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Abstract
Increasing dynamics in solids featuring nuclei subjected to second-order quadrupo-
lar interactions lead to central-transition spectra that undergo two consecutive line-
shaped transitions. Conventional motional narrowing occurs when the molecular 
exchange rate is on the order of the strength of the dominant interaction. In a second 
step, the resulting intermediately narrowed spectra change further when the motion 
becomes faster than the Larmor precession rate, leading to terminally narrowed 
spectra that can display a residual quadrupolar shift. We derive analytic expres-
sions for this shift and analyze the quadrupolar central-transition spectra in terms 
of CN symmetrical cone models. Increasing the number of sites to N ≥ 3, the termi-
nally narrowed spectra remain unaltered, while the intermediately narrowed spectra 
remain unaltered only for N ≥ 5. This finding relates to the different (cubic vs. ico-
sahedral) symmetries that are required to average out the spatial second- and fourth-
rank terms in the second-order quadrupolar interaction. Following recent work 
(Hung et al., Solid State Nucl Magn Reson 84:14–19, 2017), 17O NMR is applied to 
examine the three-site rotation of the nitrate group in NaNO3. Line shapes are meas-
ured and analyzed, and in addition to prior work, satellite-transition and stimulated-
echo experiments are carried out. The final-state amplitudes extracted from the latter 
are reproduced using model calculations. It is shown how two-dimensional exchange 
spectra relating to N-site cone motions can be decomposed in terms of effective two-
site-jump spectra. This latter approach is successfully tested for NaNO3.
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1  Introduction

For many nuclear magnetic resonance (NMR) studies, observing motion-induced 
spectral narrowing is an indispensable source of information to map out the 
molecular dynamics in solid- and liquid-like materials [1]. Tracing the dynam-
ics of such materials using, e.g., popular spin-1/2 probes, the motional narrow-
ing observed when increasing the sample temperature is typically found complete 
if the molecular reorientation rates exceed the spectral width accessible via the 
probe nucleus. For isotropic molecular motions, motional narrowing effects usu-
ally lead to narrow, "fully averaged" spectra. Conversely, if the molecular motion 
is anisotropic, a significant residual line width usually remains. In the presence of 
first-order anisotropies originating, e.g., from chemical shift or relatively small 
quadrupolar interactions, many scenarios of molecular motions and their impact 
on the resulting high-temperature NMR spectra were considered [2–4].

Currently, also the exploitation of nuclear probes with spins I > 1 is of particu-
lar interest when studying molecular or ionic dynamics since many applications 
in the life and materials sciences require alkali, oxygen, and many other nuclear 
probes with half-integer spin I > 1 [5–10].

Recently, it was emphasized that in the presence of second-order quadrupo-
lar interactions, an interesting motional narrowing scenario can arise. In their 
17O NMR study on NaNO3, Hung et  al. [11] pointed out that “for central-tran-
sition spectra of half-integer quadrupolar nuclei in solids, line shape change 
due to molecular dynamics occurs in two stages. The first stage occurs when the 
exchange rate is comparable to the second-order quadrupolar interaction. The 
second spectral transition comes at a faster exchange rate which approaches the 
Larmor frequency and generally reduces the isotropic quadrupolar shift”. In other 
words, for strongly quadrupolarly perturbed nuclei, an intermediate motional nar-
rowing (IMN) precedes what may be called terminal motional narrowing (TMN). 
In that latter regime, the spectra can still exhibit a significant, non-Lorentzian line 
shape. A quantitative description of the spectra referring to the transition between 
the two narrowing regimes usually requires numerical calculations in terms of the 
stochastic Liouville equation [12, 13].

By contrast, in the presence of isotropic motions, a simpler description is 
possible for strongly perturbed quadrupolar probes [14–16]. Here, the transi-
tion between the two narrowing regimes usually involves a description in terms 
of a multiexponential dephasing and leads from one Lorentzian line to another 
Lorentzian line when progressing from (conventional) motional narrowing to 
extreme narrowing. The interesting effects of second-order quadrupolar broaden-
ing [17] and second-order quadrupolar shift [18] which occur between the two 
corresponding dynamical ranges were recently exploited in studies of glass form-
ing materials not only using the 17O probe but also employing other nuclei such 
as 11B and 87Rb [19–21].

Spectra in the TMN regime, with anisotropic motions fast on the Larmor scale, 
can often be assessed analytically in terms of an orientational averaging car-
ried out over the sites visited during the motion. In the literature, examples for 
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such an averaging are discussed in relation to (relatively small) first-order ani-
sotropies, see e.g., [3] and references cited therein. Here, we will elucidate the 
consequences of such an averaging also in view of (much larger) second-order 
anisotropies. Furthermore, the only partial quenching of the isotropic (low-tem-
perature) second-order quadrupolar shift by rapid, but anisotropic reorientational 
motions is also explored. These results, mostly obtained in the framework of dis-
crete N-site cone models featuring CN symmetry, should be useful to describe 
the regime of fast molecular motions in crystalline samples. There are various 
examples from 17O NMR for crystalline materials that owing to their structure 
can display twofold [22–24], threefold [25–27], fourfold [10], or sixfold [28, 29] 
molecular jump processes.

On the experimental side, we examine oxygen-17 labeled NaNO3 in a tempera-
ture range that is somewhat larger than covered previously [11]. Thus, at the highest 
temperature, where a truncation of the second-order Hamiltonian is not permissi-
ble, we study not only the central-transition but the satellite lines as well. On the 
low-temperature side, where the average Hamiltonian approximation can be applied, 
central-transition stimulated-echo experiments are performed to map out motional 
time scales. Using this method, we obtain correlation times at temperatures which 
are significantly lower than those previously accessed [11]. We compare these time 
constants with prior results and with results obtained using spin–lattice relaxometry. 
Based on evolution-time-dependent stimulated-echo experiments, final-state ampli-
tudes are determined and compared with numerical simulations. Furthermore, in the 
spirit of former approaches [30], we show how two-dimensional exchange spectra 
relating to N-site cone motions can be represented as a properly weighted sum of 
effective two-site jumps.

2 � Theoretical Considerations

2.1 � Motional Averaging of Nonsecular Hamiltonians

In this section, we will outline the framework important to distinguish the various 
modes of motional and orientational averaging, e.g., to be able to calculate residual 
second-order quadrupolar shifts and couplings in the TMN regime. In the principal 
axis system (PAS) of the electrical field gradient (EFG) tensor with its Cartesian 
components |VZZ| ≥ |VYY | ≥ |VXX| , the quadrupolar interaction can be described 
by the Hamiltonian [31, 32]

Since the EFG tensor is traceless, in its PAS, it suffices to describe it using two 
parameters. To this end, often the quadrupolar coupling constant CQ = e2qQ/h (in 
Hertz, or the largest tensor component, VZZ = eq ) and the asymmetry parameter 
�Q = (VXX − VYY )∕VZZ are chosen.

