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Summary

The goal of this work is to investigate the use of exciton polariton vortices for all optical
information processing. To achieve this goal, we develop a novel technique based on
sorting orbital angular momentum states of light, which allows for detecting and tem-
porally tracing vortices in a light beam. We successfully implement and benchmark this
technique and apply it to demonstrate the spontaneous formation of exciton polariton
vortices inside all optically excited annular trapping potentials in a GaAs based micro-
cavity. Subsequently we investigate the temporal dynamics of this formation process,
which is strongly dependent on excitation power. Our experimental results show the
simultaneous and statistically independent formation of vortex modes with topological
charges m = −1 and m = +1. We gain further insight into the temporal dynamics of
all arising modes by theoretically modeling our experimental results. Furthermore, in
some cases vortices show spin-orbit coupling between their orbital angular momentum
and their spin, which corresponds to the circular polarizations σ+ and σ−. In the final
stage of our experiments, we experimentally verify the theoretical prediction that the
topological charge of exciton polariton vortices may be flipped by perturbing them with
a pulsed laser. Thereby we demonstrate the potential use of exciton polariton vortices
as all-optical information storage.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Untersuchung von potenziellen Anwendungen von Vortizes
in einem Exziton-Polariton System für die optische Informationsverarbeitung. Um diese
Vortizes zu untersuchen, entwickeln wir eine neuartige Spektroskopiemethode, welche
auf einer optischen Transformation zur Sortierung von Drehimpulszuständen des Lichts
basiert und uns die Detektion und zeitliche Beobachtung von Vortizes in einem Licht-
strahl ermöglicht. Wir implementieren diese Technik und wenden sie erfolgreich an,
um die spontane Bildung von Exziton-Polariton-Vortizes innerhalb einer rein optisch
erzeugten Ringfalle in einer GaAs basierten Mikrokavität nachzuweisen. Anschließend
untersuchen wir die zeitliche Dynamik dieses Bildungsprozesses, welcher sich stark mit
der Anregungsleistung ändert. Unsere experimentellen Ergebnisse zeigen die gleichzeit-
ige und statistisch unabhängige Bildung von Vortizes mit den topologischen Ladungen
m = −1 und m = +1. Durch theoretische Modellierung des Exziton-Polariton Systems
gewinnen wir tiefergehende Erkenntnisse über die zeitliche Dynamik aller auftretenden
Moden. Weiterhin zeigen die untersuchten Vortizes in einigen Fällen eine Spin-Bahn-
Kopplung zwischen ihrem Drehimpuls und ihrem Spin, welcher den zirkularen Polar-
isationen σ+ und σ− entspricht. Im letzten Schritt unserer Experimente verifizieren
wir die theoretische Vorhersage, dass der Drehsinn von Vortizes durch gezielte optische
Manipulation mit zusätzlichen Laserpulsen umgeschaltet werden kann. Damit zeigen
wir den potenziellen Nutzen von Exziton-Polariton-Vortizes als rein optische Informa-
tionsspeicher auf.
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Chapter 1

Introduction

Light has always been used as a tool for communication. One of the Seven Wonders
of the Ancient World represents a good example for the historical usage of light: The
lighthouse of Alexandria. It was build in the 3rd century BC to mark the port entrance
of the nowadays Egyptian city Alexandria. The light emitted by a fire on its top
served the purpose to safely guide the ships at night [1]. The technological advance
and deepened understanding of the nature of light gained through extensive research
enables much more sophisticated ways of communication with light compared to the
ancient times. State of the art telecommunication technology relies on light signals
guided by glass fibers and allows for data transfer with high speed and bandwidth.
However, the devices connected with each other by this communication channel are
based on electronic data processing. Thereby the light signals always are converted
to electronic currents, which travel per se slower than the speed of light. This limits
the speed of data processing and routing of data in networks. To put it the other
way around: Devices directly processing light signals might operate faster and allow
for higher data rates. Given the increasingly networked world with continuously rising
data volumes, the development of such devices is a desirable goal. This thesis represents
a small contribution towards developing such devices, which process information all
optically.
A potential system enabling all optical information processing consists of exciton po-
laritons in a planar microcavity. A lot of non-linear phenomena have been studied
on this system. To mention only a few: Optical bistability [2], superfluid polariton
propagation [3] and polariton condensation [4] have been shown. Based on these phe-
nomena many applications for optical data processing have been demonstrated, for
example transistor operation of polaritons [5–7] and polariton spin switches [8]. Also
the formation of quantized vortices in exciton polariton condensates has been observed
[9]. The subject of this thesis is to study these exciton polariton vortices in further
detail. To do so, we pursue a novel approach for the detection of vortices. Since the
light emitted by exciton polariton vortices carries orbital angular momentum (OAM),
we implement a tailored spectroscopy method based on OAM sorting, which allows the
efficient detection of vortices. In a first step we implement this method and benchmark
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Chapter 1. Introduction

its use regarding the detection of sample signals carrying OAM. The further road map
using this method consists of specifically exciting exciton polariton vortices, investi-
gating the dynamics of their formation process and finally manipulating the vortices.
Gaining control over exciton polariton vortices might pave the way towards potential
applications in all optical information processing.
In chapter 2 the theoretical basics of excitons, microcavities, exciton polaritons, con-
densation of exciton polaritons, formation of polariton vortices and OAM are presented.
We also sum up the OAM sorting method, which we use in our experiment for detecting
vortices. In chapter 3 we describe its practical implementation in detail and sketch the
full experimental setup for measuring exciton polariton vortices. The results of the
measurements are discussed in chapter 4 and put into the greater context of optical
information processing in chapter 5.
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Chapter 2

Theoretical basics

Excitons are quasiparticles in semiconductors, which arise when electrons excited into
the conduction band form bound states with the remaining holes in the valence band.
The excitation of an exciton may be triggered by the absorption of a photon of a
light beam. When excitons are strongly coupled to a light field (for example in a
microcavity), the energy is exchanged rapidly between excitons and photons so that new
eigenmodes in this system arise, the so called exciton polaritons. Exciton polaritons
thereby are quasiparticles with mass, showing several non-linear interactions, which
include, but are not limited to, exciton polariton condensation [4]. In section 2.1 the
fundamentals of exciton polaritons in microcavities and the condensation of exciton
polaritons are presented, following Refs. [10, 11]. An advantageous feature of exciton
polaritons is their direct optical accessibility, since the polaritons emit photons during
decay. The emitted light may be imaged and detected easily using an optical setup. Due
to Coulomb interaction, the exciton polaritons interact with each other and all other
charged carriers, which renders it possible to shape and control exciton polaritons by
optically imprinting potentials with spatially shaped laser beams. In section 2.2 we
show the fundamental principle how to shape a light beam by spatially modulating its
phase structure.
Given all the features of the polariton system, it is not surprising that many studies of
exciton polaritons have been performed. Here, our particular interest goes to exciton
polariton vortices [9, 12–17], which we introduce in section 2.3. Exciton polariton vor-
tices are quantized excitations associated with a circular motion of exciton polaritons.
We want to specifically excite such vortices in exciton polariton condensates to study
their potential applications in all-optical information processing. To achieve this goal,
we follow the theoretical concept of Ma et al. [18–20], which suggests vortex formation
inside an all optically excited ringlike trap.
Once vortices form inside a ringlike trap, their detection is also a crucial point. Here,
we exploit the correspondence of the polaritons inside the microcavity and photons
emitted by the microcavity. The phase structure of the exciton polariton vortices
inside the microcavity translates into the phase gradient of the light beam emitted by
the sample. This light beam thereby carries OAM, as we will discuss in section 2.4.
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Chapter 2. Theoretical basics

The OAM is a fundamental degree of freedom of light fields. The availability of an
infinite set of orthogonal OAM modes potentially allows one to increase the number
of channels for information transfer while having only one light beam. To separate
and simultaneously detect these channels of different OAM states, the OAM sorting
method was developed by Berkhout et al. [21]. Our basic idea is to utilize this method
to detect exciton polariton vortices. The working principle of OAM sorting is explained
in section 2.5. In subsection 2.5.1 we also provide a Matlab implementation of a simple
beam propagation simulation, which we use to reproduce the OAM sorting process
theoretically.

2.1 Exciton polaritons in microcavities

First, this chapter presents the properties of bare excitons in bulk semiconductor ma-
terial. The optical properties of excitons change when they are confined in quantum
wells, which are potential wells formed by thin layers of semiconductor material that
allow only few discrete energy states of excitons along the direction of confinement.
Such quantum wells may be placed in microcavity structures, which are optical res-
onators that microscopically confine a light wave while also amplifying its amplitude
locally. When the excitons inside the quantum wells strongly interact with the reso-
nant light field mode of a microcavity, the so called exciton polaritons may arise as new
eigenmodes of this system. We derive their energy dispersion and discuss their optical
properties. Finally, we discuss the condensation of exciton polaritons, which is of high
relevance for this thesis, as we use this mechanism to excite exciton polaritons inside
the microcavity.

2.1.1 Excitons in semiconductors

The states of electrons in a semiconductor are determined by band structures. For
optical processes only the bands nearby the energy gap of the semiconductor are im-
portant. Thus, we consider a simplified picture of a low energy valence band and a
high energy conduction band, both separated by an energy gap. When an electron in
the valence band is excited into the conduction band, a hole remains in the valence
band. This hole can be treated as a +e charged quasiparticle, where e is the elemental
charge of an electron. Due to Coulomb interaction the electrons in the conduction band
and holes in the valence band may form bound states. We call these states excitons.
Fig. 2.1 exemplarily illustrates the band structure of a semiconductor near the band
gap, including the dispersions of electrons and holes. The corresponding equations are
2.1 and 2.2, in which we assume a parabolic shape for the bands, which is the usual
approximation for small wave vectors k [22].
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2.1. Exciton polaritons in microcavities

EC = EV(0) + Eg + ~2k2

2me
(2.1)

EV = EV(0) + ~2k2

2mh
(2.2)

Here, EV and EC are the energies of valence band and conduction band, Eg is the
energy gap. The effective masses me and mh are given by the curvature −(∂2E/∂p2)−1

with p = ~k. While the effective mass of an electron is positive, the effective mass of a
hole is negative. This results in separate dispersions with opposite curvatures, as Fig.
2.1 illustrates. For materials with zinc blende structure, such as GaAs, the dispersion
of holes in the valence band splits into light holes and heavy holes. In bulk material
heavy and light holes have the same maximum energy EV, while in quantum wells the
light hole dispersion is shifted slightly below the band edge due to strain [23]. Due to
spin-obit interaction also split-off holes with a dispersion energetically far below EV
form (not shown in Fig. 2.1). In optical processes mainly the heavy holes are involved,
since allowed optical transitions involving heavy holes are about three times as probable
as those involving light holes [23].

E

k

conduction band

valence band

heavy
hole

light
hole

Ec=Ev+Eg

Ev

Eg

Figure 2.1: Illustration of electron and hole dispersions in a bulk semiconductor, separated
by a band gap. Electrons are excited and populate the conduction band. In the valence band
positively charged holes remain, when electrons are excited. In a quantum well structure the
heavy and light hole dispersions are split and the light hole dispersion is shifted slightly below
EV due to strain [23]. Adapted from Ref. [24].

Due to Coulomb attraction a negatively charged electron and positively charged hole
may form a transient binding state, which can be treated as a dedicated quasiparti-
cle, the so called exciton. The Coulomb force binding the electron and hole may be
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Chapter 2. Theoretical basics

screened, resulting in varying binding energies and physical exciton sizes for materials
with different dielectric constants. In materials with a small dielectric constant the
Coulomb force is hardly screened and strongly localized excitons with high binding
energies may arise, the so called Frenkel excitons. Typically Frenkel excitons occur
in organic molecular crystals and exhibit binding energies of 100-300meV [22, 23]. In
contrast to this, in materials with a large dielectric constant such as the inorganic
semiconductor gallium arsenide (GaAs), the Coulomb force is screened more signifi-
cantly. In this case strongly delocalized excitons with typical binding energies on the
order of 10meV arise, the so called Wannier-Mott excitons [25]. Typical lifetimes of
Wannier-Mott excitons in bulk GaAs are on the order of nanoseconds [26]. In contrast
to the Frenkel excitons, the Wannier-Mott excitons extend over several unit cells of the
lattice and may not be bound to individual molecules. In the following we only dis-
cuss Wannier-Mott excitons, as the Frenkel excitons may not exist in the GaAs based
semiconductor sample we investigate in this thesis.
Since the binding state of a heavy hole and a lighter electron highly resembles the
hydrogen atom, the theoretical treatment is very similar and allows one to use the
same quantum numbers n,l,m,s. We separate the center of mass motion, which shows
the dispersion relation E = ~2

2MK
2 with M = me + mh and the momentum of the

center of mass motion ~K. The wave vector is K = ke + kh with ke < 0 and kh > 0.
We obtain a hydrogen-like structure for the energy levels, which scale with the main
quantum number n as follows:

EnX = − m∗r
m0ε2r

· m0e
4

2(4πε0~)2︸ ︷︷ ︸
=:ERyd

· 1
n2 , (n ≥ 1) (2.3)

Hereby m∗r is the reduced effective mass with m∗r−1 = m∗e
−1 +m∗h

−1, m0 is the electron
mass and εr is the dielectric constant. The first factor (m∗r/m0)ε−2

r ≈ 10−3 accounts for
the different masses of the involved particles and the Coulomb screening. The second
factor equals the atomic Rydberg energy ERyd = 13.605693 eV [27], as known for the
hydrogen atom. In bulk GaAs the exciton binding energy amounts to 4.1meV [23],
which is three orders of magnitude lower than the binding energy of the electron in
the hydrogen atom. This small binding energy implies that in GaAs excitons may only
exist at low temperatures, otherwise they would be thermally dissociated. To illustrate
this, we think of a free particle in an ideal gas model [28]. The kinetic energy of such
a particle with three degrees of freedom reads as

E = 3
2kBT, (2.4)

with the Boltzmann constant kB = 8.617333 · 10−5 eV/K [29] and the temperature T.
By comparing this value to the exciton binding energy we may roughly estimate the
maximum temperature at which excitons may exist in bulk GaAs to 32K.
The energy dispersion of the excitons is illustrated in Fig. 2.2 and reads as follows:

E = Eg + EnX + ~2

2MK2 (2.5)
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2.1. Exciton polaritons in microcavities

Above the band gap a continuum of unbound electron hole states, which do not form
excitons, exists. Although the excitons exhibit a parabolic dispersion, only the excitons
with K ≈ 0 participate in optical absorption processes, since the wave vector of photons
at energies near the energy of the band gap is negligibly small compared to the reciprocal
lattice vector [22]. Furthermore the oscillator strength of the optically allowed exciton
transitions decreases with n−3, through which typically only the n = 1 excitons are
observable when additional inhomogenities exist [24]. Taking the selection rules for
optical transitions into account, we assume mainly 1s-hh excitons to contribute to the
optical processes investigated in this thesis.

0 K

E

n=1
n=2

n=3
n➝∞

continuum

Eg

EX

EX
1

Figure 2.2: Illustration of the exciton dispersion for different main quantum numbers n. The
wave vector K refers to the center of mass motion of the bound electron and hole. Adapted
from Ref. [24].

As mentioned before, the Wannier-Mott excitons are strongly delocalized. The radius
of the excitons can be calculated in analogy to the hydrogen atom according to

rnX = n2m0
m∗r

εraB , (2.6)

with the Bohr radius aB = 52.917721 pm of the hydrogen atom [30]. In GaAs the
exciton radius amounts to aX = r1

X = 14.6 nm [24], which exceeds the lattice constant
of 0.565 nm in GaAs [31] vastly. This demonstrates the strong delocalization of the
excitons. Finally, it should be noted that excitons can be considered as bosons with
integer spin, even though they are formed by fermionic particles with half-integer spin.
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Chapter 2. Theoretical basics

This is a very good approximation as long as the excitons are spatially separated from
each other much farther than their radius.

Quantum well excitons

We now consider excitons inside quantum wells. A quantum well consists of a thin
semiconductor layer with a thickness comparable to the exciton radius enclosed between
other layers of semiconductor material with a larger band gap. This confinement leads
to a quantized center of mass movement with only few allowed states perpendicular to
the layer plane. When just one such state is possible, the excitons can only move in
one plane inside the quantum layer and become two-dimensional quasiparticles. Most
strikingly the rotational symmetry is broken and the three dimensional momentum is
not a good quantum number any more. As a consequence the momentum only needs
to be conserved in the two-dimensional plane when excitons are excited by resonant
optical pulses. Excitons inside the quantum well optically couple to light of equal wave
vector k|| in plane and arbitrary wave vectors k⊥ perpendicular to the plane.
The two-dimensional layer structure also modifies the semiconductor band structure
and changes the selection rules for optical transitions. Confining the excitons in a
two-dimensional planar structure reduces the Coulomb screening, which increases the
binding energy and reduces the exciton radius. The oscillator strength simultaneously
increases, but effectively the total coupling of photons to the excitons is smaller com-
pared to bulk material because of the minor layer thickness of the quantum wells.
The coupling strength between photons and quantum well excitons may be strongly
increased by embedding the quantum wells in an optical microcavity, which we discuss
in the next section.

