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Zusammenfassung 
Spektroskopische Messungen sind ein unverzichtbares Werkzeug in der chemi-

schen Analyse, auch unter extremen Bedingungen wie zum Beispiel hohen hyd-

rostatischen Drücken können sie wertvolle Erkenntnisse liefern. Zur Bestätigung 

der gewonnenen Ergebnisse können theoretische Methoden eingesetzt werden, 

die Observablen in Lösung verlässlich wiedergeben können. Ein gängiges theore-

tisches Modell ist das Reference Interaction Site Model (RISM), welches in dieser 

Arbeit verwendet wurde.  

 Im Rahmen dieser Arbeit wurden die Spektroskopie-Arten Infrarotspekt-

roskopie (IR), Elektronenspinresonanzspektroskopie (ESR/EPR) und die Kern-

spinresonanzspektroskopie (NMR) theoretisch untersucht und mit experimen-

tellen Referenzdaten verglichen. Die Arbeit gliedert sich dabei in drei Abschnitte, 

die wie folgt aufgebaut sind. 

Im ersten Teil wurde für die IR-Spektroskopie eine bereits entwickelte 

Methode zur numerischen Berechnung von IR-Frequenzen mit embedded clus-

ter(EC)-RISM unter Gleichgewichtsbedingungen auf die nicht-Gleichgewichts-

thermodynamik erweitert. Als Modellsysteme wurden die druckabhängigen IR-

Frequenzverschiebungen von TMAO und dem Cyanid-Anion untersucht. Darüber 

hinaus wurde der Einfluss elektrostatischer Modelle und so genannter Lösemit-

telsuszeptibilitäten eingehend untersucht. Es wurde gezeigt, dass die Druckab-

hängigkeit am besten durch eine Mischung aus Nichtgleichgewichts- und Gleich-

gewichts-Solvatisierung beschrieben werden kann. 

Des Weiteren wurde hier EC-RISM zum ersten Mal für die Berechnung von 

EPR-Observablen bei Umgebungsdruck verwendet. Als Modellsystem wurde das 

starre Molekül 2,2,3,4,5,5,-hexamethylidaolidin-1-oxyl (HMI) verwendet, das 

eine sehr starke Abhängigkeit der Hyperfeinkopplungskonstante vom pH-Wert 

zeigt. Erste Versuche mit der geometrisch optimierten Struktur zeigten, dass EC-

RISM trotz großer Abweichung vom Experiment deutlich bessere Ergebnisse lie-

fert als eine Standard-Kontinuumsberechnung. Eine wesentliche Verbesserung in 

Richtung der experimentellen Werte, konnte dadurch erzielt werden, dass die Be-

rechnungen nicht mit einer einzelnen Geometrie durchgeführt wurden, sondern 

mit einer großen Anzahl von Snapshots, die aus einer ab initio-Moleküldynamiksi-

mulation (AIMD) stammen. Weitere Fortschritte konnten durch die Verwendung 

der domain-based pair natural orbital coupled-cluster theory (DLPNO-CCSD)-Me-

thode erzielt werden. 

Generell kann im Zusammenhang mit der theoretischen Beschreibung von 

Hochdruckeffekten auf Proteinen die kritische Frage gestellt werden, ob die Ver-

wendung von Kraftfeldern, die für Umgebungsbedingungen parametrisiert sind, 

für Hochdruckbedingungen geeignet ist. Um diese Frage zu beantworten, wurde 

die Druckabhängigkeit des Peptidrückgrats im dritten Teil untersucht und die 

kleinen Moleküle N-Methyl-Acetamid (NMA) und Ac-Gly/Ala-NHMe als Modell-

systeme verwendet. Das experimentelle Gleichgewicht zwischen cis- und trans-

NMA konnte sehr gut reproduziert werden. Auf der Grundlage dieser Ergebnisse 
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wurden die Populationen für die Hauptkonformere der Dipeptide bestimmt, die 

eine gute Übereinstimmung mit experimentellen Referenzdaten zeigen. Infolge 

der Druckerhöhung wurde nur eine geringfügige Änderung der Populationen be-

obachtet. Zur weiteren Überprüfung der Ergebnisse wurden druckabhängige 

NMR-Berechnungen durchgeführt. Der korrekte Drucktrend wurde für alle 

Amidkerne beobachtet; eine weitere Bestätigung, dass EC-RISM in der Lage ist, 

die Druckeffekte akkurat zu reproduzieren. Diese Ergebnisse konnten durch neu-

artige druckabhängige EC-RISM-Geometrieoptimierungen verbessert werden. 

Schließlich wurde zur Beantwortung der Ausgangsfrage die vollständige Rama-

chandran-Ebene mit verschiedenen EC-RISM- und Kraftfeldmethoden berechnet. 

Es wurde festgestellt, dass die Druckabhängigkeit nur gering ist und dass der 

durch die Kraftfelder verursachte Fehler deutlich größer ist als der Fehler, der 

entsteht, durch die Verwendung eines umgebungsdruckoptimierten Kraftfeldes 

bei Hochdruck. 

 Im Rahmen dieser Arbeit konnte gezeigt werden, dass EC-RISM eine ge-

eignete Methode der Wahl zur Berechnung von spektroskopischen Observablen 

in Lösung ist. Speziell wenn nicht Umgebungsbedingungen traktiert werden sol-

len, spielt EC-RISM seine Stärke aus, da es relativ leicht erweiterbar ist für z.B. 

Hochdruckumgebungen.  
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Abstract 
Spectroscopic measurements are an indispensable tool in chemical analysis; even 

under extreme conditions such as high hydrostatic pressures, they can provide 

valuable insights. Theoretical methods that can reliably reproduce observables 

in solution can be used to validate the obtained results. A common theoretical 

model is the Reference Interaction Site Model (RISM), which was used in this 

work.  

 Especially the spectroscopy types infrared spectroscopy (IR), electron 

spin resonance spectroscopy (ESR/EPR), and nuclear magnetic resonance spec-

troscopy (NMR) were theoretically investigated and compared with experi-

mental reference data. The work is divided into three sections as follows. 

In the first part, a previously developed method for calculating IR frequen-

cies with the embedded cluster(EC)-RISM under equilibrium conditions was ex-

tended to non-equilibrium thermodynamics for IR spectroscopy. The pressure-

dependent IR frequency shifts of TMAO and the cyanide anion were investigated 

as model systems. In addition, the influences of electrostatic models and so-called 

solvent susceptibilities were studied in detail. It was shown that the pressure de-

pendence is best described by a mixture of non-equilibrium and equilibrium solv-

ation. 

Furthermore, EC-RISM was used here for the first time to calculate EPR 

observables at ambient conditions. The rigid molecule 2,2,3,4,5,-hexamethyl-

idaolidine-1-oxyl (HMI) was used as a model system, which shows a very strong 

dependence of the hyperfine coupling constant on the pH. First, experiments with 

the geometrically optimized structure showed that EC-RISM gives significantly 

better results than a standard continuum calculation despite a large deviation 

from the experiment. A significant improvement in the direction of the experi-

mental values was achieved by using a large number of snapshots from an ab in-

itio molecular dynamics simulation (AIMD) instead of a single geometry. Further 

progress was made using the domain-based pair natural orbital coupled-cluster 

theory (DLPNO-CCSD) method. 

In general, in the context of the theoretical description of high-pressure 

effects on proteins, the critical question can be raised whether using force fields 

parameterized for ambient conditions is appropriate for high-pressure condi-

tions. To answer this question, the pressure dependence of the peptide backbone 

was investigated in the third part, and the small molecules N-methyl acetamide 

(NMA) and Ac-Gly/Ala-NHMe were used as model systems. The experimental 

equilibrium between cis- and trans-NMA could be reproduced very well. After 

this, populations were determined for the main conformers of the dipeptides, 

showing good agreement with experimental reference data. As a result of the 

pressure increase, only a marginal change in the populations was observed. Pres-

sure-dependent NMR calculations were performed to verify the results further. 

The correct pressure trend was observed for all amide nuclei, confirming that EC-

RISM can accurately reproduce the pressure effects. Novel pressure-dependent 
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EC-RISM geometry optimizations could improve these results. Finally, the full Ra-

machandran plane was calculated using different EC-RISM and force field meth-

ods to answer the initial question. It was found that the pressure dependence is 

only small and that the error caused by the force fields is significantly larger than 

the error caused by using an ambient pressure optimized force field at high pres-

sure. 

 In this work, it was shown that EC-RISM is a suitable method of choice for 

the calculation of spectroscopic observables in solution. Especially when non-am-

bient conditions are to be examined, EC-RISM shows its strength since it is rela-

tively easily extensible, e.g., high-pressure environments. 
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1 Introduction 
 

1.1 Overview and outline 

 
Despite its extreme conditions, both in terms of temperature and pressure, the 

deep sea represents one of the largest habitats on Earth.1 This result is surprising 

since proteins, in particular, are very sensitive to changes in temperature and 

pressure. For example, it can be observed that pressure has a particularly strong 

influence on the intermolecular interactions, the hydrophobic interactions, and 

the conformational states of proteins.2 The effect can be so strong that the dena-

turation sets in in the 1-4 kbar pressure range.3 The pressure-dependent unfold-

ing is caused by the fact that the partial molar volume of folded proteins is larger 

than that of denatured proteins. Under pressure, states with smaller partial molar 

volumes are thermodynamically favored.4 The differences in the partial molar 

volume can be explained by the non-ideal packing of the folded protein and the 

resulting voids, which can be closed by water molecules solvating the peptide 

chain, leading to the protein’s unfolding.5,6 The pressure-dependent unfolding is 

generally slow due to the unfavorable activation volume under high pressure.3 

Another example of the effect of high pressure on proteins is reversible inhibition 

of the aggregation amyloid A𝛽 up to a pressure of 180 MPa.7 

Important applications of high pressure can be found in industry, science, 

and engineering. Especially in the food industry, high pressure can be used as a 

preservation method and represents a gentler alternative in retaining texture, 

consistency, smell, and color compared to the commonly used high-temperature 

treatment.8,9  

Since experiments under high-pressure conditions are elaborate, difficult, 

and costly, theoretical models to evaluate pressure dependence are a desirable 

alternative to get more insights into the underlying mechanisms. A common 

method would be to utilize pressure-dependent molecular dynamics (MD) simu-

lations with explicit water molecules. In the past, MD simulations addressing this 

problem were utilized10–16; nevertheless, the total number of pressure-depend-

ent unfolding simulations lags behind the number of temperature-dependent 

simulations.17 However, all these simulations used force fields, which were all pa-

rameterized for ambient conditions, and consequently, the question arises if 

these force fields are reliable for extreme conditions like, e.g., high pressure. To 

address this problem, in 2016, Hölzl et al.18 showed that for a specific force field 

representing the small osmolyte trimethylamine N-oxide (TMAO), a pressure-de-

pendent reparameterization of the atomic point charges was necessary to repre-

sent the increasing dipole moment upon pressurization. In contrast, for the coun-

teracting molecule of TMAO, urea, the force field for ambient pressure showed 

the best results in representing pressure-dependent density fluctuations, 

whereas scaling the charges led to worse results.19  

Alternative approaches based on quantum chemical (QC) calculations use 
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either implicit solvation models, e.g., continuum models20, or integral equation 

theory-based methods. The so-called extreme pressure polarizable continuum 

model (PCM-XP) was developed to extend the widely used continuum models to 

the high-pressure regime.21–23 The idea behind this approach is based on one of 

the fundamental thermodynamic equations, which states that the partial deriva-

tive of the free energy with respect to the pressure is equal to the partial molar 

volume. In the PCM-formalism, the cavity is adapted to hold this thermodynamic 

relation. So far, these models have been used to make predictions of reaction 

equilibria and vibrational spectroscopic data in non-aqueous environments. 

An established model to represent aqueous solutions based on integral equa-

tion theory is the embedded cluster reference interaction site model (EC-RISM).24 

The idea behind the EC-RISM formalism is to calculate the solute's free energy in 

a solvent where the solute and the solvent mutually polarize each other. The sol-

vent perturbation due to the solute is encoded in the solute-solvent interaction 

potential. Additionally, a so-called solvent susceptibly 𝜒 is used to represent the 

solvent response. Normally, 𝜒 is precomputed, and it contains the pressure infor-

mation via the density and dielectric constant of the solvent at the corresponding 

pressure.18 Two ways to calculate 𝜒 are normally used; on the one hand, the in-

formation can be extracted from a pressure-dependent MD simulation or, on the 

other hand, from a 1D RISM calculation. The interaction potential consists of the 

Lennard-Jones interactions and the Coulomb potential. For the former, known 

force field parameters are used for both solute and solvent; in the case of the elec-

trostatic interactions, the solute partial charges are derived from QC calculations, 

and only the solvent charges are taken from a force field. In contrast to the con-

tinuum models, EC-RISM retains the granularity of the solvent and can represent 

the effect of H-bonds.  

For example, the EC-RISM model showed excellent results in predicting pKa 

values in the SAMPL6 challenge for ambient conditions.25 The first benchmark to 

evaluate the performance at high pressure was the study of the pressure-depend-

ent change of the dipole moment of TMAO compared with ab initio MD (AIMD) 

data.18 Another study, with the collaboration of the author, was the prediction of 

the pressure-dependent chemical NMR shifts. 26 In the first place, the shielding 

constants of the NMR-standard DSS were calculated and used as a reference for 

pressure-dependent NMR calculation of the peptide fragment NMA. In a recent 

publication27, a pressure-dependent correction of excess chemical potential by 

scaling the partial molar volume was introduced. By applying this correction to 

calculating the pressure-dependent ion product of water, remarkable agreement 

with experimental reference data could be obtained. Furthermore, new pressure-

dependent NMR calculations were performed on DSS, TMAO, and purine nucleo-

tides.27–29  

The upcoming section provides a few fundamentals about common force 

fields, the application of spectroscopy in solution, and a short history and over-

view of nitroxides. Theoretical descriptions of common solvent models are pre-

sented, where the man focus lies on the continuum and statistical solvent models. 
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Subsequently, a detailed description of the theory of IR, EPR, and NMR spectros-

copy is provided. In the methodology chapter, the underlying principles of some 

calculation methods are explained, and computational details are provided. 

The first topic of the results section of this thesis addresses the pressure-de-

pendent infrared frequency shifts of TMAO and the cyanide anion. Here, two dif-

ferent aspects are analyzed in detail; on the one hand, the influence of equilibrium 

and non-equilibrium solvation on the wavenumbers is investigated. On the other 

hand, the impact of different combinations of calculating the electrostatic inter-

action within EC-RISM and representing the solvent response with the solvent 

susceptibility is benchmarked.  

The second part of the results section is dedicated to the first calculations of 

EPR parameters with EC-RISM at ambient conditions. In the first instance, the 

performance of EC-RISM and conductor-like polarizable continuum model 

(CPCM) calculations in reproducing the isotropic hyperfine couplings are com-

pared on the minima geometries of the test system HMI. Snapshots from an AIMD 

simulation of HMI in water were provided for more sophisticated results. The 

trajectory was divided into two subsets, one where all water molecules were re-

moved and another where only the first two solvation shells around the N-O moi-

ety were retained. EC-RISM and CPCM DFT-based calculations were compared 

with a Quantum-mechanics/molecular mechanics (QM/MM) approach for the 

two subsets. DLPNO-CCSD calculations, in combination with EC-RISM, will be uti-

lized for the first time to improve the quality of the calculations further. The other 

parts of this section will deal with the calculation of the full W-band spectrum in 

solution at different pH values. In the last part, a short outlook of pressure-de-

pendent calculations will be given however experimental reference values are 

not available now.  

The last chapter of the results part aims to answer how pressure affects the 

relative occupancy of the stable peptide backbone model systems. Therefore, on 

the one hand, geometries are optimized at ambient conditions using the PCM 

solvation model and then subjected to pressure-dependent EC-RISM calculations. 

On the other hand, the novel EC-RISM-based geometry optimizations are used to 

see the influence of pressure on the geometries, minima populations, and NMR 

parameters. Initially, the pressure dependence of the cis/trans equilibrium of N-

methylacetamide (NMA) is investigated, and based on these results, similar anal-

yses are performed for the dipeptides N-acetyl-L-glycine-N’-methyl amide (Ac-

Gly-NHMe) and N-acetyl-L-alanine-N’-methyl amide (Ac-Ala-NHMe). Addition-

ally, the Ramachandran surfaces of Ac-Gly-NHMe are calculated with a wide 

range of different levels of theories and force fields, and the influence of pressure 

is discussed.  

 In the end, an overall summary of the results is provided, and an outlook 

is given 
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1.2 Force field parameters and typical protein backbone mod-

els 
 

Accurate force fields are the foundation for reliable MD simulations. Critical pa-

rameters within the simulations of the dynamics of proteins are the backbone 

torsion and the non-bonded parameters, which have an essential impact on the 

conformational ensemble of proteins. Famous examples of protein force fields are 

AMBER,30–37 CHARMM38–40, and GROMOS.41 For example, the AMBER force field 

has the following general form: 

𝑢total = ∑ 𝐾𝑏

bonds

(𝑏 − 𝑏eq)
2
+ ∑ 𝐾𝜃

angles

(𝜃 − 𝜃eq)
2

+ ∑
𝑉𝑛
2

dihedrals

[1 + cos(𝑛𝜙 − 𝛾)]

+ ∑[
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −

𝐵𝑖𝑗

𝑅𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

𝜀𝑅𝑖𝑗
]

𝑖<𝑗

 

(1) 

where 𝑢total is the total potential energy of the system, 𝐾𝑏 is the bond force 

constant, 𝑏 is the bond length and 𝑏eq is the equilibrium value of the bonds. The 

terms 𝐾𝜃, 𝜃 and 𝜃eq are the corresponding quantities for the bond angles. 𝑉𝑛 is the 

force constant for the torsion, n is periodicity, 𝜙 is the torsion angle, and 𝛾 is the 

phase angle. In the last term, the non-bonded interactions are described, whereby 

𝐴𝑖𝑗  and 𝐵𝑖𝑗 are the Lennard-Jones terms, respectively. 𝑞𝑖 and 𝑞𝑗  are the atomic 

charges, and 𝜀 is the dielectric constant of the medium and resembles the effect 

of the solvent if it is not explicitly represented. When the solvent is treated explic-

itly, the value is set to 1. In the case of protein force fields, the bond,  angle, and 

structure parameters are normally parameterized to represent experimentally 

measured vibrational frequencies reliably.33,34 The parameters for the van der 

Waals interactions are difficult to determine using pure quantum mechanical cal-

culations. A combination of an electron correlation method and a very large basis 

set is needed. Due to the time-consuming nature of such calculations, the param-

eters are often also fitted to experimental data such as evaporation enthalpies or 

experimental densities.30  

One of the main problems in the parameterization of force fields is the gener-

ation of partial charges. Since partial charges are not quantum mechanical ob-

servables, they cannot be extracted directly from the wave function. Instead, the 

molecular electrostatic potential (ESP) can be extracted from the wave function. 

The partial charges are then fitted to minimize the difference error between the 

wave function ESP and the ESP generated from the partial charges. Among the 

best-known algorithms for calculating the electrostatic potential are the Merz-

Singh-Kollmann42,43, the Chelp44, and the ChelpG45 algorithms. The algorithms dif-

fer significantly in the structure of the grid.  

Correcting the torsion angle parameters is usually the last step in the force 

field parameterization. This correction is intended, among other things, to 
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eliminate the weaknesses in treating the so-called 1-4 interactions, which occur 

due to the fixed partial charges.32  

 
Figure 1 Typical model systems to represent the peptide backbone. A: trans-NMA, B: cis-NMA, C: 

Ac-Gly-NHMe, D: Ac-Ala-NHMe. 

These three typical model systems used in the parameterization process of 

the protein backbone are NMA for the amide bond, respectively ω dihedral, (Ac-

Gly-NHMe), and (Ac-Ala-NHMe) for the 𝜓 and 𝜑 dihedrals. The ω dihedral of NMA 

occurs in two different conformations, cis and trans (see Figure 1), with a strong 

preference for the trans conformer of approximately 98 % occupation probability 

at room temperature.46–55 These results were confirmed with many experiments, 

e.g., NMR spectroscopy or vibrational spectroscopy.49,56,57 Nearly any kind of the-

oretical approach ranging from MD or Monte Carlo (MC) simulations to quantum-

chemical (QC) calculations and AIMD simulations in both vacuum58 and different 

solvents were applied to this problem. A long list of different models was utilized 

to represent the solvent, e.g., integral equation theory,52 explicit water molecules, 

or continuum models.  

The conformational landscapes of Ac-Gly-NHMe and Ac-Ala-NHMe are much 

more complex and were extensively studied theoretically and experimentally in 

the past.59–83 For Ac-Ala-NHMe, four main structures regions are found in aque-

ous solution, which are the PII (𝜑 75°, 𝜓 145°), C5 (𝜑 180°, 𝜓 180°), C7,eq and αR (𝜑 

60°, 𝜓 -40°) conformations. These four regions are the main basins for every 

amino acid, except proline and glycine. For Ac-Gly-NHMe additional basins are 

observed, due to the missing side chain, leading to a mirror symmetry in the Ra-

machandran plane.84 One of the most common experiments to determine the con-

formational preferences of the protein backbone is the measurement of the J(HN, 

Hα) coupling constants,63, which is directly correlated with the 𝜑 angle through 

the Karplus relation.85 However, the NMR experiments have a problem determin-

ing the conformational preferences due to the long time scale of the measure-

ments. Another disadvantage of the Karplus relation is that the parameterization 

is only valid for ambient pressure conditions. An efficient alternative is vibra-

tional spectroscopy, where the amide III mode is a characteristic beacon to detect 

conformational preferences of the backbone and is directly correlated to the di-

hedral angle 𝜓.86–88 In two recently published studies by Cormanich66,67, the con-

formational preferences of Ac-Gly-NHMe and Ac-Ala-NHMe were investigated us-

ing the PCM continuum model. This solvation model prefers the αR conformations 

as the main conformation in an aqueous solution. Grouleff and Jensen68 



Introduction 

10 

performed an intensive study about the conformational preferences of Ac-Gly-

NHMe and Ac-Ala-NHMe utilizing the OPLS force field combined with Tinker. The 

main conformer found for Ac-Gly-NHMe was the PII conformer, and for Ac-Ala-

NHMe, the C7,eq conformer. It can be seen that a wide range of different results 

was obtained. In this thesis, results obtained with the EC-RISM approach will be 

appended to the long list, which fits well with the theoretical and experimental 

results obtained in aqueous solutions.  

 

1.3 The power of spectroscopic methods to resolve solvent-

caused effects under HP conditions 
 

Spectroscopic methods are among the indispensable instruments in the analysis 

of chemical substances. The idea behind spectroscopy is to induce a time-varying 

electric field through electrical or magnetic interactions, e.g., in the form of radi-

ation, and thus to change the intra- or intermolecular interactions.89 The energy 

change is mainly described in the context of the dipole approximation by the tran-

sition dipole moment, whereby a dipole moment must be present in the molecule 

under consideration, at least temporarily. The interaction with radiation leads to 

absorption, emission, and scattering. The frequency of the irradiated energy is 

largely responsible for which energy levels are excited.89 For example, X-Ray ra-

diation can stimulate internal nuclear electron transitions. UV/VIS spectroscopy 

is ideal for inducing valence electron transitions. To treat vibrational transitions, 

there are possibilities to use either infrared radiation (IR spectroscopy) or induc-

ing Raman scattering with a laser pulse. With microwave radiation, it is possible 

to investigate rotational transitions. Radio frequencies can be used to identify 

magnetic resonance transitions, e.g., in NMR.90 This work focuses on IR spectros-

copy and magnetic resonance methods, which can also be extended to the high-

pressure regime. 

Infrared spectroscopy is a powerful tool to identify and investigate functional 

groups in different aggregation states. An infrared spectrometer samples the fre-

quency range from 400 cm-1 to 4000 cm-1. The most common way to record an IR 

spectrum today is using the so-called Fourier-transform infrared (FTIR) spec-

trometer.91 The huge advantage of this specific spectrometer is the possibility of 

detecting all frequencies simultaneously instead of setting every frequency one 

after another. Besides chemical substance analysis, where especially the so-called 

fingerprint area in the IR spectrum is a major pillar92, IR spectroscopy is used to 

identify secondary structural elements in proteins, especially the amide group of 

the protein backbone considered, where three characteristic amide bands occur. 

These are the amide-I band at 1700 cm-1, the amide-II band at 1500 cm-1, and the 

amide-III band at 1400 cm-1.93  

FTIR spectroscopy can also be used to reveal the molecular responses of, e.g., 

piezolytes in water under extreme biophysical conditions.94 Such extreme bio-

physical conditions are high hydrostatic pressures, temperature extremes, or 
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high salt concentrations. Furthermore, FTIR spectroscopy can also be used to 

measure the conformational dynamics between different equilibrium states. This 

is of particular interest when studying protein unfolding processes. Especially for 

the latter, high pressure is a useful tool, as it allows the selective controlling of 

the unfolding processes. 

NMR spectroscopy is undoubtedly one of the most important and powerful 

methods to analyze a compound's chemical structure. The idea behind NMR is to 

expose the molecules to a strong magnetic field, which leads to the orientation 

change of the nuclear spins, resulting in an energetic splitting (Zeeman splitting, 

more detailed background information follows in section 2.3).95 If electromag-

netic radiation is now irradiated onto the sample, a transition between the energy 

levels can be observed. An important property of NMR is that the energy differ-

ence between the levels depends strongly on the direct chemical environment. 

This effect is also known as shielding. Values for the shielding or, more specifi-

cally, for the chemical shift, since NMR measurements are always relative to a so-

called standard, can be assigned to individual chemical groups. In addition, the 

different nuclear spins within a molecule are coupled, which allows a spatial as-

signment of signals via the so-called J-couplings.95 

NMR spectroscopy was used to study the unfolding and changes in folding 

states of proteins due to pressurization.,6,96,97 For example, the group of Kalbitzer 

showed that for the RAS interaction with the GTP analog GppNHp, a second state 

is detectable, and the population of this state is increased due to pressurization.98 

The pressure-dependent changes of the 1H and 15N chemical shifts of the amide 

bond are strong beacons to detect pressure-caused conformational changes. The 
1H amide shifts strongly correlate with the H-O bond length of the NH-OC inter-

molecular interaction. On the other hand, the 15N shifts are very sensitive to 

changes in the backbone dihedral angles 𝜓 and 𝜑 and even in changes of side-

chain torsions 𝜒.99 These changes are responsible for the linear pressure-depend-

ent changes in the chemical shifts (linear term in the quadratic term to describe 

the pressure-dependence of chemical shifts).97  

While NMR focuses on the nuclear spin in molecules, the electron’s spin can 

also be perturbated by an applied magnetic field. Electron spin resonance spec-

troscopy (EPR) is associated with an unpaired electron, and the underlying prin-

ciples are similar to NMR spectroscopy. In contrast to pulsed methods in NMR, 

most of the EPR spectra are recorded by applying a continuous wave (CW) exper-

iment since it is not feasible to record a frequency spectrum most of the time. The 

frequency of the operating spectrometer is usually in the microwave range.100 

Spectroscopic parameters extracted from an EPR spectrum are the isotropic hy-

perfine coupling constants, the isotropic g-value, and the g- and A-tensors. 101 In 

the following section, more details regarding EPR-spectroscopy will be provided.  
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1.4 Nitroxide as EPR-spin labels  
 

The so-called Frémy’s salt, a long-living potassium nitrodisulfonate radical, was 

first synthesized in 1845100 and can be described as the ancestor of modern ni-

troxides. In 1961 and 1964, the foundations for modern nitroxides were laid by 

synthesizing the molecules di-tert-butyl nitroxide102 and 2,2,6,6-tetramethyl-1-

piperidinyloxyl.103 By introducing steric blocking groups to the NO moiety, stabil-

ity of the radicals is achieved. An effective spin-Hamiltonian can be used to fit the 

EPR spectrum of nitroxide radicals and to evaluate the influences of the microen-

vironment.100,101 A detailed description of the spin-Hamiltonian, especially for ni-

troxides, can be found in chapters 2.3 and 3.2. 

Nitroxide can be relatively easily incorporated into biomolecules, like mem-

branes or proteins. For example, fatty acids can be functionalized by attaching a 

nitroxide to the hydrocarbon chain. These systems can then be used as molecular 

probes to identify different membrane properties, such as hydrophobicity, oxy-

gen solubility, diffusion rates, membrane order and fluidity, and bilayer penetra-

tion of water molecules.104 Normally, one percent of the fatty acids in a membrane 

bilayer are modified. In this manner, avoiding spin-spin interactions is guaran-

teed. 104 

In the year 1965, for the first time, nitroxides were introduced as a spin-label 

in proteins.105 The groundbreaking work to make nitroxide the spin probe of 

choice was performed by Hubbell in the late 1980s and the 1990s.106–108 The sta-

bility and the small molecular weight made nitroxides attractive. Additionally, re-

active groups can be easily incorporated into nitroxides, which bind to, e.g., cys-

teines. The most commonly used spin-label example is the 1-oxyl-2,2,5,5-tetra-

methyl-Δ3-pyrroline-3-methyl (MTSL). With its highly reactive methanethiosul-

fonate group, binding to external cysteines can be achieved by nearly 100%. Since 

MTSL has five rotatable groups, it is very adaptable to most protein sites.100 EPR 

spectroscopy can then be used to study the topography of the polypeptide 

chain107,109 or electrostatic potentials at any surface site.110 By applying these 

analyses, secondary structures and their orientation in the protein can be identi-

fied108 Additionally, the distance between two spin-labels can be measured.111 

EPR can also be used to resolve conformational equilibria of spin-label proteins. 

For example, McCoy made pressure-dependent EPR measurements for a spin-la-

beled mutant of T4 lysozyme.112 Here, it was demonstrated that with EPR, the 

equilibrium between spectrally observable states can be measured and that the 

origin of the states can be either attributed to a conformational or a rotameric 

exchange. Additionally, by applying EPR under pressure, the relative partial mo-

lar volume and isothermal compressibility between conformational substates 

can be determined. 
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Figure 2 Structures of the nitroxides MTSL (A), HMI (B), and TEMPO (C). 

As mentioned above, an important feature of nitroxides is that the spectro-

scopic parameters are very sensitive to the microenvironment. Especially the iso-

tropic hyperfine coupling constant and the Azz component increase in polar envi-

ronments. On the other hand, the gxx component of the g-tensor decreases in 

more polar environments.113 The Azz and gxx components can be used to investi-

gate the local polarity and H-bond network. One nitroxide especially suitable for 

the microenvironment is the 2,2,3,4,5,5-hexamethylidaolidin-1-oxyl (HMI). This 

spin label is used to analyze surface potentials, local polarity, and pKa-values.114–

116 For example, a change of 2.5 MHz is observed for the transition from the low 

pH range to the high pH range (see chapter 4.2). 

Some points need to be considered to model EPR observables accurately from 

a theoretical point of view. On the one hand, a suitable statistical ensemble must 

be generated, whereby the solvation must be considered. On the other hand, high-

level QC calculations must be performed to get satisfying results compared to the 

experimental data. Fortunately, these two tasks can be separated, e.g., hybrid 

models like QM/MM can be used.117 For the ensemble generation, MD simulations 

could be utilized; however, these methods have the drawback that specific force 

fields need to be parameterized to accurately model the intra- and intermolecular 

interactions.118 A more general and elegant method but more time-consuming is 

the Car-Parrinello or AIMD simulation.119–121 After generating a sufficiently large 

ensemble of solvated structures, QC calculations can be utilized to determine the 

final parameters. For example, if the target parameter is the isotropic hyperfine 

coupling constant, theoretical methods and basis sets need to be utilized to rep-

resent the spin densities in the vicinity of the target nuclei accurately. Thus, the 

basis set needs to be flexible in the core region and should provide an accurate 

description of core polarization.122 The performance of Hartree-Fock methods to 

calculate the latter is poor.123,124 Perturbation theory (e.g., second-order MP2 the-

ory) cannot solve this problem101, and coupled-cluster approaches like CCSD are 

too time-consuming. Most of the publications focused, therefore, on different DFT 

methods.125–128 Recently, the so-called domain-based pair natural orbital cou-

pled-cluster theory (DLPNO-CCSD(T))129–131 was extended for open-shell sys-

tems and showed promising results in calculating EPR obervables.127,132,133 
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2 Theory 
 

2.1 Solvation models 
 

2.1.1 Explicit and implicit solvation models 
 

A majority of the relevant biochemical processes occur in solution. Thus, models 

are needed to describe the solvation process within theoretical calculations to 

represent the experimental observations reliably. The most obvious decision 

would be to represent the solvent explicitly, i.e., include each solvent atom-coor-

dinate in the calculation. However, this is problematic because the calculation 

time significantly increases, limiting oneself to a few solvent molecules, which can 

not resolve the whole picture. Due to this disadvantage, only these explicit sol-

vent molecules directly involved in intermolecular interactions, e.g., hydrogen 

bonds, are reasonable in theoretical calculations. The so-called implicit solvent 

models represent a significantly more cost-sensitive method in terms of compu-

ting time. In these models, the solvent is not atomically resolved; instead, it is 

characterized by its macroscopic properties. With this representation, it is unnec-

essary to calculate the interactions of the individual solvent molecules with each 

other, leading to massive time-saving. However, this results in the loss of any 

atomic information, leading to possible systematic errors.  

Among the best-known implicit solvent models are the so-called contin-

uum models; examples are PCM134 (polarizable continuum model), COSMO135,136 

(conductor-like screening model), and CPCM (conductor-like polarizable contin-

uum model).137 The idea behind continuum models is to represent the solvent as 

a dielectric continuum in which the solute particle is embedded within a cavity. 

The solvent is solely characterized by its dielectric constant. The basis of this for-

malism is the classical Poisson equation in the following form:138 

−𝛻⃗ × [𝜀(𝒓)𝛻⃗ 𝑉(𝒓)] = 4𝜋𝜌𝑀(𝒓), (2) 

where 𝜀(𝒓) is the position-dependent (r) permittivity and 𝜌𝑀(𝒓) is the solute (M) 

charge distribution. It is assumed that the solute charge distribution is embedded 

in a molecular cavity C, resulting in the following positional dependence for the 

permittivity: 

𝜀(𝒓) = {
1
𝜀

 
𝒓 ∈ 𝐶
𝒓 ∉ 𝐶

, (3) 

where 𝜀 is the dielectric constant of the pure solvent. 𝑉(𝒓) is the potential that 

describes the solute potential (𝑉𝑀) plus the contribution of the apparent charge 

distribution (𝜎(𝒔), on the surface s of the cavity Γ. The corresponding equations 

are: 

𝑉(𝒓) = 𝑉𝑀(𝒓) + 𝑉𝜎(𝒓), (4) 

and 
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𝑉𝜎(𝒓) = ∫
𝜎(𝒔)

|𝒓 − 𝒔|𝛤

d2𝑠. (5) 

A general problem of continuum models is to find a suitable description of the 

apparent surface charges (more details below). If an appropriate surface charge 

is determined, the electrostatic component of the solvation-free energy 𝐺el is 

given by: 

𝐺el =
1

2
∫𝜎(𝒔)
𝛤

[∫
𝜌𝑀(𝒓)

|𝒓 − 𝒔|𝑉

𝑑3𝑟] 𝑑2𝑠. (6) 

The different PCM formalisms differ mainly in the design of the surface charges. 

The historical first formulation is the DPCM, whereby the first letter D stands for 

dielectric and is added to PCM to distinguish it from the alternative successors.134 

A well-known alternative is the COSMO135,136 model mentioned above. In contrast 

to the original formulation, where the permittivity was described by the dielectric 

constant of the solvent, here, the continuum is treated like a conductor, and its 𝜀 

value is set to infinity. A minor modification of the COSMO model leads to the 

CPCM.137 A common alternative is the so-called integral equation formulation of 

PCM, the IEFPCM.139 In this thesis, either IEFPCM or CPCM was used. A significant 

advantage of continuum models is that they can be combined with various QC 

methods. 

In 2012 an extension of the PCM model for high-pressure environments was de-

veloped.21,22,140 Pressure is introduced to the XP-PCM through an increased Pauli 

repulsion between the molecule and the medium. Generally, the density and per-

mittivity increase upon pressurization. For modeling the effect of pressure on the 

solute, the boundary of the cavity is shrunk. The final pressure is obtained by dif-

ferentiating the free energy with respect to the cavity volume in the following 

manner: 

𝑝 = −(
𝜕𝐺𝑒−𝑟

𝜕𝑉𝑐
). (7) 

Here, 𝐺𝑒−𝑟 is the free energy of the whole environment system, and it is defined 

as: 

𝐺𝑒−𝑟 = ⟨𝛹|𝐻̂0 + 𝑉̂𝑒 + 𝑉̂𝑟|𝛹⟩ + 𝑉̂𝑛𝑛. (8) 

The reference state is defined as a hypothetical state composed of non-inter-

acting electrons and nuclei of the solute and by the unperturbed medium at the 

chosen thermodynamic conditions. So far, XP-PCM has been used to make predic-

tions of reaction equilibria and vibrational spectroscopic data in non-aqueous en-

vironments. 

 

2.1.2 Statistical-mechanical solvation models 
 

In addition to explicit and implicit solvent models, statistical-mechanical solvent 

models are popular for representing the solvent. In contrast to the implicit sol-

vent models, the statistical solvent models retain information about the structure 
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and granularity of the solvent, which allows, for example, to model the effect of 

hydrogen bonds. The integral equation theory is an important example in the cos-

mos of statistical solvent models. It aims to calculate the statistical distribution of 

a solvent around a solved particle. The pillar on which this theory rests is the so-

called classical density functional theory (cDFT). Analogous to quantum mechan-

ical DFT, where the Hohenberg-Kohn141 theorem states that a unique electron 

density can only describe the minimum energy of a system, the free energy 𝐹[𝜌] 

of a liquid is minimized by exactly one unique particle density. In the context of 

this work, a few central aspects should be summarized, and a rough overview of 

the subject should be given. Both Evans142 and Hansen143 have written detailed 

reviews of the cDFT in the past.  

One of the central quantities within the classical DFT is the grand potential 

𝛺[𝜌], which can be defined in the grand-canonical ensemble as  

𝛺[𝜌] = ∫𝑑𝒓𝜌(𝒓)𝑉ext(𝒓) + 𝐹[𝜌] − 𝜇 ∫𝑑𝒓𝜌(𝒓). 
(9) 

The grand potential is a functional of the particle density 𝜌(𝒓). 𝑉ext(𝒓) is an arbi-

trary external potential and 𝜇 is the chemical potential.  

Mermin extended the previously mentioned Hohenberg-Kohn theorem to 

an electron gas at finite temperature and showed that by applying the principle 

reductio ad absurdum, a specific electron density minimizes the grand poten-

tial.144 Transferred to cDFT, it follows that the equilibrium particle density mini-

mizes the grand potential. This fact can be shown by the functional derivation of 

the grand potential according to the particle density as 

𝛿𝛺[𝜌]

𝛿𝜌(𝒓)
|
𝜌0

= 0. (10) 

From equations (9) and (10) follows 

0 = 𝑉ext(𝒓) +
𝛿𝐹[𝜌]

𝛿𝜌
− 𝜇, 

(11) 

and with the definition of the intrinsic chemical potential 

𝜇in[𝜌; 𝒓] ≡
𝛿𝐹[𝜌]

𝛿𝜌(𝒓)
, 

(12) 

equation (11) becomes 

𝜇 = 𝑉ext(𝒓) + 𝜇in[𝜌0; 𝒓]. (13) 

An elementary part in describing a fluid system are the mutual interactions of the 

particles. The Free Energy functional depends on these interactions and can be 

divided into an ideal part 𝐹id[𝜌] and a functional 𝛷[𝜌], which represents the in-

teraction part of 𝐹[𝜌]: 

𝐹[𝜌] = 𝐹id[𝜌] + 𝛷[𝜌]. (14) 

The ideal part can be derived from the partition function of the ideal gas via: 

𝐹id[𝜌] = 𝛽−1 ∫𝑑𝒓𝜌(𝒓)(ln(𝜆3𝜌(𝒓)) − 1), 
(15) 

with 𝜆 = (ℎ2𝛽/2𝑚𝜋)1/2 where h is the Planck constant, 𝛽 is the inverse temper-

ature, and m is the mass. The intrinsic chemical potential can be written as: 
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𝛽𝜇in[𝜌; 𝒓] = 𝛽
𝛿𝐹id[𝜌]

𝛿𝜌(𝒓)
+ 𝛽

𝛿𝛷[𝜌]

𝛿𝜌(𝒓)
. 

(16) 

Where the last term will be defined as: 

𝛽
𝛿𝛷[𝜌]

𝛿𝜌(𝒓)
≡ 𝑐(1)[𝜌, 𝒓]. (17) 

𝑐(1)[𝜌, 𝒓] is the so-called one-particle direct correlation function and determines 

the equilibrium density. The one-particle direct-correlation functional is the first 

in a series of higher-order correlation functionals that can be obtained by further 

differentiation: 

𝑐(2)[𝜌; 𝒓1, 𝒓2] =
𝛿𝑐(1)[𝜌; 𝒓1]

𝛿𝜌(𝒓2)
=

𝛽𝛿2𝛷[𝜌]

𝛿𝜌(𝒓2)𝛿𝜌(𝒓1)
= 𝑐(2)[𝜌; 𝒓2, 𝒓1]. 

(18) 

And another differentiation leads to:  

𝑐(3)[𝜌; 𝒓1, 𝒓2, 𝒓3] =
𝛿𝑐(1)[𝜌; 𝒓1]

𝛿𝜌(𝒓2)𝛿𝜌(𝒓3)
= 𝑐(3)[𝜌; 𝒓2, 𝒓1, 𝒓3], 

(19) 

etc. Now the following definition is introduced: 

𝑢(𝒓) = 𝜇 − 𝑉ext(𝒓), (20) 

and the grand potential is written as follows: 

𝛺[𝜌] = −∫𝑑𝒓𝜌(𝒓)𝑢(𝒓) + 𝐹[𝜌], 
(21) 

and the following differentiation w.r.t. the intrinsic chemical potential yields: 

𝛿𝛺[𝜌]

𝛿𝑢(𝒓)
= −𝜌(𝒓) + ∫𝑑 𝒓′

𝛿𝜌(𝒓′)

𝛿𝑢(𝒓)
(

𝛿𝐹[𝜌]

𝛿𝜌(𝒓′)
− 𝑢(𝒓)). 

(22) 

If 𝜌(𝒓) = 𝜌0(𝒓) and with equations (12) and, it follows: 

𝛿𝛺[𝜌0]

𝛿𝑢(𝒓)
= −𝜌0(𝒓). 

(23) 

In this manner, the grand potential is also a generating functional for the equilib-

rium density with respect to the variable 𝑢(𝒓). It becomes interesting when 𝛺[𝜌0] 

is differentiated once again w.r.t. 𝑢(𝒓): 

𝐺(𝒓1, 𝒓2) ≡ 𝛽−1
𝛿𝜌0(𝒓1)

𝛿𝑢(𝒓2)
=

𝛿𝛺[𝜌0]

𝛿𝑢(𝒓1)𝛿𝑢(𝒓2)
. (24) 

Here 𝐺(𝒓1, 𝒓2) is the density fluctuation function or density-density correlation 

function. 𝐺(𝒓1, 𝒓2) is closely related to the pairwise distribution function 

𝜌(2)(𝒓1, 𝒓2) via: 

𝐺(𝒓1, 𝒓2) = 𝜌(2)(𝒓1, 𝒓2) + 𝜌0(𝒓1)𝛿(𝒓1 − 𝒓2) − 𝜌0(𝒓1)𝜌0(𝒓2), (25) 

with the relation: 

𝜌(2)(𝒓1, 𝒓2) = 𝜌0
2𝑔(𝑟), (26) 

the pairwise distribution function is directly correlated to the well-known radial 

distribution function 𝑔(𝑟). Another important property is the inverse of the den-

sity-density-correlation function since it is linked to the functional derivative of 

the intrinsic chemical potential via: 
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𝐺−1(𝒓1, 𝒓2) =
𝛽𝛿𝑢(𝒓1)

𝛿𝜌0(𝒓2)
, 

(27) 

with the general definition of the functional inverse: 

∫𝑑𝒓3 𝐺−1(𝒓1, 𝒓3)𝐺(𝒓3, 𝒓2) = 𝛿(𝒓1 − 𝒓2). 
(28) 

At this point, another relationship must be introduced in order to obtain the most 

fundamental equation of static solvent models, the Ornstein-Zernike equation. 

From equations (11), (16), (17), and (13), the following expression for the equi-

librium density can be extracted: 

𝜌0(𝒓) = 𝑧 exp[−𝛽𝑉ext(𝒓) + 𝑐[𝜌0; 𝒓]]. (29) 

Here z is the so-called fugacity, which is directly proportional to the thermal 

wavelength λ: 

𝑧 = 𝜆−3 exp[−𝛽𝜇]. (30) 

Equation (29) can now be re-written in the following form: 

  ( )( ) ( )(1) 3

1 0 1 1; lnc u   = −r r r . (31) 

If equation (31) is differentiated with respect to 𝜌0(𝒓2), it follows: 

𝑐(2)[𝜌0; 𝒓1, 𝒓2] = 𝑐(2)(𝒓1, 𝒓2) =
𝛿(𝒓1 − 𝒓2)

𝜌0(𝒓1)
−

𝛽𝛿𝑢(𝒓1)

𝛿𝜌0(𝒓2)
. (32) 

After several substitutions and transformations, one can now extract the relation-

ship that is called the Ornstein-Zernike (OZ)145 equation for uniform fluids with 

the density 𝜌0: 

𝑔(𝑟) − 1 = 𝑐2(𝑟) + 𝜌0 ∫𝑑𝒓′(𝑔(𝑟′)−1) 𝑐2(|𝒓 − 𝒓′|), (33) 

The discovery of the OZ equation was somewhat serendipitous.145 The key 

feature of the OZ equation is the connection of the direct correlation function with 

the total correlation or pair distribution function. The OZ equation cannot be 

solved in the above form alone but only iteratively with the help of another rela-

tion, which links the direct correlation function with the pair-distributions func-

tion. To obtain this relation, the functional 𝛷[𝜌] is expanded via a Taylor series 

w.r.t. the density of the homogenous reference system: 

𝛷[𝜌] = 𝛷[𝜌0] + ∫
𝛿𝛷[𝜌(𝒓)]

𝛿𝜌(𝒓)
|
𝜌=𝜌0

(𝜌(𝒓) − 𝜌0(𝒓))𝑑𝒓 

+
1

2
∬

𝛿𝛷2[𝜌(𝒓)]

𝛿𝜌(𝒓)2
|
𝜌=𝜌0

(𝜌(𝒓) − 𝜌0(𝒓))(𝜌(𝒓′) − 𝜌0(𝒓′))𝑑𝒓𝑑𝒓′

+ 𝑂(𝜌(𝒓)3). 

(34) 

With equations (17) and (18), the following relations can be obtained: 

∫
𝛿𝛷[𝜌(𝒓)]

𝛿𝜌(𝒓)
|
𝜌=𝜌0

(𝜌(𝒓) − 𝜌0(𝒓))𝑑𝒓 = ∫−𝛽−1𝑐0
(1)(𝒓)𝛥𝜌(𝒓)𝑑𝒓 

= ∫𝜇ex𝛥𝜌(𝒓)𝑑𝒓, 

(35) 
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and  

∬
𝛿𝛷2[𝜌(𝒓)]

𝛿𝜌(𝒓)2
|
𝜌=𝜌0

(𝜌(𝒓) − 𝜌0(𝒓))(𝜌(𝒓′) − 𝜌0(𝒓′))𝑑𝒓𝑑𝒓′ 

 = −𝛽 ∬𝑐0
(2)(𝒓, 𝒓′)𝛥𝜌(𝒓)𝛥𝜌(𝒓′)𝑑𝒓𝑑𝒓′. 

(36) 

For the excess part of the free energy functional, it follows: 

𝛷[𝜌] = 𝛷[𝜌0] − ∫𝜇ex𝛥𝜌(𝒓)𝑑𝒓 −
𝛽

2
∬𝑐0

(2)(𝒓, 𝒓′)𝛥𝜌(𝒓)𝛥𝜌(𝒓′)𝑑𝒓𝑑𝒓′. (37) 

This relation is correct up to the second-order if equation (37) is now combined 

with equation (17) and inserted into the grand-potential definition in equation 

(21), the expression for the density that minimizes the Helmholtz free energy is 

given by: 

𝜌(𝒓) = 𝜌0 exp (−𝛽𝑉ext(𝒓) + ∫𝜌(𝒓′)𝑐0
(2)(|𝒓 − 𝒓′|)) . (38) 

In the following step, the so-called Percus idea can be used. The assumption 

is that the external system's source is an extracted particle from the uniform ho-

mogeneous fluid. The position of this particle is fixed in space, and the external 

potential is then represented as the sum of pair potentials between the reference 

particle and all other particles. Based on these assumptions, all quantities in 

equation (38) become radially symmetric, and the density can be represented as 

a pair distribution function in the following way: 

𝑔(𝒓) = exp (−𝛽𝑢(𝒓) + 𝜌∫ 𝑐(|𝒓 − 𝒓′|)ℎ(𝒓′)𝑑𝒓′)

= exp(−𝛽𝑢(𝒓) + ℎ(𝒓) − 𝑐(𝒓)), 

(39) 

where 𝑢(𝒓) is the pair potential. The latter equation is also called the closure re-

lation. 

 

2.1.3 Reference interaction site model (RISM) 
 

The previous chapter derived the system of equations consisting of the OZ equa-

tion and the closure relation. In this form, the equations system only applies to 

simple spherical fluids. In the year 1972, Blum et al.146 extended the OZ equation 

to the molecular Ornstein-Zernike equation (MOZ) in the following form: 

ℎ(2)(𝒓,𝜴, 𝒓′, 𝜴′)

= 𝑐(2)(𝒓,𝜴, 𝒓′, 𝜴′)

+ 𝜌 ∬𝑐(2)(𝒓′′, 𝜴′′, 𝒓′, 𝜴′) ℎ(2)(𝒓′′, 𝜴′′, 𝒓′, 𝜴′)𝑑𝒓𝑑𝜴. 

(40) 

In the MOZ, not only the distances between two particles are included, but also 

the angle dependence is taken into account, which is represented by the well-

known Euler angles 𝜴. Equation (40) is the exact analytical expression for the 

MOZ but cannot be solved due to the high dimensionality of this equation. To 

avoid this problem, Chandler and Andersen published a series of papers147,148 in 

1972 in which the dimensionality of the MOZ was significantly reduced. For this 
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purpose, a so-called site-site MOZ was derived, in which the molecules are de-

scribed via spherical rigid interaction sites. To model the structure of the mole-

cule, an additional correlation function is introduced, the so-called intramolecu-

lar correlation function 𝜔 in the form:149 

𝜔𝛼𝛾(𝑟) =
𝛿(𝑟 − 𝑙𝛼𝛾)

4𝜋𝑙𝛼𝛾
2

. (41) 

Eq. (41) contains the interaction sites α and γ, and the intramolecular distance l 

between these two sites, δ is the Dirac delta function. The direct correlation func-

tion can be described by a summation of the pairwise site-site interactions and 

can be represented as follows: 

𝑐𝛼𝛾(𝑟) = ∑𝜌𝛼

𝑎

∑∑𝑐𝛼𝛾(|𝑟𝛼 − 𝑟𝛾|) .

𝛾𝛼

 
(42) 

For example, a water molecule could be taken as a reference here, where three 

sites represent the three atoms. However, a two-site model can also be developed 

due to symmetry considerations. In today’s literature, the model developed by 

Chandler and Anderson is called the one-dimensional reference interaction site 

model (1D RISM). The associated system of equations can be described in the fol-

lowing matrix form:150 

𝒉 = 𝝎 ∗ 𝒄 ∗ 𝝎 + 𝝆𝝎 ∗ 𝒄 ∗ 𝒉. (43) 

Equation (43) can be separated into three parts, a solvent-solvent (vv) part, a sol-

vent-solute part (uv), and a solute-solute part (uu). However, these equations 

cannot be solved simultaneously but must be solved one after another. The basis 

is the vv-calculation in the form: 

𝒉𝑣𝑣 = 𝝎𝑣 ∗ 𝒄𝑣𝑣 ∗ 𝝎𝑣 + 𝝎𝑣 ∗ 𝒄𝑣𝑣 ∗ 𝝆𝑣𝒉𝑣𝑣 . (44) 

However, equation (44), like the previously described OZ equation, cannot be 

solved alone, so the closure relationship is required here again. For a site-site 

model, the closure takes the following form: 

ℎ𝛼𝛾(𝑟) + 1 = exp (−𝛽𝑢𝛼𝛾(𝑟) + ℎ𝛼𝛾(𝑟) − 𝑐𝛼𝛾(𝑟) + 𝐵𝛼𝛾(𝑟)) , (45) 

where u is the pair potential and 𝐵𝛼𝛾 is the so-called bridge function. Unfortu-

nately, since the bridge function is unknown and ill-defined in 1D/3D RISM, it is 

usually set to zero, and the hypernetted chain closure (HNC) is obtained. Equa-

tions (44) and (45) can now be solved iteratively. Before the uv equation is solved, 

another practical quantity is introduced, the so-called solvent susceptibility 

𝝌 = 𝝆𝑣𝝎𝑣 + 𝝆𝑣𝒉𝑣𝑣𝝆𝑣 , (46) 

which reflects the density response of the solvent. Since in equation (46), the den-

sity of the pure solvent is considered, 𝝌 is the perfect way to integrate infor-

mation regarding pressure or temperature. For the solvent-solute (uv) equation, 

it follows: 
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𝒉𝑢𝑣 = 𝝎𝑢 ∗ 𝒄𝑢𝑣 ∗ (𝝆𝑣)−1𝝌. (47) 

A simple way to generate pressure-dependent 𝝌 is to use experimental data, spe-

cifically the solvent’s bulk density and dielectric constants (besides, one also 

needs the molecular geometry and accurate parameters for the pairwise poten-

tial, which will be discussed later). However, this method is limited to applying 

the HNC closure or other simple closures, which neglect the bridge function. To 

still use the contribution from the bridge function, it is possible to constrain the 

radial distribution function from the 1D RISM calculation to the values obtained 

from a radial distribution function calculated using a MD simulation. Roux and 

co-workers developed the following expression for the bridge-function:151  

𝐵𝛼𝛾(𝑟) = 𝑓(𝑟) [ln (𝑔𝛼𝛾
𝑀𝐷(𝑟)) + 𝛽𝑢𝛼𝛾(𝑟) − ℎ𝛼𝛾(𝑟) + 𝑐𝛼𝛾(𝑟)]. (48) 

where 𝑓(𝑟) is a cubic switching function, which varies between 1 and 0. The ap-

plication of the switching function is necessary because the MD simulations are 

performed in a simulation box of finite size. Beyond the range of the simulation 

box, the correlation functions are extrapolated using the known HNC closure.  