(1)HQ =
e2qQ

2I(2I − 1)ℏ

1

2

{
3I2

z
− I(I + 1) +

1

2
�Q(I2

x
− I2

y
)
}
.
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Overall, the Hamiltonian may contain other contributions such as arising from 
the Zeeman or the chemical shift interaction, so that in the laboratory frame (LAB), 
one has

The succession of coordinate transformations leading from the PAS of the corre-
sponding chemical shift or quadrupolar tensors (abbreviated as ’CS’ and ’Q’) via the 
crystal-fixed system (CFS) to the LAB can symbolically be written as

Here, Ω represents the set of Euler angles that is needed to accomplish each trans-
formation, for example

To implement the associated rotations elegantly, a representation of the Hamilto-
nian in terms of the spherical tensor components Tlm and Vlm is useful. Usually, one 
starts from the secular Hamiltonian which for the quadrupolar interaction reads

Here, l and m designate the rank and order of the tensor components, respec-
tively. For the spatial components

the succession of transformations from the PAS to the LAB is achieved by means of 
the second-rank Wigner rotation matrix elements D(2)

i,m
(Ω) . In Eq. (6b), the transfor-

mation is written to start from the CFS. Various definitions are in use for the spatial 
components in the PAS; here, we employ [32]

In view of some of the experimental results that will be reported below, we 
will now assume that the molecular motion is fast on the time scale set by 1/ωL. 
For such extremely fast motions, rather than applying Eq.  (6), it is advisable to 
perform first an averaging over the molecular motion which is conveniently pos-
sible in the CFS. We will further assume that in the crystal, the molecule (more 
precisely: the orientation of the largest principal axis of the corresponding EFG 

(2)HLAB = HZ + HQ,LAB + HCS,LAB.

(3)CS
Ω1

⟶ Q
Ω2

⟶ CFS
Ω3

⟶ LAB.

(4)Ω2 = ΩQ→CFS =
{
�Q→CFS, �Q→CFS, �Q→CFS

}
.

(5)HQ, LAB =
eQ

2I(2I − 1)ℏ

2∑

m=−2

(−1)mV
Q,LAB

2,−m
T
Q

2,m
.

(6a)V
Q,LAB

2,m
=

2∑

k=−2

2∑

n=−2

D
(2)

k,m
(Ω3)D

(2)

n,k
(Ω2)V

Q,PAS

2,n

(6b)=

2∑

k=−2

D
(2)

k,m
(Ω3)V

Q,CFS

2,k
,

(7)V
Q,PAS

2,0
=

√
3

2
eq, V

Q,PAS

2,±1
= 0, V

Q,PAS

2,±2
=

1

2
eq�.
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tensor) can hop among N sites described by Ω2,s = {�s, �s, �s} where the sites are 
numbered by s = 1, …, N. In this coordinate frame, the motionally averaged ten-
sor components are

which yields the lab frame tensor components

Hence, the quadrupolar Hamiltonian now reads

To derive the relevant NMR frequencies, one usually starts from the interac-
tion representation and performs the secular approximation. Note that here we do 
not start from Eq. (5), which would be suitable for molecular motions slow on the 
ωL scale, but from Eq. (10) instead. In other words, now the motionally averaged 
tensor components are ’slow’ on this scale; in fact, in the CFS, they are constant.

Transforming HQ,LAB to the rotating frame and averaging over one Larmor 
period tL = 2�∕�L , in Eq.  (10), the terms with m ≠ 0 vanish, thus yielding the 
first-order quadrupolar Hamiltonian

For convenience, the Hamiltonian in Eq. (11) is written in terms of spherical 
as well as of Cartesian operators. This leads to the orientationally averaged (not 
to be confused with the powder averaged) NMR frequencies

In the fast-motion regime, with motional rates larger than about CQ, one thus 
has

where the large overbar reflects motional averaging, rather than the orientational 
averaging discussed above. In other words, there is no line shape change when going 
from the fast-motion to the extreme-narrowing regime. This statement applies in 

(8)V
Q,CFS

2,k
=

N∑

s=1

V
Q,CFS,s

2,k
=

2∑

n=−2

V
Q,PAS,s

2,n

1

N

N∑

s=1

D
(2)

n,k
(Ω2)

(9)V
Q,LAB

2,m
=

2∑

k=−2

D
(2)

k,m
(Ω3)V

Q,CFS

2,k
.

(10)HQ,LAB =
eQ

2I(2I − 1)ℏ

2∑

m=−2

(−1)mV
Q,LAB

2,−m
T
Q

2,m
.

(11)
H

(1)

Q,LAB
=

eQ

2I(2I − 1)ℏ
V
Q,LAB

2,0

1√
6

�
3I2

z
− I(I + 1)

�

=
eQ

2I(2I − 1)ℏ
V
Q,LAB

2,0
T
Q

2,0
.

(12)�
(1)

m−1,m
= ⟨m − 1�H

(1)

Q
�m − 1⟩ − ⟨m�H

(1)

Q
�m⟩.

(13)�
(1)

m−1,m
= �

(1)

m−1,m
=

3√
6

eQ

2I(2I − 1)ℏ
(1 − 2m)V

Q,LAB

2,0
,
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particular also to the CS anisotropy which, therefore, does not require separate treat-
ment. For convenience, for this interaction, the presently employed nomenclature is 
outlined in the “Appendix”.

Now, applying the secular approximation to Eq.  (10) also for the terms with 
m ≠ 0, one obtains

Let us re-iterate that this Hamiltonian has been obtained by first performing 
motional averaging and then applying the secular approximation. Thus, Eq. (14) 
can be exploited to analyze dynamics faster than ωL, while H(2)

Q
 (without overbar) 

is applicable only if molecular motion much slower than ωL is considered. Note 
that for the second-order frequency

generally, we have �(2)

m−1,m
≠ �

(2)

m−1,m
 which gives rise to a "second spectral transi-

tion" [11].
For isotropic motions (or if the underlying process exhibits at least icosahedral 

symmetry), the products of the spatial tensor components appearing in Eq.  (14) 
vanish. However, for anisotropic motions in general, a residual quadrupolar-
induced isotropic shift will remain.

To determine this shift, it is convenient to decompose the products 
V
Q,LAB

2,−m
V
Q,LAB

2,m
 in terms of the spatial tensor elements Wl,0 with rank l = 0, 2, and 4. 

By virtue of the Clebsch–Gordan coefficients, one may write [33]

and

In this ’coupled’ representation, the isotropic (i.e., orientation independent, 
thus frame invariant) component is [33]

if a motional pre-averaging is not applied.

