Resource-Efficient Processing
of Large Data Volumes

Dissertation
zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften

der Technischen Universitit Dortmund
an der Fakultat fur Informatik

von

Stefan Noll

Dortmund

2021

Tag der miindlichen Priifung: 17. Dezember 2020
Dekan/Dekanin: Prof. Dr.-Ing. Gernot A. Fink

Gutachter/Gutachterinnen: Prof. Dr. Jens Teubner
Prof. Dr. Jana Giceva

To my family and my girlfriend
for supporting me all the way.

Abstract

Nowadays, nearly every enterprise, organization, or institution pro-
cesses large volumes of digital information to create value from data.
To process data efficiently, they employ database management systems
that promise to deliver high throughput, low latency, predictable per-
formance, and scalability. However, meeting all four requirements
at the same time poses major challenges for systems. To make mat-
ters worse, systems are expected to meet all four requirements while
utilizing resources efficiently. However, the complex system environ-
ment of data processing applications, i.e., the combination of complex
software architectures, workloads, and hardware setups makes it very
challenging to achieve high resource efficiency. In this thesis, we ad-
dress resource-efficient data processing by focusing on three scenarios
that are relevant—but not limited—to database management systems.
Our goal is to develop solutions that improve resource efficiency at
multiple system levels.

First, we address the challenge of understanding complex systems.
In particular, we focus on memory tracing, which allows us to analyze
memory access characteristics, and thus enables us to identify problems
of inefficient memory usage. The problem is, however, that available
tools for memory tracing suffer from a large runtime overhead, which
makes memory tracing very expensive in practice. To address the
problem, we develop an efficient implementation of memory tracing
using hardware-based sampling. We demonstrate that our approach
enables us to analyze the runtime characteristics of complex systems
with a low runtime overhead. It reveals, e.g., access patterns, access
statistics, and data and query skew for individual data structures—at
byte level. Consequently, our approach opens up new possibilities for
optimizing resource usage, especially memory and cache usage.

Second, we demonstrate how we can leverage information about
memory access characteristics to optimize the cache usage of algo-
rithms at hardware level. In particular, we address the problem of

vi Abstract

cache pollution within a multicore processor. Cache pollution can hurt
performance, especially in concurrent workloads. To address cache
pollution, we apply hardware-based cache partitioning. We derive a
cache partitioning scheme that we deliberately keep simple: We restrict
memory-intensive operators that do not reuse data, such as column
scans, to a small portion of the last-level cache. Furthermore, we demon-
strate how to integrate cache partitioning into the execution engine of
an existing database system with low engineering costs. In our eval-
uation we show that our approach effectively avoids cache pollution:
It may improve but never degrades system performance for arbitrary
workloads containing scan-intensive, cache-polluting operators.

Third, after optimizing resource usage within a multicore proces-
sor, we optimize resource usage across multiple computer systems. In
particular, we address the problem of resource contention for a typical
application: bulk loading, i.e., ingesting large volumes of data into the
system. When bulk loading runs in parallel to query processing, both
operations compete for processor cores, network bandwidth, and I/O
bandwidth, which causes poor and unpredictable performance. Our
analysis shows that resource contention occurs due to expensive data
transformations during bulk loading. To address the problem of resource
contention, we exploit the given hardware setup: a distributed environ-
ment consisting of the database server and one or more client machines
holding the input data. We develop a distributed bulk loading mecha-
nism, Shared Loading, which enables dynamically offloading parts of
the bulk loading pipeline, i.e., deserialization and data transformation,
to the client. In our evaluation we demonstrate that Shared Loading
utilizes the available network bandwidth and the combined compute
power of client and server more efficiently. It increases bulk loading
throughput, improves a query workload’s tail latency, and also works
well with additional compression methods.

Ultimately, we claim that the contributions of this thesis have an impact
on real systems: We implement memory tracing for the Linux kernel, we
integrate our cache partitioning mechanism into (a prototype version
of) a commercial database system, and we design Shared Loading based
on the architecture of a commercial system. In our evaluations, we
demonstrate that our approaches improve a database system’s resource
efficiency.

Acknowledgments

Completing this thesis has been a journey—a long and energy-sapping,
but also an instructive and enlightening journey. I am grateful that
along the way I had the privilege to work with, meet, and be supported
by many people—supervisors, colleagues, friends, and family. They
were instrumental in completing this thesis. Hence, I owe them a great
debt of gratitude.

First and foremost, I would like to thank my advisor jens Teubner. He
gave me the freedom to explore my own ideas, offered guidance when
needed, and, most importantly, encouraged me to believe in myself and
my work. He introduced me to the SAP HANA team and gave me the
opportunity to do research in collaboration with an industry partner.
The publication of my papers and this dissertation would not have been
possible without him.

Next, I would like to give many thanks to Norman May for his constant
support and for being the driving force behind the collaboration with
SAP. His immense expertise and constructive feedback greatly improved
my papers and this dissertation. His constant encouragement kept me
developing new ideas. In addition, I am grateful to Alexander Bohm for
his comments and our collaboration.

Working on a research project together with an industry partner has
been a great experience. I would like to thank SAP and especially the
SAP HANA group for funding my PhD project. In addition, I want to
thank Arne Schwarz for facilitating the collaboration, for creating a wel-
coming and distraction-free working environment, and for maintaining
the SAP HANA Campus.

In particular, I would like to thank my fellow PhD students—past and
present—of the SAP HANA Campus: Thomas Bach, Tiemo Bang, Michael
Brendle, Jonas Dann, Matthias Hauck, Axel Hertzschuch, Lucas Lersch,
Mehdi Moghaddamfar, Ismail Oukid, Georgios Psaropoulos, Robin Rehr-
mann, Frank Tetzel, and Florian Wolf. I enjoyed the countless hours we

vii

viii Acknowledgments

spent together—on and off work—discussing ideas, sharing knowledge,
giving feedback, encouraging one another, or having fun. I am especially
grateful to Thomas, Tiemo, Michael, Lucas, Ismail, Georgios, Robin
and Frank for giving me feedback on an early draft of this thesis or
my papers as well as to Thomas, Michael, Georgios, and Frank for
being good friends and for entertaining me with numerous board game
nights, hiking trips, or visits to the pool. I would also like to thank Max
Wildemann, Michael Rudolf, Elena Vasilyeva, and Marios Kardaras for
welcoming me at SAP.

Moreover, I would like to thank Thomas Willhalm and Roman Dementiev
for giving me access to the latest Intel hardware and for discussing ideas.
I am especially grateful to Roman for exchanging ideas, which kicked
off my work on memory tracing.

I would also like to thank my colleagues from TU Dortmund University,
Henning Funke and Jan Miihlig, for their feedback and our collaboration.

Furthermore, I would like to thank Jana Giceva, Johannes Fischer, and
Jian-Fia Chen for taking an active part in my PhD thesis committee as
jury members. I am especially grateful to Jana Giceva for taking on the
role of co-examiner.

I would also like to thank my long-time friend Alexander for his emo-
tional support and for giving me feedback on an early draft of this
dissertation.

Last but not least, I would like to especially thank my mother Claudia
and her husband Michael, my siblings Florian and Lena, as well as my
girlfriend Sarah for their emotional support, constant encouragement,
and unconditional love.

Sandhausen, October 3, 2020 Stefan Noll

Contents

Abstract

Acknowledgments

1

3

Introduction

1.1 Resource Efficiency
1.2 Motivation
1.3 Challenges
1.4 Contributions and Outline

Preliminaries

2.1 Memory Hierarchy
2.1.1 Compute Components
2.1.2 Memory Components
2.1.3 Experimental Analysis of Cache Performance .

2.2 Main-Memory Database Systems
2.2.1 Order-Preserving Dictionary Compression . . .
2.2.2 BufferedUpdates

Memory Tracing
3.1 Introduction
3.2 Background: Profiling & PEBS
3.3 Implementation
34 UseCases.,
3.4.1 Detecting Access Patterns
3.4.2 Access Counting at Bytelevel
3.43 Hot Working SetSize
3.44 Table Partitioning
35 Overhead
3.6 RelatedWork.,
37 Conclusion o oL L

X

0 U1 W W

CONTENTS

4 CPU Cache Partitioning
Introduction L oL
Query Executionin SAPHANA

4.1
4.2

4.3

4.4

4.5

4.6
4.7

421 DataStructures
422 Operations
Analysis of LLCUsage
43.1 ExperimentalSetup
432 ColumnScan
433 Aggregation With Grouping
434 ForeignKeyJoin
435 Discussion
Cache Partitioning in SAPHANA
44.1 Cache Partitioning With CAT
442 Cache Partitioning Scheme
443 Integration Into SAPHANA
Evaluation
451 ExperimentalSetup
452 Column Scan & Aggregation With Grouping

453 Aggregation With Grouping & FK Join
454 Column Scan & TPC-H Queries
45.5 Column Scan & OLTP Query
456 Discussion
Related Work
Conclusion L

5 Shared Loading
Introduction

5.1
5.2

5.3

54

Cost Analysis of Bulk Loading Pipeline
5.2.1 Overview of Loading Steps
5.2.2 Costs of Loading Steps
Shared Loading
5.3.1 Client-Centric Loading
5.3.2 Server-Centric Loading
5.3.3 Dynamic Offloading
5.3.4 Implementation
Evaluation
541 Setup. L.
54.2 Loading inIsolation
5.4.3 Loading With Concurrent Queries
54.4 Robustness of Parameters
5.4.5 Additional Compression

51
52
54
54
55
56
57
59
60
64
65
66
66
68
69
71
71
72
75
78
79
80
82
85

87

CONTENTS xi

5.4.6 Discussion e 116

55 RelatedWork. 117

56 Conclusion 120

6 Conclusion 121
6.1 Summary 122

6.2 Future Directions 124

6.3 Discussion 128
Bibliography 131
List of Figures 157
List of Tables 159

List of Listings 161

xii

CONTENTS

Introduction

Nowadays nearly every enterprise, organization, or institution pro-
cesses digital information with the goal to create value from data. For
example, companies store and retrieve data to promote products, to
process orders, or to offer services. They often employ data analytics
to extract business intelligence, which allows them to place targeted
advertisements, to optimize production processes, or to tailor products
and services to the need of their customers. Government agencies an-
alyze data to detect tax fraud, provide weather forecasts, or control
road traffic to avoid accidents. Research institutions process data to an-
alyze the human gene [65] or to answer fundamental open questions in
physics [35]. The common, major challenge is to handle large volumes
of data.

Typical data sets consist of product information, orders, financial
transactions, geographical data, or personal information. We refer
to a collection of related data sets as a database [58]. By structuring
the data, e.g., by dividing the data into tables and applying relational
schemas [43], a database simplifies data processing. In particular, it
allows software to manage different databases with similar methods. A
software system that lets end users and application programs efficiently
and conveniently create, read, update, and delete databases is called a
database management system (DBMS) [184].

Database management systems provide the basis for performance-
critical applications that rely on data processing. Examples include
manufacturing, telecommunication, web services, finance, retail, scien-
tific computing, social media, or navigation systems. A major advantage

2 CHAPITER 1. INTRODUCTION

of a DBMS is that it hides the complexity of data processing from its
users. To this end, a DBMS provides a common interface to data man-
agement functionality independent of the underlying hardware.

The user typically interacts with a DBMS by expressing queries
using a domain-specific language such as SQL. To answer queries, the
DBMS performs the necessary work in the background: It handles
concurrent accesses from multiple users, enforces constraints, provides
the concept of a transaction, i.e., a single logical unit of work that
encapsulates multiple database operations, guarantees secure storage,
and safely recovers from failures.

At the same time, a user expects a high quality of service from the
DBMS. First, the system needs to scale with the amount of data as the
application grows and evolves over time. Second, it needs to achieve
high throughput, i.e., to be able to process a large number of queries
per second for a given workload. Third, it needs to achieve low latency,
i.e., to return the answer to a query in a minimum of time. Finally,
it needs to achieve predictable performance, i.e., to achieve a constant
throughput or latency even at peak workload periods.

Meeting all four requirements at the same time poses a major chal-
lenge for a database system. To make matters worse, a user typically
expects a DBMS to meet all four requirements while utilizing resources
efficiently, i.e., to minimize resource consumption and to maximize
resource utilization. The problem is that, due to the rising complexity
of the system environment, it is very challenging for database systems
to achieve high resource efficiency.

For example, in the past, advances in microprocessor technology,
such as higher clock frequencies or memory speeds, directly resulted in
performance improvements—without any software changes. However,
today’s microprocessors are increasingly complex. Software engineers
need to consider a processor’s architecture, such as multiple cores, multi-
level caches, or SIMD instructions, to further improve performance. In
other words, software needs to be resource-efficient to improve perfor-
mance on modern hardware.

We address the challenge of optimizing resource efficiency in this
thesis. In particular, we research and develop methods that improve
resource efficiency in the context of database systems. In the following,
we start by introducing the term resource efficiency. Afterwards, we
motivate why it is important to achieve a high resource efficiency.
Then, we describe the challenges and problems. Finally, we detail our
contributions and the outline of this thesis.

1.1. RESOURCE EFFICIENCY 3
1.1 Resource Efficiency

In this thesis we address the challenge of resource efficiency for data
processing. We refer to resource efficiency! as the ratio of useful work
to resources expended, i.e.,

USEFUL WORK

(1.1)

RESOURCE EFFICIENCY = .
RESOURCES EXPENDED

In the context of database systems, an example of useful work is data
and query processing. We quantify the amount of useful work by the
number of queries or by the amount of data that the system processes.
Typical examples of resources are time, money, energy, hardware such
as computer systems, and any physical or virtual component of a com-
puter system including processor cores, processor caches, main memory,
network, secondary storage, GPU memory, programmable logic blocks
of an FPGA, threads, mutexes, or locks. Resources have a limited quan-
tity, availability, capacity, or throughput.

Equation 1.1 implies that we can increase resource efficiency in two
different ways: by minimizing resource consumption or by maximizing
useful work. Minimizing resource consumption to increase resource
efficiency means that, e.g., a system performs the same amount of useful
work with less resources. However, this approach requires that we can
reduce available resources. Otherwise, we waste resources. For example,
using fewer processors to complete a task increases resource efficiency
of the resource “processor” only if we can reduce the total amount
of processors to the minimum needed quantity, e.g., by choosing an
appropriate configuration from a cloud provider. If we cannot reduce
the number of processors, e.g., due to a given on-premise hardware
setup, processors are not utilized. In other words, we waste hardware
resources.

Maximizing useful work to increase resource efficiency means that,
e.g., a system uses the same amount of resources but performs more
useful work. This approach is feasible especially if we are unable to re-
duce available resources. To avoid wasting a given amount of resources,
we need to maximize resource utilization.

'The general definition of efficiency refers to the “ratio of the effective or useful
output to the total input in any system” [11].

4 CHAPITER 1. INTRODUCTION

1.2 Motivation

Achieving a high resource efficiency is crucial for a number of reasons.
First, solving a problem with less resources also reduces costs. These
costs include purchase costs and operational costs: A lower resource
consumption makes it possible to use fewer or cheaper hardware. Using
fewer or cheaper hardware, on the other hand, typically results in lower
energy consumption. Especially for data centers energy costs are a key
challenge [160]. To make matters worse, the rapidly growing demand
for computing power [53] causes electricity costs to rise and electricity
usage to increase which further aggravates the issue [49]. Moreover,
consuming less resources to cut costs is not only important for an on-
premise infrastructure but also for an infrastructure based on cloud
services. Even though a cloud platform enables purchasing resources
on-demand with a pay-as-you-go model, which makes it easy to adapt
resource capacity to resource consumption, the consumer or cloud
provider still needs to efficiently utilize cloud resources and to reduce
resource consumption to ensure cost-effectiveness.

In addition, a high resource efficiency is crucial to avoid wasting
resources. Underutilizing resources often indicates missed optimization
opportunities which ultimately means losing performance. Similarly, a
high resource efficiency is key to avoid overutilization. Overutilizing
resources results in contention. This is especially true for shared re-
sources when, e.g., multiple applications run on the same machine and
compete for the same resources. Conflicts and contention may create
choke points which result in poor predictability of an application’s per-
formance characteristics. In the context of database systems, predictable
performance is particularly important for mission-critical systems that
need to meet stringent service-level agreements. Overloaded or poorly
optimized systems that are unable to answer requests in time at peak
periods cause companies to lose money and customers [50, 52]. By
efficiently utilizing resources which are wasted or cause conflicts other-
wise, systems can increase the amount of useful work without requiring
additional resources. Ultimately, efficient resource usage may enable
systems to meet service-level agreements or to answer requests in time
at peak periods.

Furthermore, a high resource efficiency may open up new possibili-
ties. For example, solving a problem with less on-chip cache or memory
allows hardware designers to shrink caches or memory which frees
up transistors. In return, hardware designers may choose to invest

1.3. CHALLENGES 5

the freed-up transistors into dynamically customizable logic or even
application-specific compute logic. The updated hardware design may
remove bottlenecks and improve performance. Additionally, it may be
an option to decrease the transistor count to reduce costs or power
consumption.

Moreover, being resource efficient, i.e., requiring less resources,
reduces the environmental impact. A smaller environmental impact
increases sustainability and may improve an organization’s reputation.

Last but not least, having an awareness for resource efficiency, i.e.,
having a clear understanding of how many resources are used, what
the resource utilization is, and thus being able to judge the resource
efficiency of a process, is key in many situations. Being resource-aware
is important for, e.g., query optimization, query execution, scheduling,
hardware provisioning and sizing, or algorithm engineering.

In summary, to cut costs, to improve performance and predictability,
to open up new solutions, and to reduce the environmental impact, it is
very important to achieve a high resource efficiency. Beyond achieving
a high resource efficiency, being resource-aware, i.e., being aware of
resource consumption and resource utilization, is important in many
situations.

1.3 Challenges

Achieving a high resource efficiency when processing large volumes of
data is very challenging. Many challenges arise from the complexity of
the system environment, i.e., from the combination of (i) complex soft-
ware architectures, (ii) complex workloads, and (iii) complex hardware
setups.

First, researchers and engineers require in-depth knowledge of the
software architecture. A database system, for example, has a large and
complex software architecture. It consists of numerous, interconnected
components, supports a wide range of different features, implements
hardware-conscious, low-level optimizations, and uses fine-tuned data
structures and algorithms. The challenge is that new approaches that
aim to optimize resource efficiency need to be integrated into the archi-
tecture of an existing system. New approaches must match a system’s
interface, and they must not interfere with other mechanisms. Avoid-
ing interference is especially challenging when different mechanisms
compete for shared resources and requires balancing resource usage
carefully.

6 CHAPITER 1. INTRODUCTION

Second, researchers and engineers require in-depth knowledge of
complex workloads. Database systems, for example, need to process
different types of queries such as short-running transactional queries
or long-running analytical queries. At the same time, database systems
need to handle query and data skew. The reason why complex work-
loads add additional challenges is that resource characteristics such as
quantity, availability, capacity, or throughput may change dynamically.
In particular, dynamic workloads have different resource requirements
due to changes of, e.g., the data distribution, data access pattern, type
of operations, number of concurrent users, or number of requests. Fre-
quently changing workloads require software to be flexible. A main
challenge is to adapt resource allocations on the fly without disrupting
execution and without failing to meet service-level agreements.

Third, researchers and engineers require in-depth knowledge of
complex hardware setups. While newer hardware generations, such as
newer processor models or microarchitectures, are getting more and
more powerful, they are also getting more and more complex. To max-
imize hardware utilization and to avoid wasting hardware resources,
software needs to exploit hardware characteristics, i.e., engineers need
to implement hardware-conscious algorithms and designs. They need
to minimize communication, e.g., to minimize data movement and syn-
chronization depending on the memory and compute topology, or they
need to leverage specific hardware functionality, e.g., to make use of
SIMD instructions and different processing units. Ignoring hardware
characteristics often results in resource contention or underutilization
as well as poor performance.

In summary, to develop methods for achieving high resource effi-
ciency, researchers and engineers need to deal with the complexity of
the system environment. The complexity of the system environment
makes it hard to identify problems of inefficient resource usage. In
particular, it is very challenging to analyze the system environment, i.e.,
the software architecture, workloads, and hardware setups. Without
the possibility to inspect and understand the system behavior in de-
tail, problems such as memory hotspots, poor data layouts, insufficient
parallelism, or inefficient algorithms remain hidden. In addition, the
complexity makes it ultimately very challenging to solve a problem of
inefficient resource usage after it is exposed.

To achieve high resource efficiency, database architects and re-
searchers have developed a plethora of concepts, architectures, and
algorithms for data processing and data management in the context of

1.3. CHALLENGES 7

database systems. Examples include hardware-conscious algorithms [19,
140, 205] and cost models [126], close collaboration between DBMS and
operating system [73], data placement and task scheduling strategies
[72, 164], optimized usage of shared caches [111], co-processing with
accelerators [96, 125], hot and cold data management [67, 116, 145], or
different query execution strategies [30, 144]. However, many problems
remain unsolved. In this thesis, we address resource-efficient data pro-
cessing by focusing on three scenarios. Our goal is to develop solutions
that improve resource efficiency at multiple system levels. We give
an overview of the three scenarios and their specific challenges in the
following.

Memory Tracing. To be able to identify problems of inefficient re-
source usage, we need detailed insights into the hard- and software of
the system. Thus, we first address the challenge of analyzing complex
systems. In particular, we focus on analyzing and understanding system
behavior with memory tracing. Memory tracing allows analyzing mem-
ory access characteristics. Detailed information about memory accesses
enable optimizations of memory usage, e.g., optimized memory provi-
sioning, memory access patterns, or data layouts. However, available
tools for memory tracing suffer from a large runtime overhead.