A considerable advantage of the RISM methodology is the possibility of 

getting a closed form for the excess chemical potential. Within the HNC approxi-

mation, the corresponding expression for the excess chemical potential has the 

following form:152,153 

𝛥𝜇ex = −
𝜌

𝛽
∑∫𝑑

𝛼,𝛾

𝒓 (
1

2
ℎ𝛼𝛾

2 − 𝑐𝛼𝛾 +
1

2
ℎ𝛼𝛾𝑐𝛼𝛾). (49) 

A disadvantage of the RISM formalism in this form is that the RISM calculations 

are performed for rigid geometries at a time, and every small change in geometry 

results in a new iterative cycle. To elegantly circumvent this problem, Schmidt 

and Kast154 developed the following formalism, based on previous works by Sato 

et al.155 The premise was that a slight change in geometry has only a negligible 

influence on the direct correlation function 𝑐𝛼𝛾. Consequently, it is possible to cal-

culate the difference in excess chemical potentials between two geometries 𝜞and 

𝜞´ as follows: 

𝛥𝜇(𝜞´) − 𝛥𝜇(𝜞) ≈ 

−
1

2(2𝜋)3𝛽
∑ ∫𝑑𝒌𝑐̂𝛼,𝛾

𝛼,𝛼′,𝛾,𝛾′

𝑐̂𝛼′,𝛾′𝜒𝛾𝛾′[𝜔̂𝛼𝛼′(𝜞´) − 𝜔̂𝛼𝛼′(𝜞)], 

(50) 

where the carets denote Fourier transforms of the corresponding correlation 

functions.  

During the 1990s, Beglov and Roux156, and Kovalenko and Hirata157, de-

veloped the three-dimensional extension of RISM formalism, the three-dimen-

sional reference interaction site model (3D RISM). The resulting 3D RISM equa-

tion has the following form: 

ℎ𝛾(𝒓) = ∑(𝜌𝛾)
−1

∫𝑐𝛾′(𝒓 − 𝒓′)𝜒𝛾𝛾′(|𝒓′|)

𝛾′

𝑑𝒓′, (51) 

where the quantity 𝜒𝛾𝛾′(|𝒓′|) is a precomputed solvent susceptibility function, 
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which can be calculated via eq.(46). The 3D RISM equation calculates the sol-

vent’s anisotropic total correlation function under the influence of an infinitely 

diluted solute. The corresponding 3D HNC closure is given by: 

ℎ𝛾(𝒓) = exp (−𝛽𝑢𝛾(𝒓) + ℎ𝛾(𝒓) − 𝑐𝛾(𝒓)) − 1. (52) 

As a result of the frequent numerical instability of the HNC-closure,158 Kast and 

Kloss developed a partial series expansion of the HNC closure, the so-called PSE-

n closures,159 
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(53) 

the PSE-1 closure is also known as the Kovalenko-Hirata-closure (KH).160 In equa-

tion (53), u describes the interaction component between the solute and the solv-

ate site 𝛾. The corresponding potential function has the following form: 

𝑢𝛾(𝒓) = ∑(
1

4𝜋𝜀0

𝑞 𝑞𝛼 𝛾

|𝒓 − 𝑹𝛼|
)

𝛼

+ 4𝜀𝛼𝛾 (
𝜎𝛼𝛾

12

|𝒓 − 𝑹𝛼|12
−

𝜎𝛼𝛾
6

|𝒓 − 𝑹𝛼|6
) (54) 

The first term describes the electrostatic Coulomb interactions, and the second 

describes the dispersive Lennard-Jones interactions between the solute sites α 

and the solvent site γ. In the latter, the mixed Lennard-Jones parameters 𝜎 and 𝜀 

occur, where 𝜎 describes the contact distance between two atoms and 𝜀 is a meas-

ure of the depth of the applied potential (in most cases, the Lorentz-Berthelot161 

mixing rules are applied). Usually, these parameters are taken from known force 

fields like the GAFF162,163 force field, as was done in this thesis. An alternative op-

tion is to use 3D RISM to perform a self-consistent optimization of the parameters 

to represent thermodynamic observables correctly. During the evaluation of the 

electrostatic interactions, the same truncation errors occur that can be observed 

during the MD simulation in a finite box. To avoid truncation errors, the idea of 

Ewald summation is used, where the electrostatic interactions are divided into 

two parts,  

𝑢𝛾
elec(𝒓) = 𝑢𝛾

elec,short(𝒓) + 𝑢𝛾
elec,long(𝒓), (55) 

a short-range part 

𝑢𝛾
elec,short(𝒓) = ∑

1

4𝜋𝜀0

𝑞𝛼𝑞𝛾

|𝒓 − 𝑹𝛼|
𝛼

erfc(𝜅|𝒓 − 𝑹𝛼|) (56) 

and a long-range part 

𝑢𝛾
elec,long(𝒓) = ∑

1

4𝜋𝜀0

𝑞𝛼𝑞𝛾

|𝒓 − 𝑹𝛼|
𝛼

erf(𝜅|𝒓 − 𝑹𝛼|). (57) 

After a Fourier transformation, the latter term can be calculated elegantly in the 

reciprocal space, where it becomes short-range using a proper smearing factor 𝜅. 

As in the one-dimensional case, the excess chemical potential can also be 
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calculated with the help of 3D RISM. However, this depends on the selected clo-

sure; for the HNC-closure, the following equation follows: 

𝜇HNC
ex =

1

𝛽
∑𝜌𝛾 ∫(

1

2
ℎ𝛾

2(𝒓) − 𝑐𝛾(𝒓) −
1

2
ℎ𝛾(𝒓)𝑐𝛾(𝒓))

𝛾

𝑑𝒓. (58) 

And for the PSE-closures, the following expression is used: 

𝜇PSE
ex = 𝜇HNC

ex −
1

𝛽
∑𝜌𝛾 ∫

𝛩 (ℎ𝛾(𝒓)) (ℎ𝛾(𝒓) − 𝛽𝑢𝛾(𝒓) − 𝑐𝛾(𝒓))
𝑘+1

(𝑘 + 1)!
𝛾

𝑑𝒓. 
(59) 

 

2.1.4 The fusion between quantum chemistry and RISM –EC-

RISM, RISM-SCF, 3D RISM SCF 
 

In 1D RISM and 3D RISM, the pair potential appears, determining the interactions 

between solute and solvent or solvent and solvent. While the Lennard-Jones pa-

rameters mainly originate from known force fields, for the electrostatic interac-

tions, the partial charges or electrostatic potentials can be calculated by QC cal-

culations or polarizable force fields, respectively.  

 Ten-No et al. made the first attempts to couple the RISM theory with a QC 

description of the solute in the early 1990s.155,164,165 They developed the so-called 

RISM-SCF procedure, where the idea is that the solute partial charges obtained 

from an SCF calculation are plugged into a 1D RISM calculation to obtain a solvent 

charge distribution around the solute. This solvent charge distribution is then 

added to the Fock-Operator in the SCF calculation to represent the effect of sol-

vent polarization.164 A combination of 3D RISM and Kohn-Sham DFT was devel-

oped by Kovalenko and Hirata166,167, which was later implemented into the Am-

sterdam density functional package (ADF)168, whereby analytical first derivatives 

were developed.169,170 Alternative formulations of the 3D RISM-SCF were de-

signed by Minezwa171 and Aono172. In contrast to the previous RISM-SCF versions, 

where the solute partial charges were used for solvent polarization, the exact QC-

derived electrostatic potential was applied in these implementations. In 2020, 

Reimann and Kaupp added to the ADF implementation of 3D RISM-SCF the exact 

electrostatic potential to polarize the solvent and developed numerical second 

derivatives.173 

In 2008 Heil, Kloss and Kast24 developed a combination of the 3D RISM 

solvent model with QC calculations of the partial charges of the solute, the so-

called embedded cluster reference interaction site model (EC-RISM). In 2011 an 

alternative variant was presented, in which the 3D RISM model was coupled with 

the AMOEBA polarizable force field.174 Another implementation of EC-RISM, 

which is limited to point charge solute-solvent interactions only, was developed 

by Ganyecz and Kállay in 2022.175 
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Figure 3 Schematic representation of one EC-RISM cycle. 24 

The idea behind EC-RISM is to calculate the mutual polarization between so-

lute and solvent. On the one hand, a polarized wave function of the solute can be 

obtained, and on the other hand, the Gibbs free energy 𝐺sol can be calculated via : 

𝐺sol = 𝐸sol + 𝜇ex (60) 

where 𝐸solis the intramolecular energy of the solute, which can be taken from a 

QC-calculation and 𝜇exis the excess chemical potential, which is calculated via eqs. 

(58) and (59). In this formulation, contributions from the so-called thermal cor-

rections are neglected.  

The corresponding scheme of an EC-RISM cycle is depicted in Figure 3. Be-

fore the EC-RISM cycle starts, a suitable solute geometry must be first calculated, 

usually using a PCM or vacuum geometry optimization. Furthermore, an appro-

priate force field for the Lennard-Jones parameters must be selected. The starting 

point is a vacuum QC calculation from which a QC electrostatic potential or the 

corresponding partial charges are obtained. The electrostatic potential is used in 

the subsequent 3D RISM calculation to polarize the solvent. At this point, the sol-

vent susceptibility is needed from a pre-computed 1D RISM calculation. From this 

calculation, a polarized solvent environment is obtained, which is then embedded 

in the QC calculation as background point charges. To calculate these point 

charges, the charge density 𝜌𝑞 is obtained by: 

𝜌𝑞(𝒓) = ∑𝑞𝛾

𝛾

𝜌𝛾𝑔𝛾(𝒓) (61) 

where 𝑞𝛾 is the partial charge of the interaction solvent site γ, usually taken from 

a known force field. The charge density can then be discretized on a grid, resulting 

in the background charges, 

𝑞(𝒓𝑖) = 𝜌𝑞(𝒓𝑖)𝛥𝑉 (62) 

whereby 𝛥𝑉is the volume of one grid cell. The corresponding Hamilton operator 

under the influence of the background charges can be written in the following 

form: 

𝐻̂tot = 𝐻̂ne + 𝐻̂ee + 𝐻̂nn + 𝐻̂nq + 𝐻̂eq + 𝐻̂qq, (63) 

where 𝐻̂tot is the total Hamiltonian, the terms on r.h.s. describe the interactions 

between the nuclei (n), the electrons (e), and the point charges q. Note that the 
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target value is not the total energy of the solvent-solute system, but only the so-

lute's intramolecular energy under the solvent's influence is required. To calcu-

late these intramolecular energies, there are two variants; in the first one, the to-

tal wave function of the system is taken, and only the intramolecular operators 

are applied to it in the following form: 

𝐸sol = ⟨𝛹tot|𝐻̂ne + 𝐻̂ee + 𝐻̂nn|𝛹tot⟩. (64) 

This is usually the most elegant way to calculate the intramolecular energy of the 

solute; however, some QC codes do not support these zero SCF-cycle procedures. 

The alternative variant is to subtract the remaining contribution from the total 

energy. Normally the term 𝐻̂qq is suppressed during the calculations. The remain-

ing two terms describe the electrostatic interaction of the solute with the back-

ground point charges. To calculate this contribution, the electrostatic potential 

from the QC calculation is multiplied with the final charge density and integrated 

over the whole box cell via: 

𝐸𝑞 = ∫𝜌𝑞(𝒓)𝜑(𝒓)𝑑𝒓. (65) 

After every step of the cycle, the energy residue between the actual and last steps 

is calculated, and if the residual value falls below a specific limit, the cycle is con-

sidered converged. From the converged wave function, the energy of the solute 

can be obtained and a variety of spectroscopic observables, for example, chemical 

shielding constant or the isotropic hyperfine coupling constant, even under high 

hydrostatic pressures. 

If the exact quantum mechanical electrostatic potential 𝜑(𝒓) is used to cal-

culate the electrostatic interactions for the corresponding interaction energy 

function 𝑈
elec,𝜑

 at location r follows: 

𝑢
elec,𝜑(𝒓) = ∑𝜑(𝒓)

𝛾

𝑞𝛾. (66) 

The full electrostatic potential is then built using a renormalization ansatz (de-

rived by Hoffgaard, Heil, and Kast)174 via: 

𝑢𝛾
elec(𝒓) = 𝑢𝛾

q,elec,short
+ Δ𝑢𝛾

𝜑,elec(𝒓) + 𝑢𝛾
q,elec,long(𝒓), (67) 

whereas 𝛥𝑢𝛾
𝜑,elec(𝒓) is the difference between the exact electrostatic potential and 

the point charge representation at the corresponding grid point. 𝑢𝛾
q,elec,short  is the 

point charge-based short-range potential, which is calculated according to the 

Ewald sum scheme in real space. 𝑢𝛾
q,elec,long

 is the long-range potential, which is 

calculated in reciprocal space. Divergence problems can occur if the difference 

𝛥𝑢𝛾
𝜑,elec(𝒓) does not disappear at the edges of the box. In 2018, P. Kibies and S. 

Kast176 developed a smooth switching approach in which the QC electrostatic po-

tential describes the interactions in the vicinity of the solute, and the potential is 

switched to the point charge potential in the vicinity of the box edges. The result-

ing cubic switching function has the following form: 
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, 

(68) 

with the parameters: 

𝑠0 = (3𝑟min𝑟max
2 − 𝑟max

3 )(𝑟min − 𝑟max)
3
, (69) 

𝑠1 = −6𝑟min𝑟max(𝑟min − 𝑟max)
3

, (70) 

𝑠2 = 3(𝑟min + 𝑟max)(𝑟min − 𝑟max)
3
, (71) 

and 

𝑠3 = −2(𝑟max − 𝑟𝑚𝑖𝑛 )
3
. (72) 

The following term corrects the error in the excess chemical potential caused by 

manipulating the electrostatic potential: 

Δ𝜇𝑒𝑥 = ∫𝑔(𝒓)𝜌𝛾
𝑉

𝛥𝑢𝛾
𝜑,elec

= ∫𝑔(𝒓)𝜌𝛾
𝑉

(1 − 𝑠(𝑟max − 𝑟min)(𝑈𝛾
𝜑,elec

− 𝑈𝛾
𝑞,elec)). 

(73) 

EC-RISM was mainly used to calculate energy differences in the early years, 

e.g., tautomer equilibria or -ΔpKa values. However, when absolute energies were 

tried to be calculated, there were significant errors in calculating the excess 

chemical potential. It was observed that this error is directly correlated to the 

solute-sized cavity in the solvent and, therefore, correlated to the partial molar 

volume. For correction of this error, different empirical corrections were devel-

oped. For example, Palmer established the so-called universal correction177,178, 

whereby Sergiievskyi developed the pressure correction of solvation free energy, 

called PC/PC+ correction.179 Based on this preliminary work, Tielker180 and Tom-

azic181 developed empirical corrections, which correct the excess chemical poten-

tial to represent experimental absolute hydration-free energies. The correspond-

ing equation for the corrected excess chemical potential is: 

𝜇ex,corr = 𝜇𝑒𝑥 + 𝑐𝑉𝑚
𝑉𝑚 + 𝑐𝑞𝑞, (74) 

where 𝜇ex,corris the corrected excess chemical potential, 𝑉𝑚 is the partial molar 

volume (PMV), 𝑐𝑉𝑚
 is the empirical parameter, which corrects the PMV, q is the 

net charge of the molecule of interest and 𝑐𝑞 is the empirical parameter that cor-

rects the net charge. In 2018, Tielker developed an extension of the PMV correc-

tion for high pressures to calculate accurate excess chemical potentials even un-

der the influence of high pressure.27 The major problem was to find experimental 

data where hydration energies were measured under high pressure. As an alter-

native, pressure-dependent thermodynamic integrations (TI) were performed 

instead, and the reference value at high pressure was extrapolated from the rela-

tive pressure difference between the pressure-dependent Tis and the ambient 

condition value for the correct EC-RISM solvation free energy. The expression for 

the reference solvation free energy (using Ben-Naim reference states) 𝛥solv𝐺ref
0  is: 
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𝛥solv𝐺ref
0 (𝑝) = Δsolv𝐺TI

0 (𝑝) + Δsolv𝐺EC-RISM
0 (1bar) − Δsolv𝐺TI

0 (1bar), (75) 

whereby Δsolv𝐺TI
0 (𝑝) is the pressure-dependent solvation free energy from the TI, 

Δsolv𝐺EC-RISM
0 (1bar) is the PMV-corrected EC-RISM-based solvation free energy. 

The reference data was calculated for a small subset of the MNSOL (details can be 

found in Ref27). The expression for the pressure-dependent PMV-corrected ex-

cess chemical potential is: 

𝜇ex,corr,HP = 𝜇ex,corr + 𝑐HP(𝑝 − 1bar)𝑉𝑚(𝑝), (76) 

with 𝑐HP , which is the additional pressure-dependent correction parameter. The 

correction parameter 𝑐HP equals -1.0108 10-5 kcal mol-1 Å-3 bar-1, for the level of 

theory MP2/6-311+G(d,p)/EC-RISM.  

A limitation of the EC-RISM calculations is the point that the calculations 

are performed on optimized geometries based on continuum solvation. In the 

publication of Hölzl, pressure-dependent geometry optimizations for TMAO were 

performed.18 A disadvantage of this procedure is at an external QC program was 

used to calculate the gradient of the solute electronic energy. Recently a direct 

implementation of EC-RISM geometry optimizations within the QC program 

ORCA182 was realized by P. Kibies and M. A. Garcia-Rates. Here, the gradient of the 

free energy is defined as: 
𝜕𝐺

𝜕𝑹𝛼
=

𝜕𝐸sol

𝜕𝑹𝛼
+

𝜕𝜇ex

𝜕𝑹𝛼
. (77) 

The gradient consists of two parts; the first one is the derivative of the intramo-

lecular energy w.r.t. the coordinates of the solute, and the second one is the gra-

dient of the excess chemical potential. The former is directly calculated within 

ORCA, whereas the latter is calculated within 3D RISM in the following manner:169 

𝜕𝜇ex

𝜕𝑹𝛼
= ∑𝜌𝛾 ∫𝑑

𝛾

𝒓𝑔𝛾(𝒓) (
𝜕𝑢𝛾

LJ

𝜕𝑹𝛼
+

𝑞𝛾𝜕𝜙(𝒓,𝑹𝛼)

𝜕𝑹𝛼
). (78) 

 

 

2.2 IR Spectroscopy  
 

2.2.1 Foundations 
 

As mentioned in the introduction, vibrational spectroscopy deals with transitions 

between vibrational states. The vibrations can be described both in a classical and 

quantum mechanical way. An outstanding overview and a detailed derivation of 

the mathematical fundamentals of vibration spectroscopy can be found in the 

book written by Wilson, Decius, and Cross183, and the following chapter will 

mainly be based on this book. Here, the author wants to present only a tiny part 

of the mathematics to better understand the methods used later in this work. The 

first hurdle is to describe the vibrations accurately and choose a suitable coordi-

nate system. It was shown that the best coordinate system is based on three 
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cartesian center of mass coordinates for the translation, the three Eulerian angles 

of a rotating system, and the cartesian coordinates of the molecule atoms with 

respect to the rotating system. Since there are only 3N possible degrees of free-

dom for a molecule, there are six too many coordinates in the aforementioned 

list. 

Consequently, the six coordinates do not have to be independent of each 

other. To define the rotating coordinate system for nonlinear molecules, only six 

conditions have to be defined. The first three conditions place the origin of the 

rotating system in the center of mass so that the rotating system moves together 

with the molecule. The second three conditions bind the coordinate system and 

the molecule together so that they both rotate together. 

With the choice of this coordinate system, it is now possible to accurately de-

scribe vibration transitions. The kinetic energy T of the system can be described 

by: 

𝑇 =
1

2
∑ 𝑚𝛼

𝑁

𝛼=1

[(
𝑑𝛥𝑥𝛼

𝑑𝑡
)
2

+ (
𝑑𝛥𝑦𝛼

𝑑𝑡
)
2

+ (
𝑑𝛥𝑧𝛼

𝑑𝑡
)
2

], 
(79) 

where 𝑚𝛼 is the mass of the ath atom and dt the time derivative of the displace-

ment coordinate: 

𝛥𝑥𝛼 = 𝑥𝛼 − 𝛼𝛼 , (80) 

here 𝑥𝛼  the coordinate of the ath atom in the moving system is and 𝛼𝛼 is the equi-

librium position. At this point, the definition of mass-weighted coordinates is in-

troduced, the advantage of which will be shown later in this chapter. The mass-

weighted displacement coordinates qi are defined as: 

𝑞1 = √𝑚1𝛥𝑥1 𝑞2 = √𝑚1𝛥𝑦1 𝑞3 = √𝑚1𝛥𝑧1 𝑞4 = √𝑚2𝛥𝑥2. . .. (81) 

Based on this definition, the kinetic energy can now be written in the following 

compact representation: 

𝑇 =
1

2
∑𝑞̇𝑖

2

3𝑁

𝑖=1

, 
(82) 

with 𝑞̇ as the time derivative of the mass-weighted displacement coordinates. The 

potential energy function is dependent on the displacements. If the displace-

ments are relatively small, a Taylor series expansion in the displacement coordi-

nate q can be used to describe the potential energy via:  

𝑉 =
1

2
𝑉0 +

1

2
∑(

𝜕𝑉

𝜕𝑞𝑖
)
0

3𝑁

𝑖=1

𝑞𝑖 + ∑(
𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

3𝑁

𝑖=1

𝑞𝑖𝑞𝑗 + etc.. 
(83) 

Since the position of the energy zero-point can be chosen freely, 𝑉0 can be elimi-

nated under the assumption that 𝑉0 = 0. All q’s should be zero in the equilibrium, 

and the molecule’s energy should be at a minimum. The latter results in the fol-

lowing relations: 
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(
𝜕𝑉

𝜕𝑞𝑖
)
0

= 𝑓𝑖 = 0 and (
𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

= 𝑓𝑖𝑗 , (84) 

where 𝑓𝑖𝑗  are constants, in which the mixed partial derivatives of the potential 

energy with respect to the displacement coordinates are encoded. Higher-order 

terms will be neglected (this is reasonable as long as the vibration amplitude is 

sufficiently small). Since the kinetic energy depends only on the velocities of the 

atoms and the potential energy of the molecule only on the atomic position, New-

ton’s equation of motion can be written as follows in the context of Lagrange for-

malism: 

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑗
+

𝜕𝑉

𝜕𝑞𝑗
= 0 𝑗 = 1,2, . . . ,3𝑁. (85) 

If equations (79) and (83) are substituted in equation (85), the following relation 

is obtained: 

𝑞̈𝑗 + ∑𝑓𝑖𝑗𝑞𝑖 = 0, 𝑗 = 1,2, . . . . ,3𝑁.

3𝑁

𝑖=1

 
(86) 

A possible solution to this differential equation system is: 

𝑞𝑖 = 𝐴𝑖 𝑐𝑜𝑠(𝜆
1/2𝑡 + 𝜀), (87) 

where 𝐴𝑖 , 𝜆 and 𝜀 are constants, which need to be appropriately chosen. Inserting 

the latter relation leads to the following: 

∑(𝑓𝑖𝑗 − 𝜆𝛿𝑖𝑗)𝐴𝑖 = 0 𝑗 = 1,2, . . . . ,3𝑁,

3𝑁

𝑖=1

 
(88) 

whereby 𝛿𝑖𝑗 is the well-known Kronecker delta symbol. Equation (88) consists of 

a composition of homogenous linear algebraic equations in the 3N amplitudes. 

The trivial solutions 𝜆 correspond to no vibrational modes with amplitudes of 

A=0,1,2. All non-trivial solutions 𝜆 can be obtained by solving the secular equa-

tion: 

|

𝑓11 − 𝜆 𝑓12 … 𝑓1,3𝑁

𝑓21 𝑓22 − 𝜆 … 𝑓2,3𝑁

… … … …
𝑓3𝑁,1 𝑓3𝑁,2 … 𝑓3𝑁,3𝑁 − 𝜆

| = 0. 

(89) 

From the elements of the determinant of this equation, the coefficients of the un-

known amplitudes can be obtained. It is now possible to select a fixed value λk so 

that the determinant vanishes, and the coefficients of the amplitudes A become 

fixed. For example, the possible solutions are not unique solutions to the equa-

tions system; instead, they can only calculate ratios. A unique solution can be ob-

tained via the following relationship: 

𝑙𝑖𝑘 =
𝐴𝑖𝑘

′

[∑ (𝐴𝑖𝑘
′ )2

𝑖 ]
1
2

, (90) 

where 𝐴𝑖𝑘
′  is an arbitrary set of solutions and 𝑙𝑖𝑘 amplitudes that are normalized 

in the following fashion: 
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∑𝑙𝑖𝑘
2 = 1.

𝑖

 (91) 

To obtain the solution for the real physical problem, the following ansatz can be 

solved: 

𝐴𝑖𝑘 = 𝐾𝑘𝑙𝑖𝑘, (92) 

with 𝐾𝑘 as constants, which are determined by the initial values of the coordi-

nates and velocities. Equation (89) consists of 3Nx3N rows and columns leading 

to 3N possible solution for unknown Ai. However, only 3N-6 roots (in the case of 

non-linear molecules) are not zero and correspond to vibrational modes. The fre-

quency of the vibrational mode oscillating around its equilibrium position is: 

𝑣 =
√𝜆𝑘

2𝜋
. (93) 

For a given 𝜆𝑘, the movement of each coordinate shows the same frequency and 

phase but not necessarily the same amplitude. As a result, the phase and fre-

quency are identical; all atoms show the same course along the displacement co-

ordinate. This means that all atoms simultaneously experience their maximum 

displacement or the passing of their equilibrium. Vibrational modes that accom-

plish these criteria are called normal modes of vibration. Not all frequencies need 

to have different values; instead, identical values can be assigned to so-called de-

generated modes. 

A so-called normal coordinate can be assigned to each normal mode. The 

introduction of normal coordinates is useful to accurately describe, e.g., the quan-

tum mechanical treatment of molecular vibrations. The normal coordinates 𝑄𝑘 

can be described in dependency of the mass-weighted cartesian displacement co-

ordinates qi as follows: 

𝑄𝑘 = ∑ 𝑙𝑘𝑖
′′ 𝑞𝑖 𝑘 = 1,2, . . ,3𝑁.

3𝑁

𝑘=1

 
(94) 

The coefficients 𝑙𝑘𝑖
′′  must be selected so that no cross-products occur in the poten-

tial energy. To achieve this, the kinetic and potential energies need to have the 

following form: 

𝑇 =
1

2
∑ 𝑄̇𝑘

2

3𝑁

𝑘=1

𝑉 =
1

2
∑ 𝜆𝑘

′ 𝑄𝑘
2.

3𝑁

𝑘=1

 
(95) 

The calculation of the potential energy depends only on the squares of 𝑄𝑘. It is 

necessary to mention that the indices i and j refer to the q coordinates and k and 

l indicate the Q coordinates. The coordinates q can be described in terms of the 

normal coordinates via: 

𝑞𝑖 = ∑ 𝑙𝑖𝑘
′ 𝑄𝑘

3𝑁

𝑘=1

 𝑖 = 1,2, . . . ,3𝑁. 
(96) 

Equations (89) and (96) can be substituted in one and vice versa, and the follow-

ing result is obtained: 
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∑𝑙𝑘𝑘
′ 𝑙𝑙𝑙

′ = 𝛿𝑘𝑙  

3𝑁

𝑖=1

∑ 𝑙𝑖𝑘
′ 𝑙𝑘𝑗

′ = 𝛿𝑖𝑗 . 

3𝑁

𝑘=1

 
(97) 

The Newtonian equation of motion can now be expressed in terms of the normal 

coordinates as follows: 

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑄̇𝑘

+
𝜕𝑇

𝜕𝑄𝑘
= 𝑄̈𝑘 + 𝜆𝑘

′ 𝑄𝑘 = 0   𝑘 = 1,2, . . . . ,3𝑁, (98) 

and the corresponding solutions are: 

𝑄𝑘 = 𝐾𝑘
′ cos (√𝜆𝑘

′ 𝑡 + 𝜀𝑘
′ )   𝑘 = 1,2, . . . ,3𝑁. (99) 

with the constants 𝐾𝑘
′  and 𝜀𝑘

′  

The potential function, which appears in the equation, can have different ori-

gins. Both classical force fields and QC methods are suitable. Depending on the 

choice of QC methods, it is possible to calculate the Hesse matrix analytically or 

numerically. For example, analytical expressions can be found for HF, MP2184, and 

many DFT methods. Analytical calculations have great advantages: they are more 

accurate and less time-consuming. However, the differences between the individ-

ual QC programs must be considered. For example, the calculation of the reduced 

mass for the Gaussian program is different from other programs. J. W. Ochterski 

has written a detailed essay on this topic, describing the steps for calculating the 

vibration analysis within the Gaussian program. 185 

 

2.3 Magnetic-resonance spectroscopy 
 

2.3.1 Principles 
 

Magnetic resonance spectroscopy methods are indispensable in chemical analy-

sis. In this chapter, the basic principles needed to understand and interpret eve-

ryday experiments will be shown, and then, in the following sections, the concrete 

calculation methods that can be utilized in QC calculations will be derived. First, 

the magnetic moments of an electron spin and the nuclear magnetic moment shall 

be defined. For the electron spin magnetic moment 𝑚⃗⃗ 𝑖 of electron i, it follows: 

𝑚⃗⃗ 𝑖 = 𝛾𝑠𝑠 𝑖 = −𝑔𝑒

𝜇𝐵

ℏ
𝑠 𝑖 = −𝑔𝑒

𝑒

2𝑚𝑒
𝑠 𝑖, (100) 

where 𝛾𝑠 is the gyromagnetic ratio, s  is the spin-vector, 𝑔𝑒 the Lande-factor of 

2.0023, 𝜇𝐵 is the Bohr magneton, e is the elementary charge, 𝑚𝑒 is the mass of the 

electron. The corresponding expression for the nuclear magnetic moment 𝜇 𝐶  of 

nucleus C results as follows:95 

𝜇 𝐶 = 𝛾𝐶𝐼 𝐶 = +𝑔𝐶

𝑒

2𝑚𝑝
𝐼 𝐶 = +𝑔𝐶

𝜇𝑁

ℏ
𝐼 𝐶 , (101) 

with 𝛾𝐶 the gyromagnetic ratio of the nucleus C, 𝑔𝐶  is the g-factor of the nucleus 

C, which shows a strong dependence on the nucleus of choice, 𝑚𝑝 is the mass of 

the proton; the connection between the elementary charge and 𝑚𝑝 is given by the 
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nucleus magneton 𝜇𝑁. The nuclear spin 𝐼 𝐶 is defined as: 

|𝐼 𝐶| = √𝐼(𝐼 + 1)ℏ2, (102) 

where I is the nuclear spin quantum number. The nuclear magnetic moment be-

comes zero for nuclei with an even number of protons and neutrons; conse-

quently, these nuclei cannot be detected via NMR experiments. For systems with 

an odd number of protons and/or neutrons, the quantum spin number becomes 

a non-zero integer or half number. In magnetic resonance experiments, the sam-

ple is transferred into an external magnetic field 𝐵⃗ . This external magnetic field 

leads to an energy splitting which has the following form in the case of the elec-

tron spin: 

𝐸𝑚𝑠
= −𝑚⃗⃗ 𝑖 ⋅ 𝐵⃗ = −𝑚 𝛾𝑠 𝑠ℏ𝐵0 = ±

1

2
𝑔𝑒𝜇𝐵𝐵0, (103) 

where ms is the magnetic spin quantum number. The energy difference between 

the two energy states is given via: 

𝛥𝐸𝑚𝑠
=

1

2
𝑔𝑒𝜇𝐵𝐵0 = ℎ𝜈. (104) 

The effect of the energy splitting due to the induction of the external magnetic 

field is the so-called Zeeman effect. The resonant frequency that induces the en-

ergy transfer between the two-state can be determined as follows: 

𝜈 =
𝛾𝑠𝐵0

2𝜋
. (105) 

Where 𝜈 is also called the Larmor-frequency, straightforwardly, analog expres-

sions can also be determined for the nuclear spins in an external magnetic field. 

The corresponding expressions are:  

𝐸𝑚𝐼
= −𝑚𝐼𝛾𝐼ℏ𝐵0 = ∓

1

2
𝑔𝐼𝜇𝑁𝐵0, (106) 

𝛥𝐸𝑚𝐼
= 𝑔𝐼𝜇𝑁𝐵0, (107) 

𝜈 =
𝛾𝐼𝐵0

2𝜋
. (108) 

In this example, the nucleus of interest has a nuclear spin quantum number I of 

½. This is the case for some of the most frequently measured nuclei in everyday 

experiments, e.g., 1H, 15N, 13C, and 19F. An important quantity within NMR spec-

troscopy, less so in EPR spectroscopy, where the energy difference between the 

two energy levels is much greater than in NMR spectroscopy, is the relative occu-

pation number of the individual energy levels. These occupation numbers can be 

determined with the help of Boltzmann statistics as follows: 

𝑁
(𝑚=−

1
2
)

𝑁
(𝑚=+

1
2
)

= exp(−𝛽Δ𝐸) ≈ 1 −
𝛾𝐼ℏ𝐵0

𝑘𝐵𝑇
, 

(109) 

where 𝛽 is the inverse temperature(𝑘𝐵𝑇−1), which is directly connected to the 

Boltzmann-constant 𝑘𝐵 and the temperature T. For protons or nuclei, the energy 

difference is only very small, so the two levels are virtually identically occupied. 
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Equation (109) shows that both a stronger magnetic field and a lower tempera-

ture lead to a larger population difference. The decisive advantage, which causes 

the outstanding importance of magnetic resonance spectroscopy methods, is that 

the resonance condition occurring in equation (107) does not depend solely on 

the external magnetic field but depends on a so-called effective magnetic field. 

This effective magnetic field depends on the chemical environment around the 

observed nucleus or electron spin, leading to different signals in the spectrum. 

The external magnetic field is weakened by the so-called shielding constant, 

which results in the following relationship for the effective magnetic field: 

𝐵eff = 𝐵0 − 𝜎𝐵0 = (1 − 𝜎)𝐵0, (110) 

and for the resonance condition, it follows: 

𝜈 =
𝛾𝐼

2𝜋
𝐵𝟎(1 − 𝜎). (111) 

Different solvents have different effects on the shielding constant. In general, it is 

not the shielding constant that is specified but the so-called chemical shift. Since 

the resonance frequency depends on the strength of the external magnetic field, 

different spectra result from different magnetic field strengths. The resonance 

frequencies are referenced relative to a so-called standard for better comparabil-

ity between different experiments. The chemical shift   is defined as: 

𝛿 =
𝜈 − 𝜈0

𝜈0
⋅ 106 =

(1 − 𝜎)𝐵0 − (1 − 𝜎0)𝐵0

(1 − 𝜎0)𝐵0
⋅ 106 ≈ (𝜎0 − 𝜎) ⋅ 106. (112) 

where 𝜈0 and 𝜎0 are the resonance frequency and the shielding constant of the 

reference substance, respectively. The most common reference substance for ref-

erencing 1H and 13C is TMS in unipolar solvents. If the measurement is made in a 

polar solvent, DSS is often used as a standard. Liquid ammonia is used to refer-

ence 15N chemical shifts. A similar environmental effect can also be observed in 

EPR spectroscopy. In this case, the shielding is combined with the ge-factor to a 

g-factor and leads to: 

𝐵eff = (1 − 𝜎)𝐵0 = (𝑔/𝑔𝑒)𝐵0. (113) 

In addition to chemical shifts, a splitting of the signals (fine structure) can be ob-

served in the NMR spectrum. These fine structures result from the coupling be-

tween the magnetic moments of different nuclei. In principle, there are two dif-

ferent coupling mechanisms. On the one hand, the so-called direct dipolar cou-

pling, where the nuclei couple directly through space. This phenomenon becomes 

relevant in the context of solid-state NMR spectroscopy since the contributions 

average to zero in liquid media with low viscosity. However, the dipolar couplings 

are the reason behind the nuclear Overhauser effect (NOE).95  

On the other hand, there is the so-called indirect spin-spin coupling, which 

is mediated through bonds. The indirect coupling is called J-coupling and results 

from a complex interaction between the electron spins and nuclear magnetic mo-

ments. In EPR spectra, splitting can occur due to the coupling of the free electron 

spins with the nuclear magnetic moments. As long as systems are considered in 
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solution, the description of hyperfine splitting is usually achieved simply by spec-

ifying the isotropic hyperfine coupling constant. The next sections of this thesis 

deal with the concrete calculation of the quantities observed in the experiment 

using QC formulations. For this purpose, the concept of the effective spin Hamil-

tonian is first introduced, and then explicit expressions for magnetic observables 

are obtained. 

 

 

2.3.2 The effective spin Hamiltonian 
 

A spatial electronic wave function can describe a molecule with N atoms, with the 

electron spin state quantum numbers ms and the nuclear spin quantum numbers 

m1. The two states, which are created by a spin transition 𝜙, can then be described 

as follows:101 

𝜙𝑎 = |𝛹,𝑚𝑠
𝑎, 𝑚1

𝑎, . . . , 𝑚𝑁
𝑎 ⟩  ⇔  𝜙𝑏 = |𝛹,𝑚𝑠

𝑏 ,𝑚1
𝑏 , . . . , 𝑚𝑁

𝑏 ⟩,  (114) 

where a and b indicate the spin states. It is reliable to assume that the spatial 

electronic wave function does not change much during the spin transition.101 

Therefore, the energy difference due to this spin transition can be represented as 

follows: 

𝛥𝐸𝑎𝑏 = 𝐸(𝜙𝑏) − 𝐸(𝜙𝑎) = 𝐸(𝑚𝑆
𝑏 ,𝑚1

𝑏 , . . . . , 𝑚𝑁
𝑏 ) − 𝐸(𝑚𝑆

𝑎,𝑚1
𝑎, . . . . , 𝑚𝑁

𝑎 ). (115) 

This spin transition energy difference is relatively small compared to the orders 

of magnitude resulting from nucleus-electron and electron-electron interactions. 

Although the surrounding electrons influence the magnetic interactions, it is pos-

sible to describe the energy transfer detected by NMR and EPR spectroscopy 

solely by a pure spin Hamiltonian, a so-called effective spin Hamiltonian. The 

electrons no longer appear in this effective spin Hamiltonian, except via their spin 

state information, and the nuclei are described only by their intrinsic spin and the 

resulting magnetic moments.186 The energy for a spin state can then be described 

in the following way: 

⟨𝜙𝑎|𝐻̂𝑆|𝜙
𝑏⟩ = ⟨𝑚𝑆

𝑎, 𝑚1
𝑎, . . . . , 𝑚𝑁

𝑎 |𝐻̂𝑆|𝑚𝑆
𝑎, 𝑚1

𝑎, . . . . , 𝑚𝑁
𝑎 ⟩ 

                  = 𝐸(𝑚𝑆
𝑎,𝑚1

𝑎, . . . . , 𝑚𝑁
𝑎 ). 

(116) 

As mentioned before, magnetic resonance spectroscopic methods describe the 

oscillations between electronic and nuclear magnetic dipoles with an external 

magnetic field. In the effective spin Hamiltonian, therefore, the pairwise interac-

tions of all magnetic moments with each other and with the external magnetic 

field 𝐵⃗  must be described. The contributions are coming from the electron spin 𝑆  

and the collection of nuclear spins, which are defined in the following manner: 

𝐼 = ∑ 𝐼 𝐶 ,

𝑁

𝐶=1

 
(117) 

and the electron orbital angular moment L . The corresponding spin Hamiltonian 
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has the following form: 

𝐻̂𝑆 = 𝐻̂𝑆(𝑆, 𝑆) + 𝐻̂𝑆(𝑆, 𝐼) + 𝐻̂𝑆(𝑆, 𝐿) + 𝐻̂𝑆(𝑆, 𝐵) + 𝐻̂𝑆(𝐼, 𝐼) 

   +𝐻̂𝑆(𝐼, 𝐿) + 𝐻̂𝑆(𝐼, 𝐵) + 𝐻̂𝑆(𝐿, 𝐿) + 𝐻̂𝑆(𝐿, 𝐵). 
(118) 

The influence of the electron angular moment is rather small compared to the 

impact originating from the external magnetic field and can be treated sepa-

rately.101 Thus, the Hamiltonian reduces to: 

𝐻̂𝑆 = 𝐻̂𝑆(𝑆, 𝑆) + 𝐻̂𝑆(𝑆, 𝐼) + 𝐻̂𝑆(𝑆, 𝐵) + 𝐻̂𝑆(𝐼, 𝐼) + 𝐻̂𝑆(𝐼, 𝐵). (119) 

The next question arises: What do the individual interactions look like in concrete 

terms to formulate the Hamiltonian? The classical expressions for the interac-

tions between magnetic dipoles can be used as a starting point. Therefore, the 

interactions of the magnetic dipoles with each other and the external magnetic 

field are represented by simple scalar products. Thus, for the Hamiltonian, the 

following relation is obtained: 

𝐻̂𝑆 = 𝐶𝑆𝑆𝑆 ⋅ 𝑆 + 𝐶𝑆𝐼𝑆 ⋅ 𝐼 + 𝐶𝑆𝐵𝑆 ⋅ 𝐵⃗ + 𝐶𝐼𝐼𝐼 ⋅ 𝐼 + 𝐶𝐼𝐵𝐼 ⋅ 𝐵⃗ , (120) 

where the constants C are the parameters that include the different influences of 

the dipole-dipole interaction on the transition energy. Depending on whether an 

NMR or an EPR experiment is to be represented, there are different formulations 

for the effective spin Hamiltonians. For an NMR experiment, the common Hamil-

tonian operator looks like this: 

𝐻̂𝑆(NMR) = − ∑ ℏ𝛾𝐶𝐵⃗ (1⃡ − 𝜎𝐶)

𝑁

𝐶=1

⋅ 𝐼 𝐶  

+
ℏ2

2
∑ ∑ 𝛾𝐶𝛾𝐷

𝑁

𝐷=1
𝐷≠𝐶

𝑁

𝐶=1

𝐼 𝐶 ⋅ (𝐷⃡ 𝐶𝐷 + 𝐽⃡𝐶𝐷) ⋅ 𝐼 𝐷 , 

(121) 

here 1⃡ is a unitary tensor, 𝜎𝐶  the nuclear shielding tensor, 𝐷⃡ 𝐶𝐷 the classical dipolar 

and 𝐽⃡𝐶𝐷 are the indirect nuclear spin-spin J-coupling tensors. Equation (121) is 

the paramagnetic generalization, which is able to address the relevant interac-

tions in most NMR spectra. However, there are also cases where the effective spin 

Hamiltonian needs to be extended. If, for example, atoms in the molecule under 

consideration have high spin nuclear magnetic dipoles (Ic > 0.5), an additional 

term must be included, including the resonance effects resulting from the electric 

quadrupole moment. The corresponding expression now looks as follows: 

𝐻̂𝑄(𝐼, 𝐼) = ∑ 𝐼 𝐶 ⋅ 𝑄𝐶𝐶
𝑁
𝐶=1

|𝐼𝐶|≥1

⋅ 𝐼 𝐶 , (122)  

with 𝑄𝐶𝐶  as the quadrupole coupling tensors.  

Analogous to the effective NMR spin Hamiltonian, an effective spin Hamilto-

nian can also be formulated to describe an EPR experiment. The most common 

version of this spin Hamiltonian has the following form: 
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𝐻̂𝑆(EPR) = 𝜇𝐵𝑆 ⋅ 𝑔 ⋅ 𝐵⃗ + ∑ 𝑆 ⋅ 𝐴𝐶

𝑁

𝐶=1

⋅ 𝐼⃡𝐶 
(123)  

whereby the first term is the description of the Zeeman effect, with the g-tensor 

𝑔, that can be interpreted as an equivalent to the shielding tensor 𝜎𝐶 . In the sec-

ond term, the hyperfine splitting is described with 𝐴𝐶  as hyperfine coupling ten-

sor. Equation (123) neglects the interactions between the nuclear magnetic di-

poles and between the nuclear magnetic dipoles and the external magnetic field. 

This is justifiable since the strength of a nuclear magnetic dipole is only about 

1/2000 of the electron spin magnetic dipole. Therefore, in most experiments, the 

chemical shifts and J-couplings occur on different energy scales than the g-value 

and hyperfine coupling constants. However, if experiments like the ENDOR (elec-

tron-nuclear double resonance) are to be quantified quantum mechanically, it is 

necessary to consider the interactions of the nuclear magnetic dipole moments. 

The effective spin Hamiltonian for an ENDOR experiment is the combination of 

equation (121) and equation (123). The next section of this thesis will deal with 

the concrete calculations of the parameters 𝜎𝐶 , 𝐴𝐶 , 𝐽⃡𝐶𝐷 and 𝑔, based on the evalu-

ation of first-principle physics. 

 

2.3.3 Spectroscopic parameters 
 

The absolute goal is to find expressions to extract the above-introduced parame-

ters from a previously calculated electronic wave function. As a starting point, it 

is useful to extend the expression for the electronic energy under the perturba-

tion of the magnetic field 𝐵⃗  and the nuclear magnetic dipole moments 𝜇 𝐶 . (at this 

point, an expression for the NMR parameters shall be derived first, but the EPR 

parameters can be determined according to the same principles). The series de-

velopment takes place around zero fields and zero magnetic moments and leads 

to:186,187 

𝐸(𝐵⃗ , 𝜇 ) = 𝐸0 +
1

2
𝐵⃗ ⋅ 𝐸(20)𝐵⃗ + ∑𝐵⃗ ⋅

𝐶

𝐸𝐶
(11)

𝜇 𝐶 +
1

2
∑ 𝜇 𝐶 ⋅

𝐷≠𝐶

𝐸𝐷𝐶
(02)

𝜇 𝐷. (124)  

Where second derivatives are defined as: 

𝐸(20) =
𝑑2𝐸(𝐵⃗ , 𝜇 )

𝑑𝐵⃗ 2
|
𝐵⃗ =0,𝜇⃗⃗ =0

, (125)  

𝐸𝐶
(11)

=
𝑑2𝐸(𝐵⃗ , 𝜇 )

𝑑𝐵⃗ 𝑑𝜇 
|
𝐵⃗ =0,𝜇⃗⃗ =0

, (126)  

𝐸𝐷𝐶
(02)

=
𝑑2𝐸(𝐵⃗ , 𝜇 )

𝑑𝜇 𝐶𝑑𝜇 𝐷
|
𝐵⃗ =0,𝜇⃗⃗ =0

. (127)  

For closed-shell systems, the first-order derivatives disappear and are therefore 

not included in the series development. Higher-order terms are also neglected, 

and equation (124) is exact for non-rotating rigid molecules. If a comparison 



RISM-based pressure-dependent computational spectroscopy 

37 

between equation (121) and equation (124) is made, it is noticeable that the pa-

rameters from equation (121) can be assigned to the second derivatives as fol-

lows:186 

𝜎𝐶 = 𝐸𝐶
(11)

+ 1⃡, (128) 

and 

𝐽⃡𝐶𝐷 = 𝐸𝐶𝐷
(02)

− 𝐷⃡ 𝐶𝐷 . (129) 

The tensor 𝐸(20) is not represented in the effective Hamiltonian; however, it also 

has a physical meaning as the molecular magnetizability or, in certain contexts, 

referred to as magnetic susceptibility χ. The tensors 𝜎𝐶 , and 𝐽⃡𝐶𝐷 are molecular 

properties, which can generally be obtained in quantum mechanics as coefficients 

of a series expansion, like in equation (124). Within the framework of Rayleigh-

Schrödinger time-independent perturbation theory, the following expressions 

exist for the first and second-order molecular properties:188,189 

𝑑𝐸(𝒙)

𝑑𝑥𝑖
= ⟨𝛹0|

𝑑𝐻̂

𝑑𝑥𝑖

|𝛹0⟩, 
(130)  

and 

𝑑2𝐸(𝒙)

𝑑𝑥𝑖𝑑𝑥𝑗
= ⟨𝛹0|

𝑑2𝐻̂

𝑑𝑥𝑖𝑑𝑥𝑗

|𝛹0⟩ − 2 ∑

⟨𝛹0|
𝑑𝐻̂
𝑑𝑥𝑖

|𝛹𝑛⟩⟨𝛹𝑛|
𝑑𝐻̂
𝑑𝑥𝑗

|𝛹0⟩

𝐸𝑛 − 𝐸0
,

𝑛≠0

 

(131)  

with the derivatives taken at x=0, which reflects, in our case, the effect of zero-

field and zero magnetic moments. Equation (130) is a first-order property and 

requires only knowledge of the unperturbed reference state |𝛹0⟩. The first part 

of the second derivative has an analog first-order property expression. The sec-

ond part contains a sum-over state’s contribution from each excited state |𝛹𝑛⟩. In 

case of magnetics properties, the first term is known as the diamagnetic contri-

bution, and the second part is referred to as the paramagnetic part. 186 

The next goal is to find expressions for the derivatives which can be de-

rived directly from the electronic Hamiltonian. For this purpose, the non-relativ-

istic electronic Hamiltonian is extended under the influence of the external mag-

netic field, the nuclei’s magnetic moments, and the electrons’ magnetic moments. 

The corresponding Hamiltonian has the following form: 

𝐻̂(𝐵⃗ , 𝜇 ) =
1

2
∑𝜋𝑖

2

𝑖

− ∑𝑚⃗⃗ 𝑖 ⋅ 𝐵⃗ tot(𝒓𝑖)

𝑖

− ∑
𝑍𝐶

𝑟𝑖𝐶
+

𝑖𝐶

 

 
1

2
∑

1

𝑟𝑖𝑗
𝑖≠𝑗

+
1

2
∑

𝑍𝐶𝑍𝐷

𝑅𝐶𝐷
− ∑𝜇 𝐶 ⋅ 𝐵⃗ tot(𝒓𝑖)

𝐶

+

𝐶≠𝐷

∑ 𝜇 𝐶 ⋅ 𝐷⃡ 𝐶𝐷 ⋅ 𝜇 𝐶 .

𝐶>𝐷

 

(132)  

The first term describes the kinetic energy, 

𝜋⃗ 𝑖 = −𝑖∇𝑖 + 𝐴 tot(𝒓𝑖), (133) 

containing the vector potential 𝐴 tot(𝒓𝑖) of electron i, that is constructed in a way 

that its curl or rotation reproduces the magnetic induction 𝐵⃗ tot(𝒓𝑖), that results 

from the nuclei’s magnetic moments and the external magnetic field. The 
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corresponding expression for the total magnetic induction is: 

𝐵⃗ tot(𝒓𝑖) = 𝛻𝑖 × 𝐴 tot(𝒓𝑖). (134) 

It is reasonable to split the vector potential into two parts, the first part arises 

from the contribution of the external field, and the other part is the sum of all 

nuclei contributions. For the vector potential and the magnetic induction, the fol-

lowing expressions are obtained: 

𝐴 tot(𝒓𝑖) = 𝐴 𝑂(𝒓𝑖) + ∑𝐴 𝐶(𝒓𝑖),

𝐶

 (135)  

𝐵⃗ tot(𝒓𝑖) = 𝐵⃗ (𝒓𝑖) + ∑𝐵⃗ 𝐶(𝒓𝑖).

𝐶

 (136)  

The relation between the two latter expressions is given in equation (134). The 

vector potential that corresponds to a magnetic-induction vector, which repre-

sents a homogeneous external magnetic field, can be expressed as follow: 

𝐴 𝑂(𝒓𝑖) =
1

2
𝐵⃗ × 𝒓𝑖𝑂 . (137) 

The subscript O is the origin of the vector potential. It is also referred to as the 

gauge origin since the vector potential vanishes at this origin. It is very important 

to mention that the vector potential depends on the choice of the gauge origin, 

but the physical magnetic field due to the induction of B does not. However, as 

will be discussed later, the choice of the gauge origin is not completely free when 

the approximate wave function is used. The next contribution to the vector po-

tential arises from the nuclear magnetic moments. A possible potential can be 

written in the following form: 

𝐴 𝐾(𝒓𝑖) = 𝛼2
𝜇 𝐶 × 𝒓𝑖𝐶

𝑟𝑖𝐶3
. (138)  

In contrast to the external vector potential, here, the position of the nucleus is the 

preferred gauge origin, and for these terms, no errors regarding the choice of the 

gauge origin occur. To formulate an expression for the induced magnetic field of 

the nuclei, the curl of equation (133) has to be taken, and the following result is 

obtained: 

𝐵⃗ 𝐾(𝒓𝑖) = −𝛼2
𝑟𝑖𝐶

21⃡ − 3𝒓𝑖𝐶𝒓𝑖𝐶
𝑇

𝑟𝑖𝐶5
𝜇𝐶 +

8𝜋𝑎2

3
𝛿(𝒓𝑖𝐶)𝜇𝐶 , 

(139) 

where 𝛿(𝒓𝑖𝐶) is the Dirac delta function. (139) can be interpreted as the internal 

magnetic field of a dipole. Regarding the delta function, its use is only in the case 

of a non-relativistic consideration necessary.190 Through the delta-function, the 

case where 𝒓𝑖𝐶 = 0 i.e. the magnetic field directly at the nuclear position is repre-

sented.191 The first term gives rise to the dipole-dipole interaction between the 

electrons and the nucleus. The second term is the foundation for the Fermi-con-

tact interaction, which will become important later in this part as a major con-

tributor to the hyperfine coupling tensor. Since the electronic Hamiltonian was 

formulated under the influence of different magnetic inductions, it is now 
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possible to calculate the derivatives to obtain the molecular properties. 

First, the first-order paramagnetic interaction shall be derived. The first 

derivative is with respect to the magnetic induction field 𝐵⃗ . At zero magnetic mo-

ments and field. It follows: 

𝑑𝐻̂

𝑑𝐵⃗ 
= 𝐻̂𝐵

orb + 𝐻̂𝐵
spn

, (140)  

whereby the first term connects the orbital motion of the electron via the orbital 

angular momentum operator with the external field in the following way: 

𝐻̂𝐵
orb =

1

2
∑𝑙 𝑖𝑂

𝑖

= −𝑖
1

2
∑𝒓𝑖𝑂

𝑖

× 𝛻𝑖. (141) 

The second term couples the magnetic induction field to the magnetic moments 

of the electrons via: 

𝐻̂𝐵
spn

= −∑𝑚⃗⃗ 𝑖
𝑖

= ∑𝑠 𝑖.

𝑖

 (142) 

These two interactions are also called Zeeman interactions. The focus will now 

be on the first-order interactions, which are a function of nuclear magnetic mo-

ments. The derivative with respect to 𝜇 𝐶  leads to: 

𝑑𝐻̂

𝑑𝜇 𝐶
= 𝐻̂𝐶

pso
+ 𝐻̂𝐶

sd + 𝐻̂𝐶
fc, (143) 

with the paramagnetic spin-orbit operator 

𝐻̂𝐶
pso

= 𝛼2 ∑
𝑙 𝑖𝐶
𝑟𝑖𝐶3

,

𝑖

 (144)  

the spin-dipole operator 

𝐻̂𝐶
sd = 𝛼2 ∑

𝑟𝑖𝐶
2𝑚⃗⃗ 𝑖 − 3(𝑚⃗⃗ 𝑖 ⋅ 𝒓𝑖𝐶)𝒓𝑖𝐶 ,

𝑟𝑖𝐶5

𝑖

 (145)  

and finally, the Fermi-contact contribution: 

𝐻̂𝐶
fc = −

8𝜋𝛼2

3
∑𝛿(𝒓𝑖𝐶)𝑚⃗⃗ 𝑖.