(14)

H̄
(2)

Q,LAB
=

1

2𝜔L

(
eQ

2I(2I − 1)�

)

×
{
V̄
Q,LAB

2,−2
V̄
Q,LAB

2,2

(
[2I(I + 1) − 1]Iz − 2I3

z

)

+ V̄
Q,LAB

2,−1
V̄
Q,LAB

2,1

(
[4I(I + 1) − 1]Iz − 8I3

z

)
.

(15)�
(2)

m−1,m
= ⟨m − 1�H

(2)

Q
�m − 1⟩ − ⟨m�H

(2)

Q
�m⟩,

(16a)V2,−1V2,1 =

�
8

35
W4,0 +

1√
14

W2,0 −
1√
5
W0,0,

(16b)V2,−2V2,2 =
1√
70

W4,0 +

�
2

7
W2,0 +

1√
5
W0,0.

(17)W0,0 = WPAS
0,0

=
2(VPAS

2,2
)2 + (VPAS

2,0
)2

√
5

=

√
5

10
(eq)2(�2 + 3),
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In the regime of extreme motional narrowing, however, one should instead start from 

the averaged tensor elements V
Q,CFS

2,m
 . Now assessing the rank-zero term, we obtain

With the tensor components averaged in a proper PAS, the V
Q,CFS

2,±1
 terms vanish and 

one has V
Q,CFS

2,+2
= V

Q,CFS

2,−2
 so that Eq. (17) results. Obviously, as will be exploited below, 

the averaged residual quadrupolar-induced shift will depend on the motional model.

2.2 � Cone Models: Extreme Narrowing and Residual Shifts

Focusing first on the motionally averaged second-order quadrupolar Hamiltonian 
H

(2)

Q
 when calculating the NMR spectra in the extreme narrowing limit, the decisive 

step is to evaluate Eq. (8). Here, it is written more explicitly as

(18)W
Q

0,0
=

1√
5

�
2V

Q,CFS

2,+2
V
Q,CFS

2,−2
− 2V

Q,CFS

2,+1
V
Q,CFS

2,−1
+ (V

Q,CFS

2,0
)2
�
.

(19)V
Q,CFS

2,q
= (−1)q

2∑

q�=−2

V
Q,PAS

2,q�
e−iq

��d
(2)

q�,q
(�)

1

N

N∑

s=1

fie
iq�s ,

Fig. 1   Illustration of a three-site cone model where the cone exhibits a half opening angle β. The differ-
ence of the azimuthal angles of two adjacent sites is Δϕ, e.g., |γ1 − γ2|. For illustration purposes the larg-
est principal axes of the EFG tensors (here with η = 0.4) are chosen to lie along the cone mantle and the 
second-largest axes are tangential to its circumference (corresponding to an angle α = 0°). The symmetry 
axis of the cone is chosen to coincide with the z-axis of the crystal-fixed coordinate system
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where the population fi for site i with Σifi = 1 as well as the reduced Wigner matrix 
elements d(2)

q�,q
(�) are introduced. Note that the first rotation in the motionless CFS is 

about the zCFS-axis by an angle α, the β rotation about the yCFS-axis, and the last 
rotation about the zCFS-axis by the azimuthal angle γs [34]. Thus, for η = 0, the angle 
α is irrelevant. Figure 1 illustrates these rotations for a molecular jump among N = 3 
equivalent sites.

In Eq.  (19), the sum over the N discrete sites can be generalized to continuous 
distributions of angles, 

⟨
eiq�

⟩
 , with Ref. [3] listing a number of relevant cases for 

such averages. The determination of averaged tensors is independent of the form of 
the Hamiltonian. Thus, the same averaging of the anisotropy and asymmetry param-
eters applies for which examples with respect to various jump models were given 
previously [2–4]. In particular, under conditions of extreme narrowing, the averaged 
EFG tensor parameters are simply obtained by diagonalizing the averaged tensor.

This implies that for N ≥ 3 equivalent sites an averaged asymmetry parameter 
� = 0 results [4] and an averaged quadrupolar coupling constant CQ that can be used 
to define a quadrupolar narrowing factor

For NaNO3 using α = 0°, β = 90°, and ηQ = 0.8 [11], one finds 
NQ = 1

2

(
−1 + �Q

)
 = − 0.1. This example shows that the narrowing factor can become 

negative, just like for the chemical shielding anisotropy for which an analogous fac-
tor NCS = �CS∕�CS can be defined. For NaNO3 using β = 180° [11], one finds that 
NCS = 1

2

(
3 − 1 + 0�CS

)
 = 1. However, unlike for the chemical shielding anisotropy, 

the sign of NQ is not generally accessible from pure quadrupolar spectra because the 
first-order spectra are already symmetric and in second-order the squared coupling 
appears.

Likewise, for anisotropic motions a residual quadrupolar-induced shift remains 
in the fast-motion limit. This shift that we call δQIS depends on the type of motion. 
Assessing Eq. (17), we arrive at

It is also useful to express the residual quadrupolar-induced shift of the central 
line, �(Q)

CG
 , in frequency units. Together with1 �exp

CG
= �

(CS)

iso
+ �

(Q)

CG
 , where �(CS)

iso
 refers 

to the (usual) isotropic chemical shift, the experimentally observed center-of-gravity 
frequency is

(20)NQ = CQ∕CQ =
1

2

(
3 cos2 � − 1 + �Q sin2 � cos 2�

)
.

(21)

�QIS =
1√
5

I(I + 1) − 9(m + 1)m − 3

�2
L

�
eQ

2I(2I − 1)ℏ

�2

W
Q

0,0

=
I(I + 1) − 9(m + 1)m − 3

30�2
L

�
3e2qQ

2I(2I − 1)ℏ

�2

N2
Q

�
1 +

�
2

3

�
.

1  For the corresponding expressions in Refs. [20, 21] the minus signs should be replaced by plus signs.
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cf. Refs. [16, 35]. For N = 2, the quantities CQ and �
Q
 have to be calculated as 

described, e.g., in Refs. [2, 4]. Interestingly, the first-order-like expression, Eq. (20), 
is to be used in conjunction with the angular dependence of the second-order quad-
rupolar frequencies.

