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Abstract

Numerical simulation of three field formulations of incompressible flow problems is
of interest for many industrial applications, for instance macroscopic modeling of Bing-
ham, viscoelastic and multiphase flows, which usually consists in supplementing the
mass and momentum equations with a differential constitutive equation for the stress
field. The variational formulation rising from such continuum mechanics problems
leads to a three field formulation with saddle point structure. The solvability of the
problem requires different compatibility conditions (LBB conditions) [1] to be satisfied.
Moreover, these constraints over the choice of the spaces may conflict/challenge the
robustness and the efficiency of the solver. For illustrating the main points, we will
consider the three field formulation of the Navier-Stokes problem in terms of velocity,
stress, and pressure. Clearly, the weak form imposes the compatibility constraints over
the choice of velocity, stress, and pressure spaces. So far, the velocity-pressure combi-
nation took much more attention from the numerical analysis and computational fluid
dynamic community, which leads to some best interpolation choices for both accuracy
and efficiency, as for instance the combination Q2/P

disc
1 .

To maintain the computational advantages of the Navier-Stokes solver in two field
formulations, it may be more suitable to have a Q2 interpolation for the stress as
well, which is not stable in the absence of pure viscous term [2]. We proceed by
adding an edge oriented stabilization to overcome such situation. Furthermore, we
show the robustness and the efficiency of the resulting discretization in comparison
with the Navier-Stokes solver both in two field as well as in three field formulation in
the presence of pure viscous term. Moreover, the benefit of adding the edge oriented
finite element stabilization (EOFEM) [3, 4] in the absence of the pure viscous term is
tested.

The nonlinearity is treated with a Newton-type solver [5] with divided difference
evaluation of the Jacobian matrices [6, 7]. The resulting linearized system inside of the
outer Newton solver is a typical saddle point problem which is solved using a geomet-
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rical multigrid method with Vanka-like smoother [8, 9]. The method is implemented
into the FeatFlow [10] software package for the numerical simulation. The stability
and robustness of the method is numerically investigated for ”flow around cylinder”
benchmark [7, 11].

Keywords: Finite element method, Navier-Stokes equations, Babuska-Brezzi
conditions, Edge oriented stabilization

1. INTRODUCTION

Numerical simulation of three field formulation is of interest for many industrial ap-
plications for instance macroscopic modeling of Bingham, viscoelastic and multiphase
flows, which usually consists in supplementing the mass and momentum equations with
a differential constitutive equation for the stress field. The variational formulation ris-
ing from such continuum mechanics problems leads to a three field formulation with
saddle point structure. The three field system of Navier-Stokes equations is given as

σ − 2ηD(u) = 0 in Ω,

u · ∇u−∇ ·
(

2η(1− α)D(u) + ασ

)
+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = gD on ΓD.

(1)

Here, σ is the extra stress tensor, D = 1
2
(∇u + (∇u)T) is the strain rate tensor,

u is the velocity, η is the viscosity, p is the pressure. Moreover, α is a parameter
which denotes the contribution of the solvent viscosity. The range of this parameter is
0 ≤ α ≤ 1, where α = 1 corresponds to the zero solvent viscosity (which often occurs
in the case of viscoelastic fluids).

2. VARIATIONAL FORMULATIONS

For solving the system of equations (1) with finite element method, we will first
multiply the equations with the test functions (τ , v, q) and using integration by parts,
we obtain the weak formulation as follows:∫

Ω

(
σ : τ

)
dx−

∫
Ω

2η
(
D(u) : τ

)
dx = 0 in Ω,∫

Ω
(u · ∇u)v dx+

∫
Ω

(
2η(1− α)D(u) : D(v)

)
dx+

∫
Ω

(
ασ : D(v)

)
dx−

∫
Ω
p∇ · vdx = 0 in Ω,∫

Ω

(
∇ · u

)
qdx = 0 in Ω.