𝑖

 (146)  

The paramagnetic spin-orbit operator couples the nuclear magnetic moments to 

the electron’s orbital motion. The last two operators couple the nuclear magnetic 

moments with the spin of the electrons and are the most important contributions 

to the hyperfine coupling, which will be discussed in more detail (vide infra). At 

this point, the behavior of the first-order term in a closed-shell system shall be 

analyzed. In the case of field-dependent terms, the following relations are ob-

tained: 

𝑑𝐻̂

𝑑𝐵⃗ 
|𝛹0⟩ =

𝐻̂𝐵
orb|𝛹0⟩ ←

+𝐻̂𝐵
spn|𝛹0⟩ ←

imaginary singlet
vanishes

, (147)  

where the first term leads to an imaginary singlet wave function, and the second 

term vanishes because the sum of spin magnetic moments equals zero. The hy-

perfine interactions show the following picture: 
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𝑑𝐻̂

𝑑𝜇 𝐶
|𝛹0⟩ =

𝐻̂𝐶
pso|𝛹0⟩ ←

𝐻̂𝐶
sd|𝛹0⟩ ←

𝐻̂𝐶
fc|𝛹0⟩ ←

imaginary singlet
real triplet
real triplet

, 
(148)  

where the paramagnetic spin-orbit operator causes an imaginary singlet wave 

function, and real triplet wave functions are obtained for electron spin-depend-

ent terms. All these contributions vanish if they are applied to a closed-shell sys-

tem.186 The Hamiltonians, including the orbital angle-momentum operator, do 

not contribute since imaginary Hermitian operators lead to zero expectation val-

ues on a closed-shell system.191 This phenomenon is also called the quenching of 

the orbital angular momentum. Since the hyperfine operators generate only tri-

plet wave function, they do not affect a closed-shell system, in contrast to their 

behavior when the system is open-shell (see below).  

Before the final expressions for the magnetic molecular properties can be 

derived, the definition of the second derivatives needs to be introduced. The first 

second-order diamagnetic interaction is obtained by derivation of the molecular 

electron Hamiltonian with respect to the external magnetic induction and the nu-

clear magnetic moments: 

𝑑2𝐻̂

𝑑𝐵⃗ 𝑑𝜇 𝐶
= −1⃗ + 𝐻̂𝐵𝐶

dia, (149)  

with the diamagnetic operator 𝐻𝐵𝐶
dia defined as: 

𝐻̂𝐵𝐶
dia =

𝛼2

2
∑

(𝒓𝑖𝑂 ⋅ 𝒓𝑖𝐶)1⃡ − 𝒓𝑖𝐶𝒓𝑖𝑂
𝑇

𝑟𝑖𝐶3

𝑖

. (150)  

The second-order derivatives with respect to the nuclear magnetic moments lead 

to the following expressions: 

𝑑2𝐻̂

𝑑𝜇 𝐷𝑑𝜇 𝐶
= 𝐷⃡ 𝐶𝐷 + 𝐻̂𝐶𝐷

dso, (151)  

with 𝐻𝐶𝐷
dso as the diamagnetic spin-orbit operator defined as: 

𝐻̂𝐵𝐶
dso =

𝛼4

2
∑

(𝒓𝑖𝑂 ⋅ 𝒓𝑖𝐷)1⃡ − 𝒓𝑖𝐶𝒓𝑖𝐿
𝑇

𝑟𝑖𝐶3𝑟𝑖𝐿3
.

𝑖

 (152)  

Finally, all derivatives are defined, and the expressions for the magnetic shielding 

tensor 𝜎𝐾 and the nuclear-nuclear coupling tensor 𝐽⃡𝐶𝐷 can be obtained. To do this, 

the expressions for the derivatives are substituted into equation (130), consider-

ing the definitions made in equations (127) and (128). For the shielding tensor, 

the following expression is obtained:  

𝜎𝐾 = ⟨𝛹0|𝐻̑𝐵𝐶
dia|𝛹0⟩ − 2 ∑

⟨𝛹0|𝐻̑𝐵𝐶
orb|𝛹𝑛𝑠⟩⟨𝛹0|(𝐻̑𝐵𝐶

pso
)
𝑇
|𝛹𝑛𝑠⟩

𝐸𝑛𝑠 − 𝐸0
,

𝑛𝑠≠0

 
(153)  

and for the nuclear spin-spin coupling tensor: 

𝐽⃡𝐶𝐷 = ⟨𝛹0|𝐻̑𝐷𝐶
dso|𝛹0⟩ − 2 ∑

⟨𝛹0|𝐻̑𝐷𝐶
pso|𝛹𝑛𝑠⟩⟨𝛹𝑛𝑠|(𝐻̑𝐷𝐶

pso
)
𝑇
|𝛹0⟩

𝐸𝑛𝑠 − 𝐸0
𝑛𝑠≠0

 
(154)  



RISM-based pressure-dependent computational spectroscopy 

41 

   −2∑
⟨𝛹0|𝐻̑𝐶

sd + 𝐻̑𝐶
fc|𝛹𝑇⟩⟨𝛹𝑇|(𝐻̑𝐷

sd)
𝑇
|𝛹0⟩

𝐸𝑛𝑠 − 𝐸0
𝑛𝑇

. 

These relations are also known as the Ramsey expressions. ns  is a single excited 

state and T  denotes a triplet excited state. The trace of the shielding sensor 

then leads to the experimentally observed shielding: 

𝜎 =
1

3
Tr(𝜎). (155)  

As long as solutions are considered, only isotropic contributions to the shielding 

tensor are relevant because the anisotropic contributions are canceled due to the 

fast movements and rotations. The g-tensor from equation (123) can also be ob-

tained as a second-order molecular property. This is done by the second deriva-

tive of the energy w.r.t. the electron spin and the magnetic field in the following 

way: 

𝑔 =
𝑑2𝐸(𝐵⃗ , 𝑆 )

𝑑𝐵⃗ 𝑑𝑆 
|
𝐵⃗ =0,𝑆 =0

, (156)  

in contrast to the molecular properties presented above, the hyperfine-coupling 

tensor in equation (123) can be obtained as a first-order molecular property with 

respect to the nuclear .magnetic moment. At this point, it can be referred to equa-

tions (143) and (145), and the following expression for the hyperfine-coupling 

tensor is obtained: 

𝐴 = ⟨𝛹0|𝐻̂fc + 𝐻̂sd|𝛹0⟩. (157) 

For light nuclei, the spin-orbit coupling is neglectable. The Fermi-contact term is 

responsible for the isotropic hyperfine coupling, whereas the spin-dipolar term 

normally vanishes in bulk solution. For the isotropic hyperfine-coupling constant 

of the nucleus C it follows: 192 

𝐴𝐶
iso = ⟨𝛹0| −

8𝜋𝛼2𝜇𝑁𝑔𝐶

3
∑𝛿(𝒓𝑖𝐶)𝑚⃗⃗ 𝑖

𝑖

|𝛹0⟩. (158) 

The term 𝜇𝑁𝑔𝐶 needs to be added since in the effective Spin-Hamiltonian in equa-

tion (123), only the nuclear-spin-operator occurs, but the differentiation was 

w.r.t the nuclear magnetic moment. Since the spins are aligned along the mag-

netic field direction (normally called the z-axis) in the experiment, only the sz spin 

is considered. We obtain: 

𝐴𝐶
iso =

8𝜋𝛼2𝜇𝑁𝑔𝐶𝜇𝐵𝑔𝑒

3
⟨𝛹0|∑𝛿(𝒓𝑖𝐶)𝑠̂𝑧𝑖

𝑖

|𝛹0⟩. (159) 

In equation (137), the vector potential representing the external magnetic 

field via eq. (137) was defined. In the formulation of equation (137), an arbitrary 

origin of the gauge was chosen. In the context of gauge theory, this is a legitimate 

process and should not influence the observables of the system, such as electronic 

energy, nuclear shielding constants, or g-tensors. However, it turns out that this 

statement did not necessarily apply to approximate wave functions.193 To 
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guarantee the independence from the gauge origin, the wave function or, more 

concretely, the basis functions need to be modified. To do this, first, a gauge trans-

formed vector potential is defined in the following way:191 

𝐴 𝑂′(𝒓) = 𝐴 𝑂(𝒓) + 𝛻𝑓(𝒓), (160) 

where 𝑓(𝒓) is a scalar function. At this point, it is necessary to notice that for any 

scalar function, the curl of the gradient equals zero: 

𝛻 × 𝛻𝑓(𝒓) = 0. (161) 

Due to this, the so-called gauge transformation in equation (160) does not affect 

the induced magnetic field when the relation in equation (134) is applied. The 

gauge transformation leads to a gauge-transformed wave function in the follow-

ing manner: 

𝜓′(𝒓) = exp(−𝑓(𝒓))𝜓(𝒓). (162) 

The scalar function acts here as a complex phase factor. A scalar function could 

have the following form: 

𝑓(𝒓) =
1

2
𝐵⃗ × (𝑶 − 𝑶′) ⋅ 𝒓. (163) 

With this type of gauge transformation, the invariance of the energy and other 

molecular properties is maintained. It can be stated that the following relation-

ship is obtained for exact wavefunctions: 

⟨𝜓′|𝐻̂′|𝜓′⟩ = ⟨𝜓|𝐻̂|𝜓⟩. (164) 

Now the question arises of how the picture looks like in the case of approximate 

wave functions. Here, the results depend on the choice of the gauge origin.194 It 

can be seen that the gauge error depends on the distance between the wave func-

tion and the gauge origin. Many different approaches have been developed to 

solve this problem in the past. Among the first is the so-called Individual Gauge 

for Localized Orbitals (IGLO)195 or LORGs196. Among the more recent methods are 

those in which an explicit dependence of the basic functions on the magnetic field 

is introduced, analogous to equation (162). These methods are known as London 

Atomic Orbitals (LAO)197,198 or Gauge Invariant Atomic Orbitals (GIAO).199 The 

magnetic field dependence is again realized by introducing a complex phase fac-

tor. It follows: 

𝑋𝐶(𝒓 − 𝑹𝐶) = exp(−𝑖𝐴 𝐶 ⋅ 𝒓) 𝜒𝐶(𝒓 − 𝑹𝐶), (165) 

where 𝐴 𝐶  is defined as: 

𝐴 𝐶 =
1

2
𝐵⃗ × (𝑹𝐶 − 𝑹𝑂). (166) 

𝑋𝐶 is the gauge-independent atomic orbital. However, the term gauge-independ-

ent is kind of misleading since an explicit dependence on the gauge origin is in-

troduced into the atomic orbitals. For the GIAO method, it can be shown that in-

tegrals over the GIAOs are independent of the gauge origin. For the overlap and 

potential energy, this can be easily shown, and it follows for the overlap integral: 
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⟨𝑋𝐶|𝑋𝐷⟩ = ⟨𝜒𝐶| exp(𝑖(𝐴 𝐶 − 𝐴 𝐷) ⋅ 𝒓) |𝜒𝐷⟩. (167) 

And for the potential energy, the following expression is obtained: 

⟨𝑋𝐶|𝑉̂|𝑋𝐷⟩ = ⟨𝜒𝐶| exp(𝑖(𝐴 𝐶 − 𝐴 𝐷) ⋅ 𝒓) 𝑉̂|𝜒𝐷⟩. (168) 

The term in the exponential function is not dependent on the gauge origin since: 

𝐴 𝐶 − 𝐴 𝐷 =
1

2
𝐵⃗ × (𝑹𝐶 − 𝑹𝐷). (169) 

In the case of kinetic energy, the solution is a bit more tricky. The expression for 

the kinetic energy is:198–200 

⟨𝑋𝐶|𝑇̂|𝑋𝐷⟩ = ⟨𝑋𝐶|
1

2
𝜋2|𝑋𝐷⟩

= ⟨𝜒𝐶| exp(𝑖𝐴 𝐶 ⋅ 𝒓)
1

2
[−𝑖𝛻 + 𝐴 (𝒓)] exp(𝑖𝐴 𝐷 ⋅ 𝒓) |𝜒𝐷⟩. 

(170) 

To get a gauge-independent expression of the integral, at first, the derivatives of 

𝑋𝐷 need to be calculated via: 

[−𝑖𝛻 + 𝐴 (𝒓)]𝑋𝐷 = [−𝑖𝛻 + 𝐴 (𝒓)] exp(𝑖𝐴 𝐷 ⋅ 𝒓) |𝜒𝐷⟩. (171) 

After multiple applies of the product rule of derivation and the use of the 2nd bi-

nominal formula, the following relation is obtained:200 

[−𝑖𝛻 + 𝐴 (𝒓)]𝑋𝐷 = exp(−𝑖𝐴 𝐷 ⋅ 𝒓) [−𝑖𝛻 + (𝐴 (𝒓) − 𝐴 𝐷)]𝜒𝐷 . (172) 

Reinserting into equation 170) leads to: 

⟨𝑋𝐶|𝑇̂|𝑋𝐷⟩ = ⟨𝜒𝐶| exp(𝑖(𝐴 𝐶 − 𝐴 𝐷) ⋅ 𝒓)
1

2
[−𝑖𝛻 + (𝐴 (𝒓) − 𝐴 𝐷)]|𝜒𝐷⟩. (173) 

In this way, the integral of the kinetic energy is also gauge-independent. A prag-

matic ansatz to handle the gauge-origin dependence of electronic g-tensor calcu-

lations was introduced by Glasbrenner194, where the gauge-origin is chosen to be 

the spin density center. This approach is especially reliable for molecules with 

one spin center.  

 

2.4 Overview of computational spectroscopy in solution 
 

While in the previous chapters, a detailed derivation was given, how, on the one 

hand, the solvent can be described within computational methods and, on the 

other hand, how spectroscopic observables can be calculated; in this chapter, an 

overview of practical applications will be given. One of the first questions that 

must be asked in the QC-supported computation of spectroscopic observables is 

the choice of an appropriate level of theory. Here always, the question arises, how 

much costs in the form of computing power and time can be spent. Usually, for 

inexpensive but still efficient calculations, different DFT methods are used, 

whereas, for more accurate results, MP-n, double hybrid functional201, or even 

coupled-cluster methods are utilized.191 A further question addresses the prob-

lem of accurate solvent representation if either explicit or implicit models should 

be used. A third question deals with the number of conformers used for the cal-

culation and corresponding creation of these. 
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 In the case of vibrational frequencies, normally, all levels of theories cause 

specific intrinsic errors in the calculation results.202 The reasons are that all cal-

culations are approximate and, on the other hand, that the vibrational frequen-

cies are calculated based on a harmonic potential, which is not fully correct. In 

reality, bond stretches are better described by the so-called Morse potentials, in-

cluding the anharmonicity nature of the stretching. Normally, the calculated 

wavenumbers are too high; therefore, specific scaling factors were determined 

and can be accessed on the computational chemistry comparison and benchmark 

database weak to match the calculated results with experimental data. Here, a 

relatively strong dependence on the level of theory is observed, whereas the basis 

set influence is small. 202 Regarding the absolute accuracy besides scaling factors, 

CCSD203 and CCSD(T)204 methods show the best performances. However, these 

results are almost limited to small molecules. In recent years double-hybrid 

methods have become a great alternative to calculated vibrational frequencies 

with nearly coupled-cluster quality.205 

 Regarding calculating NMR chemical shielding constants, formalisms for 

Hartree-Fock206, DFT101,207–209, MP2210–212, and coupled cluster methods213–215 

were developed. Especially for the correlated wave function methods, Gauss de-

rived the corresponding procedures in the 1990s.210–215 A good balance between 

computational costs and the accuracy of the results was shown for MP2, which 

will be employed throughout this thesis for NMR chemical shielding calculations. 
216 A popular alternative is the DFT method, where the problem arises that, most 

commonly, DFT variants are not dependent on the external magnetic field, and 

thus the produced exchange and correlation energies are unphysically constant 

in the presence of the external field.217 In the past explicit field dependence was 

introduced207; however, the more commonly used alternative is the so-called cur-

rent-density functional (CDFT)208,218 Although CDFT shows to have a significant 

impact on the chemical shielding,209,219 the obtained shielding constants are not 

automatically greatly better than those calculated with standard DFT methods.220 

Therefore, for reasons of practicality, the "normal" DFT methods are mostly used, 

whereby the results' quality is strongly dependent on the functional.216,221 Good 

results are obtained, e.g., with the OLYP and OPBE functionals for determining 13C 

and 15N nuclear shielding constants.222 The meta-GGA M06L also showed very 

good results in the past. 223 Going from so-called pure functionals to hybrid func-

tionals does not necessarily improve the results, especially for 15N shielding con-

stants.221 This is probably due to the inheritance of the bad performance of the 

HF method in describing the 15N shielding constants.217 Recently, Stoychev et al. 

made predictions of nuclear shielding tensors by applying the double-hybrid DFT 

methods224, representing the 5th rung of the so-called Jacob’s ladder of DFT ap-

proaches.225 Here, DSD-PBEP86 showed the smallest deviation from the bench-

mark dataset with 1.9%, which performs significantly better than MP2 (4.1%) 

and the meta-GGA M06L (5.4%).217 For further improvement of the calculations 

with DFT methods, Jensen developed an optimized polarization consistent basis 

set, the pcS-n basis set.226,227 This one and derivatives228 are nowadays widely 
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used in benchmarking the performance of computing nuclear shielding.217 

 Pople and Beveridge did one of the first attempts to describe EPR isotropic 

hyperfine coupling constants with semi-empirical methods using an approxi-

mated self-consistent molecular-orbital theory. This approach was termed inter-

mediate neglect of differential overlap (INDO).229,230 These results were quite 

promising; however, when in the late 1970s, the computational power became 

available to make calculations with the unrestricted HF (UHF) formalisms, the 

results were sobering.231,232 In the ongoing years, it became clear that for the ac-

curate representation of HFCCs, high-level ab initio methods (like multireference 

configuration interaction) with large basis sets are necessary.233 Thus, the evalu-

ation of HFCCs was limited to small molecules. Until the 1990s, the calculations 

of g-tensors were sparse and were based on ab initio methods with small basis 

sets and semi-empirical methods.234 With the rapid development of DFT methods 

in the early 1990s, accurate coupling constants and g-tensors calculations be-

came possible.125–128,235–239 Regarding the calculation of HFCCs, coupled cluster 

approaches have been found to be always superior compared to DFT methods.240 

In recent years, the development of DLPNO-CCSD132 (see chapter 4.2) and double-

hybrid methods127,241 led to more time-saving calculations of HFCCs, while still 

maintaining a good level of accuracy compared to CCSD methods.  

 Continuum models have a long history in calculating spectroscopic ob-

servables in solution.138 In 1998, Cammi242,243 developed the first formulation for 

calculating NMR spectroscopic parameters in solution using the PCM formalism. 

In parallel, this group developed the implementation of analytical second deriva-

tives within HF and DFT calculations and calculated the solvatochromic IR shifts 

of some compounds.244 Combining PCM solvation and the computation of EPR 

HFCC parameters was done by Barone and coworkers.245–247 While the different 

PCM variants are implemented in many QC codes and analytic second derivatives 

are available, the continuum description of the solvent causes intrinsic errors due 

to ignoring directional interactions, higher-order multipoles, and dynamic sol-

vent contributions.248,249 An extended continuum method that includes the direc-

tional interactions is the direct COSMO model for real solvents (direct COSMO-

RS250–252). It was applied in calculating solvent shifts on g-tensors and the results 

were in good agreement with calculations that used a supermolecule approach 

with explicit water molecules.251 Pressure-dependent vibrational spectroscopy 

was calculated in non-aqueous solvents by applying the X-PCM approach (see 

2.1.1).21,22 

Further alternative approaches based on statistical solvent models are the 

RISM-SCF155,167 or EC-RISM24 methods, which combine the RISM solvation theory 

with a QC description of the solvent. (see 2.1.4) The field of solvatochromism 

based on the time-dependent density functional theory (TD-DFT) was one of the 

main applications of the RISM-SCF variants.174,253,254 For example, Nishiyama 

studied the stokes shifts of coumarin 153 in 13 different organic solvents using 

1D RISM SCF. The deviations stoke shifts magnitudes were 400 cm-1 less than the 

experimentally observed ones.253 An alternative approach to describe the stokes 
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shifts more reliably was developed by Yokogawa255, in which explicitly spatial 

electron density distribution was included in the RISM-SCF calculations, leading 

to the RISM-SCF-SEDD approach. The experimentally observed data could be re-

produced by applying it to stokes shifts of acetone, indole, and 5-cyanoindole.255 

Further usage of the RISM-SCF-SEDD method was done by Hirano256 and Suda257. 

TD-DFT calculations combined with the 3D RISM-SCF formalism were realized by 

Kaminiski258 and Yang259. Recently, Reimann and Kaupp did computations on the 

ground- and excited states properties of acetone in water and betaine 30 in vari-

ous solvents. The obtained results agree very well with experimental reference 

data and with more costly QM/MM-based MD simulations.173 

Kast and co-workers26,27,29,248 (including the author of this thesis) did the first 

NMR calculations based on EC-RISM calculations. Frach248 made the first steps in 

calculating the chemical shifts of NMA at ambient pressure. It was shown that EC-

RISM leads to a considerable and systematic improvement over PCM calculations. 

A possible explanation for this improvement could be the retaining of the solvent 

granularity in comparison to PCM. In a further publication, the pressure-depend-

ent shifts of NMA relative to the DSS NMR standard were calculated.26 It was 

shown that the effect of pressure on the DSS's shielding constants is much smaller 

than on the shielding constants of the 1H amide proton. Thus, it was concluded 

that DSS is a very good NMR standard for pressure-dependent NMR measure-

ments.  

Further pressure-dependent NMR studies were calculated for TMAO27 and 

purine nucleotides.28,29 A limitation of all these calculations is that the structures 

used are based on PCM-optimized geometries at ambient conditions, and the ef-

fect of pressure on the geometries is not included. To tackle this issue, pressure-

dependent geometry optimizations were applied in this thesis (details see 2.1.4 

and 4.3.3). 3D-RISM SCF with consistently optimized geometries was used to cal-

culate 17O chemical shifts of N-Methylformamide in different solvents.173 A sec-

ond spectroscopy method analyzed with EC-RISM is vibrational spectroscopy, 

where the pressure-dependent vibrational wavenumber shifts of TMAO were cal-

culated and compared to the experimental reference data. A detailed discussion 

of this study can be found in chapters 3.1 and 4.1.  

Another limitation of all these EC-RISM studies is that using only a limited 

number of optimized geometries and explicit water molecules were neglected. 

However, for some spectroscopic observables, it is essential to include a thermal 

averaged ensemble of structures in the calculations. For example, the nitrogen 

HFCC of nitroxides depends strongly on the out-of-plane movement of the nitrox-

ide and the surrounding solvent molecules.260–262 To generate a reliable statistical 

ensemble, one can apply full AIMD263, QM/MM120 methods, or force field based 

molecular mechanics118. AIMD simulations were performed, for example, to cal-

culate the dynamical effect on the electronic g-tensors of benzosemiquinone in 

aqueous solution under ambient conditions.119 In this thesis also, an AIMD-based 

conformational ensemble was used for calculating EPR spectroscopic observa-

bles, and it was shown that the quality of the results is improved compared to 
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single optimized structures (see 4.2.) 

If force field based methods should be used to describe nitroxide in solutions, 

reliable parameters must be developed. Most parameterizations were targeted to 

specific small molecules and lacked generality.117,264–266 Especially the accurate 

description of the out-of-plane motion of the nitroxide group was neglected. 

Stendardo developed a general nitroxide force field based on the AMBER99 force 

field.118 In this work, new atom types were included, and the relevant parameters 

were fitted on geometries, potential energy surfaces, and vibrational frequencies 

at the DFT level for several nitroxides. This adapted force field is capable of 

providing reliable geometries, energies, and EPR spectroscopic observables.118  

A thermally averaged ensemble can also improve the quality of NMR param-

eter calculations, and AIMD simulations are very well suited for this purpose. Re-

cently, a detailed review of the combination of AIMD and NMR parameter calcu-

lation was written by Mazurek.267 One particular example of this combination 

was performed by Exner268, where the small peptide NMA was investigated in an 

aqueous solution. Here, it was shown that with conformational sampling and by 

taking explicit water molecules into account, a very good agreement between cal-

culated and experimental shifts is observed. Another QM/MM study by Flaig 

showed that by including up to about 300-1200 atoms into the QM region, con-

vergence in calculating NMR shielding tensors is achieved.269  

IR wavenumbers based on QC calculations are normally determined by ap-

plying the normal-mode analysis (NMA). Alternatively, for determining compu-

tational-based IR wavenumbers, one can also use an MD simulation or AIMD sim-

ulation, respectively.270,271 The use of a proper sampling of fluctuations becomes 

indispensable when finite temperature effects, as the broadening of band or shift-

ing occur due to the fluctuations.270 AIMD simulations can be used to calculate the 

linear absorption cross-sections since it relates to the Fourier transform of the 

dipole autocorrelation function.270–273 A further advantage of utilizing an AIMD 

simulation to determine IR spectra is that extreme conditions can also be consid-

ered. For example, AIMD was also used to calculate the pressure-dependent IR 

spectrum of TMAO at 1 bar and 10 kbar in an aqueous solution.94  

 

 

  



Methodology 

48 

3 Methodology  
 

3.1 Calculation of IR frequencies with EC-RISM 
 

In 2016, P. Kibies and S. M. Kast made the first attempts to perform IR calculations 

with EC-RISM.94,176 The system under investigation was the small osmolyte 

TMAO, focusing on the pressure-dependent changes of the IR frequencies. A blue 

shift of the main observed frequencies with increasing pressure was observed in 

the experiment.94 By performing a pressure-dependent AIMD simulation, this 

trend could also be confirmed by theoretical methods (see chapter 2.4). At this 

point, it should be elucidated if EC-RISM can also reproduce this trend. However, 

a big disadvantage of the EC-RISM formalism is the lack of analytical expressions 

for the second derivatives of the excess chemical potential with respect to the 

displacement coordinates. Therefore, a numerical alternative must be introduced 

at this point (For a detailed description, see the next two subchapters). The cal-

culated frequencies with EC-RISM could correctly reflect the real pressure-de-

pendent trend but led to a massive overestimation of the pressure dependence. 

There are two possible causes for this: 

i. The EC-RISM calculations were made with a legacy protocol, using χSim18 

and point charges to calculate the electrostatic interactions instead of the 

exact electrostatic potential  

ii. It is plausible to assume that the process of vibration is much faster, com-

pared to the relaxation of the surrounding water, due to the vibration 

IR frequencies with different solvent susceptibilities and electrostatic variants 

were calculated to determine the origin of these possible problems. On the other 

hand, a new approach is presented in which no solvent relaxation due to vibra-

tion is considered. The test systems used here are, on the one hand, the previously 

investigated pressure-dependent modes of TMAO (by P. Kibies and published in 

ref94) and, on the other hand, the cyanide anion since there is only a single vibra-

tional mode. 

3.1.1 Equilibrium case 
 

To calculate IR frequencies numerically with EC-RISM in an equilibrium scenario, 

the following workflow, developed by P. Kibies and S. M. Kast, is used: 

1. QC Optimization of the molecule of interest with PCM solvation  

2. Normal modes determination of the optimized structure  

3. Displace the atoms along the normal vectors starting from the equilibrium 

structures and select two structures in every direction 

4. EC-RISM calculations for all displaced structures at different pressures 
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Parabolic fit or numerical five-point stencil to obtain the second derivative of the 

energy w.r.t. displacement coordinates 

In practice, the Cartesian force constants 𝑭 are first extracted from a 

Gaussian 16 revB01 calculation. Since mass-weighted quantities are required for 

the calculation of force constants and normal modes, the individual atomic 

masses, which are also used in the Gaussian calculations, are extracted and col-

lected in a diagonal mass matrix via: 

𝑴 = (

𝑚1 0 ⋯ 0
0 𝑚2 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝑚𝑁

) 

(174) 

Then the mass-weighted Hessian is constructed via: 

𝑭𝑀 = 𝑴1/2𝑭𝑴1/2 (175) 

Subsequently, the corresponding eigenvalues and eigenvectors are calculated. 

The eigenvector can be associated with the mass-weighted cartesian displace-

ment coordinates for the individual normal modes. To obtain the displacements 

of every atom, the eigenvectors are multiplied with the inverse of the square root 

of the diagonal mass matrix. This procedure leads to cartesian unit displacement 

vectors, which are then scaled by the amplitudes -Amax, -A, A, Amax. These scaled 

vectors are then added to the original equilibrium PCM-optimized geometry. 

With the four displaced vectors and the equilibrium structure, it is now possible 

to calculate the second derivatives, either numerically with a five-point stencil: 

𝑘(𝐺sol)

=
−𝐺(𝒙 − 2𝑑𝒒𝑖) + 16𝐺(𝒙 − 𝑑𝒒𝑖) − 30𝐺(𝒙) + 16𝐺(𝒙 + 𝑑𝒒𝑖) − 𝐺(𝒙 + 2𝑑𝒒𝑖)

12𝑑2
 

(176) 

where 𝑘(𝐺sol) is the force constant associated with normal mode i, d  is the step 

size of the displacement, 𝒒𝑖  is the displacement vector of normal mode i, which is 

added to the equilibrium geometry. The alternative would be to perform a quad-

ratic fit with the five structures and obtain the force constant as the second de-

rivative of the received parabolic equation. The frequency is finally obtained via: 

𝜈(𝑘, 𝜇) =
√

𝑘
𝜇

2𝜋
 

(177) 

where 𝜇 is the reduced mass according to the Gaussian274 conventions (see J.W. 

Ochterski185) 

 

3.1.2 Non-equilibrium case 
 

The non-equilibrium approach aims to develop a formalism where the solvent 

structure cannot adapt to the displacements due to vibration. In a regular EC-

RISM calculation, an iterative cycle is performed where the solvent and the solute 

can polarize each other, i.e., the solvent adapts to the perturbation of the solute. 

To avoid this effect, the following workflow was developed by S. M. Kast 
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developed: 

1. The first three steps of the equilibrium approach are reused. 

2. Full equilibrium EC-RISM calculation with the PCM optimized equilibrium 

structure. 

3. Extracting the solvent structure around the equilibrium structure and 

subsequently using this solvent structure as a perturbation for single-

point calculations of the displaced structures. 

4. To extract the intramolecular energy of the displaced structures under the 

influence of solvent; an evaluation of the purely intramolecular Hamilto-

nian on the solvated wave function is needed. 

5. The excess chemical potential is calculated via 1D RISM: 

a. The partial charges of the equilibrium structure under the pertur-

bation of the solvent are needed, together with LJ-Parameters, that 

were used in the 3D RISM calculation. 

b. A full uv-1D RISM calculation for the equilibrium structure is per-

formed, and the excess chemical potential is calculated. 

c. For the displaced structures, only the relative change of the excess 

chemical potential is calculated. 

6. Excess chemical potential and intramolecular energy are added, and the 

frequencies can be calculated with the procedures mentioned above. 

Regarding step 2, e.g., for the QC program Gaussian the solvent structure can be 

stored in a checkpoint file and then efficiently read in for the single-point calcu-

lations of the displaced structures. The intramolecular energy can be calculated 

according to the following: 

𝐸sol = ⟨𝛹sol|𝐻̂ne + 𝐻̂ee + 𝐻̂nn|𝛹sol⟩. (178) 

This is identical to the calculation of intramolecular Esol energy in equation (64). 

Unfortunately, identical 3D RISM cannot be used to calculate the excess chemical 

potential at this point since even the tiniest displacements cause singularities in 

the solute-solvent interactions, which appear in a product with the frozen g(r) 

under the integral if an approximation of the closure is applied.159 Instead, we 

must evaluate the excess chemical potential using a 1D RISM-uv calculation. The 

1D RISM- uv calculation for the equilibrium structure is the basis again, and for 

the other structures, only the relative changes are calculated. It is assumed that 

the direct correlation function provides identical values for small displacements 

of the geometry. Therefore, the change of the excess chemical potential is deter-

mined by the geometry alone, which is encoded by the ω function.154 The equa-

tion (50) can then be used to calculate this relative change in excess chemical po-

tential. In the end, the intramolecular energies and the excess chemical potentials 

are added, and the known methods for calculating the frequencies can be used 
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again. The method is referred to as M1 in the context of this chapter. Additionally, 

a second method is introduced, which is not a real non-equilibrium approach, but 

where instead, the calculations of the excess chemical potential are performed 

via 1D RISM, where the point charges are taken from the optimized structure EC-

RISM calculations. This method will be termed M2.  

 

3.1.3 Computational details 
 

For TMAO, geometry optimizations were performed with B3LYP/6-311+G(d,p) 

and MP2/6-311+G(d,p) in PCM solvent. These optimized structures were used as 

basis structures. Additionally, frequency calculations were performed on these 

structures to obtain normal modes, reduced masses, and IR intensities. The nor-

malized Cartesian displacement vectors along the normal modes were calculated 

using a Mathematica script originally developed by P. Kibies and S. Kast. Four dis-

placed structures were generated with displacement steps of 0.02 Å relative to 

the basis structure. For the equilibrium approach, EC-RISM calculations with 

MP2/6-311+G(d,p)/PSE3 or B3LYP/6-311+G(d,p)/PSE-3 on the corresponding 

optimized structures, respectively. For the EC-RISM calculations, a cubic box of 

2403 grid points with a spacing of 0.1 Å between two grid points was utilized. For 

3D RISM, the convergence criteria were set to 10-6 w.r.t to the change in direct 

correlation function in successive steps. The EC-RISM cycle converged when the 

energy difference between two successive steps was below 10-4 kcal/mol. Every 

iteration was performed with this level of theory for the B3LYP/6-311+G(d,p) 

calculations. In the case of MP2/6-311+G(d,p), the iteration used HF/6-

311+G(d,p), and only in the final calculation MP2/6-311+G(d,p) were utilized. 

Two approaches regarding the electrostatics calculation were tested; in the first 

one, the atom-centered partial charges, which were determined using the ChelpG 

algorithm, were utilized to calculate the electrostatic interactions. The full correct 

QC electrostatic potential was used in the second one. The number of point 

charges representing the solvent in the QC calculations was reduced by combin-

ing distant point charges using a Voronoi algorithm.275 For TMAO, the optimized 

TMAO force field version 3 (see Table 36) taken from Ref18,276 were utilized. In 

the case of cyanide, the optimized parameters from Lee et al. 277 were used. The 

LJ parameters can be found in 6.9. 

Additionally, for the calculation of solvent-mediated contribution to the free 

energy under non-equilibrium conditions, 1D RISM calculations were performed. 

Here, the atom-centered point charges from the converged equilibrium EC-RISM 

calculations on the PCM optimized structure. For both 1D RISM and 3D RISM, the 

temperature was set to 298.15 K, and the solvent susceptibilities were taken from 

Ref18. The partial charges for the 1D RISM calculations can be found in SI_4.1 (SI 

is accessible in the electronic appendix). The HNC closure was used, and a con-

vergence criterium of 10-8 difference in the direct correlation function between 

two successive steps. A logarithmic grid of 512 points ranging from 0.00598 Å to 
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a maximum distance of 164.02 Å was used.  

 

 

3.2 EPR-parameters of the pH-dependent nitroxide probe HMI 
 

In this thesis, the EPR parameters of nitroxide (3R,4S)-2,2,3,4,5,5-hexame-

thylimidazolidin-1-oxyl (HMI) in solution were analyzed by different theoretical 

methods. From the above-described dependency of the EPR parameters on the 

geometry of the nitroxide, it is necessary to model an accurate conformational 

ensemble previous to the parameter calculations. Therefore, AIMD simulations in 

water were performed by B. Sharma (more details below) to generate a sufficient 

ensemble of structures. This simulation generated snapshots and was subse-

quently used for the EPR parameter calculations. These calculations were per-

formed with three different solvation models EC-RISM, CPCM, and a QM/MM ap-

proach (done by V. A. Tran132). This project was part of the RESOLV collaboration. 

One of the subjects of this project is to analyze local solvent effects, where HMI is 

a very good sample to study. The HFCC parameter of HMI changes significantly 

when the molecule is protonated (The protonated version of HMI will be called 

HHMI throughout this thesis). Thus, the EPR parameters of HHMI were also ana-

lyzed. For the analysis of the results, some aspects of EPR parameters will be 

shown in the following. 

As mentioned in chapter 0, nitroxide spin probes are one tool of choice to 

characterize the specific properties of the microenvironment around an organic 

material in which the nitroxide probe is incorporated. On the one hand, the char-

acteristic parameters are the g-values, which are related to the chemical shielding 

due to the surroundings around the spin, and on the other hand, the hyperfine 

interactions reflect the interactions between electron and nuclear spins. In chap-

ter 2.3.2, the concept of the effective spin Hamiltonian was introduced, allowing 

a full description of a measured EPR or NMR spectrum. In the case of nitroxide 

spin probes, the spin Hamiltonian generally has the following form: 

𝐻̂ = 𝜇𝑁𝐵⃗ 𝑔𝑆 + 𝑆 𝐴𝐼 + 𝐼 𝑃𝐼 . (179) 

The last term describes the nuclear quadrupole interactions, which can be ne-

glected in molecules synthesized with 15N isotopes. The parameters 𝑔 and 𝐴 can 

be obtained by fitting the experimental spectrum to the spin Hamiltonian.  

In EPR spectroscopy, different frequencies are usually taken for the constant 

irradiated frequency field, so-called bands, depending on which spectroscopic pa-

rameter is the object of interest. For example, if there is only interest in the iso-

tropic hyperfine coupling constant, a so-called X-band (8.0–12.0 GHz) is enough 

to resolve the hyperfine coupling in solution at ambient conditions. If, instead, a 

resolution of the g-anisotropy is to be determined in frozen environments, a 

much higher band must be chosen, e.g., the Q-band (35 GHz) or W-band (95 GHz). 

EPR spectroscopy is particularly well suited to resolve the microenvironment 

since the spectroscopic parameters depend very strongly on the polarity of the 
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surrounding environment. In the case of nitroxide spin probes, this behavior can 

be described very well using an approximate LCAO approach. E.g., the principal 

components of the g-tensor can be described as:100 

𝑔𝑥𝑥 ≈ 𝑔𝑒 + 2𝜆𝑂𝜌𝜋
𝑂𝑐𝑛𝑦

2 /(𝐸𝑛𝜋∗ − 𝐸0), (180) 

𝑔𝑦𝑦 ≈ 𝑔𝑒 + 2𝜆𝑂𝜌𝜋
𝑂𝑐𝑛𝑥

2 /(𝐸𝑛𝜋∗ − 𝐸0) (181) 

and 

𝑔𝑧𝑧 ≈ 𝑔𝑒 ≈ 2.0023. (182) 

Here gxx, gyy, and gzz are the principal components of the g-tensor, 𝑔𝑒 is the g-factor 

of the free electron, 𝜆𝑂 is the spin-orbit-coupling constant of the electrons on the 

oxygen, 𝜌𝜋
𝑂 is the spin density in the 𝜋* orbital and 𝑐𝑛𝑥

2 , 𝑐𝑛𝑦
2  are the coefficients of 

the 2py and 2px orbitals in the lone-pair orbital on the oxygen. From this simple 

model, it can be stated that the 𝑔𝑧𝑧 not deviates from the free-electron value, and 

the other two values increase compared to the free-electron value. This model 

can also predict the influence of hydrogen bonds on the gx component. Due to 

hydrogen bonding the 𝑐𝑛𝑦
2  decreases, which arises from the delocalization of the 

lone-pair electron into the H2O orbitals and a decrease of 𝜌𝜋
𝑂 is observed.  

To describe the influence of different structural and environmental effects 

on the isotropic hyperfine coupling constant (the terms HFCC or 𝐴iso will be used 

to abbreviate this expression within this work) of the nitrogen from eq (159), it 

is known that it depends strongly on the spin density at the nucleus N, which can 

be described via: 

𝜌𝑁 = ∑𝑃𝜇,𝜈
𝛼−𝛽

⟨𝜙𝜇(𝐫)|𝛿(𝐫 − 𝐫𝑁)|𝜙𝑣(𝐫)⟩

𝜇,𝜈

, (183) 

where 𝑃𝜇,𝜈
𝛼−𝛽

 is the difference between the density matrices for an electron with α 

and 𝛽 spins, the so-called spin density. From theoretical papers published in the 

1950 two major contributions to 𝜌𝑁 were derived.128,278–280 The first one is the 

so-called direct contribution from the nucleus’s spin density. This effect is due to 

the nominally unpaired orbital (also called the singly occupied molecular orbital 

(SOMO)), which is delocalized. The second contribution is the spin polarization 

or indirect contribution, which originates in the interactions of the 𝜎 electrons 

with the unpaired spin electron.264 In absolute terms, the latter contribution is 

smaller than the direct one. However, the second term becomes important when 

the nucleus lies in the proximity or exactly in a nodal plane of the SOMO, leading 

to a vanishing of the direct term. In the case of nitroxides, the SOMO is basically 

the antibonding 𝜋* orbital. The larger the contribution of the nitrogen atomic or-

bital to the antibonding 𝜋* orbital, the larger the spin density is on the nitrogen 

and vice versa. However, the SOMO is also influenced by the surrounding orbitals 

and especially on the doubly occupied 𝜋 bonding orbital. To address this problem, 

it is useful to consider the nitroxide resonance structures, that are depicted in 

Figure 4. 
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Figure 4: Resonance structures of the N-O nitroxide moiety in HMI. 

In the left resonance structure, the unpaired electron is located on the O-atom, 

and the N-atom possesses a lone pair, which corresponds to the 𝜋 bonding orbital. 

In this situation, a pyramidal structure is preferred, for example, in NH3. In this 

case, the SOMO is constituted by the atom’s singly occupied p orbital. In the right 

resonance structure, the N atom has a single electron in the p-like orbital: in this 

constellation, the planar geometry is favored since it minimizes the repulsion be-

tween the three 𝜎 bonds on the nitrogen. Due to the location of the free electron 

on the nitrogen, a higher HFCC is obtained for this structure. However, if small 

deviations from the planar geometry occur due to thermal fluctuations, the s or-

bital contributes to the SOMO, and the spin density even increases on the N atom, 

and therefore the HFCC increases.118,261 

To describe the influence of the solvent on the HFCC, one can also refer to 

Figure 4, where the right zwitterionic structure will be stabilized in a polar envi-

ronment. In many experiments, it was shown that the HFCC increases by increas-

ing the dielectric constant.261 

 

 

3.2.1 Ab-initio molecular dynamics simulation 
 

B. Sharma performed and evaluated all AIMD simulations for HMI and HHMI.132 

The workflow is taken from ref132. The simulations were performed with one so-

lute in a cubic periodic box of 128 water molecules, and the starting configura-

tions were taken from a classical molecular dynamics simulation.  

The AIMD simulations were calculated with the CP2K program. Kohn-Sham 

orbitals were represented by the atom-centered TZV2P basis set using 

Goedecker-Teter-Hutter pseudopotentials. Kohn-Sham orbitals and the corre-

sponding total electron density were represented by a plane wave basis with a 

kinetic energy cutoff of 500 Ry. To speed up the computation of the Fock-ex-

change terms within the revPBE0-D3 hybrid functional, the auxiliary density ma-

trix method (ADMM) with the cpFIT3 auxiliary basis was used.  

The spin-polarized Kohn-Sham equations were solved in the simulations of 

the open-shell solute in solution. The NVT ensemble was simulated using the 

Nose-Hoover chain thermostat, resulting in every Cartesian coordinate getting its 

thermostat. A time step of 0.5 fs was used to solve the integrated equations of 

motion. The total length of the AIMD trajectory was 206 ps, where the first 6 ps 

were used to equilibrate. Two different configuration subsets were generated 

with an increment of 200 fs and 500 fs, respectively. The former subset was used 
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for DFT calculations, whereas the latter was utilized for the DLPNO-CCSD calcu-

lations. Therefore, a total of 1000 configurations were used for the DFT calcula-

tions and 400 configurations for the DLPNO-CCSD calculations.  

The same procedure was performed for the protonated version of HMI, called 

HHMI. For a more detailed description, see Ref 132 

 

3.2.2 Computational details 
 

The two different configuration subsets (1000 and 400 snapshots) were used for 

either DFT or DLPNO-CCSD calculations to calculate the isotropic hyperfine cou-

plings. In the case of DFT, the hybrid functional revPBE0-D3 was used. For all cal-

culations, the basis set def2-TZVPP with decontracted s-functions was applied. A 

previous study showed that this basis set is well suited to reproduce hyperfine 

coupling constant, with a good balance between computational cost and accu-

racy.132 The first subset containing the 1000 solvent-solute configurations was 

further divided into a set in which all water molecules were removed, and only 

the solvent-relaxed structure of HMI was retained. This subset will be called ver-

tically desolvated (VD) in the remaining chapter. All water molecules that could 

not be assigned to the first two solvation shells around the N-O motif were re-

moved in the second subset. V. A. Tran developed the corresponding script. Only 

the vertically desolvated structures were considered for the subset used for the 

DLPNO-CCSD calculations. This subset contains 400 structures that were ex-

tracted every 500 fs. For the protonated HHMI, the exact same process was per-

formed. 

The EC-RISM calculations were done on a cubic grid with 120 points in each 

dimension with a distance of 0.5 Å between two grid points. The SPC/E HNC wa-

ter solvent susceptibility was used for 1 bar (see chapter 3.1). The GAFF version 

1.4 was used as the source for the LJ parameters used in the 3D RISM calculations 

(see Table 37). When the maximum residual norm of the direct correlation be-

tween two successive iterations is smaller than 10-6 convergence of the 3D RISM 

calculations was assumed. The convergence criterium for the whole EC-RISM cy-

cle was 0.01 kcal mol-1 for the maximum free energy difference between two con-

secutive EC-RISM cycles. All EPR-parameter calculations were performed with 

ORCA 4.2.1.281 For the DFT calculations in all iterations, the corresponding level 

of theory was utilized to extract the exact electrostatic potential from QC-calcu-

lated electron density. The atom-centered point charges were calculated using 

the CHelpG algorithm utilizing Breneman-Wiberg radii with a 0.3 Å grid spacing 

and a maximum distance of all atoms to any grid point of 2.8 Å. A constraint of the 

dipole moment to reproduce the QC-derived dipole moment was not enforced. 

The compression of distant point charges into a cluster of point charges was ap-

plied during the calculations.275 

Geometry optimizations were made of 400 vertically desolvated structures 

generated from the first 80 ps of the AIMD using B3LYP/6-311+G(d,p) and the 
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CPCM solvation model for water. A clustering was then applied to the optimized 

structures, whereas the principle of the clustering algorithm is to calculate the 

RMSD between the optimized structures and assign structures that have an RMSD 

less than 0.1 Å to one cluster. The structure with the smallest energy was used as 

a reference for the corresponding cluster. 

Additionally, geometry optimizations were performed with B3LYP, B3LYP-

D3, revPBE0, and revPBE0-D3 using the def2-TZVPP with decontracted s-func-

tions basis set with the CPCM solvation model for water and methanol using ORCA 

Version 4.2.1. 281,282 For these structures, HFCC single-point calculations were per-

formed using EC-RISM and CPCM. For the methanol EC-RISM calculations, the sol-

vent susceptibility for ambient pressure developed in ref26, and the author's 

bachelor thesis was applied. Here, the solvent susceptibilities are based on 1D 

RSIM HNC calculations. The free energy of these optimized structures was calcu-

lated with the corresponding DFT level of theory and without an explicit PMV 

correction of the excess chemical potential. Additionally, MP2/6-311+G(d,p) cal-

culations were performed for the B3LYP and revPBE0-D3 optimized structures. 

Here, for the water calculations, the PMV correction developed by N. Tielker was 

applied.25 For the methanol calculation, a PMV correction based on the PC+ cor-

rection scheme was used, whereby the correction parameter is: cpc+=-0.09696 

kcal mol-1 Å-3 

Regarding the g-tensor calculations, the def2/j auxiliary basis set was com-

bined with revPBE0-D3/def2-TZVPP with decontracted s-functions. To tackle the 

gauge origin problem, the GIAO approach was utilized. To simulate the W-band 

spectra, the g- and A-tensors were extracted and used as inputs for Easyspin. 

Within Easyspin283, the pepper module was utilized for spectra simulation with a 

linewidth of 0.45 mT. For every snapshot, a separate spectrum was simulated, 

and afterward, the 1000 (or 400) spectra were added up and averaged. In this 

manner, a spectrum based on a sum of spectra is obtained. The W-band spectra 

were simulated at a frequency of 93.993 GHz 
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3.3 The pressure-dependence of the protein backbone model 

NMA, Ac-Gly-NHMe and Ac-Ala-NHMe 
 

In the introduction, the problem was explained that pressure-dependent MD sim-

ulations were performed only with force fields parameterized for ambient pres-

sure only. The three typical model systems, NMA, Ac-Gly-NHMe, and Ac-Ala-

NHMe, were used to investigate how strong pressure affects the peptide back-

bone. Therefore reliable reference data is needed to evaluate how strong the ef-

fect of pressure is on the free energy hyperplane of the three typical peptide back-

bone models. Pressure-dependent EC RISM calculations are a well-suited tool to 

address this problem.  

In experiments, it is observed that proteins change their structure due to 

pressurization. The main driver for this is that a folded protein has a larger vol-

ume than an unfolded one. In terms of thermodynamic relations, this effect can 

be described via:284 

Δ𝐺(𝑝) = Δ𝐺0(𝑝0) + (Δ𝑉0)(𝑝 − 𝑝0) − (
Δ𝜅

2
) (𝑝 − 𝑝0)

2 + ⋯ (184) 

where Δ𝐺 is the free energy change between the unfolded and folded state, 𝛥𝐺0 

is the corresponding free energy difference at ambient conditions, p is the pres-

sure and Δ𝑉0 and Δ𝜅 are the changes in volume and compressibility, respectively. 

Δ𝐺0 is normally small and positive; thus, the folded state is slightly preferred un-

der ambient conditions. However, the second term in (184) is negative, whereby 

for a typical globular protein, the volume difference is in the range of -20 to 

100 cm-3 mol-1. This volume difference results in a -4 to -20 kJ mol-1  free energy 

difference at 2 kbar.284 Due to this relatively small free energy difference, only 

small free energy changes on the peptides' level are expected. For EC-RISM cal-

culations, two possible ways exist to calculate the pressure-dependent change in 

Gibbs energy. The first is to use the pressure-dependent partial molar volume 

correction, introduced in equation (76). A second approach is closely related to 

equation (184). The idea is to integrate the pressure-dependent change of the 

partial molar volume of the corresponding molecule over the pressure range, 

leading to the following relation: 

𝐺(𝑝) = 𝐺0 + ∫ 𝑉𝑚(𝑝)
𝑝

𝑝0

d𝑝′. (185) 

Ideally, the calculated free energies with both methods should deliver similar re-

sults.  

Another quantity to validate the quality of EC-RISM is the determination of 

pressure-dependent chemical shifts. In the experiments6 a non-linear trend was 

observed that is mostly described via: 

𝛿(𝑝) = 𝐵1 · (𝑝 − 𝑝0)
2 + 𝐵2 · (𝑝 − 𝑝0) + 𝛿0. (186) 

In the latter equation, a is the linear coefficient, b is the nonlinear (second-order) 

coefficient, and c is the chemical shift at 1 bar. With EC-RISM, pressure-dependent 
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chemical shifts were calculated in the past. Although the pressure trend could be 

reproduced correctly, some errors relative to the experiment remain. These er-

rors could be attributed to small geometry changes, the influence of hydrogen 

bonds, the level of theory, errors in calculating the reference standard, or signifi-

cant population changes. The first two issues shall be addressed by utilizing pres-

sure-dependent EC-RISM geometry optimizations that were unavailable in the 

past. In equation 10 of ref27, the pressure-dependent change of the ideal part of 

the chemical potential of the solute going from 𝑝0 to p is calculated via: 

∫
𝜕𝜇𝑢

id(𝑝, 𝑇)

𝜕𝑝
d𝑝

𝑝

𝑝0

= 𝑅𝑇 ∫ 𝜅(𝑝, 𝑇)
𝑝

𝑝0

d𝑝. (187) 

Whereby 𝜇𝑢
id is the ideal part of the chemical potential, and 𝜅 is the solvent com-

pressibility, which can be derived from experimental reference data. This equa-

tion is derived from the Kirkwood-Buff theory and follows from setting the so-

lute-solvent Kirkwood-Buff integral to zero. Where on the one hand, this term 

was essential to reproduce the experimental shift in the ion product of water,27,176 

the term is not relevant for the description of the relative free energy changes 

between different conformers since this term is the same for all conformers. 

 

3.3.1 Generation of conformers 
 

In the beginning, reliable conformers for the three test systems, NMA, Ac-Gly-

NHMe, and Ac-Ala-NHMe, are required. To sample the conformational space, PCM 

calculations at ambient conditions are used. Regarding NMA, two conformers, 

representing the cis and trans conformation, respectively, were optimized at the 

B3LYP/6-311+G(d,p)/PCM level of theory utilizing Gaussian09 Rev E.01.274 For 

Ac-Gly-NHMe and Ac-Ala-NHMe an exhaustive dihedral scan around the back-

bone torsions 𝜑 and 𝜓 were performed, leading to 400 structures for each mole-

cule. The scans were performed at B3LYP/6-311+G(d,p)/PCM level and followed 

by a free relaxation optimization for every structure using Gaussian16 Rev B.01285. 