2.3 � Slow and Ultraslow Motions

To describe molecular motions that take place on time scales much longer than 
1/ωL, the Hamiltonian is obtained as usual, i.e., by applying the secular approxi-
mation before any motional averaging is performed. This leads to the quadrupolar 
Hamiltonian of the form of Eq. (14), but without overbars. In the frame rotating 
with ωL, the resulting quadrupolar frequency is �m−1,m = �

(1)

m−1,m
+ �

(2)

m−1,m
 . The 

first-order frequencies are given by Eq. (13) and the second-order frequencies can 
be written as [36]

Practical expressions applicable for static and rotating samples are given else-
where, e.g., in Ref. [32] and will not be reproduced here. Equation (23) in combi-
nation with random walk simulations [23, 37, 38] can be exploited to calculate 
central-transition and satellite-transition spectra. For motions slow on the scale 
set by 1/ωL and in the presence of a sufficiently large quadrupolar coupling, typi-
cally only the central transition can be excited. In the remainder of this section, 
we will, therefore, focus on �(2)

−1∕2,1∕2
≡ �c.

By exploiting the transformations from the PAS to the LAB, with the angles 
defined in Ω2,s = {�s, �s, �s} and Ω3,s = {�, �, 0} , it is always possible to analyze 
the underlying frequency distributions for motional processes taking place with 
rates Γ in the INM regime, 2πCQ < Γ << ωL. Schurko et al. [10] showed that and 
explained why in this regime it is not generally possible to describe the second-
order central-transition spectra in terms of effective anisotropy and asymmetry 
parameters. Expressed in our terms, rather than assessing the products of the site 
averages, V

Q,LAB

2,−q
V
Q,LAB

2,q
 , cf. Eq. (9), the site-averaged products VQ,LAB

2,−q
V
Q,LAB

2,q
 need 

to be assessed. Following previous procedures [23], for an N-site jump model, it 
is, therefore, useful to evaluate the frequencies distribution

(22)
�
exp

CG
= �

(CS)

iso
−

3

40

I(I + 1) −
3

4

[I(2I − 1)]2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=−3∕500 for I=5∕2

C
2

Q

�L

(
1 +

1

3
�
2

Q

)
.

(23)

�
(2)

m−1,m
=

1

2�L

(
eQ

2I(2I − 1)ℏ

)

×
{
V
Q,LAB

2,−2
V
Q,LAB

2,2
(6m(m − 1) − 2I(I + 1) + 6)

+ V
Q,LAB

2,−1
V
Q,LAB

2,1
(24m(m − 1) − 4I(I + 1) + 9).
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Here, the frequencies ωc,s are calculated according to Eq.  (6), and the fi coeffi-
cients still represent normalized population factors. The large overbar in Eq. (24) is 
again meant to refer to an averaging over all sites s that are accessed in the course of 
the molecular motion. The N = 2 case, i.e., a jump among two sites has already been 
discussed [23]. Hence, here we will focus on cone models with N ≥ 3. When assess-
ing Eq. (24), it turns out2 that for N ≥ 5 sites the frequency distributions and conse-
quently all quantities than can be derived thereof—like the corresponding NMR 
spectra—do not depend on the number of sites. For the second-order quadrupolar 
interaction with its rank l = 4 terms, this finding is not entirely unexpected since it 
was stated that [39]: "the anisotropy described by tensor components Alm≠0 for a par-
ticular l can be averaged away by reorienting the sample so that the field is directed 
at N = l + 1 or more directions to form a cone". The Alm coefficients used in Ref. 
[39], in the present notation are related to the spatial tensor components VQ

2,−q
V
Q

2,q
 , 

cf. Eq.  (16). In other words, first-order (l = 2) anisotropies can be averaged out by 
motions on cones with N = 3 equivalent sites, while for second-order (l = 4) terms 
one needs five such sites.

This argument is also relevant in the ultraslow regime. Here, it is possible to map 
out molecular motions by generating time-domain signals of the form [40]

and

by applying three or more suitably phased radio-frequency pulses. The form in 
Eq. (25) arises if signal maximizing flip angles are assumed so that for I = 5/2 spins, 
the prefactor appearing in Eq. (25) is 3/35.3 The hypercomplex data set represented 
by Eq.  (25) can be properly Fourier transformed and exploited to generate two-
dimensional frequency domain exchange spectra. Directly in the time domain, a var-
iation of the mixing time tm has variously been used for an efficient access to ultra-
slow motional time scales [23, 29, 37, 38, 41]. By exploiting the long-time (tm → ∞) 
limit of the F2 correlation functions, typically designated as final-state amplitude 
[41]

(24)�c,N(�,�,�, �) =

N∑

s=1

fs �c,s(�s, �s, �s;�,�,�, �).

(25a)Fcos
2

(t1, tm, t2) =
3

4I(I + 1)
cos

(
�c(0)t1

)
cos

(
�c(tm)t2

)

(25b)Fsin
2
(t1, tm, t2) =

3

4I(I + 1)
sin

(
�c(0)t1

)
sin

(
�c(tm)t2

)

3  The situation in which the central-transition frequency ωc involves also CS contributions was discussed 
in Ref. [28].

2  In Ref. [23] examples for frequency distributions were given for N = 2 sites. For N ≥ 3 sites the analyti-
cal expressions are even more complex so that we refrain from reproducing them here.
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detailed information concerning the geometry of molecular motion can be inferred if 
the evolution time tp is varied. In the general case Eq. (26), where the acute brackets 
indicate a powder average, has to be evaluated numerically. However, in the limit 
tp → 0, based on the frequency distribution given in Eq. (24), analytical expressions 
can be derived for the final-state amplitude

Here, 
⟨
�2
c,N

(�,�,�, �)
⟩

 is the non-central second moment (calculated with 
respect to the angles θ and ϕ) of the distribution of averaged frequencies and ⟨
�2(�,�)

⟩
 is the non-central second moment of the single-pulse absorption spec-

trum). Since Eq.  (24) does not change for N ≥ 5 sites, the same holds for final-
state amplitudes based on the second-order quadrupolar anisotropy.

Conversely, for first-order couplings, fast-motion spectra and final-state ampli-
tudes cease to change for N ≥ 3 equally populated sites. This is because first-order 
couplings relate to cubic (or octahedral) symmetry, while second-order couplings 
refer to icosahedral symmetry [42]. For N ≥ 3 equivalent sites and η ≠ 0, the final-
state amplitudes relating to first-order interactions we find

In this relation, which was not given before, the ~ sign is meant to empha-
size that here we deal with first-order final-state amplitudes. For η = 0, Eq.  (28) 
reduces to an expression agreeing with that in Ref. [43]. Final-state amplitudes 
resulting under MAS conditions are briefly discussed in the Supplementary 
Material.

2.4 � Decomposing 2D Spectra for N‑Site Cone Models

In this subsection, we will show that two-dimensional (2D) exchange spectra 
for N-site cone models can be built up from a (weighted) superposition of spec-
tra relating to suitably defined two-site jumps. While the idea to decompose 2D 
exchange patterns into subspectra has been used before [4, 30], we are not aware 
that the parameters of the corresponding two-site jumps were given previously.