(2)
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Let V = H1
0(Ω) :=

(
H1

0 (Ω)
)2

, Q = L2
0(Ω), and T =

(
L2(Ω)

)2×2

sym
be the spaces for the

velocity, pressure, and stress, respectively, and let V′, Q′, and T′ be their corresponding dual
spaces. Furthermore, we set Y := V×T and Y′ := V′×T′. We introduce the following linear
forms: Aσ is defined on T→ T′ as follows:

〈Aσσ, τ 〉 = α

∫
Ω
σ : τ dx, ∀σ, τ ∈ T, (3)

and the associated bilinear form defined on T× T −→ R

aσ(σ, τ ) = 〈Aσσ, τ 〉, (4)

Nu and Lu are defined on V −→ V′ as follows:

〈Nuu,v〉 =

∫
Ω

(u · ∇u)v dx, ∀u,v,∈ V, (5)

〈Luu,v〉 := 2η(1− α)

∫
Ω
D(u) : D(v) dx, ∀u,v ∈ V, (6)

we set
Au := Lu +Nu, (7)

and the associated bilinear form defined on V× V −→ R

au(u,v) = 〈Auu,v〉. (8)

B and C defined on V −→ Q′ respectively, V −→ T′

〈Bv, q〉 :=−
∫

Ω
∇·v q dx, (9)

respectively,

〈Cv, τ 〉 :=2ηα

∫
Ω
τ : D(v) dx, (10)

with the associated bilinear forms b(·, ·) and c(·, ·) defined on V×Q −→ R and V× T −→ R
respectively, read:

b(v, q) :=
〈
Bv, q

〉
, (11)

respectively,

c(v, τ ) :=
〈
Cv, τ

〉
. (12)

We define the bilinear forms a(·, ·) defined on Y×Y −→ R and b(·, ·) defined on Y×Q −→ R
reads; for U = (u,σ) and V = (v, τ )

a(U ,V) =〈Auu,v〉+ 〈Aσσ, τ 〉+
〈
Cv,σ

〉
+
〈
CTu, τ

〉
,

b(U , q) =b(u, q).
(13)

The compact weak formulation for the three field Navier-Stokes system (1) reads:
Find (U , p) ∈ Y×Q s.t. {

a(U ,V) + b(V, p) = 0 ∀V ∈ Y,
b(U , q) = 0 ∀q ∈ Q.

(14)
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3. FINITE ELEMENT APPROXIMATION

For the space discretization, let the bounded domain Ω ⊂ Rd be partitioned by a grid
Th consisting of elements K ∈ Th which are assumed to be open quadrilaterals such that
Ω = int

(⋃
K∈Th K

)
. For an element K ∈ Th, we denote by E(K) the set of all 1-dimensional

edges of K. Let Ei :=
⋃

k∈Th E(K) be the set of all interior element edges of the grid
Th. The approximation of the problems (14) with the finite element method, we introduce
the approximation spaces Vh, Th and Qh of V, T and Q and define the product space
Yh := Vh × Th.

Vh =
{
vh ∈ V,vh|K ∈ (Q2(K))2

}
,

Th =
{
τ h ∈ T, τ h|K ∈ Q2(K)

}
,

Qh =
{
qh ∈ Q, qh|K ∈ P disc

1 (K)
}
.

(15)

The velocity and pressure fields are discretized using higher order stable Q2/P
disc
1 [12, 13]

FEM and Q2 for the stress variable, presented in Fig. 1.

u σ p

Figure 1: Higher order finite element Q2, Q2, P
disc
1 on quadrilaterals.