To address this problem, we study how we can leverage hardware-
based sampling, a functionality provided by modern processors, to
collect memory traces. In particular, we focus on the following ques-
tions: How can we leverage hardware-based sampling to implement
efficient memory tracing? What are possible use cases for memory
tracing using hardware-based sampling and what insights can we gain
from such an approach? What are the performance characteristics and
the tracing overhead when profiling complex systems, such as database
systems?

CPU Cache Partitioning. Subsequently, we demonstrate how we
can leverage information about memory access patterns to optimize
the resource usage of algorithms at hardware level. In particular, we
address the problem of resource contention within a multicore processor.
Within a multicore processor, concurrently running tasks with different
memory access patterns compete for cache capacity causing cache
pollution. Cache pollution occurs whenever a task evicts cache lines
from a shared cache that are frequently accessed by another task. Cache
pollution causes cache misses and can hurt performance, especially in

8 CHAPITER 1. INTRODUCTION

concurrent workloads if multiple queries or operations compete for the
last-level cache of a processor.

To address the problem of cache pollution, we study how we can
leverage hardware-based cache partitioning, a functionality provided
by modern processors, to utilize processor caches more efficiently. In
particular, we focus on the following questions: To what degree suffer
concurrent database workloads from cache pollution? How much pro-
cessor cache is needed by individual database operations? How can we
utilize hardware-based cache partitioning in the context of database
systems? What are the performance characteristics of integrating cache
partitioning into the system? What is the integration effort?

Bulk Loading and Query Processing. Finally, after optimizing re-
source usage within a multicore processor, we optimize resource usage
across multiple machines. In particular, we address the problem of
resource contention and underutilization for a typical database appli-
cation, bulk loading, where a client loads large volumes of data into a
database system running on a server. When bulk loading runs in parallel
to query processing, both operations compete for resources causing re-
source contention and underutilization of the processor cores, network
bandwidth, and I/O bandwidth. The result is poor and unpredictable
performance of both bulk loading and query processing.

To address the problem of poor and predictable performance, we
study how we can leverage the compute power of a client machine
to avoid resource contention. We study how to exploit a database
system’s native compression format in a distributed environment in
order to reduce load on the server machine and to utilize available
network bandwidth more efficiently. In particular, we focus on the
following questions: What processing steps are most expensive during
bulk loading? Where can we improve resource efficiency? How can we
distribute work efficiently between client and server machines? What
are the performance characteristics of an approach that distributes work
dynamically between client and server? How does such an approach
impact the performance characteristics of query processing running in
parallel to bulk loading?

1.4 Contributions and Outline

In this thesis we research problems of inefficient resource usage. Our
goal is to develop new methods for optimizing performance and re-

1.4. CONTRIBUTIONS AND OUTLINE 9

CPU CPU 77 Processor 77 System System
Cache 7 ! DRAM 7 / Storage Storage
Cache Partitioning Memory Tracing Shared Loading
Ls Chapter 4 Ls Chapter 3 s Chapter 5
Ly [148] L [149] L [150]

Figure 1.1: Areas of the main contributions of this thesis.

source efficiency in the context of database systems. To that end, we
research resource efficiency in three scenarios that span across different
levels of the system architecture. The three areas of the main con-
tributions of this thesis are illustrated in Figure 1.1: We analyze and
optimize a processor’s cache usage via CPU cache partitioning, a ma-
chine’s memory usage via efficient memory tracing, and a distributed
system’s compute and network usage via efficient bulk loading.

We start off the thesis in Chapter 2 with preliminary information.
We illustrate characteristics and challenges of the memory and compute
hierarchy. To motivate efficient cache usage, we present experimental
results that illustrate how the working set size, the memory access
pattern, and resource contention impact memory latency. In addition,
we introduce design and workload characteristics of main-memory
database systems using the example of SAP HANA.

In Chapter 3, we present our first contribution: an efficient memory
tracing implementation. We leverage a hardware mechanism of modern
processors to profile the memory access characteristics of database
systems with a low runtime overhead. The memory trace allows us
to determine access patterns, access statistics and working set sizes of
any (database) workload and of different instances of a data structure.
We obtain insights that enable various optimizations of resource usage
such as tailoring memory capacity to the actual working set size or
partitioning data based on access statistics.

We published parts of Chapter 3 in:

[149] Stefan Noll, Jens Teubner, Norman May, and Alexander Bohm.
Analyzing Memory Accesses with Modern Processors. Proceedings
of the 16th International Workshop on Data Management on New
Hardware, 2020.

10 CHAPITER 1. INTRODUCTION

Motivated by the results of efficient memory tracing, we present our
second contribution in Chapter 4: techniques for improving cache effi-
ciency of concurrent database workloads via CPU cache partitioning,.
We analyze cache requirements for database operators, and we discuss
and evaluate how cache partitioning can be retrofitted into an existing
DBMS with low engineering costs. Our approach reduces cache pollu-
tion, i.e., resource contention of the last-level cache, improves cache
efficiency, and increases throughput of concurrent query execution.

We published parts of Chapter 4 in:

[148] Stefan Noll, Jens Teubner, Norman May, and Alexander B6hm.
Accelerating Concurrent Workloads with CPU Cache Partitioning.
Proceedings of the 34th IEEE International Conference on Data
Engineering, 2018.

We change our focus on the memory and computer hierarchy in Chap-
ter 5. Instead of optimizing resource efficiency within a single machine,
we optimize resource efficiency across multiple machines as part of
a distributed setup. In particular, we present our third contribution:
efficient bulk loading into the optimized storage of a database system.
We propose to dynamically offload data transformations to a client ma-
chine that ingests data into a DBMS running on another machine. Our
approach accelerates bulk loading by using the available network band-
width more efficiently and improves query performance by balancing
the load between client and server machine efficiently.

We published parts of Chapter 5 in:
[150] Stefan Noll, Jens Teubner, Norman May, and Alexander B6hm.
Shared Load(ing): Efficient Bulk Loading into Optimized Storage.

Proceedings of the 10th Conference on Innovative Data Systems
Research, 2020.

Chapter 6 concludes the thesis.

Additional Work

In the course of this thesis, the author of this thesis contributed ad-
ditional work which is not included in this thesis. This includes the
following work:

[146] Stefan Noll, Henning Funke, Jens Teubner. Energy Efficiency in
Main-Memory Databases. Datenbank-Spektrum, no. 3, 2017.

1.4. CONTRIBUTIONS AND OUTLINE 11

[68] Henning Funke, Sebastian Bref3, Stefan Noll, Volker Markl, Jens
Teubner. Pipelined Query Processing in Coprocessor Environments.
Proceedings of the 2018 International Conference on Management
of Data, 2018.

[147] Stefan Noll, Norman May, Alexander Bohm, Jan Miuhlig, Jens
Teubner. From the Application to the CPU: Holistic Resource Man-
agement for Modern Database Management Systems. IEEE Data
Engineering Bulletin, no. 1, 2019.

The Author’s Contributions

In accordance with §10(2) of the doctoral regulations of the department
of computer science of TU Dortmund University from August 29, 2011,
we describe the author’s contributions to the results and publications
of this thesis in the following.

The author of this thesis is the principal author of [148, 149, 150] and
of all its results used in the chapters throughout this thesis. In particular,
he contributed the concepts, implementation, and evaluation of the
proposed techniques and analyses. Similarly, the author of this thesis
is the principal author of [146]. Furthermore, the author of this thesis
co-authored [68]. He contributed minor parts of the implementation
and evaluation. Finally, the author of this thesis co-authored [147],
where he contributed Section 3 and Section 4.1 as well as substantial
parts of the remaining sections.

12

CHAPITER 1. INTRODUCTION

Preliminaries

In this thesis we research methods for resource-efficient data processing
in the context of database systems. To study the resource efficiency
of database systems, we require detailed knowledge about the system
environment of database systems, i.e., detailed knowledge about the
hardware setup, the software architecture, and the workloads.

We give preliminary information about the system environment in
this chapter. In particular, we provide background information as well
as motivation for the contributions presented in the remaining chapters
of this thesis.

Outline. In Section 2.1, we give an overview of the hardware setup.
Database systems are data-intensive by nature. Therefore, characteris-
tics of the memory subsystem may have a significant effect on system
performance. To this end, we present the memory components of
computer systems and highlight their performance characteristics. In
particular, we illustrate the effect of processor caches and introduce the
problem of cache pollution, which we pick up again in Chapter 4. In
Section 2.2, we give an overview of main-memory database systems.
We highlight important characteristics of the system architecture and
describe the characteristics of typical workloads. In addition, we present
two concepts of main-memory database systems, order-preserving dic-
tionary compression and buffered updates, which we frequently refer to
in the remaining parts of this thesis. We explain the two concepts using
the example of the commercial database system SAP HANA, which we
use in the evaluation of this thesis.

13

14 CHAPTER 2. PRELIMINARIES

2.1 Memory Hierarchy

One of the most important hardware resources for memory-intensive
data processing applications, such as database systems, is memory.
Patterson and Hennessy put it in a nutshell [156, p.12]: “Programmers
want memory to be fast, large, and cheap, as memory speed often
shapes performance, capacity limits the size of problems that can be
solved, and the cost of memory today is often the majority of computer
cost” However, due to conflicting design goals, hardware architects are
unable to optimize memory for maximum speed, maximum capacity,
and minimal costs at the same time. Thus, hardware architects are
required to make trade-offs when designing memory.

As early as 1995, Wulf and McKee [207] pointed out the increas-
ing disparity between processor and memory speed. They observed
that while processors continue to get faster and faster, memory speed
does not improve at the same rate. As a result, the performance gap
between processors and memory constantly widens. They concluded
that if the trend continues, processing speed will eventually hit a wall—
the memory wall—where system performance is entirely determined
by memory speed. However, various advances in software and hard-
ware technologies have mitigated the effects of the memory wall until
now [83].

A central role in mitigating the disparity between processor speed
and memory speed plays the memory hierarchy [83]. The memory hier-
archy introduce multiple levels, where each level closer to the processor
is typically faster, but also smaller and more expensive per byte than the
adjacent level farther from the processor. In general, data moves only
between two adjacent levels of the memory hierarchy. By introducing
multiple levels, the memory hierarchy takes advantage of the locality
of memory accesses, i.e., spatial and temporal locality. Spatial locality
states that data objects whose memory addresses are near one another
are likely to be accessed together in time. Temporal locality states that
recently accessed data objects are likely to be accessed soon [83].

Figure 2.1 illustrates the memory hierarchy of a typical hardware
setup for database systems’. The figure also visualizes how the memory
hierarchy spans across different compute components. In the following,
we first give an overview of the compute components. Afterwards, we
describe the memory components of the memory hierarchy.

The figure is based on a figure from Miiller [138, p.14, Figure 3].

2.1. MEMORY HIERARCHY 15

Core Distributed System
Registers
\ Storage Storage
L1 cache
\
L2 cache
Y Y ! - T~ O N
Core | -+ | Core Processor | -+ | Processor
j -
L3 cache DRAM DRAM
Processor Single Computer

Figure 2.1: Memory hierarchy across different compute components.

2.1.1 Compute Components

Today’s computer architecture features a hierarchy of compute com-
ponents. At the heart is the central processing unit (CPU), or processor,
which carries out arithmetic and logical operations. One of the main
indicators of a processor’s speed is the clock frequency, i.e., the number
of clock cycles per second. Figure 2.2 illustrates how the clock frequen-
cies of microprocessors evolved over time. It includes trend data of
microprocessors from 1972 to 2020.

More than five decades since Gordon Moore made his famous and
often cited observation about growing transistor densities, “Moore’s
Law” [136] continues to prevail [53, 64]. It has become notoriously diffi-
cult, however, to turn the increasing number of transistors into further
improvements in application performance. Figure 2.2 shows that while
the number of transistors of processors continues to grow, the clock
frequency of processors does not increase significantly anymore. In
fact, the key limitation in today’s microprocessor design is the dissi-
pation of heat [31]. To prevent overheating, hardware manufacturers
are unable to further increase clock frequencies as faster speeds would
cause more heat dissipation than chips could withstand. Similarly, to

16 CHAPTER 2. PRELIMINARIES

A Number of transistors (x 1073) an
| B Single-threaded SpecInt performance (x 10°) G & AL
106 | © Clock frequency [MHz] AAAAAAAA
¢ Power consumption [W] A AAADBAA
1 © Number of logical cores Aan®a g W
HA o me O
10* | "5 ﬁﬁﬁpﬁ na Bp BB
AA 0.0
AA &2@@%@%@8%@@3%@%%9%
A B 350 © ¢
10% | BB £y °99, © S350 04§l 0 SR %%f?
A o098 ®, 0% o 000 o8
© oo % 0o ® g%
£ o o o Y00 00 OO0
100 | g ° & o & ooo @ csmm coanomo 00
1970 19‘80 19‘90 20‘00 20‘10 20‘20
Year

Figure 2.2: Trend data of microprocessors from 1972 to 2020 [175]. While the number of
transistors of processors continues to grow, the clock frequency of processors does not
increase significantly anymore. Instead, hardware manufacturers use the growing number
of transistors to increase the number of logical cores of a processor.

prevent overheating, not all transistors in a modern chip can be active
at the same time, an effect also called dark silicon [59].

In order to continue to improve throughput while staying within the
power budget, hardware manufacturers build microprocessors with an
increasing number of cores (i.e., a microprocessor consisting of multiple
processors) per chip. In addition, a single core may support simul-
taneous multithreading (SMT) to execute multiple hardware threads
concurrently. It allows the processor to execute instructions from more
than one thread at a time which may increase the utilization of a proces-
sor’s resources. For example, SMT may be used to hide the latency of
memory accesses by executing useful work with one hardware thread
while the other is waiting on memory requests.

The number of hardware threads varies across processor models
and manufacturers. For example, as of 2020 server processors from
Intel or AMD support up to 2 hardware threads [9, 91], whereas IBM
Power processors support up to 8 hardware threads [40] per core. To
contrast them to physical cores of the processor, hardware threads may
also be called logical cores.

2.1. MEMORY HIERARCHY 17

Component Capacity Random Read Latency Read Bandwidth
Registers < 40-16-8B <1ns <20-140GB/s

L1 cache 20 - 32KiB ~2ns < 20-140GB/s

L2 cache 20 - 256 KiB X~ 61ns < 20-70GB/s

L3 cache 50 MiB ~ 15ns < 20-30GB/s

DRAM 256 GiB ~ 110 ns ~ 80 GB/s

SSD 1TiB ~ 120 ps ~ 530 MB/s

1-Gbit Ethernet — > 1us < 125 MB/s
10-Gbit Ethernet — > 1us < 1250 MB/s

Table 2.1: Capacity, random read latency, and read bandwidth of different memory compo-
nents for a computer system with a single Intel Xeon E7-8870 v4 processor [90] (20 physical
cores, 2.1 GHz), DDR4 SDRAM (1600 MHz), a Micron M600 [194] SSD, and an 1-Gbit and a
10-Gbit network interface controller.

In addition, a computer system may consist of multiple multicore
processors to further increase the compute power of a single computer
system (cf. Figure 2.1). Making use of the different levels of hard-
ware parallelism (SMT, multiple cores, multiple processors) is crucial to
achieve high performance for data processing applications. Moreover,
multiple computer systems may be connected over the network to form
a distributed system which further increases the amount of available
resources and the complexity of the system environment.

One of the most common forms of network communication uses the
TCP/IP [192] protocol family in combination with the Ethernet [77] stan-
dard for the physical data transfer between systems. For a distributed
system, network bandwidth and network latency are often equally or
even more important than memory speed. Consequently, network opti-
mizations may rely on remote direct memory access (RDMA) [21, 117,
135, 211, 216], which allows directly accessing the memory of one com-
puter system from another computer system. RDMA reduces latency
and CPU time by bypassing the network stack and not involving the
operating system.

2.1.2 Memory Components

Today’s computer architecture does not only feature a hierarchy of com-
pute components for processing data, but it also features a hierarchy of
memory components for storing data. Table 2.1 gives an overview of

18 CHAPTER 2. PRELIMINARIES

the performance characteristics of different memory components. The
table shows the capacity, latency, and bandwidth? of memory compo-
nents for a hardware setup using an Intel Xeon E7-8870 v4 processor.
We give an overview of the different memory components using the
example of Table 2.1 in the following.

Closest to the compute logic inside a core of a multicore processor
are the registers, the smallest yet fastest memory. A core has a private
first-level (L1) cache as well as a private second-level (L2) cache. They
feature increased capacity, but decreased speed compared to registers.
These caches are only shared by the core’s hardware threads. All cores
of a multicore processor share the same third-level (L3) cache. For typical
server processor of Intel or AMD, the L3 cache is the last on-chip cache’.
Hence, it is also referred to as the last-level cache (LLC).

The closest off-chip memory to a processor is dynamic random
access memory (DRAM) which serves as main memory. However, pro-
cessor caches and main memory are volatile—they lose all data when
cut off from power. Therefore, further away off-chip memory is typ-
ically non-volatile. Non-volatile memory of a computer system may
be magnetic storage, i.e., a hard-drive disk (HDD) consisting of several
spinning magnetic disks. Other non-volatile memory may be based
on flash memory, such as a solid-state disk (SSD). To improve latency
and bandwidth, modern SSDs transfer data over the PCI Express (PCle)
bus using the NVM Express (NVMe) interface specification [206], are
combined into arrays [79], or allow fine-tuned modifications to the
firmware [159] to optimize latency and throughput.

A single computer system, consisting of multiple processors, typi-
cally has distributed shared DRAM (cf. Figure 2.1) with non-uniform
memory access NUMA)—in contrast to symmetric multiprocessing (SMP)
where all processors have one shared DRAM. Distributing main mem-
ory among the processors increases the memory bandwidth and reduces
the memory latency if individual processors access their local DRAM
modules. Otherwise, accessing remote DRAM, i.e., accessing another

2Note that the listed values for the bandwidth of the processor caches are only
outside estimates based on official specifications [90]. Many factors impact cache
bandwidth, such as conflicts due to competing loads from hardware prefetching
or other cores, the complex interplay between loads and stores, (instruction-level)
parallelism, or the clock frequency. An overview of memory and cache bandwidth
for Intel processors is available at https://software.intel.com/content/www/us/en/
develop/articles/memory-performance-in-a-nutshell.html.

30ther processors may have a different cache hierarchy. For example, IBM’s
POWERS processor has a fourth-level cache as last-level cache [34].

https://software.intel.com/content/www/us/en/develop/articles/memory-performance-in-a-nutshell.html
https://software.intel.com/content/www/us/en/develop/articles/memory-performance-in-a-nutshell.html

2.1. MEMORY HIERARCHY 19

processor’s DRAM modules, increases latency and lowers bandwidth.
Thus, memory access speed depends on the location of data in main
memory. Such setups require optimizing data placements and access
locality [19, 112, 164].

Challenges. The separation into a hierarchy of different compute
and memory components, creates many challenges that software needs
to address. Two of the main challenges are efficient communication
and resource sharing. For a distributed system, i.e., multiple computer
systems connected over a network (cf. Figure 2.1), communication
is particularly important to efficiently distribute work and optimize
throughput. However, communication bandwidth quickly becomes a
bottleneck. In Chapter 5, we present an approach for efficient bulk
loading into a database system by optimizing communication: We ex-
ploit data locality and dynamic data transformations to reduce network
transfers.

For a multicore processor, efficient resource sharing is key. To
motivate the efficient usage of the shared last-level cache, we perform
an experimental analysis of the performance characteristics of processor
caches in the following.

2.1.3 Experimental Analysis of Cache Performance

To process data, a processor moves data at the granularity of cache lines
(64 B)* automatically between registers and DRAM within the cache
hierarchy. To place a new cache line into a cache, the processor needs to
evict an existing cache line from the cache. Processors use a particular
replacement policy to decide what cache line shall be evicted. An
example is the (pseudo) least-recently used replacement policy, where
the processor evicts the cache line that has been least recently accessed.

A processor’s caches may be inclusive by keeping copies of cache
lines from the adjacent cache closer to the processor or exclusive by
not keeping copies of cache lines from the adjacent cache closer to the
processor. Furthermore, caches are set associative. A set is a group of
cache lines. To fill the cache, the processor first maps a cache line to a
set and then places the cache line anywhere in the set. If a set can hold
n cache lines, the cache is called n-way set associative [83]. For example,
an Intel Xeon E7-8870 v4 processor has an 8-way set associative L1

“While processors from Intel [90] or AMD [9] typically have a cache line size of
64 B, processors from IBM [34, 40] have a cache line size of 128 B.

20 CHAPTER 2. PRELIMINARIES

cache, an 8-way set associative L2 cache, and a 20-way set associative
L3 cache [90]. The number of ways not only affects the probability of
conflict misses but also limits the number of partitions for a way-based
implementation of cache partitioning [89] (cf. Chapter 4).

A processor performs aggressive prefetching: The processor’s hard-
ware prefetcher automatically loads data into the caches by predicting
future memory accesses based on a software’s memory access pattern.
This means that an easily predictable access pattern, such as a sequential
memory access pattern, typically results in many cache hits and thus
greater throughput. Unpredictable (random) memory access pattern,
however, typically cause cache misses and thus poor throughput.

Another issue of unpredictable access pattern is that the hardware
prefetcher may mispredict accesses, and thus fills the cache with cache
lines that are not needed. In doing so, the processor may evict cache
lines that are needed in the near future. Consequently, memory accesses
need to be analyzed and optimized in order to utilize caches efliciently.
One method for analyzing the memory access pattern of an application
is to collect memory traces which we study in Chapter 3.