The s-th of the N sites (on the red cone in Fig. 2) is generated by an Euler rotation 
about Ω(s)

2
= (�, �, 2�s∕N) , cf. Fig. 1. With the Euler rotation ΩΔs from site r to site 

s so that Δs =|r − s|, and with SN=2(�1,�2;ΩΔs) designating a two-site 2D subspec-
trum, the exchange contribution to the full N-site 2D spectrum can be written as

(26)Zcos,sin(tp) =

⟨
F
cos,sin

2
(tp, tm → ∞, tp)

⟩

⟨
F
cos,sin

2
(tp, tm → 0, tp)

⟩ ,

(27)Ztp→0(�, �) =

�
�2
c,N

(�,�,�, �)
�

⟨�2(�,�)⟩
.

(28)Z̃N≥3

tp→0
=

3[1 + 𝜂 + (3 − 𝜂) cos𝜑]2

16(𝜂2 + 3)
.
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Here, a weighting factor WΔs is introduced. For odd N, it is given by WΔs = N 

with Δs ≤ (N − 1)/2; with even N it is WΔs = N for Δs ≤ N/2 − 1 and WΔs = N/2 for 
Δs = N/2. The overall amplitude of the superposed spectrum can be normalized if 
needed.

The two-site subspectra SN=2(�1,�2;ΩΔs) refer to jumps that take place on a 
cone with an effective half opening angle βe, cf. Fig. 2, with

(29)SN(�1,�2) =

int(N∕2)∑

Δs=1

WΔsSN=2(�1,�2;ΩΔs).

(30)�e =
1

2
arccos

(
1 − 2 sin2

(
�Δs

N

)
sin2 �

)
.

Fig. 2   Two sites of an N-site cone model as represented by the semi-axes of their EFG tensors. The cor-
responding (original) cone with its half opening angle β is represented by its symmetry axis (zCFS) and 
a disk, both colored in red. The semi-axes of the tensors are represented in blue: the largest ones are 
oriented along the mantle of this cone and the second-largest tangential to the circumference of the (red) 
disk. The two sites are part and on opposite sides of a second cone with half opening angle βe (and with 
symmetry axis and disk represented in green). The disks relating to the two cones (or likewise the sym-
metry axes zCFS and z′CFS) enclose an angle αe (color figure online)
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The Euler angles for the two sites with s = 0 and 1 are Ω(0)

2
=
(
� − �e, �e, 0

)
 and 

Ω
(1)

2
=
(
� + �e, �e ,�

)
 with

so that the rotation between them is described by ΩΔs = 
(
�e + �, 2�e ,� + �e − �

)
.

Thus, by employing the effective angles αe and βe, 2D exchange spectra for N-site 
cone models can easily be obtained for arbitrary N. As an example, as Supplemen-
tary Material we show a 2D spectrum generated using the tensor parameters pertain-
ing to the three-site jump in NaNO3 [11], see Fig. S2, which nicely matches with the 
spectrum published in Ref. [11]. The spectrum shown as Fig. S2 refers to mixing 
times tm → ∞. To capture the situation for finite mixing times, it is a simple mat-
ter to add the relevant subspectra with the appropriate tm-dependent weights. The 
procedures outlined in this section are of course not restricted for application to the 
central transition or to second-order anisotropies, but can be exploited for any spec-
tra related to N-site jumps, in general.

3 � Experimental Details

Solid-state oxygen-17 NMR experiments on NaNO3 were carried out using dif-
ferent spectrometers: A homebuilt spectrometer operated at a Larmor frequency 
ωL/2π of 54.3  MHz was used as well as a Bruker Avance III HD spectrometer 
operated at 81.4  MHz. For both, the solid-state π/2 pulse length tπ/2 was about 
3.2 μs. The spectrometers were tuned with H2

17O which also served as chemical 
shift reference. The spectra were obtained using a π/2-Δ-π sequence employing 
a pulse spacing Δ that typically was set to 15.2 μs. All spectra were acquired at 
81.4 MHz. Stimulated-echo and spin–lattice relaxation experiments were carried 
out at 54.3 MHz.

Temperature dependent stimulated-echo decay curves were measured using three-
pulse sequences. Evolution time dependent stimulated echoes were recorded using a 
four-pulse sequence to avoid the impact of receiver dead time.

For the preparation of 17O-labeled NaNO3, starting from 40% enriched H2O 
(Sigma-Aldrich), we followed the procedures outlined in [11]. The degree of 
17O enrichment was determined using high-resolution oxygen-17 NMR and was 
found to be about 4.5%. To check the crystal structure of the isotope labeled sam-
ple, X-ray diffraction was performed. As detailed in the Supplementary Material 
the rhombohedral structure (space group R3c , [44, 45]) was nicely confirmed.

(31)�e = arctan

√
1 − sin2 (�Δs∕N)

sin2 (�Δs∕N) cos2 �
,
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4 � Results and Analyses

4.1 � High‑Temperature Spectrum

The NaNO3 spectra should reach their terminally narrowed form when the molecu-
lar reorientation rates approach 10−10 s. Therefore, we recorded a spectrum at a tem-
perature of 430 K (the highest temperature safely accessible with our probe head) 
which is somewhat larger than the temperature reached in [11].4 The experimentally 
obtained spectrum, shown in Fig. 3, is seen to span a width of about 250 kHz. The 
spectrum of NaNO3 was excited at a center frequency of 14.8 kHz with respect to 
the 17O resonance of H2O that served as reference. Owing to a significant (posi-
tive) isotropic chemical shift of NaNO3 and a limited effective excitation width 
of about 78 kHz ≈ 1/(4tπ/2), the spectrum appears somewhat skewed and displays 
larger intensity on its high-frequency side. On this side, not only the inner but also 
an outer satellite is clearly resolved. We then calculated the full spectrum using the 
quadrupolar and chemical shift parameters given in [11] which are CQ = 12.5 MHz, 
ηQ = 0.8, and ΩCFS→EFG = [0°, 90°, 0°] as well as [δ33, δ22, δ11] = [250, 400, 550] 
ppm and ΩCFS→CSA = [90°, 180°, 0°]. The latter parameters correspond [53] to an 

200 150 100 50 0 -50 -100 -150
ν − νL (kHz)

 experiment T = 430 K

 simulation 

 simulation including
line shape distortions

NaNO3
17O NMR

νL = 81.4 MHz

Fig. 3   This high-temperature spectrum (thick black line) of NaNO3 including central- and satellite-tran-
sition contributions was acquired by co-adding about 4 × 105 scans. The spectrum is measured using a 
π/2-Δ-π echo sequence with a tπ/2 pulse length of 3.2 µs, an interpulse delay of Δ = 15.2 μs, and a rep-
etition time 50 ms. For the experimental spectrum and for the simulated spectrum (dashed blue line), 
Gaussian apodization with σ  = 2π × 200 Hz was used. Another simulated spectrum (red thin solid line) 
is shown which is obtained from the other by multiplication with a sinc as well as a Lorentzian function. 
Impurity related narrow peaks with an integrated intensity of 0.5% and 1.3% of the total appear near 
33 kHz (NO3 group) and − 1 kHz (H2O), respectively (color figure online)

4  A spectrum that we recorded at 400 K was much less intense and broadened as compared to the spec-
trum shown in Fig. 3 for 430 K.
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isotropic chemical shift σiso = (σ33 + σ22 + σ11)/3 = 400  ppm, a shielding anisotropy 
ζCS = 150 ppm, and an asymmetry parameter ηCS = 1.