The approximate problem of (14) reads; Find (Uh, ph) ∈ Yh ×Qh s.t.{
a(Uh,Vh) + b(Vh, ph) = 0 ∀Vh ∈ Yh,

b(Uh, qh) = 0 ∀qh ∈ Qh.
(16)

The choices of the finite element spaces Vh and Qh satisfy the inf-sup condition. The
corresponding nonlinear system readsAu C BT

CT −Aσ 0

B 0 0


uσ
p

 =

rhsurhsσ

rhsp

 . (17)

4. THE CHOICE OF FINITE ELEMENT SPACE

The choice for FEM spaces for the (Navier)Stokes problem depends on the well known
compatibility condition between velocity and pressure spaces, know as inf-sup condition [14]

sup
u∈vh

∫
Ω divuqdx

‖ u ‖1,Ω
≥ β ‖ q ‖0,Ω ∀q ∈Qh. (18)
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The selected finite element pair Q2P
disc
1 is compatible according to the equation (18). The

study of Baranger et. al. [2] has shown that the choice of the element for stress variable (σ)
can be made depending on the value of α in system of equations (1). It is stated, that the
use of the discrete three field Stokes’s problem with 0 < α < 1 (excluding the case α = 1)
allows to suppress the inf-sup condition on (u,σ), which broadens the spectrum for choosing
the element approximation for extra stress tensor σ.

Remark : The basic idea is that there is no need of an inf-sup condition on (u,σ), provided
0 < α < 1.

The case of α = 1 is discussed in the work of Fortin and Pierre [15], which proves that
the discrete three field Stokes’s problem (16) is well posed and the solution approximates the
continuous problem (14), if the following two conditions are satisfied:

• Inf-sup condition on (u, p)

inf
q∈Qh

sup
u∈Vh

(∇ · uh, qh)

‖ uh ‖1‖ qh ‖0
≥ β > 0. (19)

• Inf-sup condition on (u,σ): Either D(Vh) ⊂ Th (in the case of discontinuous τ h) or
the number of interior degrees of freedom for τ h in each K is greater or equal to the
number of all degrees of freedom of vh in each K (in the case of continuous τ h).

‖ · ‖1 and ‖ · ‖0 are the standard H1
0(Ω) and L2

0(Ω) norms. In the present study, the
stress σ is discretized using continuous finite element Q2, which does not satisfy the second
inf-sup condition. Therefore, the edge oriented finite element (EOFEM) stabilization [4] term
Ju(uh,vh) is added in the absence of the solvent viscosity (i.e. α = 1). This stabilization
penalizes the jump of the solution gradient over the edge E of the neighbouring elements.
The beneficial effects of adding this stabilization are shown in the numerical studies carried
out in the next section.

Ju(uh,vh) = γu
∑
e∈Eh

2ηαh

∫
e

[∇uh] : [∇vh] dΩ. (20)

The corresponding discrete system after the addition of the jump term reads:

Au + Ju C BT

CT −Aσ 0

B 0 0


uσ
p

=

rhsurhsσ

rhsp

 . (21)
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5. FLOW AROUND CYLINDER BENCHMARK

This 2-dimensional DFG benchmark [11] analyses the attributes of the flow around an
obstacle in a rectangular channel, where a cylinder of radius r = 0.05 is placed with the
center at (0.2, 0.2) in a rectangular channel of length 2.2, the upper and lower walls are 0.41
length apart. The geometrical configuration and coarse mesh are shown in Fig. 2 and 3. The
fluid density (ρ) and kinematic viscosity (η) are set to 1 and 0.001, respectively.

Γno-slip

Γout

Γno-slip

Γin

0.21

0.2

0.2

2.2

Figure 2: Flow around cylinder configuration.

Dirichlet boundary is defined at the inlet Γin with a parabolic profile

ux(y) =
(4.0Umaxy(0.41− y)

(0.41)2
, 0
)
,

having maximum velocity Umax = 0.3. The corresponding mean velocity Umean is defined as

Umean =
2

3
Umax.

No slip boundary condition is defined at the upper and lower walls and do-nothing boundary
condition is defined at the outlet Γout. The characteristic length of the cylinder (L = 2rc =
0.1) along with the viscosity (η) and mean velocity yields the Reynolds number Re = 20,
depicting a laminar flow. Here rc is the radius of the cylinder.