Access Patterns And Working Set Sizes. To illustrate the effects
of different memory access patterns and different working set sizes
on cache usage and cache performance, we run an experiment with a
pointer-chasing microbenchmark—similar to the work of Drepper [54]
and the work of Manegold et al. [128].

The benchmark allocates an array of elements, called links, in con-
tiguous memory. Each link is aligned to a cache line (64 B) and has
a pointer to another link in the array. We either connect the links
sequentially by setting each pointer to the adjacent link or connect the
links randomly by setting the pointers based on a uniform random per-
mutation of the array. Then, the benchmark traverses the pointer chain
(multiple times) resulting in either a sequential or a random memory
access pattern.

We execute the benchmark using a single thread on an Intel Xeon E7-
8870 v4 processor. The benchmark performs memory accesses to local
DRAM only and uses transparent huge pages [122] to minimize TLB
misses. We measure elapsed time and count the number of accessed
links to compute the average access latency for a single link of the
pointer chain. Figure 2.3 visualizes the results.

We observe that as long as the entire working set, i.e., the pointer
chain, fits into the L1 cache of the processor, the memory access latency

2.1. MEMORY HIERARCHY 21

150 ¢ . . .
—o— Sequential , , ,
%) —— Random ' ' '
& 1 1 1
M 1 1 1
£ 100 | ! ! .
5 ! ! !
Q—d 1 1 1
>~ | 1 1
Q
5 1 1 1
s 50 : : ;
w 1 1
wn
Q 1 1
Q
&) 1 I
< | s)
0 T ‘ "‘, 1

64B 256B 1KiB 4KiB 16KiB
L1

64KiB 256KiB 1MiB 4MiB 16MiB 64MiB 256 MiB 1GiB 4GiB
Lz . L3 ! DRAM

Size of pointer chain [B] (logarithmic scale)

Figure 2.3: Access latency per link (64 B) during the traversal of the pointer chain. We vary
the size of the chain and connect the links either sequentially or randomly resulting in a
sequential or random memory access pattern during traversal. The results illustrate how
the working set size and the access pattern impact cache performance.

per link is less than 2 ns for both memory access patterns. Similarly,
as long as the pointer chain exceeds the L1 cache but still fits into the
L2 cache, the access latency equals 4 ns for both access patterns. As
soon as the pointer chain exceeds the L2 cache, however, the access
pattern significantly impacts the access latency. For the L3 cache, we
observe a latency of 4 ns for a sequential access and a latency of 18 ns
for a random access. The difference is a factor of 4.5. For DRAM, we
observe a latency of 10 ns for a sequential access and a latency of 116 ns
for a random access. The difference is a factor of 11.6.

The results illustrate that optimizing algorithms to exploit sequential
memory access is key to achieve high performance. However, random
memory accesses cannot always be avoided, e.g., when using a hash
table or data structures using pointers such as trees. In this case, it is
crucial to keep the working size small such that frequently accessed
data fits at least into the L3 cache. In fact, the results highlight the
performance difference between accessing data from the L3 cache (18 ns)
and accessing data from DRAM (116 ns): Latency increases by a factor
of 6.4.

22 CHAPTER 2. PRELIMINARIES

Cache Pollution. However, even if frequently accessed data fits com-
pletely into the L3 cache, memory access latency can still degrade. In a
multicore processor, (all) cores share an L3 cache. This means that cores
compete for resources, in particular, for L3 cache capacity. Whenever a
core fills the shared cache with data, it may cause the eviction of cache
lines that are frequently accessed by another core. Especially, if the
core continuously evicts cache lines without reusing cached data, it
causes cache pollution for other cores.

We illustrate the problem of L3 cache pollution by running the
pointer-chasing microbenchmark on multiple physical cores on a single
Intel Xeon E7-8870 v4 processor. On one core, we run a random traversal
of the pointer chain for varying chain sizes similar to Figure 2.3. On
four other cores, we run a sequential traversal of a second pointer chain
with a size of 2 GiB that is shared between the four cores. We execute
all traversals at the same time and for the same amount of time to
potentially cause resource contention. We show the average access
time per link for the single-threaded, random traversal. As a baseline,
we include the results without a sequential traversal running in parallel
from Figure 2.3. Figure 2.4 visualizes the results.

Default Setup. We observe that as long as the entire pointer chain
of the random traversal fits into either the L1 cache or L2 cache of the
processor, the memory access latency per link does not change com-
pared to running the traversal in isolation. Indeed, there is no resource
contention between the random traversal and any of the sequential
traversals because they operate on different data sets and because a
physical core has its own private L1 and L2 cache. In addition, the
results demonstrate that as long as the size of the pointer chain is less
than or equal to 4 MiB, i.e., the chain occupies up to 8 % of the L3 cache
(50 MiB), access latency slightly increases from 18 ns to 20 ns.

As soon as the pointer chain exceeds 4 MiB, however, the sequential
traversals running in parallel significantly impact the access latency of
the random traversal: Latency increases by a factor of 6.5, from 18 ns
to 117 ns. In fact, accessing a link of the pointer chain takes as much
time as reading data from DRAM (cf. Figure 2.3). Thus, most memory
requests do not hit the L3 cache and require the processor to load data
from main memory instead.

The random traversal and the sequential traversals compete for
shared resources of the processor—especially for the L3 cache and
the memory bus. The processor’s L3 cache consists of multiple slices

2.1. MEMORY HIERARCHY 23

150 ¢ . . .
—6— Default , . . [J In isolation
'g' —=- Non-temporal prefetch ! ' '
o —«— L3 cache partitioning | ! B
£ 100 | ; ;
e
[P] 1 1
Q-l 1 I
>\ I I
Q
5 1 1
£ 0| S
[72] 1 1
%]
L ! 1 1
Q R
&) I J I
< 1 1
0 , :

64KiB 256KiB 1MiB 4MiB 16MiB 64MiB 256 MiB 1GiB 4GiB
Lz . L3 ! DRAM

Size of pointer chain [B] (logarithmic scale)

L1

Figure 2.4: Access latency per link (64 B) during the random traversal of the pointer chain.
We vary the size of the randomly connected chain and execute a sequential traversal (2 GiB)
on 4 cores in parallel. We compare the default setup against using non-temporal prefetch
instructions and using cache partitioning. As a baseline, we include the results without a
sequential traversal running in parallel from Figure 2.3 (7).

that are connected to a ring bus—one slice per core with a size of
2.5MiB [90, p. E-7, Figure E-3]. This may explain why access latency
increases significantly for working set sizes exceeding 2 MiB: The core
that executes the random traversal needs to access other L3 slices using
the bus and may suffer from the memory traffic caused by the sequential
traversals.

Ultimately, the results demonstrate the effects of resource con-
tention for L3 cache capacity and illustrate L3 cache pollution. In the
following, we evaluate two possible mitigations for L3 cache pollution:
the non-temporal prefetch instruction and cache partitioning.

Non-Temporal Prefetching. We use the non-temporal prefetch in-
struction (prefetchnta)® [90] to give a hint to the processor that the

SThe instruction set architecture of the processor provides also a non-temporal
load instruction (movntdga). However, this instruction is primarily used for reading
from write-combining memory, e.g., memory-mapped I/O regions; it is not used for
reading from write-back memory, which is available to applications [91].

24 CHAPTER 2. PRELIMINARIES

4 cores executing the sequential traversal do not reuse data. By using
the non-temporal prefetch instruction, we ask the processor to start
loading the data of link i + n right before processing link i. Note that
implementing prefetching is challenging [18, 81, 97, 187], e.g., due to
complex access patterns.

For the sequential traversal, the access pattern is simple. The chal-
lenge is to choose the optimal prefetch distance n. If the distance is too
small, we do not avoid memory stalls, or the data may already be loaded
into the L3 cache by the hardware prefetcher [90]. If the distance is
too big, the cache line may be evicted from the caches again before the
processor needs the data.

To determine the optimal prefetch distance for this benchmark,
we run an additional experiment with varying prefetch distances (not
shown). The results show that prefetching the 11" next link (n = 11)
minimizes access latency of a sequential traversal.

Adding the prefetch instruction reduces the access latency of the
sequential traversal from 11 ns to 9 ns (not shown). This demonstrates
that manually optimizing prefetching increases performance compared
to relying only on the hardware prefetcher of the processor. The results
also reveal, however, that using the prefetch instruction with a non-
temporal hint® does not improve access latency of the random traversal.
The results are surprising because Intel’s documentation [90] clarifies
that the instruction causes a cache line to be loaded into the L1 cache,
skips the L2 cache, and is loaded into the L3 cache marked for a fast
replacement’. Thus, we would expect that the data of the sequential
traversal occupies only a small portion of the L3 cache and evicts only a
small portion of the data of the random traversal. However, the results
expose that the random traversal still suffers from cache pollution
caused by the sequential traversal.

Cache Partitioning. By employing L3 cache partitioning [89], we
can restrict a processor core to evict cache lines only from a subset of
the L3 cache, i.e., limit write access per core. Cores can still read the
entire cache. In this experiment, we allocate only 10 % of the L3 cache
to the four cores executing the sequential traversal and 100 % of L3
cache to the core executing the random traversal of the pointer chain.

%We verify the use of the instruction prefetchnta by inspecting the program code.

"Intel’s optimization manual states that, for the non-temporal prefetch instruction,
“the fill into the L3 cache or Snoop Filter may not be placed into the Most Recently
Used positioned and may be chosen for replacement faster than a regular cache
fill” [90, p.280, Table 9-1].

2.2. MAIN-MEMORY DATABASE SYSTEMS 25

The results show that cache partitioning improves access latency
by a factor of 5.8. Latency improves from 117 ns to 20 ns for data sizes
exceeding the L2 but fitting into the L3 cache. In fact, we observe that
with cache partitioning access latency equals the latency of the baseline,
i.e., the random traversal running in isolation. This demonstrates that
L3 cache partitioning can mitigate the effects of cache pollution. In this
example, it negates the negative impact on performance entirely.

We evaluate the usage of L3 cache partitioning again in Chapter 4.
Instead of running a microbenchmark, we analyze the impact of cache
pollution on the end-to-end performance of database workloads, and
we present an approach for accelerating concurrent workloads by inte-
grating last-level cache partitioning into the execution engine of the
database system.

2.2 Main-Memory Database Systems

Overview. Traditionally, database management systems stored all
data on disk. In addition, they only had a small amount of main memory
available in the past. To process data, disk-based systems use a buffer
manager to copy a small subset of the data into main memory and
to copy modified data back to disk [169, 184]. However, as DRAM
density increased and DRAM costs decreased over time, it became
eventually economical to utilize large amounts of main memory. As a
result, database systems store more and more data in main memory.

Due to the superior latency and bandwidth of DRAM compared to
disks, memory-resident systems can achieve a higher performance than
only disk-based systems, especially for ad-hoc queries. An additional
advantage is that memory-resident systems can avoid the overhead
of a buffer manager. They avoid frequently copying data from and
to disk or structuring data into (buffer) pages. As a consequence of
performing fewer accesses to disks, memory-resident systems are no
longer constrained by traditional bottlenecks, such as disk I/O. Instead,
memory-resident systems are bound by the bandwidth and the access
latency of main memory. To avoid the main-memory bottleneck, it
becomes crucial to optimize memory accesses. Hence, systems need
to focus on optimizing the usage of processor caches to avoid DRAM
accesses whenever possible.

Database systems that heavily rely on main memory, i.e., primar-
ily use main memory—not disks—as storage, are referred to as main-
memory database systems [61]. To implement recovery mechanisms

26 CHAPTER 2. PRELIMINARIES

(in order to guarantee durability [80]), main-memory database systems
still need to use non-volatile memory, e.g., for writing checkpoints and
a log. This may include magnetic or flash storage as well as emerg-
ing storage technologies, such as non-volatile random access memory
(NVRAM) [155]. In addition, since DRAM is more expensive than disk
storage, a memory-resident system may choose to store rarely accessed
data, so-called cold data, on secondary storage to save costs, while
keeping frequently accessed data, the hot data, in main memory.

Workloads. Database systems run various types of workloads. In
the context of this thesis, two types of real-time workloads are most
relevant: online transaction processing (OLTP) and online analytical pro-
cessing (OLAP). An OLTP workload consists of simple, short-running
queries where lots of users concurrently and frequently access or update
a relatively small amount of data. Database systems typically choose
a row-oriented storage layout for OLTP workloads. Examples include
the processing of financial transactions in banking or the processing
of orders and sales in retail. In contrast, an OLAP workload consists
of complex, long-running queries where a small number of users infre-
quently analyzes a large volume of data. Database systems typically
choose a column-oriented storage layout for OLAP workloads. Exam-
ples include the creation of regular reports, audits, and forecasts for
decision support.

Due to the different workload characteristics of OLTP and OLAP,
users traditionally employ two separate systems: one OLTP-optimized
and one OLAP-optimized database system [188]. This makes it nec-
essary to regularly extract, transform, and load (ETL) data from the
OLTP database to the OLAP database. However, over the years a new
class of database systems for hybrid online transaction and analytical
processing (HTAP) emerged [26]. Such systems allow applications and
users to concurrently execute transactional and analytical workloads
on the same data copy.

SAP HANA. An example system supporting HTAP workloads is SAP
HANA [13, 62, 102, 183], a commercial, main-memory database system
developed by SAP. In this thesis, we evaluate methods for optimizing
performance and resource consumption either directly on a prototype
version of SAP HANA (Chapter 3 and Chapter 4) or on an independent
prototype based on SAP HANA's architecture (Chapter 5). We briefly
introduce two concepts of SAP HANA's architecture that are relevant

2.2. MAIN-MEMORY DATABASE SYSTEMS 27

Washington 3
Berlin 1 0 | Beijing
Beijing > [o] + 1[Belin
London 2 2 | London
Beijing 0 3 | Washington
Uncompressed Encoded Sorted
column column dictionary

Figure 2.5: Example of applying order-preserving dictionary compres-
sion to a column.

for the following chapters: order-preserving dictionary compression and
buffered updates. Note that many other main-memory database systems
employ very similar approaches [14, 29, 78, 88, 104-106, 108, 109, 161,
171]. Hence, the concepts presented in this thesis apply to other systems
as well. We use the example of SAP HANA in this thesis to demonstrate
how our contributions impact the resource efficiency of a commercial
database system.

2.2.1 Order-Preserving Dictionary Compression

A major problem of memory-resident database systems is the main-
memory bottleneck. In particular, the problem is that the latency and
bandwidth of DRAM limits the performance of memory-intensive work-
loads. To overcome the main-memory bottleneck, memory-resident
database systems typically employ data compression. The reason is
that a reduced data size not only saves memory space but memory
bandwidth as well. Due to a reduced data size, the processor needs to
load fewer cache lines when processing data. As a result, the system
utilizes memory and cache bandwidth more efficiently which improves
the performance of memory-intensive workloads.

For example, the main-memory database system SAP HANA makes
heavy use of order-preserving dictionary compression [1, 114] in its read-
optimized storage. Many other systems employ similar ideas [29, 88,
104-106, 108, 109, 161, 171]. Figure 2.5 illustrates a short example of
applying order-preserving dictionary compression to a column of a
table: An ordered dictionary maps domain values to a dense set of
consecutive numbers. Instead of the actual value of the columns, the

28 CHAPTER 2. PRELIMINARIES

engine stores the typically much smaller index of the dictionary entry.
The system stores the encoded column sequentially in a vector in main
memory using contiguous memory. The compression works especially
well for large string columns with a low amount of distinct values. Such
data is very common in real-world business applications [24, 139].

In addition, depending on the attribute type, a column or a dictionary
can be further compressed using additional compression schemes. A
default scheme is bit packing, where the engine stores the integers of the
encoded column using the least number of bits. Additional compression
schemes include run-length, prefix, cluster, indirect, or sparse encoding.

Order-preserving dictionary compression enables the execution en-
gine to determine the order of values during comparison operations
without decompressing data. As a result, it allows not only efficiently
evaluating equality predicates but range predicates as well. For exam-
ple, efficient implementations of columns scans with support for range
predicates exploit single instruction, multiple data (SIMD) capabilities
of modern processors to process multiple encoded values at once [204,
205]. The compression improves memory bandwidth utilization and the
SIMD implementation improves throughput. Other operations, such as
aggregations, may require decompressing data on the fly by looking up
the actual value of a dictionary code in the dictionary.

While dictionary compression exploits information redundancy to
reduce the memory footprint, it also creates at least one more level
of indirection: Accessing the dictionary causes cache misses when
the dictionaries cannot be kept in the cache of the processor. Thus, it
becomes crucial to optimize the cache usage of database operations that
perform many dictionary accesses, i.e., by reserving a greater portion
of the available cache for this class of operations (cf. Chapter 4).

2.2.2 Buffered Updates

SAP HANA aims to efficiently perform write-intensive transaction pro-
cessing as well as read-only analytical processing on the same data copy:.
The system achieves this by storing the table data of the column store
in two different physical representations: a write-optimized storage
and a read-optimized storage [182]. Others use similar ideas [14, 78,
104, 105, 170, 171].

Figure 2.6 illustrates the storage layout of SAP HANA’s column store.
The read-optimized storage uses the format described in the previous
section that is optimized for low memory consumption and processing
large volumes of read-only data: It uses a vector in (contiguous) main

2.2. MAIN-MEMORY DATABASE SYSTEMS 29

Insert
Update | |Read Read
Delete
S
Transform
& Merge
Write-optimized Read-optimized
storage storage

Figure 2.6: Buffered updates in SAP HANA. Records migrate from write-
to read-optimized storage. The write-optimized storage supports effi-
cient transaction processing, while the read-optimized storage supports
efficient analytical processing.

memory that is compressed using order-preserving dictionary com-
pression with additional compression schemes. The write-optimized
storage uses a layout that is optimized for frequent inserts, updates,
and deletes. Values are dictionary-compressed without preserving the
order in the encoding by assigning dictionary codes on a first-come,
first-served basis. A cache-conscious B+-tree (CSB+-tree) [172] pro-
vides a sorted view of the unsorted dictionary to accelerate accesses. In
addition, transactional operations are logged.

To facilitate data ingestion into optimized storage, SAP HANA
transforms new data gradually, migrating records from write- to read-
optimized storage as shown in Figure 2.6. New records are first ap-
pended to a write-optimized column store. Eventually, a merge opera-
tion merges the data of the write-optimized column store with the data
of the read-optimized column store. The merge operation transforms
the data of the write-optimized storage from a dictionary compression
without ordering to an order-preserving dictionary compression. To
that end, it rebuilds the data structures of the read-optimized storage.
Subsequently, it resets the write-optimized storage for new data inges-
tion. In addition, the operation may initiate the creation of a savepoint
that is written to persistent storage. The merge operation starts ei-
ther periodically as a background task or upon a user request. As the
final step of the merge, the system atomically switches from the old
optimized-storage to the new optimized-storage without interrupting
or blocking query processing.

30 CHAPTER 2. PRELIMINARIES

In this thesis, we focus on query processing on read-optimized
storage (Chapter 3 and Chapter 4). However, the proposed techniques
apply to write-optimized storage as well. Moreover, we demonstrate
how to efficiently perform bulk loading in a distributed setup by directly
writing to read-optimized storage without writing to write-optimized
storage first (Chapter 5).

Memory Tracing

Analyzing and optimizing complex system environments, i.e., the com-
bination of complex software architectures, workloads, and hardware
setups, is very challenging. Often, is is not enough to use common pro-
filing tools because such tools identify the machine instruction rather
than the instance of a data structure that causes a performance problem.
This leaves a problem’s root cause such as memory hotspots or poor
data layouts hidden. The state-of-the-art solution is to augment clas-
sical profiling with a memory trace. However, current approaches for
collecting memory traces are not usable in practice due to their large
runtime overhead.

In this chapter, we present an approach for efficient memory tracing
that utilizes hardware-based sampling. To implement hardware-based
sampling, we exploit the debugging and profiling features of commodity
processors. We evaluate our approach using a commercial and an open-
source database system running the JCC-H benchmark. Moreover,
we demonstrate that our approach is practical due to its low runtime
overhead, and we illustrate how memory traces uncover new insights
into the memory access characteristics of complex system environments
using the example of database systems.

In particular, we make the following contributions: (i) we present
a practical implementation of memory tracing based on Intel’s PEBS
mechanism; (ii) we evaluate our approach using both a commercial
and an open-source database system running the JCC-H benchmark;
(iii) we demonstrate and discuss practical use cases; and (iv) we analyze
the runtime overhead.

31

32 CHAPTER 3. MEMORY TRACING

Outline. We introduce the problem in Section 3.1. In Section 3.2, we
introduce key profiling capabilities of modern processors. We present
our implementation of memory tracing in Section 3.3. In Section 3.4,
we evaluate the implementation and discuss practical use cases. We
study the runtime overhead in Section 3.5. We cover related work in
Section 3.6 and we conclude the chapter in Section 3.7.

Parts of this chapter are published in [149].

3.1 Introduction

Today’s database management systems are increasingly complex [199].
They offer numerous features, configuration parameters, and low-level
optimizations for various hardware setups. This complexity makes it
difficult to inspect and analyze system behavior and to identify new
optimization and tuning opportunities during development.