The high-temperature spectrum shown in Fig.  3 is in the ultrafast motion 
regime and hence the fully averaged parameters are CQ = 1.25  MHz, cf. 
Eq. (20). Furthermore, �Q = 0 and of course σiso remain unaltered. Then, one has 
�CS = 150 ppm (with NCS = 1, the sign of �CS is indeterminate for ηCS = 1) and 
�CS = 0. A better fit of the experimental high-temperature spectrum was, how-
ever, achieved using CQ = 875 kHz. Based on the full CQ = 12.5 MHz, an asym-
metry parameter ηQ = 0.86 (rather than 0.8) would lead to the latter CQ.

The positions of all spectral features visible in the experimentally recorded 
spectrum are clearly also seen in the simulations, see Fig. 3, except for the nar-
row resonances appearing near 33 kHz (= 406 ppm) and − 1 kHz (= − 12 ppm). 
These two peaks were also observed in [11] and in that work they were 
assigned to the oxygen resonances of 17O enriched H2O and dissolved NaNO3, 
respectively.

To account (at least partially) for the observed skewing and broadening of the 
spectra that originate from the noncentered radio-frequency excitation, the finite 
pulse width, the limited spectral band width [46], and possibly from other effects 
as well, another simulated spectrum is shown in Fig.  3. That spectrum was 
obtained by multiplying the other simulated spectrum with the product of a Lor-
entzian and a sinc function. For the Lorentzian broadening, with [1 + (ν/νB)2]−1, 
we have chosen νB = 200 kHz; for the sinc function, an argument of 2πνtπ/2. The 
Lorentzian and the sinc function are both centered at the irradiation frequency 
of 14.8 kHz (= 181 ppm). As seen in Fig. 3, this procedure provides a satisfac-
tory description of the experimental spectrum.

Based on the above parameters, the central-transition line width purely origi-
nating from the second-order quadrupolar interaction can be assessed via [47]

Using CQ = 875  kHz and �Q = 0, at 81.4  MHz, this relation gives 
Δ�

(Q)

CT
= Δ�

(Q)

CT
(CQ, �Q) = 294  Hz. Only considering a chemical shielding anisot-

ropy of ζCS = 150 ppm (without quadrupolar broadening) results in a much larger 
width of about 3

2
 νLζCS ≈ 18.3 kHz. Although the contributions stemming from 

the two different interactions are not simply additive, it is clear that the high-
temperature central-transition absorption line is by far dominated by chemical 
shielding effects. To render the small width Δ�(Q)

CT
 visible, it is necessary to per-

form high-temperature MAS experiments. However, with our MAS probe head 
only temperatures up to 400  K could be reached. A spectrum recorded at that 
temperature while spinning the sample with 20 kHz unfortunately did not exhibit 
the required resolution.

A reliable detection of the residual quadrupolar-induced shift is also 
not straightforward. According to Eq.  (22), the expected residual shift is 
�
(Q)

CG
 = –56  Hz (= –0.7  ppm, calculated using CQ = 875  kHz and �Q = 0). For 

(32)Δ�
(Q)

CT
(CQ, �Q) =

(2I + 3)[�2
Q
+ 22�Q + 25)]

256I2(2I − 1)

C2
Q

�L
.
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Fig. 4   Solid lines represent 
experimentally determined 
central-transition 17O NMR 
spectra of NaNO3 recorded at 
a field of 14.1 T for a range of 
temperatures. The spectra were 
measured using a π/2-Δ-π echo 
sequence with an interpulse 
delay of Δ = 15.2 μs and repeti-
tion times of 10 s for 158 K and 
167 K, 5 s for 176 K, 2 s for 
186 K, 0.2 s for 194 K, and 0.1 s 
for 204 to 241 K. The dashed 
lines represent results obtained 
from random walk simulations: 
By adjusting the motional cor-
relation times τ of the nitrate 
moiety used in the simula-
tions to the values given in the 
figure, an acceptable match of 
experimental and numerically 
simulated spectra is achieved. 
For the experimental and the 
simulated spectra, Gaussian 
apodization with σ = 2π × 1 kHz 
was used
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τ / s =
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 simulation
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Fig. 5   Stimulated 17O sin–sin 
echo decay curves measured 
for NaNO3 at a field of 9.4 T 
for an evolution time tp = 20 μs. 
The solid lines reflect fits using 
Eq. (33). Corresponding cos-cos 
curves are presented as Sup-
plementary Material
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comparison, based on the low-temperature parameters CQ = 12.5  MHz and 
ηQ = 0.8, one has �(Q)

CG
 = –14.0  kHz (= –171  ppm). Using �(CS)

iso
 (= 32.6  kHz at 

νL = 81.4 MHz), one may thus assess �exp
CG

=�
(CS)

iso
+ �

(Q)

CG
.

4.2 � Low‑Temperature Spectra

When lowering the temperature to below 430 K, the intensity of the central and sat-
ellite transitions becomes faint and down to about room temperature in fact only 
the residual resonances from traces of H2O and dissolved NaNO3 appear with sig-
nificant intensity. Consistent with previous data [11], at a field of 14.1 T significant 
central intensity does reappear only below 280  K. Then, more or less symmetric 
central-transition spectra are observed which eventually develop a more asymmetric 
shape somewhat below ≈ 250 K, see Ref. [11] as well as Fig. 4.

Upon lowering the temperature further, a central-transition pattern evolves that 
overall is about 100 kHz broad. Using random walk simulations of the type detailed 
in Ref. [23] and employing the published tensor parameters [11], we obtained the 
spectra shown as dashed lines in Fig. 4. For the simulations, the reorientation rate 
describing the threefold motion of the NO3

− group was adjusted until a satisfactory 
match of calculations and experimental data was found. The resulting, temperature 
dependent correlation times are discussed below, in Sect. 5.

