all rates of internal variables V. The solution of
the time-discretised versions of the evolution equations given
by (66), (67), (72) and (78) with respect to "1V is discussed
in the following. Evolution equation (72) can be explicitly
solved for arvézl by using the backward Euler scheme, such
that

n+1 n+1 n+1_pl
n+l1_vis __ Ato( Emeh %‘501’ esol) +n vis 95)
€mel = vis € mel- (
el

Consecutively, the viscous strains are replaced with this ana-
lytical expression throughout the algorithm. The constraint
(45) can be further reformulated by inserting relation (60)
and by applying the forward difference quotient so that
n_H;mel - némel _ n+l§sol - nCsol
At At '

C-pow = (96)

With these conversion at hand, the distinct set of inequality
constraints introduced in (62)-(65) is now defined by

Fmel = — " émel <0, ©7)
reol = — "l <0, (98)
Fpow = — 14+ " gme + " <0, (99)

ra=—"""tmel +"Cmet — "ol + "ot <0, (100)

which has to be fulfilled by the algorithm. The first two resid-
uals emanating from the evolution equations with respect to
the volume fractions of the molten and solid phase are specif-
ically given by

r1=% oy - mel‘f‘mrpow

dmg 0&mel dmo

_ pm#ivo s+ Z_i [ s = "6

~ Z—i % [”+]$pow _ "Epow] ’ (101)
rz:j_n‘f());é_z_ S°1+%dovoppow
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. Psol AV

'y +
dmyg A

§
U
At I:n+1£fsol - ngsol]
77E Psol [n+1
- Spow

(102)
At Ppow

- népow] )

where the dissipation function specified in (61) is analo-
gously discretised by using (94), and where the explicit def-
inition for &pow is not inserted because the terms are already
rather lengthy. The compatibility conditions belonging to
the constraints (97)—(100) shall be transformed into equal-
ity constraints by using the regularised Fischer—-Burmeister
nonlinear complementarity function, as applied in [2] and
explained in the references cited therein. For a more gen-
eral overview and further insight, cf. [5]. Thus, the residual
entries

3= \/ Fhg 4 e +28% 4 rmet = Tinel (103)
m + 7ol = Tsol (104)
\/ o T Taow 282 4 rpow — Tpow (105)

=\/m+m—u (106)

can be implemented into the framework, where the pertur-
bation parameter § = 107!0 is used. With this parameter, a
continuously differentiable function exists.
Furthermore, (77) and (78) are discretised in time by using
a backward Euler scheme, resulting in
ngP! n+1 _pl

r7= "€y — €50l

1
+ At A (" e, ", T ER ), (107)
rg = "khard _ ntlphard o Ap 5 /2/3. (108)

To calculate the consistency parameter A in (107) and
(108), the complementarity conditions related to the evolu-
tion of plastic strains are incorporated via

rg=vVA2+ P2 4+282+ P —A. (109)
The final residual
Kz[rlers r3, r4, rs, r67£77r8v rg]t=Q7 (110)

has to be solved with respect to

pl hard 5 ]t

i [Emela Esola mels Lol Fpow, N Esol? sol ’
(111)

. .. 1 .

where the tensorial quantities 7 and 9501 are rewritten as vec-

tors with the help of the Kelvin notation, resulting in vectorial
. 1

entries r, and 2501

@ Springer

Using the Fischer-Burmeister nonlinear complementarity
function has the advantage that a standard solver, such as the
Newton-Raphson scheme, is applicable even though inequal-
ity conditions have to be fulfilled. This method is then used
to solve (110) for (111), where the norm of the residuum is
checked in every iteration with a tolerance € = 1075,