To gain insights into the execution engine and data flow, engineers
rely on general-purpose profiling tools such as perf [121] or VTune
Profiler [94], or on custom profiling mechanisms implemented directly
into the DBMS [179]. Common profiling tools pinpoint the machine
instruction (and the source code line) where CPU time is spent or where
hardware events such as cache misses occur. However, profiling tools of-
ten fail to identify the instance of a data structure that causes a problem,
which makes a root cause analysis very challenging. In fact, whenever
the same program code, such as hash_table.lookup(key), is executed
for different instances of a hash table, it may be impossible to detect
the instance (e.g., hash table used in hash join of R and S) that causes
problems—even with detailed call stack information. In addition, per-
formance problems might only occur when accessing some parts of a
data structure, e.g., due to skew caused by data distribution or query
predicates.

To identify the root cause of a performance problem, others [95, 103,
131, 157, 189] propose to combine profiling information with a memory
trace, i.e., all memory addresses the system accesses during runtime.
Figure 3.1 illustrates an example. By assigning profiling metrics such as
CPU time or cache misses to memory addresses rather than machine in-
structions, we can identify specific instances or parts of a data structure
that cause performance problems.

However, collecting memory traces with tools such as Valgrind [143]
or Intel’s Pin [124] incurs a high overhead: They slow down the applica-

3.2. BACKGROUND: PROFILING & PEBS 33

Program
(source code lines)

Memory |
(memory addresses) i

: _ <006
39| void hash_join(...) { :gi;gg;gi Hash table (I;)
40 hash_table.build(...); <0x200a0>
41 for (auto key : keys) { | : !
. <ex10ede> Hash bucket (1)
42 hash_table. lookup(key); X 10000 } 2
43 } <0x100b0> } Hash bucket (I,)
I <0x100a0>
(a) Profiling based on source code lines (b) Profiling based on memory addresses.

(from machine instructions).

Figure 3.1: Difference between instruction-based and memory-based profiling. Mapping
hardware events such as cache misses to machine instructions allows identifying source
code lines (e.g., source code line 42) (a). In contrast, mapping hardware events to memory
addresses allows identifying instances of a data structure (e.g., instance I,) as well as parts of
a data structure at byte level (e.g., two hash buckets of I,) (b).

tion by more than an order of magnitude. This makes them unusable for
profiling complex applications such as database systems—especially for
analyzing issues that only occur in production. The good news is that
modern processors feature powerful profiling capabilities via precise
event-based sampling (PEBS) [91] that potentially allows overcoming
these restrictions.

In particular, we demonstrate that collecting memory traces with
PEBS on recent Intel processors is feasible in practice. We show in a
comprehensive experimental evaluation that memory traces provide
detailed information about how a database system accesses memory.
We analyze the access frequency and the access pattern of memory
accesses to reveal skew, hot data structures, or implementation and
algorithmic details of the execution engine. In addition, we demonstrate
that our implementation collects a memory trace with a low runtime
overhead.

3.2 Background: Profiling & PEBS

Profiling. Common profiling tools such as perf [121] or VTune Pro-
filer [94] allow analyzing detailed performance characteristics of ap-

34 CHAPTER 3. MEMORY TRACING

plications. They incur almost no slowdown. This makes them usable
everywhere—even in production environments. In addition to detecting
where CPU time is spent, they also provide microarchitectural insights
by collecting events that are exposed by modern processors via hard-
ware performance counters [91]. These allow the user to measure cache
misses, stalled cycles, memory bandwidth, non-uniform memory ac-
cesses, TLB misses, and many more events [91]. Profilers can report
the machine instruction (and source code line) that was executed when
an event occurred. They do not reveal what and how data was accessed
(cf. Figure 3.1).

VTune Profiler takes a step into this direction. It features a profiling
mode that maps certain events such as cache misses to memory objects
by instrumenting memory allocations and deallocations [95]. However,
VTune Profiler does not provide a memory trace, which is necessary to
reveal detailed memory access statistics and access patterns.

Other tools, such as Valgrind [143] or Intel’s Pin [124], allow col-
lecting a complete memory trace, i.e., all memory addresses the system
or the application accesses during runtime. However, they incur a high
runtime overhead. To trace the memory accesses of an application, the
tools use binary instrumentation. They dynamically inject additional
machine instructions into the binary, i.e., into the existing compiled
program code, of an application. For example, for every load instruction
the tools will add a new function call or a sequence of new instructions
that take the memory address used by the load instruction and write it
to a file or memory buffer. However, by adding a function call to every
simple load instruction, these tools add many expensive instructions
to the binary of an application. The added instructions slow down
the application by more than an order of magnitude, which makes
tools that use binary instrumentation unsuitable for profiling complex
applications such as database systems.

Precise Event-Based Sampling. We use a processor’s hardware
performance counters with support for precise event-based sampling
(PEBS)! [91] to implement efficient memory tracing. PEBS is available

Intel calls the mechanism “precise” because it reduces or entirely removes the
timing error of hardware performance counters without PEBS: When the processor
captures an hardware event, it may report a timestamp (or program counter) that
is different from the actual time (or program counter) the event occurred [91]. The
wrong timing information associated with an event is called “skid”.

3.2. BACKGROUND: PROFILING & PEBS 35

PEBS record

i Core {PMU Counter }‘—% PEBS record
! ! Record

777777777777777777777777 buffer

i Operating Interrupt | n
| system handler || ' DRAM

Figure 3.2: Overview of the PEBS mechanism. The core’s PMU counts
an event such as L2 cache misses @. It writes a record to DRAM when
the “Counter” reaches a threshold @. It sends an interrupt when the
buffer is full @. Then, the interrupt handler of the operating system
drains the buffer @ and processes the records.

on modern Intel? processors and currently supports a subset of the
events such as L1, L2, L3 cache misses or cache hits, all memory reads,
or all memory stores®. PEBS enables writing debug and profiling in-
formation associated with an event to a memory resident buffer. In
addition to a precise instruction pointer, this information includes, e.g.,
copies of general-purpose registers, latency information or the accessed
data address. Figure 3.2 illustrates the mechanism.

The operating system configures the performance monitoring unit
(PMU) of a processor’s core to count an event such as an L2 cache miss. It
specifies the sampling rate by setting a threshold and creates a buffer for
PEBS records in memory. Then, the PMU counts the specified event and,
when the counter reaches the threshold, the hardware automatically
writes a record with debug and profiling information to the buffer.
When the buffer is full, the PMU sends an interrupt. The interrupt
triggers the interrupt handler of the operating system. The interrupt
handler drains the buffer and processes the records. Afterwards, it
resets the counter and the PMU starts counting again. The advantage is
that the hardware writes the information to memory without involving
the operating system. When the operating system is needed, the buffer
mechanism amortizes the cost of executing the interrupt handler.

?Other manufactures may implement similar functionality. AMD, for example,
offers a similar feature called “lightweight profiling” [9].

3Future generations of Intel processors are expected to offer more hardware
performance counters with support for PEBS and a configurable record format to
allow smaller record sizes [91].

36 CHAPTER 3. MEMORY TRACING

Thread

Address
buffer

Offline
° analysis

Figure 3.3: Our memory tracing implementation. When a thread accesses a data structure @,
we may collect the virtual memory address of the accessed data @ using PEBS (cf. Figure 3.2)
and store the address in a per-core buffer in DRAM ©. We analyze the addresses offline @.

3.3 Implementation

To minimize the runtime overhead of memory tracing, we leverage
the PEBS mechanism of modern processors (cf. Section 3.2) in our
implementation of memory tracing. The implementation of memory
tracing based on the PEBS mechanism is the first contribution of this
chapter.

The PEBS mechanism allows us to sample the memory address
associated with a specific hardware event. In the evaluation presented in
this chapter, we focus on the event mem_load_uops_retired.all_loads,
which occurs whenever the CPU reads data from memory [91]. This
includes both cache hits and cache misses to the L1, L2 and last-level
cache. Note that depending on the use case, we could use other events
to collect memory addresses, e.g., associated with all memory writes,
only last-level cache misses, or cache misses where the cache line was
modified by another core (possibly indicating false sharing [131]).

Figure 3.3 gives an overview of our approach. We assume that the
PEBS mechanism of the PMU is already configured to write a record
every n-th occurrence of the monitored event. For each logical core, we
create a buffer for storing the address samples. When a worker thread
of the DBMS accesses memory, the core’s PMU may write a record with
the event’s debug information to the record buffer (cf. Figure 3.2). When
the record buffer is full, the PMU triggers the operating system which
executes a custom interrupt handler to process the collected records.
It extracts only the field with the virtual memory address associated
with the event and stores the address into the buffer of the logical core.
After running a workload, we analyze the address data.

3.4. USE CASES 37

To enable memory tracing in performance-critical environments,
we implement memory tracing by modifying the Linux kernel (version
5.1) and by adding a custom kernel module*. Our implementation
has ~1000 lines of code. In particular, we leverage the extensive, tested
functionality of the perf subsystem [202] of the Linux kernel to program
a core’s PMU, to set up PEBS, to register an interrupt handler, and to
configure the scope of profiling, e.g., to trace memory accesses only for
user-space or kernel-space code, or to trace memory accesses only for
particular processes or threads. Moreover, we can start and configure
memory tracing using the perf tool from user space.

To improve scalability, we modify the interrupt handler to place the
sampled memory addresses into per-core buffers instead of the global
ring buffer used by the perf subsystem. The kernel module acts as an
interface for managing the buffers from user space. In particular, the
kernel module enables us read the memory addresses from the buffers,
to delete the buffers, or to decrease or increase buffer sizes.

Modifying the perf subsystem is necessary in order to reduce the
runtime overhead of collecting memory addresses with a high sam-
ple frequency. That is because the perf subsystem collects extensive
metadata for a single sample. Processing this metadata wastes memory
and compute time. In contrast, our implementation is very efficient: It
extracts and stores only the addresses needed for memory tracing.

3.4 Use Cases

To demonstrate practical uses cases for database systems, we evaluate
our memory tracing implementation with state-of-the-art benchmarks
and database systems running queries single-threaded as well as multi-
threaded. The evaluation of our implementation and the demonstration
of practical uses cases are the second and third contribution of this
chapter. Note that we expect more use cases than the ones presented,
e.g., when focusing on other parts of the system such as intermediate
results or when using other hardware events.

Experimental Setup. We use the JCC-H benchmark [28], an exten-
sion of the TPC-H benchmark [197] with skewed data and query pred-
icates, with a scale factor of 10. We execute custom queries as well

“The source code is available at http://dbis.cs.tu-dortmund.de and at
https://github.com/stefannoll/mat.

http://dbis.cs.tu-dortmund.de
https://github.com/stefannoll/mat

38 CHAPTER 3. MEMORY TRACING

SELECT o_totalprice, o_orderdate, o_shippriority
FROM orders WHERE o_orderstatus = '0'
ORDER BY o_totalprice;

Listing 3.1: SQL query executed with DuckDB on the JCC-H data set.

as a complete workload with 200 random queries of the JCC-H bench-
mark (excluding Q21). We run SAP HANA, a commercial, main-memory
database management system (cf. Section 2.2). SAP HANA makes heavy
use of order-preserving dictionary compression (cf. Section 2.2.1). In
addition, we run experiments with DuckDB [167], an open-source, em-
bedded, analytical database system. We execute queries with DuckDB
by using its Python interface. Our test machine has two Intel Xeon
E5-2670 v3 processors and 256 GB of main memory. While DuckDB
executes queries with a single thread, SAP HANA executes queries with
multiple threads using up to 48 logical cores.

Processing of Memory Traces. Due to the sampling mechanism we
do not trace every memory load, especially if data is accessed only once
during profiling. To compensate for missed accesses due to sampling
and to improve visualization, we group addresses into buckets of a fixed
size. We denote the bucket size in each figure. This means that, for
each memory address, we report a data access of, e.g., 4 KiB instead of
8 bytes®. We assign an address to a bucket of size, e.g., 4 KiB by ignoring
the least significant log,(4096) — 1 = 11 bits of the address. We explain
the visualization of a memory trace using the example of Figure 3.4 in
Section 3.4.1.

3.4.1 Detecting Access Patterns

To illustrate how memory traces reveal access patterns or other imple-
mentation and algorithmic details of the execution engine, we analyze
the execution of a custom query with DuckDB. The SQL statement is
shown in Listing 3.1. Figure 3.4 shows the memory trace. The memory
trace visualizes how DuckDB accesses memory over time. The x-axis
shows the samples ordered by their sampling time. The y-axis rep-
resents the virtual memory address of the samples sorted by address

The actual data size depends on the load instruction associated with the sampled
memory address: e.g., 8 B for 64-bit or 4 B for 32-bit operations.

3.4. USE CASES 39

@,
I 1>©
__600MB - 17®
3 I]
M L .
I 400MB -]
L 200MB [~ .
L= I |
= L 1
< L i
0 — —
| |
to t
Time

Figure 3.4: The trace illustrates the access patterns of DuckDB’s execution engine. In partic-
ular, it reveals how the operators for filtering @, sorting @, materializing @, and assembling
the result @ access important data structures: the table O @, the filtered column @ ®, and
the position list B (©.

in ascending order. We illustrate the size of the accessed memory. In
particular, we visualize each sampled address as an access to a bucket
of size 4 KiB.

Figure 3.4 shows that scanning the table @ while applying the
filter predicate O reads memory sequentially. Afterwards, DuckDB
sorts @ the data. The trace reveals that the sort operator accesses
one data structure sequentially and the other randomly. Note that
DuckDB’s implementation uses the quicksort algorithm and that it
sorts a position list (© instead of sorting the data in-place. To compare
a position p, it accesses the filtered column ® indirectly by fetching
the value with column[p], which may be increasingly random as the
order of the position list changes. The trace illustrates both access
patterns: The quicksort algorithm splits the position list recursively
and traverses each sublist from the start and the end simultaneously;
for the comparison, it indirectly accesses the column. In the next phase,
DuckDB materializes @ the projected columns. It reads the sorted
position list sequentially and accesses the table randomly. Finally, the
Python interface of DuckDB transforms the result @ into Python data
structures.

Note that the memory trace allows us to break down the individual
phases/operators of the query execution. We can infer the different

40 CHAPTER 3. MEMORY TRACING

SELECT AVG(1l_extendedprice) FROM lineitem;

Listing 3.2: SQL query executed with SAP HANA on the JCC-H data

set.
|
C 10*
= I | 3
2 I ; I g 10
I 100MB + i 8 %
2 : 4 | ! <8 10
& 50MB - | l . #
=] N i IE 1
< i I 107 ¢
Z ; |
0 L | s .
| | [R R BT 1 . .
t t; 1 102 10! 0 4MB
0 1
Time #Accesses Addresses (8B)
(a) Column and dictionary. (b) Dictionary only.

Figure 3.5: The aggregation operator of SAP HANA accesses the encoded column B @
sequentially. Due to the data distribution, it accesses the dictionary @ ® randomly (a). The
trace reveals skew at the granularity of individual dictionary entries (¢) (b).

memory access patterns from the visualization alone. We do not require
the source code to collect the trace. Knowing the memory addresses
of data structures by tracking allocations or knowing the implemented
algorithms helps, however, to explain the trace: In order to visualize
different data structures with different colors, we tracked memory
allocations in DuckDB.

3.4.2 Access Counting at Byte level

To demonstrate how memory traces allow us to collect detailed access
statistics at byte level and to reveal skew, we analyze the execution of a
custom query with SAP HANA. The SQL query is shown in Listing 3.2.
We limit SAP HANA to execute the query with two threads. We show
only the results of the first thread (the results of the other thread are
very similar).

Figure 3.5 illustrates the memory trace of the encoded column and
the dictionary of 1_extendedprice. Figure 3.5a shows the memory

3.4. USE CASES 41

accesses over time (left) and the total number of accesses as a histogram
(right). Figure 3.5b visualizes the total number of accesses to only the
dictionary at byte level. The samples are sorted by address in ascending
order.

The aggregation operator sequentially reads the encoded column @.
Due to the dictionary encoding, it needs to decode each reference in the
column by looking up its value in the dictionary. The data distribution
causes these accesses to be random ®. In addition, we observe that
the dictionary is accessed more frequently (1_extendedprice contains
97.77 % duplicates). This demonstrates that memory traces show both
the access pattern and the access frequency in detail.

When we look only at the dictionary, the trace reveals that the
dictionary accesses are heavily skewed: 20 entries are accessed more
frequently than others (by several orders of magnitude). Note that this
property of the JCC-H benchmark becomes easily observable with the
memory trace: We are able to identify “hot” data at the granularity of
memory loads—not only at the granularity of pages [67]. By tracking
memory allocations in SAP HANA, we know the memory address
range of the dictionary. This allows us to identify, for example, that the
dictionary entry at position 997959 (with the value 55740.45) has the
most accesses.

3.4.3 Hot Working Set Size

To demonstrate how memory traces enable us to estimate a workload’s
“hot” working set size, we execute a workload with 200 random queries
of the JCC-H benchmark with SAP HANA. To evaluate a smaller data
set, we also run a modified version of the workload with only 85 out of
200 queries that do not reference the orders table. SAP HANA executes
the workloads on all 48 logical cores. Figure 3.6a visualizes the memory
trace as a histogram, where we sort the sampled addresses by how often
they occur in the trace.

We observe that the complete workload accesses table data (encoded
columns and dictionaries) with a size of 1.8 GB. In contrast, the total
size of the table data of all tables amounts to 3.8 GB in main memory.
This demonstrates that the memory trace allows us to quantify the
working set size, i.e., the size of the table data that is actually accessed
during the execution of the benchmark. Additionally, we can measure
how much data the workload accesses with a specific frequency, i.e.,
the “hot” data. We discover, for example, that the system accesses table
data with a size of 600 MB more frequently.

42 CHAPTER 3. MEMORY TRACING

I 1 1 T 1 1 1T 171 I T T T T T T T frrrrrrrrryrrrrrrrr T rrrorrT
-
10* L | . V]
-\ e 37 i
S 103 2
% 10 E_ _E —§ - N
St] 8 2t .
* 107 & E 2 |
i] 1L %
101 ||||||||.|||\|\|\|§e| T I N RN Y SN Y A N B B RO
256KiB 1GB 2GB 25MB 1GB 2GB
Addresses (4KiB) Page buffer
(a) Histogram sorted by number of accesses. (b) Slowdown for different buffer sizes.

Figure 3.6: Workload consisting of 200 queries of the JCC-H benchmark referencing all
tables M and a workload consisting of 85 queries that do not reference the orders table B. Their
working set size associated with a specific access frequency (a) matches the performance
characteristics of executing the workload with a specific page buffer size (b), highlighted

with o.

Deriving a Buffer Size. We can use this information to derive a
buffer size for SAP HANA when we execute the workload with page-
loadable columns [182], i.e., using a page buffer to hold only a subset
of the table data—at page granularity—in memory. Figure 3.6b shows
how the size of the page buffer impacts execution time: It illustrates
the relative slowdown compared to the execution time when all data
fits in memory. If we compare the results to the working set size of a
specific access frequency, shown in Figure 3.6a, we observe a strong
similarity (highlighted in the figures with o). The same holds true for
the workload without the orders table.

We argue that the traces could help to determine the optimal buffer
size for disk-based systems [145] or help to size DRAM when using
NVRAM as main memory and DRAM only as a cache—referred to by
Intel as “memory mode” [90].

3.4.4 Table Partitioning

To demonstrate how memory traces allow us to analyze table partition-
ing, we use again the JCC-H workload consisting of 200 queries. SAP
HANA executes the query workload on all 48 logical cores. Figure 3.7

3.4. USE CASES 43

10°
10°
10*

E®

: 'r @), ; v @
9‘5 ' @ X m.

#Accesses

LR B RRLLL L L IR R R

1 |.| AR T S T TR T T T AN T TR SO SO S S N |.| I N N I I N N B |

T - 1 p——

I

1

K

PINARER O

RRTTIT I RTTTT AR TTT EREER T IAERUTIT MAWRTTT

0 500MB 1000MB 1500MB

Addresses (32KiB, samples are sorted by address in ascending order)

Figure 3.7: JCC-H benchmark with 200 random queries. The memory trace details the access
pattern of the table data and reveals skew. We detect the 5 “populous orders”, e.g., for the
encoded columns 1_orderkey @ and 1_quantity @. We also detect filter skew that causes
2 of the populous orders to be accessed more frequently, e.g., for the encoded columns

1_partkey @, 1_shipdate ®, 1_shipmode ®, and 1_suppkey @.

shows the memory trace as a histogram, where the samples are sorted
by address in ascending order. The memory trace illustrates the access
pattern of the encoded columns and dictionaries.

The memory trace reveals data skew [28]. The skew becomes vis-
ible in the access pattern of the encoded column 1_orderkey @ and
1_quantity @, where 5 parts of the columns (corresponding to 5 spe-
cial orders®) are accessed more frequently. In addition, the trace also
reveals filter skew [28]. In the access pattern of the encoded columns
1_partkey ®), 1_shipdate ®, 1_shipmode ©, as well as 1_suppkey @, we
observe that only 2 parts of the column (2 of the 5 special orders) are
accessed more frequently. The reason is that query predicates include
the years 1993 and 1994 more often, resulting in more accesses to the
2 special orders of the two years. The trace also highlights the data
skew of the encoded column 1_extendedprice: 20 distinct values of the
dictionary @ are accessed more frequently (cf. Section 3.4.2).

Impact of Partitioning. We can use the trace to analyze the im-
pact of table partitioning. In particular, we compare no partitioning

9The JCC-H benchmark features data skew: 25 % of the rows of the lineitem table
correspond to only 5 rows of the orders table. Boncz et al. call these special orders
the 5 “populous orders” because each of the orders consists of a lot of line items. A
special order occurs only once per year in the data set.