4.3 � Stimulated‑Echo Spectroscopy

Stimulated-echo decay functions, cf. Eq. (25), when measured as a function of mix-
ing time tm and evolution time tp yield direct insights into time scale and geometry 
of the molecular motion. In Fig. 5, we show F2 curves recorded at a fixed tp = 20 μs 
for several temperatures. For all curves, one recognizes a clear two-step decay. The 
first of these is due to a decorrelation of the molecular orientations and the one 

Fig. 6   Final-state amplitudes 
Zcos(tp) and Zsin(tp), represented 
as circles and squares, respec-
tively, as measured for NaNO3 
at 160 K using 17O NMR. 
Numerical calculations, based 
on Eq. (26) and represented as 
solid lines, are seen to provide 
a useful description of the 
experimental data. The experi-
mental evolution times tp were 
right shifted by tπ/2 = 3.25 µs to 
account for effects of finite pulse 
lengths
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appearing at longer times reflects spin–lattice relaxation, i.e., a decay of the longi-
tudinal magnetization that can be parameterized using M(t) ∝ exp(− tm/T1). Here, T1 
designates the spin–lattice relaxation time.

For a quantitative assessment of the data shown in Fig.  5, we have chosen the 
function

which describes our data well. Important fit parameters are the correlation time τ 
(which will be discussed in Sect. 5, below) as well as the final-state amplitude Z(tp), 
cf. Eq. (26). For a given evolution time, Z is expected to be temperature independent 
if the geometry of the molecular motion remains unchanged. Figure 5 shows that, 
within experimental uncertainty, this is indeed the case.

Measurements of this type were also performed as a function of the evolution time tp 
at a temperature of 160 K. The resulting correlation times were found to be independ-
ent of the evolution time. In Fig. 6, we show the final-state amplitudes Z(tp) obtained 
from these measurements.

(33)S2(tp, tm) ∝ [(1 − Z) exp(−tm∕�) + Z]M2(tm).
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Fig. 7   Arrhenius diagram summarizing variously determined correlation times relating to the threefold 
nitrate ion motion in NaNO3. All data are from the present work except the correlation times represented 
by plusses and crosses that are from [11]. These latter data, given here as τ = (3 k)–1, are based on analy-
ses of line shapes measured at 21.1 and 14.1 T, respectively. The straight solid lines reflect Arrhenius 
laws with an activation energy of 37 kJ mol–1. The solid curve refers to spin–lattice relaxation times cal-
culated using Eq. (35) for a BPP spectral density at ωL = 2π × 54.3 MHz with the parameters C̃

Q
 = CQ = 

12.5 MHz, ηQ = 0.8, τ0 = 2.1 × 10–16 s, and E = 37 kJ mol–1. Experimentally determined spin–lattice relax-
ation times are represented as closed triangles (those from the final decay of the stimulated-echo sig-
nals as open triangles). The dashed curve represents a Cole-Davidson fit using Eq. (35) with γCD = 0.85, 
C̃
Q
= 0.58CQ , ηQ = 0.8, τ0 = 2.1 × 10–16 s, and E = 37 kJ mol–1
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Using the procedures outlined in Sect. 2.3 and the published [11] tensor parameters, 
we computed the final-state amplitudes employing Eq. (26). In Fig. 6, one recognizes 
that this approach describes the measured Z values very well.

5 � Discussion

The time scales determined using the present line shape analyses (cf. Fig. 4) and 
the decay times assessed from the stimulated-echo functions (cf. Fig. 5) are com-
piled in Fig. 7. The exchange rates k obtained from previous line shape analyses 
[11] are also included in this figure. Note that if k designates the rate constant 
for a jump between two sites, then for a three-site jump, k corresponds to a cor-
relation time τ = (3k)–1 [48]. The temperature dependence of all these time scales 
conforms to the previously reported thermally activated behavior with an activa-
tion energy E = 37 kJ mol−1 [11]. In other words, the correlation times obey an 
Arrhenius law

where τ0 designates an inverse attempt frequency. Following [11], the rate k0 is 
given as e31 s−1 = 2.9 × 1013 s−1. The corresponding inverse attempt frequency thus is 
(3k0)–1 = 1.1 × 10−14 s, while the data from the present work yield τ0 = 2.1 × 10−16 s. 
Currently, we are unable to rationalize the discrepancy of these values.

Correlation times τ can be estimated also from measurements of spin–lattice 
relaxation times T1, e.g., from data such as those shown in Fig. 5 for long mixing 
times. The corresponding T1 times as well as those measured independently at a 
Larmor frequency of 54.3 MHz using saturation recovery (T ≤ 150 K) and inver-
sion recovery (T > 150 K) sequences are also included in Fig. 7; we have not been 
able to record spin–lattice relaxation times for temperatures above 250 K.

From Fig. 7 one recognizes that the temperature dependence of the available 
spin–lattice relaxation times is somewhat less pronounced than that from the 
other quantities. In the simplest case, correlation times τ can be estimated from T1 
experiments by virtue of [49]

where the spectral density has the form JBPP(�L) =�∕[1 + (�L�)
2] . This expression 

is due to Bloembergen, Purcell, and Pound (BPP) and refers to the presence of a sin-
gle correlation time. Furthermore, the expression for 1∕T (Q)

1
 assumes the prevalence 

of a (first-order) quadrupolar relaxation mechanism and C̃
Q
 (in Hertz) denotes the 

fluctuating part of the quadrupolar coupling constant. In Eq. (35), the I-dependent 
prefactor is 3/625 for I = 5/2.

Based on the presently determined τ0 and for simplicity identifying C̃
Q

 with 
CQ, the T1 contribution relating to the correlation times measured in this work 
was calculated using Eq.  (35) with the existence of a BPP spectral density 

(34)� = �0 exp(E∕kBT),

(35)
1

T
(Q)

1

=
3(2I + 3)

200I2(2I − 1)

(
2𝜋C̃

Q

)2(
1 +

1

3
𝜂2
Q

)[
J(𝜔L) + 4J(2𝜔L)

]
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assumed. The thus calculated temperature dependence for T1, see the solid curve 
in Fig. 7, is somewhat steeper than indicated by the measured spin–lattice relaxa-
tion times, suggesting that a distribution of correlation times might be present. To 
test this conjecture, we have chosen the distribution invented by Cole and David-
son (CD) [50] which leads to a spectral density of the form [51]

Here, γCD characterizes the distribution width (0 < γCD ≤ 1) and the non-distrib-
uted case corresponds to γCD = 1. Calculations using this approach agree very well 
with the experimental data for a width parameter γCD = 0.85 if, for the fluctuating 
part of the coupling constant, a reduced value of C̃

Q
= 0.58CQ is considered. Such a 

reduction is consistent with the presence of an anisotropic motion of the oxygen 
EFG tensors which does not modulate the quadrupolar frequencies in full. In par-
ticular towards higher temperatures, when approaching the structural R3c → R3m 
phase transition of NaNO3 that takes place at 553 K, effects of positional disorder of 
the NO3 group [45] may additionally affect these tensors.