After the optimization, a clustering was applied, where all structures within a car-

tesian RMSD of 0.01 Å were considered a single minimum. This procedure leads 

to eight conformers for Ac-Gly-NHMe and seven conformers for Ac-Ala-NHMe. A 

hard restraint was implemented to guarantee identical dihedral values for the 

force field structures and the quantum mechanical optimized ones, with a dihe-

dral barrier of 1000 kcal mol-1. For the implementation of the restraint, the exist-

ing parameters for the backbone angles were deleted with the Parmed (Amber-

Tools 2021286) program, and then a new parameter set was introduced for each 

of the two dihedral angles. For this parameter set, a torsion angle amplitude of 

1000 kcal mol-1 was chosen. For the phase angle, a value was chosen that is 180° 

larger than the angle to be scanned. This high torsion angle amplitude ensured 

that the molecule retained the torsion angle during optimization. Within the scan, 

all other internal degrees of freedom were freely variable. The amber ff14SB32, 

amber ff19SB287, and the CHARMM36/mm39 force field were applied for Ac-Gly-
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NHMe with a Poisson Boltzman288,289 implicit solvation model. The 

CHARMM36/mm force field implementation for Amber simulations was realized 

with the chamber option of parmed. The simulations were done using sander.286 

For Ac-Ala.-NHMe, ff14SB and ff19SB dihedral scans with analytical linearized 

Poisson-Boltzmann (ALPB) solvations were performed. The partial charges and 

Lennard Jones parameters of the atoms can be found in chapter 6.10 

 

3.3.2 Pressure-dependent EC-RISM calculations on B3LYP/6-

311+G(d,p)/PCM optimized structures 
 

The EC-RISM calculations were strictly based on the already successfully applied 

approach to predicting different thermodynamic25,180 and spectroscopic quanti-

ties under high-pressure conditions.27 The EC-RISM calculations were performed 

at the MP2/6-311+G(d,p)/PSE-2 level with Gaussian09 Rev E.01.274. The Hartree-

Fock method was used during the iterations, and after convergence of the EC-

RISM iteration cycle, a final MP2 calculation was carried out. In all iterations, in-

cluding the final one, the HF-electron density was used to compute the exact elec-

trostatic potentials. Calculations of NMA were performed on a cubic grid, with 

140 points per principal axis and a grid spacing of 0.3 Å. Ac-Gly-NHMe and Ac-

Ala-NHMe utilized a cubic grid with 120 x 120 x 120 points with 0.3 Å between 

two grid points. The DRISM/HNC18,290,291 approach was used for calculating sol-

vent susceptibilities with densities, and dielectric constants were calculated with 

an EOS taken from Floriano292. ff14SB-based Lennard-Jones parameters (see 

chapter 6.9) were used for all molecules. Convergence criteria were set to 10-6 for 

3D RISM calculations and 0.01 kcal mol-1 for the maximum energy difference be-

tween two consecutive EC-RISM cycles. Atom-centered point charges were deter-

mined with the ChelpG45 algorithm using default radii to reproduce the quantum 

mechanically obtained dipole moment. The quantum-chemical calculations’ ex-

pense was reduced by condensing far-away solvent point charges into a single 

point charge.275 To estimate NMR parameters, MP2/6-311+G(d,p)/EC-RISM26,248 

calculations were applied to all molecules and conformations using the GIAO 

method. Additionally, DLPNO-CCSD/def2-TZVPP/PSE-3 calculations using Orca 

4.2.1281 were utilized. Thermal corrections were calculated with B3LYP/6-

311+G(d,p)/PCM and were added to the free energies obtained from the EC-RISM 

calculations. 
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3.3.3 Pressure-dependent geometry optimizations based on EC-

RISM 
 

For the novel geometry optimizations based on the EC-RISM formalism, ORCA 

5.0.2182 was used, in which the EC-RISM formalism was integrated. The method 

B3LYP/g was utilized since this version of B3LYP uses the same parameters also 

included in Gaussian. As a basis set, the 6-311+G(d,p) was used to guarantee com-

parability with the previously made optimizations. A grid of 1203 points with a 

distance of 0.3 Å between the grid points was used. In contrast to the old EC-RISM 

versions, the 3D RISM calculations are performed during the SCF calculations, 

and no complete SCF calculation is performed on one solvent polarization. Con-

vergence was achieved when the energy change was below 5-6 Eh, the maximum 

gradient must be lower than 3-4 Eh/bohr, and the RMS gradient must be below 1-

4 Eh/bohr. The maximal displacement and RMS displacement were set to 4-3 bohr 

and 2-3 bohr, respectively. This approach allows the utilization of pressure-de-

pendent geometry optimizations. Regarding the pressure-dependent optimiza-

tions, a step-by-step procedure was utilized, whereby in the first step, the previ-

ously calculated PCM optima were used as the starting point for EC-RISM geom-

etry optimizations at ambient conditions. The MP2/6-311+G(d,p)/EC-RISM cal-

culations with Gaussian09 Rev E.01.274 with the GIAO method were also applied 

to the pressure-dependent EC-RISM optimized structures 
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4 Results 
 

4.1 RISM-based IR Calculations using equilibrium and non-equi-

librium solvation 
 

In this chapter, a detailed analysis of how well EC-RISM can represent pressure-

dependent frequency shifts will be performed. At first, different combinations of 

χ-functions and methods to calculate the electrostatic interactions between sol-

vent and solute within 3D RISM will be tested on the different IR-calculation 

(equilibrium and non-equilibrium) setups using the B3LYP/6-311+G(d,p) level 

of theory. In the second part of this chapter, the MP2/6-311+G(d,p)/PSE-3 setup 

will be used to calculate the theoretically most accurate pressure-dependent IR 

frequencies. On the one hand, the diatomic anion cyanide, which shows only one 

normal mode, is used as a test system. The other system under investigation is 

the small osmolyte TMAO, which shows four significant IR-band in the spectrum 

(the corresponding modes are presented in Figure 5). 

 

 
Figure 5 The four analyzed and experimental observable TMAO IR modes. An analogous picture 

can be found in ref94 and ref176) 
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4.1.1 Benchmarking pressure-dependent RISM-based IR-calcu-

lation settings 
 

In the 2016 published paper by Imoto et al.,94 pressure-dependent IR calculations 

computed with EC-RISM were presented for the first time. However, the absolute 

pressure-dependent EC-RISM wavenumbers were not presented at that time. In-

stead, the relative pressure-dependent change that could be evaluated using EC-

RISM calculations was used to scale the wavenumbers calculated at ambient con-

ditions using B3LYP/6-311+G(d,p)/PCM. This chapter will mainly show the ad-

vances which have led to a consistent improvement of the EC-RISM formalism 

and how they affect the calculation of IR frequencies.  

First of all, it must be mentioned that in older EC-RISM calculations, an HF 

calculation was automatically performed during the iterations of the EC-RISM cy-

cle as soon as a DFT functional was used. This is problematic because the final 

B3LYP calculation is then performed under the influence of an electrostatic sol-

vent polarization, which was polarized with the HF electron density. Especially in 

the subsequent 3D RISM calculation, an inconsistency occurs since the B3LYP 

electron density now polarizes the solvent distribution. Therefore, one can no 

longer assume a complete convergence of the EC-RISM cycle. In the context of this 

thesis, all DFT calculations used the respective theory level in the iterations (un-

less explicitly mentioned). 

Furthermore, it should be noted that the old IR calculations (in ref94) were 

performed94 with χ-functions based on pressure-dependent g-functions from MD 

simulations.18 These χ functions have proven to be particularly suitable for re-

producing the pressure-dependent dipole moment changes of TMAO compared 

to AIMD dipole moment changes. However, in further investigations, especially 

regarding the calculation of pressure-dependent NMR chemical shifts,26,27 the 

χHNC susceptibilities showed significantly better performances. Another possible 

issue is that the old calculations used the ESP-derived solute point charges to cal-

culate the electrostatic interactions between solute and solvent in EC-RISM. How-

ever, during the SAMPL625 prediction challenge, a new efficient way to calculate 

the electrostatic interactions via the QC-derived electrostatic potential was de-

veloped (see 2.1.4). This is why four different combinations of electrostatic cal-

culations and χ-functions will be compared in this part to benchmark the perfor-

mances of EC-RISM with B3LYP/6-311+G(d,p). Furthermore, the two new ap-

proaches for calculating a non-equilibrium situation will be presented (see 3.1.2). 

  



RISM-based pressure-dependent computational spectroscopy 

63 

Table 1 IR-wavenumbers (in cm-1) at 1 bar and 10 kbar of the four TMAO normal modes and the 

cyanide ion calculated with different EC-RISM settings utilizing the B3LYP/6-311+G(d,p) level of 

theory EQ represents the equilibrium approach, M1 is the first new non-equilibrium approach 

and M2 the second non-equilibrium approach. 𝜑/χSIM represents the combination of full electro-

static potential with χSIM. 𝜑 /χHNC is the combination of full electrostatic potential with χHNC, the 

q/χSIM model uses the solute point charges to compute the electrostatic interactions in conjunc-

tion with χSIM, and q/HNC represents χHNC with point charges. The above number in a cell repre-

sents the unscaled number, whereas the lower number is scaled by a scaling factor of 0.967.202. 

Raw data and structures can be found in SI_4.1. The displacement for the different energy com-

ponents (Esol, μes, and Gsol) plots can be found in SI_4.1. 

Method Mode Pressure  

  1 bar  10 kbar 

EQ  𝜑/χSim 𝜑/χHNC q/χSim q/χHNC Exp 𝜑/χSim 𝜑/χHNC q/χSim q/χHNC Exp 

CH3-def-high 1511.4/ 

1461.5 

1510.8/ 

1460.9 

1512.1/ 

1462.1 

1504.3/ 

1454.5 

1481.6 1510.0/ 

1460.3 

1510.5/ 

1460.7 

1527.1/ 

1476.7 

1506.2/ 

1456.3 

1483.1 

CH3-def-middle 1490.9/ 

1441.7 

1490.6/ 

1441.5 

1493.3/ 

1444.0 

1488.9/ 

1439.8 

1465.6 1491.6/ 

1442.4 

1491.6/ 

1442.4 

1513.6/ 

1463.7 

1492.5/ 

1443.2 

1469.0 

CH3-def-low 1433.4/ 

1386.1 

1435.6/ 

1388.2 

1450.7/ 

1402.8 

1451.2/ 

1403.3 

1404.1 1438.4/ 

1391.0 

1439.1/ 

1391.6 

1479.6/ 

1430.8 

1456.2/ 

1408.1 

1406.3 

NO-stretch 971.0/ 

939.0 

984.6/ 

952.1 

972.1/ 

940.0 

983.1/ 

950.7 

952.5 986.9/ 

954.3  

990.0/ 

957.3 

994.9/ 

962.1 

987.9/ 

955.3 

956.1 

CN- 2135.9/ 

2062.5  

2127.9/ 

2057.7  

2140.4/ 

2069.8 

2134.6/ 

2065.2 

2079.3 2132.5/ 

2062.1 

2128.6/ 

2058.4 

2137.1/ 

2050.4 

2135.3/ 

2064.8 

2083.0 

M1 CH3-def-high 1510.1/ 

1460.3 

1510.7/ 

1460.8 

1510.0/ 

1460.2   

1510.8/ 

1460.9 

1481.6 1512.1/ 

1462.2 

1512.4/ 

1462.5 

1512.1/ 

1462.2 

1512.5/ 

1462.6 

1483.1 

CH3-def-middle 1489.5/ 

1440.3 

1490.5/ 

1441.3 

1489.6/ 

1440.4 

1490.9/ 

1441.7 

1465.6 1491.5/ 

1442.3 

1491.8/ 

1442.6 

1491.7/ 

1442.5 

1492.2/ 

1443.0 

1469.0 

CH3-def-low 1415.6/ 

1368.9   

1414.6/ 

1367.9 

1413.3/ 

1366.7 

1415.0/ 

1368.3 

1404.1 1415.7/ 

1368.9 

1416.2/ 

1369.5 

1416.1/ 

1369.4 

1416.8/ 

1370.0 

1406.3 

NO-stretch 890.3/ 

860.9  

896.5/ 

866.9 

892.2/ 

862.8 

899.9/ 

870.2 

952.5 898.4/ 

868.8 

900.0/ 

870.3 

901.9/ 

872.1 

903.7/ 

873.9 

956.1 

CN- 2152.7/ 

2081.7 

2152.8/  

2081.8 

2151.3/ 

2080.3 

2153.6/ 

2080.6 

2079.3 2152.7/ 

2081.7 

2152.6/ 

2081.6 

2151.0/ 

2079.1 

2153.4/ 

2082.3 

2083.0 

M2 CH3-def-high 1502.6 

1451.5 

1504.3/ 

1453.2 

1502.7/ 

1451.6 

1504.5/ 

1453.3 

1481.6 1503.9/ 

1452.8 

1504.4/ 

1453.3 

1504.0/ 

1452.9 

1504.6/ 

1453.4 

1483.1 

 CH3-def-middle 1485.6/ 

1435.1 

1488.3/ 

1437.7 

1485.8/ 

1435.3 

1488.7/ 

1438.1 

1465.6 1487.6/ 

1437.0 

1488.2/ 

1437.6 

1487.9/ 

1437.3 

1488.7/ 

1438.1 

1469.0 

CH3-def-low 1411.8/ 

1363.8 

1414.7/ 

1366.6 

1412.1/ 

1364.1 

1415.1/ 

1367.0 

1404.1 1413.5/ 

1365.4 

1414.1/ 

1366.0 

1414.0/ 

1365.9 

1414.7/ 

1366.6 

1406.3 

NO-stretch 897.3/ 

866.8 

905.3/ 

874.5 

899.6/ 

869.0 

909.3/ 

872,6 

952.5 905.2/ 

874.4 

907.5/ 

876.6 

909.1/ 

878.2 

911.6/ 

880.6 

956.1 

CN- 2149.5/ 

2078.6 

2149.9/ 

2079.0 

2150.1/ 

2079.2 

2150.7/

2079.7 

2079.3 2151.6/ 

2080.6 

2150.3/ 

2079.3 

2151.0/ 

2080.0 

2151.1/ 

2080.1 

2083.0 
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4.1.2 Benchmarking pressure-dependent RISM-based IR-calcu-

lation settings: The equilibrium ansatz 
 

In the beginning, the focus will be set on the equilibrium method. In Table 1, 

the absolute wavenumbers at 1 bar and 10 kbar for the four different combina-

tions and the four modes of TMAO are shown and were calculated with 

B3LYP/6-311+G(d,p). The experimental values (the measurements were per-

formed by C. Rosin94 and P. H. Schummel27) at ambient conditions are 1481.6 cm-1 

for the CH3-def-high mode, 1465.6 cm-1 for the CH3-def-middle mode, 1404.1 cm-1 

for the CH3-def-low mode and 952.5 cm-1. For the CH3-def-high, the 𝜑/χSim variant 

leads to a frequency of 1514/1461.5 cm-1 (in the latter case, a precomputed vi-

brational scaling factor of 0.967 was applied (see computational chemistry com-

parison and benchmark database202). Only marginal differences occur when the 

𝜑/χHNC and q/χSim methods are considered. The q/χHNC shows a smaller frequency 

with 1504.3/1454.3 cm-1. If no precomputed scaling parameter is applied, the 

q/χSim variants show the best agreement relative to the experimental value. In 

contrast, as soon as the scaling factor is applied, the other three variants show 

superior results; the relative difference to the experiment is 20 cm-1.  

 

 
Figure 6 Pressure-induced frequency shifts of the four relevant TMAO modes calculated with the 

EQ approach using B3LYP/6-311+G(d,p)/PSE-3. Panel (A) shows the CH3-def-high mode, in panel 

(B)  CH3-def-middle mode is depicted, (C) shows the CH3-def-low mode, and in (D), the NO-stretch 

mode is presented. The green dots show the wavenumbers calculated using the exact electrostatic 

potential and χHNC; the black dots represent the calculation with the ESP-derived point charges 

and χHNC. The red dots represent the calculation with exact electrostatic potential and χSIM. The 

magenta points represent the experimentally measured values. Raw and calculated data can be 

found in SI_4.1. 

In Figure 6, the pressure-dependent frequency shifts for the equilibrium 

method and the four TMAO-Modes are presented and compared to the 
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experimentally obtained shifts. In Panel (A), the results for the CH3-def-high 

mode are shown. A steady blue shift is observed in the experiment, leading to a 

difference relative to 1 bar of 1.6 cm1. Something immediately noticeable are the 

pressure-dependent shifts calculated with the q/χSIM method. In direct compari-

son, the pressure-dependent changes are significantly larger than for the other 

variants, and no steady pressure trend is visible, and a very strong outlier can be 

observed at 4 kbar. The obtained wavenumber at 10 kbar increased nearly 

15 cm-1 relative to the ambient value. The two variants with the exact electro-

static potential show the wrong pressure tendency, resulting in a pressure-de-

pendent decrease. The best agreement relative to the experimental observation 

is obtained with the q/χHNC with an increase of 2 cm-1 at 10 kbar compared to the 

value at ambient conditions.  

For the CH3-def-middle (absolute values in Table 1), a wavenumber of 

1490.6/1441.5 cm-1 was calculated with 𝜑/χHNC, resulting in a difference relative 

to the experimental measurements of +25 cm-1 (unscaled) and -24.1 cm-1 (scaled 

frequency). The 𝜑/χSIM variant (1490.9/1441.7 cm-1) shows nearly no difference 

compared to the formerly discussed variant. The q/χHNC leads to slightly smaller 

wavenumbers, whereas the q/χSIM shows a higher frequency. In summary, the 

equilibrium method for the CH3-def-middle mode produces a similar perfor-

mance relative to the experiment as for the previously introduced mode. 

Figure 6 Panel (B) depicts the pressure-dependent frequency shift of the CH3-

def-middle mode. The experimental reference shows a steady increase resulting 

in a difference of 3.4 cm-1. All four approaches can represent the steady frequency 

increase due to pressurization. However, just as for the previously discussed 

mode, it can be observed that the q/χSIM method predicts a much too steep in-

crease, which is also not continuous, with a strong outlier at 4 kbar. The 𝜑/χHNC 

and 𝜑/χSIM show an increase of 0.6 cm-1 and 0.9 cm-1 up to 10 kbar, respectively. 

The q/χHNC overestimates the pressure response; however, as for the CH3-def-

high mode, the pressure dependence can best be reproduced with this method. 

The third methyl deformation mode is the CH3-def-low mode (absolute values 

in Table 1). The differences between the various variants become much more 

pronounced for this vibrational mode. Using the 𝜑/χSIM variant, a wavenumber of 

1433.4/1386.1 cm_1 was obtained at ambient pressure. Without scaling, a differ-

ence of nearly 30 cm.1 to the experiment is observed, whereas, with the precom-

puted scaling factor, the offset reduces to −18 cm-1. The 𝜑/χHNC approach leads to 

a wavenumber of 1435.6/1388.2 cm-1 at 1bar. The CH3-def-low mode strongly 

depends on the chosen electrostatic interaction method. The calculated wave-

numbers with the two point-charge approaches are 1450.7/1402.8 cm-1 (q/χSIM) 

and 1451.2/1403.3 cm-1 (q/χHNC). The calculated numbers nearly match the ex-

perimentally obtained ones by scaling the frequencies.  

The pressure dependence for the q/χSIM shows the same (Panel (C) of Figure 

6) behavior for the CH3-def-low mode as in the previous two cases, increasing 

nearly 30 cm-1 to 10 kbar. However, only a shift of 2.3 cm-1 was measured in the 

experiment. The other three variants show a good agreement with the 
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experimental pressure progress. For q/χHNC and 𝜑/χSIM an increase of 5 cm-1 (up 

to 10 kbar) can be observed, whereas the 𝜑/χHNC shows with 3.5 cm-1 the best 

agreement with respect to the experiment. 

The last TMAO mode that is discussed is the N-O stretch mode (absolute val-

ues in Table 1). In contrast to the CH3-def-low mode, where a strong dependency 

on the electrostatic model was observed, a strong solvent susceptibility depend-

ency is observed here. The 𝜑/χHNC and q/χHNC nearly match the experimental 

value of 952.5 cm-1 if the values are scaled. For the other two methods, the calcu-

lated wavenumbers are 971.0/939.0 cm-1 (𝜑/χSIM) and 972.1/940.0 cm-1 (q/χSIM. 

The pressure dependence is depicted in Panel (D) of Figure 6 Panel (D). In the 

experiment, an increase of 3.6 cm-1 is obtained. Here, the two χSIM show a signifi-

cantly too strong pressure-dependent increase. However, all variants overesti-

mate the pressure dependence, whereas for the 𝜑/χHNC 5.4 cm-1 and for the q/χHNC 

4.8 cm-1, respectively.  

 
Figure 7 Pressure-induced wavenumber shifts of the cyanide anion calculated with B3LYP/6-

311+G(d,p) and the EQ approach. The green dots were calculated using the exact electrostatic 

potential and χHNC; the black dots were calculated using the ESP-derived point charges and χHNC. 

The red dots represent the calculation with exact electrostatic potential and χSIM; the magenta 

points represent the experimentally measured values. Raw and calculated data can be found in 

SI_4.1. 

For the cyanide anion, the experimentally measured wavenumbers are 

2079.3 cm-1  in H2O and 2080.4 cm-1 in D2O at 1 bar (see Table 1). The unscaled 

wavenumbers are generally too high and range between 2127 cm-1 and 

2140 cm-1, whereby the full electrostatic potential calculations lead to slightly 

smaller values. By applying the scaling factor of 0.967, the relative differences to 

the experiment are significantly smaller, where the best result is obtained with 

the q/χSIM combination (2069.8 cm-1). Under pressure, the cyanide mode wave-

number increases by around 4 cm-1 up to 10 kbar. In the calculations (see Figure 

7), only the χHNC methods can correctly reproduce the pressure trend, whereas 

the two χSIM methods show a reduction in the wavenumbers. No clear differences 

between the two charge models are obtained. The predicted pressure trend is 

underestimated with χHNC methods; however, no clear outliers are observed. A 

significant wrong trend is observed for the two χSIM methods. A possible explana-

tion for the very small differences between the electrostatic models could be that 
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the point charges for the two-atom-containing molecule cyanide can accurately 

represent the exact electrostatic potential.  

 

4.1.3 Benchmarking pressure-dependent EC-RISM calculation 

settings: The M1 non-equilibrium ansatz 
 

In this part, the newly developed M1 non-equilibrium method is presented. The 

different combinations of electrostatic calculation and solvent susceptibilities are 

again analyzed. The corresponding data for the absolute wavenumbers are pre-

sented in Table 1. For the CH3-def high mode and CH3-def middle mode, the two 

variants with explicit electrostatics show similar results compared to the equilib-

rium approach at 1 bar, with fewer than 1% deviations. For q/χSIM, the absolute 

wavenumber at 1 bar decreases by 2.1 cm-1  compared to the equilibrium ap-

proach for the CH3-def high mode, and for the CH3-def middle mode, a decrease 

of 3.7 cm-1 is observed. The highest deviation for the CH3-def high mode (6.5 cm-1) 

relative to the equilibrium method is obtained with the q/χHNC. The latter variant 

leads to an increase of 2 cm-1 for the CH3-def middle mode.  

 

 
Figure 8 Pressure-induced frequency shifts of the four relevant TMAO modes calculated with the 

M1 non-equilibrium approach using B3LYP/6-311+G(d,p)/PSE-3. Panel (A) shows the CH3-def-

high mode, in panel (B) CH3-def-middle mode is depicted, (C) shows the CH3-def-low mode, and 

in (D), the NO-stretch mode is presented. The green dots were calculated using the exact electro-

static potential and χHNC; the black dots were calculated using the ESP-derived point charges and 

χHNC. The red dots represent the calculation with exact electrostatic potential and χSIM; the magenta 

points represent the experimentally measured values. Raw and calculated data can be found in 

SI_4.1. 

Regarding the pressure dependence (see Figure 8 Panel (A)) for the CH3-def 

high mode, it is noticeable that the fluctuations between the different model com-

binations are significantly lower compared to the equilibrium method. The 
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experimentally measured pressure shift of 1.6 cm-1 at 10 kbar can be best de-

scribed by the χHNC models, although the differences to the χSIM models are rela-

tively small. The differences caused by the different electrostatic models are neg-

ligible in the case of the non-equilibrium method. However, the χSIM models again 

show an outlier at 4 kbar and, therefore, a non-monotonous curve. 

For the CH3-def middle variant, the differences between the EQ and M1 meth-

ods become more concise. A decrease of 21 cm.1 relative to the equilibrium ap-

proach is observed for the full electrostatic potential variants. The decrease is 

stronger for the point charge variants, with nearly 40 cm-1. Without scaling of the 

wavenumbers, the M1 methods can represent the experimental value better than 

the EQ methods. All four variants accurately match the pressure trend (Figure 8 

Panel (B)). However, the two χHNC variants go nearly hand in hand with the ex-

perimentally observed shifts up to a pressure of 7.5 kbar and then show a minor 

underestimation. The χSIM variants overestimate the pressure dependence at all 

pressures.  

With the M1 method, the absolute wavenumbers for the N-O stretch mode are 

reproduced significantly worse than with the EQ method. The wavenumbers are 

about 80 cm-1 lower compared to the EQ results. In contrast to the other three 

modes, it can be observed for the N-O stretch mode that the differences between 

the individual electrostatic and susceptibility variants are more pronounced with 

a 10 cm-1 difference. The pressure dependence shows that the χHNC variants re-

produce the experimental trend accurately, whereas the χSIM variants signifi-

cantly overestimate the pressure trend. 

 

 
Figure 9 Pressure-induced wavenumber shifts of the cyanide anion, calculated with the M1 

method. The green dots were calculated using the exact electrostatic potential and χHNC; the black 

dots were calculated using the ESP-derived point charges and χHNC. The red dots represent the 

calculation with exact electrostatic potential and χSIM; the magenta points represent the experi-

mentally measured values. Raw and calculated data can be found in SI_4.1. 

At ambient conditions, the results for the vibrational mode of the cyanide an-

ion are in excellent agreement with the experimental results when the scaling 

factor is applied (see Table 1). The results range between 2079.7 cm-1 and 

2080.6 cm-1, leading to a deviation relative to the experiment of less than 1 cm-1. 

In contrast to the TMAO modes, the pressure dependence (see Figure 8) is 
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significantly underestimated for all four methods. The variants using the χHNC as 

solvent susceptibility show a pressure-induced decrease of the wavenumbers, 

which contradicts the experimental finding. Thus, cyanide is the first analyzed 

mode, where the M1 methods fail to predict the correct pressure trend.  

 

 

4.1.4 Benchmarking pressure-dependent EC-RISM calculation 

settings: The M2 non-equilibrium ansatz 
  

The final method used to calculate IR wavenumbers is the M2 non-equilibrium 

method. In contrast to the M1 method, only the intramolecular interactions are 

described in the context of a non-equilibrium approach, whereas a separate 1D 

RISM calculation is performed for each displaced structure to calculate the excess 

chemical potential; note that the partial charges of the minimum structure are 

used in these calculations. 

For all three CH3-def modes (see Table 1), lower wavenumbers are calcu-

lated under atmospheric pressure compared to the other two methods. Without 

applying the scaling factor, the M2 method leads to the best agreement with the 

experimental reference. The deviation for the CH3-def-high relative to the exper-

iment range between 22 cm-1 and 24 cm-1. For CH3-def-middle, similar results are 

obtained, whereas, for the CH3-def-low mode, the unscaled wavenumbers show 

the smallest deviation from the experiment with 7 cm-1 to 11 cm-1. The worst 

agreement with the experiment is obtained using the M2 method with scaling. 

Noticeably, only the solvent susceptibility leads to differences between the indi-

vidual methods, whereas the choice of the electrostatic model (with identical sol-

vent susceptibility) leads to no relevant differences. The differences between χHNC 

and χSIM are 2 cm-1 (CH3-def-high) and 3 cm-1  (CH3-def-low). Regarding the NO-

stretch mode, the absolute wavenumbers range from 897.3/866.8 cm-1 (𝜑/ χSIM) 

up to 909.3/872.6 cm-1. Therefore, the M2 non-equilibrium method yields similar 

magnitudes as the M1 method and thus also shows the largest deviation from the 

equilibrium method for the NO-stretch mode. 
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Figure 10 Pressure-induced frequency shifts of the four relevant TMAO modes calculated with the 

M2 non-equilibrium approach using B3LYP/6-311+G(d,p)/PSE-3. Panel (A) shows the CH3-def-

high mode, in panel (B) CH3-def-middle mode is depicted, (C) shows the CH3-def-low mode, and 

in (D), the NO-stretch mode is presented. The green dots were calculated using the exact electro-

static potential and χHNC; the black dots were calculated using the ESP-derived point charges and 

χHNC. The red dots represent the calculation with exact electrostatic potential and χSIM; the magenta 

points represent the experimentally measured values. Raw and calculated data can be found in 

SI_4.1. 

The two χSIM variants best resemble the pressure shift (see Figure 10) for the 

CH3-def-high-mode. The difference between the two electrostatic models is neg-

ligible; however, the outlier at 4 kbar occurs again. The pressure rise to 10 kbar 

is hit almost exactly. In contrast, the two χHNC types fail to predict the correct pres-

sure trend and show a decrease in the wavenumbers upon pressurization. A sim-

ilar picture is obtained for the CH3-def-middle-mode, where the χSIM methods can 

nearly represent the pressure change at 10 kbar, whereas the two other variants 

show a decline. The same result is observed for the CH3-def-low-mode. In con-

trast, it can be observed again that the χSIM variants overestimate the pressure 

trend for the NO-stretch mode. The two χHNC approaches produce satisfying re-

sults in representing the pressure-dependent frequency shift.  

In summary, the M2 method gives similar results to the M1 method at ambient 

pressure. However, the M2 method cannot reproduce the correct pressure trend 

for every combination of electrostatic model and solvent susceptibilities. Despite 

this, both χSIM variants, except for the obligatory outlier at 4 kbar, can correctly 

reproduce the pressure for the CH3-def modes. Nonetheless, the M2 method can-

not be considered suitable, and the M1 method should be used instead.  
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Figure 11 Pressure-induced wavenumber shifts of the cyanide anion, The green dots were calcu-

lated using the exact electrostatic potential and χHNC; the black dots were calculated using the ESP-

derived point charges and χHNC. The red dots represent the calculation with exact electrostatic 

potential and χSIM; the magenta points represent the experimentally measured values. Raw data 

and calculated frequencies can be found in SI_4.1. 

There are nearly no differences between the M2 and the M1 methods for the 

cyanide anion under ambient conditions (see Table 1), and the results are rela-

tively satisfying. The difference to the experimentally obtained results is less than 

1 cm-1 if the scaling is applied. In contrast to the M1 method, the M2 method can 

correctly reproduce the experimentally observed pressure trend. However, the 

absolute shifts are especially for the χHNC underestimated. A possible explanation 

for this could be that the cyanide mode is more sensitive to pressure-dependent 

changes in the equilibrium geometry, which are not included in the current ap-

proach.  

 

4.1.5 Comparison between pressure-dependent IR calculations 

using MP2/6-311+G(d,p)/χHNC and B3LYP/6-311+G(d,p)/ 

χHNC 
 

Based on the results from the previous three chapters, the χHNC calculations are 

more reliable than the χSIM ones. Furthermore, a strong difference in the pressure 

trend compared to the experiment is observed when the point charge approach 

is used for the calculations with χSIM. This observation indicates that the combi-

nation of full electrostatic potential with χHNC is the most reliable. Nonetheless, 

the differences between 𝜑/χHNC and q/ χHNC are relatively small. On the other 

hand, the level of theory MP2/6-311+G(d,p)/χHNC proved to be the best EC-RISM 

variant in different benchmarks to calculate free energies in solution.25,180 Fur-

thermore, this variant uses χHNC with exact electrostatic potential, which pro-

duced the best results for the DFT calculations in most categories. In addition, 

Nicolas Tielker developed a pressure-dependent and PMV-dependent correction 

of the excess chemical potential. In this chapter, this level of theory shall now be 

applied to calculating the pressure-dependent IR problem. The raw data and 

structures can be found in SI_4.1. 
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In Table 2, the absolute wavenumbers calculated with MP2/6-

311+G(d,p)/χHNC at 1 bar and 10 kbar for the three different EC-RISM variants are 

presented together with the experimental results and the results obtained from 

AIMD calculations (performed by S. Imoto94 and see 2.4). Moreover, the results 

from the B3LYP/6-311+G(d,p)/χHNC are again shown in Table 2 

  
Table 2 Absolute wavenumbers (in cm−1) for the TMAO and cyanide IR modes calculated from 

different EC-RISM methods (here MP2/6-311+G(d,p)/χHNC and B3LYP/6-311+G(d,p)/χHNC) and 

(for TMAO) from AIMD compared to the experimental data for 1 bar and 10 kbar. Material for the 

MP2/6-311+G(d,p)/χHNC from ref27 Raw and calculated data can be found in SI_4.1. 

Mode Exp. M1/M1* M2/M2* EQ/EQ* AIMD 

1 bar  MP2/6-311+G(d,p)/χHNC 

CH3-def-high 1481.6 1527.1/1450.6 1520.8/1444.8 1525.6/1449.3 1476 

CH3-def-middle 1465.6 1508.0/1432.6 1506.3/1430.7 1508.6/1433.1 1456 

CH3-def-low 1404.1 1430.7/1358.5 1430.6/1358.5 1451.9/1379.3 1394 

NO-stretch 952.5 965.8/917.5 974.7/926.0 1060.0/1007.0 876 

CN- 2079.3/2080.4a 2028.3/1926.6 2025.5/1924.2 2033.6/1931.9 - 

1 bar B3LYP/6-311+G(d,p)/χHNC 

CH3-def-high 1481.6 1510.7/1460.8 1504.3/1453.2 1510.8/1460.9 - 

CH3-def-middle 1465.6 1490.5/1441.3 1488.3/1437.7 1490.6/1441.5 - 

CH3-def-low 1404.1 1414.6/1367.9 1414.7/1366.6 1435.6/1388.2 - 

NO-stretch 952.5 896.5/866.9 905.3/874,5 984.6/952.1 - 

CN- 2079.3/2080.4a 2150.8/2079,8 2150.7/2080.3 2127.9/2057.7 - 

10 kbar  MP2/6-311+G(d,p)/χHNC 

CH3-def-high 1483.1 1528.8/1452.4 1521.0/1445.0 1525.3/1449.1 1481 

CH3-def-middle 1469.0 1509.1/1433.6 1505.8/1430.5 1509.5/1434.0 1462 

CH3-def-low 1406.3 1432.4/1360.4 1430.2/1358.6 1455.5/1382.7 1402 

NO-stretch 956.1 967.9/919.5 975.5/926.7 1064.1/1010.9 882 

CN- 2083.0/2084.1b 2028.0/1926.5 2025.8/1924.5 2034.9/1933.2 - 

10 kbar B3LYP/6-311+G(d,p)/χHNC 

CH3-def-high 1483.1 1512.4/1462.5 1504.4/1453.3 1510.5/1460.7 - 

CH3-def-middle 1469.0 1491.8/1442.6 1488.2/1437.6 1491.6/1442.4 - 

CH3-def-low 1406.3 1416.2/1369.5 1414.1/1366.0 1439.1/1391.6 - 

NO-stretch 956.1 900.0/870.3 907.5/876.6 990.0/957.3 - 

CN- 2083.0/2084.1b 2151.0/2080.0  2150.9/2079.9 2128.6/2058.4 - 

 

Besides the fact that the correlation energy is calculated more correctly by 

MP2, there is a big difference between the two methods in calculating the elec-

trostatic potential during the iterations. For MP2, the HF density is used during 

the iterations, whereas in the B3LYP calculation, the consistent DFT density is 

used. One observation that stands out directly is that the calculated absolute 

wavenumbers with MP2/6-311+G(d,p)/χHNC are mostly higher (except for the cy-

anide anion) than the corresponding results with B3LYP/-6311+G(d,p)/χHNC (see 

Table 2). A similar observation is also made in chapter 4.2.4, where the HFCC was 

calculated for the molecule HMI (see Table 5). Here, the HF density causes a 

stronger solvent polarization than the DFT density. The HFCC is a direct beacon 

for detecting the polarity of the solvent, and with the HF Density, higher HFCCs 

were calculated compared to the corresponding DFT Density. From the pressure-

dependent results, an increase in wavenumbers was observed at higher pressure, 
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with the polarity of the solvent increasing under pressure. Therefore, it can be 

concluded that higher wavenumbers are not solely due to the MP2 method but 

also due to the stronger polarization of the solvent caused by the HF electrostatics 

to polarize the solvent.  

 

 
Figure 12 Pressure-dependent wavenumber shifts of the four TMAO-Modes calculated with 

MP2/6-311+G(d,p)/χHNC (left column) and B3LYP/6-311+G(d,p)/χHNC. (A) and (B) show the 

CH3-def-high mode, in (C) and (D) the CH3-def-middle mode, (E) and (F) CH3-def-low, and (G) and 

(H) NO-stretch. The green triangles represent the equilibrium approach, the blue points the M1 

non-equilibrium approach, and the red squares the M2 non-equilibrium approach. Material from 

the left column is published in ref27. Raw and calculated data can be found in SI_4.1. The displace-

ment plots for the energy components of the MP2 calculations can be found in 6.1 

 

For the CH3 def-high mode, the best results for the absolute frequencies at 

1 bar are obtained by applying the M1 (1527.1/1450.6 cm-1) and EQ 

(1525.6/1449.3 cm-1) methods. Since the scaling factor used for 

MP2/6-311+G(d,p) is 0.95202, which is smaller than the 0.965202 in the case of 

B3LYP/6-311+G(d,p), the scaled values are lower than the respective DFT values 

despite the stronger polarization. Regarding the pressure dependence, only the 

M1 method can model the correct behavior (see panels (A) and (B) of Figure 12). 

Both the EQ and M2 methods show a negative pressure trend, which agrees with 
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the previous DFT calculations. The performances of the MP2 and DFT calculations 

are nearly identical, and both show a good representation of the experimentally 

observed increase.  

The EQ and M1 methods show similar results at 1 bar (1508.0/1432.6 cm1) 

and a similar trend in the pressure dependency for the CH3-def-middle mode. The 

pressure increase is 1 cm-1 up to 10 kbar, which underestimates the pressure re-

sponse by 2 cm-1. The M2 method is not able to predict the correct pressure trend. 

Regarding the CH3-def-low mode, the M1 method can accurately represent the 

pressure change, whereas the EQ mode shows a slight overestimation and the M2 

method underestimates slightly.  

For the CH3-def-low mode and the N-O stretch mode, the differences between 

the EQ and the two NEQ methods are more pronounced (as previously seen for 

the DFT calculations). In the case of the former mode, without scaling the wave-

numbers, the values at ambient conditions are overestimated. The 1 bar value of 

the stretch mode is significantly higher for the equilibrium approach than for the 

two NEQ methods. Regarding the pressure dependence, the EQ approach overes-

timates the effect slightly, whereas the M1 method shows a good agreement. 

Where for the CH3-def-low mode, the differences between MP2 and B3LYP are 

negligible, for the N-O stretch, the B3LYP calculations with the M1 method can 

accurately represent the pressure trend, whereas the MP2 show a slightly smaller 

increase. For the EQ calculations, the B3LYP shows a stronger overestimation of 

the pressure-induced increase than the MP2 calculations.  

 

 
Figure 13 Pressure-induced wavenumber shifts of the cyanide anion calculated with MP2/6-

311+G(d,p)/χHNC (Panel A) and B3LYP/6-311+G(d,p)/ χHNC (Panel B). The red squares represent 

the experimental data (open: in D2O, filled in H2O). The green triangles represent the equilibrium 

approach, the blue points the M1 non-equilibrium approach, and the red squares the M2 non-

equilibrium approach. . Material from ref27. Raw and calculated data can be found in SI_4.1. 

The calculated absolute wavenumbers by utilizing MP2/6-311+G(d,p)/χHNC 

are lower than the corresponding DFT calculations for the cyanide anion. This 

result contradicts the assumption that a higher solvent polarization is achieved 

with this level of theory. Since cyanide is a small molecule with only one vibra-

tional mode, it could be possible that the small effect of pressure on the equilib-

rium distance significantly affects the frequency of the vibrational mode. Pres-

sure-dependent geometry optimizations and numerical frequencies should be 

made to test this hypothesis as soon as they become available. The EQ and M2 

methods can reproduce the pressure trend, whereas the M1 method fails to 
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resemble the correct pressure trend. The best results are obtained with MP2 and 

the EQ methods; however, the increase is clearly underestimated. 

Nonetheless, a possibility exists to attribute various degrees of equilibrium or 

non-equilibrium solvation contribution to different modes since the methodol-

ogy used in this work does not account for intermediate states as, e.g., AIMD 

could. In this manner, for the N-O stretch mode, the equilibrium contribution 

could be stated to have a strong influence since it t resembles the experimentally 

obtained data in terms of absolute values at 1 bar (when the scaling is applied) 

for B3LYP/6-311+G(d,p), and it shows good results in representing the pressure 

dependence. Apparently, this could be a consequence of the large N-O dipole that 

interacts strongly with the surrounding water, causing more rapid water relaxa-

tion along the displacement coordinate. A similar picture can be observed for the 

cyanide anion, where the equilibrium approach best resembles the pressure-de-

pendent mode. However, for the cyanide anion, the values at ambient conditions 

are better resolved by the two non-equilibrium methods. Therefore, no clear 

statement can be made, if the equilibrium or the non-equilibrium method can 

lead to better results both in terms of absolute value and pressure trend. 

 A similar observation was made by Reimann and Kaupp173, who developed 

a new 3D RISM-SCF implementation, which allows for applying QC-geometry op-

timizations under the influence of the 3D RISM solvent. Based on these optimiza-

tions and numerical second derivatives, a consistent 3D RISM-SCF approach was 

introduced. This approach was termed the equilibrium approach since the full 

adaptation of the solvent is included. Additionally, a so-called frozen approach 

was presented, where the solvation potential of the equilibrium structure was 

unchanged used for the displaced structures. These two methods were bench-

marked by comparing the calculated frequency shift (relative to gas-phase value) 

of tetramethyl urea (TMU) to the experimental reference. The results showed a 

significant difference in behavior between the equilibrium and the frozen ap-

proach. Especially for water, the experimental reference shift is -107 cm-1, and the 

corresponding values for the 3D RISM SCF model are -146 cm-1 and -67 cm-1 for 

the equilibrium and frozen methods, respectively. These results clarify that a sole 

description, either by an equilibrium state or a non-equilibrium situation, is in-

sufficient to represent the real situation accurately. 

 

4.1.6 Summary and outlook 
 

Within the scope of this chapter, the numerical method developed by P. Kibies94 

for calculating pressure-dependent IR frequencies was modified and extended. 

The previously existing equilibrium method was subjected to a DFT benchmark 

in the first step. As model systems, the previously investigated TMAO was used, 

and on the other hand, the cyanide anion was considered, which is one of the sim-

plest models to make pressure-dependent IR calculations in solution. A con-

sistent EC-RISM variant was first used, where the B3LYP hybrid functional was 
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applied in all iterations. Based on this, four combinations of coulomb potential 

calculation (𝜑 and point charges) and solvent susceptibility were used (χHNC and 

χSIM).  

In the equilibrium case, the absolute wavenumbers of the TMAO modes at 

ambient pressure are good compared to the experimental results. However, as 

soon as the pressure-dependent change was investigated, the combination of χSIM 

with point charges showed a massive overestimation of the frequency change. 

Instead, by utilizing the χHNC, the changes are significantly smaller. However, for 

some modes, the inverse pressure trend is calculated. To tackle this issue, a so-

called non-equilibrium approach was introduced. This approach correctly repro-

duced the observed blue shift for every TMAO mode when the χHNC combined with 

exact electrostatics was used. The second benchmark system was the small cya-

nide anion, containing only one vibrational mode. Here, the performance is un-

satisfactory for both the equilibrium and non-equilibrium methods. A possible 

reason could be that the 1 bar PCM geometries were used for all pressures, and 

the possible pressure-dependent geometry changes were not considered. While 

this effect is probably relatively small, it could strongly influence the wave-

numbers for the small ion cyanide.  

In the second part of this chapter, the MP2/6-311+G(d,p)/χHNC, considered 

the gold standard for EC-RISM calculations, was used to calculate the pressure-

dependent wavenumbers for both test systems. Additionally, a pressure-depend-

ent PMV correction of the excess chemical potential was utilized for the equilib-

rium method. For TMAO, the absolute wavenumbers at 1 bar increased compared 

to the B3LYP calculations. The non-equilibrium method fails to predict the exper-

imentally observed pressure trend for the cyanide anion with the latter method. 

Overall, neither MP2/6-311+G(d,p)/χHNC nor B3LYP/6-311+G(d,p)/ χHNC shows 

superior results over the other in all observables. Especially in reproducing the 

pressure-dependent changes of the four TMAO modes, both methods showed 

similar results. 

In summary, this chapter showed an improvement compared to the previ-

ously obtained pressure-dependent frequencies, mainly driven by the exact elec-

trostatic potential to calculate Coulomb interactions and utilizing the χHNC to de-

scribe the solvent. However, at ambient conditions, no consistent picture regard-

ing the quality of the wavenumbers compared to the experiment is gained. For 

some modes, the equilibrium approach shows better results and vice versa. How-

ever, it stands out that the equilibrium approach better resembles the pressure-

dependent wavenumber increase of the N-O stretch mode and the vibrational 

mode of the cyanide anion. This result could be attributed to the relatively strong 

dipole moment that is involved in these displacements. Nevertheless, it should be 

noted here that the geometries considered are from a PCM optimization at 1 bar, 

and 1D RISM had to be used to calculate the excess chemical potential in the case 

of the non-equilibrium method. Moreover, in reality, the vibrational mode cannot 

be described by pure equilibrium or nonequilibrium solvation, but the solvent 

exhibits fast and slow relaxation processes.  
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While the absolute accuracy has room for improvement, EC-RISM can predict 

the pressure-dependent changes for TMAO relative good by applying either the 

non-equilibrium or equilibrium approach. This result is particularly relevant be-

cause Chapter 4.3 will examine the relative energetic pressure changes of pep-

tides, for which are no direct experimental reference data available. Therefore, 

the performance of EC-RISM in calculating pressure trends must be evaluated be-

forehand and compared to experimental results. 

As soon as geometry optimizations and numerical frequency calculations with 

EC-RISM are possible, these should be carried out pressure-dependently.  
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4.2 Calculations of EPR-Parameter in solution  
 

After NMR calculations with the EC-RISM method were successfully performed in 

the past, this chapter aims to calculate EPR parameters with EC-RISM for the first 

time at ambient conditions. The nitroxide (3R,4S)-2,2,3,4,5,5-hexamethylimidaz-

olidin-1-oxyl (HMI) was chosen as the model system (see Figure 14), which is, on 

the one hand, a relative rigid molecule, and on the other hand, it contains a pro-

tonatable group that allows the pH-dependent measurement of the HFCC. The 

strategy for calculating NMR parameters in previous publications primarily fo-

cused on investigating only a few or even only one minimum conformer. Further-

more, no explicit solvent molecules were taken into consideration. In this chap-

ter, the minimum structures will be investigated first, and subsequently, calcula-

tions on thermally averaged structures originating from an ab-initio MD will be 

performed.  

The overall goal is to explore how well EC-RISM can calculate EPR param-

eters with and without explicit water molecules. Therefore, a comparison be-

tween EC-RISM and the implicit solvent model CPCM on the geometry-optimized 

structures was performed, where the target parameter is the isotropic hyperfine 

coupling constant. In the second step, computations are performed with both EC-

RISM and CPCM for the snapshots obtained from the trajectory; additionally, a 

comparison was made between vertical desolvation and the explicit considera-

tion of explicit water molecules. Furthermore, in this chapter, for the first time, 

the DLPNO-CCSD method was used in combination with EC-RISM to obtain the 

highest possible accuracy compared to the experimental values. In the second 

part of the chapter, the full EPR spectrum will be calculated and compared to the 

experimentally obtained spectrum. The last part will deal with the pressure-de-

pendent changes of the EPR parameters calculated with EC-RISM. Parts of this 

chapter were already published in ref132. 

 

4.2.1 HFCC parameters for the nitroxy nitrogen of optimized HMI 

structures  
 

As a starting point, the results from the clustering should be analyzed. The clus-

tering resulted in only one cluster; the corresponding optimized structure is 

shown on the left side of. Figure 14. 

However, another optimized structure is shown in Figure 14, where an in-

version of the pyramidal configuration occurred at the N-CH3 group. This config-

urational change has not been observed during the AIMD, but it could be assumed 

that a bias is included when focusing on a single configuration of the N-CH3 group. 

QC calculations were performed with different levels of theory and solvent mod-

els in water and methanol to estimate how strongly the second configuration is 

populated in solution. On the one hand, the energetic difference between the two 

configurations is calculated, and on the other hand, the calculated 𝐴iso  parameter 
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for the nitrogen of the N-O motif is compared. The corresponding data is summa-

rized in Table 3. L. Galazzo measured experimental reference values for the nitro-

gen HFCC of 44.87 +0.14 MHz and 43.00 MHz293 in water and methanol, respec-

tively. 

 
Figure 14 The two optimized structures of HMI with B3LYP-D3 def2-TZVPP/CPCM. The (3R,4S)-

diastereomer (which is the one used in the AIMD) is depicted on the left, and the (3R,4R)-dia-

stereomer is shown on the right.  

Table 3: Nitrogen HFCCs of CPCM optimized geometries (in MHz) of (3R,4S)-HMI and (3R,4R) HMI 

calculated with different DFT methods for EC-RISM and CPCM in the solvents Water and Metha-

nol. For calculations, the def2-TZVVP with decontracted s-function was used. The free energy dif-

ference ((3R,4R) (3R,4S-) between the two main diastereomers is shown in kcal/mol. The experi-

mentally measured value for the HFCC is 44.87 MHz132 in water and 43.00 MHz293 in methanol.  

Optimized structures can be found in SI_4.2. 

Solvent Method EC-RISM CPCM 

 𝐴iso (3R,4S) 𝐴iso(3R,4R) ΔG(4R-4S) 𝐴iso (3R,4S) 𝐴iso (3R,4R) ΔG 

H2O revPBE0 32.6 35.3 4.40 30.2 32.8 4.98 

revPBE0-D3 32.5 35.8 3.64 30.0 33.5 4.44 

B3LYP 31.7 34.7 4.07 29.8 32.6 4.90 

B3LYP-D3 31.6 34.9 3.48 29.7 32.9 4.52 

MeOH revPBE0 30.6 33.1 4.59 30.0 32.6 4.99 

revPBE0-D3 30.3 33.8 3.90 29.8 33.3 4.45 

B3LYP 29.8 32.7 4.54 29.6 32.5 4.90 

B3LYP-D3 29.8 33.0 4.00 29.5 32.8 4.52 

 

Starting with the calculations in water, for EC-RISM, the free energy differ-

ences between the two diastereomers range from 3.48 kcal/mol (B3LYP-D3) to 

4.40 kcal/mol (revPBE0). It is clearly noticeable that by adding the D3 correction, 

a lowering of the free energy difference between the two conformers is observed. 

For CPCM, even higher free energy differences are calculated, ranging from 

4.44 kcal/mol (revPBE0-D3) to 4.90 kcal/mol (B3LYP). These values clearly indi-

cate a very large population difference between the two diastereomers, so the 

(3R,4S)-diastereomer can certainly be assumed to be the main conformer. The 

calculated free energy differences between the two diastereomers for methanol 

are even larger than for the corresponding water calculations. 

However, it should be noted that the results presented above for the free en-

ergy difference are based on DFT free energies alone without adding a PMV cor-

rection term. Especially for methanol, no PMV correction was not available at the 
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time. However, the PMV correction has proven to be an indispensable instrument 

for calculating accurate free energies in solution with EC-RISM. Therefore, addi-

tional free energies in water were calculated with the MP2/6-311+G(d,p)/EC-

RISM//B3LYP/def2-TZVPP/CPCM and revPBE0-D3/def2-TZVPP/EC-

RISM//revPBE0-D3/def2-TZVPP/CPCM level of theories. The corresponding 

data is shown in Table 5. These calculations show that the PMV correction further 

increases the relative energy difference between the two diastereomers. 

 
Table 4 Relative Gibbs energies Gsol (in kcal mol-1) and contributions (for EC-RISM:1 sum of intra-

molecular energy Esol, excess chemical potential μex, partial molar volume correction cvVm with cv 

= -0.1022 kcal mol-1 Å-3, based on the Vm which was calculated via the total correlation function ) 

from calculations on optimized solution structures. To correct the methanol 3D RISM calculations, 

the PC+ correciton179 with a correction parameter cpc+=-0.09696 kcal mol-1 Å-3 and a 𝜘=2.34204 

·109 Pa-1 was used. Material from ref132 

Method / Isomer Esol μex cvVm/ cpc+Vm/ Gsol (EC-RISM) 
MP2/6-311+G(d,p)/EC-RISM//B3LYP/def2-TZVPP/CPCM (water) 
(3R,4S) 0 0 0 0 
(3R,4R) 5.38 -1.42 0.47 4.43 
revPBE0-D3/def2-TZVPP/EC-RISM//revPBE0-D3/def2-TZVPP/CPCM (water) 
(3R,4S) 0 0 0 0 
(3R,4R) 4.95 -1.63 0.53 3.84 
MP2/6-311+G(d,p)/EC-RISM//B3LYP/def2-TZVPP/CPCM (MeOH) 
(3R,4S) 0 0 0 0 
(3R,4R) 5.34 -1.12 0.76 4.98 
revPBE0-D3/def2-TZVPP/EC-RISM//revPBE0-D3/def2-TZVPP/CPCM (MeOH) 
(3R,4S) 0 0 0 0 
(3R,4R) 4.96 -1.07 0.86 4.76 
 

The obtained HFCCs, calculated with EC-RISM, for the main diastereomer 

range from 31.6 MHz to 32.6 MHz, whereby the revPBEO variants result in higher 

couplings than the B3LYP calculations. The minor diastereomer shows an in-

crease of nearly 3 MHz in the 𝐴iso for all variants. With CPCM, the calculated 𝐴iso  

parameters are 2.4 MHz and 2.0 MHz lower for the revPBE0 and B3LYP calcula-

tions, respectively. Therefore, EC-RISM, compared to CPCM, is superior in repro-

ducing the experimental results, but the absolute accuracy is rather sobering, 

with deviations of more than 12 MHz. 

The experimental difference in HFCCs between methanol and water is ap-

proximately 2 MHz. The EC-RISM calculated HFCC in methanol ranges from 29.8 

MHz (for the B3LYP variants) up to 30.6 MHz (for revPBE0 calculations). Hence, 

water and methanol differ from 1.8 MHz to 2.1 MHz. While the absolute accuracy 

is still dissatisfying, the relative difference between the two solvents can be accu-

rately represented by EC-RISM.  

In contrast, the differences between methanol and water for CPCM are mar-

ginal, with changes of 0.2 MHz. In this case, CPCM cannot predict the experimen-

tally observed shift. Apart from that, it should be noted that for EC-RISM, a spe-

cific solvent susceptibility has to be generated, whereas in the case of CPCM, 

simply changing the dielectric constant and the corresponding refractive index is 
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sufficient to describe a new solvent. To generate the solvent susceptibility, on the 

one hand, experimentally measured dielectric constants and densities are 

needed, and on the other hand, a suitable force field is required.  