2.1.2 Structure and properties of optical microcavities

An optical microcavity is a resonator, which microscopically confines a light field on
typical length scales of few hundred nanometers to several micrometers. Various de-
signs based on different materials exist. The design of the sample we investigate in this
thesis consists of several spatially extended but very thin semiconductor layers, which
are stacked on top of each other. An elementary sketch of the layer structure and the
electrical field component of the resonant light field mode is shown in Fig. 2.3. The
microcavity consists of two distributed Bragg reflectors (DBRs) enclosing the cavity
layer with an optical thickness of λC/2, whereby λC is the design wavelength of the
microcavity. The quantum wells are embedded in the cavity layer at the antinodes
of the locally amplified light field. The DBRs are made up of alternating layers of
semiconductor material with different refractive indices, but identical optical thickness
of λC/4. When a light beam incides onto the DBR, this periodic alignment induces
multiple splitting of the beam into reflected and transmitted parts at all layer bound-
aries. The resulting partial beams interfere destructively in transmission direction and
constructively in the direction of reflection. Hence, the DBR very efficiently reflects
light, whereas the reflection coefficient is at the maximum for perpendicularly incident
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2.1. Exciton polaritons in microcavities

bottom DBR top DBR

QWs in
λ/2 cavity

substrate

||E|22

n0=1
n1

n2

n1n2 n1nC

air

Figure 2.3: Sketch of a microcavity including an exemplary illustration of the electrical field
distribution of the confined light field. The layers consist of material with different refractive
indices n1, n2 and nc. The quantum wells are positioned by design in the central antinode of
the light field confined in the cavity. Adapted from Ref. [10].

light beams with a wavelength of λC . However, also light beams with different wave-
lengths near λC or with slightly tilted angles of incidence still are reflected efficiently.
The reflectivity spectrum of a DBR thereby exhibits a wide wavelength range with high
reflectance, the so called stop band. This stop band also shows up in the reflectivity
spectrum of the full microcavity, as exemplarily illustrated in Fig. 2.4. In addition to
the stop band resulting from the DBRs, the reflectance drops to almost zero at the
resonant wavelength of the cavity λC . The effective length of the cavity is

Leff = LC + LDBR,

LC = n

2 ·
λC
nc

with n ∈ N,

LDBR ≈
λC
2nc

n1n2
|n1 − n2|

.

(2.7)

Hereby, n1, n2 and nc are the refractive indices corresponding to the materials used for
the individual layers, as depicted in Fig. 2.3. The contribution LC equals the optical
thickness of the cavity layer while LDBR accounts for the penetration of the light field
into the DBRs. The light transmission rises strongly at λC and can be calculated as

T = (1−R1)(1−R2)(
1−
√
R1R2

)2 + 4
√
R1R2 sin2(φ/2)

, (2.8)
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Figure 2.4: Typical reflectivity spectrum of a microcavity. A stop band with nearly 100%
reflectance is formed due to the DBRs. Light may be coupled into the microcavity either at the
resonant wavelength λC or near the Bragg minima outside the stop band. Adapted from Ref.
[10].

with the reflectivities R1 and R2 of the top and bottom DBR and φ as the phase shift
of the light wave after one round trip in the cavity. The Q-factor of a resonator equals
the average number of round trips of a wave packet inside the resonator, before the
wave packet decays and leaves it. The Q-factor of an optical microcavity is given by
the full width half maximum ∆λC of the resonance at λC in the reflectance spectrum
and can be estimated as follows:

Q ≡ λC
∆λC

' π(R1R2)1/4

1− (R1R2)1/2 . (2.9)

The related average lifetime of this exponential decay process amounts to

τCav = Q/(2πfC) , (2.10)

with the frequency fC of the light field [23]. High quality microcavity samples enable
cavity photon lifetimes up to several 100 ps [32]. The cavity photons may interact with
excitons in the quantum wells, which are placed in the central antinodes of the light
field to maximize the coupling. This strong coupling yields a new type of quasiparticles
called exciton polaritons, as we will discuss in section 2.1.3. To enable this coupling,
one needs to transfer photons into the microcavity. This can be done either by resonant
excitation at λC or by non-resonant excitation outside the stop band, preferably at the
Bragg minima of the DBRs with almost zero reflectance. In case of resonant excitation
the wavelength of the incident light beam needs to match the resonant wavelength λC .
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2.1. Exciton polaritons in microcavities

When the propagation axis of a photon inside the planar cavity is not aligned exactly
perpendicular to the layers, the photon moves in plane and the resonant wavelength
changes to λC/ cos θ. This implies an energy dispersion of the cavity photons, which
reads as follows:

ECav = 
~c
nc

√
k2
⊥ + k2

|| , (2.11)

with the reduced Planck’s constant ~, speed of light c and the perpendicular wave
vector k⊥ = nc(2π/λC). The in-plane wave vector k|| results from the angle θ as

k|| = nc
2π
λC

tan
[
sin−1

(sin θ
nc

)]
≈ 2π
λK

θ, if k|| � k⊥ . (2.12)

Assuming k|| � k⊥ we obtain a quadratic energy dispersion:

ECav ≈
~c
nc
k⊥ 1 +

k2
||

2k2
⊥

)
= ECav(k|| = 0) +

~2k2
||

2mCav
, (2.13)

with an effective cavity photon mass

mCav =
ECav(k|| = 0)

c2/n2
c

, (2.14)

which is typically on the order of 10−5me. The cavity photon mass may be different for
transversal electric (TE) and transversal magnetic (TM) polarization, leading to the
so called TE-TM splitting of the energy dispersion into two parabolic branches with
different curvature but same energy at k|| = 0 [33].
In the case of non-resonant excitation the wavelength of the excitation laser is per
definition very different from the resonant wavelength and lies outside the stop band.
Hence, the photons are not cached in the resonator and would leave the cavity instantly,
unless they are absorbed. Indeed a process exists in which the non-resonant photons
are absorbed and create a hot electron-hole plasma. After some relaxation processes,
excitons form with energies nearby the cavity photon energies in the stop band. We
regularly utilize this process for the creation of exciton polaritons, which we introduce
in the next section. The non-resonant excitation process of exciton polaritons is highly
relevant and will be discussed in section 2.1.4.

2.1.3 Derivation of the exciton polariton dispersion

Exciton polaritons are quasiparticles that arise when photons and excitons are coupled
with each other and exchange energy on a time scale shorter than their decay and
decoherence times. Thus, it is not possible to distinguish the constituting photons and
excitons anymore. The amplification of the light field density in a microcavity renders
it possible to reach this so called strong coupling regime more easily. In the following
theoretical derivation, we consider a system of coupled quantum well excitons and
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Chapter 2. Theoretical basics

cavity photons without including their finite lifetimes. We will see that strong coupling
leads to the formation of upper and lower exciton polaritons as new eigenmodes of the
system with distinct in-plane energy dispersions.
We start with the Hamiltonian in second quantization using the rotating wave approx-
imation:

ĤPol =ĤCav + ĤExc + ĤInt

=
∑

ECav(k||,kc)â†k|| âk|| +
∑

EExc(k||)b̂†k|| b̂k||
+
∑

~Ω(k||)︸ ︷︷ ︸
=:g0

(
â†k|| b̂k|| + âk|| b̂

†
k||

)
.

(2.15)

The operators â†k|| and âk|| are the photon creation and annihilation operators with the
in-plane wave vector k|| and the longitudinal wave vector kc = k · ẑ given by the cavity
resonance. The operators b̂†k|| and b̂k|| are the exciton creation and annihilation oper-
ators. Ω(k||) equals the frequency of energy exchange between excitons and photons,
which gives a measure for their coupling strength. We define g0 = ~Ω(k||) as a measure
for the coupling strength in the units of energy. The Hamiltonian in Eq. 2.15 can be
diagonalized using the transformation

P̂k|| = Xk|| b̂k|| + Ck|| âk|| , (2.16)

Q̂k|| = −Ck|| b̂k|| +Xk|| âk|| , (2.17)

with the Hopfield coefficients Xk|| and Ck|| , which satisfy
∣∣∣Xk||

∣∣∣2 +
∣∣∣Ck|| ∣∣∣2 = 1 . (2.18)

The diagonalized Hamiltonian reads as

ĤPol =
∑

ELP(k||)P̂ †k||P̂k|| +
∑

EUP(k||)Q̂†k||Q̂k|| , (2.19)

whereby the operators (P̂ †k|| ,P̂k||) and (Q̂†k|| ,Q̂k||) are the creation and annihilation oper-
ators of the new eigenmodes of the system. These new eigenmodes may be considered
as quasiparticles, which we call exciton polaritons. The exciton polariton modes are
separated into two energy dispersion branches, one with a high energetic ground state
(upper polaritons, UP) and another one with a low energetic ground state (lower po-
laritons, LP), whereas the energies are derived as

ELP,UP (k||) = 1
2

(
EExc(k||) + ECav(k||)±

√
4g2

0 + (EExc(k||)− ECav(k||))2
)
. (2.20)

According to Eqs. 2.16 and 2.17, exciton polaritons are a linear superposition of photons
and excitons with identical in-plane wave vector k||. Since the photons are bosons and
the excitons also may be considered as bosons, the exciton polaritons are bosons, too.
This yields the intriguing possibility of Bose Einstein condensation of exciton polaritons,
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2.1. Exciton polaritons in microcavities

as we will discuss in chapter 2.1.4. The photonic and excitonic fractions of exciton
polaritons are given by the Hopfield coefficients, as can be seen from Eqs. 2.16 and
2.17. For lower polaritons |Ck|| |2 is the fraction of photons and |Xk|| |

2 is the fraction
of excitons. For upper polaritons this assignment is flipped. With the abbreviation
∆E(k||) = ECav(k||,kc)− EExc(k||), their values may be calculated as follows:

|Xk|| |
2 = 1

2

1 +
∆E(k||)√

∆E(k||)2 + 4g2
0

 , (2.21)

|Ck|| |
2 = 1

2

1−
∆E(k||)√

∆E(k||)2 + 4g2
0

 . (2.22)

As we see from Eqs. 2.21 and 2.22, the fractions of photons and excitons are given
only be the energy difference ∆E(k||) and the constant g0. For example in the case of
∆E = 0, we obtain |X|2=|C|2=1

2 and the polaritons consist of photons and excitons in
equal proportion. Hence, this energy difference ∆E(k||) is a very important parameter.
In order to establish a quantitative measure we define

δ ≡ ECav(k|| = 0)− EExc(k|| = 0) (2.23)

as the detuning between the uncoupled exciton and cavity modes. The energy disper-
sions of upper and lower polaritons change for different detunings, as can be seen from
Eq. 2.20. Fig. 2.5 exemplary shows the ground state energies ELP,UP (k|| = 0) and
Hopfield coefficients for different values of the detuning.

Figure 2.5: (a) Illustration of lower polariton (LP) and upper polariton (UP) ground states
at k|| = 0 shifting with exciton cavity detuning. At δ = 0 the UP and LP dispersions show
an anti-crossing with a Rabi splitting of 2g0, whereas the uncoupled exciton and cavity photon
modes cross. (b) Corresponding Hopfield coefficients on the same axis of detuning, which is
normalized to the Rabi splitting.
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Chapter 2. Theoretical basics

The characteristic feature of strong coupling is that the dispersions of upper and lower
polaritons exhibit an energy anti-crossing at δ = 0. The observation of such an energy
splitting indicating the strong coupling regime of polaritons in a planar semiconductor
microcavity was first achieved by Weisbuch et al. in 1992 [34]. In analogy to Rabi
oscillations of light interacting with atomic energy levels, this energy splitting of 2g0 is
called the Rabi splitting of the microcavity. In contrast to the strong coupling regime,
in the weak coupling regime there are only weakly coupled exciton and cavity photon
modes, which show no Rabi splitting and naturally cross each other at δ = 0. We
discuss the quantitative criterion for distinguishing between weak and strong coupling
further below, as we need to take the finite lifetimes of excitons and cavity photons
into account in order to establish it. The Hopfield coefficients in the strong coupling
regime are shown in Fig. 2.5(b). |Xk|| |

2 increases monotonously with ascending values
of detuning while |Ck|| |2 shows a complementary drop. This means that lower (upper)
polaritons are more photonic at negative (positive) detuning and more excitonic at
positive (negative) detuning. This trend also is present in the full polariton dispersion
branches, which are plotted in Fig. 2.6 for exemplary data. Hereby we include the
aforementioned assumptions of a constant exciton energy and a parabolic cavity photon
dispersion. When k|| � 0, the upper polariton dispersion converges to the cavity photon
dispersion and the lower polariton dispersion converges to the exciton dispersion. In
the range near k|| = 0, the detuning strongly influences the shape of the dispersions.
For negative detuning the lower polariton dispersion reproduces the shape of the cavity
photon dispersion and the upper polariton dispersion converges to the exciton energy.
With increasingly positive detuning the upper polariton dispersion converges to the
cavity photon dispersion while the lower polariton dispersion flattens and converges to
the exciton dispersion.
As already discussed in section 2.1.1 regarding electrons and holes, the curvature of a
particle dispersion relation gives a measure for the effective mass of this particle. The
masses of exciton polaritons may be extracted in a similar approach. Near k|| = 0 the
dispersion may be approximated by a parabola

ELP,UP(k||) ' ELP,UP(0) +
~2k2
||

2mLP,UP
, (2.24)

with the effective polariton masses

1
mLP

= |X|2

mExc
+ |C|2

mCav
, (2.25)

1
mUP

= |C|2

mExc
+ |X|

2

mCav
. (2.26)

Since mCav � mExc, we obtain

mLP(k|| ∼ 0) ' mCav/|C|2 ,
mUP(k|| ∼ 0) ' mCav/|X|2 .

(2.27)
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2.1. Exciton polaritons in microcavities

Figure 2.6: (a) Exemplary exciton polariton dispersions at different values of the detuning δ.
(b) Relating Hopfield coefficients, which determine the fractions of photons and excitons.

The resulting lower polariton effective mass near k|| = 0 is on the order of 10−4mExc.
However, for k|| � 0 the lower polariton dispersion converges to the exciton mode and
thereby the effective mass of lower polaritons increases by four orders of magnitude.
This strongly influences the relaxation dynamics of polaritons, as we will see in section
2.1.4. The upper polaritons are practically irrelevant in the scope of this thesis, since
the energetic ground state of the complete system is on the lower polariton branch. The
excitons generated in the non-resonant excitation process we use, may relax into the
lower polariton branch under emission of acoustic phonons. The upper polariton band
is not populated strongly by this exciton relaxation process. For this reason speaking
of exciton polaritons in this thesis always implies that these are polaritons in the lower
polariton branch.
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Chapter 2. Theoretical basics

The theoretical derivation above does not include the fact that excitons and cavity
photons have finite lifetimes τExc and τCav. To reach the strong coupling regime, the
time scale of energy exchange between excitons and cavity photons needs to be faster
than the decay processes of excitons and cavity photons. So far Eq. 2.20 does not
include the case of weak coupling, as an anti-crossing is always present for arbitrarily
small values of g0. Taking into account the finite lifetimes of excitons and cavity photons
modifies Eq. 2.20 as follows:

ELP,UP(k||) =1
2
(
EExc + ECav + i(γCav + γExc)

±
√

4g2
0 + [EExc − ECav + i(γCav − γExc)]2

)
,

(2.28)

with the decay rates γExc and γCav of the exciton and cavity modes. From Eq. 2.28 we
see that the real energy anti-crossing may disappear if the square root becomes zero or
imaginary for small values of g0. In this case we consider the system to be in the weak
coupling regime and the excitons and photons are eigenmodes of the system. However,
if the condition

g0 �
1
2 (γCav − γExc) (2.29)

is fulfilled, the square root is real and an anti-crossing of the modes is present. In this
case we consider the system to be in the strong coupling regime and the lower and
upper polaritons are the eigenmodes of the system. Such a strong coupling may be
achieved in microcavities with high quality factors. Eq. 2.20 is already a sufficiently
good approximation of Eq. 2.28, if γExc � γCav � g0. A rough estimation of the
involved decay rates shows that this is the case for polaritons in a microcavity with a
high Q factor. Using γ ≈ ~/τ and the values τExc ∼ 1 ns, τCav ∼ 10 ps and g0 ∼ 10meV
we obtain an estimate of γExc = 10−7 eV � γCav = 10−5 eV � g0 = 10−2 eV. Strong
coupling is present and Eq. 2.20 describes the energy dispersion well.
The lifetimes of the exciton polariton modes result from the lifetimes of the excitons
and cavity photons according to

τLP =
(
|X|2

τExc
+ |C|

2

τCav

)−1

and (2.30)

τUP =
(
|C|2

τExc
+ |X|

2

τCav

)−1

. (2.31)

When a polariton decays from the microcavity, a photon with the same energy and
in-plane wave vector k|| is emitted. Thereby the detection of exciton polaritons is
fairly easy, as the real space image of the emission gives a quantitative measure of the
polariton density inside the planar microcavity. However, the excitation of polaritons
in the microcavity is a bit more complicated. A straightforward way is to resonantly
excite polaritons with a laser beam that matches the energy and in-plane wave vector
of the polariton dispersion. Thus, exciton polaritons are formed with the same energy
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2.1. Exciton polaritons in microcavities

and polarization. While this is an efficient approach to create exciton polaritons, it
is in practice difficult to single out the signal from the polaritons, which have the
same wavelength and polarization as the pump laser beam. Hence, we use a different
approach to excite exciton polaritons, which is based on non-resonant excitation at
a different wavelength. This approach utilizes another phenomenon known as Bose
Einstein condensation of exciton polaritons, which we discuss in the next chapter.