Re =
UmeanL

η
. (22)

Force acting on cylinder surface has two components i.e. lift and drag, respectively. Lift is
perpendicular to the direction of flow, whereas drag is parallel to the direction of flow. The
mathematical expressions for lift and drag are defined as:

FL = −
∫
S

(η
∂uτ
∂n

n1 − pn2)ds, FD =

∫
S

(η
∂uτ
∂n

n2 − pn1)ds. (23)
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The dimensionless drag and lift coefficients are also calculated with following definitions

CD =
2

U2
meanL

FD, CL =
2

U2
meanL

FL.

5.1. Numerical results

For testing the robustness and the efficiency of the resulting discretization in comparison
with the Navier-Stokes solver both in two field as well as in three field formulation, we sub-
stitute α = 0, for reducing this system of equations into two field formulation. The numerical
results illustrating the performance of system (1) for flow around cylinder benchmark are
presented in Table [1]. Numerical results in the form of lift/drag are compared and validated
with the reference values [11],

CD = 5.57953523384, CL = 0.010618948146,

and with the results of Damanik [7]. Convergence of the solution is presented for higher
order finite elements (Q2/P

disc
1 ). Here, ”NL” denotes nonlinear iterations, ”LL” denotes the

average number of multigrid iterations. Each refinement level shows a strong agreement with
the reference results. The accuracy of the solution in terms of velocity magnitude, pressure
and stream functions are presented in Fig. 4.

However, the basic purpose of this numerical study is to show the suppression of the inf-
sup condition on velocity-stress (u,σ) for the range of α between 0 and 1. Therefore, a
detailed study is carried out in Table [2] to show the stability of the three field system, unless
α→ 1. One can see the accuracy of the solution as well as the robustness of the monolithic
Newton-multigrid solver in the above mentioned table. Moreover, these results obtained from
higher order finite elements show mesh convergence with respect to the mesh refinements.
For the extreme cases, when the solvent viscosity is nearly zero or absent i.e. 0.88 < α ≤ 1,
the solver is not able to converge at all because the finite element pair for velocity-stress
(u,σ) is not stable. In order to circumvent this stability issue, edge oriented stabilization is
added by setting ”γ = 10−4”, which clearly shows that the solver is able to achieve nearly
accurate results as well as the behaviour of convergence is quite good with the decent number
of iterations.

Figure 3: Flow around cylinder coarse mesh.
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Table 1: Navier-Stokes: Validation of the lift and drag values of the flow around cylinder in a
rectangular channel. ”NL” denotes nonlinear iterations, ”LL” denotes the average number of multigrid
iterations. L.I. and V.I. stands for the line and volume integral.

L.I. V.I. Damanik (L.I.) [7]

Level Lift Drag Lift Drag NL/LL Lift Drag NL/LL

1 0.009497543 5.5550 0.009447476 5.5424 9/1 0.009498 5.5550 9/2
2 0.010600652 5.5722 0.010468846 5.5672 9/1 0.010601 5.5722 9/2
3 0.010615639 5.5776 0.010567879 5.5761 9/1 0.010616 5.5776 9/1
4 0.010617798 5.5791 0.010603975 5.5787 8/1 0.010618 5.5790 8/1
5 0.010618726 5.5794 0.010615029 5.5793 7/1

(a) Velocity magnitude

(b) Pressure distribution

(c) Stream function

Figure 4: Flow around cylinder: Visualization of the velocity, pressure and stream function.
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Table 2: Navier-Stokes: Effect of the EOFEM stabilization on the lift and drag values of the
flow around cylinder in a rectangular channel. ”NL” denotes nonlinear iterations, ”LL” denotes the
average number of multigrid iterations. The results are calculated at different mesh refinement levels
for different values of α, the tolerance criteria of the linear solver is set to 10−3.