5 Numerical examples

In this section, different numerical examples are discussed.
The material model is adapted to a TigAl4V titanium alu-
minium alloy with material parameters according to Table 1.
The transformation strains are directly defined via the mass
densities. The parameter n° incorporated in the dissipation
potential D¢ is set to n° = 0.005 for the examples at hand.
This parameter can be used to adjust the temperature range,
in which the phase changes occur in comparison to exper-
imental findings. Moreover, it can be used to potentially
stabilise the global FE scheme in terms of numerical robust-
ness. In addition, the viscous strain parameter is chosen as
¥, = 70, so that a high relaxation within the molten (fluid)
phase is feasible. The mechanical parameters, i.e. Poisson’s
ratio v, Young’s modulus E and yield limit oY, are taken
from the literature, see [32,36,46]. The hardening modulus
Hy s, at this stage, chosen without particular literature ref-
erence. The thermal material parameters, i.e. the expansion
coefficient «, the specific heat capacity c, the conductivity
k and the latent heat L, as well as the initial tempera-
ture 6™ and the reference temperature 6™ are parameters
based on [32,36]. The respective effective counterparts which
are used to calculate the material response follow from the
homogenisation approach introduced in the previous chap-
ters in contrast to material models which directly incorporate
temperature-dependent averaged material properties. Fur-
thermore, it shall be remarked that the difference in the mass
densities of the material’s phases is rather large and, in conse-
quence, the volume changes captured by the transformation
strains. Therefore, one could argue that the used small strain
approach may not be appropriate. However, we consider the
small strain formulation acceptable, as little rotations are
present (see Remark 3) and the rather large transformation
strains are completely volumetric.

Remark 3 The deformation gradient F can be multiplica-
tively split into a rotation tensor R and a stretch tensor U,
so that F = R - U. The general definition of the small
strain tensor has been introduced in (1). In general, the
strain measure is introduced via the deformation gradient,
so that, e.g., & := % [F + FT] — I. For negligible rotation
R ~ 1, it follows that & ~ U — I. For the model at hand,
= 3 [Vu +[Vul'] ~ U — I is valid.
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Table 1 Overview of the used material parameters of TigAl4V adopted
from [32,36,46]

Powder Melt Solid
p [kg/m3] 2800 3800 4420
v [-] 0.33 0.45 0.33
E [GPa] 1.2 2.9 88.8
oY [GPa] - - 0.55
H [GPa] _ _ 1
o [1/K] - - 1.1e-05
Aini [K] - - 273.15
pvis _ 70 _
¢ [I(kgK)] 750 750 750
k [W/(mK)] 9.5 33.4 17.8
L [k)/kg] 286 - 286
oref [K] 1873.15 - 1873.15

5.1 Proof of concept

In order to investigate the pure material response of the
proposed framework, a temperature cycle is prescribed at
material point level with zero Neumann boundary conditions
as aproof of concept. At the beginning, the temperature is lin-
early increased in a time interval At = 1 ms from6 = 873K
to# = 2873 K, then decreased back to # = 873 K in the same
time span, see Fig. 5a. The resulting strain evolution is shown
in Fig. 5b, while Fig. 6 illustrates the corresponding evolu-
tion of mass and volume fractions. The significant changes
in the strains occur simultaneously to the evolution of phase
fractions. For constant phase fractions, the strains are there-
fore also constant, except for the re-solidified phase where
the strains decrease while the material cools down due to
heat expansion. Due to the zero Neumann boundary condi-
tions, no stresses arise, so that no viscous or plastic strains
are present in this conceptual proof.

In Fig. 6, particularly the difference in the evolution of
the mass and volume fractions for the three phases can be
examined. The material initially purely consists of pow-
der, thus &pow = {pow = 1. With increasing temperature,
the first phase change towards the molten phase starts at
approximately 0 ~ 1880 K and finishes at 8 ~ 2330 K. The
solidification process begins at 6 ~ 1870K and ends at
6 ~ 1520 K. As already indicated above, the parameter n¢
governs the time span in which the phase transition occurs
and thereby significantly affects the temperature interval
as well. In other words, it is possible to affect the mushy
region between the solidus and liquidus temperature with
this parameter, as it controls the rate dependent behaviour of
the evolution equation (61). From this numerical example,
it can be concluded that a volume change of approximately
36 % occurs during the process.