2.1.4 Condensation of exciton polaritons under non-resonant excita-
tion

The experimental observation of Bose-Einstein condensation (BEC) in an exciton po-
lariton microcavity has been reported by Kasprzak et al. in 2006 [4] . Its characteristic
feature in analogy to the BEC of cold atom gases is that above a certain pump power
threshold an intense coherent condensate of exciton polaritons spontaneously forms at
the ground state of the lower polariton branch. However, in contrast to the BEC of
cold atom gases, the polariton condensate does not reach thermal equilibrium due to
the finite lifetimes of exciton polaritons. Despite this, an intriguing feature of polari-
ton condensation lies in the high critical temperature of the phase transition into the
condensed phase. The criterion for the occurrence of the phase transition of a Bose gas
towards a Bose-Einstein condensate is given by

λ3
T

v
= ζ(3/2) , (2.32)

λT = 2π~√
2πmkbT

, (2.33)

with ζ(3/2) = 2.6124, the particle volume v and the thermal de Broglie wavelength λT
of a particle with massm at the temperature T [35]. According to Eq. 2.32, BEC occurs
when the thermal de Broglie wavelength becomes comparable to the distance between
the particles (∼ v1/3). Solving this formula for T yields the critical temperature of
BEC

TK = 2π~2

mkb

( 1
v · ζ(3/2)

)2/3
, (2.34)

which is inversely proportional to the mass of the bosonic particles. In atom gases
the resulting critical temperature for BEC is very low, for instance ∼2µK for a gas of
sodium atoms [36]. However, with m ≈ 10−5me the exciton polaritons are very light
compared to atoms so that even critical temperatures approaching room temperature
are possible. This is a special peculiarity of exciton polariton condensates. Neverthe-
less, the fact that in most semiconductor materials excitons thermally break up far
below room temperature remains a big practical obstacle for polariton condensation at
room temperature. A significantly higher exciton binding energy would be necessary
to have stable exciton formation and reach polariton condensation even at room tem-
perature.
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Chapter 2. Theoretical basics

Now we consider polariton condensation in more detail. As already mentioned before, a
non-resonant laser is used to couple light into the microcavity outside of the stop band.
This excitation locally creates an electron-hole plasma. Fig. 2.7 illustrates the whole
condensation process originating from this electron-hole plasma towards the formation
of a polariton condensate at the ground state of the lower polariton dispersion.

k=k'

k1

k24

3

21

-q

polariton-polariton scattering

exciton reservoir

bottleneck region

E

k||

 Exciton
 Cavity
 Upper polariton
 Lower polariton

electron hole plasma

relaxation by emission
   of optical and acoustic
       phonons

+q

scattering with
acoustic phonons

Figure 2.7: Illustration of the excitation and relaxation of exciton polaritons created by
non-resonant pumping below the condensation threshold. Exciton polaritons populate different
regions of the lower polariton branch with varying densities. The sizes of the circles roughly
indicate the population densities in the corresponding regions below condensation threshold.
Above condensation threshold, a polariton condensate with high population density forms in the
ground state (region 4) due to non-linear polariton-polariton scattering. A detailed explanation
of the condensation process is given in the text. Adapted from Ref. [10, 37].

The hot electrons and holes from the excited electron-hole plasma relax by emission
of optical and acoustic phonons and form excitons due to Coulomb attraction [38].
The excitons relax further along the lower polariton branch by scattering with acoustic
phonons [39] and form a reservoir at energies slightly below the bare exciton mode
(region 1). As the curvature of the dispersion rises when approaching k|| = 0, the po-
laritons at small k|| become more photonic. Hence, the mass of the polaritons decreases
while their decay rate increases. Simultaneously the density of states on the polariton
dispersion (which is inversely proportional to the curvature) drops, which results in a
bottleneck region where the majority of polaritons decays before relaxing further down
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2.1. Exciton polaritons in microcavities

the dispersion (region 2). When the polariton density is high, this bottleneck can be
overcome by intermediate polariton-polariton scattering (region 3) towards the ground
state (region 4). In that case, polariton-polariton scattering is stimulated by the polari-
ton population in the ground state [37, 40]. Once the excitation pump power exceeds
a certain threshold at which the stimulated scattering of polaritons into the ground
state becomes more efficient than the polariton decay process, a high density polariton
condensate in the ground state forms. This behavior is similar to a laser, in which
photons stimulate the emission of even more photons and thereby non-linearly increase
the photon number in a certain mode. Once the gain of the light field mode exceeds
the losses of the resonator, lasing sets in and a coherent light wave is emitted. However,
the gain medium in a laser requires a population inversion of two energy levels to show
lasing, whereas this is not the case in the polariton system. The polaritons continuously
relax along the polariton dispersion and finally scatter into the ground state. Thereby,
the critical particle density per quantum well at the condensation threshold is several
orders of magnitude smaller compared to a classical laser [10].
A more quantitative description of the polariton dynamics is possible using semi clas-
sical Boltzmann rate equations. Considering the polariton populations n0(t) of the
ground state at k = 0 and n~k(t) of the excited states, the rate equations describing
their occupation read as follows:

∂

∂t
n~k = P~k(t)−

n~k
τ~k

+ ∂

∂t
n~k

∣∣∣∣
LP-LP

+ ∂

∂t
n~k

∣∣∣∣
LP-ph

, (2.35)

∂

∂t
n0 = −n0

τ0
+ ∂

∂t
n0

∣∣∣∣
LP-LP

+ ∂

∂t
n0

∣∣∣∣
LP-ph

. (2.36)

Hereby, P~k(t) is the time dependent pump rate, τ0 is the polariton lifetime in the ground
state and τ~k denotes the lifetime of polaritons at the respective wave vector ~k. The
rate of polariton-phonon scattering is given by

∂

∂t
n~k

∣∣∣∣
LP-ph

= −
∑
~k′

[
WLP-ph
~k→~k′

n~k(1 + n~k′)−W
LP-ph
~k′→~k

(1 + n~k)n~k′
]
, (2.37)

with the transition ratesWLP-ph
~k→~k′

andWLP-ph
~k′→~k

. This polariton-phonon scattering process
is a dissipative cooling mechanism of the polaritons.
The rate of polariton-polariton scattering is given by

∂

∂t
n~k

∣∣∣∣
LP-LP

= −
∑

~k′,~k1,~k2

WLP-LP
~k,~k′,~k1,~k2

[
n~kn~k′(1 + n~k1

)(1 + n~k2
)

− n~k1
n~k2

(1 + n~k)(1 + n~k′)
]
,

(2.38)

with ~k1 = ~k+~q, ~k2 = ~k′−~q and the transition rateWLP-LP
~k,~k′,~k1,~k2

. The polaritons with wave
vector ~k = ~k′ interact with each other and are scattered to the wave vectors ~k1 and ~k2.
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The total energy of the polaritons is not reduced in this process, which typically takes
place withing with few picoseconds.
The buildup of a polariton population n0 in the ground state requires ∂

∂tn0 ≥ 0. Ac-
cording to Eq. 2.36, the contribution of the radiative decay −n0

τ is negative. Also
the polariton phonon scattering term ∂

∂tn0
∣∣∣
LP-ph

is negative in most cases, since the
scattering of polaritons away from the ground state is more likely than in reverse di-
rection back to the ground state. The remaining polariton-polariton scattering term
∂
∂tn0

∣∣∣
LP-LP

needs to compensate these negative terms. This is possible due to its de-
pendence on the polariton population n0, which stimulates further scattering into the
ground state. Hence, a coherent polariton condensate forms.
In general, the dynamics of a condensate in the ground state of a quantum mechanical
many body system may be described by the Gross-Pitaevskii equation (GPE)

i~
∂

∂t
Ψ(r,t) =

(
−~2∇2

2m + Vext(r,t) + g |Ψ0(r,t)|2
)

Ψ(r,t) , (2.39)

whereby Ψ(r,t) is the condensate wave function, Vext is an external potential, m is
the mass of the Boson particles and g is the coupling constant [41]. The sign of g
indicates if the interaction between the particles forming the condensate is attractive
(g < 0) or repulsive (g > 0). In addition to mutual interaction, the particles in the
condensate phase may also interact with other particles in the system. In particular,
when considering exciton polariton condensates, the polaritons in the condensate may
interact with other carriers excited in the system such as electrons, holes and excitons.
The effect of these carriers on the polariton condensate then may be included by a
non-trivial external potential Vext(r,t) in Eq. 2.39. Since the electron-hole plasma and
exciton reservoir are generated by a non-resonant optical excitation process, we may
all-optically imprint an external potential to shape the polariton condensate and con-
trol the flow of polaritons [42]. In detail, the potential is mostly given by repulsive
coulomb interaction of the polariton condensate with reservoir excitons. When consid-
ering the typical time scale of the relaxation process of the electron-hole plasma, we
see that a high population density of reservoir excitons builds up. The non-resonantly
excited electron-hole plasma typically decays rapidly in less than 20 ps due to optical
and acoustical phonon emission and forms excitons at high wave vectors with typical
lifetimes of around 400 ps [38]. Despite their high wave vectors, excitons move slowly
as they have high effective masses. This means that reservoir excitons remain localized
during their lifetime close to the spot where they have been generated by relaxation
from the non-resonantly excited electron-hole plasma. Consequently, a density pat-
tern imprinted by a spatially shaped non-resonant laser beam is mostly conserved and
may act as an effective potential for polaritons, since the interaction of polaritons with
reservoir excitons is repulsive under most experimental conditions and attractive only
in few rare cases [43]. Since the polaritons inherit their spatial density distribution
from the reservoir excitons, the location of a forming polariton condensate often co-
incides or significantly overlaps with the external potential generated by the exciton
reservoir. However, depending on the potential height (scaling with excitation power),
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polaritons are repelled by this potential, which allows to control polariton flows and
shape polariton condensates [44, 45]. It has been shown that the polariton condensate
and optically imprinted excitation pattern in fact might be spatially separated from
each other [46]. By tailoring the spatial shape of the non-resonant excitation laser,
the flow of polaritons may be controlled and guided all optically [42]. Such a spatial
structuring of the excitation laser beam can be achieved by using tailored diffractive
optical elements, as we explain in the next section.

2.2 Shaping light beams with diffractive optical elements

Let us consider a monochromatic plane wave with the wavelength λ propagating in
vacuum under a tilted angle α with respect to a fixed optical axis, as illustrated in
Fig. 2.8. The wave vector k of the light wave with |k| = λ

2π may be separated into
a perpendicular part k⊥ = cos(α)|k| and a parallel part k|| = sin(α)|k| with respect
to the normal plane perpendicular to the optical axis. Following the wavefront of the

optical axis

normal plane

k
k∥

k⊥

α

α

ϕ

Δx

Figure 2.8: Illustration of plane wave propagating under a tilted angle α with respect to the
optical axis.

plane wave shows that the phase is φ = tan(α)∆x with the gradient ∇φ = tan(α) in
the normal plane. In paraxial approximation the angle α is small and sin(α) ≈ tan(α)
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applies. In this case the perpendicular wave vector k|| directly corresponds to the
phase gradient ∇φ of the light wave. Moreover, the phase gradient in the normal plane
physically defines the angle and direction of the propagating light wave. This yields
the possibility to spatially shape a light beam by introducing an optical element, which
locally shifts the phase of an incident the light beam in the normal plane by a function
φ(r,t).
In principle a light beam can be formed to any spatial shape (within the diffraction
limit) by using an optical element with a suitable phase function. For example phase
plates or high resolution spatial light modulators (SLMs) may be used as diffractive
optical elements to locally shift the phase of an incident light beam. Thereby a phase
shift in the range of [0,2π] is sufficient to arbitrarily shape the light beam, because
of the periodic nature of a light wave. For convenience usually a normally incident
light beam with almost plane wavefront is used in such applications. However, one
still needs know the correct phase pattern to form the light beam to the desired shape.
This problem may be solved by computing the required phase pattern for example by
using the Gerchberg-Saxton algorithm [47], which generates a suitable phase pattern
for shaping the light beam to the desired intensity profile in the far field. Considering
the fact that we may use a spatially shaped light beam to imprint optical potentials in
a two-dimensional exciton polariton system gives an idea of the wide variety of possible
experiments and applications involving exciton polaritons. However, when imaging the
spatially modulated light beam using additional optical elements such as lenses, we
need to take into account that these lenses perform optical Fourier transformations
of the light beam (as we will discuss later on in section 2.5), which also need to be
considered in order to shape the light beam to the desired intensity profile in the final
imaging plane. In concrete terms, we need to take into account that the microscope
objective used for focusing the excitation laser beam onto the sample performs an
additional Fourier transformation, which is not included in the usual Gerchberg-Saxton
algorithm. A practical approach to deal with this additional Fourier transformation
is to compensate it by using one more lens that performs yet another optical Fourier
transformation. Such an optical setup consisting of a lens and microscope objective is
suitable to image the real space of the spatially modulated laser beam onto the sample,
as shown in Ref. [11].
Within the scope of this thesis, the phase elements used for shaping the excitation
laser beam do not need to be specifically computed, as we follow the suggestion of Ref.
[18] to use an annular trapping potential, which we may create easily by imprinting
an axicon phase pattern and focusing the thereby conical shaped laser beam onto the
microcavity sample. This approach is similar to Refs. [46, 48], where actual glass
axicons were used to create annular polariton traps. Fig. 2.9 gives a rough impression
of how a light beam is shaped by phase elements exhibiting axicon phase patterns or
linear phase gradients, which we both use later on in our experiments. Furthermore,
the phase element with linear phase gradient acts like a diffraction grating due to its
periodicity and in practice generates many diffractive orders.
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0

2π

0

2π

Figure 2.9: Two exemplary phase elements, which may be used to shape a laser beam with
a phase modulating SLM. The linear phase gradient pattern deflects the light beam along the
direction of the gradient, while the axcion phase pattern creates a ringlike beam profile.

Finally, it should be noted that the intensity profile of a light beam may also be shaped
by passing it through an optical element with spatially varying absorption coefficient.
However, doing so does not directly change the wave vector, which limits the possible
ways of shaping the beam. For example one may not create optical vortices, in which
the wavefront has a helical shape, as we discuss in the next section.
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2.3 Vortex formation in exciton polariton condensates
Quantized vortices are topological states in quantum fluids such as superfluids or 2D
BECs. Historically considered, quantized vortices first have been observed as vortex
lines in rotating superfluid helium [49]. Since then vortices in quantum fluids have
been investigated and found to exist even in exciton polariton condensates [9], which
strictly speaking are not true BECs since thermal equilibrium is not reached due to
the non-persistent nature of exciton polaritons. Vortices of excitons polaritons in a
microcavity are two-dimensional excitations, whereat the in-plane movement of the
polaritons is associated with the phase gradient of the polariton wave function. Hence,
the characteristic feature of exciton polariton vortices is a central core with almost
zero intensity and a local phase winding of the shape Ψ ∝ exp(−imφ), whereby m is
called the topological charge of the vortex. In one revolution around the center, the
phase runs through a value range from zero to 2πm. In radial direction the phase is
constant for each angle. Fig. 2.10 illustrates the spatial phase structure of a vortex
with topological charge m = 1. In general the topological charge of a vortex in a field

r

Φ

0

2π

Figure 2.10: Phase of a vortex with topological charge m = 1.

may be extracted by integrating the phase along a closed contour C surrounding the
vortex:

m = 1
2π

∮
C

~∇S · ~dl (2.40)

At this, S is the scalar phase of the field with Ψ = |Ψ| exp(iS). Higher order vortices
in a light field show the tendency to split into vortices with unit charge |m| = 1 [50].

Several studies show that quantized vortices also may spontaneously form in exciton
polariton systems [9, 14]. In these the vortices are pinned due to the static disorder
of the sample. Other studies show that vortices also may be imprinted by resonant
excitation [13, 16, 51] or form due to the dynamics of interacting polariton currents
[17]. The in-plane polariton motion may be confined further by manufacturing cylin-
drical optical traps [12, 52], which enables the localized excitation of exciton polariton
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vortices. However, this requires physically structuring the microcavity sample. A more
flexible approach is the non-resonant excitation of carriers to form an external poten-
tial in addition to the always present static disorder potential, which also shapes the
polariton condensate [45, 53]. Concurrently, the non-resonantly excited electron-hole
plasma relaxes and may create exciton polariton condensates shaped by the all opti-
cally imprinted potential [46, 48, 54]. It has been demonstrated that also polariton
condensates containing vortices may be formed by using a non-resonant pump laser
with tailored beam profile [15]. In this thesis we follow the theoretical suggestion of
our cooperation partners Ma et al. [18, 19], who propose the use of an annular pump
beam to create a ringlike potential trap, in which localized polariton vortices with in-
teger topological charges are expected to form spontaneously. Furthermore, a concept
for switching the topological charge of such vortices is suggested. With increasing trap
diameter, also vortices with higher topological charges |m| > 1 may arise [18]. Due
to continuity of the field, only quantized vortices with integer topological charge form
stationary solutions of the GPE [51]. However, in non-stationary processes we may
not be allowed to assume just integer topological charges. Our all optical approach for
trapping polaritons enables a versatile tuning of the trap parameters. The localization
of the vortices inside the traps allows for advanced experiments to manipulate their
topological charge, as we will see later on in chapter 4.3.
The physical size of the vortices is determined by the topological charge and the pump
power dependent healing length, which is the typical length scale over which ψ can
change significantly. In the polariton system, which is a non-equilibrium dissipative
system, the effective healing length is given by

ξ(P) = ~√
2mgeff|Ψ0(P)|2

, (2.41)

with the pump power dependent field intensity |Ψ0(P)|2, the polariton mass m and an
effective interaction constant geff [55]. As one can see from Eq. 2.41, the healing length
drops with increasing field intensity |Ψ0(P)|2. Thereby the physical size of a vortex,
which is on the order of the healing length, also drops with increasing excitation power.
In general, the investigation of vortices in a BEC is not trivial, as it experimentally
requires access to the density and phase of the quantum fluid wave function. In 2D
atomic BECs the density is typically probed by a time of flight method, in which
the trapping potential is switched off and the BEC expands while falling. Then a
resonant laser illuminates the BEC and the shadow of the transmitted light is recorded
using a camera [56]. In contrast to this, exciton polaritons are fairly easy to probe
since polaritons emit photons when decaying from the microcavity. Since the phase of
the emitted photons corresponds to the phase of the polariton wave function, polariton
vortices in the microcavity translate into optical vortices with equal topological charges
in the emitted light beam. Still, probing optical vortices usually requires spatially
resolved interferometry techniques. In case of observing dynamical vortex processes
with time dependence, the experimental effort increases further to do time-resolved
interferometry. Here, our novel approach to detect exciton polariton vortices comes
into play. Since light beams with optical vortices carry OAM, we conceptually may
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use OAM sorting to detect these vortices and perform OAM resolved spectroscopy of
them. In the next chapter the fundamentals of the OAM of light are highlighted.