#Accesses

10°

102

10!

44 CHAPTER 3. MEMORY TRACING
[T T I T I T T [1L T T]
B JRISE. A] 1t TR
i 1T ” Q? - | Q‘]
L Ok | L O F

0 50MB 0 50MB 0 50MB

Addresses (32KiB)

Figure 3.8: Impact of partitioning on 1_shipdate. Comparison of no partitioning (a), parti-
tioning per year (b) and partitioning per special order (c).

(previously shown in Figure 3.7) to the partitioning used by Microsoft
SQL Server 2017 for the TPC-H benchmark [42]. They recommend a
range partition on the columns o_orderdate and 1_shipdate. Thus, we
perform a range partition per year on the two columns which splits
the tables lineitem and orders in 7 partitions each. Furthermore, we
compare to a range partition on the column 1_orderkey, which splits
the lineitem table in 6 partitions: a partition per one of the 5 special
orders and one partition holding the remaining rows. Figures 3.8, 3.9,
and 3.10 visualize how the different partitioning schemes change the
access pattern of the encoded columns 1_shipdate ®, 1_orderkey @,
and o_orderdate ®,

We observe that the partitioning causes some parts of the columns to
be accessed rarely, i.e., they become “colder”. Instead of focusing only on
execution time, the memory trace enables us to evaluate the partitioning
schemes by quantifying the accessed data volume: To estimate the data
volume, we multiply the number of accesses per bucket with the bucket
size. The results show that the partitioning per year decreases the
accessed data volume for 1_shipdate, 1_orderkey, and o_orderdate by
72%, 5%, and 93 %. The partitioning per special order decreases the
accessed data volume by 19 %, 15 %, and 0 %, respectively.

While the partitioning per year allows for partition pruning when-
ever a filter predicate selects only some years, the partitioning per
special order increases the access locality of the lineitem table for spe-
cial orders. We observed similar effects for other columns (not shown).
In addition, the traces illustrate skew: For the column o_orderdate, the

3.5. OVERHEAD 45
:I T T III::I T T T I T T I::I T T T III:
C s 1r !]
1045— El3 ElIS3 : 3
§ - i 1F]
nrr oamen | -
< 10° g 3 gg g—— Cw ¥ il H3F E
#* S LT W T L vy AP 1k 3
:Ww&ww’{:: SR o L ::M .
N Chi ¥ 1 ©]
10 | T R SR R AT S SR | T TR TN R SR SR I T T SR NN S S
0 100MB 0 100MB 0 100MB

Addresses (32KiB)

Figure 3.9: Impact of partitioning on 1_orderkey. Comparison of no partitioning (a), parti-
tioning per year (b) and partitioning per special order (c).

memory traces of no partitioning and partitioning per special order
report more than 10° accesses to the rows corresponding to the 5 spe-
cial orders. In contrast, the traces report less than 10° accesses to the
remaining rows.

3.5 Overhead

The advantage of using Intel’s PEBS mechanism for memory tracing is
that the hardware writes sampled memory addresses automatically to a
memory-resident buffer; software needs to drain the buffer only when it
is full. The PEBS mechanism allows the user to configure the sampling
rate by setting the threshold that controls after how many events the
CPU generates a PEBS record (cf. Section 3.2). By configuring the
threshold, the user can manually adjust the trade-off between runtime
overhead and precision.

For our final contribution in this chapter, we analyze the runtime
overhead and the memory footprint of our implementation using the
PEBS mechanism with different thresholds. Table 3.1 shows how the
threshold impacts the execution time of the JCC-H workload of 200
queries running on SAP HANA on all 48 logical cores. In addition, the
table highlights how the threshold impacts the size of the complete
memory trace as well as the size of the filtered memory trace containing
only memory addresses of table data.

The results show that as we lower the threshold the runtime over-

46 CHAPTER 3. MEMORY TRACING

L1
L

TTTIm T 17T

#Accesses

UL DR SRR LU L R L
ERTTT R RTITT BT A RTTTT AR A RUTITT AR NI MRIT

—_
S
w

UNRLLL AL B L AL R L

ool vvvd vl vl 3l
RTTTT RIS RTTIT A RTTTY MR |

T T T T T T T Ty

= = (b)

0 20MB 0 20MB
Addresses (32KiB)

—_
S
[=]

o
Do
=
=
o

Figure 3.10: Impact of partitioning on o_orderdate. Comparison of no partitioning (a),
partitioning per year (b) and partitioning per special order (c).

head and the memory footprint increase proportionally. We observe
that, for a threshold of 200, our implementation increases runtime by a
factor of 2.3. In contrast, for a threshold of 1000, our implementation
increases runtime by a factor of 1.27, i.e., by 27 %.

We use a threshold of 200 in the experiments shown in Section 3.4.1
and Section 3.4.2 to illustrate how a high sampling rate (i.e., a low
threshold) allows us to observe, e.g., access patterns in great detail. We
use a threshold of 1000 in the experiments shown in Section 3.4.3 and
Section 3.4.4 to illustrate that even a lower sampling rate allows us to
collect detailed access statistics to determine the working set size or
to inspect and analyze table partitioning. To choose an appropriate
sampling rate, the user needs to decide how much runtime overhead is
acceptable and how precise the access statistics need to be. As a rule
of thumb, we propose to choose a higher sampling rate for analyzing
memory access patterns, i.e., how data structures are accessed over
time (cf. Section 3.4.1 and Section 3.4.2) and a lower sampling rate for
analyzing total access statistics (cf. Section 3.4.3 and Section 3.4.4).

In summary, the results demonstrate that our implementation, that
collects a memory trace via hardware-based sampling, is more than an
order of magnitude faster than approaches such as Valgrind [143] or
Intel’s Pin [124], that collect a full memory trace via binary instrumen-
tation. Thus, our implementation makes memory tracing practical for
complex systems such as database systems. In addition, we argue that
the low runtime overhead enables profiling with memory traces even
in production environments.

3.6. RELATED WORK 47

Threshold Slowdown Trace [GB] Trace* [GB]

200 2.30% 45.192 1.518
400 1.67X 22.999 0.855
600 1.45% 15.393 0.548
800 1.34% 11.585 0.375
1000 1.27%X 9.285 0.308
2000 1.13X 4.656 0.134
4000 1.05% 2.324 0.064

Table 3.1: Tracing overhead for different thresholds for the PEBS mech-
anism. The table shows the relative slowdown of the execution time,
the size of the complete trace, and the size of the trace containing
only addresses of table data (*), i.e., of the encoded columns and the
dictionaries.

Moreover, a user can also lower the runtime overhead further by
monitoring different hardware events. In our experiments, we use the
hardware performance counter mem_load_uops_retired.all_loads to
capture cache hits and cache misses. Collecting memory traces for an
event which captures only cache misses, would reduce the runtime
overhead significantly because cache misses usually occur less frequent
than cache hits.

3.6 Related Work

Tracing Methods

Related work from the systems community explores various approaches
for collecting memory traces. They investigate memory tracing via
hardware emulation [22], by passing all memory access through an
FPGA [118], or by using custom hardware to snoop the memory bus
of DRAM DIMMs [20]. In addition, related work uses binary instru-
mentation [32, 33, 56, 124, 143] to trace memory accesses. Binary
instrumentation modifies the program code of the application by in-
jection additional tracing code that captures the memory addresses of,
e.g., load and store instructions. These approaches allow tracing all
memory accesses at the cost of slowdowns by more than an order of
magnitude or require additional hardware.

48 CHAPTER 3. MEMORY TRACING

Others propose to use performance monitoring units of modern
processors from AMD [103], Intel [180], or IBM Power [191] to trace
memory accesses via hardware-based sampling. The integration effort
or the runtime overhead of employing such an approach in practice
remains unclear, however. Other related work [5, 151] studies PEBS pa-
rameters such as the size of the record buffer and the sampling rate—but
not for an end-to-end database workload. To the best of our knowledge,
we are the first to explore memory tracing via PEBS running (a complex
workload on) a commercial database system.

Use Cases

Related work from the database community explores approaches for
managing hot (frequently accessed) and cold (rarely accessed) data in
tiered storage architectures. While one side advocates the use replace-
ment policies for buffering and caching mechanism for managing hot
and cold data [51, 113], others utilize access statistics: For example,
Funke et al. [67] collect access statistics by regularly checking flags
of the memory management unit to identify rarely accessed virtual
memory pages. They use the access statistics to compact cold OLTP
data at the granularity of a virtual memory page. Levandoski et al. [57,
116] propose to log (a sample of) record accesses to estimate record
access frequencies with an offline analysis. They migrate cold OLTP
data at the granularity of rows to secondary storage. Boissier et al. [27]
get access statistics of a column from the query optimizer. They use a
hybrid table layout where they move individual columns of a table to
secondary storage.

We argue that memory tracing may be used to collect access statis-
tics at byte granularity and with a low runtime overhead. We demon-
strate that our approach is feasible by tracing memory accesses of a
commercial, main-memory database system, as shown example in Sec-
tion 3.4.2. However, when a system frequently loads and unloads data
from secondary storage, we may need to additionally protocol when-
ever the virtual memory address of table data changes, e.g., by tracking
memory allocations or the assignment of buffer pages.

While we use memory tracing to count accesses, to detect skew, to
study access patterns, and to analyze table partitioning, related work
explores many other use cases. Toziin et al. [195, 196] use memory
traces together with hardware simulation to map cache misses back to
database operators and to components of the storage manager for OLTP
workloads. They propose a transaction scheduling mechanism that uses

3.7. CONCLUSION 49

memory traces to maximize instruction cache locality. Others use mem-
ory traces to build cache miss ratio curves to quantify an application’s
cache usage [191] or to derive cache partitioning schemes [208], to
detect memory errors such as buffer overflows or use-after-frees [185],
to detect false sharing [178], to optimize data placement in NUMA
systems [48, 130], to pinpoint performance bottlenecks related to cache
usage [157], to remove redundant memory loads [189], to learn memory
access patterns [81, 85, 119], or to optimize software-based prefetch-
ers [16].

Applying these methods on top of our memory tracing implemen-
tation could provide new insights into database systems and possibly
reveal optimization opportunities that are hard to discover with current
profiling approaches.

3.7 Conclusion

The state-of-the-art solution for identifying the root cause of perfor-
mance problems related to memory accesses is to augment classical pro-
filing with a memory trace. However, current approaches for memory
tracing are not usable in practice due to their large runtime overhead.

In this chapter, we present and evaluate an implementation for
collecting memory traces via hardware-based sampling that leverages
Intel’s PEBS mechanism. In our experiments using the JCC-H bench-
mark, SAP HANA, and DuckDB, we illustrate for various use cases
that memory traces enable us to analyze the runtime characteristics
of a database system. We demonstrate that memory traces reveal ac-
cess patterns and access statistics for individual data structures and
database operators, detect skew at byte level, and allow us to estimate
the working set size of a workload as well as to analyze the impact of
table partitioning. Deriving the working set size of a workload allows
us, e.g., to size the page buffer of a database system.

In addition, we demonstrate that our implementation has a low
runtime overhead: For a threshold of 1000 it increases runtime overhead
by 27 %. This makes it possible to trace memory accesses of complex
systems, such as database systems, even in production environments.
In summary, our approach opens up new possibilities to inspect and
analyze complex software systems and to optimize resource usage,
especially memory and cache usage.

50

CHAPTER 3. MEMORY TRACING

CPU Cache Partitioning

Modern microprocessors include a sophisticated hierarchy of caches to
hide the latency of memory access and thereby speed up data processing.
However, multiple cores within a processor usually share the same
last-level cache (cf. Section 2.1). A shared cache can hurt performance,
especially in concurrent workloads whenever a query suffers from cache
pollution caused by another query running on the same processor.

In this chapter, we confirm that this particularly holds true for
the different operators of an in-memory DBMS: The throughput of
cache-sensitive operators can degrade by more than 50 % for concur-
rent analytical workloads. To remedy this issue, we devise a cache
allocation scheme from an empirical analysis of different operators and
integrate a cache partitioning mechanism into the execution engine of a
commercial DBMS. Finally, we demonstrate that our approach improves
the overall system performance by up to 38 %.

In particular, we make the following contributions: (i) we empiri-
cally analyze the cache requirements of key DBMS operators by varying
available cache sizes; (ii) we derive cache partitioning schemes to re-
serve cache capacity for cache-sensitive operators and queries; (iii) we
discuss how cache partitioning support can be retrofitted into an exist-
ing DBMS with low engineering costs using SAP HANA as an example;
and (iv) we evaluate the practical benefits of the proposed techniques
using both standard benchmarks and queries from a modern HTAP
business application (S/4 HANA).

51

52 CHAPTER 4. CPU CACHE PARTITIONING

Outline. We introduce the problem in Section 4.1. In Section 4.2, we
introduce key data structures and database operators of SAP HANA rel-
evant for this chapter. We analyze the cache usage of database operators
in Section 4.3. In Section 4.4, we discuss our approach of integrating
cache allocation control into an existing system and derive cache par-
titioning schemes from our analysis. Subsequently, we evaluate our
cache partitioning approach in Section 4.5. We cover related work in
Section 4.6 and we conclude the chapter in Section 4.7.

Parts of this chapter are published in [148].

4.1 Introduction

The key limitation in all of today’s microprocessor designs is the dissi-
pation of heat [31]. To prevent overheating, not all transistors in a chip
can be active at the same time, an effect also called dark silicon [59]. In
fact, hardware manufacturers dedicate large fractions of the available
chip space of mainstream processors to on-chip caches. Since caches
consume less power than processing logic, using transistors to build
large caches is one way to stay within reasonable power budgets [31].

Manufactures of mainstream processors optimize cache sizes for
the entirety of applications that may run on these processors. They
do not optimize cache sizes for a single application. Hence, it remains
unclear if the selected cache sizes are optimal for a specific scenario
such as a database system running a specific workload. In particular,
it is unclear how much CPU cache individual database operators of a
query execution plan need to meet performance guarantees.

Modern database systems allow applications and users to concur-
rently execute transactional and analytical workloads on the same data
set (cf. Section 2.2). Concurrent queries usually have different resource
requirements, e.g., depending on the workload, the number of records
accessed, as well as the data structures and algorithms being used. In
particular, some operations are highly sensitive to the available amount
of CPU cache (e.g., random accesses to a small hash table), contrary to
cache-insensitive operations such as a sequential memory scan.

Consider the example of the mixed workload illustrated in Figure 4.1.
Using SAP HANA, We execute an OLTP query either isolated, concur-
rently to an OLAP query, or concurrently to an OLAP query with cache
partitioning applied. Our measurements show that the throughput of
the OLTP query degrades significantly when executed concurrently to

4.1. INTRODUCTION 53

,,,,,,,,,,,,, '+13 %

Throughput
of OLTP [a.u.]

In isolation With OLAP With OLAP &
cache partitioning

Figure 4.1: Throughput of an OLTP query running either isolated,
concurrently to an OLAP query, or concurrently to an OLAP query
with cache partitioning applied. Restricting the LLC for the OLAP
query by partitioning the cache avoids cache pollution and improves
performance of the OLTP query.

the OLAP query. Performance degrades because the queries compete for
shared resources such as the processor’s last-level cache (cf. Section 2.1)
causing cache pollution.

Figure 4.2a visualizes cache pollution. Cache pollution occurs when-
ever an operation evicts cache lines from a shared cache that are fre-
quently accessed by another operation. In the example shown in Fig-
ure 4.1, the OLAP query pollutes the cache by frequently loading data
from DRAM into the LLC, thus evicting data from the cache needed
by the OLTP query. As a result, the performance of the OLTP query
degrades significantly.

For system designers, the good news is that hardware manufacturers
allow fine-grained control of cache allocation by offering mechanisms
such as Intel’s Cache Allocation Technology (CAT) [89]. It allows avoid-
ing cache pollution by employing cache partitioning (cf. Figure 4.2b).
However, besides some isolated analysis of individual algorithms and
data structures, it is still unclear how easy it is to apply these mech-
anisms in the context of real-world systems, and whether the corre-
sponding integration effort pays off.

To fill this gap, we study the impact of the CPU cache size on various
query workloads and analyze the effect of careful cache partitioning
on the overall system performance, we propose to integrate cache
partitioning into a DBMS by restricting the LLC for scan-intensive
operators that cause cache pollution, and we show that our approach
can improve performance significantly without introducing regressions.

54 CHAPTER 4. CPU CACHE PARTITIONING

Processor

[CoreO}[Corel]

1 1

(TNEITESHITID | .ouc
I S D
! DRAM ! ! DRAM !
(a) Cache pollution. (b) Cache partitioning.

Figure 4.2: Database operations may cause cache pollution. By accessing
data from main memory, an operation (on core 0) may evict cache lines
from the shared LLC of the processor that are frequently accessed by
another operation (on core 1) (a). Cache partitioning can eliminate cache
pollution by controlling how cores access the shared LLC (b).

4.2 Query Execution in SAP HANA

As a poster child for our analysis of cache usage, we use the in-memory
database system SAP HANA [62] (cf. Section 2.2). To better interpret
the experiments described later in this chapter, we give a brief overview
of the most relevant implementation details of SAP HANA’s query exe-
cution engine. First, we present key data structures that are commonly
used in the execution engine. Then, we briefly describe some of the
engine’s operations and algorithms that utilize these data structures.

4.2.1 Data Structures

The execution engine of SAP HANA uses tailor-made, cache-optimized
data structures. For the scope of our work in this chapter, three data
structures are most relevant: (i) dictionaries, which help to compress
columnar data in SAP HANA, but also speed up value comparisons;
(ii) hash tables, which are commonly used in aggregation with grouping;
and (iii) bit vectors, which accelerate the processing of foreign key
joins. These data structures are used throughout SAP HANA’s query
processing engine (not just for the types of queries we study in this
work).

Dictionary. Dictionaries play a significant role in the compression-
optimized execution engine of SAP HANA. The ordered dictionary

4.2. QUERY EXECUTION IN SAP HANA 55

maps a column’s domain values to a dense set of consecutive numbers.
Instead of storing the actual value in the columns of a table, the stor-
age engine of SAP HANA stores the typically much smaller number
referencing an entry in the dictionary (cf. Section 2.2.1). If data needs
to be decompressed during query processing, e.g., for projection or
intermediate result construction, the dictionary is accessed frequently
to look up the actual value.

Hash Table. Hash tables are a prominent example in the context
of cache-sensitive data structures and operations. By nature, they
are typically accessed in a random-access fashion, which can be very
expensive when the hash table does not fit into the CPU caches. In
SAP HANA, individual algorithms such as grouped aggregation use
hash tables, e.g., to store temporary results for different groups. They
are used both locally per worker thread and globally to merge thread-
local results. Characteristic is their very frequent access during query
processing.

Bit Vector. Bit vectors accelerate, e.g., the evaluation of foreign key
joins in the OLAP-optimized join algorithms of the execution engine
of SAP HANA. The bit vectors map the primary key range to a highly
compact representation, which can be kept in CPU caches even for a
large key range. Using bit vectors is known to reduce memory loads and
CPU costs since the CPU can perform the same operation on multiple
elements of a bit vector at once [2, 162]. Mapping tables of this kind is
also known to be sensitive to caches [129].

4.2.2 Operations

SAP HANA’s query execution engine employs many different algo-
rithms and operators. We describe the three core operations that are
most relevant in this chapter: the column scan, aggregation with group-
ing, and the foreign key join.

Column Scan. The operator evaluates a range predicate. It reads a
column of a table sequentially and identifies all rows that satisfy the
predicate expression. The operator works on compressed data. It uses
SIMD instructions to process multiple encoded values at once, which
significantly improves performance [204, 205].

56 CHAPTER 4. CPU CACHE PARTITIONING

Note that the column scan operator reads data from DRAM only
once. It exploits data locality by processing each byte of a cache line.
Thus, it profits from the hardware prefetcher, i.e., the CPU can load
cache lines into the cache before they are requested. The column scan
does not depend on any of the data structures mentioned in the previous
section.

Aggregation With Grouping. The operator aggregates columns
while grouping the aggregated values by the contents of other columns.
The algorithm proceeds as follows: First, it distributes its input among
a set of worker threads. Then, each worker thread collects aggregates
locally for its partition. After all threads have finished aggregating, the
algorithm merges the local results to build the global result for the next
operator of the query plan.

The aggregation with grouping operator decompresses the input
data to compute the aggregate [198]. As a result, the operator performs
many random accesses to the dictionary. Furthermore, the algorithm
uses hash tables to store intermediate, pre-aggregated results for every
group and to store the merged results globally—similar to work from Ye
at al. [210]. Thus, accessing the hash tables results in additional random
memory accesses.

Foreign Key Join. The join operator is optimized for OLAP work-
loads and exploits the fact that a foreign key maps to exactly one
primary key. In a first step, the join algorithm creates a very compact
representation of the primary keys by mapping the keys to a bit vector.
If the primary keys range from 1 to N, the algorithm creates a bit vector
of length N and sets the i-th bit if the query’s predicate evaluates to
true for the row of primary key i. The resulting bit vector usually fits
in the CPU caches even for a large number of keys. During the next
step, the algorithm performs a look-up in the bit vector for each foreign
key to check if it matches a primary key. In addition, it aggregates the
matches.