 

4.2.2  HFCCs parameters of nitroxy nitrogen of HMI calculated 

for 1000 snapshots with revPBE0/def2-TZVPP 
 

After it was shown in the previous chapter that for the optimized structures, EC-

RISM gives better results than CPCM relative to the experiment, the absolute ac-

curacy was still quite far away from the experimental observations. One has to 

consider that only DFT calculations were used, and only one optimized structure 

was considered, which did not include explicit solvent molecules in the calcula-

tion. Better levels of theory will be discussed later in this chapter, whereas in this 

section, the influence of multiple structures and explicit solvent molecules on the 

𝐴iso parameter will be studied. Additionally, the results for the HFCC of the ni-

troxy oxygen of HMI can be found in chapter 6.7. 
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Figure 15 Normalized probability histograms of 𝐴𝑖𝑠𝑜  values of the nitroxy nitrogen of the EPR 

spin-probe HMI at ambient conditions calculated with revPBE0-D3/def2-TZVPP with decon-

trated s function on 1000 snapshots. Panel (A) shows the probability distribution (Mean: 36.7 

MHz) calculated via the QM/MM approach (by V. A. Tran), including the two first water solvation 

shells around the N-O motif explicitly and approximating the remaining explicit water molecules 

via TIP3P point charges. Panel (B) shows vacuum calculations on the vertically desolvated struc-

tures (Mean: 31.2 MHz). Panel (C) shows the distribution calculated with EC-RISM/PSE-3 on the 

vertically desolvated structures (Mean: 37.0 MHz). In Panel (D), the distribution was calculated 

with EC-RISM/PSE-3 (Mean: 37.5 MHz) on the structures, explicitly including the two first solva-

tion shells around the HMI oxygen. Panel (E) shows the distribution calculated with CPCM solva-

tion on the vertically desolvated structures (Mean: 34.4 MHz). Panel (F) depicts the distribution 

calculated with CPCM solvation on the structures, containing the explicit solvent molecules of the 

first two solvation shells around the oxygen of HMI (Mean: 36.7 MHz). The blue line in each panel 

represents the average value of the corresponding distribution computing using the numerical  

𝐴𝑖𝑠𝑜  data that underlie the respective histogram.  The green vertical line in the panels represents 

the experimental value, and each distribution is separately normalized. Material from ref132. Raw 

data and structures for the EC-RISM and CPCM calculations can be found in SI_4.2._HMI, 

A subset of 1000 structures, in equal temporal distances extracted every 

0.2 ps from the 200 ps AIMD simulation, was used for the DFT calculations. In 

Figure 15, histograms of the probability distributions of the 𝐴iso parameters for 

the subset calculated with revPBE0/def2-TZVPP with decontracted s-functions 

are shown. At this point, six different setups are compared with each other. Panel 

(A) shows a QM/MM approach in which the first two solvation shells around the 

nitroxyl oxygen atom are explicitly represented, and additionally, TIP3P charges 

approximate the remaining water molecules of the simulation box. These calcu-

lations were performed by V. A. Tran and serve as the benchmark for EC-RISM 
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and CPCM calculations. For the QM/MM setup, a mean isotropic hyperfine cou-

pling constant of 36.7 MHz (an overview of HFCC values is given in Table 5) could 

be calculated, resulting in a difference of 7.5 MHz compared to the experimental 

value. By looking at the histograms, it can be seen that a 𝐴iso value between 30 

MHz and 45 MHz is obtained for most snapshots with a few outliers above 45 

MHz.  

Panel (B) of Figure 15 shows vacuum calculations on the vertically desolvated 

structures. Compared to the QM/MM method, a clear shift towards lower HFCCs 

can be seen. The mean isotropic HFCC is 31.2 MHz, which is 5.6 MHz lower than 

the QM/MM method, and, therefore, using a solvent model significantly improves 

the quality of the calculations. 

 
Table 5: HFCC calculated on revPBE0-D3/def2-TZVPP/CPCM optimized structures (first three 

rows) and averaged HFCCs of the nitrogen of nitroxide group of HMI from different calculation 

settings. For all calculations, the def2-TZVPP with decontracted s-functions basis set was used. 

VD represents the vertical desolvated dataset, and SSS represents the subset, including the first 

two solvation shells. Raw data can be found in SI_4.2. Ros denoted with daggerǂ were calculated 

by V.A. Tran. Material was published in ref132. 

Method 𝐴iso / MHz  

revPBE0/def2-TZVPP/CPCM Min 30.0 

revPBE0/def2-TZVPP/EC-RISM Min 32.5 

DLPNO-CCSD/def2-TZVPPP/EC-RISM Min 38.1 

revPBE0-D3/def2-TZVPP/Vacǂ 31.2 

revPBE0-D3/def2-TZVPP/QM/MM SSSǂ 36.7 

revPBE0-D3/def2-TZVPP/CPCM VD 34.5±0.17 

revPBE0-D3/def2-TZVPP/CPCM SSS 36.7±0.16 

revPBE0-D3/def2-TZVPP/EC-RISM VD 37.0±0.17 

revPBE0-D3/def2-TZVPP/EC-RISM SSS 37.5±0.16 

DLPNO-CCSD/def2-TZVPP/EC-RISM VD(400) 42.7±0.26 

DLPNO-CCSD/def2-TZVPP/QM/MM SSSǂ (400) 40.5 

revPBE0/def2-TZVPP/EC-RISM VD(400) DFT* 36.8±0.27 

revPBE0/def2-TZVPP/EC-RISM VD(400) HF* 37.7±0.27 

 

Panels (C) and (D) of Figure 5 show revPBE0/def2-TZVPP/PSE-3 EC-RISM 

calculations, whereby Panel (C) is based on the vertically desolvated structures, 

and Panel (D) explicitly includes the first two solvation shells in the calculations. 

In the former case, a mean 𝐴iso of 37.0 MHz is obtained, whereas for the latter 

one, an average 𝐴iso of 37.5 MHz is obtained. With EC-RISM on the vertically 

desolvated structures, a similar value to the QM/MM method can be obtained and 

a deviation of 7.2 MHz relative to the experimental results. Thus, a massive im-

provement compared to vacuum calculations is obtained. If the explicit waters 

are included, the result can be improved further by 0.5 MHz.  

The revPEB0/def2-TZVPP/CPCM calculations are shown in Panels (E) and (F) 

of Figure 15. Panel (E) shows the histogram for the desolvated structures, and 

Panel (F) again includes the first two solvation shells around the nitroxyl-O in the 

calculations. Interesting is the result for the former variant, where a mean 
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isotropic hyperfine coupling constant of 34.4 MHz could be calculated. Especially 

in comparison to the calculations with EC-RISM on the vertically desolvated 

structures, a significantly worse result is obtained with a difference of -2.6 MHz. 

This result reproduces the previously observed results for the optimized struc-

tures very well, whereby with EC-RISM, about 2 MHz larger 𝐴iso parameters were 

obtained compared to CPCM. However, using CPCM as a solvent model can signif-

icantly increase the accuracy compared to the vacuum-only calculations. Moreo-

ver, the influence of the explicit water in the CPCM case is more significant than 

EC-RISM. Thus, by adding the first two solvation shells, a mean HFCC of 36.7 MHz 

can be obtained; this precisely equals the mean value of the QM/MM calculations. 

Three central conclusions can be derived from the calculations on the 1000 

AIMD snapshots. First, it was shown that for the vertically desolvated structures 

(the computations that take the least time), EC-RISM produces significantly bet-

ter results than CPCM. This result was also observed before for the geometry-

optimized structures. The second finding is that EC-RISM gives approximately the 

same results for the vertically desolvated structures as in the case where the ex-

plicit waters were included. Therefore, the influence of the explicit quantum me-

chanical waters does not seem much stronger on the isotropic shielding con-

stants than the effect obtained due to the polarization of the point charges. The 

third fundamental finding is that significantly better results are obtained by con-

sidering the whole trajectory rather than the geometry-optimized structure. This 

seems odd at first glance since HMI is a relatively rigid molecule, and there should 

not be large structural differences. Therefore, in the next chapter, the influence 

of structural parameters on the 𝐴iso parameters will be investigated. 

 

4.2.3 Dependence of HFCC parameters on structural parameters 
 

This chapter aims to investigate the dependence of the HFCCs on structural prop-

erties. From the literature, it is well known that two major contributions to HFCC 

of the nitrogen in nitroxides exit, on the one hand, the surrounding solvent struc-

ture and, on the other hand, the nitrogen out-of-plane movement. The effect of 

the solvent polarity was already described previously; however, in this chapter, 

a more detailed analysis of the occurring number of hydrogen bonds and their 

influence on the HFCC shall be performed.   

For this purpose, the two subsets are again compared with each other, alt-

hough it should be noted that in the case of the vertically desolvated structures, 

there are no explicit hydrogen bonds. However, the surrounding water molecules 

influenced the associated vertically desolvated structures in the AIMD. The ad-

vantage of including the vertical desolvated subset in the comparison is that a 

certain baseline effect can be determined since the different structures show 

alone an effect on the HFCC, and the explicit waters do not influence them. 
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Table 6 Mean 𝐴𝑖𝑠𝑜  values in MHz of the nitroxy nitrogen of the EPR spin-probe HMI ((3R,4S)) at 

ambient conditions calculated with revPBE0-D3/def2-TZVPP with decontracted s function for the 

1000 snapshots shown as a function of the number of hydrogen bonds around the oxygen atom 

of the nitroxy group. The corresponding distributions can be seen in Figure 16. The abbreviation 

SSS means that the first two solvation shells are considered explicitly. Raw data can be found in 

SI_4.1. 

H-bonds CPCM VD CPCM SSS EC-RISM VD EC-RISM SSS No. Snapshots 

1 34.2±0.49 34.8±0.46 36.6±0.50 36.0±0.45 121 

2 34.5±0.22 36.6±0.21 37.1±0.22 37.5±0.21 595 

3 34.5±0.31 37.7±0.29 37.2±0.32 38.3±0.28 270 

4 34.3 ±1.05 37.5±1.33 37.1±1.14 38.2±1.33 9 

All 34.4±0.17 36.7±0.16 37.0±0.17 37.5±0.16 1000 

 

Four structures were obtained from the 1000 snapshots from the AIMD that 

did not form determinable hydrogen bonds, and 121 snapshots contained one 

single hydrogen bond. In 595 snapshots, i.e., more than half of all snapshots, two 

hydrogen bonds could be observed, whereas 270 structures had three hydrogen 

bonds. Nine and one structures could be assigned to four and five hydrogen 

bonds. For the sake of clarity, the zero and five hydrogen bond structures are not 

considered in this chapter. 
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Figure 16 Probability histograms of 𝐴𝑖𝑠𝑜  values of the nitroxy nitrogen of the EPR spin-probe HMI 

at ambient conditions calculated with revPBE0-D3/def2-TZVPP with decontrated s function on 

1000 snapshots containing a subset, divided into the dependence of the number of hydrogen 

bonds to the oxygen of the nitroxy group. In the histograms, there are 121 underlying snapshots 

for the 1 H-bond, 595 snapshots for the 2 H-bonds, 270 snapshots for the 3 H-bonds, and 9 snap-

shots for the 4 H-bonds. Panel (A) shows the distribution calculated with CPCM solvation on the 

vertically desolvated structures. Panel (B) depicts the distribution calculated with CPCM solvation 

on the structures that contain the explicit solvent molecules of the first two solvation shells 

around the oxygen of HMI. Panel (C) shows the distribution calculated with EC-RISM/PSE-3 on 

the vertically desolvated structures. In Panel (D), the distribution was calculated with EC-

RISM/PSE-3 on the structures, explicitly including the two first solvation shells around the HMI 

oxygen. The corresponding average values are summarized in Table 6. Raw data can be found in 

SI_4.2. 

In the case of CPCM, the vertically desolvated structures (Figure 16 Panel (A)), 

show average values of 34.2 MHz for one hydrogen bond, 34.5 MHz for two and 

three hydrogen bonds, respectively, and 34.3 MHz for four hydrogen bonds. Thus, 

only a marginal structural baseline effect is obtained due to the presence of hy-

drogen bonds in the simulation. As soon as the hydrogen bonds are explicitly in-

cluded, a clear dependence on the number of hydrogen bonds becomes apparent. 

When one hydrogen bond is formed, the average HFCC is 34.8 MHz, whereas as 

soon as two explicit hydrogen bonds are present, the HFCC increases by 1.8 MHz 
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to 36.8 MHz. If a structural baseline effect of 0.3 MHz is assumed, the increase is 

1.5 MHz, solely induced by the presence of the hydrogen bonds. The presence of 

a third hydrogen bond leads to a further increase of 1.1 MHz. For all hydrogen 

bond configurations, as soon as explicit hydrogen bonds are included in the cal-

culation, higher 𝐴iso parameters are obtained. A different picture is obtained for 

EC-RISM-based calculation. Here, for the vertically desolvated subset, the average 

values are 36.6 MHz (1 H-bond), 37.1 MHz (2 H-bonds), 37.2 MHz (3 H-bonds), 

and 37.1 MHz for the structures with four H-bonds. The baseline structural effect 

is 0.5 MHz, and hence slightly higher than for CPCM. The major difference occurs 

by looking at the explicitly solvated structures; here, for the case with one single 

explicit hydrogen bond, the mean HFCC is 36 MHz and thus 0.6 MHz smaller than 

for the vertically desolvated structures under the influence of pure EC-RISM solv-

ation. This means that the EC-RISM charge distribution exerts a stronger polari-

zation than the explicit water configurations, which form only one hydrogen 

bond. When two explicit hydrogen bonds are present in combination with EC-

RISM, the surrounding explicit environment generates a stronger polarization 

than the pure EC-RISM calculations on the vertically desolvated structures, with 

a difference between these two methods of 0.4 MHz. The effect becomes even 

stronger with three explicit hydrogen bonds, with a mean HFCC of 38.3 MHz. 

Another point that stands out is the fact that for all the sub-datasets analyzed 

in this chapter, the mean 𝐴iso is significantly larger than the comparable value for 

the optimized structures. Consequently, a relatively strong structural effect must 

influence the 𝐴iso parameters. From chapter 3.2, we know that in the framework 

of the relatively simple VB theory, the 𝐴iso parameter depends very strongly on 

the spin densities located at the nitrogen and the oxygen. In the past, several stud-

ies have been conducted to assess the influence of the nitrogen out-of-plane 

movement on the HFCC.263,278–280 The corresponding relevant improper dihedral 

of HMI is depicted in Figure 17.  

 
Figure 17 Two-dimensional representation of HMI. The magenta-colored atoms show the CNOC- 

improper dihedral, reflecting the out-of-plane movement.  

In Figure 18 Panel (C), the nitrogen out-of-plane movement distribution is 

shown for the 1000 snapshots of the trajectory. The blue line indicates the corre-

sponding value of the optimized structure, which is -0.65°. The value of the im-

proper dihedral ranges from -20° to 20°, with a nearly symmetric distribution. A 

small maximum can be found at 5°; however, as mentioned in chapter 4.2.1, only 

one optimized structure was found after optimizations in CPCM solvation. Most 
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of the structures can be found in a range between -5° to 5°. In panels (A) and (B) 

of Figure 18, the distribution of HFCCs versus the underlying improper dihedral 

is presented for revPBE0/def2-TZVPP/CPCM (Panel (A)) and revPEB0/def2-

TZVPP/EC-RISM (Panel (B)). The plots clearly show that a stronger out-of-plane 

motion results in a greater HFCC. An increase of the 𝐴iso parameters is observed 

for both positive and negative deflections, respectively. For an improper dihedral 

of 20°, there is almost a doubling compared to the values for the planar geometry.  

 

 
Figure 18: Panel (A) shows the distribution of 𝐴𝑖𝑠𝑜  parameters with respect to the improper tor-

sion NCOC calculated with revPBE0/def2-TZVPP/CPCM with decontracted s-functions. In panel 

(B), the distribution of 𝐴𝑖𝑠𝑜 parameters with respect to the improper torsion NCOC calculated with 

revPBE0/def2-TZVPP/EC-RISM with decontracted s-functions is depicted. The blue line shows 

the CNOC improper torsion value for the optimized structure using revPBE0-D3/def2-TZVPP. The 

horizontal green lines show the 𝐴𝑖𝑠𝑜 value calculated for the optimized structures with the corre-

sponding level of theory (see Table 3). Panel (C) shows the histogram of the CNOC improper tor-

sion, which is shown in Figure 17. Raw data can be found in SI_4.2. 

The nitrogen HFCC increases significantly with the pyramidalization of the NO 

group. This effect can also be explained by applying the VB model introduced in 

chapter 3.2. As long as the nitroxide moiety is planar, the direct contribution to 

the singly occupied molecular orbital (since the SOMO is basically the 𝜋* and no 

s-orbital contribution is present) vanishes.263 As soon as a deviation of the pla-

narity comes into place, the s atomic orbitals contribute to the SOMO and, there-

fore, increase the spin density at the nitrogen and the HFCC. The optimized struc-

ture of HMI has almost complete planar geometry, but due to thermal 
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fluctuations, there are slightly pyramidal deflections and, therefore, a larger HFCC 

over the entire trajectory compared to the optimized value is observed. The left 

resonance structure from Figure 3 is favored in the planar configuration, whereas 

a stronger out-of-plane movement favors the right resonance structure.  

In summary, the explicit hydrogen bonds influence the HFCC, but their effect 

is not the most substantial. From the AIMD, structures with two explicit hydrogen 

bonds could be extracted most frequently, and structures with one and three hy-

drogen bonds are the second most common. The number of hydrogen bonds in-

creases the HFCCs because the polarity of the solvent is increased in close prox-

imity to the nitroxide group. However, EC-RISM calculations on the vertically 

desolvated structures can reproduce this effect quite well. Therefore, at least for 

the HMI nitroxide, it can be concluded that the inclusion of explicit waters is not 

necessary to characterize the effect of the solvent on the HFCC. This is particularly 

relevant when considering larger systems, such as protein fragments, where the 

reduction of explicit atoms within the QC calculations is essential. However, to 

obtain accurate results, it is crucial to include the fluctuations of the out-of-plane 

motion of the NO moiety. Thus, a thermal averaging of different structures must 

be performed to improve absolute accuracy. Therefore, one or two optimized 

structures are insufficient, and some kind of molecular dynamic simulation (in 

the best case AIMD) or Monte-Carlo simulation must be utilized for larger sys-

tems.  

 

4.2.4 HFCC parameters of nitroxy nitrogen of HMI calculated for 

400 snapshots with DLPNO-CSSD/def2-TZVPP 
 

The HFCCs calculated with revPBE0/def2-TZVPP deviate from the experimental 

value by about 7-8 MHz. One reason for the still relatively large deviation is the 

level of theory utilized here. Hybrid functional calculations are not the best way 

to describe core-level spin polarization, and in particular, highly correlated wave-

function approaches have shown excellent agreement with experimental refer-

ence data. The following chapter performs calculations to more accurately depict 

these effects with the domain-based pair natural orbital coupled-cluster singles 

and doubles (DLPNO-CCSD) method.129–131  

These are the first attempts to couple the DLPNO-CCSD method with the EC-

RISM formalism. However, it must be noted here that, like in the case of EC-RISM 

computations with the theory level MP2, the iterations are performed using the 

HF formalism, i.e. concretely, that in the last iteration, in which the DLPNO-CCSD 

calculation takes place, the polarizing solvent, itself was polarized by HF electron 

density. A consistent EC-RISM cycle in which a DLPNO-CCSD calculation is per-

formed in each iteration is not practicable with current resources. 

The focus is on the revPBE0-D3/def2-TZVPP/CPCM optimized structure since 

this one was generated with the same level of theory used in the AIMD and verti-

cal desolvated subset containing 400 snapshots. The hyperfine coupling constant 
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is 38.1 MHz and, therefore, 5.6 MHz higher than the value obtained with revPBE0-

D3/def2-TZVPP. Still, a gap of 6.3 MHz to the experimental benchmark value is 

observed. Nonetheless, by choosing the better theory level, a massive improve-

ment could be obtained; however, by choosing the DLPNO-CCSD theory level; 

however, the computational time and requirement at the computational re-

sources are significantly increased. Thus, the complete trajectory of 1000 snap-

shots was not used to validate the effect of thermal averaging, but only 400 snap-

shots were included in the consideration, with a time interval of 500 fs between 

two snapshots.  

 

 
Figure 19 Probability distributions of 𝐴𝑖𝑠𝑜  values of nitroxy nitrogen calculated with DLPNO-

CCSD/def2-TZVPP(s-decontracted) on the subset containing 400 structures. In Panel (A), the EC-

RISM calculations on the VD dataset are shown (Mean 42.7 MHz). Panel (B) shows the probability 

distribution (Mean: 40.5 MHz) calculated via QM/MM approach, including the two first water 

solvation shells around the N-O motif explicitly and approximating the remaining explicit water 

molecules via TIP3P point charges. Raw and calculated data can be found in SI_4.2. This material 

was already published in ref132 

The corresponding probability distributions are depicted in Figure 19, 

whereby in Panel (A), the DLPNO-CCSD/def2-TZVPP/EC-RISM distribution on 

the vertically desolvated structures is shown. In Panel (B), the probability distri-

bution obtained by the QM/MM approach, where the two first solvation shells are 

explicitly considered, and the remaining waters are approximated by TIP3P point 

charges, is shown. For the latter one, an average value of 40.5 MHz for the 𝐴𝑖𝑠𝑜 is 

obtained (see Table 5). This is an improvement of 3.8 MHz compared to the cor-

responding calculations with revPEB0-D3/def2-TZVPP. The difference to the ex-

perimental benchmark value is only 4.3 MHz. The average value of the HFCC with 

DLPNO-CCSD/def2-TZVPP/EC-RISM on the vertically desolvated structures is 

42.7 MHz. Therefore, this new approach results in an increase of 5.7 MHz com-

pared to the revPBE0-D3/def2-TZVPP calculations on the vertically desolvated 

subset. The 5.7 MHz increase is in good agreement with the 5.6 MHz increase ob-

tained for the optimized structure, and the difference from the experimentally 

obtained value is only 2.1 MHz.  

Something that stands out is that the difference between EC-RISM for the ver-

tically desolvated structures and the QM/MM method in the case of DLPNO-

CCSD/def2-TZVPP is 2.2 MHz, whereas, in the case of revPBE0-D3/def2-TZVPP, 

the difference is only 0.3 MHz. 
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Figure 20 Probability distributions of 𝐴𝑖𝑠𝑜  values of nitroxy nitrogen calculated with revPBE0-D3 

functional and s-decontracted def2-TZVPP basis set using the AIMD ensemble of vertically desolv-

ated spin probe configurations. Panel (A) shows the consistent DFT electron density to calculate 

the exact electrostatic potential (average value 36.8 MHz), (B) calculated with HF electron den-

sity, obtained from DLPNO-CCSD/def2-TZVPP calculations, to calculate the exact electrostatic po-

tential (average value 37.8 MHz). The blue line in each figure represents the average value of the 

corresponding distribution. The green vertical line represents the experimental value, and each 

distribution is separately normalized. Raw data can be found in SI_4.1. This material was already 

published in ref132 

One possible reason could be the fact that in the case of revPBE0/def2-TZVPP, 

the consistent DFT density was used to calculate the electrostatic potential, yet, 

for DLPNO-CCSD, the HF density was used. To investigate this hypothesis, two 

different revPEB0-D3/def2-TZVPP calculations were performed for the 400 ver-

tically desolvated structures. On the one hand, the consistent route was chosen, 

and on the other hand, the HF density extracted from the DLPNO-CCSD calcula-

tions was used. The corresponding probability distributions are shown in Figure 

20. For the approach with consistent revPBE0-D3/def2-TZVPP, an average HFCC 

of 36.8 MHz is obtained. This result agrees with the 37.0 MHz obtained from the 

1000 snapshots calculated with revPBE0-D3/def2-TZVPP. Thus, the subset con-

taining the 400 snapshots is reliable for calculating the HFCCs. However, if the 

solvent charge distribution is used, which was polarized by the HF-ESP, an aver-

age 𝐴iso value of 37.8 MHz. Thus, the HF-density leads to a solvent distribution 

that causes a stronger solute polarization. Due to this effect, the difference be-

tween the QM/MM approach with DLPNO-CCSD/def2-TZVPP and DLPNO-

CCSD/def2-TZVPP can be explained. In addition, two striking outliers appear in 

the distribution of the DLPNO-CCSD/def2-TZVPP/EC-RISM calculations, for 

which there are no explainable and recognizable reasons. Nonetheless, the incon-

sistency resulting from the different electrostatics is smaller than the effect gen-

erated from the improved electronic structure at the DLPNO-CCSD level.  

The difference relative to the experimentally obtained HFCC with DLPNO-

CCSD/def2-TZVPP/EC-RISM is relatively small with 2.1 MHz. Nevertheless, add-

ing triple excitation effects into the response density (DLPNO-CCSD(T)) could 

further improve the results.  
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4.2.5 HFCC parameters for the nitroxy nitrogen calculated for 

the protonated HMI  
 

This chapter will consider the influence of pH on the HFCC of HMI. It is well 

known that nitroxides with a protonatable group near the spin motif show a pH-

dependent change of the 𝐴iso. For example, the N-H group can be protonated in 

HMI, and the measured pKa is 4.37. The experimental HFCC value shown in the 

previous chapters was measured at a pH of 10, and at a pH of 2, an HFCC of 

41.2 MHz was measured by L. Galazzo293, resulting in a pH-dependent shift of -

3.6 MHz. The same workflow shown above for HMI was repeated under acidic 

conditions to calculate the theoretical values. In the following chapters of this the-

sis, the protonated HMI will be abbreviated as HHMI.  

In Table 7, a detailed comparison of the HFCCs of HMI and HHMI is pre-

sented, starting with the optimized structures on the revPBE0-

D3/def2-TZVPP/CPCM level of theory. Here, a 𝐴iso of 27.5 MHz can be obtained, 

leading to a pH-dependent change of -2.5 MHz relative to the unprotonated HMI, 

where the calculated HFCC was 30.0 MHz. Therefore an underestimation of 

1.1 MHz relative to the experimentally obtained pH-dependent change is given. 

For revPBE0/def2-TZVPP with EC-RISM on the one optimized structure a 𝐴iso-

parameter of 28.9 MHz was calculated for HHMI. Compared to the HFCC of 

32.5 MHz mentioned previously for HMI, a pH-dependent change of 3.6 MHz re-

sults perfectly matches the experimentally measured one. Also, in absolute terms, 

the EC-RISM results show a smaller deviation from the experiment than the CPCM 

calculations; however, like in the case of HMI, the absolute performance is poor. 

Better performance is again achieved with the DLPNO-CCSD/def2-TZVVP ansatz, 

with 32.3 MHz. However, the pH-dependent change with 5.8 MHz is significantly 

greater than the experimentally measured one.  
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Table 7 Summarized 𝐴𝑖𝑠𝑜parameters in MHz for HMI and HHMI. On the one hand, results are 

shown for the revPBE0-D3/def2-TZVPP/CPCM optimized structure, calculated with 

revPBE0/def2-TZVPP/CPCM, revPBE0/def2-TZVPP/EC-RISM, and DLPNO-CCSD/def2-

TZVPP/EC-RISM. On the  other hand, mean 𝐴𝑖𝑠𝑜parameters are shown that were calculated on the 

snapshots obtained from the AIMD. Rows with a star * were calculated by V. A. Tran294, and raw 

data can be found in SI_4.2. 

Method 𝑨𝐢𝐬𝐨(HMI) 𝑨𝐢𝐬𝐨(HHMI) Δ𝑨𝐢𝐬𝐨 

Based on revPBE0-D3/def2-TZVPP optimized geometry 

revPBE0/def2-TZVPP/CPCM 30.0 27.5 2.5 

revPBE0/def2-TZVPP/EC-RISM 32.5 28.9 3.6 

DLPNO-CCSD/def2TZVPP/EC-RISM 38.1 32.3 5.8 

Based on the full trajectory 

revPBE0/def2-TZVPP/QM/MM* 36.7 33.3 3.4 

revPBE0/def2-TZVPP/CPCM/VD 34.5±0.17 32.0±0.17 2.5 

revPBE0/def2-TZVPP/EC-RISM/VD 37.0±0.16 33.5±0.17 3.5 

revPBE0/def2-TZVPP/CPCM/SSS 36.7±0.17 33.6±0.18 3.1 

revPBE0/def2-TZVPP/EC-RISM/SSS 37.5±0.16 34.4±0.17 3.1 

DLPNO-CCSD/def2-TZVPP/QM/MM* 40.5 36.1 4.4 

DLPNO-CCSD/def2-TZVPP/EC-RISM 42.7±0.26 36.9±0.27 5.8 

Experimental 44.8 41.2 3.6 

 

B. Sharma performed another 200 ps long AIMD using the protonated HHMI 

as a solute, leading again into two subsets, one with 1000 snapshots with a 

timestep of 0.2 ps and the other subset with 400 structures and a time interval of 

0.5 ps.  
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Figure 21 Normalized probability histograms of 𝐴𝑖𝑠𝑜  values of the nitroxy nitrogen of the EPR 

spin-probe HHMI (protonated HMI) at ambient conditions calculated with revPBE0-D3/def2-

TZVPP with decontrated s function on 1000 snapshots containing subset. Panel (A) shows the 

distribution calculated with CPCM solvation on the vertically desolvated structures (Mean: 34.4 

MHz). Panel (B) depicts the distribution calculated with CPCM solvation on the structures, con-

taining the explicit solvent molecules of the first two solvation shells around the oxygen of HMI 

(Mean: 33.6 MHz). Panel (C) shows the distribution calculated with EC-RISM/PSE-3 on the verti-

cally desolvated structures (Mean: 33.5 MHz). In panel (D), the distribution was calculated with 

EC-RISM/PSE-3 (Mean: 34.4 MHz) on the structures, explicitly including the two first solvation 

shells around the HMI oxygen. The blue line in each panel represents the average value of the 

corresponding distribution computing using the numerical  𝐴𝑖𝑠𝑜  data that underlie the respective 

histogram.  The green vertical line in the panels represents the experimental value, and each dis-

tribution is separately normalized. Raw and calculated data can be found in SI_4.2. 

With revPBE0/def2-TZVPP/CPCM on the 1000 vertically desolvated struc-

tures, a mean HFCC value of 32.0 MHz is observed. Thus, a pH-dependent change 

of 2.5 MHz is achieved, which is exactly the value obtained for the single opti-

mized structure. By applying revPBE0/def2-TZVPP/EC-RISM, a mean 𝐴iso of 33.5 

MHz is calculated, leading to a pH-dependent change of 3.5 MHz. Therefore, EC-

RISM on the vertically desolvated structures can reproduce the pH-dependent 

change more accurately than CPCM.  

By explicitly adding the two first solvation shells around the N-O motif the 

𝐴iso parameter increases again. For revPBE0/def2-TZVPP/CPCM, an increase of 

1.6 MHz relative to the vertically desolvated structures is calculated. For HHMI, 

the influence of adding the first two solvation shells is less strong compared to 

the unprotonated HMI, where an increase of 2.2 MHz was obtained. Due to the 

smaller increase, the pH-dependent change is 3.1 MHz, reproducing the experi-

ment better than the vertically desolvated subset. By using the revPBE0/def2-

TZVPP/EC-RISM level of theory on the solvated subset, an 𝐴iso parameter of 

34.4 MHz is calculated. The resulting pH-dependent change is 3.1 MHz, matching 

the revPBE0/def2-TZVPP/CPCM calculated value on the second solvation shell 

data set. For the revPBE0/def2-TZVPP/QM/MM (by V. A. Tran294) calculations, a 
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value of 33.3 MHz was obtained. As for the unprotonated HMI, this value is lower 

than the EC-RISM calculations. The pH-dependent change is 3.4 MHz. also show-

ing a very good agreement with the experimentally measured value. 

 

 
Figure 22 Normalized probability histograms of 𝐴𝑖𝑠𝑜  values of the nitroxy nitrogen of the EPR 

spin-probe HHMI (protonated HMI) at ambient conditions calculated with DLPNO-CCSD/def2-

TZVPP with decontrated s function on 1000 snapshots containing subset. The calculated mean 

value is 36.9 MHz. Raw and calculated data can be found in SI_4.2. 

Utilizing the DLPNO-CCSD/def2-TZVPP/EC-RISM (see Figure 22) on the sub-

set containing 400 vertically desolvated snapshots, a mean HFCC of 36.9 MHz is 

calculated. Similar to the optimized structures, the calculated pH-dependent 

change (5.8 MHz) is much greater than the experimentally measured one and the 

corresponding pH-dependent changes that were obtained with the DFT methods. 

However, with DLPNO-CCSD/def2-TZVPP/EC-RISM, the absolute value shows 

the best agreement with the experiment. The DLPNO-CCSD/def2-

TZVPP/QM/MM294 approach leads to a value of 36.1 MHz, resulting in a pH-de-

pendent change of 4.4 MHz. As for the EC-RISM computations, an overestimation 

is observed for the DLPNO-CCSD/def2-TZVPP-based calculations. A clear reason 

for this result could not be found. 

 

4.2.6 The complete EPR W-Band spectra of HMI and HHMI 
 

The previous chapters dealt with the isotropic hyperfine coupling constants ob-

tained from X-band experiments at room temperature. However, EPR spectra can 

also be recorded at higher frequencies, e.g., at 94 GHz, in which case one speaks 

of a W-band spectrum (see section 3.2). These spectra are normally obtained at 

very low temperatures (the solution is frozen), whereby the movements of the 

molecules are restrained. In the W-band spectra at low temperatures, the aniso-

tropic elements of the g-tensors and A-tensors can be extracted. In this chapter, 

the W-band spectra of HMI and HHMI were calculated theoretically by applying 

the same workflow used for calculating the HFCCs, and the spectra will be com-

pared to the experimentally measured spectra at pH 10 and pH 2. The spectra are 

determined via the spin Hamiltonian from the equation (179), where one addi-

tional parameter is the intrinsic linewidth of the peaks. The g- and A-tensors were 

extracted from the QC calculations, and the g-tensors were calculated with the 

GIAO method. For another publication, g-tensor calculations, where the gauge 
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origin is chosen to be the spin density center194, were evaluated; however, at the 

current time, these works were not finished. 

First, the W-band spectra for the revPBE0-def2TZVPP/CPCM optimized 

structure are examined. The g-tensors are presented in Table 8, and the corre-

sponding A-tensors are shown in Table 9. Within this chapter, DLPNO-

CCSD/def2-TZVPP/EC-RISM spectra are presented, whereby it is important to 

notice that these spectra are a combination of revPBE0/def2-TZVPP calculations 

for the g-tensors and only the A-tensors were calculated with DLPNO/def2-

TZVPP. For simplicity and clarity, in tables that show g-tensor elements, the 

revPBE0/def2-TZVPP calculations for the g-tensors of DLPNO-CCSD spectra are 

denoted as DLPNO-CCSD. 

 
Table 8 g-tensors calculated for the revPBE0-D3/def2-TZVPP/CPCM optimized structures of the 

unprotonated HMI and the protonated HHMI using revPBE0/def2-TZVPP/Vac, revPBE0/def2-

TZVPP/CPCM, revPBE0-D3/def2-TZVPP/EC-RISM, and DLPNO-CCSD/def2-TZVPP/EC-RISM. The 

experimental values were measured at a frequency of 93.933 MHz and were performed by L. 

Galazzo293 and M. Teucher295. Raw and calculated data can be found in SI_4.2. 

Method HMI HHMI Δ(HMI-HHMI) 

 gxx gyy gzz gxx gyy gzz Δgxx Δgyy Δgzz 

revPBE0/VAC 2.0086 2.0059 2.0021 2.0092 2.0059 2.021 -0.0004 0.0000 0 

revPBE0/CPCM 2.0082 2.0058 2.0021 2.0086 2.0058 2.0021 -0.0005 0.0000 0 

revPBE0/EC-RISM 2.0078 2.0057 2.0021 2.0084 2.0058 2.0021 -0.0006 -0.0001 0 

DLPNO-CCSD/EC-RISM 2.0078 2.0057 2.0021 2.0084 2.0058 2.0021 -0.0006 -0.0001 0 

Experimental  2.0083 2.0060 2.0023 2.0090 2.0061 2.0023 -0.0007 -0.0001 0 

𝜟(Experimental - Theory) 

revPBE0/VAC 0.0003 0.0001 0.0002 -0.0002 0.0002 0.0002 -0.0003 -0.0001 0 

revPBE0/CPCM 0.0002 0.0002 0.0002 0.0004 0.0003 0.0002 -0.0002 -0.0001 0 

revPBE0/EC-RISM 0.0005 0.0003 0.0002 0.0006 0.0003 0.0002 -0.0001 0.0000 0 

DLPNO-CCSD/EC-RISM 0.0005 0.0003 0.0002 0.0006 0.0003 0.0002 -0.0001 0.0000 0 

 

The calculated g-tensors show that the gzz and gyy components are almost 

identical, with 2.0058 for the gyy component and 2.0021 for the gzz component. 

The experimentally measured gzz-value is 2.0023, which fits the ge value and is 

expected according to Eq. (182) and the simple LCAO model. According to Eq 

(180), things get much more interesting when one looks at the gxx component, 

which mostly depends on the local solvency environment. In the experiment, the 

gxx components are 2.0083 and 2.0090 for HMI and HHMI, respectively. Based on 

the LCAO model, the gxx should decrease with increasing polarity and an increas-

ing number of hydrogen bonds. The revPBE0-D3/def2-TZVPP/VAC level of the-

ory leads to the highest gxx components with 2.0086 and 2.0092 for HMI and 

HHMI, respectively. These results are greater than the experimental values, lead-

ing to differences of +0.0003 (HMI) and +0.0002 (HHMI).  

Using the revPBE0/def2-TZVPP/CPCM, the gxx decreased to 2.0082 for HMI 

and 2.0086 for HHMI. This result supports the LCAO model that with higher po-

larization, the gxx decreases, leading to deviations relative to the experiment of 
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0.0002 (HMI) and 0.0004 (HHMI). By utilizing the revPBE0-D3/def2-TZVVP/EC-

RISM model, a further decrease of gxx is observed. The corresponding values are 

2.0078 and 2.0084 for HMI and HHMI, respectively. The absolute discrepancy rel-

ative to the experiment increases, with errors of 0.0005 (HMI) and 0.0006 

(HHMI). It should be noted again that for DLPNO-CCSD/def2-TZVPP, 

revPBE0/def2-TZVPP must be used to calculate the g-tensors. However, small de-

viations from the revPBE0-D3/def2-TZVVP/EC-RISM calculation are possible 

since a different subset (only 400 structures with 500 fs distance) is considered. 

While the absolute accuracy with all methods has errors, the relative difference 

between HMI and HHMI is very well reproduced. 

 
Table 9 A-tensors calculated for the revPBE0-D3/def2-TZVPP/CPCM optimized structures of the 

unprotonated HMI and the protonated HHMI using revPBE0/def2-TZVPP/Vac, revPBE0/def2-

TZVPP/CPCM, revPBE0-D3/def2-TZVPP/EC-RISM, and DLPNO-CCSD/def2-TZVPP/EC-RISM. All 

values are in MHz. The experimental values were measured at a frequency of 93.933 MHz and 

were performed by L. Galazzo293 and M. Teucher295. Raw and calculated data can be found in 

SI_4.2. 

Method HMI HHMI Δ(HMI-HHMI) 

 Axx Ayy Azz Axx Ayy Azz ΔAxx ΔAyy ΔAzz 

revPBE0/VAC 0.2 0.64 78.65 0.02 -0.82 70.57 0.18 1,46 8.09 

revPBE0/CPCM 1.62 1.52 86.89 1.2 0.74 80.67 0.42 0.78 6.22 

revPBE0/EC-RISM 2.55 2.65 92.00 1.8 1.48 83.56 0.75 1.17 8.44 

DLPNO-CCSD/EC-RISM 7.8 7.8 99.1 5.3 5.31 86.33 2.5 2.49 12.77 

Experimental 14.0 14.0 100.3 13.0 13.0 92.2 1 1 8.1 

𝜟(Experimental - Theory) 

revPBE0/Vac 13.8 13.34 21.85 7.68 13.82 21.93 0.82 -0.46 0.09 

revPBE0/CPCM 12.38 12.48 13.61 11.8 12.26 11.83 0.58 0.22 1.78 

revPBE0/EC-RISM 11.45 11.35 8.5 11.2 11.52 8.94 0.25 -0.17 -0.44 

DLPNO-CCSD/EC-RISM 6.2 6.2 1.4 7.7 7.69 6.17 -1.5 -1.49 -4.77 

 

Regarding the A tensors, the focus within this chapter shall be set on the Azz 

component since the other two components cannot be sufficiently resolved in the 

experiment. The experimentally obtained Azz couplings are 100.5 MHz and 

92.5 MHz for HMI and HHMI, respectively; therefore, a pH-dependent change of 

8 MHz results. The lowest calculated Azz coupling is obtained using the revPBE0-

D3/def2-TZVPP/Vac approach with 78.7 MHz (HMI) and 70.57 MHz (HHMI). 

However, vacuum calculations can best reflect the pH-dependent change of the 

Azz component with 8.1 MHz.  

Significant improvement is achieved by applying the revPBE0-D3/def2-

TZVPP/CPCM method, leading for HMI to an Azz coupling of 86.9 MHz, and for the 

protonated HHMI, 80.7 MHZ is obtained. The differences relative to the experi-

mental data are still relatively large, with 13.6 MHz and 11.6 MHz for HMI and 

HHMI, respectively. In contrast to all other methods, the CPCM variant underes-

timates the pH-dependent change with a value of 6.44 MHz.  

Better absolute values are obtained by applying the revPBE0-D3/def2-
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TZVVP/EC-RISM approach. For HMI, the difference to the experimental reference 

Azz coupling value can be decreased to 8.5 MHz, with an absolute value of 92 MHz. 

An Azz coupling of 83.6 MHz is calculated for the protonated state, resulting in a 

deviation from the experiment of 8.9 MHz. The pH-dependent change shows with 

8.44 MHz a small deviation from the experimentally obtained pH-dependent 

change. These results fit the previous results for the 𝐴iso parameter, where EC-

RISM causes a stronger polarity and leads to higher values. 

The best results are obtained with DLPNO-CCD/def2-TZVPP/EC-RISM ansatz, 

where an Azz component of 99.1 MHz is calculated for HMI. Thus, the deviation 

from the experiment is only 1.4 MHz. Slightly worse results are obtained for 

HMHI, with a deviation relative to the experiment of 6.2 MHz. This result is in 

good agreement with the previous chapter’s HFCC calculation. Thus, this level of 

theory shows the biggest discrepancy for the pH-dependent change relative to 

the experimental value, with a calculated difference of 12.8 MHz. 

The results for the g-tensors of the complete trajectory are enlisted in Table 

10. As previously shown for the single optimized structures, the gyy and gzz values 

are identical for all calculations and show the same deviations from the experi-

ment. The best agreement with the experimental reference data for the gxx is 

again achieved by applying the revPBE0-D3/def2-TZVPP/CPCM approach on the 

vertically desolvated dataset. For HMI, a value of 2.0084 is obtained, leading to a 

deviation relative to the experimental value of only -0.0001. 2.0088 is the gxx com-

ponent for the protonated state, resulting in a slightly higher error than the ex-

periment of 0.0002. The corresponding pH-dependent change is -0.0004 and 

shows a deviation of -0.0003 to the experimentally measured pH-dependent 

change. Compared to the single optimized structures, changes of 0.0002 are ob-

served. 
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Table 10 Averaged g-tensors calculated for the unprotonated HMI and protonated HHMI. revPBE0 

is representative of revPBE0/def2-TZVPP with decontracted s-functions. These calculations were 

performed on the 1000 snapshots containing subset. VD stands for vertical desolvated,  and SSS 

for second solvation shell included. DLPNO-CCSD EC-RISM VD was calculated with revPBE0/def2-

TZVPP/EC-RISM (since no g-tensor calculations were possible with DLPNOP-CCSD) on the subset 

containing the 400 vertically desolvated structures. The experimental values were measured at a 

frequency of 93.933 MHz and were performed by L. Galazzo293 and M. Teucher295. Raw and calcu-

lated data can be found in SI_4.2. 

Method HMI HHMI Δ (HMI-HHMI) 

 gxx gyy gzz gxx gyy gzz Δgxx Δgyy Δgzz 

revPBE0 CPCM VD 2.0084 2.0050 2.0021 2.0088 2.0058 2.0021 -0.0004 0.0000 0.0000 

revPBE0 CPCM SSS 2.0078 2.0057 2.0021 2.00835 2.0058 2.0021 -0.0005 -0.0001 0.0000 

revPBE0 EC-RISM VD 2.0079 2.0058 2.0021 2.0085 2.0058 2.0021 -0.0006 0.0000 0.0000 

revPBE0 EC-RISM SSS 2.0077 2.0057 2.0021 2.0083 2.0058 2.0021 -0.0006 -0.0001 0.0000 

DLPNO-CCSD EC-RISM*  2.0079 2.0057 2.0021 2.0085 2.0058 2.0021 -0.0006 -0.0001 0.0000 

Experimental  2.0083 2.0060 2.0023 2.0090 2.0061 2.0023 -0.0007 -0.0001 0.0000 

Δ (Experimental - Theory) 

revPBE0 CPCM VD -0.0001 0.0002 0.0002 0.0002 0.0003 0.0002 -0.0003 -0.0001 0.0000 

revPBE0 CPCM SSS 0.0005 0.0003 0.0002 0.0007 0.0003 0.0002 -0.0002 0.0000 0.0000 

revPBE0 EC-RISM VD 0.0004 0.0002 0.0002 0.0005 0.0003 0.0002 -0.0001 -0.0001 0.0000 

revPBE0 EC-RISM SSS 0.0006 0.0003 0.0002 0.0007 0.0003 0.0002 -0.0001 0.0000 0.0000 

DLPNO-CCSD EC-RISM  0.0004 0.0003 0.0002 0.0005 0.0003 0.0002 -0.0001 0.0000 0.0000 

 

As soon as the explicit waters are added to the revPBE0-D3/def-TZVPP/CPCM 

calculations, the gxx drops significantly. In the case of HMI, the effect of adding the 

explicit waters is a decrease of -0.0006. The resulting error relative to the exper-

iment increases to 0.0005 and, thus, is significantly worse than the calculations 

on the single optimized structure and the vertically desolvated dataset. A similar 

picture is observed for the low pH region, with a gxx of 2.0083 and a decrease of -

0.0005 relative to the result of the vertically desolvated structures. However, a 

slight improvement is seen in the pH-dependent change with -0.0005, leading to 

a very small deviation relative to the experiment.  

Considering the revPBE0-D3/def2-TZVPP/EC-RISM calculations on the verti-

cally desolvated subset, the obtained gxx are 2.0079 and 2.0085 for HMI and 

HHMI, respectively. The values are marginally higher than for CPCM on the solv-

ated structures. Compared to the single optimized structure, a change of 0.0001 

is observed. The calculated pH-dependent change is -0.0006, and the deviation to 

the experimental delta is only 0.0001.  

For the DLPNO-CCSD/def2-TZVPP/EC-RISM spectra (by applying revPBE0-

D3/def2-TZVPP/EC-RISM for g-tensors) calculations, the smaller subset with 

400 vertically desolvated structures was used, and no differences relative to the 

larger subset can be observed. By adding the two first solvation shells explicitly 

into the revPBE0-D3/def2-TZVPP/EC-RISM calculations, the obtained gxx  com-

ponents are 2.0077 (HMI) and 2.0083 (HHMI). Here one can see that by adding 

the explicit waters, the gx becomes smaller, which is in good agreement with the 

LCAO model. However, the absolute accuracy relative to the experiment 
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decreases by adding the explicit waters. This result could further indicate that the 

underlying QC DFT calculations have an intrinsic error in calculating the g-tensor. 

The calculated pH-dependent change with -0.0006 is still very good and nearly in 

excellent agreement with the experiment. 

 Overall, the results for the gxx show, in absolute terms, a deviation from 

the experiment, especially a systematic worsening if theoretically more reliable 

systems are investigated. Nonetheless, the difference between the unprotonated 

and protonated state can be accurately represented. 

In Table 11, the A-tensors are enlisted and were calculated for the whole tra-

jectory. The focus will again be solely on the Azz component, and similar results 

compared to HFCC calculations are expected. First, for all different levels of the-

ory combinations, an increase of the Azz compared to the value of the single opti-

mized structure is observed. These results are again due to the fluctuations in the 

nitrogen out-of-plane movement.  

The revPBE0-D3/def2-TZVPP/CPCM calculations on the 1000 vertically 

desolvated snapshots lead to a mean Azz of 90.6 MHz for HMI and 84.3 MHz for 

HHMI. Compared to the single optimized structure, an increase of 3.6 MHz is ob-

served, and the deviations to the experimental value are reduced to 9.9 MHz and 

8.2 MHz for HMI and HHMI, respectively. The pH-dependent change with 6.3 MHz 

is nearly identical to the optimized structure. 

For HMI and revPBE0-D3/def2TZVPP/CPCM level of theory, the Azz compo-

nent increases by 5.2 MHz to 95.8 MHz by adding the second solvation shell into 

the calculations. The corresponding increase for HHMI is 3.9 MHz, and the abso-

lute value is 88.2 MHz. These results are significantly better than the results for 

the vertically desolvated structures, with a halving of the relative error. The pH-

dependent change shows with 7.6 MHz only a deviation of 0.4 MHz compared to 

the observation in the experiment. 

 



RISM-based pressure-dependent computational spectroscopy 

101 

Table 11 Averaged A-tensors (all values in MHz) calculated for the unprotonated HMI and proto-

nated HHMI. revPBE0 is representative for revPBE0/def2-TZVPP with decontracted s-functions. 

The line revPBE0 CPCM VD describes the A-tensors calculated with revPBE0/def2-TZVPP/CPCM 

on the 1000 snapshots subset using the vertically desolvated structures. The line revPBE0 CPCM 

SSS was calculated with revPBE0/def2-TZVPP/CPCM on the 1000 snapshots subset using struc-

tures including the two first solvations shells around the N-O motif. revPBE0 EC-RISM VD refers 

to calculations with revPBE0/def2-TZVPP/EC-RISM on the 1000 snapshot subset containing the 

vertically desolvated structures. revPBE0 EC-RISM SSS was calculated with revPBE0/def2-

TZVPP/EC-RISM utilizing the 1000 snapshots dataset with the first two solvation shells around 

the N-O group included. DLPNO-CCSD/def2-TZVPP/EC-RISM on the subset containing the 400 

vertically desolvated structures. All values are in MHz. Raw and calculated data can be found in 

SI_4.2. 

Method HMI HHMI Δ(HMI-HHMI) 

 Axx Ayy Azz Axx Ayy Azz ΔAxx ΔAyy ΔAzz 

revPBE0 CPCM VD 6.4 

±0.2 

6.4 

±0.2 

90.6 

±0.2 

6.0 

±0.2 

5.6 

±0.2 

84.3 

±0.1 

0.4 0.8 6.3 

revPBE0 CPCM SSS 7.0 

±0.2 

7.2 

±0.2 

95.8 

±0.2 

6.5 

±0.2 

6.3 

±0.2 

88.2 

±0.2 

0.5 0.9 7.6 

revPBE0 EC-RISM VD 7.4 

±0.2 

7.7 

±0.2 

96.1 

±0.2 

6.6 

±0.2 

6.4 

±0.2 

87.4 

±0.2 

0.8 1.3 8.7 

revPBE0 EC-RISM SSS 7.5 

±0.2 

7.8 

±0.2 

97.3 

±0.2 

6.9 

±0.2 

6.8 

±0.2 

89.5 

±0.2 

0.6 1 7.8 

DLPNO-CCSD EC-RISM VD 12.3 

±0.3 

12.8 

±0.3 

102.8 

±0.3 

10.2 

±0.3 

10.4 

±0.3 

90.3 

±0.2 

2.1 2.4 12.5 

Experimental 14.0 14.0 100.3 13.0 13.0 92.2 1 1 8.1 

Δ(Experimental - Theory) 

revPBE0 CPCM VD 7.6 7.6 9.9 7 7.4 8.2 0.6 0.2 1.7 

revPBE0 CPCM SSS 7 6.8 4.7 6.5 6.7 4.3 0.5 0.1 0.4 

revPBE0 EC-RISM VD 6.6 6.3 4.4 6.4 6.6 5.1 0.2 -0.3 -0.7 

revPBE0 EC-RISM SSS 6.5 6.2 3.2 6.1 6.2 3 0.4 0 0.2 

DLPNO-CCSD EC-RISM VD 1.7 1.2 -2.3 2.8 2.6 2.2 -1.1 -1.4 -4.5 

 

Applying the EC-RISM solvation model with the revPBE0-D3/def2-TZVPP 

level of theory for HMI on the vertically desolvated subset, an Azz coupling con-

stant of 96.1 MHz is obtained. The increase compared to the single optimized 

structure is 4.1 MHz, and the difference relative to the experiment is reduced to 

4.4 MHz; therefore, a small improvement is obtained compared to the CPCM cal-

culations on the solvated structures. The calculated value for the low pH region 

is 87.4 MHz, leading to a deviation of 5.1 MHz relative to the experiment. Also, the 

coupling constant is slightly smaller than the one obtained for the previously 

mentioned CPCM calculations, and a slightly higher pH-dependent change than 

the experiment is obtained with 8.7 MHz. All in all, EC-RISM can deliver the same 

performance on the vertically desolvated structures as CPCM calculations, in 

which the first two solvation shells were included. 

A further improvement for the DFT-based calculations is achieved by adding 

the two first solvation shells to the revPBE0-D3/def2-TZVPP/EC-RISM calcula-

tion. The calculated Azz coupling constants are 97.3 MHZ and 89.5 MHz for HMI 

and HHMI, respectively. These results lead to a pH-dependent change of 7.8 MHz, 
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which best agrees with the experimental value (deviation of 0.2 MHz to the ex-

periment).  

Higher couplings are observed for DLPNO-CCSD/def2-TZVPP/EC-RISM calcu-

lations on the 400 vertically desolvated structures. The Azz component is 102.8 

MHz in the high pH region and, therefore, even greater than the experimental ref-

erence value, resulting in a deviation of -2. MHz. As already seen for the HFCC, the 

calculated pH-dependent change for DLPNO-CCSD in combination with EC-RISM 

strongly overestimates the experimental trend by 4 MHz. The calculated Azz com-

ponent of HHMI is 90.3 MHz.  
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Figure 23 Panel (A) shows EPR W-band spectra (linewidth=0.45 mT) calculated for the revPBE0-

D3/def2-TZVPP/CPCM optimized structures of the unprotonated HMI and the protonated HHMI 

using revPBE0/def2-TZVPP/CPCM, revPBE0-D3/def2-TZVPP/EC-RISM, and DLPNO-CCSD/def2-

TZVPP/EC-RISM (the corresponding g-tensors were calculated using revPBE0-D3/def2-

TZVPP/EC-RISM ). Panel (B) shows the calculation of the DLPNO-CCSD/def2-TZVPP/EC-RISM 

spectra on the 400 VD subset, revPBE0/def2-TZVPP/CPCM on the VD (1000 snapshots) subset, 

revPBE0/def2-TZVPP/CPCM on the second solvation shell included (1000 snapshots) subset, 

revPBE0/def2-TZPP/EC-RISM on the 1000 vertically desolvated structures and revPEB0/def2-

TZVPP/EC-RISM on the 1000 snapshots, including the two first solvation shells around the N-O 

motif. At first, the individual spectrum was calculated for all snapshots, and subsequently, the 

spectra were averaged. Experimental and calculated W-Band spectra of HMI (pH2) and HHMI 

(pH10) are shown. The experimental values were measured at a frequency of 93.933 MHz and 

were performed by L. Galazzo293 and M. Teucher295. Raw and calculated data can be found in 

SI_4.2. 

The graphical summary of the results for the A-tensors and g-tensors is shown in 

the simulated W-band spectra in Figure 23, whereby panel (A) shows the spectra 

for the single optimized structures, and in panel (B), the averaged spectra over 

the whole trajectory are presented. The different trends for the gxx and Azz com-

ponents can be seen. With more polarizing methods, the gxx value decreases but 

at the same time, the Azz coupling increases. In this manner, the gxx deviates 

stronger from the experimental value, whereas the Azz shows a better agreement 

by applying a higher level of theory. This result indicates a systematic error in the 

QC calculation of the g tensors. For further validations, spectra calculations for 

the entire trajectory were performed. First, one sees that the optimized 
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structures' spectra significantly underestimate the spectra's width. If, for every 

snapshot, the spectrum is calculated and subsequently averaged, the theoretical 

calculations better represent the intrinsic width of the experimental spectrum. 