2.4 Orbital Angular Momentum of light

A transverse electromagnetic wave carries linear momentum and angular momentum
with the cycle averaged momentum densities

p = ε0〈E×B〉 , (2.42)
j = r× p = ε0r× 〈E×B〉 , (2.43)

whereby ε0 is the vacuum permittivity [57]. The total angular momentum of a light
field then simply results from integrating the density given by Eq. 2.43:

J = ε0

∫
dr r× 〈E×B〉 (2.44)

The fact that light waves may carry angular momentum is already long known since
the works of John Henry Poynting more than a century ago. In 1884 he quantified the
momentum and energy flux of electromagnetic fields for the first time [58]. Based on
an analogy with the wave motion associated with a line of dots marked on a rotating
cylindrical shaft, he later reasoned that circularly polarized light must carry angular
momentum [59]. This was experimentally confirmed by Beth in 1936 [60]. Since then
light was known to have circular polarization with a spin angular momentum of ±~ per
σ± polarized photon. However, for a long time it was not noticed that the polarization
does not account for all angular momentum in Eq. 2.44. In 1992 Allen pointed out that
there is an additional component, which arises from the spatial phase of the wavefront:
The orbital angular momentum. It was shown that Laguerre-Gaussian modes (which
are solutions of the paraxial wave equation) given by

up,l(r,φ,z) = C

(1 + z2/z2
R)1/2

(
r
√

2
w(z)

)l
Llp

(
2r2

w2(z)

)
exp

(
−r2

w2(z)

)
exp

(
−ikr2z

2(z2 + z2
R)

)

· exp(−ilφ) exp
(
i(2p+ l + 1) tan−1 z

zR

)
(2.45)

carry OAM related to l. Here, zR is the Rayleigh range, w(z) is the radius of the beam,
Llp is the associated Laguerre polynomial, C is a normalization constant and the beam
waist is located at z = 0 [61]. Analogy between the Schrödinger wave equation and
paraxial wave equation suggests that such Laguerre-Gaussian modes are eigenmodes of
the angular momentum operator Lz and carry an OAM of l~ per photon [61]. In the
case of p = 0 the Laguerre-Gaussian modes take a shape ∝ exp(−ilφ), which equals the
phase of an optical vortex. Because of this optical vortices with an integer topological
charge m carry exactly this amount of OAM. Furthermore, the Laguerre-Gaussian
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modes are orthonormal in both indices l and p under integration over the full r,φ plane
[50]: ∫ 2π

0
dφ

∫ ∞
0

rdr up,n(r,φ,z) [uq,l(r,φ,z)]∗ = δn,lδp,q. (2.46)

Thus, even the subset of Laguerre-Gaussian modes with p = 0 and varying integer l
still is an infinite set of orthogonal modes. These optical vortex modes may be easily
generated using phase plates or spatial light modulators, which yields potential for
applications in optical communication technology. An elegant method for detecting
such optical vortex modes is OAM sorting, which we will discuss in the next section.
This method potentially enables the detection of quantized vortices forming in exciton
polariton condensates. As discussed before, the stable vortex solutions of the GPE show
just integer topological charges due to continuity reasons. However, for time dependent
non-stationary processes we may not in general assume the topological charge of vortex-
like phase structures to be limited to integer values only. Thus, we also give some
consideration to the special case of fractional vortices with non-integer topological
charges. For benchmarking purposes, they may be experimentally generated by using
phase plates or SLMs just in the same way as optical vortices with integer topological
charges are created.
A light beam with an optical vortex of non-integer topological charge is not rotationally
symmetric anymore. A phase discontinuity arises where the phase jumps by a non-
multiple of 2π and the intensity is locally reduced. In this case the light beam carries
non-zero transverse momentum

Px,y = ε0

∫
dr 〈E×B〉x,y , (2.47)

which leads us to the distinction between intrinsic and extrinsic OAM. It can be shown
that the total angular momentum of a light beam according to Eq. 2.44 is independent
of the lateral position of the calculation axis r0 ≡ (r0x,r0y), if the transverse momentum
Px,y vanishes [62]. In this case we consider the OAM of the light beam to be intrinsic.
However, in case of non-zero transverse momentum, the OAM of the light beam depends
upon the choice of the lateral calculation axis. In this case we consider the OAM to be
extrinsic. Such extrinsic OAM corresponding to non-zero transverse momentum may
arise for example when a light beam with OAM passes through an off-axis aperture [63].
The OAM of light beams with optical vortices of integer topological charges is always
intrinsic, as their rotational symmetry implies zero transverse momentum. However,
the mean OAM m̄ and topological charge m of a light beam with a fractional vortex
may differ according to [64, 65]

m̄ = m− sin (2πm)
2π . (2.48)

Alperin et al. [66, 67] showed, that the total OAM (which is proportional to the
mean OAM) of a light beam with a fractional vortex may be decomposed into intrinsic
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and extrinsic OAM components. While even for vortices with non-integer topological
charges the intrinsic OAM is always equal to m, the extrinsic components cause a
sinusoidal oscillation of the mean OAM, as can be seen in Eq. 2.48. Furthermore,
Alperin et al. [67] showed that using a cylindrical lens under different rotation angles
renders it possible to selectively detect either the intrinsic OAM component or the
total OAM of a light beam. In case of vortices with integer topological charges, the
extrinsic components completely vanish and the mean OAM and intrinsic OAM are
equal. Also it should be mentioned that light beams with fractional OAM are not
stable upon propagation and typically decay into many stable vortices with |m| = 1
during propagation [65].

2.5 OAM Sorting

As we have seen in the last chapter, the appearance of optical vortices is closely linked
to the OAM of light. While simple ways of generating OAM modes using holograms [68]
and phase plates [69] have been demonstrated, the detection of optical vortices in a light
beam usually is a non-trivial task. In most cases interferometric techniques are utilized
to detect vortices in a light field. For example a typical approach for detecting vortices
in exciton polariton condensates is using a Michelson interferometer to extract the real
space phase map of the light emission [9]. However, when considering orthogonal OAM
modes of a light beam as separate channels for information transfer, such an approach
is by far not efficient as first of all the phase map needs to be reconstructed and then
vortices may be identified afterwards. Also superpositions of spatially overlapping OAM
modes with different l would be very hard to correctly identify and distinguish. The
potential use of different OAM modes for information transfer has lead to several more
sophisticated approaches from the optics community to measure OAM of a light beam.
For example a free-space communicator based on OAM modes has been demonstrated
[70]. Also the detection of OAM at the single-photon level has been demonstrated in
quantum optics experiments [71]. In 2002, Leach et al. showed that an OAM mode
sorter with in principle 100% efficiency may be realized by using a cascaded setup of
Mach-Zehnder interferometers containing Dove prisms [72]. However, the experimental
effort to build such a mode sorter vastly increases with the number of output ports,
as detecting N possible states requires N − 1 interferometer stages. The concept of
sorting a light beam of superposed OAM modes onto fractions of the composing OAM
modes was later picked up by Berkhout et al. [21], who suggested and demonstrated an
OAM sorting setup that allows the simultaneous detection of multiple OAM states by
implementing an optical transformation with tailored phase elements. We focus on this
OAM sorting method, as it maps a set of OAM states to a linear line of distinct spots,
whereas the spot positions are proportional to l. In detail, this method unwraps the
helical phase gradient of an OAM state to a linear phase gradient by using two tailored
diffractive optical elements. The resulting linear phase gradient is proportional to l
and directly corresponds to the in-plane wave vector, as discussed in chapter 2.2. By
the subsequent imaging with a lens, which performs an optical Fourier transform of the
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light beam (as we discuss further below), the OAM sorted light beams with wave vectors
proportional to l are imaged onto distinct spots in the plane of detection. Hence, the
mapping of OAM states with different l results in a line of distinct spots, which are
easily detectable using a camera.
The basic OAM sorting setup including intensity and phase maps of all involved planes
during an exemplary mapping of a l = 3 OAM state is shown Fig. 2.11. The exemplary
intensity and phase maps are obtained by simulating the beam propagation through
the OAM sorting setup. Details on this simulation, which we use to optimize the
experimental implementation of OAM sorting, are given in subsection 2.5.1.
The core elements of the OAM sorting setup are the transformation phase pattern
and the phase correction pattern. The transformation pattern performs a mapping
(x,y) 7→ (u,v) with v = a arctan(y/x) and u = −a ln

(√
x2 + y2/b

)
. The corresponding

phase element required to achieve such a mapping is given by

φ1(x,y) = 2πa
λfOAM

[
y arctan

(
y

x

)
− x ln

(√
x2 + y2

b

)
+ x

]
. (2.49)

Following the beam path in Fig. 2.11, one can see how the intensity ring of the l = 3
OAM state is unwrapped by the transformation pattern. Subsequently, a lens trans-
forms the light field into the Fourier plane, where the field has a linear stripe intensity
profile. However, the optical transformation leads to a non-trivial phase structure due
to the different pathways of all light bundles. Thus, a second phase pattern is applied
in order to correct for these phase shifts. It is given by

φ2(u,v) = − 2πab
λfOAM

exp
(
−u
a

)
cos

(
v

a

)
. (2.50)

As one can see from the example in Fig. 2.11, application of the phase correction
pattern results in a linear shift of 2πl at the location of the intensity stripe. Finally,
a lens performs an optical Fourier transformation that images the light beam onto
elongated spots in the detector plane, whereby the linear phase gradient leads to a
deflection of the spot position with respect to the central symmetry axis of the phase
elements. The optical Fourier transformation of a lens is illustrated in Fig. 2.12 using
a simple ray optics picture. Light bundles with same in-plane momentum (or angle)
in the front focal plane are imaged onto spots in the back focal plane at positions
proportional to the initial in-plane momentum. Since in-plane momentum and phase
gradient of a light beam equal each other in paraxial approximation, light beams with
linear phase gradients resulting from the OAM sorting process are imaged onto spots
in the plane of detection at positions proportional to the OAM of the initial light beam
guided into the OAM sorting setup. In detail, the spot positions corresponding to each
OAM state may be calculated according to

tl = λfImag
d

l , (2.51)
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Figure 2.12: Optical Fourier transformation of thin lens with focal length f . Light beams
with angles α and α′ in the front focal plane are imaged onto spots at k and k′ in the back
focal plane, which is the k-space of the input light field. Adapted from Ref. [73].

whereby tl is determined by l, the wavelength of the light beam λ, the focal length of
the imaging lens fImag and the parameter d = 2πa, which equals the length of the un-
wrapped intensity stripe in the plane of the phase correction element. This linear shift
can also be seen from the OAM sorted intensity profiles of different OAM states. Fig.
2.13 exemplarily compares the spatial profiles obtained by integrating the OAM sorted
intensity images of different OAM states perpendicular to the axis of the deflection. The
OAM sorting peaks of OAM states with different l are clearly distinguishable. This
opens up the unique possibility to simultaneously detect multiple superposed OAM
states. However, adjacent peaks of OAM states with ∆l = 1 still overlap with each
other significantly. This overlap is inevitable when using this OAM sorting transforma-
tion and may not be removed by only adjusting the parameters of the transform and
correction phase pattern. Improved versions of such optical transformations have been
demonstrated, which sharpen the OAM sorting peaks by interfering multiple copies of
the OAM sorting beam [74, 75]. This is primarily useful to minimize the cross-talk
in communication applications. However, in our case the basic OAM sorting setup is
sufficient for detecting optical vortices. The additional phase elements for optimizing
the cross talk would just increase the experimental effort without providing any benefit
for our intended purpose.
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Figure 2.13: Spatially integrated profiles of simulated OAM output intensity images for OAM
values l = −5 to l = 5. The peaks corresponding to the individual OAM states shift linearly
with l and are clearly distinguishable, although adjacent peaks significantly overlap each other.
The parameters for this simulation are λ = 773 nm, a = 0.004/2π, b = 0.00677, fOAM = 0.1m
and fImag = 0.75m. This set of parameters will also be used later on in chapter 4.2.1 when
confirming the OAM axis of the experimental measurements.

2.5.1 Simulating the beam propagation of OAM Sorting

To understand and optimize the experimental implementation of the OAM sorting pro-
cess, we use a simple beam propagation simulation of the OAM sorting setup including
the phase elements given by Eqs. 2.49 and 2.50. The simulation model stores the light
field as a two-dimensional complex matrix M . The intensity then is given by I = |M |2
and the phase of the light field is given by the angle φ = arg(M) of the complex field
in pointer representation. We implement a light field propagator which moves the light
field in Fourier space and thereby simulates the beam propagation. The optical ele-
ments are modeled by real Matrices Pn, which reproduce the phase shift caused by the
corresponding optical element. The light field is initialized with a real Gaussian beam
profile, to which a vortex phase pattern is applied by multiplication of the complex field
matrix with exp(iP ). In the same way, all other optical elements such as the OAM
sorting phase elements and lenses (modeled by a quadratic phase shift) are applied.
By subsequent application of the optical element phases and propagation of the beam
between the corresponding planes, we simulate the complete mapping of vortex modes
with different OAM to spots in the output plane of a CCD camera. The sample code
we use for this simulation is given in the appendix A.
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Measurements

This chapter presents the sequential measurements and steps towards controlling vor-
tices in exciton polariton condensates. Hereby, we gradually develop the experimental
setup, covering the steps of implementing the OAM sorting process, investigating ex-
citon polariton vortices using the OAM sorting method and finally manipulating the
polariton vortices by pulsed perturbation. First, section 3.1 presents the detailed im-
plementation and benchmark of the OAM sorting method. In section 3.2 we apply this
method to measure the OAM sorted signal of a microcavity sample. The details on the
sample are given in this section. We perform time-resolved OAM measurements of the
vortex modes forming inside a ringlike trap, which is created by ringlike non-resonant
pump pulses. Hereby, we especially vary the ring diameter and excitation power. Fi-
nally, we extend the experimental setup and use a CW laser for creating the ringlike
trap while the pulsed laser perturbs the vortex modes forming inside the trap.

3.1 Implementation of OAM sorting

The basic experimental setup is very similar for all measurements performed in this
thesis and is mostly changed only regarding some details. We use the setup shown
in Fig. 3.1 for benchmarking the OAM sorting process. First, an optical vortex with
adjustable topological charge and rotation angle θd of the phase step is imprinted onto
a CW laser beam. This beam then is guided through the OAM sorting setup and
imaged onto a CCD camera. We vary the OAM states fed into the OAM sorting setup
by specifically adjusting the OAM generation phase pattern on SLM 1 using a custom
build Labview Vi. While doing so, we record the corresponding images of the OAM-
sorted output intensity and extract the profiles by summation over all pixels along
the y-axis. The results are presented in section 4.1. The OAM sorting setup as the
core element of the experimental setup remains unchanged in all further measurements.

The CW laser is a tunable Ti:Sa based laser system, model SolsTiS 2000 PSX-XF
manufactured by M Squared Lasers. It provides actively stabilized single-mode laser
emission with up to 2W optical output power and a very narrow linewidth of < 50 kHz.
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Figure 3.1: Sketch of the setup used for benchmarking the OAM sorting process including
a detailed overview of the OAM sorting implementation and the phase pattern displayed by
the SLMs. The divergent CW laser is collimated using a telescope, which consists of two
f = 100mm lenses. The combination of a half wave plate (λ/2) and Glan-Thompson polarizer
(GT) allows to reduce the CW laser power and set the polarization correctly for the SLMs. The
beam is aligned using iris apertures (IA). Finally, a f = 400mm lens focuses the OAM-sorted
beam onto a charge-coupled device camera (CCD), which is attached to a monochromator
operated at 0th order (not depicted). SLM 1 displays an optical vortex, whereby the phase
jump may be aligned at a rotation angle θd with respect to the symmetry axis of the OAM
sorting phase elements displayed on SLM 2. All phase patterns are superposed with linear phase
gradients to separate the first order of diffraction from the direct reflection on the SLM surface.
The direct reflections (indicated by dashed orange lines) are blocked and thereby removed from
the optical beam path.
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The pump laser of this laser system is a 10W Verdi CW laser by Coherent. The wave-
length of the SolsTiS laser is tuned to λ = 845 nm for the benchmark measurements.
The laser beam is shaped using SLMs of the model type PLUTO-2 from HOLOEYE.
Each of them provides HD resolution of 1080 x 1920 pixels with 8.0 µmx8,0µm pixel
size and a filling factor of 93% [76]. The pixels are addressed with 8-bit resolution
in the same manner as a computer monitor. Using the horizontal polarization axis of
the SLM, every pixel locally shifts the phase of the incident light field from 0 to 2π
according to its displayed pixel value. This renders it possible to imprint arbitrary phase
patterns onto the incident light beam, such as an optical vortex or the OAM sorting
phase pattern. The desired phase maps are rendered and displayed on both SLMs by
using custom made Labview Vis, which allow for rapid adjustment of the parameters
used for calculating the phase pattern. To separate the direct reflection from the sample
surface and the modulated light beam, we always superimpose a linear phase grating
to the desired phase pattern. Only the resulting first order of diffraction is kept in the
optical beam path of the setup.
The OAM sorting setup includes two phase elements. Deviating from the theory sketch
in Fig. 2.11, the experimental implementation is built in reflection geometry. The two
phase patterns for transformation and phase correction are displayed on one single SLM
with the symmetry axis of the phase elements being aligned horizontally, which leads
to a vertical deflection of light beams with non-zero OAM. The OAM sorting lens is
replaced by a concave mirror, which effectively transforms the light field in the same
way like a lens would do. The parameters of the OAM sorting phase elements in the
benchmark measurements using a wavelength of λ = 845 nm are a = (0.008m)/(2π),
b = 0.00477 m and f = 0.095m.