5.2 Simulation of basic SLM processes

In the following, the modelling and simulation of basic SLM
processes are presented. The main geometrical model with
all boundary conditions on 95 is conceptually illustrated in
Fig. 7 for the representative building chamber. For the exam-
ple at hand, homogeneous Dirichlet boundary conditions are
prescribed for the displacement, so that

0By: uz=0 V x3=d, (112)
0B3: ur=0V x=w, (113)
0Bs: up =0V x =0, (114)
0Bs: u; =0V x;=1I, (115)
Bs: u; =0V x1=0. (116)

The temperature at the bottom surface is prescribed based on
aBy: 6 =373.15K V x3=d. (117)

Additional heat flux terms due to convection gcony and radi-
ation gryq are present at the top surface, i.e.

0B1: qeonv Y x3=0,
831: qrad \4 )C3=0.

(118)
(119)

In addition, the laser beam heat input which is represented
by the volume-distributed heat source rex; exists along the
respective scanning path.

Various models exist for the application of the heat flux
rext generated by the laser beam as accurately as possible, see
e.g. [20,22,26,47]. For this model, a volumetric heat source
as proposed in [19] for welding is adjusted for SLM, such
that the external heat source is defined within the Abaqus
subroutine DFLUX by

442p ( 2(x;2+x§2+xg2)>
pl— :

——= €X
3 2
VONQ/JT ro

rext(xis xév xé) =
(120)

where P defines the laser power, rq is the characteristic
(focus) radius of the laser beam and x! refers to the mov-
ing coordinate system whose origin lies in the centre of the
laser beam at the top surface of the current powder layer, see
Fig. 7. Coordinates x] and x} are needed to define the laser
movement in dependence of the laser velocity vig: within the
x1-x2-plane. Coordinate xé depends on the height Ay of a
single layer and on the current number of applied layers ny;,
so that x§ = x3 + nyr Ay -

For the following simulations, the laser power is set to
P = 130 W with velocity vigy = 1 m s~! and focus radius
ro = 150 um. A convective heat transfer coefficient of air
h = 25WK ' m2 is used, whereas the emissivity of the
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Fig.5 Proof of concept via thermal cycle at material point level: a prescribed temperature evolution and b resulting strain evolution. The significant
drops in the strain evolution occur during the transitions between powder, molten, and re-solidified material
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Fig.6 Evolution of the respective mass and volume fractions over time and temperature for the three phases: a powder phase, b molten phase and
c re-solidified material, with prescribed temperature evolution according to Fig. 5a

titanium alloy is set to €cmiss = 0.19, cf. [1]. A layer height
hiyr = 50 wm is used, whereas the height of the base mate-
rial is chosen to be larger (150 pm). Overall, a part made
out of three layers njy; = 3 will be simulated. To model the
application of different layers, the element birth and death
method implemented in Abaqus is used (*Model Change).
More insight into the laser beam model and layer construc-
tion model can be found in [2]. Different models for the
laser beam impact as well as models for the heat transfer

mechanisms could be incorporated into the algorithm in a
straight-forward manner.

The initial part only consists of powder material where the
firstlayer of material is already activated. At first, the building
chamber is homogeneously pre-heated to 6 = 373 K subject
to the respective boundary conditions. Afterwards, the laser
beam is applied along the predefined scanning path and a
cooling time is given before the next layer of powder is acti-
vated. This procedure is repeated until all three layers have
been activated and until the laser beam has been applied.
Finally, the work piece cools down to the building chamber
temperature #. For the simulation, the element type C3DSHT
is chosen. Due to high temperature gradients and laser veloc-
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scanning path
Gconv, Qrad 0B 0B3
0Bs

x1

Fig. 7 Definition of boundaries for basic process simulations. (Color
figure online)

ity, a dense mesh is used close to the laser beam path. Within
this region, a characteristic element length of /.o & 20 pm
is applied, as visualised for the straight laser path in Fig. 8. For
the L-shaped laser path, a constant mesh of /opr & 20 um is
used, as shown in Fig. 9. For both examples, three elements
per layer are used in thickness direction. During the sim-
ulation, the automatic time incrementation included within
Abaqus is used. The simulations are performed on the Linux
HPC cluster (LiDO3) at TU Dortmund University, where one
compute node using eight cores is taken for both simulations.