Furthermore, one can see that the CPCM calculations on the vertically desolvated 

structures provide the best agreement in the gxx compared to the experiment. All 

other methods, which in theory should give better results, show larger errors in 

calculating the g-tensors. In contrast to this result, the opposite picture is ob-

served with the couplings, where the Azz principal component increases with a 

better theory level, reducing the error relative to the experiment.  

 

4.2.7 Pressure-dependent EPR-Spectra of HMI and HHMI 
 

As mentioned in chapter 4.1, higher pressure leads to a stronger solvent polari-

zation. Consequently, a constant increase with rising pressure is expected for the 

HFCC. This chapter will analyze the influence of pressure on HFCC and the full 

EPR spectrum by applying pressure-dependent EC-RISM calculations. As the level 

of theory, the revPBE0/def2-TZVPP with decontracted s-functions was utilized in 

combination with pressure-dependent χHNC functions. Since no experimental re-

sults are available at the time of writing, the presented results are exploratory 

and should give a possible prediction. 

The absolute results for the pressure-dependent 𝐴iso parameters, gxx, and 

Azz are summarized in Table 12. 

 
Table 12 Pressure-dependent nitrogen HFCC (in MHz), gxx components, and nitrogen Azz (in MHz) 

of HMI and HHMI at ten different pressures calculated with revPBE0/def2-TZVPP/EC-RISM. 

Pressure HMI HHMI 𝜟(HMI-HHMI) 

 HFCC gxx Azz HFCC gxx Azz 𝜟 HFCC 𝜟gxx 𝜟Azz 

1 bar 32.40 2.00776 92.00 28.94 2.00838 83.56 3.46 -0.00062 8.44 

100 bar 32.41 2.00776 92.01 28.95 2.00838 83.58 3.46 -0.00062 8.43 

500 bar 32.43 2.00775 92.08 29.00 2.00837 83.68 3.43 -0.00062 8.4 

1 kbar 32.47 2.00775 92.15 29.05 2.00836 83.80 3.42 -0.00061 8.35 

2 kbar 32.52 2.00774 92.28 29.14 2.00835 84.01 3.38 -0.00061 8.27 

3 kbar 32.57 2.00773 92.39 29.21 2.00833 84.19 3.36 -0.0006 8.2 

4 kbar 32.61 2.00772 92.49 29.28 2.00832 84.36 3.33 -0.0006 8.13 

5 kbar 32.65 2.00772 92.58 29.35 2.00831 84.50 3.3 -0.00059 8.08 

7.5 kbar 32.74 2.00770 92.78 29.48 2.00829 84.82 3.26 -0.00059 7.96 

10 kbar 32.81 2.00769 92.94 29.59 2.00827 85.08 3.22 -0.00058 7.86 

 

As expected, a pressure-dependent increase is observed for the HFCC, with a 

slightly steeper increase for the protonated HHMI than for the unprotonated ver-

sion. In panel (A) of Figure 24, the relative changes for both species are graph-

ically depicted. For HMI the 𝐴iso parameter increases from 32.40 MHz at ambient 

pressure up to 32.81 MHz at 10 kbar. The protonated HHMI increases by 

0.66 MHz from ambient pressure up to 10 kbar. By looking at the pressure-de-

pendent curve, it can be seen that a quadratic fit of the form: 
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𝐴iso(𝑝) = 𝑎 · (𝑝 − 𝑝0)
2 + 𝑏 · (𝑝 − 𝑝0) + 𝑐, (188) 

can be applied. The corresponding parameters are summarized in the appendix 

in Table 24. This particular form was already applied for the pressure-dependent 

trend of NMR chemical shifts. 26,27 

 

 
Figure 24 Relative changes of different EPR-Parameters of HMI and HHMI due to pressurization. 

In panel (A), the change of the HFCCs is shown; in panel (B), the gxx principal components are 

presented; and in panel (C), the Azz components are depicted. The blue and red points represent 

HMI and HHMI, respectively. Additionally, in panel (D), the complete EPR spectra are shown for 

HMI and HHMI at 1 bar and 10 kbar, respectively. All calculations were performed with 

revPBE0/def2-TZVPP/EC-RISM. 

The gxx principal component shows a steady decrease upon pressurization 

(see panel (B) in Figure 24), and this effect was already seen for the chemical 

shielding constants in NMR calculations. Since the distance between solute and 

solvent decreases upon pressurization, the delocalization of the 𝑐𝑛𝑦
2  orbital into 

the H2O orbitals increases, and therefore the absolute value of the gxx decreases 

(see eq (180)). Again, the protonated HHMI shows a stronger pressure depend-

ence than HMI. For the latter, a change of -0.00007 is calculated going from the 

ambient condition into the very high-pressure realm. The comparable calculated 

decrease for HHMI is -0.00009. A reasonable equation format to describe the 

pressure-dependency of the gxx would be a quadratic fit (in Table 24, the param-

eters are enlisted), too. 

The same things that have already been noted for the HFCC apply to the Azz. 

The pressure effect is stronger on HHM (see panel (C) in Figure 24), and a steady 

increase is observed. For HMI and HHMI, the changes from 1 bar to 10 kbar are 

0.94 MHz and 1.52 MHz, respectively. A quadratic fit also seems to be a reasona-

ble choice to describe the trajectory. Panel (D) in Figure 24 shows the pressure-

dependent W-band spectra at 1 bar and 10 kbar to complete the overall picture. 

Overall the calculated pressure-dependent changes are relatively small. For 

example, in the experiment, a change of smaller than 1 MHz can barely be 
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detected in an EPR experiment.132 Therefore, it may be difficult to resolve the 

pressure differences sufficiently. However, if one wants to study, e.g., the confor-

mational changes of proteins under high hydrostatic pressures296, the changes 

can be attributed to the conformational changes and not to the solvent-mediated 

pressure effect on the EPR parameters. 
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4.2.8 Summary and outlook 
 

The goal of this chapter was to make the first attempts to calculate EPR parame-

ters using EC-RISM at ambient conditions to benchmark the methodology, and in 

addition, some perspective exploratory pressure-dependent calculations were 

performed. The molecule HMI was chosen as a model system within the RESOLV 

cluster of excellence, characterized by its relative rigidity and protonatable N-H 

group. In the first part, the performances of EC-RISM and CPCM in combination 

with different DFT levels of theory were evaluated, showing that EC-RISM can 

significantly better reproduce the 𝐴iso parameter, but the overall performance 

was rather sobering. EC-RISM retains structural heterogeneity in the proximity 

of the solute, whereas CPCM omits this important environmental feature. 

To perform a more detailed analysis and get more insights into the underlying 

characteristics of the solute-solvent interactions, B. Sharma provided an AIMD 

trajectory using the revPBE0-D3 functional in combination with a def2-TZVPP 

basis set. This trajectory was divided into two subsets: the so-called vertically 

desolvated subset, where only the solute structures were retained, and all sur-

rounding waters were removed. All waters except the two first solvation shells 

around the N-O motif were removed in the second subset. CPCM and EC-RISM 

calculations were performed for the two subsets, and significant improvements 

were observed compared to the single optimized structure. These improvements 

are due to the displacements in the C-N-O-C improper angle, which are only re-

flected in the complete trajectory. The second important finding is that EC-RISM 

performs better on both subsets than CPCM. Especially in the case of the vertically 

desolvated subset, EC-RISM significantly outperforms the CPCM calculations. EC-

RISM on the vertically desolvated subset can even reproduce better HFCC than 

CPCM with the two first solvation shells. Further improvements were obtained 

by the first implementation of the DLPNO-CCSD within EC-RISM, leading to 𝐴iso 

values that show the best agreement from all studied methods compared to the 

experiment.  

The HFCC of HMI in the protonated state was investigated next. A pH-depend-

ent change of 3.6 MHz was measured in the experiment when going from the low 

pH-region into the high pH region. The best absolute results are again obtained 

using the DLPNO-CCSD/def2-TZVVP/EC-RISM method. However, the calculated 

pH-dependent change is too big compared to the experiment with this approach. 

In contrast, utilizing the revPBE0/def2-TZVPP combination with CPCM or EC-
297RSIM solvation leads to a very good agreement in the pH-dependent change 

compared to the experiment. Furthermore, EC-RISM shows a significantly better 

performance regarding the absolute values than CPCM. 

Usually, the isotropic hyperfine coupling constant is measured in an X-band 

experiment at ambient conditions. By freezing the sample, it is possible to make 

a W-band experiment, where detailed information about the g- and A-tensors can 

be extracted. In this thesis, the focus was set on the gxx principal component of 

the g-tensor and the Azz of the A-tensor. In principle, for the latter one, the same 
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conclusions hold that were made for the HFCC. The best results relative to the 

experiment are obtained with DLPNO-CCSD/def2-TZVPP/EC-RISM, and for the 

DFT calculations, EC-RISM performs better than CPCM with comparable settings. 

For the gxx, a different picture is observed, where the revPBE0-D3/def2-

TZVPP/CPCM calculations show the best agreement compared to the experiment. 

Furthermore, the performance worsens for theoretically better models, indicat-

ing a systematic error at the QC level. In addition, it is to be noted that for the g-

tensor calculations, no DLPNO-CCSD calculations could be applied. 

Overall, however, the results for the EC-RISM calculations are very satisfac-

tory and can be applied to other models in the future. For example, a spin label 

attached to a protein or a small peptide fragment could be investigated under 

ambient or extreme conditions, and an MD simulation should generate the un-

derlying conformational ensemble. The first work was already done here, L. 

Jauer297 used the Stendardo force field118 to generate a force field-based ensem-

ble to reproduce the HFCC obtained from the AIMD ensemble. The first results 

were very promising; however, further QC-based postprocessing needs to be 

done. 
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4.3 Pressure dependence of the peptide backbone 
 

The aim of this chapter is, on the one hand, to evaluate how strongly pressure 

affects the conformational equilibria of the three typical protein backbone model 

systems (see chapter1.2) and, on the other hand, whether the magnitude of the 

effects makes it necessary to perform a pressure-dependent reparameterization 

of currently used protein force fields. In the first section, the pressure-dependent 

NMR shifts of NMA are presented. Based on these results, the NMR chemical shifts 

of the main conformers of Ac-Gly-NHMe and Ac-Ala-NHMe calculated for 

B3LYP/6-311+G(d,p)/PCM geometries are discussed. Subsequently, the effect of 

EC-RISM-based pressure-dependent geometry optimizations on the dipeptides 

compared to the PCM geometries is discussed. In the following section, the pres-

sure-dependent change of the cis-trans equilibrium of NMA is discussed experi-

mentally and by various theoretical methods. Based on these results, the second 

section evaluates the pressure dependence of the minima of the more complex 

systems, Ac-Gly-NHMe and Ac-Ala-NHMe. A detailed discussion is performed, and 

the results are compared with various reference data from the literature. The in-

fluence of pressure on the complete Ramachandran plane of Ac-Gly-NHMe and 

Ac-Ala-NHMe is also analyzed.  

 

4.3.1 Calculations of NMR chemical shifts of cis/trans-NMA 
 

In the publication of Frach et al.26, the pressure dependence of the chemical shifts 

of 1H, 13C, and 15N of the peptide backbone model NMA was investigated, and an 

extensive discussion about reasonable referencing was conducted. The chosen 

reference standard DSS showed only a slight change in the shielding constants 

upon pressurization. It was demonstrated that EC-RISM could predict the correct 

experimental pressure trend for all peptide backbone atoms. However, these re-

sults were generated with a previous based on point-charges EC-RISM version 

(see chapter 4.1), and in the past years, many improvements within the EC-RISM 

method were developed and published25, including optimized electrostatic and 

empirical free energy models. These new improvements were applied to the fully 

flexible water standard DSS and the 15N standard NH3.27 To benchmark the per-

formance of the EC-RISM improvements and reliability of NMR standards, NMR 

parameters for the small osmolyte TMAO were calculated. After these auspicious 

results, the question arises of how the methodology affects the NMR parameters 

of cis/trans-NMA. The chemical shifts of NMA are an excellent example to evalu-

ate the influence of pressure on two different conformers since both conformers 

are distinguishable in the experiment. The corresponding calculations were al-

ready performed by L. Eberlein and published in his dissertation.28 At this point, 

the results will be reused and should represent the solvent-induced baseline for 

chemical shifts and later adapted to the chemical shifts of Ac-Gly-NHMe and Ac-

Ala-NHMe. 
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Figure 25 Pressure-dependent absolute shifts (left side) and relative shifts to the 1 bar value of 

trans- and cis-NMA peptide bond atoms 1H(A & B), 13C (C & D), and 15N (E & F). The red stars 

represent the cis-conformer calculated, and the upward green triangles calculations with MP2/6-

311+G(d,p)//B3LYP/6-311+G(d,p). Here direct referencing was applied, and the corresponding 

reference shielding constants are collected in Table 43. The raw chemical shielding constants can 

be found in SI_4.3. Similar plots can be found in ref28 

Figure 25 shows the chemical shifts, relative to their value at ambient pres-

sure conditions, of the 1H, 13C, and 15N nuclei experimentally and theoretically for 

the two NMA conformers. Direct referencing is applied throughout this work, 

which means that the calculated pressure-dependent chemical shielding con-

stants (see Table 43) for the reference nuclei are used, and it showed the best 

performance in calculating pressure-dependent shift changes of TMAO.27,28 In the 

past, performing a quadratic fit to the experimental and calculated data was use-

ful for describing the pressure change, and the corresponding parameters can be 

taken from Table 13. Here the absolute chemical shifts are listed, too. By looking 

at the pressure-dependent change of the chemical shifts, one can see that for both 

trans- and cis-NMA, each nucleus shows an increase of the chemical shifts; this 

observation agrees with previously made experiences.27 The best result is ob-

tained for the 1H nucleus and the worst for the 13C nucleus of the C-O group; these 

results agree with those observed for TMAO. Concerning the 1H nucleus, the pres-

sure-dependent change in the chemical shift is stronger for the cis conformer than 

for the trans conformer within the experiment. EC-RISM cannot accurately rep-

resent this trend; the order is reversed. 
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On the one hand, the pressure dependence of cis-NMA is overestimated by 

EC-RISM, and on the other hand, the pressure dependence of trans-NMA is under-

estimated by EC-RISM. The overall changes of the 1H chemical shifts are rather 

small, with changes between 0.03 ppm and 0.06 ppm up to a pressure of 2 kbar. 

One possible reason for underestimating the trans-NMA 1 H shifts could be a di-

merization of NMA. In this manner, the direct interaction of the 1H nucleus with 

the surrounding water would be blocked, and therefore the main interaction 

causing the pressure-dependent changes are prevented. 

 
Table 13 Linear (B1, in ppm kbar−1) and quadratic (B2, in ppm kbar−2) coefficients from fitting 

experimental and calculated cis- and trans-NMA chemical shifts to the following form: 𝜟δ(p)= 

B1p+B2p2. The 1 bar chemical shifts (δ0 in ppm) are shown. Experimental data were measured by 

M-Beck Erlach.298 The EC-RISM calculations were performed with MP2/6-

311+G(d,p)//B3LYP/6-311+G(d,p)/PCM. An analogous representation can be found in “Eberlein, 

L. J. A combined computational and NMR-spectroscopic approach for tautomer elucidation under 

extreme conditions towards investigating the robustness of genetic codes, 2021.” Raw shielding 

constants can be found in SI_4.3. 

Nucleus δ0(1 bar). B1 B2 

1H    

cis-NMA (EC-RISM) 5.93 0.0177 -0.00062 

cis-NMA (Exp) 7.09 0.0410 -0.00490 

trans-NMA (EC-RISM) 6.47 0.0257 -0.00161 

trans-NMA (Exp) 7.84 0.0109 0.00054 
13C    

cis-NMA (EC-RISM) 183.61 0.1662 -0.01051 

cis-NMA (Exp) 179.99 0.0708 -0.02007 

trans-NMA (EC-RISM) 180.66 0.1574 -0.00668 

trans-NMA (Exp) 177.29 0.0696 -0.02152 
15N    

cis-NMA (EC-RISM) 109.52 0.2871 -0.02003 

cis-NMA (Exp) 111.95 0.5745 -0.07545 

trans-NMA (EC-RISM) 112.59 0.2517 -0.01059 

trans-NMA (Exp) 113.76 0.5467 -0.07122 

 

The picture for the 13C nucleus looks much more sobering; the theoreti-

cally calculated changes in the chemical shifts at 2 kbar are about six times larger 

than those measured experimentally. In contrast to the 1H nucleus, the experi-

mental measured pressure-dependent trend between cis and trans NMA can be 

reproduced correctly. 

The 15N nucleus shows the opposite picture. Here EC-RISM underesti-

mates the pressure-dependent change of the chemical shift for both conformers. 

The experiment leads to an increase of 0.8 ppm to 2 kbar, whereas EC-RISM only 

shows a shift of 0.5 ppm. 

The calculated absolute chemical shifts are shown in Table 13.  The meas-

ured experimental chemical shift of the 1H nucleus for the trans conformer is 7.84 

ppm. The chemical shift calculated in this work is 6.47 ppm, resulting in a differ-

ence of 1.4 ppm. The calculated chemical shift was 6.8 ppm in the previous 
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publication, and the resulting difference between the experiment and theory was 

1 ppm. Concerning this observable, the results have worsened, but it should be 

noted that the level of theory used in this work is not optimized for calculating 

chemical shifts. With a deviation of 1.1 ppm, the chemical shift of the cis-NMA 1H 

of the cis-NMA is much better represented. A possible explanation could be, on 

the one hand, dimerization of the trans-NMA or a stronger interaction with ex-

plicit waters that are missing in these calculations.  

The chemical shifts for the 13C nucleus of the trans-NMA are 177.3 ppm 

and 180.66 ppm for the calculation and experiment, respectively. The resulting 

difference is 3.3 ppm. Regarding the 15N nucleus, a significant improvement can 

be obtained compared to published results. This finding can be attributed to 

choosing a plausible NMR standard; a detailed description of this standard can be 

found in Ref27. For trans-NMA, the experimental value is 113.8 ppm, the chemical 

shift calculated in this work is 112.6 ppm, and the difference between the two is 

only 1.2 ppm. 122 ppm was the chemical shift in our previous publication.26  

At this point, it can be stated that EC-RISM can calculate the correct pres-

sure-dependent tendency for all nuclei, and especially for the important 1H nu-

cleus, the chemical shifts are of a similar order of magnitude as the experimental 

data. The greatest inaccuracies occur in the calculation of the pressure-depend-

ent 13C chemical shifts. The best agreement regarding the absolute chemical shift 

at 1 bar can be obtained for the 15N nucleus. A possible explanation could be that 

the methyl group of the DSS was chosen as the standard for 1H and 13C, whereas 

for 15N, ammonia is used as the standard, and a better chemical overlap exists 

here. The settings for calculating chemical shifts evaluated in this chapter were 

applied to the minima of Ac-Gly-NHMe and Ac-Ala-NHMe, and are presented in 

the next section. 
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4.3.2 NMR spectroscopic parameters of Ac-Gly/Ala-NHMe under 

high-pressure conditions 
 

After the intensive look at the pressure dependence of the chemical shifts of 

the peptide bond of NMA in the previous section, the next step is to examine the 

chemical shifts of the peptide bond atoms of the model molecules Ac-Gly-NHMe 

and Ac-Ala-NHMe (The remaining shifts of the capping groups and α-atoms can 

be found for the two main conformers in Figure 61 and Figure 62). The focus will 

be first on the two primary minima of Ac-Ala-NHMe known from the literature 

and calculated with EC-RISM, i.e., αR and PII (details for the populations following 

chapter 4.3.5). Additionally, the results obtained for the other conformers are 

presented to give a complete picture. Figure 26 shows the chemical shifts of the 

two N-H protons and their pressure-dependent changes relative to their value at 

ambient pressure. In Figure 26, panels (A) and (C), which describe the proton that 

is bound near the acetyl group, it can be seen that all conformers have a smaller 

absolute chemical shift compared to the experimental value, and the pressure-

dependent change is much lower compared to the experimental changes. The 

chemical shifts of the two main conformers and αR are 6.6 ppm and 6.5 ppm (see 

Table 14 for 1H chemical shifts), respectively, whereas the experimental refer-

ence value is 8.3 ppm. The energetically weighted average chemical shift over all 

conformers is 6.6 ppm. Therefore, it results in a deviation of 1.7 ppm, similar to 

the results obtained for trans-NMA. On the positive side, the pressure-dependent 

trend can be reproduced correctly, even if the calculated changes are only half of 

those observed experimentally. In the experiment, the chemical shift changes by 

0.11 ppm up to a pressure of 3 kbar, whereas the calculated shifts change be-

tween 0.04-0.06 ppm. The differences between the individual conformers are rel-

atively small, and the PII conformer best reflects the pressure dependence for this 

nucleus.  
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Figure 26 Pressure-dependent NMR shifts of the seven and eight Ac-Ala-NHMe and Ac-Gly-NHMe 

minima compared to the experimental value for the 1H atoms of the two peptide bonds. A and B 

represent the absolute chemical shifts of the two amide hydrogens atoms of Ac-Ala-NHMe, 

whereas C and D represent the pressure-dependent changes in chemical shifts relative to 1 bar. 

In E and F, the absolute values for the corresponding nuclei of Ac-Gly-NHMe are shown, and in G 

and H, the difference relative to ambient pressure is presented. The theoretical calculations were 

performed with MP2/6-311+G(d,p)/PCM. The corresponding reference shielding constants can 

be found in Table 43. Raw chemical shielding constants can be found in SI_4.3. Experimental val-

ues were measured by M. Beck Erlach298. 
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Table 14: Calculated pressure-dependent chemical shifts for the 1H amide protons for the seven 

and eight minima of Ac-Ala-NHMe and Ac-Gly-NHMe, respectively. The calculations were per-

formed with MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM. The corresponding ref-

erence shielding constants can be found in Table 43. Raw chemical shielding constants can be 

found in SI_4.3. Experimental values were measured by M. Beck Erlach298.  

Conformer 1 bar 100 bar 500 bar 1 kbar  2 kbar 3 kbar 

Ac-Ala-NHMe: 1H of Ala N-H 

PII 6.61 6.61 6.62 6.63 6.65 6.67 

αR 6.48 6.48 6.49 6.50 6.52 6.54 

C5 7.05 7.06 7.07 7.08 7.10 7.11 

C7,eq 6.50 6.50 6.51 6.53 6.55 6.57 

αL 6.94 6.94 6.95 6.96 6.98 7.00 

ad 7.01 7.01 7.02 7.03 7.05 7.06 

C7,ax 6.82 6.82 6.83 6.84 6.86 6.88 

Mean 6.58 6.59 6.60 6.61 6.63 6.64 

Exp 8.26 8.27 8.29 8.31 8.35 8.38 

Ac-Ala-NHMe: 1H of NHMe N-H 

PII 6.55 6.55 6.56 6.57 6.59 6.61 

αR 6.94 6.94 6.95 6.96 6.98 7.00 

C5 6.38 6.38 6.39 6.40 6.43 6.44 

C7,eq 7.45 7.45 7.46 7.46 7.48 7.49 

αL 6.90 6.91 6.92 6.93 6.95 6.96 

ad 6.61 6.61 6.62 6.63 6.65 6.67 

C7,ax 8.68 8.68 8.68 8.69 8.70 8.70 

Mean 6.75 6.75 6.76 6.77 6.79 6.81 

Exp 7.94 7.94 7.95 7.97 8.00 8,02 

Ac-Gly-NHMe: 1H of Gly N-H 

αR 6.65 6.65 6.66 6.67 6.69 6.71 

αL 6.65 6.65 6.66 6.67 6.69 6.71 

PII 6.77 6.77 6.78 6.79 6.81 6.82 

PII 6.77 6.77 6.78 6.79 6.81 6.82 

𝛽 6.50 6.50 6.51 6.52 6.54 6.56 

C5 6.91 6.91 6.92 6.94 6.96 6.97 

C7,eq 6.88 6.89 6.90 6.91 6.92 6.94 

C7,eq 6.88 6.89 6.89 6.90 6.92 6.94 

Mean 6.69 6.69 6.70 6.71 6.73 6.74 

Exp 8.30 8.30 8.31 8.32 8.34 8.35 

Ac-Gly-NHMe: 1H of NHMe N-H 

αR 6.91 6.91 6.92 6.93 6.95 6.96 

αL 6.90 6.91 6.92 6.93 6.95 6.96 

PII 6.40 6.40 6.41 6.43 6.45 6.46 

PII 6.40 6.40 6.41 6.43 6.45 6.46 

𝛽 6.30 6.30 6.31 6.32 6.34 6.36 

C5 6.27 6.27 6.28 6.29 6.31 6.33 

C7,eq 7.57 7.57 7.58 7.58 7.59 7.60 

C7,eq 7.58 7.58 7.58 7.59   7.60 7.61 

Mean 6.75 6.75 6.76 6.77 6.78 6.79 

Exp 7.86 7.86 7.87 7.88 7.91 7.93 
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In the experiment, a chemical shift of 7.9 ppm (see Table 14) was obtained for 

the N-H nucleus, which belongs to the NHMe group (see Figure 26, panels B and 

D). The calculated values for the main conformers are 6.6 ppm for the PII (lower 

blue triangle) and 6.9 ppm for αR (yellow dots), respectively. The calculated en-

ergetically averaged value is 6.8 ppm. The value of the αR conformer for this nu-

cleus is the closest to the experimental value regarding absolute chemical shifts. 

The experimental pressure-dependent trend for this proton is slightly smaller 

than for the other N-H proton, with a 0.08 ppm increase up to 3 kbar. The calcu-

lated changes are approximately 0.06 ppm up to 3 kbar, with no significant dif-

ference between the two main conformers and the averaged calculated value. 

Regarding the 13C atoms of the two carbonyl groups, EC-RISM overestimates 

the experimental chemical shifts for all conformers (see Figure 27 A and B and 

Table 15) and, therefore, the energetically averaged mean. The experimentally 

measured chemical shift for the 13C atom attached to the acetyl group is 177 ppm 

(Figure 27, panel A and Table 15). For the 13C carbonyl atom attached to alanine 

(Figure 27 B), the experimental chemical shift is 178.5 ppm. The following chem-

ical shifts for the two main conformers were calculated for the 13C atom of the 

acetyl carbonyl group: PII 179.3 ppm, αR 179.8 ppm, and the mean value is 

179.4 ppm. The difference to the experimental value is 2.4 ppm, which is also in 

line with the results for NMA. 

For the second 13C carbonyl atom (attached to the alanine fragment), the cal-

culated chemical shifts are 181.8 ppm and 181.0 ppm for the PII and α conform-

ers, respectively. The averaged calculated value is 181.3 ppm, leading to an error 

of 2.8 ppm with respect to the experiment. For both 13C nuclei of the carbonyl 

groups, as previously examined for NMA, only a small experimental pressure-de-

pendent change can be observed compared to the EC-RISM calculations. Espe-

cially for the alanine 13C carbonyl atom (Figure 27 D), almost no pressure-de-

pendent change can be detected, whereas, for EC-RISM, changes of about 

0.35 ppm at 3 kbar are calculated. The picture looks much better for the acetyl 
13C carbonyl atom, as EC-RISM only shows about twice the pressure-dependent 

increase compared to the experiment. The chemical shift changes up to 0.23 ppm 

at 3 kbar in the experiment, whereas about 0.4 ppm was calculated for the aver-

aged value. A statement about the quality of the calculations is difficult to make 

since the differences between experiment and theory are relatively large. 
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Figure 27 Pressure-dependent NMR shifts of the seven and eight Ac-Ala-NHMe and Ac-Gly-NHMe 

minima compared to the experimental value for the 13C carbonyl atoms of the two peptide bonds. 

A and B represent the absolute chemical shifts of the two amide hydrogens atoms of Ac-Ala-NHMe, 

whereas C and D represent the pressure-dependent changes in chemical shifts relative to 1 bar. 

In E and F, the absolute values for the corresponding nuclei of Ac-Gly-NHMe are shown, and in G 

and H, the difference relative to ambient pressure. The theoretical calculations were performed 

with MP2/6-311+G(d,p)/PCM. The corresponding reference shielding constants can be found in 

Table 43. Raw chemical shielding constants can be found in SI_4.3. Experimental values were 

measured by M. Beck Erlach298. 
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Table 15 Calculated pressure-dependent chemical shifts for the 13C amide carbonyl nuclei for the 

seven and eight minima of Ac-Ala-NHMe and Ac-Gly-NHMe, respectively. The calculations were 

performed with MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM. The corresponding 

reference shielding constants can be found in Table 43. Raw chemical shielding constants can be 

found in SI_4.3. Experimental values were measured by M. Beck Erlach298. 

Conformer 1 bar 100 bar 500 bar 1 kbar  2 kbar 3 kbar 

Ac-Ala-NHMe: 13C of Acetyl C-O 

PII 179.26 179.28 179.34 179.41 179.54 179.65 

αR 179.78 179.80 179.86 179.93 180.06 180.17 

C5 177.47 177.49 177.55 177.61 177.73 177.83 

C7,eq 179.30 179.31 179.36 179.43 179.53 179.63 

αL 179.62 179.63 179.70 179.77 179.90 180.01 

ad 178.99 179.01 179.07 179.14 179.26 179.37 

C7,ax 180.73 180.74 180.79 180.86 180.97 181.06 

Mean 179.39 179.40 179.47 179.54 179.68 179.79 

Exp 176.99 177.00 177.04 177.08 177.16 177.23 

Ac-Ala-NHMe: 13C of Ala C-O 

PII 181.79 181.80 181.85 181.90 182.00 182.08 

αR 181.00 181.02 181.07 181.13 181.23 181.32 

C5 179.56 179.57 179.62 179.67 179.76 179.84 

C7,eq 180.87 180.88 180.93 180.99 181.09 181.18 

αL 180.03 180.04 180.10 180.16 180.27 180.36 

ad 179.78 179.79 179.85 179.91 180.01 180.11 

C7,ax 183.45 183.46 183.51 183.57 183.67 183.76 

Mean 181.25 181.27 181.31 181.37 181.47 181.55 

Exp 178.53 178.53 178.53 178.54 178.53 178.52 

Ac-Gly-NHMe: 13C of Acetyl C-O 

αR 180.49 180.51 180.57 180.65 180.79 180.90 

αL 180.47 180.49 180.55 180.63 180.76 180.88 

PII 180.43 180.45 180.51 180.59 180.72 180.83 

PII 180.44 180.46 180.53 180.60 180.73 180.85 

𝛽 179.96 179.98 180.04 180.12 180.25 180.37 

C5 178.54 178.55 178.61 178.67 178.79 178.88 

C7,eq 180.51 180.52 180.58 180.64 180.75 180.85 

C7,eq 180.49 180.51 180.56 180.63 180.74 180.83 

Mean 180.42 180.44 180.50 180.58 180.71 180.83 

Exp 177.75 177.76 177.80 177.85 177.94 178.01 

Ac-Gly-NHMe: 13C of Gly C-O 

αR 178.01 178.03 178.09 178.16 178.28 178.38 

αL 178.01 178.03 178.08 178.15 178.27 178.37 

PII 177.47 177.48 177.54 177.60 177.72 177.82 

PII 177.47 177.48 177.54 177.61 177.72 177.82 

𝛽 177.30 177.32 177.38 177.44 177.56 177.67 

C5 174.72 174.73 174.79 174.85 174.97 175.07 

C7,eq 180.23 180.25 180.30 180.36 180.47 180.57 

C7,eq 180.28 180.30 180.35 180.41 180.52 180.62 

Mean 177.90 177.91 177.96 178.02 178.13 178.22 

Exp 174.86 174.87 174.88 174.91 174.94 174.98 

 

The two remaining nuclei of the peptide bond of Ac-Ala-NHMe, which will be 
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discussed, are the two 15N nuclei. The corresponding theoretically calculated and 

experimentally measured chemical shifts are shown in Figure 28 and Table 16. 

Here one can observe a remarkably contrary picture. On the one hand, the calcu-

lated chemical shifts for the 15N nucleus of the alanine fragment (Figure 28 A) 

deviate greatly from the experiment. On the other side, for the 15N nucleus, which 

can be assigned to the NHMe group (Figure 28 B), the calculated chemical shifts 

for the two main conformers lie precisely between the experimental value. The 

experimental chemical shift (see Table 16) for the alanine 15N nucleus is 

110.1 ppm, whereas the calculated values are 130.0 ppm and 129.3 ppm for PII 

and αR, respectively. The energetically estimated average value is 129.7 ppm. 

This large discrepancy between the experiment and theory of nearly 20 ppm is 

difficult to rationalize physically, especially since for NMA, as shown in the previ-

ous part, and for Ac-Gly-NHMe, which is discussed in detail below, the results for 

the 15N nuclei of peptide bond are much more reliable.  

The experimental chemical shift at ambient pressure for the 15N nucleus 

of the NHMe group (see Table 16) is 107.4 ppm. The calculated values for the two 

main conformers are 107.5 ppm (PII) and 104.6 ppm (αR) at a pressure of 1bar; 

the calculated mean value is 106.2 ppm, resulting in an error of 1.2 ppm relative 

to the experiment. The pressure dependence of the chemical shifts can be repre-

sented particularly well by EC-RISM for the alanine fragments 15N nucleus (Figure 

28 C), where the calculated average increase is 0.4 ppm. The corresponding ex-

perimental change is 0.35 ppm at 3 kbar relative to ambient pressure. The pres-

sure dependence for the 15N nucleus of the NHMe fragment is much worse resem-

bled than for the previously discussed nucleus. While a chemical shift change of 

1.4 ppm is experimentally observed, the calculated chemical shifts can only re-

flect a maximum change of 0.8 ppm. 
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Table 16 Calculated pressure-dependent chemical shifts for the 15 N amide nitrogen nuclei for the 

seven and eight minima of Ac-Ala-NHMe and Ac-Gly-NHMe, respectively. The calculations were 

performed with MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM. The corresponding 

reference shielding constants can be found in Table 43. Raw chemical shielding constants can be 

found in SI_4.3. Experimental values were measured by M. Beck Erlach298. 

Conformer 1 bar 100 bar 500 bar 1 kbar  2 kbar 3 kbar 

Ac-Ala-NHMe: 15N of Ala-N-H 

PII 130.03 130.05 130.12 130.21 130.36 130.50 

αR 129.33 129.36 129.46 129.58 129.79 129.97 

C5 127.73 127.76 127.85 127.96 128.15 128.32 

C7,eq 135.11 135.14 135.23 135.33 135.51 135.67 

αL 124.93 124.96 125.08 125.22 125.47 125.69 

ad 125.70 125.72 125.82 125.94 126.14 126.32 

C7,ax 126.14 126.16 126.26 126.37 126.57 126.75 

Mean 129.68 129.70 129.78 129.87 130.03 130.18 

Exp 110.13 110.16 110.27 110.41 110.65 110.85 

Ac-Ala-NHMe: 15N of Ala-NHMe 

PII 107.46 107.50 107.63 107.79 108.07 108.31 

αR 104.54 104.58 104.71 104.86 105.12 105.35 

C5 105.42 105.45 105.57 105.70 105.94 106.15 

C7,eq 111.49 111.52 111.63 111.77 112.00 112.20 

αL 102.49 102.52 102.65 102.79 103.05 103.26 

ad 107.74 107.77 107.90 108.05 108.32 108.55 

C7,ax 111.69 111.72 111.84 111.98 112.23 112.44 

Mean 106.22 106.24 106.36 106.49 106.72 106.92 

Exp 107.38 107.43 107.65 1007.9 108.37 108.78 

Ac-Gly-NHMe: 15N of Gly-N-H 

αR 113.53 113.56 113.67 113.80 114.04 114.25 

αL 113.53 113.56 113.67 113.80 114.04 114.25 

PII 112.73 112.75 112.84 112.95 113.14 113.31 

PII 112.75 112.78 112.87 112.98 113.17 113.33 

𝛽 113.77 113.80 113.89 114.00 114.19 114.36 

C5 112.51 112.54 112.64 112.76 112.98 113.16 

C7,eq 118.79 118.82 118.92 119.04 119.25 119.44 

C7,eq 118.79 118.81 118.92 119.04 119.25 119.44 

Mean 113.57 113.60 113.68 113.79 113.98 114.16 

Exp 114.83 114.87 115.02 115.2 115.54 115.83 

Ac-Gly-NHMe: 15N of Gly-NHMe 

αR 105.91 105.94 106.07 106.20 106.44 106.65 

αL 105.90 105.93 106.05 106.19 106.42 106.63 

PII 104.87 104.91 105.02 105.16 105.40 105.60 

PII 104.87 104.90 105.02 105.15 105.39 105.59 

𝛽 102.82 102.85 102.96 103.08 103.30 103.49 

C5 103.14 103.17 103.28 103.40 103.62 103.80 

C7,eq 112.05 112.08 112.20 112.34 112.58 112.79 

C7,eq 112.00 112.03 112.15 112.29 112.53 112.73 

Mean 105.72 105.75 105.85 105.96 106.17 106.35 

Exp 108.29 108.34 108.55 108.79 109.24 109.63 
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Figure 28 Pressure-dependent NMR shifts of the seven and eight Ac-Ala-NHMe and Ac-Gly-NHMe 

minima compared to the experimental value for the 15N atoms of the two peptide bonds. A and B 

represent the absolute chemical shifts of the two amide hydrogens atoms of Ac-Ala-NHMe, 

whereas C and D represent the pressure-dependent changes in chemical shifts relative to 1 bar. 

In E and F, the absolute values for the corresponding nuclei of Ac-Gly-NHMe are shown, and in G 

and H, the difference relative to ambient pressure is presented. The theoretical calculations were 

performed with MP2/6-311+G(d,p)/PCM. The corresponding reference shielding constants can 

be found in Table 43. Raw chemical shielding constants can be found in SI_4.3. Experimental val-

ues were measured by M. Beck Erlach298. 

In the following step, the same analysis is made for Ac-Gly-NHMe. The focus 

here is also on two main conformers (α and PII), whereby only one is examined in 

the case of mirror-symmetric conformers (the difference between two mirror-

symmetric conformers is very small). The pressure-dependent chemical shifts of 
1H N-H nuclei are plotted in Figure 26. In panel A, the N-H proton, which belongs 
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to the glycine motif, is depicted, and just as seen for Ac-Ala-NHMe, EC-RISM un-

derestimates the experimental chemical shift. At ambient pressure, the measured 

shift is 8.3 ppm, whereas for the α-helical conformers (see Table 29 and the or-

ange and cyan circles in), 6.7 ppm was obtained, and for the PII conformers (red 

crosses and brown asterisks), the calculated value is 6.8 ppm. The calculations 

accurately reflect the experimentally observed pressure dependency for this nu-

cleus, resulting in an increase of 0.05 ppm up to 3 kbar.  

The measured chemical shift of the 1H proton of the NHMe group is 7.9 ppm. 

By using the EC-RISM method, chemical shifts of 7 ppm and 6.5 ppm (PII) were 

calculated for the α-helical and PII conformers, respectively. Furthermore, a mean 

chemical shift averaged over the eight minima of 6.8 ppm is calculated. The over-

all pressure dependence of the eight minima underestimated the changes com-

pared to the experiment. In the latter, the chemical shift change is 0.07 ppm at 

3kbar, and the calculated values range between 0.04 ppm and 0.05 ppm. 

The next focus will be on the two carbonyl 13C nuclei of Ac-Gly-NHMe (see 

Figure 34), where the same observation is made as before for NMA and Ac-Ala-

NHMe; EC-RISM consistently overestimates the chemical shifts compared to the 

experimental data. The measured chemical shift for the carbonyl atom, which can 

be assigned to the acetyl group, is 177.8 ppm at ambient pressure. The α-helical 

structures show a calculated chemical shift of 180.5 ppm, whereas the chemical 

shifts of the PII conformers are 180.4 ppm. Since the differences between the two 

main conformers are minor, the average chemical shift over the data set is 

180.4 ppm. The pressure dependence of the chemical shifts is overestimated by 

0.2 ppm at 3 kbar, which is exactly twice the observed change in the experiment 

(0.2 ppm up to 3 kbar).  

In the experimental spectrum at ambient pressure, the peak at 174.9 ppm (see 

Table 15) can be assigned to the 13C carbonyl atom belonging to the glycine frag-

ment. For the α-helix conformations, a chemical shift of 178.0 ppm was calcu-

lated, resulting in a deviation of 3.1 ppm relative to the experiment. In the range 

of 177.5 ppm, the chemical shifts of the PII conformers (2.7 ppm deviation from 

the experiment) are located at ambient pressure. The corresponding value of the 

average is 177.9 ppm. Due to pressurization, the experimentally measured chem-

ical shift increases by 0.1 ppm at 3 kbar, whereas in the EC-RISM calculations, a 

change between 0.3 ppm and 0.35 ppm was calculated for all conformers.  

To conclude this chapter on the chemical shifts of the peptide bond nuclei, the 

focus is on the chemical shifts of the two 15N nuclei of Ac-Gly-NHMe (see Figure 

28 panels E-H). While a massive overestimation of the chemical shift by EC-RISM 

was observed for the 15N nucleus, which could be assigned to the alanine frag-

ment of Ac-Ala-NHMe, the calculated chemical shifts at 1 bar for the equivalent 

nucleus of Ac-Gly-NHMe are much closer to the measured value of 114.8 ppm (see 

Table 29). For the α-helical conformers, chemical shifts of 113.5 ppm could be 

calculated, and thus, a relatively small deviation of 1.3 ppm is obtained. A slightly 

larger deviation of 2.1 ppm was calculated for the PII conformers (112.7 ppm). As 

a result of the pressure increase, the chemical shift in the experiment increases 
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by 1.0 ppm. All EC-RISM calculations underestimate the experimental change, 

with the α-helical conformer showing the best agreement with the experiment 

with a 0.7 ppm increase at 3 kbar. 

An experimental chemical shift of 108.3 ppm was measured for the 15N 

nucleus of the NHMe group. The best agreement with the experiment for this spe-

cific nucleus can be found for the α-helix conformers with 105.9 ppm, a deviation 

of 2.4 ppm. Furthermore, a chemical shift of 104.8 ppm was calculated for the PII 

conformer. As with the other 15N nuclei discussed, the calculated change in chem-

ical shift due to pressure increase is significantly less than the measured pres-

sure-dependent chemical shift. An increase of 1.3 ppm at 3 kbar can be measured 

in the experiment, whereas the calculations can only represent a maximum of 

0.6 ppm. 

In summary, many observations already made for TMAO and NMA can 

also be made for the chemical shifts of Ac-Gly-NHMe and Ac-Ala-NHMe. The 

chemical shifts of the 13C carbonyl atoms calculated by EC-RISM are significantly 

higher compared to the experimental values. In the same way, the pressure-de-

pendent change for the 13C carbonyl atoms is small to virtually non-existent, and 

EC-RISM consistently calculates higher pressure-dependent changes. The abso-

lute calculated values for the 1H are lower than the experimental observation; 

however, the calculated pressure-dependent change is quite accurately repro-

duced. Nonetheless, an error could be attributed to small geometrical changes 

and explicit interactions with water molecules. A possible way to get more accu-

rate results would be to perform an AIMD simulation analogous to the EPR pa-

rameter calculations in 4.2.2 and use a relatively large number of snapshots for 

the calculations. Additionally, the chemical shifts of the amide protons were used 

for a population fit (more details at the end of the next chapter). 

 

4.3.3 Pressure-dependence of Ac-Gly/Ala-NHMe based on pres-

sure-dependent EC-RISM optimized minima compared to 

PCM-optimized minima 
 

This section is dedicated to provide a more detailed look at pressure-dependent 

EC-RISM-based geometry optimizations of Ac-Gly-NHMe and Ac-Ala-NHMe at dif-

ferent pressures. The minima obtained in chapter 4.3.5 were taken and reopti-

mized with EC-RISM at ambient conditions. These new minima were then opti-

mized at 1 kbar, and this procedure was repeated up to a pressure of 5 kbar, with 

an increment of 1 kbar. The corresponding 𝜑 and 𝜓 dihedral angles are presented 

in Table 17. The conformational changes are very small, e.g., the backbone dihe-

drals show marginal changes in the second decimal place. Compared to the 

B3LYP/6-311+G(d,p)/PCM optimizations, the changes due to the solvent model 

are greater than the pressure-induced changes. 

Additionally, the pressure-dependent changes of N-H and C-O bonds of the 

amide groups are presented in Table 30 of the appendix, and here only the 
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changes occur in the fourth decimal place. For example, the N-H bonds of the PII 

show stretching of 0.0006 Å   However, it can be seen that both bonds become 

larger under high-pressure conditions. This result could be explained by the hy-

pothesis that the external water moves closer to the amide bonds under high 

pressure, thus exerting a pulling effect on the amide proton or the oxygen of the 

carbonyl group. 

Next, the new optimized conformers were used for pressure-dependent NMR-

shift calculations with MP2/6-311+G(d,p), analogous to 4.3.2. Since no reference 

calculations for pressure-dependent geometry-optimized structures of DSS and 

NH3 were available at the time of writing, the reference shielding constants of the 

PCM-optimized structures were used for reference (calculated with MP2/6-

311+G(d,p)//B3LYP/6-311+G(d,p)/PCM by L. Eberlein28 and shown in Table 

43). This practice will definitely produce an error, but when the shielding con-

stants of the methyl protons are compared to the shielding constants of the amide 

protons, it can be seen that the effect of pressure on the amide protons (see SI 4.3 

and Figure 61 and Figure 62) are an order of magnitude greater. 

In Figure 29 A-D, the pressure-dependent shifts and shift changes of the am-

ide protons of the two main conformers of Ac-Ala-NHMe are depicted. The previ-

ously shown value for the B3LYP/6-311+G(d,p)/PCM minimized structures and 

the B3LYP/6-311+G(d,p)/EC-RISM ones are compared. In panels A and B, the re-

sults for the amide proton next to the acetyl group are shown, and it can be seen 

that the absolute values for the EC-RISM optimized structures show a smaller de-

viation compared to PCM-optimized ones from the experiment. However, the 

overall deviation is still relatively high, with 1.25 ppm and about 0.8 ppm for the 

two amide-protons at ambient conditions. Nonetheless, the pressure-dependent 

changes are better resembled by the EC-RISM optimized structures, with slightly 

higher changes. This effect could be due to the longer N-H bonds and the resulting 

stronger interactions with the oxygen atoms of water, which lead to an electron-

withdrawing effect. 
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Table 17: Pressure-dependent 𝜑 and 𝜓 values of the seven minima of Ac-Ala-NHMe and eight 

minima of Ac-Gly-NHMe calculated with B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p)/EC-RISM 

in comparison to B3LYP/6-311+G(d,p)/PCM optimized structures. The optimized structures can 

be found in SI_4.3. 

𝜑 Ac-Ala-NHMe 

Conformer PCM 1 bar 1 kbar 2 kbar 3 kbar  4 kbar 5 kbar 

PII -90.34 -90.40 -90.40 -90.39 -90.39 -90.37 -90.36 

αR -75.54 -74.42 -74.64 -74.63 -74.59 -74.61 -74.62 

C5 -152.15 -152.36 -152.35 -152.35 -152.35 -152.35 -152.34 

C7,eq -85.40 -85.72 -85.71 -85.71 -85.71 -86.79 -86.76 

αL 64.64 63.73 63.73 63.73 63.72 63.77 63.77 

ad 59.12 58.90 58.90 58.90 58.90 58.92 58.92 

C7,ax 73.49 73.28 73.27 73.26 73.26 73.25 73.25 

𝜓        

PII 143.02 146.36 146.48 146.46 146.46 146.45 146.45 

αR -11.70 -10.90 -10.91 -10.91 -10.92 -10.93 -10.93 

C5 154.70 153.27 153.26 153.24 153.23 153.21 153.19 

C7,eq 71.42 71.81 71.79 71.78 71.78 72.34 72.33 

αL 33.36 32.51 32.51 32.51 32.51 32.64 32.63 

ad -140.47 -141.42 -141.42 -141.41 -141.42 -141.48 -141.49 

C7,ax -53.55 71.81 71.79 71.78 71.78 72.34 72.33 

𝜑 Ac-GlyNHMe 

αR -98.26 -100.42 -100.39 -100.40 -100.22 -100.10 -100.02 

αL 98.91 100.74 99.70 100.21 100.31 100.33 100.57 

PII 78.07 -80.14 -80.29 -80.47 -80.30 -80.31 -80.29 

PII -77.95 81.18 81.16 80.86 80.88 80.79 80.79 

𝛽 98.22 116.88 118.23 118.12 118.23 118.41 119.67 

C5 179.88 174.87 174.98 174.96 174.95 174.95 174.95 

C7,eq -83.11 84.75 84.75 84.70 84.75 84.71 84.70 

C7,eq 83.18 -84.56 -84.49 -84.50 -84.32 -84.52 -84.43 

𝜓        

αR -1.25 -0.09 0.21 0.47 0.46 0.27 0.28 

αL 1.02 0.83 0.80 0.64 0.69 0.63 0.55 

PII -157.85 155.77 156.08 156.46 156.34 156.38 156.50 

PII 157.83 -156.23 -156.29 -156.41 -156.51 -156.67 -156.72 

𝛽 163.59 154.58 154.46 154.13 153.94 153.80 151.79 

C5 -179.71 -176.51 -176.05 -175.89 -175.84 -175.81 -175.76 

C7,eq 60.99 -66.64 -66.69 -66.68 -66.72 -66.71 -66.69 

C7,eq -61.29 67.98 67.94 67.97 67.56 67.92 67.89 
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Figure 29 Pressure-dependent NMR-Shifts of the two main conformers of Ac-Ala-NHMe and Ac-

Gly-NHMe compared to the experimental value for the 1H peptide bond nuclei calculated with 

MP2/6-311+G(d,p)/EC-RISM. A and B show the absolute shifts, and C and D are the corresponding 

Hpressure-dependent changes for Ac-Ala-NHMe. E and F show the absolute shifts, and G and D 

are the corresponding pressure-dependent changes for Ac-Gly-NHMe. The red lines show the PII 

conformer, and the blue lines show the α conformers. The green line represents the experimental 

shifts. The x denotes conformers optimized with B3LYP/6-311+G(d,p)/PCM(1 bar), and the dot 

points represent the conformers optimized with B3LYP/6-311+G(d,p)/EC-RISM(p-dep). Raw 

shielding constants can be found in SI_4.3. 
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Figure 30 Pressure-dependent NMR-Shifts of the two Ac-Ala-NHMe and Ac-Gly-NHMe main con-

formers compared to the experimental value for the 15N peptide bond nuclei calculated with 

MP2/6-311+G(d,p). A and B show the absolute shifts, and C and D are the corresponding Hpres-

sure-dependent changes for Ac-Ala-NHMe. E and F show the absolute shifts, and G and D are the 

corresponding pressure-dependent changes for Ac-Gly-NHMe. The red lines show the PII con-

former, and the blue lines show the α conformers. The green line represents the experimental 

shifts. The x denotes conformers optimized with B3LYP/6-311+G(d,p)/PCM(1 bar), and the dot 

points represent the conformers optimized with B3LYP/6-311+G(d,p)/EC-RISM(p-dep). Raw 

shielding constants can be found in SI_4.3. 

For the 15N and 13C nuclei of the amide bond, the chemical shift plots are de-

picted in Figure 30 and Figure 31, respectively. The calculated chemical shifts of 

the nitrogen bound next to the acetyl group (panels A and B) are even greater 

than the previously calculated ones for the PCM-optimized structures. The calcu-

lated pressure-dependence is for the αR conformer significantly smaller, and for 

the PII, only a marginal change is observed. Similar results are obtained for the 
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other 15N nucleus., whereby the change in the absolute numbers is higher for the 

αR conformer. The fit between the experiment and calculations is excellent for the 

mean value of the EC-RISM optimized structures. The pressure-dependent 

changes are smaller than the corresponding values from the PCM-optimized 

structures. However, the question regarding correct referencing remains and 

could be a huge source of error. 

For the 13C shifts, similar observations as for the 15N shifts are obtained. The 

absolute values are higher due to the EC-RISM optimization, which further wors-

ens relative to the experiment. However, the effect of the EC-RISM optimizations 

on the chemical shifts of the 13C methyl group (see SI 4.3) nuclei is more intense 

than the 1H changes. Thus, the error by using the PCM-optimized DSS shielding 

constants could be a larger source of error. On the other side, the pressure-de-

pendent change is becoming smaller due to the pressure-dependent EC-RISM op-

timizations; therefore, the error relative to the experiment decreases. However, 

the pressure change of the 13C carbonyl atom, which can be linked to the glycine 

fragment, is still massively overestimated.  

Regarding the conformational changes of Ac-Gly-NHMe, the same results are 

observed as for Ac-Ala-NHMe. The changes in the backbone dihedral angles are 

mostly less than 1° compared to the 1 bar value. The C-O and N-H bonds (Table 

31) slightly increase upon pressurization and are in the same range as the results 

for Ac-Ala-NHMe. The pressure-dependent chemical shifts of the α- and PII con-

formers and the corresponding average are depicted in Figure 29, Figure 30, and 

Figure 31(1H, 15N, and 13C). Again, a comparison between MP2/6-311+G(d,p)/EC-

RISM// B3LYP/6-311+G(d,p)/PCM and MP2/6-311+G(d,p)/EC-

RISM//B3LYP/6-311+G(d,p)/EC-RISM relative to the experiment is made. The 

absolute chemical shifts of the 1H nuclei increase at ambient conditions and min-

imize the error relative to the experimental observation. The increase compared 

to PCM-optimized structures is in the range of 0.2 to 0.35 ppm. The pressure de-

pendence is also enhanced, which is slightly overestimated for the hydrogen 

bonded to the glycine fragment (see Figure 29 panel G). The pressure-dependent 

change of the other 1H nucleus is exactly reproduced by the αR conformer (see 

Figure 29 panel H).  
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Figure 31 Pressure-dependent NMR-Shifts of the two Ac-Gly-NHMe main conformers compared 

to the experimental value for the 15N peptide bond nuclei calculated with MP2/6-311+G(d,p). A 

and B show the absolute shifts, and C and D are the corresponding Hpressure-dependent changes 

for Ac-Ala-NHMe. E and F show the absolute shifts, and G and D are the corresponding pressure-

dependent changes for Ac-Gly-NHMe. The red lines show the PII conformer, and the blue lines 

show the α conformers. The green line represents the experimental shifts. The + denotes con-

formers optimized with B3LYP/6-311+G(d,p)/PCM(1 bar), and the dot points represent the con-

formers optimized with B3LYP/6-311+G(d,p)/EC-RISM(p-dep). Raw and calculated data can be 

found in SI_4.3. 

The difference between the two minima is negligible for the 13C nucleus of the 

acetyl group. Nonetheless, an increase of 1 ppm compared to the PCM-optimized 

structures (see Figure 31 E and F) is observed if the geometry is optimized under 

EC-RISM solvation. The same effect is present for the 13C nucleus of the glycine 

fragment, leading to worse results than the experimental reference. Nevertheless, 
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the pressure-dependent changes are significantly smaller when the EC-RISM op-

timized structures are considered, and thus, the theory slightly better resolves 

the experimental observation. 

The mean absolute shifts (Figure 30) calculated for the EC-RISM optimized 

structures for the 15N nuclei resolve the experiment better at ambient conditions. 