4.3 Analysis of LLC Usage

To motivate why cache partitioning can improve the performance of
concurrent workloads, we first analyze the cache usage of individual
database algorithms. The empirical analysis is our first contribution
of this chapter. Our goal is to determine how much last-level cache a

4.3. ANALYSIS OF LLC USAGE 57

-- (1) Column Scan
SELECT COUNT(x) FROM A WHERE A.X > ?;

-- (2) Aggregation With Grouping
SELECT MAX(B.V), B.G FROM B GROUP BY B.G;

-- (3) Foreign Key Join
SELECT COUNT(x) FROM R, S WHERE R.P = S.F;

Listing 4.1: The three SQL queries executed in the experimental analysis.
Each query focuses on a specific database operator.

database operator needs to reach the best performance. We also study
the impact of data distribution on an operator’s cache usage. The results
of our analysis allow us to derive cache partitioning schemes for the
concurrent execution of these operators.

First, we describe the experimental setup. Subsequently, we present
the results of our evaluation. We analyze the cache usage of the col-
umn scan operator, aggregation with grouping, and the foreign key join
operator. Finally, we summarize and discuss the results of our analysis.

4.3.1 Experimental Setup

We detail the experimental setup of or analysis in the following. We
describe the SQL queries, the SQL schema of the tables and their data
distribution, the hardware platform, and the measurement method.

Queries

Since we want to see the effects of CPU caches on end-to-end per-
formance, we express our benchmark queries on the SQL level and
measure full query execution times. The three queries used in our
experiments are listed in Listing 4.1. We keep the queries deliberately
simple so that each query is dominated by the execution of a specific
database operator: (1) column scan, (2) aggregation with grouping, and
(3) foreign key join. The first query evaluates a range predicate on a
column using the column scan operator. We use the parameter “?” to
vary the selectivity of the predicate. The second query computes the
maximum value of a column grouped by another column. The third
query executes a foreign key join between two tables.

58 CHAPTER 4. CPU CACHE PARTITIONING

-- Schema for Column Scan
CREATE COLUMN TABLE A(X INT);

-- Schema for Aggregation With Grouping
CREATE COLUMN TABLE B(V INT, G INT);

-- Schema for Foreign Key Join
CREATE COLUMN TABLE R(P INT, PRIMARY KEY(P));
CREATE COLUMN TABLE S(F INT);

Listing 4.2: The different SQL table schemata used in the experimental
analysis.

Data Sets

Listing 4.2 illustrates the SQL schemata of the column tables used in the
experiments. We fill the table with generated data (no null values) and
vary the distribution of the data to study its impact on the operators’
cache usage.

Column Scan. The input data for the first query is a table consisting
of one column with 10° integers. We generate random numbers between
1 and 10° with a uniform distribution. While the integers initially have
a size of 32 bits, SAP HANA applies compression to store each integer
using [log,(10°)] = 20 bits. To vary the selectivity of the predicate, we
set the parameter “?” to a new random integer between 1 and 10° for
every execution of the query.

Aggregation With Grouping. The input data of the second query is
a table consisting of two columns with 107 integers. The first column V
is used for aggregating while the second column G is used for grouping.
We vary the number of distinct values by randomly picking integers
from 1 to N (uniform distribution). For column V we vary N between
10° and 108, which changes the size of the dictionary, and for column G
we vary N between 10% and 10°, which changes the number of groups
and thus impacts the size of the hash tables used by the algorithm.

Foreign Key Join. The input data of the third query consists of two
tables with one column each. Column P of the first table contains
distinct integers that form a primary key ranging from 1 to N. We vary

4.3. ANALYSIS OF LLC USAGE 59

N between 10° and 10°, which impacts the number of matches and
the size of the bit vector used by the join algorithm. Column F of the
second table contains 10° integers referencing the primary key of the
first table. We generate the foreign keys by randomly picking numbers
from column P.

Hardware Platform

We perform the experiments with a prototype of SAP HANA running
on a single socket system with 128 GiB of main memory. We use SUSE
Linux Enterprise Server 12.1 as the operating system, but update the
Linux kernel to version 4.10. The system features an Intel Xeon E5-2699
v4 processor with 22 cores. With simultaneous multithreading enabled,
the processor can execute 44 threads in parallel.

Using the Intel Memory Latency Checker [200], we determine that
DRAM has a memory read bandwidth of 64 GB/s and an access latency
of 80 ns. The shared LLC has a size of 55 MiB. It stores both data and
instructions and it is inclusive: This means the LLC contains all the
information stored in the other caches of the cache hierarchy.

Measurement Method

To analyze the cache usage of SAP HANA and to determine the impact
of a smaller cache on an operator’s performance, we limit the size of
the available LLC [89]. Thus, the entire instance of SAP HANA can
only allocate data into a limited size of the LLC. We state the available
size of the cache in mebibyte (MiB). 1 MiB equals 2% bytes.

We execute SQL queries with SAP HANA and measure end-to-end
response time, i.e., the total execution time including parsing, opti-
mizing, query execution and result transfer. Note that we set the con-
currency limit of an SQL statement to the number of physical cores
of the system. Consequently, a query is potentially executed on all
available cores of the processor. We normalize a query’s throughput
to its maximum throughput when using the entire cache. In addition,
we measure the LLC hit ratio and the LLC misses per instruction using
Intel’s Processor Counter Monitor [203].

4.3.2 Column Scan

Figure 4.3 shows the impact of the cache size on the throughput of
the column scan operator. We observe that the throughput remains

60 CHAPTER 4. CPU CACHE PARTITIONING

1.0 o—eoo0 060000000 0006¢ 00

Throughput
o
()}

50 40 30 20 10
LLC size [MiB]

Figure 4.3: Normalized throughput of the column scan at varying LLC
sizes. The operator is hardly sensitive to the size of the cache.

unaffected by the cache size. In addition, we measure that the LLC hit
ratio is below 0.08, while the LLC misses per instruction amount to
1.9 - 1072, independent of the cache size. Thus, we determine that the
scan is not sensitive to the cache size.

The results do not come as a surprise because the column scan reads
data from DRAM only once without reusing it. Moreover, the sequen-
tial memory access pattern of the scan operator features strong data
locality. Therefore, it profits from the hardware prefetcher of the CPU.
Furthermore, the column scan operator takes advantage of the fact that
it can process compressed data. It does not need to perform lookups
into a column’s dictionary. This is possible because SAP HANA'’s dic-
tionary encoding is order preserving. It is sufficient to map the query
parameter “?” to its dictionary code, then execute the query entirely on
compressed data [204, 205]. That means that during the execution of
the column scan, the CPU does not need to hold the dictionary in the
cache.

4.3.3 Aggregation With Grouping

The evaluation of the aggregation with grouping operator is split into
three different experiments. We vary the number of distinct values
in the column V to change the size of the dictionary to 4 MiB, 40 MiB
and 400 MiB. Then, in each experiment we alter the number of groups
(column G) in addition to changing the size of the LLC.

4.3. ANALYSIS OF LLC USAGE 61

1.0 o #Groups

—e— 102
=103

o
(8]

——104
10°
10°

Throughput

50 40 30 20 10
LLC size [MiB]

Figure 4.4: Normalized throughput of aggregation with grouping at
varying LLC sizes and varying number of groups. We set the dictionary
size of the column that is aggregated to 4 MiB: The operator is slightly
sensitive to the size of the cache for smaller groups and highly sensitive
for larger groups.

Dictionary Size of 4 MiB

Figure 4.4 visualizes the results of aggregation with grouping using a data
set with 10° distinct values in the column V. This results in a dictionary
size of approximately 4 MiB. Thus, the dictionary fits completely in the
LLC (55 MiB) but exceeds the size of a single L2 cache (256 KiB).

The results show that for a group size of 102, 10° and 10* throughput
degrades as soon as query execution is forced to use less than 20 MiB
of the cache. We notice that throughput degrades by more than 46 %
if we limit the size of the cache to approximately 5 MiB. In addition,
we observe the strongest throughput degradation with 10° groups: The
curve breaks at a cache size of less than 40 MiB; throughput degrades by
67 %. If we increase the number of groups to 10°, throughput degrades
less strongly. If we limit the cache size to 25 MiB, throughput decreases
by 28 %. If we reduce the cache size even further, throughput degrades
by 46 %.

We explain the different performance characteristics by the size of
the hash table, which is decided by the number of groups. In case of
10° different groups, the hash table occupies all the LLC. Thus, if we
change the size of the available cache, we observe the most significant
impact on performance. If the number of groups is smaller, the hash
table is so small that even a small portion of the cache is enough to
store it entirely. If the number of groups is bigger, the size of the hash
table exceeds the size of the LLC. As a result, the hash table does not

62 CHAPTER 4. CPU CACHE PARTITIONING

1.0, o #Groups
= —e— 102
Q,
< =103
= 10°
10°
0

50 40 30 20 10
LLC size [MiB]

Figure 4.5: Normalized throughput of aggregation with grouping at
varying LLC sizes and varying number of groups. We set the dictionary
size of the column that is aggregated to 40 MiB: The operator is highly
sensitive to the size of the cache for all group sizes.

completely fit in the cache and the algorithm suffers from cache misses
even if the entire cache is used. Reducing the cache size results in an
increasing number of cache misses and further degrades performance.

Similarly, we measure that the LLC hit ratio and the LLC misses
per instruction decline significantly between group sizes 10° to 10° and
group size 10° when the size of the hash table exceeds the size of the
LLC. The LLC hit ratio drops from more than 0.9 to less than 0.6, while
the LLC misses per instruction increase by an order of magnitude.

Dictionary Size of 40 MiB

Figure 4.5 illustrates the results of aggregation with grouping using
a data set with 107 distinct values in the column V. This results in
a dictionary size of approximately 40 MiB. Thus, the dictionary can
occupy a large portion of the LLC (55 MiB).

We observe that for group sizes 102 to 10° throughput drops sig-
nificantly by up to 62 % as we lower the size of the available LLC. In
contrast, we observe that for the largest group size the impact on per-
formance is less significant. The results show that throughput degrades
by up to 34 %. Moreover, if we compare the results of this experiment to
the previous experiment with a dictionary size of 4 MiB (cf. Figure 4.4),
we notice that throughput degrades steadily for all group sizes—even
for large cache sizes.

We explain these results by the increased size of the dictionary.
In contrast to the first experiment, the dictionary has a size of more

4.3. ANALYSIS OF LLC USAGE 63

1.0 + :W #Groups
= —e— 102
2 ’
= : =103
= 10°
10°
0

50 40 30 20 10
LLC size [MiB]

Figure 4.6: Normalized throughput of aggregation with grouping at
varying LLC sizes and varying number of groups. We set the dictionary
size of the column that is aggregated to 400 MiB: The operator is slightly
sensitive to the size of the cache for smaller groups and increasingly
sensitive for larger groups.

than half of the LLC. During the execution of the aggregation, the
algorithm performs lots of random memory accesses to the dictionary
to decompress the encoded values of the column before aggregating
them. Therefore, the execution time of the operator is dominated by
accesses to DRAM, as soon as the dictionary size exceeds the LLC size.
The results show that the dictionary cannot be held in the LLC either if
the number of groups is large (10°) or if we limit the size of available
cache to equal to or less than 45 MiB.

Dictionary Size of 400 MiB

Figure 4.6 displays the results of aggregation with grouping using a data
set with 10® distinct values in the column V. This results in a dictionary
size of 400 MiB. Thus, the size of the dictionary exceeds the size of the
LLC (55 MiB) by far.

The results reveal that the cache size impacts throughput less com-
pared to the second experiment (cf. Figure 4.5). We observe that, as
we limit the size of the cache, throughput degrades by more than 31 %.
For group sizes 10% to 10%, the curve breaks at a cache size of less than
30 MiB, while for a group size of 10° the curve breaks earlier at a cache
size of less than 50 MiB. If the algorithm aggregates over 10> groups,
throughput degrades by up to 54 %.

The results are similar to the results of the first experiment (cf.
Figure 4.4) if we compare where the curves break. The reason for

64 CHAPTER 4. CPU CACHE PARTITIONING

107 #Primary
=] Keys
a Yy
Z —eo—10°
§ 0.5 —m 107
ﬁ ——108

10°
0

50 40 30 20 10
LLC size [MiB]

Figure 4.7: Normalized throughput of the foreign key join at varying
LLC sizes. We vary the number of primary keys (P). The operator is
sensitive to the size of the cache only for 10 primary keys when the
size of the bit vector is comparable to the size of the LLC.

this runtime behavior is again the increasing size of the hash table.
This time, however, the dictionary exceeds by far the size of the LLC.
Consequently, the algorithm suffers from lots of cache misses. We notice
that compared to the first experiment, the cache hit ratio drops by at
least 10 % to 20 %. Consequently, the overall performance degradation is
less in comparison to the first experiment. However, the size of the hash
tables still impacts the cache sensitivity of the algorithm significantly.

4.3.4 Foreign Key Join

Figure 4.7 illustrates the throughput of the foreign key join with varying
cache sizes. The OLAP-optimized join operator uses a bit vector to
represent the primary keys (cf. Section 4.2). The results show that
throughput worsens by only 5-14 % for 10%, 107 and 10° primary keys.
For 10® primary keys, however, throughput degrades by up to 33 %. We
observe that performance deteriorates if the size of the LLC is less than
35 MiB.

We attribute the cache sensitivity of the algorithm to the size of the
bit vector used to identify the matching primary keys. To represent 10
distinct keys ranging from 1 to 102, the algorithm uses a bit vector with
a size of 10% bit = 11.92 MiB. Thus, the bit vector easily fits in the LLC.
In all other cases the bit vector either exceeds the LLC or fits even in
the L2 cache of a processor core.

4.3. ANALYSIS OF LLC USAGE 65

4.3.5 Discussion

Summary. Our measurements show that the column scan operator
is hardly sensitive to the size of the cache. A column scan does not
benefit from a large portion of the LLC and runs well with a small cache
configuration (e.g., 10 %). This observation does not come as a surprise
because, by nature, scans read data exactly once from DRAM without
reusing the data.

An aggregation, by contrast, can be highly sensitive to the size of
the cache. The aggregation with grouping operator that we consider is
based on hashing and is most cache-sensitive whenever the size of the
hash tables is comparable to the configured size of the LLC. If the hash
table is either very small or very large, cache sensitivity becomes less
significant.

The cache sensitivity of the foreign key join depends on the cardinal-
ity of the primary keys: If the size of the bit vector is comparable to the
size of the LLC size, the operator becomes cache-sensitive. Otherwise,
the operator does not profit from a large LLC.

Interpretation. We interpret our results in different ways. Aware-
ness of the characteristics of an operator’s cache usage may open up
new opportunities to improve the scheduling mechanisms in database
engines. Our observations are consistent with the findings of Lee et
al. [111] who contrasted cache demand and cache usage within Post-
greSQL. They propose a scheduler that could make its decisions based
on each operator’s cache usage pattern. It could, for instance, pay off
to co-schedule operators that have the same (or different) cache usage
behavior such that interactions between operators could be minimized.
Such scheduling mechanisms will depend on appropriate means to
describe the cache usage pattern of a database operator. Therefore, the
analysis of cache miss rates might be reinvestigated, ideally also com-
bined with analytical models matching the different cache miss rates of
individual operators [126].

Moreover, our insights align with observations made by Borkar
and Chien [31], who point out that the design of newer processors has
to change because too large caches might not be energy proportional.
Since caches consume less power than processing logic, integrating a
larger cache allows the processor to stay within its energy and power
envelope. Our experimental analysis shows that the current size of the
LLC might already be too large for some of the in-memory database
algorithms used in SAP HANA. Thus, in order to optimize hardware for

66 CHAPTER 4. CPU CACHE PARTITIONING

database workloads, it may pay off to invest available transistors, e.g.,
in more heterogeneity or specific accelerators for individual database
operations (instead of larger caches).

Cache Pollution. Ultimately, the DBMS should be aware of the cache
sensitivity of an operation. If the DBMS knows how much cache an
operation needs to reach good performance, it could not only influence
the scheduling of concurrent running operations, but also carefully
manage a shared cache to avoid cache pollution. Our results suggest
that scan-intensive operators, such as the column scan operator or
the foreign key join operator (for a small bit vector), may cause cache
pollution for cache-sensitive operators, such as the aggregation with
grouping operator, if they are executed concurrently. The awareness of
these different cache usage characteristics allows us to classify database
operators based on their cache usage and use cache partitioning to
manage the shared LLC of a processor more efficiently for concurrent
workloads.

We study cache pollution and the effect of careful cache partitioning
in the following. In fact, we validate whether the simple approach of
restricting scan-intensive operators to a minimum portion of the cache—
while allowing a cache-sensitive operator to use the entire cache—can
avoid cache pollution for concurrent workloads and improve perfor-
mance.

4.4 Cache Partitioning in SAP HANA

In this section, we present the cache partitioning feature of current
Intel processors, and we describe how we implement cache partitioning
in the execution engine of a prototype version of SAP HANA. By
integrating cache partitioning into a database system, we can avoid
cache pollution and thereby improve the performance of concurrent
query execution.

4.4.1 Cache Partitioning With CAT

Traditionally, the user has little control over the cache, as it is entirely
managed by hardware. Techniques such as page coloring [111] offer the
possibility of partitioning the cache by allocating memory in specific
memory pages, known to map to a specific portion of the cache [193].
However, the use of page coloring in commercial systems is limited.

4.4. CACHE PARTITIONING IN SAP HANA 67

Processor

Core 0 Core 1

| [vise []| s Cooer |

Figure 4.8: Simplified example of using Intel’s Cache Allocation Tech-
nology to partition the last-level cache (LLC). Setting a bitmask in a
core’s machine-specific register (MSR) controls the cache allocation of
the core. In the example, the first core can evict cache lines from the
entire LLC. The second core can evict cache lines from only 25 % of the
LLC. (Both cores can read cache lines from the entire LLC.)

Page coloring requires significant changes to the operating system and
to the application, resulting in poor usability and maintainability. In
addition, page coloring is less flexible because re-partitioning the cache
dynamically at runtime requires copying the allocated data [120, 213].

With the “Haswell” microarchitecture Intel' introduced the possi-
bility to partition the last-level cache of a processor, thereby giving the
user more control over the CPU cache. Intel refers to this hardware
feature as Cache Allocation Technology (CAT) [89]. It allows the user
or the operating system to dynamically control from which portion of
the last-level cache an individual (logical) core can evict a cache line
in order to replace it with a new one. Figure 4.8 illustrates the feature
using a simplified example.

The user partitions the cache by writing a bitmask of N bits to
a machine-specific register (MSR) of a core, where N depends on the
processor model. Setting the bit at the i-th position of the bitmask
means that the core can evict cache lines from the i-th portion of the
LLC, while unsetting the bit at the i-th position means that the core
never evicts cache lines from the i-th portion of the cache. By choosing
distinct bitmasks, the user allows cores to evict portions of the cache
exclusively. Bitmasks can be dynamically changed at runtime.

1Other manufacturers may implement similar functionality. AMD, for example,
proposes a mechanism for controlling and monitoring the L3 cache [10] as well.

68 CHAPTER 4. CPU CACHE PARTITIONING

For example, the Intel Xeon E5-2699 v4 processor used in our ex-
periments has a 20-way associative LLC with a size of 55MiB. The
bitmask for controlling the cache partitioning feature has a size of 20
bits. As a result, one portion of the cache equals 55 MiB / 20 = 2.75 MiB.
This means that setting, e.g., two bits in the bitmask, corresponds to a
portion with a size of 5.5 MiB. Note that the processor allows up to 16
different bitmasks to be active at the same time [91].

The Linux kernel supports CAT since version 4.10 [93]. The ex-
tension allows the user to specify each core’s bitmask used for cache
partitioning by reading and writing to the pseudo file system sysfs
instead of writing directly to an MSR of the processor. Furthermore,
instead of specifying a bitmask for a core, the user has the option to
specify a bitmask for a process id (PID) or a thread id (TID). This al-
lows mapping a portion of the cache to an individual process or thread.
During a context switch, the scheduler of the kernel is responsible for
updating the bitmask of the core on which the process or thread is
currently running.

4.4.2 Cache Partitioning Scheme

To avoid cache pollution and to improve the performance of concurrent
workloads with cache partitioning, we need to decide how much cache
we need to allocate to an operator or a query, respectively. To that
end, we can derive a cache partitioning scheme from the results of
Section 4.3. The proposed cache partitioning scheme is the second
contribution of this chapter.

Column Scan. Figure 4.3 shows that the performance of the column
scan does not depend on the size of the cache because it does not reuse
data and does not need to access the dictionary. However, the operation
evicts lots of cache lines by continuously loading data from DRAM.
Thus, we conclude that column scans will cause cache pollution for
co-running queries. To avoid cache pollution, we give the column scan
operator the smallest amount of cache (without reducing performance):
10 % of the LLC using the bitmask “0x3”.

Aggregation With Grouping. The results from Section 4.3.3 illus-
trate how aggregation with grouping can be highly sensitive to the size
of the available cache, because it frequently accesses the dictionary and
the hash table. Thus, we do not restrict the access to the LLC. We give

4.4. CACHE PARTITIONING IN SAP HANA 69

the aggregation with grouping operator the entire cache: 100 % of the
LLC using the bitmask “Oxfffff”.

Foreign Key Join. Figure 4.7 demonstrates that the foreign key join
is sensitive to the size of the cache depending on the cardinality of the
primary keys: It causes cache pollution if the size of the bit vector is
not comparable to the size of the cache; otherwise it becomes cache-
sensitive. Consequently, we restrict the foreign key join operator to
10 % of the LLC using the bitmask “0x3” in the first case and to 60 %
(throughput degrades below 35 MiB) using the bitmask “Oxfff” in the
other case. As a simple heuristic, we decide based on the size of the bit
vector whether the operator is cache-sensitive or not.