5.2.1 Straight laser path

For this example, the laser beam moves 1 mm along the
x1-direction. The geometry considered, respectively half of
the geometry, is specified by / = 3.3mm, w = 1mm
and d = 0.3mm for the boundary conditions introduced
in (112)—(117). In Fig. 10, the temperature evolution 6 (x, ¢)
and the evolution of the mass fraction of the molten phase
Cmel 18 illustrated. The deformed mesh (with scale factor one)
is plotted for all consecutive figures. The depth of the molten
pool increases as can be seen in Fig. 10b, ¢ compared to
Fig. 10a due to the higher conductivity of the already re-
solidified layers. This allows the connection of newly added
layers to previous ones so that there is one compound. The

layer 3
layer 2
layer 1
bage
material

layer 3
layer 2
layer 1
base
material

Fig. 9 Geometry of the L-shaped laser path model in [mm] with a
layer height of 0.05 mm and a height of the base material of 0.15 mm.
In addition, the corresponding mesh is visualised. (Color figure online)

volume shrinkage of the material during the melting is indi-
cated in Fig. 10. After the application of all three layers and
the consecutive cooling, the final re-solidified part can be
identified in terms of the volume fraction &g, see Fig. 11a,
b, where in the latter figure the solid part has been virtually
extracted. These two Figures show the re-solidified material
after applying the laser beam to three layers in contrast to
Fig. 10c, where only the current state of the molten mate-
rial during the third scanning is visualised. The maximum
value of the volume fraction of the solid phase equals 0.633
(i.e. max &so1 = Ppow/Psol = 0.633) in contrast to the related
mass fraction (max s, = 1), compare Fig. 6c.

The incorporation of rmyech in the subroutine UMAT as
defined in (91) is quite important. Without the coupling
term RPL, the maximum temperature within the molten pool
would be overestimated by approximate 200 K. Within rmech,
not only the dissipative effects due to the internal state vari-
ables V are included, but also the latent heat effects are
thermomechanically consistent incorporated into the frame-
work. For example, the latent heat terms in Ypow and Yo
change the heat conduction and cooling speed. In the litera-
ture, mostly the apparent heat capacity method as introduced
by [8] is used to capture the effects of the latent heat in an arti-
ficial increase of the heat capacity, e.g. [11,15,18,42,45,48].
An in-depth study on different methods to include latent heat

Fig.8 Geometry of the straight laser path model in [mm] with a layer height of 0.05 mm and a height of the base material of 0.15 mm. In addition,

the corresponding mesh is visualised. (Color figure online)
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Fig. 10 Distribution of temperature 6 (NT11) in [K] on the left side and the respective mass fraction {me of the molten phase on the right side for
the same time step while scanning a layer 1, b layer 2 and ¢ layer 3, where the laser beam has reached the end of each straight line. (Color figure

online)
(a)

Esol
(Avg: 75%)

Fig. 11 Final distribution of a the re-solidified volume fraction &0 and b the final virtually extracted part with re-solidified mass fraction {5 (cut
at the red line displayed in (a) and rotated; red dot used for graphs in Fig. 13) after cooling down to the building chamber temperature. (Color figure

online)

effects during phase changes can be found in [35]. In [42],
the influence of the latent heat for the solely thermal prob-
lem has been specifically examined, where similar results
were obtained compared to our studies. Overall, (91) mainly
regulates the temperature evolution and thus the melt pool
geometry rather than the absolute stress values. In general,
the laser beam parameters influence the melt pool geometry
which affects the hatching strategy and the layer height while
simulating a complete part.