However, for the glycine 15N (Figure 30 E and G), the effect is not consistent for 

both conformers, whereby the α-conformer shows a small decrease, and the PII 

has a significantly larger chemical shift. The chemical shift increases consistently 

for both conformers of the other 15N nucleus. Regarding the pressure-dependent 

changes, a smaller shift difference is observed, which agrees with the results for 

Ac-Ala-NHMe.  

In this chapter, pressure-dependent geometry optimizations of the two dipep-

tides were performed. It was shown that the effect of pressure on the geometries 

is relatively small; nonetheless, some interesting trends could be observed, like 

the shortening of C-O and N-H bonds. The effect on the relative populations of the 

conformers is small and in the same range as for the pressure-dependent MP2/6-

311+G(d,p)/EC-RISM calculations on the PCM-optimized structures. In the case 

of Ac-Ala-NHMe, the PII conformer has a higher occupation probability when the 

EC-RISM-optimized structures are considered compared to the PCM-optimized 

ones. For Ac-Gly-NHMe, only marginal trends were observed. Regarding the NMR 

chemical shifts, the amide protons can be better represented by EC-RISM-opti-

mized structures for 1 bar and high pressure. In the calculation of 13C carbonyl 

chemical shifts at ambient conditions, the EC-RISM optimized structures showed 

slightly higher deviation from the experiment compared to the PCM-optimized 

ones; nonetheless, the chemical shift change upon pressurization is better resem-

bled by the pressure-dependent optimized structures. For the 15N, the accuracy 

is better for the EC-RISM-optimized structures at ambient conditions; however, 

no clear picture is obtained for the pressure-dependent change.  
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4.3.4 Benchmarking: equilibrium of cis and trans NMA under 

high pressure 
 

NMA is the simplest model to reflect an element of the peptide backbone, which 

can be present in two different states (excluding possible dimerizations)299, the 

trans and the cis state (see Figure 1). The trans-NMA conformer is more popu-

lated than the cis-conformer, where the relative energy difference between the 

two conformers is approximately 2.3 kcal mol-1 in aqueous solutions at ambient 

pressure.57 In Table 18, the population and the relative free energy of the cis-con-

former for different EC-RISM calculations compared to experimental results and 

ff19SB-RISM calculations are enlisted. For EC-RISM, MP2/6-311+G(d,p) and 

DLPNO-CCSD/def2-TZVPP on B3LYP/6-311+G(d,p)/PCM and B3LYP/6-

311+G(d,p)/EC-RISM optimized structures were performed. Additionally, ther-

mal corrections calculated with B3LYP/6-311+G(d,p) were added to the EC-RISM 

free energies. 
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Table 18: Relative populations and free energies of cis- NMA compared to trans-NMA at different 

pressures, and all values are in %. For rows with a degree symbol °, the structures were optimized 

by applying ff19SB/ALPB. The experimental results were obtained by NMR-spectroscopy and 

were measured by M. Beck-Erlach.298 In parenthesis, the term PMV signals that the pressure-de-

pendent change of ΔG was solely computed by the integral over the pressure-dependent change 

of the partial molar volume according to eq (185). For the other RISM-based calculations, the nor-

mal pressure-dependent PMV correction was applied to the excess chemical potential (for details, 

see 27). Thermal corrections were calculated with B3LYP/6-311+G(d,p)/PCM. Raw and calculated 

data can be found in SI_4.3. 

Method 1 bar 500 bar 1 kbar 2 kbar 

 Optimizations Populations 

Experimental (NMR, M. Beck-Erlach)298  1.69 1.77 1.87 2.00 

Experimental (IR Ataka57)   2.02 - - - 

MP2/6-311+G(d,p) B3LYP/6-311+G(d,p)/PCM 2.16 2.22 2.30 2.41 

MP2/6-311+G(d,p) (PMV) B3LYP/6-311+G(d,p)/PCM 2.16 2.21 2.26 2.35 

MP2/6-311+G(d,p)/Tcorr B3LYP/6-311+G(d,p)/PCM 1.97 2.04 2.09 2.20 

MP2/6-311+G(d,p) (PMV)/Tcorr B3LYP/6-311+G(d,p)/PCM 1.97 2.02 2.06 2.14 

DLPNO-CCSD/def2-TZVPPǂ  B3LYP/6-311+G(d,p)/PCM 1.91 1.96 2.01 2.10 

DLPNO-CCSD/def2-TZVPPǂ (PMV) B3LYP/6-311+G(d,p)/PCM 1.91 1.94 1.97 2.02 

DLPNO-CCSD/def2-TZVPPǂ/Tcorr. B3LYP/6-311+G(d,p)/PCM 1.74 1.79 1.83 1.90 

DLPNO-CCSD/def2-TZVPPǂ (PMV)/Tcorr B3LYP/6-311+G(d,p)/PCM 1.74 1.77 1.79 1.84 

MP2/6-311+G(d,p) B3LYP/6-311+G(d,p)/EC-RISM 2.46 2.57 2.67 2.85 

MP2/6-311+G(d,p) (PMV) B3LYP/6-311+G(d,p)/EC-RISM 2.46 2.54 2.60 2.73 

MP2/6-311+G(d,p)/Tcorr B3LYP/6-311+G(d,p)/EC-RISM 2.24 2.32 2.43 2.60 

MP2/6-311+G(d,p) (PMV)/Tcorr B3LYP/6-311+G(d,p)/EC-RISM 2.24 2.31 2.37 2.50 

DLPNO-CCSD/def2-TZVPPǂ  B3LYP/6-311+G(d,p)/EC-RISM 2.14 2.22 2.26 2.41 

DLPNO-CCSD/def2-TZVPPǂ (PMV) B3LYP/6-311+G(d,p)/EC-RISM 2.14 2.19 2.23 2.31 

DLPNO-CCSD/def2-TZVPPǂ/Tcorr. B3LYP/6-311+G(d,p)/EC-RISM 1.95 2.02 2.06 2.19 

DLPNO-CCSD/def2-TZVPPǂ (PMV)/Tcorr B3LYP/6-311+G(d,p)/EC-RISM 1.95 1.99 2.03 2.11 

ff19SB +Δ RISM° (p)  ff19SB/ALPB 0.23 0.23 0.24 0.24 

ff19SB +Δ RISM° (p) (PMV) ff19SB/ALPB 0.23 0.23 0.24 0.24 

ΔG /kcal mol-1 

Experimental (NMR, M. Beck-Erlach)298  2.40 2.38 2.35 2.31 

Experimental (IR Ataka57)   2.30 - - - 

MP2/6-311+G(d,p) B3LYP/6-311+G(d,p)/PCM 2.26 2.24 2.22 2.19 

MP2/6-311+G(d,p)ǂ(PMV) B3LYP/6-311+G(d,p)/PCM 2.26 2.24 2.23 2.21 

MP2/6-311+G(d,p) /Tcorr B3LYP/6-311+G(d,p)/PCM 2.31 2.29 2.28 2.25 

MP2/6-311+G(d,p) (PMV) /Tcorr B3LYP/6-311+G(d,p)/PCM 2.31 2.30 2.29 2.27 

DLPNO-CCSD/def2-TZVPPǂ  B3LYP/6-311+G(d,p)/PCM 2.33 2.32 2.30 2.28 

DLPNO-CCSD/def2-TZVPPǂ (PMV) B3LYP/6-311+G(d,p)/PCM 2.33 2.32 2.32 2.30 

DLPNO-CCSD/def2-TZVPPǂ /Tcorr B3LYP/6-311+G(d,p)/PCM 2.39 2.37 2.36 2.34 

DLPNO-CCSD/def2-TZVPPǂ (PMV) /Tcorr B3LYP/6-311+G(d,p)/PCM 2.39 2.38 2.37 2.36 

MP2/6-311+G(d,p)* B3LYP/6-311+G(d,p)/EC-RISM 2.18 2.15 2.13 2.09 

MP2/6-311+G(d,p)* (PMV) B3LYP/6-311+G(d,p)/EC-RISM 2.18 2.16 2.14 2.11 

MP2/6-311+G(d,p)*/Tcorr B3LYP/6-311+G(d,p)/EC-RISM 2.24 2.21 2.19 2.15 

MP2/6-311+G(d,p)* (PMV)/Tcorr B3LYP/6-311+G(d,p)/EC-RISM 2.24 2.22 2.20 2.17 

DLPNO-CCSD/def2-TZVPPǂ  B3LYP/6-311+G(d,p)/EC-RISM 2.27 2.24 2.23 2.19 

DLPNO-CCSD/def2-TZVPPǂ (PMV) B3LYP/6-311+G(d,p)/EC-RISM 2.27 2.25 2.24 2.22 

DLPNO-CCSD/def2-TZVPPǂ/Tcorr. B3LYP/6-311+G(d,p)/EC-RISM 2.32 2.30 2.29 2.25 

DLPNO-CCSD/def2-TZVPPǂ (PMV)/Tcorr B3LYP/6-311+G(d,p)/EC-RISM 2.32 2.31 2.30 2.27 

ff19SB +RISM° (p)  ff19SB/ALPB 3.60 3.59 3.58 3.57 

ff19SB +Δ RISM° (p) (PMV) ff19SB/ALPB 3.60 3.59 3.59 3.58 

 

At ambient conditions, the experiment yields a population of 1.69% for the 

cis-conformer, which is a little smaller than the data from the literature, where, 



RISM-based pressure-dependent computational spectroscopy 

133 

e.g., Ataka determined a population via IR measurements of roughly 2%.57 Due to 

pressurization, a steady increase of the cis-conformer is observed, resulting in a 

population of 2.0% at 2 kbar. Four theoretical approaches will be examined to 

calculate the cis/trans equilibrium. The first is the well-established combination 

MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM with pressure-dependent PMV-

correction of the excess chemical potential.27 The calculated population of the cis-

conformer is 2.16% and, therefore, slightly higher than the experimental value. 

However, the difference is small and can be translated into energy differences 

within the margin of error of EC-RISM calculations. The pressure-dependent in-

crease can then be correctly reproduced by EC-RISM, leading to a population of 

the cis-conformer of 2.41 % at 2 kbar. The second MP2/6-311+G(d,p) approach, 

shown in Table 18, does not use the pressure-dependent PMV correction; instead, 

the excess chemical potential change is solely calculated by Eq (185). The differ-

ences to the former model are small, and the population of the cis-conformer is 

2.35 % at 2 kbar.  

Further EC-RISM calculations were performed using the DLPNO-CCSD/def2-

TZVPP/EC-RISM//B3LYP/6-311+G(d,p)/PCM level of theory.129–131 However, it 

should be noted that at the current time, no explicit PMV correction is available 

for this level of theory. In order to perform a pressure-dependent PMV-correction 

of the excess chemical potential, the parameters developed originally for MP2/6-

311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM were reused. For ambient 

conditions, the resulting occupation probability of the cis-conformer is 1.8 %, and 

it shows a slightly better performance relative to the experiment compared to the 

MP2/6-311+G(d,p). Regarding the pressure trend, the two DLPNO-CCSD/def2-

TZVPP variants show similar behavior as the MP2/6-311+G(d,p) calculations.  

The pressure-dependent MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-

311+G(d,p)/EC-RISM results are shown in the sixth row. Here, the absolute value 

at ambient conditions is 2.5 %, slightly higher than the values of the other EC-

RISM calculations based on the PCM-optimized structures. 

These results underline that high-level EC-RISM calculations can accurately 

represent pressure-dependent solvation-caused effects, and it provides a reliable 

basis to adopt the EC-RISM calculations to more complex systems in the next part 

of this chapter. Additionally, thermal corrections based on B3LYP/6-

311+G(d,p)/PCM calculations were added to the free energy values. The thermal 

corrections are the same for all methods and were only calculated for ambient 

conditions. Due to the addition, the cis-conformer gets a 0.03 kcal/mol penalty. 
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Figure 32 Pressure-dependent energy components (G, E, and μex) calculated for cis and trans-

NMA. Panel (A) shows the relative changes of the three energy types calculated with MP2/6-

311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM. Panel (B) depicts the corresponding ΔΔ dif-

ferences between cis and trans NMA. Panel (C) shows the relative pressure-dependent changes of 

the three main energy components calculated with ff19SB+RISM. In Panel (D), the relative ΔΔ 

differences between the two conformers are shown. The corresponding data is shown in Table 19 

Nonetheless, this thesis aims to evaluate how well the current force fields can 

represent pressure-dependent changes without explicit reparameterization. 

Therefore, the Amber version ff19SB35 was chosen as the force field. To create a 

comparable basis to the EC-RISM calculations, the ff19SB was used to calculate 

the intramolecular energy. The pressure dependence is represented by 3D RISM, 

whereby the point charges and Lennard-Jones parameters polarize the solvent. 

At 1 bar, the population of the cis-conformer is only 0.26 %, which is only a tenth 

of the obtained value from MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-

11+G(d,p)/PCM. Although the pressure change can be reproduced correctly, the 

absolute change is a third of the experimentally observed change and of the EC-

RISM calculations. 
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Table 19 Pressure-dependent energy components of cis- and trans-NMA relative to the 1 bar value 

for MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM (with daggerǂ ) and ff19SB 

+RISM//ff19SB/ALPB, denoted by the star *. Since no pressure-dependent change of the intra-

molecular energy is obtained for the force field calculations, the corresponding  

Pressure ΔGtransǂ ΔGcisǂ ΔEtransǂ ΔEcisǂ Δμtransǂ Δμcisǂ ΔG.μtrans* ΔG.μcis* 

1 bar 0. 0. 0. 0. 0.0 0.0 0. 0. 

100 bar 0.19 0.19 0.02 0.02 0.17 0.16 0.02 0.02 

500 bar 0.97 0.95 0.11 0.1 0.86 0.85 1.03 1.02 

1 kbar 1.93 1.89 0.21 0.2 1.72 1.69 2.03 2.02 

2 kbar 3.77 3.70 0.39 0.36 3.38 3.34 3.95 3.93 

3 kbar 5.52 5.43 0.54 0.5 4.98 4.93 5.77 5.74 

4 kbar 7.19 7.08 0.67 0.62 6.52 6.46 7.49 7.45 

5 kbar 8.76 8.65 0.79 0.73 7.98 7.92 9.11 9.07 

7.5 kbar 12.42 12.27 1.04 0.96 11.38 11.31 12.85 12.79 

10 kbar 15.71 15.53 1.24 1.15 14.47 14.38 16.2 16.13 

 

The three single energy components (G, E, and μex, see Table 19) will be ana-

lyzed to understand the underlying characteristics. The corresponding pressure-

dependent profiles are depicted in Figure 32. The pressure-dependent changes 

of the three components for the EC-RISM calculations are shown in panel (A). The 

absolute change of the free energy is mainly driven by the excess chemical poten-

tial, whereby the increase is roughly 15 kcal/mol at a pressure of 10 kbar. The 

increase of the intramolecular energy is significantly smaller, with 1.1 kcal/mol 

at 10 kbar. Panel (C) shows the corresponding terms for the ff19SB+RISM calcu-

lations. In contrast to the EC-RISM calculations, no solute polarization is obtained 

in the force field calculations since the ff19SB is an unpolarizable force field. 

Therefore, no pressure-dependent change of intramolecular energy is observed. 

Thus one can conclude that pressure-dependent electronic polarization due to 

the influence of the solvent is important. Similar results were obtained for TMAO 

in ref18, where electronic polarization was necessary to reproduce AIMD-based 

spatial distribution functions. For the excess chemical potential, about 

16 kcal/mol increase up to 10 kbar can be observed. This result fits well with the 

overall free energy change obtained for the EC-RISM calculations.  

However, to answer the question if the ff19SB force field is suitable to use in 

MD simulations under high-pressure conditions, the more important quantity is 

the relative change of the energy terms between cis- and trans-NMA. In Figure 32, 

panels (B) (EC-RISM) and (D) (ff19SB+RISM), the energy differences between cis-

and trans-NMA are plotted to address this question. In the case of EC-RISM, the 

observed changes are roughly -0.07 kcal/mol for both intramolecular energy and 

excess chemical potential. Thus, the relative change for the free energy 

is -0.15 kcal/mol at 10 kbar. In the case of ff19SB, only the chemical excess po-

tential changes about -0.07 kcal/mol at 10 kbar are obtained. Therefore, ff19SB 

underestimated the pressure change provided by EC-RISM with 0.08 kcal/mol. 

However, these relative pressure-dependent changes are so small that the abso-

lute error introduced by utilizing the ff19SB force field is significantly larger than 
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the pressure effect.  

 

4.3.5 Pressure-dependent free energy landscapes of Ac-Gly/Ala-

NHMe  
 

Pressure-dependent EC-RISM-based calculations successfully represent the pop-

ulations of cis and trans-NMA compared to experimentally obtained NMR refer-

ence data. With that knowledge, the more complicated systems Ac-Gly-NHMe and 

Ac-Ala-NHMe shall now be analyzed. Due to the significantly higher conforma-

tional complexity, an exhaustive dihedral scan of the 𝜑 and 𝜓 angles was chosen 

as the starting point, resulting in 400 different angle pair combinations. Subse-

quently, each angle combination was quantum-mechanically optimized in geom-

etry, resulting in a finite number of minima for the two. For Ac-Gly-NHMe and Ac-

Ala-NHMe, eight and seven distinguishable minima were found, respectively (see 

Figure 33.) This chapter will give a detailed discussion about the minimum pop-

ulation. For pressure-dependent EC-RISM calculations, different setups will be 

compared. On the one hand, the structures based on B3LYP/6-311+G(d,p)/PCM 

optimization will be studied with MP2/6-311+G(d,p) at different pressures. Here, 

the pressure-dependent PMV correction of the excess chemical potential was ap-

plied, with and without the addition of B3LYP/6-311+G(d,p)/PCM thermal cor-

rections. Additionally, the change of ΔG was calculated via eq (185).  

On the other hand, the same procedures were applied to the new 

B3LYP/6-311+G(d,p)/EC-RISM(p) optimized structures. Furthermore, pressure-

dependent NMR calculations were performed for the minima and based on these 

calculations, pressure-dependent populations were fitted to resemble the exper-

imental observation. S. Kast and S. Maste300 co-developed the fit procedure, and 

S. Maste performed the fits, whereby he first measured the pressure-dependent 

chemical shielding constants of some reference substances to remove the intrin-

sic errors of the EC-RISM calculations in the chemical shifts. The corresponding 

formula is shown in the appendix in chapter 6.8. The chemical shifts obtained af-

ter the correction and the corresponding mean value after fitting are presented 

in the appendix in Figure 69 and Figure 70 

 In the literature, some references are available regarding the populations 

of dipeptide conformations. Takekiyo69,70 previously studied the pressure de-

pendence of dipeptide conformations by applying Raman spectroscopy. of the 

skeletal stretching region. Four conformations could be found for Ac-Ala-NHMe 

in the spectrum, whereby only the PII conformation and the αR conformation 

could be clearly assigned. The assignment was based on extensive DFT studies 

from Han301 and Deng.302 The peak of the PII conformer has the largest intensity 

at ambient conditions, whereas the αR has the second highest intensity. By in-

creasing the pressure up to 2.5 kbar, the peak associated with the αR conformer 

vanishes. To describe the relative pressure-dependence between the different 

conformers, the partial molar volume difference Δ𝑉 relative to the PII conformer 
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was determined via: 

Δ𝑉 = −𝑅𝑇 {
𝜕 ln (

𝐼𝑗
𝐼𝑖
)

𝜕𝑝
}, 

(189) 

where I is the integrated intensity of the conformers i and j, the corresponding 

results for the volume difference from Takekiyo69 can be found in Table 21. Here, 

the assumption was made that the ratio of scattering cross sections of the indi-

vidual conformers is independent of pressure. They observed a strong change in 

the population of the αR for Ac-Ala-NHme upon pressurization, and at a pressure 

of 1.6 kbar, the αR peak was no longer visible. In another study, Takekiyo made 

the same measurements for the Ac-Gly-NHMe dipeptide.70 In contrast to the Ac-

Ala-NHMe experiment, the α peak remained visible at high pressure, and even the 

population increased relative to the PII conformer. It doesn't seem easy to explain 

why for the Ac-Ala-NHMe, the αR conformer vanished, and for the glycine dipep-

tide, it increased, contradicting also calculated results discussed below. For Ac-

Ala-NHMe, the populations at 1 bar can be extracted from the given publication 

(taken from Grdadolnik64 and summarized in Table 20), and they are 69% for the 

PII , 17% for the αR, 6% for C5, and 8% for C7, eq. Another combined IR and Raman 

study303 measured the populations obtained from the IR amide III band and the 

Raman skeletal vibration. The averaged populations over the two measurements 

(see Table 20) are 68% for PII, 15% for αR, and 17% for C5. In both measurements, 

the PII conformer was clearly dominant, yet the populations of αR (IR: 11%, Ra-

man: 18%) and C5 (IR: 29%, Raman: 6%) differ significantly depending on the 

chosen method. Grdadolnik et al. have not found a clear reason; however, they 

suggested that the Raman scattering coefficients have different values for various 

conformers.64 The group performed another study, where the amide III region 

was investigated with IR as well as Raman spectroscopy (see Table 20). Here a 

consistent picture between IR and Raman was obtained, whereby the measured 

populations were 60% for PII, 11% for αR, and 29% for C5.64 Here, the populations 

of Ac-Gly-NHMe at ambient conditions were also measured, and in contrast to all 

other amino acids, the αR conformer is with 66% the dominant observed con-

former; for the PII a population of 22% and for the C5 of 12%. Gaigeot56,86 utilized 

an extensive DFT-MD study in liquid water to reproduce the experimental IR 

spectrum. They found that PII/𝛽 (these two conformers were examined as one) 

and the αR have nearly no energetic difference, and the interconversion barrier 

between these two states is 2 kcal/mol (these results could be challenged by ex-

tended statistics, as the authors explained). However, to resolve the experimental 

spectrum, the population ratios needed to be changed to a 2:1 ratio favoring the 

PII/𝛽 conformers. 
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Figure 33 Conformational free energy landscapes of Ac-Ala-NHMe (A) and Ac-Gly-NHMe calcu-

lated with MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM (1 bar). The positions of 

the optimized minima in the Ramachandran plane304 are shown. Calculated and raw data can be 

found in SI_4.3. 

In the following, the EC-RISM results will be presented. Regarding Ac-Ala-

NHMe, a more compact picture (in terms of relevant conformers) is observed 

than for Ac-Gly-NHMe, since no symmetry plane in the Ramachandran plane due 

to the CH3 group at Cα (see Figure 33) is present. Two clear minima can be isolated 

for the MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM calculations (the de-

scriptions of used methods can be found in 3.3.2), the PII conformer with a popu-

lation probability of 46% without thermal corrections and 59% with thermal cor-

rections at 1 bar and αR with a population probability of 42% and 33%, respec-

tively (see Table 20). Thus, practically only these two conformers are present at 

ambient pressure in an aqueous solution. Similar results are obtained for the 

MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/EC-RISM with thermal corrections, 
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whereby the PII conformer has a probability of 64.75% and the αR of 28%. Here, 

it is important to mention that the added thermal corrections are the same 

B3LYP/6-311+G(d,p)/PCM since no frequency calculations are available for EC-

RISM calculations. The next most favored states are the C5 and the C7eq confor-

mations, with 6 % and 4 % probability at 1 bar without thermal corrections, re-

spectively. Only marginal populations show the conformations αL, ad, and C7, ax. 

The calculated results are in good agreement with the Raman skeletal stretching 

measurement of Takekijo69 and Grdadolnik303. However, compared to the com-

bined IR and Raman amide III experiments from Grdadolnik64, the population of 

the αR is overestimated, and of C5 is underestimated.  

On the other hand, three distinct minima can be found for B3LYP/6-

311+G(d,p)/PCM//B3LYP/6-311+G(d,p)/PCM at ambient pressure (Table 20). 

The αR conformer is the most preferred conformer with a population probability 

of 37 %. In contrast to EC-RISM, the ranking of the conformers PII and C5 is re-

versed in the PCM calculations. The C5 conformer has a population probability of 

35 % and the PII conformer of 18 %. The C7eq conformer also has a noteworthy 

population probability of 8.8 %. These results agree with a recent study on the 

conformational behavior of Ac-Ala-NHMe, published by Cornaich et al.66. In this 

study, the theoretical level of theory B3LYP-D3/aug-cc-pVDZ was used with the 

IEF-PCM solvent model resulting in population probabilities of 16.4% for the PII 

conformer, 32 % for the αR conformer, and 36.8% for the C5 conformer. The re-

sulting differences between PCMs and EC-RISM may be best explained by the lack 

of resembling hydrogen bonds within PCMs. In a previous NMR study,305, it was 

shown that the PII conformer is best able to reflect experimental dipolar cou-

plings, while αR conformations may also have substantial populations (or roughly 

1 kcal/mol higher energy). The main conclusions from this study were that the 

PII conformer is the most favorable conformer due to the hydrogen bond pattern 

with the surrounding solvent molecules. Several past theoretical calculations 

support these results, including CHARMM22 and TIP3P306 calculations and den-

sity functional theory calculations with explicit solvent molecules.301  
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The relative pressure-dependent change of the minimum occupation proba-

bilities of Ac-Ala-NHMe is minimal, although the order of the occupation proba-

bilities changes slightly for PCM-optimized structures when no thermal correc-

tions are added. A steady decrease in the probabilities can be observed for the PII 

conformer, whereas, for the αR conformer, a steady increase is observable. For 

the EC-RISM optimized structures with thermal corrections, the corresponding 

populations are 65.27% and 27.77% for the PII and αR conformers at 5 kbar. In 

contrast to the PCM-optimized structures, the pressure-dependent changes for 

the EC-RISM-optimized structures are not continuous. This fact indicates that the 

optimized B3LYP/6-3111+G(d,p) structures are not necessarily the same as pos-

sible MP2/6-311+G(d,p) optimizations would provide. Currently, geometry opti-

mizations with EC-RISM and MP2/6-311+G(d,p) are not feasible, which could 

remedy these artifacts. 

Nonetheless, the order of magnitude of the pressure-dependent tendencies is 

similar to the results for the PCM-optimized structures. Due to pressurization, the 

relative occupation of the α-conformer increases compared to the PII conformer. 

The conformers C5 and αL also show a decreasing trend under high pressure, 

whereas the population probability of the C7eq conformer increases slightly but is 

also far from being significantly occupied. To compare these results with already 

published ones, the Takeiyo et al. study69,70 will be focused at. The results ob-

tained here contradict the EC-RISM results that the αR conformer is more likely 

to be occupied with higher pressure.  

 
Table 21 Partial molar volumes of the four different conformers of Ac-Ala-NHMe and Ac-Gly-
NHMe, taken from Ref69,70 and calculated with MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-
311+G(d,p)/PCM at 1 bar and 10 kbar. All values are in cm3/mol. Raw data for all conformers can 
be found in SI_4.3. 

Conf ΔVm(Raman) 
69,70 

Vm (1D RISM) 
69,70 

ΔVm(1D RISM) Vm (EC.RISM 
1  bar) 

ΔVm (EC.RISM 
1  bar) 

Vm (EC-RISM 
10 kbar) 

ΔVm (EC.RISM 
10  kbar 

 Ac-Ala-NHMe 

αR 1.1 118.5 -1.2 116.47 -0.46 109.58 -0.29 

PII 0 119.7 0.0 116.93 0.0 109.87 0 

C5 0.1 117.9 -1.8 117.06 0.13 109.76 -0.11 

C7,eq -2.4 116.3 -2.4 118.04 1.11 110.05 0.18 

 Ac-Gly-NHMe 

α -0.4 110.4 0.4 99.05 -0.13 94.68 0.14 

PII 0.0 110.0 0.0 99.18 0.0 94.54 0.0 

C5 0.5 110.1 0.1 99.71 0.53 94.62 0.06 

C7,eq -2.2 108.0 -2.0 100.89 1.61 95.21 0.65 

 

As mentioned above, the peak assigned to the αR conformer decreases upon 

pressurization and vanishes at 1.6 kbar. It is observed that another peak grows 

under pressure, and the C7eq conformer was assigned to it. These statements were 

supported by theoretical calculations of the partial molar volume of the respec-

tive conformers using the RISM-KB (1D RISM) theory with the amber ff99SB force 

field. The corresponding values are shown in Table 21, and the calculated PMVs 

from EC-RISM calculations at ambient pressure and high-pressure conditions. 
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Takeyo et al. showed that the C7,eq conformer has the smallest partial molar vol-

ume with 116.3 cm3/mol, whereas the PII conformer has the largest partial molar 

volume with 119.7 cm3/mol. These results do not fit the experimental observa-

tion, whereby the PII conformer has the second smallest PMV. In the experiment, 

the αR has a higher PMV than the PII; however, these results can be neither con-

firmed with 1D RISM nor EC-RISM. 

Furthermore, these values do not match the PMVs with those calculated by 

EC-RISM, which is expected to be more accurate. The αR conformer has the lowest 

partial molar volume with 110.59 cm3/mol. To measure the experimental volume 

differences, a pressure-independent PMV was assumed, but the EC-RISM model 

includes the changes in the PMV upon pressurization. Over the whole pressure 

range, the αR conformer has the smallest partial molar volume and hence should 

be preferable under high pressure. In this thesis, the PMVs were calculated with 

3D RISM, whereas Takekiyo used 1D RISM. Another possible reason for the devi-

ations could be in the underlying conformers, e.g., the Takekiyo structures were 

taken from average results from different simulations. For example, the 𝜑,𝜓 val-

ues were always rounded to the tenth. It is unclear if the structures were opti-

mized and if the optimizations were made in a vacuum or solvent. This procedure 

could lead to huge differences if unoptimized structures were used for the calcu-

lations. 

Another way to determine the population of the conformers is to make a fit in 

a way that the fitted populations are multiplied with the theoretically calculated 

chemical shifts of the corresponding conformers to represent the experimentally 

measured chemical shifts accurately. S. Maste performed the corresponding fits, 

and the focus was only on the two main conformers PII and αR. For the former, in 

the case of the PCM-optimized structures, a population of 65.04% is obtained, and 

the αR has a population of 34.96%. This result agrees with the literature data that 

the PII is the main conformer. Upon pressurization, only marginal changes occur; 

nonetheless, the same trend is observed for the single point calculations, that the 

population of αR increases. Similar results are obtained for the EC-RISM opti-

mized structures, whereby the two conformers are nearly identical, populated 

with 51.04% and 48.96% for PII and αR, respectively. At a pressure of 3 kbar, the 

ratio changes to 51.26 for αR and 48.96% for PII. This outcome can be attributed 

to the fact that in Figure 29 C, the αR can better resemble the experimental obser-

vation, whereas, in Figure 29 D, the PII conformer is closer to the experiment. 

Thus, it seems reasonable that the fit process tries to balance the two conformers. 

The pressure-dependent NMR fit results also contradict the pressure-dependent 

Raman measurements.69,70  

Although Ac-Gly-NHMe has one methyl group less than Ac-Ala-NHMe, the con-

formational landscape is more diverse (see Figure 33). Due to the achiral struc-

ture of Ac-Gly-NHMe, a symmetry plane can be observed with respect to the in-

version of the dihedral angles 𝜑 and 𝜓. The two main conformations obtained by 

EC-RISM on the PCM-optimized structures without the addition of thermal cor-

rections are the α-helical right and left-directed structures, with occupation 
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probabilities of 30% and 28%, respectively. In contrast to Ac-Ala-NHMe, the ef-

fect of adding thermal corrections is marginal on the population. The next pre-

ferred conformers can be assigned to the PII or beta-sheet domain, with about a 

15% probability. The C7eq conformations have only marginal probabilities of 

around 2.6%. The conformer with the lowest probability by far is the C5 con-

former, with only a 0.9% probability. Furthermore, in Table 20, the probabilities 

for the eight minima of Ac-Gly-NHMe optimized with B3LYP/6-311+G(d,p)/EC-

RISM are presented. The relative order of the minima for the MP2/6-

311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM is identical to the PCM 

optimized structures. The differences between the PCM-optimized populations 

and the EC-RISM ones are much smaller than the results for Ac-Ala-NHMe. The 

populations are The relative occupation number of α conformers increases upon 

pressurization. However, a steady trend is only observed for the B3LYP/6-

311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM calculations (see Table 

32), whereas the MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM 

calculations do not show a steady trend, again indicating, that the B3LYP/6-

311+G(d,p)/EC-RISM optimized structures are not the ideal ones for pressure-

dependent MP2/-6311+G(d,p) calculations. Due to the EC-RISM geometry opti-

mizations, the relative population of the PII conformers at ambient conditions in-

creases, which was already observed for Ac-Ala-NHMe. 

Compared to Ac-Ala-NHMe, experimental reference populations are sparse; 

however, the EC-RISM results can be compared to the combined amide III IR and 

Raman measurements of Grdadolnik64. Here, a population of 66% was deter-

mined for the α-helical region, which agrees very well with the EC-RISM calcu-

lated values, which are roughly 60% occupation probability combined for both α 

conformation. In the experiment, 22% and 12% were determined for the PII and 

𝛽, respectively. With EC-RISM, the calculated populations are 27% for the two PII 

conformers and 11% for 𝛽.  

In the B3LYP/6-311+G(d,p)/PCM//B3LYP/6-311+G(d,p)/PCM calculations, 

the C5 conformer with 33% is the conformer with the lowest energy. The two α-

helical structures have probabilities of about 23 %. According to PCM, the PII con-

formations are much less likely to be occupied, with only a 4.2% probability. The 

two C7eq conformations are also energetically higher in the PCM model with a 

1.73% occupation probability. A comparison with a publication by Cormanich et 

al. can be made in order to assess the PCM results in concrete terms.67. This pub-

lication found three main conformers for Ac-Gly-NHMe, calculated with the level 

of theory B3LYP-D3/aug-cc-pVDZ and the IEF-PCM solvent model. The main con-

former is in the α-helical region with a population of 51.1 %, although it should 

be noted that only one helix conformer was evaluated here. The other two con-

formers are C7, eq with 5.6 %, and C5 with 37.6 %. The results for the C5 and α 

conformers agree with the PCM results. 

Concerning the pressure-dependent changes in the population probabilities 

of the main conformers of the Ac-Gly-NHMe, no relevant change can be observed. 

In contrast to Ac-Ala-NHMe, where a slight increase of the C7 eq conformer was 
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observed, this conformer becomes less favored in the case of Ac-Gly-NHMe under 

pressure. These results contradict the study of Takekijo70, where again, a combi-

nation of Raman measurements and 1D RISM theory calculations was used as the 

method of choice. The corresponding PMVs between the conformers can be found 

in Table 21. In the experiment, the C7 eq conformer also has the lowest partial mo-

lar volume, supported by 1D RISM calculations. Furthermore, the order between 

the αR and the PII conformer is reversed, with the αR conformer having a smaller 

volume and, thus, will be more populated upon pressurization. This result agrees 

with the EC-RISM calculations on the PCM-optimized structures, where a 

stronger population of the α conformers is observed (see Table 21). In the EC-

RISM calculations, the C7,eq conformer has the largest partial molar volume, 

whereas α and PII conformers have the smallest partial molar volume at ambient 

pressure. Again a possible explanation for the large differences between 1D RISM 

and EC-RISM can be in the underlying structures that were used for the PMV cal-

culations. 

The NMR-fit-based populations (see Table 20) significantly differ from the ex-

perimental reference results and the EC-RISM calculations for the PCM-optimized 

structures. Here, PII is clearly the main conformer, with a population of 98.4%, 

and the α conformer is only occupied with a 1.6% probability. Upon pressuriza-

tion, the result looks even worse; at 3 kbar, the PII is effectively the only con-

former populated. This effect is due to the fit procedure, where only the two 1H 

amide protons were used. In Figure 29, panels G and H, we can see that for both 

amide nuclei, the PII conformer is closer to the experiment; therefore, it is plausi-

ble that only this conformer is probably occupied. The picture looks considerably 

better when the EC-RISM optimized structures are set into the focus. The PII con-

former is still the main conformer with 63.41%, and a decrease due to pressure 

is observed, with a probability of 59.22% at 3 kbar. This pressure-dependence 

change agrees with the pure EC-RISM calculations and the observation from 

Takekiyo.70 

So far, only the effect of pressure on the minima was discussed; however, 

pressure can affect the complete so-called Ramachandran plane. To discuss this, 

the complete Ramachandran plane of the dipeptide Ac-Gly-NHMe (different Ram-

chandran planes of Ac-Ala-NHMe can be found in Figure 57 and Figure 58) should 

be extensively investigated with EC-RISM, FF-RISM, metadynamics- and AIMD 

simulations. For the EC-RISM calculations, the level of theories MP2/6-

311+G(d,p)//B3LYP/6-311+G(d,p)/PCM and RPBE-D3/TZVPP//B3LYP/6-

311+G(d,p) were used. The latter was used to get an appropriate comparable ba-

sis to the AIMD simulations. These were performed by S. Körning308 and used the 

RPBE-D3 functional with the TZVPP basis set. Additionally, in the appendix (see 

Figure 56), DLPNO-CCSD/def2-TZVPP//B3LYP/6-311+G(d,p)/PCM calculations 

are presented. For the latter two methods, the pressure-dependent PMV correc-

tion originally developed for MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM 

was used (parameters originally published in ref 27). For the FF-RISM and 

metadynamics simulations, the ff14SB force field was utilized, whereby, in the 
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case of the metadynamics simulations, the SPC/E water force field was chosen. C. 

Hölzl307 performed these simulations. This chapter focuses on the pressure 1 bar 

and 10 kbar only. The results for two further force fields, the CHARMM36m, and 

the ff19SB, can be found in the appendix (see Figure 56). To get an impression of 

the effect of high pressure on the geometries, B3LYP/6-311+G(d,p)/EC-RISM ge-

ometry optimizations were performed, and MP2/6-311+G(d,p) singlepoint cal-

culations were made for these structures. 

Figure 34 depicts the Ramachandran free energy surfaces for Ac-Gly-NHMe 

calculated with various methods at 1 bar and 10 kbar. The EC-RISM calculations 

at ambient conditions are shown in panels A and C, and the biggest differences 

occur in the region around the minima, where the MP2/6-311+G(d,p) calcula-

tions show a narrower picture compared to the DFT calculations.  Larger differ-

ences can be observed when the QC calculations are compared with the force-

field-based (here, the calculations were performed with a combination of the 

ff14SB amber force field and 3D RISM) ones. On the one side, the EC-RISM calcu-

lations show relative broad minima in the alpha-helical region (around 

𝜙: ±100,𝜓:±0) and PII region (𝜙: ±100,𝜓:±0), whereas, on the other side, the force 

field-based computations show significant narrower minima. 

 

 



Results 

146 

 
Figure 34: Pressure-dependent Ramachandran plane of Ac-Gly-NHMe. Panel A and B were calcu-

lated using MP2/6-311+G(d,p)//B3LYP-63111+G(d,p)/PCM at 1 bar (already shown in Figure 34 

B) and 10 kbar, respectively. Panel C and D show the RPBE-D3/TZVPP//B3LYP/6-311+G(d,p) 

calculations at 1 bar and 10 kbar, respectively. The results obtained from the ff14SB/RISM calcu-

lations are presented in panels E (1 bar) and F (10 kbar). Panels G and H show the results obtained 

from the metadynamics simulations using ff14SB with SPC/E. The color scale ranges from 0 

kcal/mol to 16 kcal/mol, and the iso levels are 1 kcal/mol. Raw and calculated data can be found 

in SI_4.3. Metadynamics simulations were performed by C. Hölzl. 307 
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Figure 35 Difference free energy Ramachandran surfaces between 10 kbar and 1 bar of Ac-Gly-

NHMe calculated with different methods. Panel A shows the free energy difference calculated with 

MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p). In panel B, the corresponding RPBE-D3/TZVPP cal-

culations are depicted. C shows the ff14SB- based metadynamics results with SPCE/E performed 

by C. Hölzl. D shows the ff14SB + RISM calculations. Raw data can be found in SI_4.3 

In Figure 35, the relative free energy change between 10 kbar and 1 bar for 

the four methods is presented. The two EC-RISM-based approaches are shown in 

panels A and B, and no significant difference is visible. The changes are in the 

range of -0.2 to 0.5 kcal/mol, whereby the biggest changes do not occur in the 

minima region, but instead, the largest changes can be observed between the 

minima. Nonetheless, the absolute numbers and the effect of pressure on the solv-

ated free energy are relatively small. For the ff14SB+RISM combination, the dif-

ferences are significantly smaller, ranging from -0.1 to 0.1 kcal/mol. This result is 

similar to the results obtained for the cis-trans equilibrium of NMA. The pressure-

dependent changes in the metadynamics simulation (Panel (C)) are much more 

diverse. However, it should be noted that explicit waters (SPC/E) were present in 

the metadynamics simulation, and these affect the geometries even if identical 

torsion angle combinations are considered. In metadynamics simulations, the ef-

fect of orthogonal degrees of freedom, like rotational and vibrational modes, is 

considered. On the other hand, in the EC-RISM calculations, these contributions 

were only optimized. Furthermore, statistical errors can occur in the simulation 

if some regions are not long enough sampled. Nevertheless, the pressure-depend-

ent changes are still relatively small and in a similar order of magnitude as the 

results for the EC-RISM calculations. 
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Figure 36: Panels A and B show the Ramchandran surfaces of Ac-Gly-NHMe at 1 bar and 10 kbar, 

respectively. These calculations were done with MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/EC-

RISM(p). In Panel C, the difference between panels B and A is depicted. Panel D shows the differ-

ence between Panel C of this figure and Panel A of Figure 35 (Pressure difference between 10 kbar 

and 1 bar calculated with MP2/6-311+G(d,p). Raw data can be found in SI_4.3. 

 In the case of EC-RISM, only calculations on rigid 1 bar geometries based 

on B3LYP/6-311+G(d,p)/PCM optimization have been shown so far. In Figure 36, 

the results from MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM 

calculations are shown (Panel (A) and (B)). The corresponding difference be-

tween the two surfaces is depicted in Panel (C). In Panel (D). the changes between 

Panel (A) of Figure 35 and Panel (D) are depicted. 

The difference between the calculations on the PCM-optimized structures 

and pressure-dependently optimized EC-RISM ones is very small. With the bare 

eye, no significant differences can be observed for the surfaces at ambient and 

high-pressure conditions, respectively. 
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Figure 37: Panel A shows the original Ramachandran surface from Panel A of Figure 34 calculated 

with MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM. Panel B shows the identical surface; how-

ever, to the negative 𝜑 and 𝜓 the number 360 were added. In this manner the huge barriers are 

moved at the edges of the surface. In Panels C and D, a specific slice (at 𝜓=180°, see black line in 

panel B) is shown. In Panel C the QC-based calculations are shown, where the orange lines refer 

to MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM calculations at 1 bar (solid) and 10 kbar 

(dashed). MP2/-6311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM(p) results are depicted 

through the red lines (1 bar:solid, 10 kbar:dashed). The green lines show RPBE-D3/TZVPP/EC-

RISM//B3LYP/6-311+G(d,p)/EC-RISM calculations, and the blue lines show data extracted from 

multiple AIMD simulations using RPBE-D3/TZVPP at 1 bar (solid) and 10 (kbar), respectively 

(performed by S. Körning)308. In Panel D, the force-field-based methods are summarized. The or-

ange line is the same as Panel C and should provide some orientation. The blue lines were calcu-

lated with the ff14SB+RISM combination. The ff19SB force field with RISM solvation was utilized 

for the magenta lines. The green lines show the results obtained from the ff14SB/SPCE/E metady-

namics simulation.307 Raw data can be found in SI_4.3. 

 It is difficult to find significant differences between the methods by looking 

alone at the surfaces. Of course, it can be seen that the force field-based surfaces 

differ significantly from the QC-based surfaces. In the following, one specific slice 

through the Ramachandran plane should be picked out and analyzed to get a bet-

ter look. The slice of choice is located at a constant 𝜓 dihedral value of 180°, and 

the results are summarized in Figure 37. Here, Panels (A) and (B) show the Ram-

chandran surface calculated with MP2/6-311+G(d,p) in its normal form (Panel 

(A)) and in a form where the negative 𝜑 and 𝜓 were shifted into the positive 

range, by adding a value of 360°. This change is made to move the high barriers 

within the hyperplane to the edges of the slice. In Panel (C), the results for QC-

based methods are shown. On the one hand, there are the MP2/6-311+G(d,p)/EC-

RISM calculations based on the PCM and EC-RISM optimized minima, respec-

tively. And on the other hand, DFT-based calculations using the RPBE-D3/TZVPP 

level of theory for EC-RISM calculations and an AIMD simulation. 

For all QC calculations, the local minima are located at 80° and 280°, and 

between these two minima, a barrier is observed, with a plateau between 130° 
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and 220°. The main difference between the RPBE-D3/TZVPP and the MP2/6-

311+G(d,p) calculations lies in the height of the barrier, which is for the former 

around 1 kcal mol1-and for the latter one twice as high. However, the pressure-

dependent changes from ambient conditions to extremely high pressure are very 

small for all methods. In the case of the EC-RISM calculations, rigid structures 

were used, and orthogonal degrees of freedom (like vibrational and rotational 

contributions) were neglected, whereas, in the case of the AIMD simulation, the 

degrees of freedom were taken into account. Since AIMD simulations are rela-

tively time-consuming and the complete free energy surface can not be sampled, 

multiple AIMD simulations were done and subsequently combined. The AIMD 

simulations were started from the minima positions, and in the end, a histogram 

was generated, from which the free energy changes along the slice were calcu-

lated.  

The force-field-based methods are shown in Panel (D) of Figure 47. Similar 

to the QC results, two local minima are present at 80° and 280°. However, in the 

force field, a third local minimum is observed in the region of 180°. The pressure 

dependence is marginal due to the missing polarization for the ff14SB+RISM and 

the ff19SB+RISM variants. Nonetheless, the error introduced due to the force-

field design is significantly larger than the small error observed in the pressure 

dependence. In the metadynamics simulation, larger differences are observed, 

and the clear lowest minimum is located at 280°, and no symmetric curvature 

along the slice is observed. Also, the effect of pressure is larger here. This effect 

can be seen from the calculated populations for the main minima (see Table 20), 

which were determined by interpolating the Ramachandran plane and subse-

quently by performing minimizations in the proximity of the PCM-optimized 𝜑 

and 𝜓 values. For example, the population of the PII of Ac-Ala-NHMe is 75.9% at 

1 bar and drops to 38% at 10 kbar. The effect is also clearly visible in the differ-

ence free energy Ramachandran plane (see Figure 58) This result is in accordance 

with the EC-RISM results but far too strong. An explanation for this could be a 

lack of sufficient sampling in the corresponding regions. 

In summary, for both Ac-Ala-NHMe and Ac-Gly-NHMe, the minima calcu-

lated by EC-RISM are consistent with the consensus opinion from the literature 

at ambient pressure. The PII conformation is the main conformer for Ac-Ala-

NHMe, whereas the C5 and αR are also significantly populated. In the case of EC-

RISM, αR is higher populated, which agrees with experimental Raman studies for 

Ac-Ala-NHMe. However, the experimental references show no clear picture of 

whether the αR or the C5 is the higher populated one. For Ac-Gly-NHMe, EC-RISM 

can predict the ratios obtained in experiments at ambient conditions. The pres-

sure dependence of the populations is marginal, whereby high pressure favors αR 

conformation due to the smaller PMV for both dipeptides. However, in the litera-

ture, a pressure-dependent Raman study for Ac-Ala-NHMe showed a strong de-

crease in the αR conformer population. However, a similar study of the pressure 

dependence of Ac-Gly-NHMe showed an increase in αR conformer populations 

due to pressurization.  



RISM-based pressure-dependent computational spectroscopy 

151 

Furthermore, it can be stated that with EC-RISM and AIMD, the calculated 

effect of pressure on the Ramachandran planes is marginal, even in a 10 kbar re-

gime. Slight changes are observed, which are mostly located in the barrier regions 

between the minima and not directly at the different minimum conformations. 

With a combination of force field + RISM solvation, the correct pressure-depend-

ent tendency can be reproduced, whereby the effects are one magnitude smaller 

due to the missing polarization of intramolecular interactions. Metadynamics 

simulations show larger pressure-dependent changes, possibly due to statistical 

errors. 
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4.3.6 Summary and outlook 
 

This chapter aimed to investigate the influence of pressure on three typical pro-

tein backbone models, NMA, Ac-Gly-NHMe, and Ac-Ala-NHMe. The first two sec-

tions were dedicated to pressure-dependent NMR calculations on the amide nu-

clei of the three model systems. For all systems, experimental reference data 

were available. The absolute deviations of the calculated values were the smallest 

for the amide protons, and the deviations for the 13C and 15N were larger. An in-

consistent picture is observed regarding the pressure-dependent changes for the 
1H nuclei of NMA. On the one hand, the pressure dependence for trans-NMA is 

overestimated, whereas, on the other hand, the pressure-dependent increase of 

all other 1H amide nuclei (including the two dipeptides) is underestimated. Here, 

a possible dimerization of trans-NMA could be the problem. Nonetheless, for all 

nuclei, EC-RISM could reproduce the correct pressure-trend. 

Regarding the pressure-dependent EC-RISM optimizations, the main ef-

fects on the geometries are an elongating of the C-O and N-H amide bonds, with 

changes of less than 0.001 Å up to a pressure of 5 kbar. However, the effect of 

these small changes can be observed in the NMR calculations. The EC-RISM opti-

mized structures better represent the pressure-dependent changes for the 1H 

chemical shifts. Also, the absolute values at ambient conditions are better re-

solved; however, the pressure-dependent shielding constants of the PCM-opti-

mized DSS at 1 bar were used for reference.  

Next, the relative population changes of the two main conformers (cis and 

trans) of NMA were compared to NMR-based experimental reference data. A very 

good agreement between experiment and theory is observed, with a slight in-

crease in the cis conformer’s relative population. Additionally, a version of the 

amber force field was combined with pressure-dependent 3D RISM calculations. 

These calculations showed that the error introduced by the force field at ambient 

conditions is significantly larger than the error produced due to the missing pres-

sure-dependent polarization.  

In the last part, the main conformers (which are based on PCM geometry 

optimizations at ambient conditions) of Ac-Ala-NHMe and Ac-Gly-NHMe were an-

alyzed and compared to experimental reference data. The α and PII conformers 

were extracted for both molecules as the most populated ones, and these results 

agree with literature data from theoretical calculations in solution. Regarding the 

pressure dependence, relatively small changes were obtained., favoring the α 

conformer. The contrary picture was observed in an experimental Raman study 

for Ac-Ala-NHMe; however, in a similar study of Ac.-Gly-NHMe, the EC-RISM re-

sults were confirmed. New pressure-dependent EC-RISM geometry optimiza-

tions were performed for both dipeptides. Here only small pressure-dependent 

changes were observed, and the changes in the relative populations have the 

same magnitude as the observed ones for the PCM-optimized structures. Addi-

tionally, a population fit to best represent the pressure-dependent chemical shifts 

between experiment and theory was used to combine theoretical studies with 
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experimental ones.  For Ac-Ala-NHMe, the free energy differences between the 

main conformers were very small, and only marginal change upon pressurization 

was observed. For Ac-Gly-NHMe, the overlap between fit and EC-RISM results is 

not good, especially for the PCM-optimized structures.  

 Furthermore, a comparison of the complete Ramachandran plane of Ac-

Gly-NHMe with various methods at 1 bar and 10 kbar was performed. Again, only 

small pressure-dependent changes were observed, with less than 1 kcal/mol dif-

ference between the two pressures. A significantly larger distinguishment is ob-

served when QC calculations are compared with force field one. Here, the error 

introduced due to the force field is significantly larger than the error observed 

due to the missing polarization of the force field. Therefore it can be concluded 

that the general priority should be to develop better force fields at ambient con-

ditions before an adaption to the small pressure-dependent changes is attempted. 

 The accuracy of pressure-dependent NMR calculations should be further 

targeted in the future. One huge potential source of error is the choice of the cor-

rect referencing. Pressure-dependent EC-RISM optimized DSS structures are un-

available, but these could lead to further improvement. In the context of this 

work, the placement of explicit water molecules around the peptides was ne-

glected. Nonetheless, these should greatly impact the chemical shielding con-

stants and increase the 1H chemical shifts. An optimal way would be to use snap-

shots from an AIMD simulation like it was done in calculating the spectroscopic 

parameters of HMI. 

 

  



Overall summary and outlook 

154 

5 Overall summary and outlook 
 

This work aimed to apply the RISM formalism in combination with the QC de-

scription of the solute to different spectroscopic observables at high pressure. 

The spectroscopy variants IR, EPR, and NMR were the targets of this thesis. Fur-

thermore, the pressure dependence of the peptide backbone was analyzed. 

First, the pressure-dependent IR wavenumbers of the small osmolyte TMAO 

and the cyanide anion with equilibrium and non-equilibrium solvation were cal-

culated. Compared to previous IR calculations94, the performance in terms of ab-

solute wavenumbers and pressure-dependent changes was strongly improved. 

This effect can mostly be attributed to the usage of solvent susceptibilities gener-

ated by applying 1D RISM HNC calculations and using exact electrostatic poten-

tials in calculating the Coulomb interactions. Regarding the effect of equilibrium 

and non-equilibrium description, no clear trend was observed in calculations of 

absolute frequencies at ambient conditions. However, only the non-equilibrium 

method could correctly predict all pressure trends for TMAO, whereas it failed to 

predict the right trend for the cyanide anion. Nonetheless, it was observed that 

for the cyanide anion and the N-O stretch mode of TMAO, the equilibrium mode 

shows the best agreement with the experimental observation. The application of 

EC-RISM-based numerical frequency calculations under high pressure could be a 

new way to better understand the effect of pressure on the IR frequencies.  

In the second part, for the first time, the EPR parameters of the relative rigid 

spin probe HMI were calculated with EC-RISM at ambient conditions and as pro-

spective prediction at high pressure. For the calculation of the isotropic HFCC, 

revPBE0/def2-TZVPP calculations were performed for EC-RISM, CPCM, and a 

QM/MM method on snapshots of an AIMD. Two subsets were used, one where all 

structures were vertically desolvated and another where the explicit solvent mol-

ecules of the two first solvations shells around the N-O motif were retained. EC-

RISM calculations using the DFT level of theory on the vertical desolvated data 

set showed significantly better results than the corresponding CPCM calculations. 

On the second solvation shell data set, EC-RISM performed slightly better than 

the QM/MM and CPCM methods. The results could be further improved by apply-

ing the DLPNO-CCSD/def2-TZVPP method, whereby EC-RISM had the smallest 

error compared to the experiment. Moreover, the change of the HFCC due to the 

protonation of HMI was investigated. Here, the DFT-based variant could accu-

rately reproduce the observed pH-dependent change, whereas the DLPNO-CCSD 

methods overestimated the change. Furthermore, the W-band spectra were cal-

culated for both unprotonated and protonated HMI. Here, for the fine-splitting in 

the Azz region, the same trend was observed for the HFCC, where DLPNO-CCSD 

calculations showed the best performance. Only DFT-based methods were avail-

able for g-tensor calculations, and an intrinsic underestimation of g-values was 

observed here.  