With EOFEM

α Level Lift Drag NL/LL Lift Drag NL/LL

0 1 0.008786117 5.5285 7/4 0.010107982 5.5427 7/3
0 2 0.010424275 5.5663 7/4 0.010702943 5.5674 7/3
0 3 0.010597517 5.5764 7/3 0.010619474 5.5757 7/3
0 4 0.010615911 5.5788 7/4 0.010616941 5.5782 7/3
0 5 0.010618494 5.5794 7/4 0.010618268 5.5790 6/4

0.25 1 0.009307183 5.5454 7/3 0.010013472 5.5301 7/3
0.25 2 0.010559395 5.5701 7/2 0.010677420 5.5639 7/2
0.25 3 0.010611104 5.5772 7/2 0.010615166 5.5744 7/3
0.25 4 0.010617270 5.5790 7/2 0.010615982 5.5777 7/3
0.25 5 0.010618658 5.5794 6/3 0.010617947 5.5788 6/4

0.5 1 0.009075847 5.5363 7/3 0.009911587 5.5171 7/3
0.5 2 0.010506223 5.5681 7/3 0.010650185 5.5601 7/2
0.5 3 0.010605621 5.5767 7/3 0.010610603 5.5730 7/3
0.5 4 0.010616682 5.5789 7/3 0.010614926 5.5771 7/3
0.5 5 0.010618582 5.5794 7/3 0.010617576 5.5785 7/4

0.75 1 0.008786117 5.5285 7/4 0.009800026 5.5039 7/3
0.75 2 0.010424275 5.5663 7/4 0.010620649 5.5562 7/3
0.75 3 0.010597517 5.5764 7/3 0.010605686 5.5715 7/3
0.75 4 0.010615911 5.5788 7/4 0.010613740 5.5764 7/3
0.75 5 0.010618494 5.5794 7/4 0.010617138 5.5782 7/4

0.88 1 0.008605515 5.5268 8/6 0.009737168 5.4969 7/3
0.88 2 0.010352916 5.5652 7/6 0.010604083 5.5541 7/3
0.88 3 0.010589597 5.5762 7/6 0.010602939 5.5706 7/3
0.88 4 0.010615198 5.5788 7/7 0.010613035 5.5760 6/3
0.88 5 0.010618421 5.5794 7/8 0.010616876 5.5780 7/4

1 1 - - - 0.009675569 5.4903 7/3
1 2 - - - 0.010587841 5.5520 7/3
1 3 - - - 0.010600252 5.5698 7/3
1 4 - - - 0.010612372 5.5756 7/3
1 5 - - - 0.010616606 5.5778 7/4
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To obtain even more accurate drag and lift coefficients, a comparison study for the optimal
value of the stabilization parameter ”γ” is carried out for vanishing viscosity cases (α =
0.9, 1.0) presented in Table [3] and Table [4]. For the extreme case (α = 1.0), the solver does
not converge for γ < 10−5. From these tables, it is concluded that ”γ = 10−4” is the optimal
value of the stabilization parameter, which gives not only the accurate desired quantities but
also faster convergence rate of the solver. Hence, the three field Navier-Stokes solver is robust
and accurate.

Table 3: Navier-Stokes: Lift and drag values of the flow around cylinder in a rectangular channel,
α = 0.9. ”NL” denotes nonlinear iterations, ”LL” denotes the average number of multigrid iterations.
L.I. and V.I. stands for the line and volume integral.

L.I. V.I.

Level Lift Drag Lift Drag NL/LL

γ = 10−4

1 0.009727154 5.4958 0.009717593 5.5329 7/3
2 0.010601445 5.5537 0.010511472 5.5649 7/3
3 0.010602502 5.5705 0.010566725 5.5756 7/3
4 0.010612946 5.5759 0.010603146 5.5785 7/3
5 0.010616833 5.5779 0.010614868 5.5793 7/5
6 0.010618046 5.5788 0.010617929 5.5795 7/6

γ = 10−5

1 0.008943680 5.5110 0.008919255 5.5435 7/4
2 0.010455364 5.5579 0.010375034 5.5665 7/4
3 0.010594742 5.5722 0.010559730 5.5759 7/4
4 0.010613554 5.5766 0.010603219 5.5786 7/4
5 0.010617227 5.5782 0.010614852 5.5793 6/5
6 0.010618268 5.5789 0.010617924 5.5795 7/7