The residual stresses stemming from heat expansion and,
more significantly, the volume changes due to the phase
transitions, are illustrated in Fig. 12. These stresses are partic-
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ularly significant within the re-solidified part, as the powder
material exhibits a small Young’s modulus (Fig. 12d). In the
contour plots, it is observable in Fig. 12a that particularly
high tensile normal stresses are present in x-direction of the
third layer, in other words along the direction of the moving
heat source. In addition, high compressive normal stresses
exist in xp-direction which is perpendicular to the direction
of the moving heat source, see Fig. 12b. Negligible stresses
are present in x3-direction as presented in Fig. 12c. Not pic-
tured are the shear stresses, as these stresses are negligible
(for the coordinate system considered) compared to the high-
lighted normal stress contributions.
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Fig. 12 Distribution of normal stresses in [GPa] of the virtually extracted final re-solidified part in a x|-direction (S, S11), b xz-direction (S, S22)
and ¢ x3-direction (S, S33). The von Mises equivalence stress oy . (S, Mises) for the overall part is shown in (d). (Color figure online)

To gain a better understanding of the stress evolution, a
centred element in the first layer shall be considered in detail
indicated by a red dot, see Fig. 11. In Fig. 13a, the related
temperature and the molten mass fraction are illustrated. A
steep temperature increase is found when the laser beam is
applied. During the second scanning, the top material re-
melts, whereas during the scanning of the third layer, the
first layer does not completely re-melt again. When exam-
ining the stress evolution in Fig. 13c, the relaxation of the
stress o1 is noticeable during the scanning of the second
layer. In contrast, stress op increases, as the expansion and
contraction of the material in x,-direction is hindered.

The temporal evolution of various significant quantities
is exemplarily presented for one element of the first layer in
Fig. 13. The values of the nodes are averaged for the element.
In Fig. 13c, the stress evolution is shown. High total strains
are present for €77 and £33 in Fig. 13b. After cooling down
for the third time, see Fig. 13a, a steady-state is reached for
the strains and stresses, as visualised in Fig. 13b, c.

As mentioned before, various models use a phenomeno-
logical approach to define a macroscopic inelastic strain
contribution that accumulates all irreversible processes. This
is often denoted as the inherent strain method, see e.g.
[24,31,40,41]. In a post processing step, the accumulated
irreversible strains ™ can be evaluated with the introduced
model. These are then defined as

irr trans is trans pl th
el = gmel [sme] + 81\',113]] + gsol [esol + esol + esol]-

(121)

The evolution of this averaged inherent strain of one element
is exemplarily plotted in Fig. 13d. Due to the volumetric
transformation strains, the evolution of inherent strains is

(quasi) volumetric for the particular boundary value problem
considered until the part solidifies. Then the accumulated
inelastic strain evolution differs: larger strains are only found
in x»- and x3-direction, while these strains almost coincide
again during the second re-melting. After cooling, almost no
further changes occur. Only one small peak is visible when
the third layer is applied and molten. This is in accordance
with Fig. 13a, as the element does not completely remelt
during the third cycle. In the final state, high irreversible
strains for the x»- and x3-direction are present.

5.2.2 L-shaped laser path

In addition to the aforementioned case, a more complicated
laser beam path is simulated. For this example, the laser beam
moves 0.75 mm along the x{-direction and 0.75 mm along
the x;-direction. Similar to the example before, three layers
are consecutively added. The boundary conditions defined
in (112)—(117) are referred to a geometry with / = 1.6 mm,
w = 1.6 mm and d = 0.3 mm, cf. Figs. 7 and 9. In theory, it
is possible to model even more complex geometries. How-
ever, the computational time increases considerably with a
larger number of elements and longer laser beam paths. When
comparing both simulations, the straight laser path needs
approximately 17 hours, where 27 693 elements are used.
Overall, the model exhibits 151 821 degrees of freedom. The
example of the L-shaped laser path, however, is applied using
108 800 elements and a total of 581 192 degrees of free-
dom. Altogether, the computational time increases to almost
8 days. The final results of the L-shaped path are presented in
what follows, where the solid part has been virtually extracted
for all illustrations.
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Fig. 14 Distribution of total strains ¢;; (E, ELJ) of the virtually extracted final re-solidified part: a normal and b shear strains. (Color figure online)