The device for detecting the light beam resulting from OAM sorting is a liquid nitrogen
cooled CCD camera attached to an Acton SP-2500i f=500mm monochromator. The
CCD camera provides 1340 x 400 pixels with a pixel size of 20 µmx20µm. For these
measurements we open the slit of the monochromator and set the diffraction grating
to image the 0th order of diffraction onto the CCD. For further measurements with
spectral resolution, blazed gratings with 300, 600 and 1200 blazes are available.
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3.2 Time-resolved OAM spectroscopy

The experimental setup is heavily extended to generate exciton polariton vortices and
detect them using the OAM sorting setup. We use a pulsed excitation laser to en-
able time-resolved studies of potentially forming exciton polariton vortices. The full
setup including all alternative experimental techniques for different measurements of
the sample emission is shown in Fig. 3.2. We discuss its versatile use starting from the
excitation side, moving on towards the sample and closing with the different possible
measurements. The results of the measurements are presented in section 4.2.1.
The excitation laser is a tunable pulsed Ti:Sa laser system by Coherent. It may gen-
erate either picosecond or femtosecond pulses at a repetition rate of 75.4MHz. In the
configuration used for experiments in this thesis, it generates pulses with roughly 120 fs
duration. The spectral peak of the pulses is adjusted to match the first Bragg minimum
of the microcavity sample we use at λ = 735.5 nm. The pulsed laser beam is reduced in
intensity and rotated to the horizontal polarization axis, for which the SLM performs
efficient phase only modulation. The slightly elliptical beam profile is reshaped to a
Gaussian beam profile by filtering the beam with a pinhole inside a telescope lens ar-
rangement. Since the spectrum of the pulses is very broad, two short pass filters ensure
that no pump laser light is present at the wavelength of the sample emission. The
SLM imprints an axicon phase profile onto the excitation laser beam and separates the
modulated light beam from the direct reflection, as discussed before regarding Fig. 3.1.
The phase of an axicon consists of a rotationally symmetric gradient, which linearly
decreases with the radius, as can be seen from the inset in Fig. 3.2. The locally incident
light bundles are deflected from the optical axis and form a conical shape. The opening
angle of this cone increases with the slope of the phase gradient similar to the deflection
of a light beam in which a plain linear phase gradient is imprinted. Thereby a ring
with adjustable diameter is created, when the beam with axicon phase is focused onto
the sample.
The sample is a planar GaAs-based microcavity, grown by molecular beam epitaxy
(MBE) at the University of Würzburg1. The quality factor of the sample is about
Q≈ 20000 and the Rabi splitting is 9.5meV. In detail, the sample consists of a λ/2-
cavity with four quantum wells embedded in the central antinodes of the resonant
cavity light field mode, which is confined by the surrounding DBRs. The DBR struc-
ture around the cavity layer consists of 32 top and 36 bottom layer pairs made of
Al0,2Ga0,8As/AlAs. Furthermore the microcavity is slightly wedged, so that the cavity
mode intentionally varies along a defined axis of the sample. In the experimental setup
the sample is mounted in a helium-flow cryostat and cooled down to temperatures of
16-20K. The whole flow cryostat may be moved perpendicular to the optical axis to
change the exciton-cavity detuning by moving the sample with respect to the excitation
laser beam. As the substrate is not polished, measurements with this sample need to be
conducted in reflection geometry. This sample is specifically selected for the measure-
ments presented in this thesis, since previous studies of it successfully demonstrated

1The identification number of the sample is M3396-9.2.
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Chapter 3. Measurements

exciton polariton condensation [42].
The emission of the sample might be imaged in various ways, as shown in Fig. 3.2.
The OAM sorting setup is embedded in the total setup by using flip mirrors, which
allow one to bypass it completely in case measurements without resolving the OAM
are required. Also the sample signal may be guided either to the streak camera or
to the monochromator. Moving the entrance slit of the monochromator aside and
setting the spectrograph to 0th order allows one to acquire real space images of the
sample emission and images of the OAM sorted sample signal spots. We do this for
excitation with different ring diameters (determined by the slope of the axicon phase
pattern) and pump powers. We also image the OAM sorted sample signal onto the
streak camera and thereby obtain the time-resolved OAM sorted sample signal. In
addition to this, a combination of a quarter wave plate and Glan-Thompson prism
can be inserted into the input beam path of the OAM sorting setup to obtain time-
resolved OAM measurements for both circular polarizations σ− and σ+. Furthermore,
using the photon counting mode of the streak camera allows us to perform single shot
measurements and extract correlations between different modes of the sample emission.
The streak camera in our experimental setup is a custom-made camera by Hamamatsu.
It features two microchannel plates and a fast synchroscan unit, which allows to detect
signals with very weak intensities at a high temporal resolution of few picoseconds.
The temporal resolution in the shortest time range of the streak camera is about 2-3 ps
for the typical entrance slit aperture of 40µm. Opening the entrance slit further or
changing the operation mode to longer time ranges reduces the temporal resolution.
To realize time-resolved OAM measurements, the OAM sorted output signal needs
to be rotated by 90 degree so that the horizontal slit of the streak camera records a
cross-section of all OAM spots. We achieve this by a placing a fixed mounted dove
prism in the output beam path of the OAM sorting setup. The slit of the streak
camera is opened by 40µm for time-resolved OAM measurements, which are acquired
in the analog integration mode of the streak camera. In case of single photon counting
measurements the slit is opened to 100µm to increase the total signal power.
The excitation pump laser always creates a reflection on the sample surface, which
spatially overlaps with the sample signal and exceeds the intensity of the emission by
several orders of magnitude. We use this reflex for general adjustment of all optical
elements in the detection beam path and specifically to adjust the telescopes and the
OAM sorting setup. During measurements, the reflection of the pump laser is removed
by two consecutive long pass filters with a cutoff wavelength of 750 nm, so that only
the sample emission is detected. The diameter of the sample signal beam needs to be
reduced so that no clipping at the phase elements displayed on the SLM occurs. A
combination of a telescope on the main beam axis with a lens focus ratio of 1.5 and
a second telescope close to the SLM with a lens focus ratio of two was found suitable
for this task. When using only a telescope close to the SLM on the input beam axis
of the OAM sorting setup, the diameter of the beam is already too large to reduce
it with a compact telescope arrangement without clipping at the telescope itself or
causing strong aberrations. When performing Fourier imaging of the sample signal,
the telescope on the main beam axis is removed and replaced by a Fourier lens, which
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3.2. Time-resolved OAM spectroscopy

centrally images the Fourier plane of the sample emission onto the entrance slit of the
monochromator. Thereby we record the energy dispersion of the exciton polaritons.

PH 50μm
2x

SP 750

f=100mm f=100mm

Pulsed
Laser

SLM 1

MO 20x

BS
50:50

Flow Cryostat
with samplePM

CW
Laser

TEL
2x

TEL
5xGLλ/2

GLλ/2 PBS

To detection

Figure 3.3: Extension of the experimental setup with two lasers to investigate the control
of exciton polariton vortices. The CW laser is shaped to a ringlike beam profile and used
for vortex creation. The pulsed laser has a Gaussian beam profile and is used to perturb the
vortices forming inside the induced ringlike trap. Both beams are combined using a polarizing
beam splitter (PBS). The detection part of the setup and notation of the optical components are
identical to Fig. 3.2. The CW laser beam fans out strongly when propagating the distance of
around three meters towards the SLM, due to its significant beam divergence. Thus, a telescope
with a greater lens focus ratio of five (TEL 5x) is used to collimate the CW laser beam and
reduce its beam diameter. The final diameter of the beam incident onto SLM is about 2mm.

Given all these options, the experimental setup shown in Fig. 3.2 allows us to create
and thoroughly investigate exciton polariton vortices forming by non-resonant ringlike
excitation. The results of the measurements are shown and discussed in section 4.2.1.
To go one step further and investigate the control of polariton vortices, the setup is
extended even further to use two excitation lasers, as shown in Fig. 3.3. Now, the CW
laser is shaped to a ringlike beam profile and tuned to the same peak wavelength as the
non-resonant pulsed excitation laser. In this case, the pulsed laser with Gaussian beam
profile is used to perturb the vortices which are forming inside the CW ring trap. We
measure the time-resolved OAM profiles for different excitation powers. The results
are discussed in section 4.3.
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Chapter 4

Results

The results presented in each of the following sections represent subsequent steps of
implementing OAM sorting and applying it to exciton polariton vortices. In the first
step, we implement OAM sorting as the core element of the experimental setup and
investigate its applicability with respect to the unambiguous identification of individual
OAM modes in a semiconductor spectroscopy setting. In the second step, we use this
OAM spectroscopy method to confirm the spontaneous formation of polariton vortices
induced by non-resonant optical pumping and study the vortex formation process in
more detail. In the last step, the focus of research moves from the pure observation of
polariton vortices towards their controlled manipulation.

4.1 Benchmark of the OAM sorting process

With the goal set to measure the OAM states of vortices formed in exciton polariton
condensates, the first step towards doing so is the verification of the experimental im-
plementation of OAM sorting. We implement the practical OAM sorting setup in a
customized reflection geometry using one single SLM as described in chapter 3.1. The
OAM is imprinted onto the laser beam using another SLM. The laser beam is guided
towards the aligned OAM sorting setup. We capture the OAM-sorted signal with a
CCD camera and extract the intensity profiles along the axis of deflection. The result-
ing peaks are displaced linearly with OAM, as can be seen in Fig. 4.1(a). Based on the
parameters of the experimental implementation, we use the beam propagation simula-
tion described in section 2.5.1 to reproduce this OAM sorting process. The simulated
intensity profiles are shown in Fig. 4.1(b). The measured and simulated profiles match
each other closely and show good agreement of the spot positions. However, the peak
intensity and width of each experimentally observed spot deviate slightly from those
of the corresponding spot in the simulation. The non-uniform variation of the peak
intensities can be attributed to a non-perfect alignment of the position and incidence
angle of the spatially extended light beams on the surface of the SLM. Due to the
limited size of the SLM, parts of the light field may be cut off. The higher width of
the peaks in experiment compared to the simulation may be attributed to a cut-off
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4.1. Benchmark of the OAM sorting process

of components with high spatial frequency in Fourier space at the plane of the phase
correction element. Still, the measurements show that the implementation of OAM
sorting is working and enables us to perform further studies.
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Figure 4.1: Experimentally measured (a) and simulated (b) spatial profiles of OAM sorted
pure OAM states. Based on this, the center of mass and variance of incoherent superpositions
of two integer OAM states with equal weight are calculated and plotted for experiment (c) and
simulation (d). The resulting two dimensional pattern allows to clearly identify the integer
OAM states composing a superposition. Red diamonds mark the data pairs of center of mass
and variance, while the adjacent numbers indicate the constituent OAM states. Bright red
diamonds are used to indicate superpositions of two OAM states with identical OAM.

The typical approach following Berkhout et al. [21] for evaluating the OAM sorted
intensity as the output of the OAM sorting process consists of binning the profiles,
whereby the separate bins correspond to the individual OAM states. Thereby a map-
ping of integer input states to integer output states is performed. However, in the
context of obtaining the continuous spectrum of OAM states of an a priori unknown
sample signal, the strict binning into integer values is not necessarily a useful approach
anymore. Therefore a different approach for analyzing the continuous spectra needs
to be applied. Here, we evaluate the output intensity profiles using the moments of
the intensity distribution, such as its center of mass xcms and variance V , which are
calculated according to
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Chapter 4. Results

xcms =
∑
i

xi · I(xi), (4.1)

V =
∑
i

(xi − xcms)2 · I(xi), (4.2)

where i runs over all pixels, xi denotes the vertical position of pixel i and I(xi) represents
the intensity at pixel i.
The center of mass xcms provides a measure for the average OAM of the output signal,
while the variance gives a measure for the width of the sorted output intensity profiles
on the OAM scale. Using these moments, a mapping of all pure integer OAM input
states and incoherent superpositions of two pure integer OAM input states onto unique
spots in a graph (shown in 4.1(c) and (d) for experiment and simulation) becomes
possible and thereby allows the unambiguous identification of the input integer OAM
states only from the values of xcms and V . The moments xcms and V generate a two
dimensional space, which renders it possible to identify two superposed integer OAM
states uniquely. This concept may also be extended using higher order moments (for
example skewness and kurtosis), in case a definite identification of more possible inputs
states is required. However, this is not required when applying OAM sorting as a
spectroscopic method since the focus of interest is to provide a qualitative measure of
the overall output OAM signal of an unknown source without making any assumptions
about the signal. Thereby, the two moments presented in 4.1 and 4.2 are sufficient in
this context.
When considering completely unknown sample signals with arbitrary OAM states, even
the restriction to OAM states with integer topological charges only constitutes an a
priori assumption. Since we are not necessarily allowed to make this assumption, this
raises the intriguing question how non-integer OAM states are mapped in the OAM
sorting process. To investigate this question, we experimentally implement and also
simulate the mapping of fractional OAM states with non-integer topological charges.
Fractional OAM states correspond to inserting a non-integer l in the term 2πl, describ-
ing the phase winding of an optical vortex. This implies a phase discontinuity at a
certain rotation angle θd (as depicted in Fig. 3.1), where the phase jump is not an
integer multiple of 2π anymore. As a consequence, the rotational symmetry is broken.
Taking into account that the OAM sorting phase patterns are not rotationally symmet-
ric and have a specific mirror symmetry axis, the result of the OAM sorting process may
vary depending on the rotation angle with respect to this axis. In Fig. 4.2, the output
intensity pattern for fractional OAM states with different rotation angles are shown
both for experimental and simulated data. For θd = 0◦ the fractional OAM states
are imaged onto single spots, moving linearly with topological charge between the two
nearest integer OAM states. For θd 6= 0◦, the OAM sorted peaks split into double peaks
with different intensities, offset from the peak positions of the integer OAM states. At
θd = 180◦, the splitting becomes symmetric with respect to the half-integer values at
the central positions between the neighboring integer OAM states. This behavior can
be understood considering how the phase gradient is unwrapped by the OAM sorting
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4.1. Benchmark of the OAM sorting process

setup, as already shown in Fig. 2.11. For θd = 0◦, the OAM sorting setup unwraps
the phase gradient of fractional OAM states exactly along the phase discontinuity and
transforms the phase of the light field into a continuous linear phase gradient just like
in the case of an integer OAM state. On the contrary, for θd 6= 0◦ the phase gradient
is unwrapped along a different axis. The phase gradient of the unwrapped light field
then splits into two linear parts, separated by the phase discontinuity maintained in
the OAM sorting transformation process. The result is a splitting of the OAM-sorted
signal into two peaks.
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Figure 4.2: OAM sorted intensity profiles of fractional OAM states from l = −1 to l = 0 for
experiment and simulations with rotation angles of θd = 0◦ and θd = 180◦. The profiles contain
a single peak at θd = 0◦, whereas a splitting of this peak is observed at θd = 180◦.
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Chapter 4. Results

For a more detailed picture, we calculate the center of mass and sorted variance of the
OAM sorted intensity profiles for a broader range of fractional OAM and at different
rotation angles θd. We compare our results to the results presented by Alperin et al.
[67] with a focus on the relation between the intrinsic, extrinsic and total OAM. The
intrinsic OAM component is invariant under rotations around the axis of propagation,
hence any rotation angle θd will result in the same OAM sorted intensity distribution. It
directly corresponds to the topological charge of the phase function used to generate the
light beam with OAM and amounts exactly to l. Still, the total OAM may differ from
this value, since it also includes the extrinsic OAM component, which is equivalent to
a net linear transverse momentum of the light beam. The extrinsic OAM component
is usually associated with a shift of the center of gravity of the light beam, caused
by an asymmetrical obstruction of the light beam [63]. For light beams with non-
zero extrinsic OAM components, the output intensity distribution of the OAM sorting
process depends strongly on the relative rotation of the beam with respect to the
phase elements of the OAM sorting setup. In contrast to this, the extrinsic OAM
components vanish for OAM states with integer OAM and the total OAM then equals
the rotation invariant intrinsic OAM. In general fractional OAM states with non-integer
l provide non-zero extrinsic OAM components and thereby the total OAM differs from
the intrinsic one. In this context, the discontinuous phase step of fractional OAM
states can be understood as the origin of non-propagating evanescent waves, which are
effectively equivalent to a partial obstruction of the light beam [67].
The results for the center of mass and sorted variance of fractional OAM states in a
wide range of l and for two particular rotation angles θd are shown in Fig. 4.3. Hereby,
the simulated center of mass positions perfectly match the expected linear dependence
for intrinsic OAM and modified dependence with a sine function for the mean or total
OAM, as predicted by Eq. 2.48 in chapter 2.4. Also the movement of the center of
mass corresponding to average OAM is in good agreement with the fractional OAM
measurements from Alperin et al. [67], where a cylindrical lens is used for transforming
the light beam and the average OAM is extracted from the output light field. At
the rotation angle θd = 0◦, the shift of the center of mass with topological charge
closely resembles a straight line. Hence, the extrinsic OAM components are zero and
only intrinsic OAM is measured at this rotation angle. For all other rotation angles,
oscillations of the center of mass appear. Exactly at the rotation angle θd = 180◦,
the nodes of the oscillation are located at the integer and half-integer values of the
topological charge l, resembling the measurement of total OAM by Alperin et al. [67].
So in this case, the total OAM is measured. The agreement between the simulated
center of mass positions and Eq. 2.48 also confirms this.
In practical applications, it might be of interest to distinguish between integer and non-
integer OAM states. As seen in Fig. 4.3, this may be achieved easily by measuring the
average OAM corresponding to the center of mass for the two rotation angles θd = 0◦
and θd = 180◦. However, this is not valid for half-integer fractional OAM states, as the
internal OAM and total OAM are equal for these states. In this case, also the sorted
variance needs to be taken into account, whose values differ significantly for half-integer
fractional OAM states. The strong oscillations of the sorted variance of the fractional
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Figure 4.3: The center of mass (a) and sorted variance (b) are extracted from the OAM sorted
intensity profiles of fractional OAM states with l ∈ [−2,2] for the rotation angles θd = 0◦ and
θd = 180◦, which correspond to the measurement of intrinsic and total angular momentum.
Both in experiment and simulation at θd = 180◦ oscillations of the center of mass occur. Also
the variance of fractional OAM states strongly differs between the θd = 180◦ and θd = 180◦
rotations.