γ = 10−6

1 0.008671221 5.5206 0.008599485 5.5477 7/5
2 0.010377576 5.5617 0.010297781 5.5674 7/5
3 0.010590503 5.5742 0.010555386 5.5760 7/5
4 0.010614374 5.5776 0.010603249 5.5786 6/5
5 0.010617850 5.5788 0.010614936 5.5793 6/7
6 0.010618481 5.5792 0.010617860 5.5795 7/9
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Table 4: Navier-Stokes: Lift and drag values of the flow around cylinder in a rectangular channel,
α = 1.0. ”NL” denotes nonlinear iterations, ”LL” denotes the average number of multigrid iterations.
L.I. and V.I. stands for the line and volume integral.

L.I. V.I.

Level Lift Drag Lift Drag NL/LL

γ = 10−4

1 0.009675569 5.4903 0.009669980 5.5331 7/3
2 0.010587841 5.5520 0.010503484 5.5650 7/3
3 0.010600252 5.5698 0.010566096 5.5757 7/3
4 0.010612372 5.5756 0.010603133 5.5786 7/3
5 0.010616606 5.5778 0.010614890 5.5793 7/4
6 0.010617940 5.5787 0.010617944 5.5795 7/6

γ = 10−5

1 0.008817877 5.5068 0.008778103 5.5454 7/6
2 0.010415676 5.5555 0.010342654 5.5666 7/6
3 0.010589744 5.5712 0.010557220 5.5759 7/6
4 0.010612578 5.5761 0.010603086 5.5786 7/7
5 0.010616837 5.5780 0.010614860 5.5793 7/9
6 0.010618305 5.5788 0.010618128 5.5795 12/10

6. CONCLUSION

In this work, we have presented the study of the three field formulation by adding the
constitutive equation of the stress variable σ into the classical Navier-Stokes equations. The
main focus is to get rid of the inf-sup stability condition for the velocity-stress variable
according to the Baranger et al. [2], when the solvent viscosity is present in the system of
equations (1), which corresponds to the 0 < α < 1. This relaxation expands the choice of
the discretization element of the stress varaible. Therefore, to maintain the computational
advantages of the Navier-Stokes solver in two field formulation, it may be more suitable to
have a Q2 interpolation for the stress as well, which is not stable in the absence of pure viscous
term [2]. We proceed by adding an edge oriented stabilization to overcome such situation.
Moreover, the benefit of adding this stabilization in the absence of the pure viscous term is
tested for the laminar flow around cylinder configuration. The stability and robustness of the
method is investigated numerically, where it clearly shows that there is no condition needed
for the velocity-stress in the presence of pure viscous term. To fulfill the inf-sup condition in
the case of α = 1, either we can choose the right finite element or we can add this stabilization
with the optimal parameter γ, which does not effect the solution accuracy but on the other
hand, also helps the solver to converge smoothly.

The numerical results presented in this article are for Newtonian fluids, however, in future
the studies will be carried out for non-Newtonian fluids, which is the basic motivation of the
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three field formulation.
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Computing - CISC 2002, pages 87–109, ”Berlin, Heidelberg”, 2003. Springer Berlin
Heidelberg.

[13] D. Arnold, D. Boffi, and R. Falk. Approximation by quadrilateral finite elements. Math-
ematics of computation, 71(239):909–922, 2002.

[14] D. S. Malkus. Eigenproblems associated with the discrete LBB condition for incompress-
ible finite elements. International Journal of Engineering Science, 19(10):1299–1310,
1981.

[15] M. Fortin and R. Pierre. On the convergence of the mixed method of Crochet and
Marchal for viscoelastic flows. Computer Methods in Applied Mechanics and Engineering,
73(3):341–350, 1989.

13


	EB 659_1.Seite
	EB 659