The agreement of the CD fit with the experimental spin–lattice relaxation times, 
seen in Fig. 7, confirms that the spin–lattice relaxation is dominated by the three-
fold motion of the NO3 group. Hence, rather than using an exponential function in 
Eq. (33), a form for the correlation function should have been chosen for the data 
in Fig. 5 that reflects a (narrow) distribution of time constants. Since time correla-
tion functions corresponding to the Cole–Davidson form are somewhat complicated, 
we have chosen the practically equivalent stretched exponential Kohlrausch–Wil-
liams–Watts form, exp[−(tm∕�)�K] . The width parameter γCD = 0.85 relates [52] to 
a Kohlrausch exponent βK ≈ 0.9.5 As demonstrated in the Supplementary Material, 
fits using this exponent describe the F2 data equally well.

6 � Concluding Remarks

In the present work, one focus has been on second-order quadrupolar effects that 
persist up to the regime of extreme narrowing in samples featuring anisotropic inter-
nal motions. By averaging over the sites accessible in the course of the molecular 
jump process prior to applying the secular approximation, we obtain the averaged 
quadrupolar coupling CQ and the averaged asymmetry parameter �

Q
 , thus recovering 

results analogous to those known in the context of first-order anisotropies. Further-
more, we calculated the residual quadrupolar-induced shift which in the regime of 
extreme narrowing can be expressed in terms of CQ and �

Q
 . Specifically, we applied 

these results to N-site cone models. An interesting finding is that in the regime of 
terminal motional narrowing the quadrupolar spectra do not change for N ≥ 3. Con-
versely, in the regime of what we call intermediate narrowing this happens only for 

(36)JCD(�L) = �−1
L
(1 + �2

L
�2)−�CD∕2 sin[�CD arctan(�L�)].

5  Following Ref. [52] the Kohlrausch exponent βK is related to the width parameter γCD according to 
βK = 0.683CD + 0.316 for 0.6 ≤ γCD ≤ 1.0. For γCD = 0.85 this relation yields βK ≈ 0.9.
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N ≥ 5, a result that can be traced back to the icosahedral symmetry of the second-
order quadrupolar interaction.

While the above results refer to fast and ultrafast motions, we also considered the 
regime of slow and ultraslow motions where 2D experiments can be carried out in 
the frequency as well as in the time domains. Referring to N-site jumps, for the lat-
ter in the limit of vanishing evolution times we calculated the final-state amplitudes 
accessible using stimulated echoes analytically. Again for N ≥ 5 sites, we find that 
these amplitudes cease to change. Furthermore, we have shown how two-dimen-
sional spectra can be decomposed in terms of effective two-site jumps. This decom-
position is applicable not only for the considered cone models, but in fact also for 
numerous other models. The limit of mixing times tm → ∞ was considered explic-
itly, with the generalization to finite mixing times being a simple matter. We tested 
this approach successfully for the three-site jump of the planar NO3 group in NaNO3 
by comparing the results of the decomposition procedure with conventional simula-
tions: Both agree with each other and with a previously determined experimental 
spectrum [11].

In the experimental part of the present work, we studied NaNO3 which was pre-
viously examined via 17O NMR mostly using line shape analyses [11]. Addition-
ally, we employed central-transition stimulated-echo spectroscopy, extending the 
previously accessible dynamic range to slightly longer times, thereby confirming 
the reported activation energy. For reasons which are unclear at present, however, 
at any given temperature, we find considerably shorter correlation times than those 
inferred from [11]. From the correlation times determined in the present study, spin-
relaxation times were calculated and good agreement with the experimental results 
was achieved.

The evolution time-dependent final-state amplitudes measured at low tempera-
tures agree well with our theoretical predictions. At high temperatures, i.e., in the 
regime of extreme narrowing, we were able to record a "full" 17O spectrum includ-
ing the central as well as the satellite transitions in nonrotating NaNO3. It turns out 
that the shape of the central transition is dominated by anisotropic chemical shift 
rather than by quadrupolar effects. Hence, for a sensitive laboratory test of some of 
the theoretical calculations advanced in the present work, either high-temperature 
MAS experiments should be carried out. Alternatively, oxygen-17 studies for liquids 
or crystals featuring, e.g., SO3 or NO2 groups in which the oxygen EFG tensors per-
form (fast) nonplanar motions will be beneficial in this respect.

7 � Supplementary Material

In the Supplementary Material, we present (1) calculations of final-state amplitudes 
for N-site cone models with N ≥ 3 equivalent sites referring to stationary samples 
and for N ≥ 2 sites referring to samples subjected to fast MAS, (2) a simulated 2D 
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spectrum obtained by the procedures outlined in Sect. 2.4, (3) results from powder 
X-ray diffraction of an 17O-labeled NaNO3 crystal, and (4) cos–cos decay curves.
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Appendix

For the chemical shift, the Hamiltonian can be written as [32]

where σiso = 1
3
(�XX + �YY + �ZZ) denotes the isotropic chemical shielding. Note that 

according to Eq. (3) a sequence of three transformations is now required if one starts 
from the PAS components which involve the shielding anisotropy �CS = �ZZ − �iso , 
and the shielding asymmetry ηCS = (�YY − �XX)∕(�ZZ − �iso) . Regarding the defini-
tion of the latter quantities and the ordering ||�ZZ − �iso

|| ≥ ||�XX − �iso
|| ≥ ||�YY − �iso

|| 
we follow the Haeberlen notation [53]. For l = 2 the CS tensor components are [54]

Cross terms among the quadrupolar and chemical shift interaction, involving the 
l = 1 terms in Eq. (37), are typically 106 times smaller than the quadrupolar coupling 
[54]. Albeit small, corresponding phenomena were observed using satellite-transi-
tion MAS spectroscopy [54]. However, in the present context such effects need not 
be considered.

Applying the secular approximation to the chemical shift Hamiltonian one 
obtains [54]

Since second-order chemical shift effects are irrelevant, analogous to the argu-
ments made near Eq. (13), there are no line shape changes relating to the chemical 
shielding when going from the fast-motion to the extreme-narrowing regime.

(37)HCS,LAB = �L�isoT1,0 +
∑

l=1,2

l∑

m=−l

(−1)mVCS,LAB

l,−m
TCS
l,m
,

(38)V
CS,PAS

2,0
=

√
3

2
�L�CS, V

CS,PAS

2,±1
= 0, V

CS,PAS

2,±2
=

1

2
�CS�L�CS.

(39)H̄
(1)

CS
= 𝜔L𝜎isoIz +

√
2

3
V̄
CS,LAB

2,0
Iz.

http://creativecommons.org/licenses/by/4.0/
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