OAM states result from the peak splitting already seen in Fig. 4.2. It should be noted,
that the experimentally observed oscillations in Fig. 4.3 are more pronounced than
predicted by the simulation, which is quite surprising. This observation may also be
explained by the clipping of spatial high frequency components in the Fourier plane
at the phase correction pattern, as discussed before concerning the broadening of the
experimentally observed OAM sorted peaks.
As a side note it should be mentioned, that light beams with fractional OAM are not
stable and decay into many (stable) vortices with |m| = 1 upon propagation. Especially
near the phase discontinuity a vortex chain with lowered intensity forms [65]. The
number of vortices along this chain rises with propagation distance and is expected
to be quite high for the long propagation distance of about 3m in our experiment.
Despite this, the OAM sorting method still detects the correct OAM value according
to the topological charge set by the vortex generation phase pattern. The vortex chain
does not seem to have a significant impact onto the OAM sorted intensity peaks. We
explain this with the fact that the intensity of the light field along the vortex chain is
low. Thus, this beam part gives only an insignificant contribution to the total intensity
of the light beam.
While imprinting a fractional vortex results in non-integer OAM, the other way around
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a non-integer OAM value does not necessarily imply the presence of a fractional vortex.
In general a light field may have non-integer average OAM, which is not necessarily
the result of imprinting a fractional vortex. For example an incoherent superposition
of different integer OAM states may have the same average non-integer OAM as a
fractional OAM state. In this example we compare the detection of fractional OAM
states and incoherent superpositions of integer OAM states with equal average non-
integer OAM. We calculate the sorted variance of incoherent superpositions, comprising
the l = −1 and l = 0 OAM states with weights chosen to generate a set of states
with average OAM values between −1 and 0 in equidistant steps. The resulting sorted
variance for these incoherent superpositions is plotted alongside with the sorted variance
of the fractional OAM states with equal average OAM in Fig. 4.4. While the sorted
variances of the fractional OAM states strongly differ for different relative orientations
between the light beam and the phase elements of the OAM sorting setup, this is not
the case for incoherent superpositions. The reason for this is the different rotational
symmetry of the input states. A superposition of integer OAM states maintains the
rotational symmetry of the comprising states, whereas fractional OAM states show a
broken rotational symmetry due to the phase discontinuity. Thus, changing the relative
orientation between the OAM sorting phase element and the input light beam yields
the opportunity to experimentally distinguish true fractional OAM states and mixed
OAM states formed by superpositions of integer OAM states.
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Figure 4.4: The sorted variance of fractional OAM states and incoherent superpositions of
the integer OAM states −1 and l = 0 are juxtaposed. The weights of the integer OAM states
in the incoherent superposition are chosen such that the average OAM matches the fractional
OAM values. Only the sorted variance of fractional OAM states shows a dependence on the
relative beam rotation angle θd.

To conclude this section, when imaging fractional OAM states using the OAM sorting
setup, we can choose whether to measure the internal OAM or the total OAM by specif-
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ically setting the relative orientation between the phase discontinuity of the fractional
OAM states and the symmetry axis of the OAM sorting phase elements. By performing
measurements with both rotation angles θd = 0◦ and θd = 180◦, fractional OAM states
and pure integer OAM states, including superpositions may be distinguished by evalu-
ating the center of mass and sorted variance of the OAM sorted intensity distribution.
Thus, the OAM sorting method may be applied to perform spectroscopy of the OAM
states, emitted by an arbitrary source. In the next section, we present the results of its
practical application to exciton polariton vortices.
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4.2 Investigation of spontaneously created exciton polari-
ton vortices

After having verified the implementation of the OAM sorting process in the experi-
mental setup, the following section demonstrates the generation of exciton polariton
vortices and investigates their formation process. All measurements in this section have
been performed using the same basic setup using a pulsed non-resonant pumping laser
shaped to ringlike spatial beam profiles. First, we confirm the occurrence of sponta-
neously formed vortices using the OAM spectroscopy method. Second, we investigate
the temporal dynamics of the formation process and model this process theoretically.
Finally, we experimentally investigate the different polariton spin components corre-
sponding to left and right circular polarization.

4.2.1 Generation and detection of polariton vortices

Exciton polariton vortices may be created in various ways, as already discussed in
chapter 2.3. Here, we utilize an annular non-resonant pump beam to create a ringlike
potential trap, in which vortices may form spontaneously [18]. First, we confirm the
formation of vortices inside the ringlike trap. Then we study further properties of the
arising modes.
The results shown in Fig. 4.5 provide evidence for the creation of vortices. Fig. 4.5(a)
shows the real space emission of the sample when using Gaussian and ringlike excitation
beams below and above the condensation threshold. The evaluation of OAM sorted
profiles including simulation results is shown in 4.5(c). In Fig. 4.5(b) the exciton
polariton dispersion captured with a Gaussian excitation beam below threshold is shown
for reference. The exciton-cavity detuning is −4meV in all measurements.
The procedure for this measurement is as follows: The excitation beam is not shaped
at first, leading to a Gaussian excitation beam being focused onto the sample. Above
the condensation threshold a spatially narrow polariton condensate forms at the exci-
tation spot. The emission is collected, transformed using the OAM sorting setup and
imaged onto the CCD camera of the monochromator. The resulting spot represents the
reference for a centered state with zero OAM. Then, the excitation beam is changed
to a ringlike beam by altering the phase pattern displayed on the SLM to an axicon
phase pattern. The ring diameter and excitation power are increased until the real
space emission inside the trap shows the typical ringlike pattern of a vortex with a
central core, where the intensity is almost zero. This real space pattern already gives
a hint that vortices may be formed. To prove this, we use the OAM sorting setup to
image the sample emission. Cross sections of the OAM sorted output images are shown
in the upper half of Fig. 4.5(c). The profiles indicate that two vortices with opposite
non-zero OAM form. To confirm the absolute values of OAM carried by these states,
we simulate the complete OAM sorting process using the exact same OAM sorting
parameters and focal lengths of the lenses, as used in the experimental setup. The
profiles of the thereby simulated OAM sorting peaks of l = −1, l = 0 and l = 1 OAM
states are plotted alongside the measured profiles on the same physical axis, as shown
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in the lower half of 4.5(c). The simulated peak positions match almost perfectly with
the peaks in the measured OAM profiles, whereby we emphasize that the axis of the
simulated data has not been rescaled to match with the experiment. The physical size
of the axis is a pure result of the simulation including the exact parameters of the prac-
tical implementation of the OAM sorting setup. This conclusively proves that inside
the annular trap indeed vortices form and that their topological charges are m = −1
and m = +1.
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Figure 4.5: a) Experimental real space images recorded with either ring-like or Gaussian
excitation, both below and above the condensation threshold. The excitation ring diameter is
about 9µm. (b) Exciton polariton dispersion at the chosen sample detuning of −4meV recorded
below the condensation threshold with a Gaussian excitation beam. The white dashed line
represents a theory fit of the dispersion. (c) Cross-sections of the experimental OAM sorting
output for both Gaussian and ringlike excitation (upper half) and simulated OAM sorting
profiles of reference OAM states with l = −1, l = 0 and l = 1 (lower half). The intensities of
the experimental profiles are normalized to match the scale of the simulation. The scaling of
the x-axis is exactly the same for experiment and simulation.

This finding all by itself is not very surprising, since the spontaneous formation of
vortices has been observed before, as already discussed in 2.3. However, the OAM
spectroscopy approach followed here enables us to perform more advanced measure-
ments to gain insights into the vortex formation process. Since the excitation laser is
pulsed, the occurrence of the OAM modes can be easily traced in time by imaging the
OAM sorted sample emission with a streak camera instead of just a CCD camera. Two
exemplary results of such measurements for different excitation powers along with the
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corresponding measurements of the dispersion are shown in Fig. 4.6.
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Figure 4.6: Time-resolved OAM measurements for different excitation powers together with
the related k-space images below (1.1PThr left, 2.3 PThr right). At first non-zero OAM modes
with m = −1 and m = +1 form at the same time, followed by a longer lasting zero OAM mode.
The intensity of the zero OAM mode varies with excitation power, allowing the identification of
the lower energy zero OAMmode and higher energy non-zero OAMmodes in k-space. The white
line is the same as in Fig. 4.5. It represents the polariton dispersion at low polariton densities
below condensation threshold, with respect to which all arising OAM modes are blue-shifted.
The excitation ring diameter is 9 µm.

We find the time dynamics of the arising modes to be dependent on the excitation
power, as can be seen from the time-resolved OAM profiles. Two vortex modes with
m = ±1 arise at the same time. In addition to this, also a third mode with zero OAM
and longer lifetime exists. Due to its lower intensity, it does not show up as a distinct
peak in the profile, shown in Fig. 4.5(c). However, in time resolved measurements it
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4.2. Investigation of spontaneously created exciton polariton vortices

emerges with an intensity depending on the excitation power. The relative intensity
of the zero OAM mode compared to the non-zero OAM modes rises significantly with
increasing excitation power. Taking this rise into account allows one to identify the
zero and non-zero OAM modes in the energy-resolved k-space measurements. The zero
OAM mode arises at k = 0 at an energy level, which is blue shifted compared to the
polariton dispersion recorded below the condensation threshold. The non-zero OAM
modes arise at finite positive and negative k at a higher energy level above the zero
OAM mode.
The coincident appearance of the OAM peaks relating to the m = +1 and m = −1
vortices raises the question whether these vortices of opposite topological charges may
coexist with each other or if only either of them can exist at the same time. Also the
origin of the zero OAM mode is unknown. The results shown in Fig. 4.5 provide no
insight regarding this question, since the images are integrated over more than 106 single
pulse excitations. To gain access to the formation dynamics of the different OAMmodes
at the level of individual single pulse events, more advanced correlation measurements
are performed. For this, we change the operation mode of the streak camera to single
shot photon counting and tune the excitation ring diameter and excitation power to
values, where the zero OAM mode is well visible and the peaks of the OAM states
are more distinct. A typical real space image and time resolved OAM image for this
excitation with a 7-µm pump ring at 3.2PThr is shown in Fig. 4.7. We segment
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Figure 4.7: (a) Real space image of the sample emission well above condensation threshold
for 7-µm diameter ringlike pump, indicated by the black dashed circle. (b) Example of a
time-resolved OAM measurement signal recorded with an excitation ring diameter of 7 µm.
The excitation power is also 3.2PThr in this case. The white boxes indicate the areas used for
counting the photons in the correlation measurements.

53



Chapter 4. Results

the OAM sorted signal into three areas corresponding to the arising OAM states and
calculate the correlations between the photons detected in these areas as follows:

Cn,m = 〈InIm〉
〈In〉〈Im〉

, (4.3)

An = 〈In(In − 1)〉
〈In〉〈In〉

. (4.4)

Here, Cn,m is the cross-correlation, An is the autocorrelation, and n,m ∈ {−1,0, + 1}
are indices for the OAM states. In and Im are the respective photon counts recorded
for the individual OAM modes. For a value 0 ≤ C < 1 for a selected pair of modes, the
modes show a tendency to suppress each other. In this case, they are not coexisting.
However, for values C ≈ 1, the modes may coexist and for C > 1 even show the
tendency to appear in a correlated manner while coexisting. Besides, we also evaluate
the autocorrelation of all detected photons related to the individual OAM states, which
provides a measure for the photon number noise of each OAM mode.
The resulting cross-correlation of the −1 and +1 OAM modes is C−1,+1 = 1.08± 0.09,
whereas the autocorrelation values of the individual modes are A−1 = 1.15± 0.09 and
A+1 = 1.2 ± 0.1. The cross-correlation value fulfills C ≈ 1, which means that the
arising −1 and +1 OAM modes are statistically independent of each other, i.e. they
indeed may coexist with each other. Also the fact that the cross-correlation value and
autocorrelation values do not differ significantly, suggests a common source of noise for
both OAM modes. Further analysis of the other cross-correlations C−1,0 = 1.05± 0.06
and C+1,0 = 1.23±0.07 shows that also the zero OAM mode is statistically independent
of both non-zero OAM modes. In addition to the energy gap between the zero OAM
mode and non-zero OAM modes, this result likewise suggests that the longer living
zero OAM mode is formed in a different process, not directly related to the formation
of the non-zero OAM modes.
To conclude this section: The spontaneous generation of vortices has been demon-
strated. With ringlike excitation we find and investigate in total three different modes
with −1,+1 and zero OAM. The non-zero OAM modes and zero OAM mode arise
at different energies. A detailed analysis shows that the vortices with m = −1 and
m = +1 and the zero OAM mode are statistically independent of each other and may
coexist with each other. Furthermore, the time evolution of the signal changes with
excitation power and ring diameter, as seen in Figs. 4.6 and 4.7. We investigate these
temporal dynamics in more detail in the next section.
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4.2.2 Temporal dynamics of polariton vortices

The temporal dynamics of the OAMmodes forming inside a ringlike excitation potential
shows a strong power dependence, as we have seen in the last chapter. The arising OAM
modes and their time dynamics can be reproduced by the theory model according to
Refs. [19, 20], which we present in the following. All simulated theory data of polariton
condensates shown in this thesis result from the collaboration with our partners in
the TRR142 project Xuekai Ma, Rodislav Driben and Stefan Schumacher from the
university of Paderborn.
The dynamics of a condensate at the ground state of a quantum mechanical many body
system may be described using the Gross-Pitaevskii-Equation, as we already discussed
in section 2.1.4. However, unlike atomic gases, exciton polaritons are particles with
finite lifetimes and are generated by an optical pumping process, which leads to the
formation of a coherent quasi-equilibrium condensate in a non-trivial manner. Taking
this process into account, the dynamics of an exciton polariton condensate may be
modeled and simulated using the following mean-field open-dissipative Gross-Pitaevskii
equation [77]:

i~
∂Ψ(r,t)
∂t

=
[
− ~2

2meff
∇2
⊥ − i~

γc
2 + gc|Ψ(r,t)|2

+
(
gr + i~

R

2

)
nA(r,t) + grnI(r,t)

]
Ψ(r,t),

(4.5)

Here, Ψ(r,t) is the wave function of the polariton condensate, meff is the effective
mass of the polaritons and γc is a loss rate which accounts for the finite polariton
lifetime. The repulsive polariton-polariton interaction is included with a value gc > 0.
To model the relaxation and scattering dynamics, we introduce two reservoirs. An
active reservoir (with density nA), which directly fills the condensate and an inactive
reservoir (with density nI), which only feeds the active reservoir [14, 42]. The repulsive
Coulomb interaction of condensate polaritons with both reservoirs is represented by
the terms grnA and grnI in Eq. 4.5, whereby gr > 0 is the interaction constant. The
active reservoir models the population of exciton polaritons at energy values above the
ground state, for example near the bottleneck region. Its density satisfies

∂nA(r,t)
∂t

= τnI(r,t)− γAnA(r,t)−R|Ψ(r,t)|2nA(r,t). (4.6)

The term R|Ψ(r,t)|2nA describes the stimulated scattering process, as it scales with
the density of the condensate |Ψ(r,t)|2. The coefficient R corresponds to the scattering
rate of this non-linear process. γA is the loss rate of the active reservoir. The inactive
reservoir models the electron-hole plasma excited by non-resonant pumping. Due to
relaxation of the electron-hole plasma, polaritons in the active reservoir form. τ gives
the rate at which the active reservoir is replenished by the inactive reservoir. The
density of the inactive reservoir satisfies

∂nI(r,t)
∂t

= −τnI(r,t)− γInI(r,t) + P (r,t). (4.7)
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Here, γI is the loss rate of the inactive reservoir and P (r,t) is the non-resonant pump,
which is energetically far above the exciton energy. For the theoretical simulations we
use a ringlike excitation pump profile similar to the experiment. The exact excitation
profiles and parameters of the theory simulations for this chapter can be found in Ref.
[20].
The theory simulations are based on solving Eqs. 4.5-4.7 numerically using a split-
step Fourier method. The nonlinear contributions are calculated by using the fourth
order Runge–Kutta method on a discrete spatial grid with high resolution. The initial
conditions include small uniform white noise in amplitude and phase of ψ at all grid
points, while the reservoir densities are strictly zero. The initial white noise changes
randomly with each run of the numerical simulation. At t = 0 the pump pulse is applied
and leads to a buildup of particle densities in the whole system. At each point in time,
the OAM of the polariton condensate may be calculated by evaluating