First of all, the normal and shear strain distribution is pic-
tured in Fig. 14, where the deformed mesh (with scale factor
one) is presented. Here, a couple of effects are striking: the
dependence of the strains and the laser path orientation is
obvious, compare Fig. 14a for €11 and e;. While the beam
moves along the xj-direction, small tensile strains &1 are
present. The values of the strains change as soon as the laser
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beam turns and moves along the x»-direction. The strains €11
switch from tensile to compressive strains and small tensile
strains g7 are present. In addition, especially high normal
compressive strains £33 are found within the part, as it shrinks
the most in depth. Due to the changing laser beam path, shear
stresses are induced, as illustrated in Fig. 14b. Large nega-
tive shear strains €23 change to high positive shear strains
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Fig. 15 Distribution of normal stresses in [GPa] of the virtually extracted final re-solidified part in a x|-direction (S, S11), b x;-direction (S, S22)

and ¢ x3-direction (S, S33). (Color figure online)

13 after the kink, as a symmetry is present with respect to a
plane parallel to —x; = x;. Altogether, the strains are rather
constant along the width of the re-solidified part and within
one direction of each layer. In contrast—with an increasing
number of layers—the magnitude of the strains increases.

Although the laser beam path, respectively the objective
geometry, is symmetric with respect to the underlying sym-
metry plane and although the distribution of the strains is
almost symmetric as well, the distribution of the resulting
solid part is not completely symmetric. The widths of the
two sides differ slightly. This can be explained by the rather
coarse discretisation. In addition, the depth of the simulated
workpiece increases at the turning point of the laser beam and
the part is notably wider at the kink. Due to the turning of the
laser, the heat influence takes place over a longer time period
compared to the positions further afield and the straight lines
considered in Sect. 5.2.1. This effect has to be borne in mind
when manufacturing more complex components.

Figure 15 shows the normal stresses which are signif-
icantly larger than the related shear stresses. In analogy
to Fig. 14a, the stresses vary according to the laser beam
movement. This becomes especially visible when comparing
Fig. 15a,b. High tensile stresses 011 and 027, respectively, can
be found along the movement of the laser beam. High com-
pressive strains exist perpendicular to the laser movement,
especially in the lower portion of each layer. In x3-direction,
less normal stresses 033 are computed.

Finally, the equivalent irreversible strain £ (in analogy
to the equivalent von Mises stress) shall be analysed, as
illustrated in Fig. 16. Overall, the results show a symmet-
ric distribution of ™ with respect to the loading path. This
coincides with the inherent strain method, where the orien-
tation of the laser beam path is of immense importance, cf.
[24]. In summary, the values of strains and stresses them-
selves significantly change with respect to the loading path,
but correlate to one another when taking into account the
movement of the laser beam.
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Fig. 16 Equivalent irreversible strain girr (analogous to von Mises
stress) of the virtually extracted final re-solidified part. (Color figure
online)

6 Conclusion

In this contribution we presented a three dimensional and
thermomechanically consistent fully coupled framework for
the simulations of Selective Laser Melting processes based
on a phase transformation model. The different states of the
material—powder, molten and re-solidified—are explicitly
taken into account with the respective mass densities, where
the mass fractions are determined via homogenisation and
energy minimisation. The phase distribution is not coupled
one-to-one to the temperature distribution, e.g. the melting
point, but is a result of the calculated distribution of the mass
fractions which is defined within the minimisation prob-
lem. Furthermore, we consider the volume change during
the changes of the material state through physically sound
motivated transformation strains. In addition, further inelas-
tic strain contributions are considered, i.e. a viscous strain
in the molten phase and a plastic strain in the re-solidified
phase, which are derived via dissipation functionals. More-
over, a thermal strain is included in the re-solidified material.
This constitutive model is then implemented into the com-
mercial finite element program Abaqus to simulate the SLM
process. To model the manufacturing process, further mod-
els are applied, e.g. for the laser beam heat source and the
layer build-up. Due to the micromechanically properly moti-
vated material model, it is possible to predict the process
induced residual stresses and the temperature evolution in
a reasonable manner. In a post-processing step, the accumu-
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lated inelastic strains present are calculated. This information
can be incorporated in a phenomenological model by using
an averaged inherent strain tensor.