Bitmask “0x1”. Note that we also evaluated the use of the bitmask
“@x1” to restrict a scan-intensive operator. We observed, however, that
this configuration degrades performance severely (not shown in Fig-
ure 4.3 to 4.7)—even for the column scan. We explain this behavior
with the current implementation of CAT: Restricting access to a very
small number of ways for an N-way set associative cache may result in
significant contention.

4.4.3 Integration Into SAP HANA

The integration of a cache partitioning mechanism into a commercial
database system is our third contribution of this chapter. To integrate
cache partitioning into the execution engine of a prototype version of
SAP HANA, we argue to leverage the Linux kernel interface of CAT. Di-
rectly using the hardware interface would require to either pin threads
to cores with specific bitmasks or to track which thread is running on
which core and to manually update a core’s bitmask upon thread mi-
gration. This would limit flexibility especially for changing workloads.
A schematic overview of how we integrate cache partitioning into the
execution engine of a prototype version of SAP HANA is illustrated in
Figure 4.9.

The execution engine of SAP HANA uses a thread pool of worker
threads called job workers to execute jobs [165]. A job encapsulates a
single operator or—together in a group of jobs—a parallelized operator.
Thus, a job represents one operator at the maximum. We implement
cache partitioning for jobs to allow the engine fine-grained control over

70 CHAPTER 4. CPU CACHE PARTITIONING

[CcUD - bitmask |1 | ,
1 % Job wor'lfer 777777 . % i (3] i' Processor i
X . Job 11 T Core .
|| CUDprey | | sy | i Core X
| | TID == i | 44} | bitmask] N

Figure 4.9: Schematic overview of the interaction between the execution
engine of SAP HANA, the Linux kernel and the processor. The execution
engine maps jobs to cache partitions by associating the cache usage
identifier (CUID) of a job with a bitmask @. Then, it passes the thread
id (TID) of the job worker and the bitmask to the kernel @. The kernel
interacts with the processor to partition the cache ©.

the mechanism. This enables cache optimizations, e.g., per operator—
similar to existing NUMA optimizations [165].

In fact, we annotate a job with information of its cache usage by
associating it with a cache usage identifier (CUID). We currently distin-
guish between three categories: (i) jobs which are not cache-sensitive
and pollute the cache such as the column scan; (ii) jobs which are
cache-sensitive and profit from the entire cache such as aggregation
with grouping (for most cases); and (iii) jobs such as the foreign key
join which can be both cache-polluting and cache-sensitive depending
on query predicates or table data. By default, a job belongs to (ii) to
avoid performance regressions. The execution engine maps the CUID
to a bitmask, following the heuristics described in Section 4.4.2 (“0x3”
for (i); “oxfffff” for (ii); and “0x3” or “@xfff” for (iii). The execution
engine then passes the bitmasks to the Linux kernel.

Interacting with the Linux kernel to associate a thread with a new
CAT bitmask might incur an overhead. Therefore, our implementation
always compares old and new CUIDs and only interacts with the kernel
if the job worker’s current CUID differs from the previous CUID. In
practice, however, the overhead is negligible at least for OLAP scenarios.
We benchmarked our test system and measured an overhead of less
than 100 ps. If at all, only short-running OLTP queries might see a small
performance penalty due to the interaction with the kernel. However,

4.5. EVALUATION 71

SAP HANA handles such queries in a dedicated thread pool anyway.
That thread pool has always access to the entire cache.

4.5 Evaluation

The evaluation of the cache partitioning mechanism is the final contri-
bution of this chapter. To evaluate the integration of cache partitioning
into the system, we run experiments with workloads consisting of con-
current queries. We compare the performance with and without using
cache partitioning. First, we describe the experimental setup. Then, we
present the results of running the following workloads: We start by
executing the same SQL queries as in our analysis of cache usage (cf.
Section 4.3) using the same data sets. In particular, we run the column
scan together with aggregation with grouping, and we run aggregation
with grouping together with the foreign key join. Afterwards, we evalu-
ate the cache partitioning feature using the TPC-H [197] benchmark
and a mixed workload with a query extracted from a real-world SAP
S/4HANA application.

4.5.1 Experimental Setup

We use the same hardware platform that we introduce in our analysis
of cache usage (cf. Section 4.3). We implemented the cache partitioning
feature in the execution engine of a prototype version of SAP HANA
as described in Section 4.4.3.

TPC-H. We run each query of the TPC-H benchmark concurrently
with the column scan using a generated data set of scale factor 100.
Our goal is to study how a scan-intensive OLAP query (column scan),
which causes cache pollution, impacts the performance of an individual
TPC-H query and how cache partitioning can improve performance.

SAP S/4AHANA Workload. SAP S/4HANA is an enterprise resource
planning application commercialized by SAP. The Universal Journal
Entry Line Items table ACDOCA is one of the central data stores for pro-
cessing core financial aspects and is heavily used in both OLTP and
OLAP query processing. Reflecting complex business logic, ACDOCA is a
wide table with 336 attributes of type NVARCHAR (285) and DECIMAL (51).
The instance of ACDOCA used in our experiments has 151 million rows
and was extracted from a real customer system together with the most

72 CHAPTER 4. CPU CACHE PARTITIONING

frequent OLTP query: This query is executed more than 10 million
times a week.

Measurement Method. In each experiment, we execute all SQL
queries repeatedly for 90 seconds. This assures that each query is
possibly affected by another query for the same time. For each query,
we report the throughput of the query, when running concurrently
to another query. We normalize the throughput of a query running
concurrently to another query to the throughput of the query running
in isolation. If not stated otherwise, we restrict the query causing cache
pollution such as the column scan to 10 % of the LLC, while the other
query can access the entire cache. Note that we tune the system for
best throughput. This means that the memory-intensive workloads are
limited by the available memory bandwidth of our test machine.

4.5.2 Column Scan & Aggregation With Grouping

We evaluate the impact on the throughput of the column scan and
aggregation with grouping when we run both queries concurrently. We
run three experiments to evaluate the impact of different dictionary
sizes of the aggregated column. In each experiment, we vary the number
of groups. We allocate 10 % of the cache to the column scan and 100 %
to aggregation.

Dictionary Size of 4 MiB

Figure 4.10 visualizes the results for a dictionary size of 4 MiB. We
observe that the throughput degrades with increasing group sizes. If we
increase the group size from 10 to 10°, throughput of the aggregation
query drops from 80 % to 66 %. If we increase the group size from 10°
to 10%, the throughput of the scan query drops from 89 % to 69 %. As
the number of groups increases, aggregation with grouping uses larger
hash tables to store temporary results. This heavily impacts the cache
usage of the operator. Up to a group size of 10%, the hash table has the
size of only a fraction of the LLC. It mostly fits in the L2 cache. Thus,
the aggregation is not sensitive to the capacity of the LLC and cache
pollution is not a problem.

If we increase the number of groups to 10°, the size of the hash
table is comparable to the size of the LLC. The column scan evicts an
increasing number of cache lines used by the aggregation, thereby caus-
ing cache pollution. When aggregating over 10° groups, the situation

4.5. EVALUATION 73

1.0 . & Aggregation (default) [J Column Scan (default)
Aggregation (100% LLC) Column Scan (10% LLC)

0.9 1 - _ _ _
= g 7
= 1 7 _ /4
< 0.8 22 7 ‘?
e 07| I||# / %
5 0 %% 9 7
= % f %
0.6 |||¥ / %
‘ % / %
/ / /

0.5 A 1/ i ‘

10? 10° 10* 10°
Group size

Figure 4.10: Normalized throughput of the column scan and aggregation
with grouping when executed concurrently. We set the dictionary size of
the aggregated column to 4 MiB and use cache partitioning: Throughput
degrades with increasing group sizes. For 10° groups cache partitioning
significantly improves throughput.

changes: The size of the hash table exceeds the size of the LLC. The ag-
gregation query performs more DRAM accesses and uses more memory
bandwidth. As a result, both queries increasingly compete for mem-
ory bandwidth, which explains why the throughput of the scan query
degrades more strongly.

The results show that enabling the cache partitioning feature of the
execution engine significantly improves performance of aggregation
with grouping when the algorithm becomes sensitive to the capacity of
the LLC (for a group size of 10°). By giving the aggregation the entire
cache and the column scan only a small portion of the cache, we improve
throughput by 20 %. At the same time, the throughput of the column
scan improves by 3 %.

The performance improvement also correlates with hardware met-
rics, which we collected by sampling hardware performance coun-
ters for the entire system. The cache hit ratio increases from 0.78 to
0.82, while the LLC misses per instruction improve from 2.86 - 10 to
2.32 - 1073, Thus, partitioning the cache avoids cache pollution and
improves the overall cache efficiency of the workload.

Dictionary Size of 40 MiB

Figure 4.11 visualizes the results for a dictionary size of 40 MiB. The
results show that the throughput of the aggregation query drops below

74 CHAPTER 4. CPU CACHE PARTITIONING

1.0 . & Aggregation (default) [J Column Scan (default)
Aggregation (100% LLC) Column Scan (10% LLC)
0.9 1
H] _ _ _ i
= 0.8+
oh
=
S 071
=
0.6 1 ({
0.5 : : : :
102 10° 10* 10°
Group size

Figure 4.11: Normalized throughput of the column scan and aggrega-
tion with grouping when executed concurrently. We set the dictionary
size of the aggregated column to 40 MiB and use cache partitioning:
Throughput of aggregation with grouping degrades significantly. Cache
partitioning improves throughput by up to 21 %.

60 % for up to 10° groups. At the same time, the throughput of the
column scan query drops to 84 %. If we increase the number of groups
from 10° to 10°, the throughput of the aggregation degrades less, but
the throughput of the column scan degrades more.

By utilizing cache partitioning, we improve the throughput of the
aggregation query by up to 21 %. At the same time, we improve the
throughput of the column scan by up to 6 %. Reserving 90 % of the cache
exclusively for the aggregation query allows the entire dictionary to
be kept in the cache, as long as the hash table does not exceed the
size of the LLC (i.e., up to 10° groups). Otherwise, the dictionary and
the hash table compete for cache capacity. In case of 10° groups the
improvements from cache partitioning are significantly smaller, because
the capacity of the cache is not enough to hold the dictionary and the
large hash table.

We determine that the overall cache hit ratio increases and that
the LLC misses per instruction decrease because the aggregation has to
perform fewer accesses to main memory. In addition, the column scan
gets more memory bandwidth. By partitioning the cache, the database
system uses hardware resources more efficiently and executes both
queries faster.

4.5. EVALUATION 75

1.0 . & Aggregation (default) [J Column Scan (default)
Aggregation (100% LLC) Column Scan (10% LLC)
0.9 1
H
<= 0.8+t
Y
5
2 07|
<
=
0.6
0.5

Group size

Figure 4.12: Normalized throughput of the column scan and aggrega-
tion with grouping when executed concurrently. We set the dictionary
size of the aggregated column to 400 MiB and use cache partitioning:
Throughput of both queries degrades significantly. Cache partitioning
improves throughput by up to 9 %.

Dictionary Size of 400 MiB

Figure 4.12 visualizes the results for a dictionary size of 400 MiB. We
observe that, when the dictionary is several times larger than the cache,
the throughput of the aggregation query decreases to 60-66 %. At the
same time, the throughput of the column scan query decreases to 68—
81 %, which is more significant than in the previous two experiments.

This illustrates that both queries compete less for the LLC but more
for memory bandwidth. The dictionary and the hash table cannot be
kept in the cache at the same time. Thus, the aggregation algorithm
performs more memory accesses to DRAM—independent of the group
size. It consumes more memory bandwidth and impacts the column scan
query more strongly. At the same time, the aggregation is less sensitive
to the cache size, which explains why cache partitioning improves the
throughput of the aggregation query only by 3-9 %.

4.5.3 Aggregation With Grouping & FK Join

We evaluate the impact on the throughput of aggregation with grouping
and the foreign key join when we run both queries concurrently. We
run two experiments with a different number of primary keys in the
data set for the foreign key join: This changes the size of the bit vector
used by the algorithm. In each experiment, we vary the number of

76 CHAPTER 4. CPU CACHE PARTITIONING

10 . B Aggregation (default) [J FK Join (default)
09 | Aggregation (100% LLC) FK Join (10% LLC)

Throughput

Group size

Figure 4.13: Normalized throughput of aggregation with grouping and
the foreign key join when executed concurrently. We set the dictionary
size of the aggregated column to 40 MiB, set the number of primary keys
to 10°, and use cache partitioning: Partitioning improves throughput
by up to 38 %.

groups for aggregation with grouping. We evaluate two different cache
partitioning schemes: Fist, we allocate 10 % of the cache to the foreign
key join. Second, we allocate 60 % of the cache to the foreign key join.
We always allocate 100 % of the LLC to aggregation with grouping.

10® Primary Keys

Figure 4.13 visualizes the results for 10° primary keys. We observe
that for group sizes below 10° the throughput of the aggregation query
drops to 41 %, while the throughput of the join query drops to 63 %. If
we increase the group size to 10°, the throughput of the aggregation
decreases to 51 %. The results match previous results presented in
Section 4.5.2, but in this workload the performance of both queries
suffers more.

The results show that enabling cache partitioning improves the
throughput of the aggregation query by up to 38 %. At the same time,
the throughput of the join query improves by up to 7 %. Note that the
cache hit ratio increases from 0.55 to 0.67, while the LLC misses per
instruction improve from 2.26 - 1073 to 1.93 - 1073 for, e.g., a group size
of 103, Thus, we conclude that partitioning the cache improves the
overall cache efficiency of the workload. If the group size is 10°, both
operators are not limited by LLC contention. Consequently, partitioning
the cache does not improve performance.

4.5. EVALUATION 77

10, & Aggregation (default) [J FK Join (default)
09 | Aggregation (100% LLC) FK Join (10% LLC)
é 08 | Aggregation (100% LLC) FK Join (60% LLC)
Abio 0.7 1
o 0.6 77 7P N
= 77 i N
505 17 ?i \
| I 7 \
Sl sa \
03 L& 74 \
10° 10° 10 10° 10°
Group size

Figure 4.14: Normalized throughput of aggregation with grouping and
the foreign key join when executed concurrently. We set the dictionary
size of the aggregated column to 40 MiB, set the number of primary
keys to 10%, and use cache partitioning: Restricting the foreign key join
to 10 % of the LLC does not improve performance, while restricting the
operator to 60 % improves throughput by up to 8 %.

10® Primary Keys

Figure 4.14 visualizes the results for 10% primary keys. We observe
that the throughput of the aggregation query drops to 49 %, while the
throughput of the join query drops to 70 %. By partitioning the cache
with the configuration that gives aggregation with grouping the entire
cache and the foreign key join only 10 % of the cache, we improve the
throughput of aggregation by up to 19 %. However, the throughput of
the join query worsens by 15-31 %. In total, we lose more than we gain
from applying this cache partitioning scheme.

This observation is consistent with the results from Section 4.3.4:
The throughput of the join query decreases if the cache size falls below
35 MiB. Thus, we need to partition the cache differently. We allow the
aggregation query to evict cache lines from the entire cache, while we
restrict the join query to 60 % of the cache. This means that we allocate
40 % exclusively to the aggregation query, while 60 % of the cache is
shared between both queries. We prioritize the aggregation operator
over the join operator because it needs more cache and suffers more
from cache conflicts.

The results show that this configuration improves the throughput
of the aggregation query by up to 9 %. At the same time, the throughput
of the join query varies around 2 %. When we consider the combined

78 CHAPTER 4. CPU CACHE PARTITIONING

E TPC-H (default) [J Column Scan (default)
10y TPC-H (100% LLC) Column Scan (10% LLC)
=) N4
= | 1| 7 n B - M _ _
5 09 7 @ N8 oo 7
7/ g
e 4 g 7/
o i W 7 77
: 7 1le 12 17 7
= 72 Y Y 7 %
< 0.8 1 o 7 i v %
: niaial ;a
W i /4 79
%% %% % % %
0.7 : “ 2’ " “ : : : : ” :
1 2 3 4 5 6 7 8 9 10 11
TPC-H Query #
B TPC-H (default) [J Column Scan (default)
107 TPC-H (100% LLC) Column Scan (10% LLC)
Tl Nwn -
/ 7
- o | g/ ¢
2,09 | . 7’
= # v / /
/ / W e
b 7 5 / % 7%
=) / / / W W
° / 7 N
= 08| g a W
= / / /i
¢ /
9 / / 7 /
: / AR
0.7 w 7 w g 1

18 20 21 22

TPC-H Query #

Figure 4.15: Normalized throughput of the column scan and each TPC-H query when executed
concurrently. We disable or enable cache partitioning: Cache pollution impacts especially
TPC-H Queries 1, 7, 8 and 9, while TPC-H Queries 10 to 22 suffer less from cache pollution.
Partitioning the cache improves throughput by up to 5 %.

throughput, the second cache configuration improves the overall per-
formance of the workload.

4.5.4 Column Scan & TPC-H Queries

We evaluate the impact on the throughput of the column scan and on
the throughput of each query of the TPC-H benchmark when we run
both queries concurrently. We allocate 10 % of the cache to the column
scan and 100 % of the LLC to a query of the TPC-H benchmark. Figure
4.15 visualizes the results.

We observe that the impact of the column scan on a co-running
query varies significantly with the TPC-H queries. The throughput of

4.5. EVALUATION 79

the TPC-H queries degrades to 74-93 %, while the throughput of the
column scan query degrades to 65-96 %. If we enable cache partitioning,
we improve the throughput of the TPC-H queries by up to 5%. The
results show that for TPC-H Queries 1, 7, 8 and 9 the cache partitioning
approach improves the overall performance of the workload. For other
queries the improvements are less noticeable.

This shows that only some queries depend on the LLC. That is
because the columns of the TPC-H data, which are aggregated, feature
comparatively small dictionaries. Furthermore, grouping usually uses
only a relatively small number of groups. Thus, most of the frequently
accessed data structures are small enough to fit in L2 caches or in a
small portion of the LLC.

One exception is the column 1_extendedprice with a dictionary
size of approximately 29 MiB, which is frequently accessed during the
execution of, e.g., TPC-H Query 1. The query aggregates the column
causing lots of accesses to the dictionary, which explains why reducing
cache pollution through cache partitioning improves its performance.

Interestingly, the avoidance of cache pollution sometimes reflects
back on the column scan operator. Faced with fewer cache misses, the co-
running TPC-H query takes away less bandwidth from the bandwidth-
sensitive scan, resulting in a throughput increase of up to 5 % for the
column scan query (e.g., with TPC-H Query 18 co-running).

4.5.5 Column Scan & OLTP Query

We evaluate the impact on the throughput of the column scan and on
the throughput of an OLTP query from the SAP S/4HANA workload
when we run both queries concurrently. We use the original query,
which contains a projection to 6 columns with small dictionaries. To
analyze the impact of the dictionary sizes, we use a modified version of
the OLTP query, which contains a projection to 13 columns with big
dictionaries. We allocate 10 % of the cache to the column scan and 100 %
of the LLC to the OLTP query. Figure 4.16 visualizes the results.

The results show that the throughput of the OLTP query drops
to 66 % (projection of 13 columns) and 68 % (projection of 6 columns).
The throughput of the column scan decreases to only 95 % and 96 %,
respectively. Restricting the column scan to 10 % of the cache improves
the throughput of the OLTP query by 13 % and 9 %, respectively.

During the processing of the OLTP query, the engine accesses the in-
verted index of five columns that are part of a primary key. Afterwards,
it projects the selected rows to 13 (or 6) columns causing accesses to

80 CHAPTER 4. CPU CACHE PARTITIONING

B OLTP Query (default) [J Column Scan (default)
10 . OLTP Query (100% LLC) 10+ Column Scan (10% LLC)
é 0.9 1 é 0.9 1
= =
2 0.8 2 0.8
2 2
RS <
= 07 = 07+
0.6 0.6 ’7

(a) Projection of 13 columns. (b) Projection of 6 columns.

Figure 4.16: Normalized throughput of the column scan and an OLTP query from the
S/4AHANA workload when executed concurrently. We vary the number of projected columns
for the OLTP query and disable or enable cache partitioning: Partitioning improves the
throughput of the OLTP query by 13 % and 9 %, respectively.

the dictionaries of the columns. We argue that, for a larger number of
projected columns, cache partitioning improves the performance more
significantly because more dictionaries need to be kept in the cache to
avoid cache misses.

An additional experiment (not shown) further demonstrates that
the size of the working set, i.e., the size of the dictionaries and indices,
affects the cache-sensitivity of the OLTP query: We varied the number
of projected columns from 2 to 13 (featuring the biggest dictionaries)
and observed that the throughput degrades with an increasing number
of projected columns. Restricting the column scan to 10 % of the cache
improves the throughput of the OLTP query by 8 % to 13 %.

4.5.6 Discussion

Our evaluation confirms that aggregations are sensitive to cache pol-
lution either caused by column scans or joins. Aggregations are most
sensitive to cache pollution whenever the size of their performance-
critical data structures is comparable to the size of the LLC. The column
scan operator always pollutes the cache because it continuously evicts
cache lines and does not reuse data. The join operator, on the other
hand, only causes cache pollution whenever its frequently accessed
data structures either fit in the L2 cache or exceed the LLC. Otherwise,
the join operator is cache-sensitive.

4.5. EVALUATION 81

In the case the column scan or the join operator cause cache pollution,
we can eliminate cache pollution and significantly improve performance
by restricting the column scan or join to a small portion (10 %) of the
LLC. In addition, the column scan operator profits from the fact that
aggregation consumes less memory bandwidth: The throughput of the
column scan increases, too.