AOAM(m) =
∫

Ψ(r)e−imφdr, (4.8)

which gives the numerically sorted intensity distributions |AOAM|2. Calculating these
profiles for all time points gives a two-dimensional image that resolves the OAM of the
polariton condensate in time, just like our experimental setup does.
In Fig. 4.8 we compare a measurement series of three exemplary excitation powers

with the corresponding theory simulations. The excitation ring diameter is 7µm in this
case. We observe that all modes with −1, +1 and zero OAM shift to earlier times as
excitation power increases. For low pump powers only slightly above the condensation
threshold, the vortex modes with −1 and +1 OAM are absent while only the zero OAM
mode is present. The occurrence of all modes and their temporal shift with pump power
show good qualitative agreement in experiment and theory. We obtain the theoretical
results by averaging over ten pulsed excitation cycles, while randomly changing the
initial white noise in phase and amplitude of the wave function for each excitation
cycle. The asymmetry of the −1 and +1 OAM states results from the small number of
averaged excitation cycles and in this respect its similarity to the experimental result
is a coincidence. When averaging over more excitation cycles, a symmetric distribution
of −1 and +1 OAM states would be expected in theory. In contrast to this, the
experimentally observed asymmetry of the −1 and +1 OAM states results from sample
disorder, which is not included in the theory. Nevertheless, the theory reproduces the
experimentally measured time dynamics and the power dependence of the arising modes
very well.
We analyze the results shown in Fig. 4.8 for the modes forming inside a 7µm trap
in more detail. For low excitation power only slightly above the condensation thresh-
old, solely the zero OAM mode forms, appearing delayed in comparison with higher
excitation powers. The non-zero OAM modes are absent compared to the previous
measurements shown in Fig. 4.6, where a larger 9µm ring shaped excitation beam
with a power also slightly above condensation threshold is used. This different occur-
rence of the vortex modes may be explained in the following way: The physical size of
vortices is influenced by the excitation power density. As we discussed in chapter 2.3,
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Figure 4.8: Experimental time-resolved OAM measurements for different excitation powers
compared to the theoretical simulation results of this process. The color maps of the individual
graphs have been scaled to the respective minimum and maximum values of each image.

the vortex size is proportional to the healing length, which is inversely proportional to
the square root of the polariton field intensity. Therefore, the vortex size shrinks with
increasing pump power. To enable the formation of vortices inside a trap, the physical
vortex size needs to be smaller than the trap, otherwise the vortex modes can not form.
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Considering both measurements with different trap diameters of 9µm and 7µm but
similar excitation powers slightly above the condensation threshold, the spatial size of
the vortices is roughly the same. While the trap with 9µm diameter is large enough to
support vortex formation, the trap with 7µm diameter is too small, so that no vortex
modes may form at the given excitation power. However, with increasing excitation
power, the physical vortex size decreases and thereby vortices may also form inside the
7µm trap.
The overall temporal dynamics of all modes also shows some power dependence. The
vortex modes formed early with non-zero OAM and the zero OAM mode formed later
both shift towards earlier times with increasing excitation power, whereby the zero
OAM modes shows a stronger shift. The timescale of the decay of the condensate
with zero OAM, however, is not modified. A significant change of this decay time
is observed neither in experiment nor theory. To quantify the decay times of the
modes, we extract the OAM-integrated time profiles, which are shown in Fig. 4.9. In
experiment, the decay time of the peak related to the zero OAM mode initially rises
with increasing power and then stabilizes at 24 ps for excitation powers well above twice
the condensation threshold. This matches quite well with the lifetime of about 22 ps of
the condensate predicted by the simulation. The decay time of the early peak related to
the vortex modes amounts to about 12.5 ps and varies less than 1 ps in the power range
above condensation threshold covered in Fig. 4.9. Contrary to this, only a lifetime
around 4 ps is expected in theory, which corresponds to a deviation by more than a
factor of three. We trace back this deviation to the beam shaping of the excitation
laser beam. The SLM used for this process inevitably induces intensity fluctuations.
Since the time dynamics of the entire process is sensitive to the excitation power, this
leads to an effective broadening of all peaks in the time domain due to averaging over
several excitation cycles with different pump powers. In case of the short-lived early
peak related to the vortex modes, this leads to a rather big deviation of the lifetime. In
case of the late peak related to the zero OAM mode, this broadening is not noticeable,
since the lifetime of this mode is much longer anyway. Also it should be noted, that
an unavoidable time jitter of about 1 ps is induced by the streak camera system itself.
This additively broadens the peaks in experiment, though it certainly is not the main
contribution.
To gain further insight into the condensation process of the different OAM modes, we
analyze the theoretical model in more detail. As already discussed before, the model
consists of an inactive reservoir, an active reservoir and the condensate. The conden-
sation process is modeled by rate equations transferring the particle densities from the
inactive reservoir to the active reservoir, which interacts with the condensate. The con-
densate forms due to nonlinear scattering from the active reservoir. The spatial shape
of the inactive reservoir does not change, since there is no feedback to it from either the
active reservoir or condensate. However, the spatial particle density distributions of the
active reservoir and condensate may change dynamically during the whole excitation
process. To understand how this happens in the specific case of pulsed ringlike exci-
tation, we single out the simulation results for an excitation power of 4.7PThr in Fig.
4.9 and plot the real space images of the involved inactive reservoir, active reservoir
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Figure 4.9: OAM-integrated time profiles of the time-resolved OAM images of experiment
and theory simulations, explicitly including the images shown in Fig. 4.8.

and resulting condensate at the peak times t1 and t2. The resulting images obtained
in a new run of the theory simulation for this excitation power are arranged in Fig.
4.10. At the peak time t1 where the −1 and +1 OAM modes arise, the condensate
forms a dipole mode consisting of two localized spots in real space with a π-phase jump
with respect to each other. This can be understood as the result of a coherent super-
position of the two counter-rotating vortex modes forming a standing wave. At this
time, the active reservoir resembles the ring-shaped inactive reservoir overlapped with
an intensity inverted image of the condensate. In the active reservoir, local minima
matching with the high density spots of the condensate manifest due to the fact that
the polariton condensation non-linearly depletes the active reservoir with a rate that
rises with the condensate density.
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Figure 4.10: (a) The simulated OAM-integrated time profile for the excitation power of
4.7 PThr. The peak times are t1 = 15 ps and t2 = 83 ps. The inset shows the persistent shape
of the inactive reservoir. (b)-(d) Real space images and phase maps of the condensate and real
space images of the active reservoir at the peak times t1 and t2. The particle density ρmax at
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At the peak time t2, when the vortex modes disappeared and the zero OAM mode
arises, the condensate just forms a single spot with flat phase in the center of the
ringlike excitation potential. For this mode, the active reservoir is also ringlike as it
inherits the shape of the inactive reservoir and the polariton population on the ring
itself is not directly drained by the condensate. In this case the spatial overlap of
active reservoir and condensate is very small due do the low density of hot excitons in
the center of the ring-shaped inactive reservoir, which feeds the active reservoir. This
results in relevant implications for the lifetime of the zero OAM mode. From Eq. 2.39,
one can see that the decay rate of the condensate is given by the polariton lifetime and
the feeding rate of the active reservoir, i.e. −i~γc

2 + i~R2 nA(r,t). Due to the negligible
overlap of condensate and active reservoir for times around t2, we obtain nAΨ ' 0 and
the lifetime of the OAM mode thereby becomes independent of condensate density,
active reservoir density and the pumping power. Then, the condensate lifetime is just
determined by the polariton lifetime: 2/γc ' 22 ps. This theoretical explanation fits
the experimental finding that the lifetime of the zero OAM mode is mostly independent
of the excitation power, well, as already discussed regarding Fig. 4.9.
Finally, we investigate the influence of the excitation ring diameter on the formation dy-
namics of the polariton condensate. Fig. 4.11 shows time-resolved OAM measurements
with different ring diameters at approximately the same excitation power density. At
the selected excitation powers, only for ring diameters above 6 µm vortex modes with
−1 and +1 OAM form. Considering the discussion of the results shown in Fig. 4.8, a
possible explanation for this behavior is that the diameter of 6 µm is smaller than the
vortex size at the given excitation power and thereby only the zero OAM mode may
form. With increasing ring diameter the zero OAM mode broadens in time significantly
and its onset shifts to a later time. For a ring diameter of 7 µm, the spontaneously
formed vortex modes decay rapidly, while for a ring diameter of 9 µm a slower decay is
observed. At the larger ring diameter also a slight movement of both non-zero OAM
sorting spots by about one third of a topological charge towards more positive OAM
values is observed. However, the zero OAM mode does not move along the OAM axis.
The significant broadening and shift of the zero OAM mode in time with increasing
ring diameter may be explained by a change of the small spatial overlap between the
zero OAM mode and the reservoir. For small ring diameters the spatial overlap is
comparatively large, which means the zero OAM mode is populated fast but also decays
rapidly. With increasing ring size the spatial overlap shrinks and the whole process of
building up the mode and following decay is slowed down. As a result, the peak shifts
to a later time and the broadening in time accrues.
The spots of the m = −1 and m = +1 vortex modes for ring diameters of 7µm and
9µm shown in Fig. 4.11 are very different. For the 7 µm ring excitation the OAM spots
are shorter-lived and well defined, whereas for the 9 µm ring excitation longer living
tilted spots with changing OAM appear. Since the excitation power density is similar
in both cases, also the physical vortex diameter is about the same. A highly probable
explanation for the tilt of the OAM spots is that both vortices are actually moving
alongside inside the large trap, for example due to an asymmetric intensity distribution
of the excitation pump ring or the disorder potential of the sample. The movement
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Figure 4.11: Time-resolved OAM measurements for excitation with different ring diameters
d and approximately the same excitation power density. For d = 6µm only a zero OAM mode
forms. For the bigger ring diameters, two modes with −1 and +1 OAM form. At d = 9µm the
OAM peaks of these modes are simultaneously moving with advancing time, which corresponds
to a movement of the vortices inside the trap. The color maps of the individual graphs have
been scaled to the respective minimum and maximum values of each image and the pump power
relates to the condensation threshold of ringlike excitation with the corresponding diameter.

of a vortex away from the initially centered position on the optical axis results in
a transverse momentum of the signal beam when the microscope objective performs
an optical Fourier transformation of the off-centered polariton emission. Since this
transverse momentum corresponds to extrinsic OAM components, the OAM physically
changes with respect to the aligned reference axis of the OAM sorting setup and thereby
causes a shift of the OAM peaks. This movement is only possible if the ring diameter is
somewhat larger than the actual vortex size. In the case of the 7 µm ring we conclude
the vortices to be well confined in the potential and not moving at all. Furthermore,
a movement of the vortices inside the trap might also explain the enhanced lifetime of
the vortices excited using a 9µm ring. When a vortex moves from the central position
towards the border of the ring trap, the spatial overlap with the feeding reservoir
changes and becomes inhomogeneous. The feeding rate of the condensate rises for
some areas of the trap while it decreases for some other areas of the trap. Thereby an
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4.2. Investigation of spontaneously created exciton polariton vortices

asymmetric time profile with a long living tail is generated. Overall, the timescale of
all formed OAM modes is strongly influenced by the excitation ring diameter.
The discussion of the results in Fig. 4.11 also sheds new light on the previously pre-
sented results for excitation with a 9 µm ring shown in Fig. 4.6. For the higher exci-
tation power the OAM sorted spots are slightly tilted and display an asymmetric time
evolution, which may be explained by a movement of the formed vortices to the border
of the trap. However, this is not the case for the lower excitation power just slightly
above the condensation threshold. For the lower excitation power, the physical vortex
size is larger, hence also well confined within the 9 µm ring trap.
To conclude this section, we have investigated the exciton polariton condensation pro-
cess for ringlike excitation with different excitation powers and ring diameters. We
observed the spontaneous formation of −1, +1 and zero OAM modes and studied the
influence of the excitation power and ring diameter on these modes experimentally and
theoretically.

4.2.3 Spin-orbit coupling

In addition to the temporal dynamics of the spontaneously created vortices, we also
examine the spin of the exciton polariton vortices and extend the experimental setup
by suitable polarization optics to detect both spin related circular polarization com-
ponents. For most experimental conditions both spin components equal each other.
However, in some cases an asymmetry of the OAM modes that is correlated with the
spin components appears, depending on the sample disorder. An example for this effect
is shown in Fig. 4.12. In the σ+ spin component, the −2 OAM state is dominant, while
in the σ− spin component, the +2 OAM state is dominant. This related appearance of
OAM modes and spin components corresponds to spin-orbit coupling of exciton polari-
tons. We trace the appearance of m = ±2 OAM modes back to the slightly higher ring
diameter compared to the results shown in Fig. 4.8 combined with excitation powers
well above twice the condensation threshold and a local sample disorder supporting the
m = ±2 OAM modes. Considering the cross-sections of the appearing OAM modes,
the effect seems to be intensity dependent. To quantify this dependence, we extract
the degree of circular polarization (DCP) of the modes using the profiles shown in Fig.
4.8. The intensities of the −2 and +2 OAM modes are calculated by integrating the
profiles in intervals [−3,− 1] and [1,3] centered around the peaks of both arising OAM
modes. The DCP then is calculated as:

ρm = Iσ+ − Iσ−
Iσ+ + Iσ−

, (4.9)

(4.10)

with the integrated intensities Iσ+ and Iσ− of the corresponding OAM mode with topo-
logical charge m. The resulting DCP values for the lower pumping power of 2.5PThr
are ρ−2 = 0.148 and ρ2 = −0.247, while the DCP values for the higher pumping
power of 3.6PThr are ρ−2 = 0.019 and ρ2 = −0.099. The experimental observation
shows that the intensities of both appearing non-zero OAM modes converge to each
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Figure 4.12: Time-resolved OAM measurements for different excitation powers (left and right
column) and circular polarization states σ+ and σ−. The plots on the bottom row show the
time profiles of the images above, integrated in a time frame of -20 ps to +20 ps. Two OAM
modes with m = −2 and m = +2 are formed, appearing with clearly distinct intensities levels
in both detected circular polarizations. The intensities of the OAM peaks detected at different
circular polarizations converge to each other at the higher excitation power. The time t = 0 ps
in this graph marks the peak of the detected intensity, not the time of excitation. The ring
diameter is 7.5µm.
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4.3. Realization of vortex switching

other with increasing excitation power and the degree of circular polarization drops.
Similar to our experimental results, spin-orbit coupling of exciton polaritons has been
observed before in an etched structure of coupled micropillars arranged in the form
of a hexagonal photonic molecule [78]. There, the spin-orbit coupling arises from the
polarization-dependent confinement and tunneling of photons between adjacent mi-
cropillars. However, the origin of spin-orbit coupling inside the all optically excited
annular trapping potential in our planar microcavity is still unknown. In future work,
finding a conclusive theoretical explanation for this spin-orbit coupling might be benefi-
cial for understanding the underlying physics and exploiting it in manufactured tailored
exciton polariton systems. In any case, the presence of spin-orbit coupling in a polari-
ton system with rotationally symmetric trapping potentials is expected to affect the
modes that arise [79].

4.3 Realization of vortex switching

After having studied the spontaneous creation of vortices, we now focus on controlling
the topological charge of the created vortices. The concept and key elements enabling
vortex switching following Ma, et al. [19] are briefly presented in the following. The
basic theory model for simulating the time evolution of the polariton condensate is
identical to the one presented in chapter 4.2.2. The exact excitation profiles and pa-
rameters of the theory simulations for this chapter can be found in Ref. [19]. A sketch
of the excitation geometry is shown in Fig. 4.13.

CW
ring

pump
Control
pulse

Excitation potential
with control pulse on

DBR
QWs

DBR

Figure 4.13: Sketch of the tailored excitation setup with two lasers used for vortex switching.
The ring shaped CW pump creates a rotationally symmetric trapping potential, inside which
polariton vortices may form spontaneously. While the additional Gaussian control pulse is
switched on, it creates a temporary potential barrier, intentionally breaking the rotational
symmetry and thereby enabling the switching of vortices inside the ring trap.
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Chapter 4. Results

We use two excitation lasers for this experiment. An annular shaped CW laser creates
the ringlike trap, while a pulsed laser with Gaussian beam shape acts as the control
beam to manipulate the vortices forming inside the CW ring trap. The control pulse
forms an additional potential barrier, which breaks the rotational symmetry of the
system and may influence the topological charge of already existing vortices inside the
annular trap. In Fig. 4.14 a theoretical simulation of this process is illustrated.

Figure 4.14: Principle of vortex switching. Panels (a)-(d) show the real space images of
the polariton density (given in µm−2) with the corresponding real space phase maps below at
selected points in time, following each other from left to right. In (a) a m = +1 vortex forms
inside the CW excited ringlike potential, which is indicated by the white dashed circle. When
the additional Gaussian control pulse is switched on (indicated by the solid white circle), an
oscillating dipole mode of two spots with π-shifted phase to each other forms as shown in (b)
and (c) for different points in time. After the control pulse is switched off, the system returns
to a vortex mode depending on the oscillation state of the dipole at the time when the control
pulse is switched off. Panel (d) shows an example of successful vortex switching, where finally
the topological charge amounts to m = −1, therefore opposite to the initial vortex state in (a).