In future work, the previously derived and computed irre-
versible strains shall be averaged to an inherent strain tensor
and applied to more complex geometries. With the enhanced
material model at hand, it is possible to establish an effi-
cient simulation framework to predict residual stresses and
the final geometry for larger process simulations. Thus, the
idea of the inherent strain method, to model more com-
plex geometries and laser beam paths, without the need for
extremely time consuming simulations, can be applied based
on the previously shown simulation results. In addition, a
mesh optimisation and code optimisation could save further
computational time. It shall be emphasised that the mate-
rial model at hand can also be used for the simulation of
other additive manufacturing processes based on metallic
powder, for example laser cladding. Furthermore, the used
phase transformation model allows the incorporation of mul-
tiple solid phases which could preferably form depending
on the specific local cooling rate and stress state. In view
of the titanium alloy considered here, the related «- and 8-
phase could also be taken into account. This is supposed to
have a significant effect on the residual stress prediction and
may therefore improve the results. In addition, the material
model can be further enhanced, for example the necessity of
a temperature-dependent yield limit for the plastic strains or
of temperature-dependent material parameters needs to be
investigated. In the long term, due to the highly changing
mass densities, it may be necessary to enhance the constitu-
tive framework by using a large strain framework. In view of
the model verification, some parameters still need to be iden-
tified which requires comparisons to available experimental
data. In this way, the material and process parameters can
be calibrated accordingly to further improve the simulation
results.
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Appendices
A Finite element framework

The discretised weak forms of (3) and (19) shall be derived
in detail by considering the contributions from both mechan-
ical equilibrium in the absence of mechanical body forces
and heat equation for a thermomechanically fully coupled
system as introduced in Sect. 2. The weak form is obtained
by multiplying (3) and (19) by an admissible test function for
the displacement and temperature field, Su and §6, respec-
tively. Subsequently, the resulting equations are integrated
with respect to the volume of the body B. Finally, integration
by parts and the divergence theorem are applied. This yields

/ [a~n]~8udSo—/a:V8udV0=O, (122)
B B

—f q~n89dSo+/q-V89dVo+/ reXt 0 dv,
B B B

—/ pzéaedvo+/ Dimech 86 dVy
B B

—l—/ 0 %lo : &€ — Dimecn] 80 dVp = 0, (123)
B

where p denotes the current density, and where n describes
the outward normal unit vector. Using Cauchy’s theorem,
surface tractions per unit area are represented by ¢t = o - n
and the heat flux vector g, = —¢q - n is analogously defined.

To discretise the problem in space, body B is decomposed
into ng finite elements, thus

nel

Z[/ t-(SuedSo—/ a:vxsuedvo}=o, (124)
—l 386 e

nel

Z[/ q,,(seedSoJr/ q-V(SH"dV0+/ r*Lse¢ dvy
= Lo Be Be

—/ pT080°dVo+ | Dmecn 86 dVo
e Be

+/ 0 dglo : & — Dmecn] 80° dV0i| =0. (125)

In addition, the test functions are analogously discretised
element-wise

0
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50° ~ Y NE50°C
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nu
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e~ u eA
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(126)
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for each element node ne;,, where N f\v N, g denote the corre-
sponding set of shape functions. For the problem at hand, the
same type of shape functions are used for both fields. The
contributions du4 and §0¢C represent the respective values
of the test function at the nodes. With these relations at hand,
and by additionally defining the assembly operator A, the
completely discretised weak form can finally be given, see
(92) and (93).
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