The last chapter was dedicated to the influence of pressure on the protein 
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backbone. As a first benchmark, the populations of cis- and trans-NMA at ambient 

and high-pressure conditions were calculated and compared to experimental 

NMR measurements. Here, a very good agreement between theory and experi-

ment was observed, especially in reproducing the pressure trend. In the follow-

ing, the main conformers for the dipeptides Ac-Ala-NHMe and Ac-Gly-NHMe were 

determined. For Ac-Gly-NHMe, a very good agreement with experimental refer-

ence data was obtained, whereby in the case of Ac-Ala-NHMe, the literature is not 

unanimous what is the order for the three main conformers. However, EC-RISM 

results were still in a plausible range compared to the experiments. Under pres-

sure, only marginal changes were observed, whereby the α-helical conformers 

become stronger populated due to smaller PMV. Moreover, EC-RISM-based ge-

ometry optimizations were performed in this chapter. Here, the observed pres-

sure-induced changes were very small; however, a relatively strong effect on the 

chemical shifts compared to PCM-optimized structures was observed. In contrast, 

for the EC-RISM optimized structures, a much better agreement was achieved. A 

so-called NMR population fit was also made based on the calculated chemical 

shifts obtained from PCM- and EC-RISM-optimized structures. For Ac-Ala-NHMe, 

the results agree relatively well with the pure EC-RISM calculations, whereas for 

the PCM-optimized structures of Ac-Gly-NHMe large deviations were obtained. 

For analyzing the question if a force field parameterization becomes necessary 

for high-pressure MD simulations, the Ramachandran planes of Ac-Gly-NHMe, 

calculated with forcefield-based methods and QC methods, were studied at am-

bient pressure and an extreme pressure of 10 kbar. Here, it was shown that the 

errors from the force fields at ambient conditions are larger than the error in ne-

glecting the polarization effect upon pressurization.  

The thesis showed that a description of the solvent via RISM and QC descrip-

tion of the solute in the form of the EC-RISM could be used to accurately calculate 

different spectroscopic observables in solution. Especially when non-ambient 

conditions are the subject of investigation, EC-RISM can show its strength since it 

can be easily adapted to such conditions. Future work should address pressure-

dependent NMR calculations based on a conformational ensemble obtained from 

an AIMD, which would be the best, or, as an alternative classical MD simulations 

could be used. High potential is grounded in the novel EC-RISM geometry optimi-

zations, which could also be applied to other problems like pKa calculations. 
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6 Appendix 
 

6.1 Exemplary pressure-dependent distortions plots of TMAO 

calculated with MP2/6-311+G(d,p) 
 

 
Figure 38: Pressure-dependent distortion plots for the Gibbs free energies of the CH3-def-high 

mode (A), CH3-def-middle mode (B), CH3-def-low mode (C), and NO-stretch mode (D) of TMAO 

calculated with MP2/6-311+G(d,p)/χHNC and EQ method. Raw data can be found in SI_4.1. 
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Figure 39: Pressure-dependent distortion plots for the intramolecular energies of the CH3-def-

high mode (A), CH3-def-middle mode (B), CH3-def-low mode (C), and NO-stretch mode (D) of 

TMAO calculated with MP2/6-311+G(d,p)/χHNC and EQ method. Raw data can be found in SI_4.1. 
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Figure 40: Pressure-dependent distortion plots for the μex of the CH3-def-high mode (A), CH3-def-

middle mode (B), CH3-def-low mode (C), and NO-stretch mode (D) of TMAO calculated with 

MP2/6-311+G(d,p)/χHNC and EQ method. Raw data can be found in SI_4.1. 
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Figure 41: Pressure-dependent distortion plots for the intramolecular energies of the CH3-def-

high mode (A), CH3-def-middle mode (B), CH3-def-low mode (C), and NO-stretch mode (D) of 

TMAO calculated with MP2/6-311+G(d,p)/χHNC for the two non-equilibrium methods. Raw data 

can be found in SI_4.1. 
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Figure 42: Pressure-dependent distortion plots for the Gibbs free energies of the CH3-def-high 

mode (A), CH3-def-middle mode (B), CH3-def-low mode (C), and NO-stretch mode (D) of TMAO 

calculated with MP2/6-311+G(d,p)/χHNC for the M1 non-equilibrium method. Raw data can be 

found in SI_4.1. 
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Figure 43: Pressure-dependent distortion plots for the μex of the CH3-def-high mode (A), CH3-def-

middle mode (B), CH3-def-low mode (C), and NO-stretch mode (D) of TMAO calculated with 

MP2/6-311+G(d,p)/χHNC for the M1 non-equilibrium method. Raw data can be found in SI_4.1. 
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Figure 44: Pressure-dependent distortion plots for the Gibbs free energies of the CH3-def-high 

mode (A), CH3-def-middle mode (B), CH3-def-low mode (C), and NO-stretch mode (D) of TMAO 

calculated with MP2/6-311+G(d,p)/χHNC for the M2 non-equilibrium method. Raw data can be 

found in SI_4.1. 
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Figure 45: Pressure-dependent distortion plots for the μex of the CH3-def-high mode (A), CH3-def-

middle mode (B), CH3-def-low mode (C), and NO-stretch mode (D) of TMAO calculated with 

MP2/6-311+G(d,p)/χHNC for the M2 non-equilibrium method. Raw data can be found in SI_4.1. 
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6.2 High-Pressure principal components of HMI and HHMI 
 
Table 22: Pressure-dependent principal components of HMI calculated with revPBE0/def2-

TZVVP and decontracted s-functions. The coupling tensors are in MHz. 

Pressure Azz Ayy Axx gzz gyy gxx 

1 bar 92 2.65 2.55 2.002126 2.005708 2.00776 

100 bar 92.01 2.65 2.55 2.002126 2.005707 2.007759 

500 bar 92.08 2.66 2.56 2.002126 2.005706 2.007754 

1 kbar 92.15 2.68 2.57 2.002126 2.005705 2.007749 

2 kbar 92.28 2.7 2.58 2.002126 2.005703 2.007739 

3 kbar 92.39 2.72 2.6 2.002126 2.005701 2.007731 

4 kbar 92.49 2.73 2.61 2.002127 2.005699 2.007723 

5 kbar 92.58 2.75 2.62 2.002127 2.005697 2.007717 

7.5 kbar 92.78 2.78 2.65 2.002127 2.005694 2.007702 

10 kbar 92.94 2.81 2.67 2.002127 2.005691 2.00769 

 
Table 23: Pressure-dependent principal components of HHMI calculated with revPBE0/def2-

TZVVP and decontracted s-functions. The coupling tensors are in MHz. 

Pressure Azz Ayy Axx gzz gyy gxx 

1 bar 83.56 1.48 1.79 2.002111 2.005751 2.008381 

100 bar 83.58 1.49 1.79 2.002111 2.005751 2.008379 

500 bar 83.68 1.5 1.8 2.002111 2.00575 2.008371 

1 kbar 83.8 1.52 1.82 2.002111 2.005748 2.008363 

2 kbar 84.01 1.56 1.84 2.002111 2.005745 2.008347 

3 kbar 84.19 1.58 1.86 2.002111 2.005743 2.008334 

4 kbar 84.36 1.61 1.88 2.002112 2.00574 2.008322 

5 kbar 84.5 1.63 1.9 2.002112 2.005738 2.008311 

7.5 kbar 84.82 1.68 1.94 2.002112 2.005734 2.008288 

10 kbar 85.08 1.72 1.97 2.002112 2.00573 2.00827 

 

 
Table 24: Linear (a, in kbar−1 (gxx) or MHz·kbar−1 (HFCC and Azz)), quadratic (b in, in kbar−2 (gxx) 

or MHz·kbar−2 (HFCC and Azz)), and offset (c in MHz for HFCC and Azz) coefficients from fitting 

calculated HMI and HHMI gxx, HFCC, and Azz, to the following form: 𝜟δ(p)= B1p+B2p2. The 1 bar 

chemical shifts (δ0 in ppm) are shown. 

Parameters a b c a b c 

 HMI HHMI 

gxx -6.98·10-7· -1.05·10-5 3.61·10-7 -9.6410-7· -1.05·10-5 5.80·10-7 

HFCC 0.0047 0.0594 -0.002 0.0079 0.0974 -0.00037 

Azz 0.0071 0.1397 -0.005 0.0092 0.2273 -0.00774 
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6.3 Histograms of g- and A-tensors of HMI and HHMI 
 

 

 
Figure 46 Normalized A- and g-tensor distributions for HHMI calculated with revPBE0/def2-

TZVVP/CPCM on the subset containing 1000 vertically desolvated structures.  

 

 
Figure 47 Normalized A- and g-tensor distributions for HHMI calculated with revPBE0/def2-

TZVVP/CPCM on the subset containing 1000 structures with explicitly the second solvation shell 

included around the N-O motif. 
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Figure 48 Normalized A- and g-tensor distributions for HHMI calculated with revPBE0/def2-

TZVVP/EC-RISM on the subset containing 1000 vertically desolvated structures. 

 

 
Figure 49 Normalized A- and g-tensor distributions for HHMI calculated with revPBE0/def2-

TZVVP/EC-RISM on the subset containing 1000 structures with explicitly the second solvation 

shell included around the N-O motif. 
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Figure 50 Normalized A- and g-tensor distributions for HHMI calculated with DLPNO-CCSD/def2-

TZVVP/EC-RISM on the subset containing 400 vertically desolvated structures. 

 

 

Figure 51 Normalized A- and g-tensor distributions for HMI calculated with revPBE0/def2-

TZVVP/CPCM on the subset containing 1000 vertically desolvated structures. 
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Figure 52 Normalized A- and g-tensor distributions for HMI calculated with revPBE0/def2-

TZVVP/CPCM on the subset containing 1000 structures with explicitly the second solvation shell 

included around the N-O motif. 

 

 
Figure 53 Normalized A- and g-tensor distributions for HMI calculated with revPBE0/def2-

TZVVP/EC-RISM on the subset containing 1000 vertically desolvated structures. 
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Figure 54 Normalized A- and g-tensor distributions for HMI calculated with revPBE0/def2-

TZVVP/EC-RISM on the subset containing 1000 structures with explicitly the second solvation 

shell included around the N-O motif. 

 
Figure 55 Normalized A- and g-tensor distributions for  HMI calculated with DLPNO-CCSD/def2-

TZVVP/EC-RISM on the subset containing 400 vertically desolvated structures. 
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6.4 Ramachandran free energy surfaces of Ac-Gly/Ala-NHMe  

 
Figure 56 Pressure-dependent Ramachandran plane of Ac-Gly-NHMe. Panel A and B were calcu-

lated using DLPNO-CCSD/def2-TZVPP/PSE-3//B3LYP-63111+G(d,p) at 1 bar and 10 kbar, re-

spectively. Panel C and D show the ff19SB/RISM calculations at 1 bar and 10 kbar, respectively. 

The results obtained from the CHARMM/36m/RISM calculations are presented in panels E (1 bar) 

and F (10 kbar). The color scale ranges from 0 kcal/mol to 16 kcal/mol, and the iso levels are 

1 kcal/mol. 
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Figure 57 Pressure-dependent Ramachandran plane of Ac-Gly-NHMe. Panel A and B were calcu-

lated using MP2/6-311+G(d,p)//B3LYP-63111+G(d,p)/PCM at 1 bar and 10 kbar, respectively. 

Panel C and D show the ff19SB/RISM calculations at 1 bar and 10 kbar, respectively. The results 

obtained from the ff14SB/SPC/E metadynamics calculations are presented in panels E (1 bar) and 

F (10 kbar). The color scale ranges from 0 kcal/mol to 22kcal/mol, and the iso levels are 

1 kcal/mol. 
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Figure 58 Difference-free energy Ramachandran surfaces between 10 kbar and 1 bar of Ac-Ala-

NHMe calculated with different methods. Panel A shows the free energy difference calculated with 

MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p). In panel B, the corresponding RPBE-D3/TZVPP cal-

culations are depicted. 
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6.5 Pressure-dependent chemical shifts of the peptide back-

bone 
 

 
Table 25 Calculated pressure-dependent chemical shifts for the 1H amide protons for the seven 

and eight minima of Ac-Ala-NHMe and Ac-Gly-NHMe, respectively. The calculations were per-

formed with MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM. The corresponding ref-

erence shielding constants can be found in Table 43. Raw chemical shielding constants can be 

found in SI_4.3. Experimental values were measured by M. Beck Erlach298. 

Conformer 1 bar 1 kbar  2 kbar 3 kbar 

 Ac-Ala-NHMe 

PII 6.82 6.84 6.87 6.89 

αR 6.73 6.76 6.79 6.81 

C5 7.18 7.21 7.23 7.25 

C7,eq 6.72 6.75 6.78 6.80 

αL 7.18 7.21 7.23 7.25 

ad 7.21 7.24 7.27 7.29 

C7,ax 7.02 7.05 7.07 7.09 

Exp 8.26 8.31 8.35 8.38 

PII 6.81 6.83 6.86 6.89 

αR 7.08 7.11 7.13 7.15 

C5 6.67 6.70 6.72 6.74 

C7,eq 7.47 7.49 7.50 7.52 

αL 7.03 7.05 7.08 7.10 

ad 6.84 6.88 6.90 6.92 

C7,ax 8.84 8.86 8.87 8.89 

Exp 7.94 7.97 8.00 8,02 

 Ac-Gly-NHMe 

αR 6.85 6.88 6.90 6.93 

αL 6.87 6.89 6.91 6.93 

PII 7.03 7.05 7.07 7.10 

PII 7.02 7.05 7.08 7.09 

𝛽 6.70 6.72 6.75 6.76 

C5 7.12 7.14 7.16 7.19 

C7,eq 7.12 7.14 7.16 7.18 

C7,eq 7.05 7.08 7.11 7.13 

Exp 8.30 8.32 8.34 8.35 

αR 7.07 7.10 7.13 7.15 

αL 7.06 7.10 7.12 7.14 

PII 6.71 6.73 6.75 6.77 

PII 6.70 6.72 6.75 6.77 

𝛽 6.66 6.70 6.72 6.75 

C5 7.39 7.41 7.44 7.45 

C7,eq 7.39 7.43 7.45 7.47 

C7,eq 6.51 6.55 6.57 6.59 

Exp 7.86 7.88 7.91 7.93 
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Table 26 Calculated pressure-dependent chemical shifts for the 13C amide protons for the seven 

and eight minima of Ac-Ala-NHMe and Ac-Gly-NHMe, respectively. The calculations were per-

formed with MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM. The corresponding ref-

erence shielding constants can be found in Table 43. Raw chemical shielding constants can be 

found in SI_4.3. Experimental values were measured by M. Beck Erlach298. 

Conformer 1 bar 1 kbar  2 kbar 3 kbar 

 Ac-Ala-NHMe 

PII 180.50 180.57 180.71 180.79 

αR 180.96 181.12 181.23 181.33 

C5 179.13 179.26 179.37 179.45 

C7,eq 180.05 180.16 180.24 180.33 

αL 180.56 180.72 180.82 180.92 

ad 180.06 180.20 180.31 180.41 

C7,ax 181.58 181.70 181.79 181.87 

Exp 180.50 180.57 180.71 180.79 

PII 182.15 182.20 182.28 182.32 

αR 181.48 181.56 181.63 181.70 

C5 179.94 180.03 180.09 180.14 

C7,eq 181.17 181.26 181.34 181.41 

αL 180.37 180.47 180.54 180.60 

ad 180.29 180.39 180.47 180.54 

C7,ax 184.17 184.26 184.34 184.40 

Exp 182.15 182.20 182.28 182.32 

 Ac-Gly-NHMe 

αR 181.57 181.65 181.72 181.82 

αL 181.58 181.62 181.73 181.84 

PII 181.62 181.74 181.84 181.93 

PII 181.62 181.72 181.83 181.93 

𝛽 180.93 181.08 181.16 181.26 

C5 181.00 181.08 181.15 181.22 

C7,eq 180.98 181.06 181.14 181.23 

C7,eq 180.26 180.37 180.45 180.51 

Exp 177.75 177.76 177.80 177.85 

αR 178.55 178.63 178.71 178.78 

αL 178.62 178.63 178.73 178.81 

PII 178.07 178.13 178.21 178.25 

PII 178.04 178.11 178.16 178.23 

𝛽 178.18 178.28 178.36 178.43 

C5 180.31 180.39 180.47 180.53 

C7,eq 180.16 180.26 180.33 180.44 

C7,eq 175.07 175.19 175.26 175.32 

Exp 174.86 174.87 174.88 174.91 
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Table 27 Calculated pressure-dependent chemical shifts for the 13C amide protons for the seven 

and eight minima of Ac-Ala-NHMe and Ac-Gly-NHMe, respectively. The calculations were per-

formed with MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM. The corresponding ref-

erence shielding constants can be found in Table 43. Raw chemical shielding constants can be 

found in SI_4.3. Experimental values were measured by M. Beck Erlach298. 

Conformer 1 bar 1 kbar  2 kbar 3 kbar 

 Ac-Ala-NHMe 

PII 131.14 131.31 131.48 131.58 

αR 129.42 129.60 129.77 129.92 

C5 128.51 128.68 128.83 128.96 

C7,eq 135.59 135.75 135.90 136.01 

αL 125.12 125.35 125.53 125.69 

ad 126.99 127.17 127.34 127.49 

C7,ax 126.32 126.48 126.65 126.79 

Exp 110.13 110.16 110.27 110.41 

PII 108.14 108.37 108.64 108.83 

αR 105.93 106.22 106.47 106.68 

C5 106.83 107.08 107.27 107.45 

C7,eq 112.46 112.70 112.90 113.08 

αL 103.74 104.01 104.24 104.43 

ad 108.65 108.94 109.19 109.40 

C7,ax 112.99 113.25 113.49 113.70 

Exp 107.38 107.43 107.65 1007.9 

 Ac-Gly-NHMe 

αR 113.55 113.71 113.86 114.00 

αL 113.61 113.85 113.92 114.08 

PII 113.50 113.62 113.73 113.88 

PII 113.43 113.58 113.74 113.87 

𝛽 115.59 115.69 115.88 116.05 

C5 118.89 119.01 119.15 119.28 

C7,eq 118.72 118.84 118.96 119.16 

C7,eq 113.12 113.28 113.44 113.59 

Exp 114.83 114.87 115.02 115.2 

αR 107.46 107.66 107.88 108.06 

αL 107.46 107.65 107.88 108.09 

PII 106.96 107.08 107.16 107.38 

PII 106.78 106.96 107.15 107.29 

𝛽 107.30 107.62 107.87 108.10 

C5 112.59 112.75 112.95 113.11 

C7,eq 112.84 113.07 113.27 113.40 

C7,eq 103.97 104.20 104.37 104.51 

Exp 108.29 108.34 108.55 108.79 
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Figure 59 Pressure-dependent NMR-Shifts of the two Ac-Gly-NHMe main conformers compared 

to the experimental value for the 1H and 13C methyl peptide bond nuclei calculated with MP2/6-

311+G(d,p). A, C, E, and G show the absolute shifts, whereas B, D, F, and H correspond to pressure-

dependent changes. The red lines show the PII conformer, and the blue lines show the α conform-

ers. The green line represents the experimental shifts. The + denotes conformers optimized with 

B3LYP/6-311+G(d,p)/PCM(1 bar), and the dot points represent the conformers optimized with 

B3LYP/6-311+G(d,p)/EC-RISM(p-dep). 



RISM-based pressure-dependent computational spectroscopy 

177 

 
Figure 60 Pressure-dependent NMR-Shifts of the two Ac-Gly-NHMe main conformers compared 

to the experimental value for the 1H and 13C Cα peptide bond nuclei calculated with MP2/6-

311+G(d,p). A and C show the absolute shifts, whereas B and D correspond to pressure-dependent 

changes. The red lines show the PII conformer, and the blue lines show the α conformers. The 

green line represents the experimental shifts. The + denotes conformers optimized with 

B3LYP/6-311+G(d,p)/PCM(1 bar), and the dot points represent the conformers optimized with 

B3LYP/6-311+G(d,p)/EC-RISM(p-dep). 
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Figure 61 Pressure-dependent NMR-Shifts of the two Ac-Gly-NHMe main conformers compared 

to the experimental value for the 1H and 13C methyl peptide bond nuclei calculated with MP2/6-

311+G(d,p). A, C, E, and G show the absolute shifts, whereas B, D, F, and H correspond to pressure-

dependent changes. The red lines show the PII conformer, and the blue lines show the α conform-

ers. The green line represents the experimental shifts. The + denotes conformers optimized with 

B3LYP/6-311+G(d,p)/PCM(1 bar), and the dot points represent the conformers optimized with 

B3LYP/6-311+G(d,p)/EC-RISM(p-dep). 
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Figure 62 Pressure-dependent NMR-Shifts of the two Ac-Gly-NHMe main conformers compared 

to the experimental value for the 1H and 13C Cα peptide bond nuclei calculated with MP2/6-

311+G(d,p). A, C, E, and G show the absolute shifts, whereas B, D, F, and H correspond to pressure-

dependent changes. The red lines show the PII conformer, and the blue lines show the α conform-

ers. The green line represents the experimental shifts. The + denotes conformers optimized with 

B3LYP/6-311+G(d,p)/PCM(1 bar), and the dot points represent the conformers optimized with 

B3LYP/6-311+G(d,p)/EC-RISM(p-dep). 
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Figure 63 Pressure-dependent NMR shifts of the seven and eight Ac-Ala-NHMe and Ac-Gly-NHMe 

minima compared to the experimental value for the 13C carbonyl atoms of the two peptide bonds. 

A and B represent the absolute chemical shifts of the two amide hydrogens atoms of Ac-Ala-NHMe, 

whereas C and D represent the pressure-dependent changes in chemical shifts relative to 1 bar. 

In E and F, the absolute values for the corresponding nuclei of Ac-Gly-NHMe are shown, and in G 

and H, the difference relative to ambient pressure. The theoretical calculations were performed 

with MP2/6-311+G(d,p)/EC-RISM. The corresponding reference shielding constants can be found 

in Table 43. Raw chemical shielding constants can be found in SI_4.3. Experimental values were 

measured by M. Beck Erlach298. 
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Figure 64 Pressure-dependent NMR shifts of the seven and eight Ac-Ala-NHMe and Ac-Gly-NHMe 

minima compared to the experimental value for the 13C carbonyl atoms of the two peptide bonds. 

A and B represent the absolute chemical shifts of the two amide hydrogens atoms of Ac-Ala-NHMe, 

whereas C and D represent the pressure-dependent changes in chemical shifts relative to 1 bar. 

In E and F, the absolute values for the corresponding nuclei of Ac-Gly-NHMe are shown, and in G 

and H, the difference relative to ambient pressure. The theoretical calculations were performed 

with MP2/6-311+G(d,p)/EC-RISM. The corresponding reference shielding constants can be found 

in Table 43. Raw chemical shielding constants can be found in SI_4.3. Experimental values were 

measured by M. Beck Erlach298. 
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Figure 65 Pressure-dependent NMR shifts of the seven and eight Ac-Ala-NHMe and Ac-Gly-NHMe 

minima compared to the experimental value for the 13C carbonyl atoms of the two peptide bonds. 

A and B represent the absolute chemical shifts of the two amide hydrogens atoms of Ac-Ala-NHMe, 

whereas C and D represent the pressure-dependent changes in chemical shifts relative to 1 bar. 

In E and F, the absolute values for the corresponding nuclei of Ac-Gly-NHMe are shown, and in G 

and H, the difference relative to ambient pressure is presented. The theoretical calculations were 

performed with MP2/6-311+G(d,p)/EC-RISM. The corresponding reference shielding constants 

can be found in Table 43. Raw chemical shielding constants can be found in SI_4.3. Experimental 

values were measured by M. Beck Erlach298. 
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Table 28 Linear (B1, in ppm kbar−1) and quadratic (B2, in ppm kbar−2) coefficients from fitting 

experimental and calculated chemical shifts (MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM) of 

the seven minimum conformers of Ac-Ala-NHMe to the following form: δ(p)= δ0+B1p+B2p2. Also, 

the 1 bar chemical shifts (δ0 in ppm) are shown. The letters A and B refer to the corresponding 

subfigures in Figure 26, Figure 27, and Figure 28. Experimental values were measured by M. Beck 

Erlach298. 

Nucleus δ0. B1 B2 δ0. B1 B2 

1H  A A A B B B 

Exp 8.26374 0.04798 -0.00290 7.93701 0.03374 -0.00210 

PII 6.69526 0.02283 -0.00127 6.63016 0.02273 -0.00132 

αR 6.57317 0.02453 -0.00142 7.01358 0.02226 -0.00134 

C5 7.12644 0.02299 -0.00127 6.47638 0.02315 -0.00136 

αL 6.60058 0.02241 -0.00127 7.48794 0.01397 -0.00081 

C7,eq 7.02875 0.02105 -0.00122 6.98228 0.02248 -0.00132 

ad 7.08987 0.02059 -0.00119 6.69339 0.02528 -0.00149 

C7,ax 6.90324 0.02003 -0.00115 8.71119 0.01114 -0.00071 

Mean 6.67458 0.02150 -0.00111 6.82467 0.02028 -0.00067 
13C A A A B B B 

Exp 176.98931 0.10144 -0.00711 178.53068 0.00961 -0.00383 

PII 179.67637 0.16376 -0.01001 182.09015 0.12033 -0.00684 

αR 180.17884 0.16323 -0.01020 181.31879 0.13402 -0.00775 

C5 177.83741 0.15047 -0.00927 179.83551 0.12137 -0.00683 

αL 179.67690 0.14050 -0.00877 181.15593 0.13350 -0.00782 

C7,eq 180.02568 0.16911 -0.01041 180.34530 0.13965 -0.00822 

ad 179.39570 0.16144 -0.00980 180.10683 0.13691 -0.00801 

C7,ax 181.09666 0.14580 -0.00886 183.76433 0.13116 -0.00789 

Mean 179.78788 0.14886 -0.00526 181.56664 0.11227 -0.00372 
15N A A A B B B 

Exp 110.12974 0.30025 -0.01961 107.37677 0.55512 -0.02858 

PII 130.18457 0.18924 -0.01160 108.04669 0.34232 -0.02174 

αR 129.54492 0.25431 -0.01475 105.11784 0.31906 -0.02107 

C5 128.05768 0.23359 -0.01457 105.90772 0.29408 -0.01948 

αL 135.38387 0.22563 -0.01371 112.05921 0.28771 -0.01878 

C7,eq 125.27499 0.30200 -0.01763 103.10617 0.30904 -0.01954 

ad 125.86924 0.24792 -0.01450 108.35225 0.32255 -0.02020 

C7,ax 126.42804 0.24604 -0.01485 112.28392 0.30127 -0.01993 

Mean 129.87973 0.17909 -0.00560 106.80060 0.25113 -0.00856 
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Table 29 Linear (B1, in ppm kbar−1) and quadratic (B2, in ppm kbar−2) coefficients from fitting 

experimental and calculated chemical shifts (MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM)  

of the eight minima conformers of Ac-Gly-NHMe to the following form: δ(p)= B1p+B2p2. Also, the 

1 bar chemical shifts (δ0 in ppm) are shown. The letters A and B refer to the corresponding sub-

figures in Figure 26, Figure 27, and Figure 28. Experimental values were measured by M. Beck 

Erlach298. 

Nucleus δ0. B1 B2 δ0. B1 B2 
1H  A A A B B B 

Exp 8.29980 0.01930 -0.00069 7.85553 0.02800     --0.00123 

αR 6.73001 0.02075 -0.00121 6.98158 0.02142 -0.00132 
αL 6.72725 0.02088 -0.00124 6.97898 0.02127 -0.00129 
PII 6.84027 0.01956 -0.00112 6.49097 0.02264 -0.00135 
PII 6.84126 0.01951 -0.00111 6.49057 0.02264 -0.00135 
PII 6.58197 0.02080 -0.00122 6.37849 0.02137 -0.00127 
C7,eq 6.96461 0.01974 -0.00116 7.60453 0.01313 -0.00077 
C7,eq 6.96370 0.01973 -0.00113 7.61237 0.01312 -0.00078 
C5 6.97686 0.02384 -0.00130 6.35547 0.02030 -0.00118 
Mean 6.76976 0.01695 -0.00054 6.82884 0.01605 -0.00055 
13C A A A B B B 

Exp 177.75101 0.10575 -0.00655 174.86069 0.04840 -0.00318 

αR 180.91498 0.17290 -0.01079 178.34786 0.15253 -0.00876 
αL 180.89169 0.17285 -0.01076 178.33451 0.15228 -0.00871 
PII 180.82311 0.16884 -0.01021 177.75601 0.14812 -0.00828 
PII 180.84264 0.16911 -0.01025 177.76538 0.14862 -0.00831 
PII 180.38256 0.16959 -0.01022 177.61058 0.15136 -0.00851 
C7,eq 180.85378 0.14455 -0.00894 180.51209 0.14158 -0.00831 
C7,eq 180.87157 0.14476 -0.00894 180.56715 0.14159 -0.00836 
C5 178.88563 0.14495 -0.00899 175.00236 0.14598 -0.00816 
Mean 180.84278 0.14949 -0.00518 178.21565 0.12529 -0.00396 
15N A A A B B B 

Exp 114.82558 0.40046 -0.02163 108.29265 0.52527 -0.02634 

αR 113.78701 0.28735 -0.01651 106.50342 0.29314 -0.01998 
αL 113.78709 0.28776 -0.01649 106.46660 0.29114 -0.01985 
PII 112.92306 0.22749 -0.01371 105.38239 0.29251 -0.01925 
PII 112.95394 0.22691 -0.01369 105.38488 0.29349 -0.01932 
PII 114.00139 0.23502 -0.01421 103.34730 0.27075 -0.01796 
C7,eq 119.05126 0.26019 -0.01546 112.54257 0.29526 -0.01949 
C7,eq 119.05858 0.26112 -0.01554 112.60256 0.29508 -0.01951 
C5 112.87144 0.26231 -0.01641 103.60936 0.26618 -0.01773 
Mean 113.81459 0.21232 -0.00663 106.28694 0.22376 -0.00794 
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6.6 Pressure-dependent parameters of Ac-Gly/Ala-NHMe based 

on B3LYP/6-311+G(d,p)/EC-RISM optimizations 
 

 
Table 30 Pressure-dependent bond lengths of the two C-O amide bonds and two N-H amide bonds 

of the seven minima of Ac-Ala-NHMe. Calculations were performed with B3LYP/6-

311+G(d,p)/EC-RISM. Structures can be found in SI_4.3. 

C-O 1        

Conformer 1 bar 1 kbar 2 kbar 3 kbar  4 kbar 5 kbar 

ad 1.2452 1.2455 1.2457 1.2458 1.2459 1.2460 

PII 1.2461 1.2463 1.2466 1.2468 1.2468 1.2470 

C7,ax 1.2482 1.2484 1.2486 1.2487 1.2488 1.2489 

C7,eq 1.2482 1.2485 1.2486 1.2487 1.2485 1.2486 

αR 1.2438 1.2443 1.2445 1.2447 1.2448 1.2450 

αL 1.2436 1.2440 1.2442 1.2444 1.2444 1.2446 

C5 1.2489 1.2493 1.2494 1.2496 1.2497 1.2498 

C-O.-2       

ad 1.2461 1.2465 1.2467 1.2468 1.2469 1.2470 

PII 1.2443 1.2446 1.2449 1.2450 1.2452 1.2453 

C7,ax 1.2491 1.2494 1.2496 1.2497 1.2499 1.2500 

C7,eq 1.2440 1.2443 1.2445 1.2447 1.2447 1.2450 

αR 1.2473 1.2477 1.2479 1.2480 1.2481 1.2483 

αL 1.2445 1.2449 1.2450 1.2452 1.2452 1.2453 

C5 1.2440 1.2443 1.2445 1.2446 1.2447 1.2448 

ad 1.2461 1.2465 1.2467 1.2468 1.2469 1.2470 

N-H 1 

ad 1.0136 1.0139 1.0141 1.0142 1.0141 1.0142 

PII 1.0148 1.0147 1.0150 1.0152 1.0153 1.0154 

C7,ax 1.0140 1.0142 1.0144 1.0146 1.0147 1.0148 

C7,eq 1.0155 1.0158 1.0159 1.0160 1.0157 1.0159 

αR 1.0158 1.0161 1.0162 1.0164 1.0163 1.0164 

αL 1.0142 1.0145 1.0146 1.0147 1.0145 1.0147 

C5 1.0148 1.0151 1.0151 1.0152 1.0153 1.0153 

N-H2       

ad 1.0115 1.0118 1.0119 1.0120 1.0119 1.0120 

PIO 1.0146 1.0147 1.0149 1.0150 1.0151 1.0152 

C7,ax 1.0179 1.0180 1.0181 1.0182 1.0182 1.0182 

C7,eq 1.0147 1.0149 1.0150 1.0150 1.0145 1.0147 

αR 1.0134 1.0137 1.0138 1.0139 1.0139 1.0140 

αL 1.0132 1.0134 1.0136 1.0137 1.0141 1.0139 

C5 1.0148 1.0151 1.0152 1.0153 1.0153 1.0154 
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Table 31 Pressure-dependent bond lengths of the two C-O amide bonds and two N-H amide bonds 

of the seven minima of Ac-Ala-NHMe. Calculations were performed with B3LYP/6-

311+G(d,p)/EC-RISM. Structures can be found in SI_4.3. 

C-O 1        

Conformer 1 bar 1 kbar 2 kbar 3 kbar  4 kbar 5 kbar 

PII 1.2453 1.2455 1.2458 1.2459 1.2459 1.2462 

C5 1.2498 1.2501 1.2502 1.2503 1.2504 1.2505 

αR 1.2430 1.2431 1.2433 1.2436 1.2438 1.2440 

C7,eq 1.2473 1.2475 1.2476 1.2478 1.2479 1.2480 

C7,eq 1.2474 1.2475 1.2476 1.2478 1.2478 1.2479 

αL 1.2430 1.2433 1.2434 1.2437 1.2438 1.2440 

PII 1.2452 1.2453 1.2457 1.2458 1.2460 1.2461 

𝛽 1.2456 1.2459 1.2459 1.2461 1.2463 1.2465 

C-O.-2       

PII 1.2437 1.2439 1.2441 1.2443 1.2443 1.2445 

C5 1.2421 1.2424 1.2424 1.2425 1.2425 1.2426 

αR 1.2478 1.2479 1.2483 1.2485 1.2486 1.2488 

C7,eq 1.2464 1.2466 1.2469 1.2470 1.2472 1.2473 

C7,eq 1.2464 1.2466 1.2467 1.2470 1.2470 1.2471 

αL 1.2480 1.2481 1.2482 1.2486 1.2486 1.2488 

PII 1.2437 1.2438 1.2441 1.2442 1.2444 1.2444 

𝛽 1.2436 1.2441 1.2442 1.2444 1.2445 1.2448 

PII 1.2437 1.2439 1.2441 1.2443 1.2443 1.2445 

N-H 1 

PII 1.0137 1.0138 1.0139 1.0140 1.0140 1.0140 

C5 1.0148 1.0149 1.0150 1.0151 1.0151 1.0152 

αR 1.0150 1.0151 1.0152 1.0153 1.0153 1.0154 

C7,eq 1.0144 1.0145 1.0146 1.0146 1.0147 1.0148 

C7,eq 1.0144 1.0145 1.0146 1.0146 1.0147 1.0147 

αL 1.0149 1.0151 1.0151 1.0152 1.0153 1.0153 

PII 1.0137 1.0138 1.0139 1.0140 1.0141 1.0141 

N-H2       

PII 1.0146 1.0147 1.0148 1.0149 1.0150 1.0150 

C5 1.0150 1.0151 1.0151 1.0152 1.0153 1.0153 

αR 1.0137 1.0139 1.0140 1.0141 1.0141 1.0142 

C7,eq 1.0147 1.0147 1.0147 1.0148 1.0148 1.0148 

C7,eq 1.0147 1.0147 1.0147 1.0148 1.0148 1.0148 

αL 1.0137 1.0138 1.0140 1.0140 1.0142 1.0142 

PII 1.0146 1.0147 1.0148 1.0149 1.0150 1.0150 

𝛽 1.0146 1.0147 1.0148 1.0149 1.0149 1.0149 
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Table 32 Pressure-dependent populations of Ac-Ala-NHMe for the seven minima conformers, cal-

culated with B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p)/EC-RISM and MP2/6-

311+G(d,p)//B3LYP/6-311+G(d,p) at T=298.15 K. Additionally, the MP2/6-

311+G(d,p)//B3LYP/6-311+G(d,p)/PCM populations are shown.. The population values are in %. 

The pressure-dependent PMV correction was utilized, and no thermal corrections were added. 

Raw data can be found in SI_4.3. 

Conformer 1 bar 1 kbar 2 kbar 3 kbar  4 kbar 5 kbar 

MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM 

PII 46.53 46.17 45.84 45.55 45.29 45.06 

αR 41.17 42.12 42.84 43.39 43.84 44.20 

C5 5.55 5.33 5.17 5.05 4.95 4.87 

C7,eq 3.98 3.60 3.35 3.17 3.04 2.94 

αL 1.84 1.84 1.86 1.87 1.90 1.92 

ad 0.73 0.76 0.79 0.82 0.84 0.87 

C7,ax 0.20 0.18 0.16 0.15 0.14 0.14 

B3LYP/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM 

PII 38.58 37.92 37.74 37.48 37.50 37.34 

αR 47.12 48.32 48.99 49.61 49.84 50.24 

C5 11.25 10.92 10.59 10.34 10.15 9.96 

C7,eq 2.27 2.05 1.89 1.77 1.71 1.65 

αL 0.48 0.49 0.49 0.50 0.50 0.50 

ad 0.23 0.24 0.24 0.25 0.25 0.26 

C7,ax 0.07 0.06 0.06 0.05 0.05 0.05 

MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM 

PII 52.31 53.51 53.22 52.94 52.69 52.41 

αR 35.78 35.75 36.53 37.15 37.41 37.84 

C5 5.82 5.33 5.11 4.94 4.79 4.69 

C7,eq 3.19 2.60 2.29 2.08 2.13 2.01 

αL 1.73 1.66 1.66 1.67 1.71 1.74 

ad 1.01 1.02 1.07 1.12 1.18 1.23 

C7,ax 0.17 0.13 0.11 0.10 0.09 0.08 
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Table 33 Pressure-dependent populations of Ac-Gly-NHMe for the eight minima conformers, cal-

culated with B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p)/EC-RISM at T=298.15 K The popula-

tion values are in %. The pressure-dependent PMV correction was utilized.  

Conformer 1 bar 1 kbar 2 kbar 3 kbar  4 kbar 5 kbar 

MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/PCM 

αR 30.08 30.34 30.58 30.63 30.64 30.64 

αL 28.48 28.75 29.03 29.10 29.13 29.13 

PII 15.01 15.04 15.11 15.16 15.22 15.22 

PII 14.98 15.00 15.06 15.10 15.16 15.16 

𝛽 5.27 5.34 5.42 5.45 5.48 5.48 

C5 0.94 0.89 0.83 0.81 0.80 0.80 

C7,eq 2.63 2.33 1.99 1.88 1.79 1.79 

C7,eq 2.61 2.31 1.97 1.86 1.78 1.78 

B3LYP/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM 

αR 29.69 30.07 29.89 29.95 30.03 30.20 

αL 28.87 28.85 29.44 29.50 29.66 29.80 

PII 13.39 13.35 13.23 13.16 13.21 13.11 

PII 13.24 13.24 12.96 13.00 12.75 13.01 

𝛽 9.05 9.14 9.38 9.49 9.61 9.24 

C5 4.44 4.20 4.05 3.93 3.84 3.77 

C7,eq 0.67 0.59 0.53 0.49 0.46 0.44 

C7,eq 0.65 0.57 0.52 0.48 0.45 0.43 

MP2/6-311+G(d,p)/EC-RISM//B3LYP/6-311+G(d,p)/EC-RISM 

αR 28.33 28.29 28.57 28.77 28.76 29.00 

αL 26.88 28.42 27.84 27.75 27.79 27.37 

PII 18.03 17.59 17.52 17.88 17.85 18.27 

PII 16.72 16.58 17.30 17.13 17.37 17.41 

𝛽 4.27 4.31 4.50 4.61 4.68 4.58 

C5 1.12 1.04 0.99 0.94 0.90 0.88 

C7,eq 2.34 1.89 1.65 1.47 1.33 1.25 

C7,eq 2.30 1.88 1.63 1.46 1.31 1.24 
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6.7 HFCC parameters of the nitroxy oxygen of HMI 
 
Table 34 Summarized 𝐴𝑖𝑠𝑜parameters in MHz for HMI and HHMI. On the one hand, results are 

shown for the revPBE0-D3/def2-TZVPP/CPCM optimized structure, calculated with 

revPBE0/def2-TZVPP/CPCM, revPBE0/def2-TZVPP/EC-RISM, and DLPNO-CCSD/def2-

TZVPP/EC-RISM. On the  other hand, mean 𝐴𝑖𝑠𝑜parameters are shown that were calculated on the 

snapshots obtained from the AIMD. 

Method 𝑨𝐢𝐬𝐨(HMI) 𝑨𝐢𝐬𝐨(HHMI) Δ𝑨𝐢𝐬𝐨 

Based on revPBE0-D3/def2-TZVPP optimized geometry 

revPBE0/def2-TZVPP/CPCM -39.4 -40.9 1.5 

revPBE0/def2-TZVPP/EC-RISM -37.6 -40.3 2.7 

DLPNO-CCSD/def2TZVPP/EC-RISM -47.9 -54.2 6.3 

Based on the full trajectory 

revPBE0/def2-TZVPP/CPCM/VD -39.2±0.03 -40.8±0.02 1.6 

revPBE0/def2-TZVPP/EC-RISM/VD -37.4±0.05 -40.0±0.02 2.6 

revPBE0/def2-TZVPP/CPCM/SSS -37.3±0.07 -39.8±0.02 2.5 

revPBE0/def2-TZVPP/EC-RISM/SSS -36.6±0.06 -39.2±0.05 2.6 

DLPNO-CCSD/def2-TZVPP/EC-RISM -47.8±0.06 -53.7±0.05 5.9 

 

 
Figure 66 Normalized probability histograms of nitroxy oxygen 𝐴𝑖𝑠𝑜  values of the EPR spin-probe 

HMI at ambient conditions calculated with revPBE0-D3/def2-TZVPP with decontrated s function 

on 1000 snapshots. Panel (A) shows the calculations on the vertical desolvated set calculated with 

revPBE0/def2-TZVPP/CPCM. In Panel (B), the CPCM calculations on the subset with the second 

solvation shell are included. The two lower panels show the calculations with revPBE0/def2-

TZVPP/EC-RISM on the VD set (C) and the SSS set (D). The blue lines in the panels depict the 

corresponding averaged value and be taken from Table 34. Material from ref 132 
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Figure 67 Normalized probability histograms of nitroxy oxygen 𝐴𝑖𝑠𝑜  values of the EPR spin-probe 

HMI at ambient conditions calculated with revPBE0-D3/def2-TZVPP with decontrated s function 

on 1000 snapshots. Panel (A) shows the calculations on the vertical desolvated set calculated with 

revPBE0/def2-TZVPP/CPCM. In Panel (B), the CPCM calculations on the subset with the second 

solvation shell are included. The two lower panels show the calculations with revPBE0/def2-

TZVPP/EC-RISM on the VD set (C) and the SSS set (D). The blue lines in the panels depict the 

corresponding averaged value and be taken from Table 34. 

 

 
Figure 68 Normalized probability histograms of nitroxy oxygen 𝐴𝑖𝑠𝑜  values of the EPR spin-probe 

HMI (A) and HMHI (B) at ambient conditions calculated with revPBE0-D3/def2-TZVPP with de-

contrated s function on 400 snapshots. The blue lines in the panels depict the corresponding av-

eraged value and be taken from Table 34. Panel (A) is taken from ref132.  

 

6.8 NMR fit results 
 

To apply the NMR-based population fit, first, the calculated EC-RISM-based pro-

ton shifts need to be corrected by the following equation (co-developed by S. Kast 

and S. Maste): 

𝛿corr(𝑝) = 𝛿orig(𝑝) + 𝑎 ⋅ (𝑝 − 𝑝0)
2 + 𝑏(𝑝 − 𝑝0) + 𝛿0. (190) 

Here, 𝛿corr is the corrected chemical shift, 𝑎 is a scaling parameter for a quadratic 

term, b is the linear parameter, and 𝛿0 is the correction of the ambient condition 

value. To determine the corresponding parameters, S. Maste measured the 
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pressure-dependent chemical shifts of a dataset containing small amides and 

made the corresponding EC-RISM calculations. For the population fit, an average 

chemical shift based on the corrected chemical shifts is defined in the following 

way: 

𝛿corr
mean(𝑝) =

1

1 + exp(−𝛽𝛥𝐺(𝑝0) + 𝑠(𝑝 − 𝑝0) + 𝑡(𝑝 − 𝑝0))
𝛿corr

𝑖  

    +1 −
1

1 + exp(−𝛽𝛥𝐺(𝑝0) + 𝑠(𝑝 − 𝑝0) + 𝑡(𝑝 − 𝑝0))
𝛿corr

𝑗
, 

 

(191) 

whereby 𝛥G is the free energy difference at 1 bar, 𝑠 is a linear parameter, and t is 

the quadratic fit parameter. The loss function was minimized so that the quad-

ratic difference between experimental and calculated shifts became minimal. The 

parameters obtained from the fit can be found in Table 35. 

 
Table 35 Fitparamter obtained from NMR population fit performed by S. Maste.300 ΔG0 is in kcal 

mol-1, s  in kcal mol-1 bar-1-and t  in kcal mol-1 bar-2. 

Molecule/Method ΔG0 s t 

Ac-Ala-NHMe/ MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM 0.621 -0.035 0.0020 

Ac-Gly-NHMe/ MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/PCM -4.164 0.220 -1.441 

Ac-Ala-NHMe/ MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/EC-RISM 0.042 -0.347 0.106 

Ac-Gly-NHMe/MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p)/EC-RISM 0.550 -0.133 0.025 
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Figure 69 Pressure-dependent chemical shifts of Ac-Ala-NHMe and Ac-Gly-NHMe for the two 

main conformers PII and α. In panels A and B, the absolute chemical shifts of Ac-Ala-NHMe are 

shown, and the corresponding pressure-dependent changes are depicted in panels C and D. The 

absolute chemical shifts of Ac-Gly-NHMe are depicted in panels E and F, and the pressure changes 

in G and H. The downward triangles show the pure MP2/6-311+G(d,p)//B3LYP/6-

311+G(d,p)/PCM results, whereas for the upward triangles, the chemical shifts correction scheme 

is applied. The NMR fits were provided by S. Maste.300 
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Figure 70 Pressure-dependent chemical shifts of Ac-Ala-NHMe and Ac-Gly-NHMe for the two 

main conformers PII and α. In panels A and B, the absolute chemical shifts of Ac-Ala-NHMe are 

shown, and the corresponding pressure-dependent changes are depicted in panels C and D. The 

absolute chemical shifts of Ac-Gly-NHMe are depicted in panels E and F, and the pressure changes 

in G and H. The downward triangles show the pure MP2/6-311+G(d,p)//B3LYP/6-

311+G(d,p)/EC-RISM results, whereas for the upward triangles, the chemical shifts correction 

scheme is applied. The NMR fits were provided by S. Maste.300 
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6.9 Lennard-Jones parameters of the solutes for EC-

RISM calculations 
 

 
Table 36 Lennard-Jones parameters of atoms used for TMAO calculations. The numbers in the 

brackets describe the corresponding GAFF162-type atoms. 

Atom σ (Å) ε (kJ/mol) 

N(4) 2.926 1.181109 

C(3) 3.707 0.469665 

O 3.266 1.06022 

H(C) 2.130 0.128532 

 
Table 37 Lennard-Jones parameters of atoms used for HMI and HHMI in EC-RISM calculations. 

The numbers in the brackets describe the corresponding GAFF-type atoms. 

Atom σ (Å) ε (kJ/mol) 

N(3) 3.245 1.181109 

C(3) 3.399 0.760078 

O 2.959922 1.459017 

H(C) 2.649533 0.109079 

H(1) 2.471353 0.109079 

 

 

6.10 Force field parameters for FF+RISM calculations 

 
Figure 71: Assignment of atoms numbers to the corresponding atoms. 
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Table 38 Partial charges and Lennard-Jones parameters for the ff19SB+RISM calculations of Ac-

Ala-NHMe. 

Atom Type q  σ (Å) ε (kJ/mol) 

1 HC 0.1123 2.649533 0.109079 

2 CT -0.3662 3.39967 0.760078 

3 HC 0.1123 2.649533 0.109079 

4 HC 0.1123 2.649533 0.109079 

5 C 0.5972 3.39967 0.597502 

6 O -0.5679 2.959922 1.459017 

7 N -0.4157 3.249999 1.181109 

8 H 0.2719 1.069078 0.109079 

9 CX 0.0337 3.39967 0.760078 

10 H1 0.0823 2.471353 0.109079 

11 CT -0.1825 3.39967 0.760078 

12 HC 0.0603 2.649533 0.109079 

13 HC 0.0603 2.649533 0.109079 

14 HC 0.0603 2.649533 0.109079 

15 C 0.5973 3.39967 0.597502 

16 O -0.5679 2.959922 1.459017 

17 N -0.4157 3.249999 1.181109 

18 H 0.2719 1.069078 0.109079 

19 CT -0.149 3.39967 0.760078 

20 H1 0.0976 2.471353 0.109079 

21 H1 0.0976 2.471353 0.109079 

22 H1 0.0976 2.471353 0.109079 
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Table 39 Partial charges and Lennard-Jones parameters for the ff14SB+RISM calculations of Ac-

Ala-NHMe. 

Atom Type q  σ (Å) ε (kJ/mol) 

1 HC 0.1123 2.649533 0.109079 

2 CT -0.3662 3.39967 0.760078 

3 HC 0.1123 2.649533 0.109079 

4 HC 0.1123 2.649533 0.109079 

5 C 0.5972 3.39967 0.597502 

6 O -0.5679 2.959922 1.459017 

7 N -0.4157 3.249999 1.181109 

8 H 0.2719 1.069078 0.109079 

9 CX 0.0337 3.39967 0.760078 

10 H1 0.0823 2.471353 0.109079 

11 CT -0.1825 3.39967 0.760078 

12 HC 0.0603 2.649533 0.109079 

13 HC 0.0603 2.649533 0.109079 

14 HC 0.0603 2.649533 0.109079 

15 C 0.5973 3.39967 0.597502 

16 O -0.5679 2.959922 1.459017 

17 N -0.4157 3.249999 1.181109 

18 H 0.2719 1.069078 0.109079 

19 CT -0.149 3.39967 0.760078 

20 H1 0.0976 2.471353 0.109079 

21 H1 0.0976 2.471353 0.109079 

22 H1 0.0976 2.471353 0.109079 

 

 

 
Figure 72: Assignment of atoms numbers to the corresponding chemical shifts and shielding constants.  

 



RISM-based pressure-dependent computational spectroscopy 

197 

Table 40 Partial charges and Lennard-Jones parameters for the charm/36m+RISM calculations of 

Ac-Gly-NHMe. 

Atom Type q  σ (Å) ε (kJ/mol) 

1 CAY -0.27 3.634867 0.541921 

2 HY1 0.09 2.387609 0.166745 

3 HY2 0.09 2.387609 0.166745 

4 HY3 0.09 2.387609 0.166745 

5 CY 0.51 3.563595 0.764247 

6 OY -0.51 3.029056 0.833724 

7 N -0.47 3.296325 1.38954 

8 HN 0.31 0.400014 0.319594 

9 CA -0.02 3.581413 0.389071 

10 HA1 0.09 2.387609 0.194536 

11 HA2 0.09 2.387609 0.194536 

12 C 0.51 3.563595 0.764247 

13 O -0.51 3.029056 0.833724 

14 NT -0.47 3.296325 1.38954 

15 HNT 0.31 0.400014 0.319594 

16 CAT -0.11 3.634867 0.541921 

17 HT1 0.09 2.387609 0.166745 

18 HT2 0.09 2.387609 0.166745 

19 HT3 0.09 2.387609 0.166745 

 

  



Appendix 

198 

Table 41 Partial charges and Lennard-Jones parameters for the ff14SB+RISM calculations of Ac-

Gly-NHMe. 

Atom Type q  σ (Å) ε (kJ/mol) 

1 HC 0.1123 2.649533 0.109079 

2 CT -0.3662 3.39967 0.760078 

3 HC 0.1123 2.649533 0.109079 

4 HC 0.1123 2.649533 0.109079 

5 C 0.5972 3.39967 0.597502 

6 O -0.5679 2.959922 1.459017 

7 N -0.4157 3.249999 1.181109 

8 H 0.2719 1.069078 0.109079 

9 XC -0.0252 3.39967 0.760078 

10 H1 0.0698 2.471353 0.109079 

11 H1 0.0698 2.471353 0.109079 

12 C 0.5973 3.39967 0.597502 

13 O -0.5679 2.959922 1.459017 

14 N -0.4157 3.249999 1.181109 

15 H 0.2719 1.069078 0.109079 

16 CT -0.149 3.39967 0.760078 

17 H1 0.0976 2.471353 0.109079 

18 H1 0.0976 2.471353 0.109079 

19 H1 0.0976 2.471353 0.109079 

 
Table 42 Partial charges and Lennard-Jones parameters for the ff19SB+RISM calculations of Ac-

Gly-NHMe. 

Atom Type q  σ (Å) ε (kJ/mol) 

1 HC 0.1123 2.649533 0.109079 

2 CT -0.3662 3.39967 0.760078 

3 HC 0.1123 2.649533 0.109079 

4 HC 0.1123 2.649533 0.109079 

5 C 0.5972 3.39967 0.597502 

6 O -0.5679 2.959922 1.459017 

7 N -0.4157 3.249999 1.181109 

8 H 0.2719 1.069078 0.109079 

9 XC -0.0252 3.39967 0.760078 

10 H1 0.0698 2.471353 0.109079 

11 H1 0.0698 2.471353 0.109079 

12 C 0.5973 3.39967 0.597502 

13 O -0.5679 2.959922 1.459017 

14 N -0.4157 3.249999 1.181109 

15 H 0.2719 1.069078 0.109079 

16 CT -0.149 3.39967 0.760078 

17 H1 0.0976 2.471353 0.109079 

18 H1 0.0976 2.471353 0.109079 

19 H1 0.0976 2.471353 0.109079 
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6.11 Reference chemical shielding constants of DSS and NH3 at 

high pressure 
 
Table 43 Reference chemical shielding constants for pressure-dependent NMR calculations. The 
1H and 13C shielding constants were calculated with MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) 

on DSS conformations.  

Pressure 1H 13C 15N 

1 bar 31.8997 200.934 258.687 

100 bar 31.8998 200.937 258.6975 

500 bar 31.9002 200.949 258.7387 

1 kbar 31.9007 200.963 258.7871 

2 kbar 31.9015 200.987 258.8753 

3 kbar 31.9023 201.008 258.9543 

4 kbar 31.9030 201.027 259.0262 

5 kbar 31.9036 201.045 259.0922 

7.5 kbar 31.9050 201.082 259.2373 

10 kbar 31.9062 201.115 259.3618 
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