The images from left to right in Fig. 4.14 show the simulated real space of the po-
lariton density and corresponding phase maps of the polariton wave function during
the switching process with advancing time. In Fig. 4.14(a), a spontaneously formed
m = +1 vortex exists. When the control pulse is switched on, the rotational symmetry
of the optically imprinted trapping potential is intentionally broken and a dipole mode
forms, as seen in Fig. 4.14(b) and (c). While the Gaussian control pulse is switched on
and perturbs the vortex by forming a local potential barrier, this dipole mode oscillates
back and forth between the two states shown in Fig. 4.14(b) and (c). Once the control
pulse is switched off and the potential barrier fades, the dipole mode turns back into
a vortex mode, which may have a topological charge opposite to the initial state, as
shown in Fig. 4.14(d). The topological charge of the final vortex state depends on the
rotation direction of the oscillating dipole at the time, when the potential barrier is
sufficiently reduced to allow stable formation of vortices again. Thus, a control pulse
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4.3. Realization of vortex switching

with the right duration relative to the oscillation period of the dipole may switch the
topological charge of an already formed vortex inside an annular trap. Fig. 4.15(a)
shows an example of switching a vortex to the same or opposite topological charge
using pulses with different durations. Also, the height of the potential barrier (given by
the control pulse intensity) influences the oscillation frequency of the dipole. Thereby,
the final state of the switching process results from a combination of both pulse in-
tensity a and duration wt, as shown in 4.15(b). For the practical realization of vortex
switching, this information is crucial, although the actual implementation is a bit more
sophisticated than this model.

time (ps)

pulse duration, w  (ps)t

(a)

(b)

Figure 4.15: Detailed analysis of the conditions for successful vortex switching. Panel (a)
compares the time evolution of the average topological charge of the total polariton condensate
for different parameters sets with varying control pulse duration wt and fixed intensity a = 2.
For wt = 10 ps the topological charge is switched whereas for wt = 20 ps the charge returns
to its initial m = +1 vortex state. Panel (b) shows a computed parameter map of the pulse
intensity a and pulse duration wt, which identifies parameter spaces for successful switching,
marked in orange color. The blue areas indicate parameter sets leading back the the initial
states, showing no vortex switching. The black dots mark the parameter sets used in panel (a).

In the experimental realization, the pulse duration cannot be adjusted easily to prede-
fined values with few picoseconds precision. Besides the technical expense to tempo-
rally shape the excitation laser in the limits of the physically fundamental energy-time
uncertainty relation, also the polariton relaxation and condensation process strongly
influence the lifetime of the ultimately formed potential barrier, which perturbs the
already formed vortex. For this reason we vary the easily adjustable pulse intensity
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instead. According to Fig. 4.15(b), varying the pulse intensity also offers settings al-
lowing vortex switching. Hereby, short pulse durations of only few picoseconds are a
priori not reachable in experiment, due to the polariton relaxation and condensation
process. The fastest decay channel of the reservoir excitons, which yield the largest
contribution to the potential barrier, is given by relaxation and stimulated scattering
into the ground state followed by a radiative decay from the polariton condensate.
However, the cavity lifetime of around 8 ps sets a strict lower bound for the lifetime of
the condensate polaritons. As a consequence, the pulse duration effectively exceeds the
duration of the 120 fs pump pulses generated by the pulsed laser.
As already seen in the results for pulsed annular excitation in section 4.2.1, both vortex
modes with m = −1 and m = +1 form simultaneously. During the time t < 0 ps before
the additional non-resonant control pulse arrives, both OAM modes exist, whereby
the +1 OAM mode is dominant. At t = 0 ps the additional control pulse is applied,
which creates a temporary potential barrier, perturbing the formed vortices. Its impact
depends on the control pulse power. For a low pulse power of 1mW, at t∼ 100 ps the
m = +1 vortex mode is suppressed and the m = −1 vortex mode dominates for a
short period of time. After that, the m = +1 vortex mode prevails again and the
system gradually returns to the initial state as seen for t < 0 ps. For a slightly higher
control pulse power of 4mW, the intensity of both vortex modes oscillates with the
m = −1 vortex mode being dominant after application of the control pulse. At around
t ∼ 300 ps, the signal stabilizes in a setting with a dominantm = −1 vortex mode, which
means that the initially dominant vortex mode m = +1 is switched to the opposite
topological charge m = −1. The system remains in this switched state for more than
1.5 ns until it gradually reverts back to the initial state with a dominant m = +1 vortex
mode. When the control pulse power is increased further to 20mW, the system also
performs an intermediate oscillation until it reverts back to the initial setting with
a dominant m = +1 vortex mode at around t∼ 600 ps. In this case no switching
happens, like for the lowest excitation power. For the intermediate excitation power,
we indeed observe vortex switching. This behavior agrees well with the theoretical
prediction, shown in Fig. 4.15. As a side note, the oscillating behavior lasting more
than 100 ps after application of the control pulse also implies that the effective lifetime
of the potential barrier is vastly increased compared to the short duration of the 120 fs
control pulses. This is a consequence of the rather complex polariton relaxation and
condensation process.
The results shown in Fig. 4.16 demonstrate that the vortex switching scheme works
and imply that it also may be applied in different material systems. However, the
detection of the vortex switching using the presented experimental setup is not a trivial
task and requires the vortex modes to fulfill some requirements, which we explain a
bit further at this point. At first glance, the simultaneous formation of two vortex
modes seems to be a disadvantage for observation of the vortex switching since the
signal looks more complex and the relative change of the OAM peak intensities is
more difficult to observe. However, the isolated occurrence of only one vortex mode
would mean that the sample disorder strongly suppresses the formation of the other
vortex mode with opposite topological charge. Thereby also no switching to this mode
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Figure 4.16: Experimental time-resolved OAM measurements of the sample emission for
different control pulse powers and the relating cross-sections at t = −1 ns (black) and t = 1 ns
(red) plotted below. The images for different powers are normalized individually. At t < 0 ps
only the annular CW excitation beam is on and two vortex modes with m = −1 and m = +1
form, whereby the m = +1 modes is dominant. At t = 0 ps the control pulse perturbs the
previously formed vortices. After perturbation with a 1mW control pulse the condensate returns
to the initially dominant m = +1 vortex state. For a slightly increased power of 4mW, the
m = −1 vortex state is clearly dominant after the perturbation. Thus a switching of the
topological charge is evidenced. When increasing the power further to 20mW, the condensate
again returns to the initially dominant m = +1 state after the perturbation and no vortex
switching appears.

would be possible, since the switched vortex mode may not form at all. So in fact,
when switching vortices which are spontaneously formed inside a trapping potential,
the initial appearance of both OAM modes is necessary to perform vortex switching.
Additionally there obviously needs to be a dominant mode with higher intensity so
that the vortex switching may be noticed. With two OAM peaks of same intensity the
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switching could not be identified, if it occurs. Another relevant aspect is that after
some time the switched vortex state automatically reverts back to the initial state.
Due to this, the system is reset between two control pulses and thereby allows the
vortex switching to be detected even when the streak camera integrates over more
than 106 pulses in each measurement. Otherwise the continuous switching forth and
back between both vortex modes would result in an averaged image with two peaks of
identical intensity. If the system did not automatically reset itself, it still could be reset
between two control pulses using a more complicated excitation scheme, for example
by blocking the CW laser between the arrival of consecutive control pulses using an
electro-optical modulator.
In conclusion, the controlled manipulation of vortices implementing the switching of the
topological charges of vortices has been successfully demonstrated experimentally and
theoretically. This specific case of detecting two spontaneously formed vortex modes
with opposite topological charges especially highlights the advantage of the applied
OAM spectroscopy method over interferometry techniques.
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Conclusion and Outlook

To conclude, we successfully implemented and applied the OAM sorting method for
spectroscopy of OAM states. At this we have shown that similar to a cylindrical lens
[66, 67] the OAM sorting method may also be used to selectively measure the intrinsic
and total OAM of fractional OAM states with non-integer OAM values. Furthermore,
we successfully demonstrated the application of the OAM sorting method for OAM
spectroscopy by confirming and extensively investigating the formation of exciton po-
lariton vortices inside ringlike traps. We find several independent modes with zero
and non-zero OAM forming inside the annular traps. The temporal dynamics of all
forming modes is strongly influenced by the ring diameter and excitation power. We
examine how the formation and decay of the modes is influenced by the spatial over-
lap between the condensate and the active reservoir. At a trap diameter comparable
to the vortex size, the vortices are well confined, whereas a larger trap diameter en-
ables the movement of vortices inside the trap. We are also able to observe spin-orbit
coupling of the microcavity exciton polaritons. However, a microscopic description of
this effect requires more research as it is not always present. Investigating the exact
circumstances for its occurrence might be beneficial for utilizing spin-orbit coupling in
optical information processing.
Last but not least, we demonstrate the control of the rotational direction of exciton
polariton vortices by flipping the sign of the topological charge of trapped vortices.
Hereby, the vortices are maintained by a CW pump laser. This continuous pumping
renders it possible to use these trapped vortices as a means for long lasting information
storage in all optical information processing. Since the microcavity exciton polaritons
naturally decay, controlling the topological charges of vortices permanently maintained
by CW pumping might be a beneficial approach to store information all optically on
time scales several orders of magnitude longer than the polariton lifetimes. In this
concept, the traps could either be created all optically or manufactured by structuring
the sample.
In general our time-resolved OAM spectroscopy technique with its versatile operation
modes might be applied to any other material system or structures that emit light
with OAM. The OAM spectroscopy technique itself potentially could be improved in
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terms of reducing the overlap between adjacent OAM sorted modes with ∆l = 1 by
using a different optical transformation, which transforms the phase gradient of a light
beam by mapping spirals to parallel lines [80]. There are also many possibilities for
further research regarding the exciton polariton system. The theory predictions include
several interesting phenomena such as multistability of different vortex modes in the
same trapping potential [81], half vortices [82], vortex-vortex control in a system of
multiple vortices [83] and spiraling motion of vortices inside a trap much bigger than
the vortices [84]. Also, considering recent advances regarding optical processing of
light beams with OAM, such as OAM multiplication and division by arbitrary rational
factors [85], the investigation of non-linearly interacting exciton polariton vortices is an
exciting field for future research.
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Appendix A

Simulation of OAM Sorting

The OAM sorting process can be tracked by simulating the propagation of a light beam,
which passes through the OAM sorting phase elements and all other optical compo-
nents in the beam path. This simulation is implemented in Matlab. The source files of
all classes are given below.

OAMSorting.m

1 % Simulates the OAM Sort ing proce s s by beam propagat ion
2 % The parameters should be s e t to va lue s used in experiment
3

4 PixelNum=4001; % s e t an odd p i x e l number so that a c en t r a l p i x e l
r ep r e s en t i ng the o p t i c a l ax i s i s a v a i l a b l e

5

6 BeamWidth=1000∗10^(−6) ; % Gaussian beam with , un i t : m
7

8 m=1; % de f i n e the t o p o l o g i c a l charge
9 theta_d=0; % ro t a t i on ang le in deg f o r v o r t i c e s with non−i n t e g e r m

10

11 d=0.004; % s i z e o f the beam in the c o r r e c t o r plane in m
12 a=d/(2∗ pi ) ;
13 b=0.00677;% parameter f o r beam po s i t i o n in the c o r r e c t o r plane
14

15 dx=8∗10^(−6) ;% gr id r e s o l u t i o n in m ; mostly the SLM r e s o l u t i o n
16

17 PadgettTrafoLensFocus =0.1 ; % l en s f o cu s o f OAM Sort ing in m
18 CCDLensFocus=0.75; % l en s f o cus f o r imaging the output l i g h t beam
19

20 Lambda=773∗10^(−9) ; % uni t : m
21 k0=2∗pi /Lambda ;
22

23 % Def ine X and Y mesh g r i d s f o r phase element c a l c u l a t i o n :
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24 n_points=(PixelNum−1) /2 ;
25 Vx=(dx∗[−n_points : n_points ] ) ;
26 [XX,YY]=meshgrid (Vx,Vx) ;
27

28 % Calcu la te the phase e lements o f OAM so r t i n g and used l e n s e s :
29 PP=PadgettTransform (XX,YY, a , b , Lambda , PadgettTrafoLensFocus ) ;
30 PC=PadgettCorrector (XX,YY, a , b , Lambda , PadgettTrafoLensFocus ) ;
31 PL=CreateLensPhase (XX,YY, k0 , PadgettTrafoLensFocus ) ;
32 CCDLens=CreateLensPhase (XX,YY, k0 , CCDLensFocus ) ;
33

34 % Create the i n i t i a l beam with vortex phase
35 PropField=sq r t ( CreateGauss ianIntens i ty ( XX,YY,BeamWidth ) ) ;
36 PropField=PropField . ∗ exp (1 i .∗ CreateVortexPhase ( XX,YY,m, theta_d ) ) ;
37

38 % opt i ona l : I n i t i a l propagat ion d i s t anc e towards OAM Sort ing
39 %PropField=PropagateLightFie ld ( PropField , dx , 1 . 5 , k0 ) ;
40

41 % Subequently apply the phase e lements i n c l ud ing l e n s phases
42 % and propagate the l i g h t f i e l d from plane to plane :
43 PropField=PropField . ∗ exp (1 i .∗PP) ;
44 PropField=PropagateLightFie ld ( PropField , dx , PadgettTrafoLensFocus , k0 ) ;
45 PropField=PropField . ∗ exp (1 i .∗PL) ;
46 PropField=PropagateLightFie ld ( PropField , dx , PadgettTrafoLensFocus , k0 ) ;
47 PropField=PropField . ∗ exp (1 i .∗PC) ;
48 PropField=PropagateLightFie ld ( PropField , dx , CCDLensFocus , k0 ) ;
49 PropField=PropField . ∗ exp (1 i .∗CCDLens) ;
50 PropField=PropagateLightFie ld ( PropField , dx , CCDLensFocus , k0 ) ;
51

52 CCDImage=abs ( PropField ) . ^ 2 ; % Extract i n t e n s i t y image in CCD plane
53

54 f i g u r e (1 )
55 imagesc (CCDImage) ; % p lo t OAM so r t i n g spot
56 f i g u r e (2 )
57 p lo t (sum(CCDImage , 2 ) ) ; % p lo t p r o f i l e o f OAM spot
58 hold on
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CreatePadgettTransform.m

1 f unc t i on [ PC ] = CreatePadgettTransform ( XX, YY, a , b , Lambda , f )
2 % Create trans form pattern accord ing to Berkhout (2010) paper
3

4 PC=(2∗ pi ∗a /(Lambda∗ f ) ) ∗(YY.∗ atan2 (YY,XX)−XX.∗ l og ( ( (XX.^2+YY.^2)
. ^ ( 0 . 5 ) ) /b)+XX) ;

5 PC( isnan (PC) )=0; % ju s t f o r catch ing nan
6

7 end

CreatePadgettCorrector.m

1 f unc t i on [ PP ] = CreatePadgettCorrector ( XX, YY, a , b , Lambda , f )
2 % Create phase c o r r e c t i o n pattern accord ing to Berkhout (2010) paper
3

4 PP=−(2∗pi ∗a∗b/(Lambda∗ f ) ) ∗( exp(−XX./ a ) .∗ cos (YY./ a ) ) ;
5

6 end

CreateLensPhase.m

1 f unc t i on [ LensPhase ] = CreateLensPhase ( XX, YY, k0 , f )
2 % Creates a pa rabo l i c l e n s func t i on with a given f o c a l l ength
3

4 LensPhase=−(k0 /(2∗ f ) ) . ∗ (XX.^2 +YY.^2 ) ;
5 LensPhase=LensPhase−ones ( s i z e (XX) ) ∗min(min ( LensPhase ) ) ;
6

7 end

CreateGaussianIntensity.m

1 f unc t i on [ Gauss ianInt ] = CreateGauss ianIntens i ty ( XX, YY, Width )
2 % Creates a cente red Gaussian i n t e n s i t y map
3

4 Gauss ianInt=exp(−( s q r t (XX.^2 +YY.^2) ) . ^ 2 . / ( 2 ∗Width^2) ) ;
5

6 end
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Appendix A. Simulation of OAM Sorting

CreateVortexPhase.m

1 f unc t i on [ VortexPhase ] = CreateVortexPhase ( XX, YY, charge , ang )
2 %VortexPhase Create vortex phase pattern
3 % Topo log i ca l charge and ro t a t i on ang le can be adjusted .
4 % The ro t a t i on i s counte r c l o ckw i s e with p o s i t i v e va lue s .
5

6 ang=ang∗ pi /180 ; %Convert r o t a t i on ang le to radian
7 VortexPhase=charge ∗ ang le ( (XX∗ cos ( ang )−YY∗ s i n ( ang ) )−1 i ∗(XX∗ s i n ( ang )+

YY∗ cos ( ang ) ) ) ;
8 VortexPhase=mod(VortexPhase , 2∗ pi ) ;
9

10 end

PropagateLightField.m

1 f unc t i on [ OutputField ] = PropagateLightFie ld ( InputFie ld , dx , dz ,
k0 )

2 % Propagate the input l i g h t f i e l d by a given d i s t anc e dz
3 % Fie ld matrix should be quadrat i c
4

5 n_points=( s i z e ( InputFie ld , 1 ) −1) /2 ;
6

7 kMax=pi /(2∗dx ) ;
8 dk = kMax∗2 / n_points ;
9

10 Vk = (dk∗[−n_points : n_points ] ) ;
11 [Kx,Ky ] = meshgrid (Vk,Vk) ;
12

13 Kz=((k0^2)−(Kx.^2 +Ky.^2 ) ) . ^ ( 0 . 5 ) ;
14

15 FTField=i f f t s h i f t ( f f t 2 ( InputFie ld ) ) ; % 2D Four ie r t r a f o o f r e a l
space

16

17 FTField=FTField . ∗ exp (1 i .∗Kz.∗ dz ) ; % propagate in Four i e r space
18

19 OutputField=i f f t 2 ( f f t s h i f t ( FTField ) ) ; % Transform back to r e a l
space

20

21

22 end
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