If the size of the data structures used by a join is comparable to
the size of the LLC, the aggregation with grouping operator and the
join operator compete for cache capacity. Thus, we restrict the join to
60 % of the cache, but observe that performance improves only slightly.
Generally, the search for the “best” partitioning in any given situation
will depend on accurate result size estimates.

Furthermore, we performed experiments using the TPC-H bench-
mark to evaluate whether limiting the LLC for scans improves the
performance of OLAP workloads. Our measurements show that the
performance of TPC-H Queries 1, 7, 8 and 9 improves from partitioning
the cache because these queries frequently access a column with a large
dictionary. The performance of the other queries, however, does not
improve noticeably. This demonstrates that not all queries are sensitive
to cache pollution: The size of the working set, affecting, e.g., dictio-
nary and hash table sizes, determines if the performance of an operator
depends on the size of the available LLC.

Finally, we ran experiments with the column scan (OLAP) and an
OLTP query from a real-world application. The results demonstrate that
the performance of the OLTP query degrades significantly in the base
configuration. This is because OLTP queries tend to use dictionaries
aggressively, which the OLAP query evicts from the cache. By using
cache partitioning to restrict the OLAP query to a small portion (10 %)
of the cache, we avoid the eviction of dictionaries and improve the
performance of the OLTP query.

The results illustrate that our simple approach for avoiding cache
pollution is effective in improving overall system throughput. Thus,
we propose to restrict scan-intensive operators which do not profit
from using the LLC, such as the column scan, to a minimum portion
of the cache. This approach has the advantage that it can improve the
performance of any concurrent workload containing a scan-intensive
operator. It does not depend on further knowledge of the workload. In
addition, our results demonstrate that we can apply cache partitioning
without introducing performance regressions.

82 CHAPTER 4. CPU CACHE PARTITIONING

4.6 Related Work

Cache-Aware & Cache-Oblivious Algorithms

A plethora of research efforts from the database community focuses on
developing and optimizing cache-aware database algorithms [19, 127,
140], which exploit the cache hierarchy of modern processors. They
usually depend on setting the correct hardware parameters. Others
propose cache-oblivious algorithms [23, 45, 66, 82], which achieve cache
efficiency independent of specific hardware parameters. However, by
design, both groups of algorithms are sensitive to the cache and thus
sensitive to cache pollution. Thus, we expect our approach to benefit
both groups of algorithms.

Scheduling

Zhuravlev et al. [215] and Lee et al. [111] propose to mitigate contention
for shared resources on multicore processors via thread scheduling.
They schedule tasks on the same core (or a group of cores) if they
do not cause conflicts. Their approach allows an application to avoid
cache trashing caused by frequent context switches and cache pollution
caused by other tasks. However, their approach may cause scheduling
delays or underutilization of processor cores if the workload does not
consist of a sufficient number of tasks. In particular, thread scheduling
cannot avoid cache pollution if all tasks need to run concurrently on
multiple cores sharing a cache. To avoid cache pollution not only for
the last-level cache but also for the L1 and L2 cache of a processor,
one could combine their approach and our approach to avoid cache
thrashing of the L1 and L2 caches via scheduling and cache pollution
of the L3 cache via cache partitioning.

Page Coloring

Plenty of work from the systems community focuses on (software-
based) cache partitioning based on page coloring [39, 191, 213]. The
goal is to either statically or dynamically partition the cache among
competing threads to improve resource utilization or guarantee qual-
ity of service. Among others, Soares et al. [186] specifically aim to
avoid cache pollution. They propose a dynamic mechanism, which first
characterizes an application’s cache behavior using hardware perfor-
mance counters. Then, it maps the memory pages of applications with

4.6. RELATED WORK 83

high cache miss rates to dedicated cache sets to avoid polluting an
application’s memory pages with low cache miss rates.

We derive the cache usage of the database system’s operators from
an experimental evaluation. However, we argue that determining cache
usage based on hardware performance counters, could also be applied to
cache partitioning with CAT. To map memory access statistics back to
machine instruction, i.e., database operators, efficient memory tracing
(cf. Chapter 3) may be used.

Lee et al. [111] build on the results from the systems community
and present a method for minimizing last-level cache conflicts for
PostgreSQL. They demonstrate a cache allocation mechanism based
on page coloring to avoid cache capacity conflicts and classify queries
based on their data locality and cache sensitivity. They mainly focus on
a hash join and an index nested loop join. In addition, they evaluate a
disk-based DBMS, which uses a memory buffer pool to keep a portion
of the data in main memory. For such a system, allocating and copying
memory—necessary to (re-)partition the cache via page coloring—is po-
tentially less performance-critical compared to an in-memory database
system.

Wang et al. [201] make use of page coloring to optimize the cache
usage of key-value stores by storing keys and values separately and
with different page colors in memory. They claim that their approach
has low re-partitioning costs. However, they focus on relatively stable
workloads, where frequent re-partitioning is not needed. In addition,
they are evaluating a mixture of different optimizations, which makes
it difficult to judge how cache partitioning improves performance.

Cache Partitioning With Hardware Support

In contrast to software-based cache partitioning, Chiou et al. [38] or
Qureshi et al. [166] propose cache partitioning with hardware support
by restricting cache line replacement to a certain way for an n-way
associative cache. Similarly, Herdrich et al. [84] introduced two tech-
nologies addressing quality of service on Intel’s multicore server plat-
forms: Cache Monitoring Technology (CMT) and Cache Allocation
Technology (CAT). They highlight the benefit of partitioning the LLC
using the SPEC CPU2006 benchmark, network communications, and
the STREAM benchmark.

Lo et al. [123] use cache partitioning based on CAT, among other
mechanisms for resource isolation, to manage resource sharing between
latency-critical services and best-effort batch tasks in workloads from

84 CHAPTER 4. CPU CACHE PARTITIONING

Google. They claim to increase hardware utilization without violating
service-level objectives.

We use cache partitioning based on CAT as well. However, we
analyze the cache usage of database operations, we demonstrate how
to integrate the mechanism into a commercial database system, and we
analyze whether the integration effort pays off.

Deriving a Cache Partitioning Scheme

While we derive the cache partitioning scheme from an experimen-
tal analysis, the application of existing characterization methods for
describing the cache usage pattern of a database operator could be
investigated. For instance, Chou and DeWitt [41] propose the query
locality set model based on the knowledge of the various patterns of
queries to allocate buffer pool memory efficiently. Others propose cache
miss ratio (curves) as an online model for characterizing workloads or
operators [126, 191, 214]. Combining these techniques with efficient
memory tracing (cf. Chapter 3) could help to determine an application’s
cache characteristics—similar to work from Xiang et al. [208].

Hardware Design

Borkar and Chien [31] analyze the performance growth of microproces-
sors and predict future trends for processor designs. They highlight that
the performance growth driven by Moore’s Law will slow down in the
future because of diminishing transistor-speed scaling and practical en-
ergy limits. In particular, they argue that hardware manufactures have
to adapt their architectures by investing in heterogeneity, application-
specific hardware and dynamically customizable logic, while software
developers have to exploit parallelism and utilize new hardware more
carefully. They point out the design decision of increasing cache sizes
and question if increasing caches sizes can still improve performance.

Our results show that some database operations, i.e., the column
scan and the foreign key join, do not profit from a large LLC. Thus,
application-specific hardware or dynamically customizable logic, such
as an FPGA [99, 110], could be built for these types of operations with
a smaller cache to save costs and power, or to invest in more compute
logic instead.

4.7. CONCLUSION 85

4.7 Conclusion

In modern microprocessors, multiple processor cores share the same
last-level cache. Conflicts over the shared cache can significantly de-
grade performance of concurrent workloads, whenever the execution
of one operation suffers from cache pollution caused by the execution
of another operation.

In this chapter, we confirm through an experimental analysis that
important in-memory database operators exhibit different performance
characteristics depending on the available cache size. We analyze the
cache usage of the column scan, aggregation with grouping, and the
foreign key join operator with different data sets. Based on the results of
the analysis, we derive a cache partitioning scheme that we deliberately
kept simple: We restrict memory-intensive operators that do not reuse
data to a small portion of the cache.

Furthermore, we demonstrate how to integrate cache partitioning
into the execution engine of an existing DBMS with low engineering
costs. Our evaluation shows that our approach avoids cache pollution
and significantly reduces cache misses. We demonstrate that, by parti-
tioning the cache for concurrent queries, we can improve the overall
system performance by up to 38 %. In particular, we showcase im-
provements for custom queries targeting column scans, aggregations,
and joins, as well as for the TPC-H benchmark and an OLTP query
of a modern HTAP business application. Ultimately, our results show
that integrating cache partitioning into a DBMS is worth the effort: It
may improve but never degrades performance for arbitrary workloads
containing scan-intensive, cache-polluting operators.

86

CHAPTER 4. CPU CACHE PARTITIONING

Shared Loading

Bulk loading large volumes of data into the optimized storage of a
database system is a performance-critical task. Depending on the stor-
age layout, bulk loading may entail complex data transformations,
which makes bulk loading an expensive task that can disturb other
workloads running in parallel.

In this chapter, we demonstrate that data transformations dominate
the cost of bulk loading by using the example of SAP HANA, a commer-
cial, in-memory columnar system with a compression-optimized stor-
age. We show that data transformations may cause resource contention
on a stressed system, resulting in poor and unpredictable performance
for both bulk loading and query processing. To mitigate this problem,
we propose Shared Loading, a distributed bulk loading mechanism that
enables dynamically offloading deserialization and data transforma-
tion to the machine where the input data resides. In the evaluation
we demonstrate that, for different network bandwidths and data sets,
Shared Loading accelerates bulk loading into compression-optimized
storage and improves the performance and predictability of queries
running concurrently.

In particular, we make the following contributions: (i) we analyze
where time is lost in a complete bulk loading pipeline; (ii) we present the
architecture of the distributed bulk loading mechanism Shared Loading,
which can dynamically offload work to the client machine; and (iii) we
evaluate the performance characteristics of our approach by studying
whether our approach improves bulk loading throughput or the tail
latency of queries running in parallel to bulk loading.

87

88 CHAPITER 5. SHARED LOADING

Outline. We introduce the problem in Section 5.1. In Section 5.2, we
analyze the costs of a complete bulk loading pipeline. We present the
architecture of our distributed bulk loading mechanism Shared Loading
in Section 5.3. In Section 5.4, we present and discuss the results of the
experimental evaluation. We cover related work in Section 5.5 and we
conclude the chapter in Section 5.6.

Parts of this chapter are published in [150].

5.1 Introduction

In today’s heterogeneous system landscape, an ever-growing volume
of data is available in plain text files. Such files are widely supported
because they are readable by both machines and humans. Popular
formats include delimiter-separated values files, such as CSV, fixed-
width values files, JSON, or XML. Plain text files are frequently used to
transfer scientific data sets [190] or business data, to facilitate replication
and system integration, or to migrate to a new system. In the latter case,
customers of SAP state that the bulk loading of text files can quickly
become the bottleneck in mission-critical migration processes. Thus,
fast and efficient bulk loading is imperative.

Related work [3, 6, 37, 100, 153] assumes that data resides on local
storage where the DBMS is installed on. However, files are often stored
close to the client machine, where an application produces data or data
is preprocessed, and not close to the server machine running the DBMS.
Thus, data needs to be transferred over the network. This can be a fast,
internal network, in case of a cloud-only or an on-premise scenario, or
a slow Internet connection, e.g., when loading data from an on-premise
setup into the cloud.

Additionally, direct access to the server might be impossible due to
security policies or conditions of use. This is often the case in a cloud
environment. For example, Amazon’s database web service grants only
limited access because the entire system is maintained by Amazon.
Such a situation makes it very difficult to load local files from the server.
For instance, Amazon recommends users to load data into MySQL over
the network via CSV files and to split large files manually, to stop all
applications, and to consider disabling automatic backups for better
performance [8].

Furthermore, related work [6, 137] primarily focuses on optimizing
parsing and the creation of an index during bulk loading. They conclude

5.1. INTRODUCTION 89

(@)
S
[e)

400 -53 %

200 ¢

Tail Latency [ms]
(99.9™ percentile)

0 T T !
In With naive Shared
Isolation bulk loading Loading

Figure 5.1: Tail latency of query workload when executed in isolation,
in parallel to naive bulk loading, and in parallel to bulk loading with
Shared Loading. Tail latency degrades by a factor of 3.2 under load.
Shared Loading improves tail latency by 53 %.

that most time is lost on deserialization. However, modern systems [29,
62, 105, 109, 161] employ a (highly) compressed storage. In such a
system, it is also a challenge to transform data because compression is
resource-intensive. In fact, we demonstrate in our analysis of a commer-
cial database system that most time is lost on data transformation—not
on deserialization. In addition, such transformations may take away
precious CPU cycles from queries running in parallel.

Figure 5.1 illustrates this problem. We execute a simple analytical
workload both in isolation and in parallel to the bulk loading of the
lineitem table of the TPC-H benchmark. Our results demonstrate that
the query performance and predictability of the analytical workload
degrades significantly when the query workload is executed in parallel
to bulk loading: Tail latency degrades by a factor of 3.2.

To address these issues, we study bulk loading in a distributed
environment and its impact on query workloads running in parallel.
Ultimately, we develop a new mechanism for efficient bulk loading
into optimized storage. Our mechanism accelerates bulk loading and
improves the performance and predictability of concurrent query pro-
cessing. Its architecture allows dynamically adapting data transfor-
mations and shifting work between client(s) and a server at loading
time—without the need for the user to partition the input data or to
manually parallelize bulk loading [8, 133, 154].

90 CHAPITER 5. SHARED LOADING

File

Check
Validate Transform constraints Log Persist —
M M M M) M M ™ /) . OptlleCd
D e U e e)) storage
Parse Instantiate Partition/ Update Merge
. Route metadata
Deserialize

Figure 5.2: Processing steps for bulk loading data from a file into optimized storage.

5.2 Cost Analysis of Bulk Loading Pipeline

To identify optimization opportunities, we analyze where time is lost in
a complete bulk loading pipeline using SAP HANA as an example. The
cost analysis is the first contribution of this chapter. In particular, we
break down the processing time. Our goal is to identify the individual
steps that are the most time consuming. First, we give an overview of
the processing steps of bulk loading. Then, we demonstrate where time

is lost during bulk loading.

5.2.1 Overview of Loading Steps

Figure 5.2 presents the individual processing steps of the bulk loading
pipeline. Note that steps might be interleaved, ordered differently, or
omitted depending on the actual implementation used by the DBMS.
Conceptually, the bulk loading operation involves the following steps:

Bulk loading starts with the deserialization of the file. For a delimiter-
separated values file, it parses the file contents in search for symbols
marking the end of a row (e.g., "\n’) or the end of a column (e.g., ’|’) in
order to split the character stream into individual fields of the input
table. It validates whether a value conforms to the specification of the
SQL type given by the schema. If the validation succeeds, the operation
creates an instance of the SQL data type in memory; otherwise it handles
the error, e.g., by collecting discarded rows or by aborting.

In addition, the system transforms new data into the physical storage
layout, such as a row-based or a columnar representation. This might
involve complex restructuring and different compression methods. In
SAP HANA, new records migrate from a compressed, write-optimized
storage to a compressed, read-optimized storage (cf. Section 2.2.2). If
the target table is partitioned, each row needs to be assigned to its
correct partition. If the system is distributed, it might be necessary to
route data over the network to another node. The system also checks

5.2. COST ANALYSIS OF BULK LOADING PIPELINE 91

1007 Overhead (7777777 Persist
Merge { -Lo
| Metadata ¢ ;

~J
()}
|

} Constraints

Partition (

Transform

Rel. CPU time [%]
(@]
<

[\)
wu
|
t

Deserialize

0

Figure 5.3: Cost analysis of bulk loading into SAP HANA. Most CPU
time is spent on data transformation.

constraints, such as the absence of null values, uniqueness and primary
key constrains, or the referential integrity of foreign keys, and updates
metadata, such as indices or statistics. Ultimately, it writes a log to
persistent storage to assure durability. Systems maintaining a read-
optimized storage additionally merge new data (periodically) into their
optimized storage. To speed up recovery, the optimized storage may be
written to persistent storage.

5.2.2 Costs of Loading Steps

To analyze where time is lost, we bulk load the 1ineitem table of the
TPC-H benchmark from a local solid-state drive into SAP HANA. The
experimental setup is described in Section 5.4.1. In particular, we lever-
age SAP HANA'’s built-in statement for bulk loading CSV files “IMPORT
* FROM CSV [...]”. The experimental results are shown in Figure 5.3.
The figure illustrates the relative CPU time of each processing step of
the complete bulk loading pipeline. While the results are specific to the
data set and the implementation of SAP HANA, we expect similar re-
sults for other systems with (complex) data transformations—especially
for systems with a compressed storage. In addition, we expect similar
results for other plain text file formats because the file format affects
only the parsing step.

The results demonstrate that data transformations consume 55 %
CPU time. This includes the time it takes to insert new rows into the
write-optimized storage and to compute a compressed, columnar in-

92 CHAPITER 5. SHARED LOADING

memory representation. Deserialization consumes around 15 % CPU
time. Checking constraints, partitioning the table, or updating meta
data requires only a small amount of CPU time. Merging the write-
optimized storage into the read-optimized storage consumes 10 % CPU
time. Logging and persisting consume a negligible amount of CPU time
due to asynchronous I/O. The remaining 10 % are overhead from the
transaction manager, lock handling, and memory management.

In summary, our results differ from previous results [6, 37, 137]
that attribute the highest cost for bulk loading to deserialization. For
compression-optimized systems, such as SAP HANA, the cost of trans-
forming data dominates computing time and outweighs the cost of
deserialization by a factor of 3.7. Due to the high cost of compression,
we expect that the cost of deserialization outweighs the cost of trans-
forming data also in other systems that apply compression not only at
column, but at row or page level.

5.3 Shared Loading

Bulk loading and concurrently running queries compete for hardware
resources. The result is poor loading throughput and poor query per-
formance. However, we can exploit that the input data of bulk loading
is often stored close to the client machine and not close to the server
machine running the DBMS. Thus, to address the problem of resource
contention, we propose to offload part of the bulk loading to the client
machine. In particular, the client provides additional hardware re-
sources and allows accessing data more efficiently because it is closest
to the data source. The advantages are twofold: By distributing the load
efficiently, we avoid wasting resources that may be idle otherwise, and
we mitigate a high system load on the server. The design of the bulk
loading architecture Shared Loading is the second contribution of this
chapter.

We argue that offloading work needs to be done dynamically depend-
ing on, e.g., the input data, the compute power of client and server, or
the available network bandwidth. Our cost analysis of the bulk loading
pipeline identifies which steps are worth offloading: deserialization and
data transformation. To that end, we propose the architecture of a dis-
tributed bulk loading mechanism that enables offloading deserialization
and data transformation to the client at loading time.

We assume that the input file is a delimiter-separated values file such
as CSV. However, by adjusting the parsing step of the deserialization of

5.3. SHARED LOADING 93

the file, our approach may support other flat file formats. We use order-
preserving dictionary compression in a column store (cf. Section 2.2.1)
as an example. The concept of dynamically offloading deserialization
and data transformation may be applicable to other storage formats and
compression techniques as well. In addition, we propose that the client
transforms data towards the storage format—not into a data format that
can directly be written to disk. This allows the server to ingest data
with little effort, but the server still needs to validate all client data.

Figure 5.4 gives an overview of the data flow and the processing
steps on client and server. First, we introduce client-centric loading
shown in Figure 5.4a. Afterwards, we present server-centric loading
shown in Figure 5.4b. Subsequently, we describe how we can combine
both approaches dynamically. Finally, we highlight implementation
details.

5.3.1 Client-Centric Loading

Client Component. The client component transforms data by push-
ing file chunks through a processing pipeline to enable a high degree
of parallelism. It produces horizontal partitions of the input table as
shown in Figure 5.5. When we shift data transformations to the client
machine, the client component of Shared Loading produces a dictionary-
compressed, columnar partition and sends it to the server machine. This
allows the DBMS to merge a partition efficiently into its optimized stor-
age. We describe the individual steps in the following.

The deserialization step converts a file chunk to 1

an in-memory instantiation of the data. It parses the ’ Deseffallze ‘
chunk to identify delimiter symbols, validates fields, L)

and instantiates data types in memory according to the

schema of the table it gets from the server. Finally, the File

deserialization step assembles all rows of the chunk
into a columnar in-memory representation, which we refer to as a
fragment.

The sort step adds a temporary dictionary to a 1
fragment’s column. For each column of the fragment, | Sort |
it creates a copy, sorts the copy, and removes dupli-)
cates. The temporary dictionary facilitates dictionary
encoding in the next step.

94 CHAPITER 5. SHARED LOADING

optimized
storage

~ ¢ Chunk ~fr Fragment —(F» Fragment(s)
—? Partition —(P Partition(s)

(a) Client-centric bulk loading into optimized storage.

7777777777777777777777777

{
! l ! l
! I ! I
! T I
| |
| | | |
! l ! :
| |
| | L Sot |
| N ! | BN !
! (F) | ! (P) |
\ a7 | | 1 |
| ! | Compress ||
} I ! } I
! F) i ! Merge i
! i I ! I
| N . |
' | Deserialize ‘ | ! |
! ,‘\ | ! |
| |
| &) | | |
| | | . . |
l ! | | optimized | |
| T |
‘ File ! ‘ ‘
i ! i storage !
l ! l !
1 1

(b) Server-centric bulk loading into optimized storage

Figure 5.4: Architectural overview of Shared Loading. Computational
work (gray) can dynamically shift between client (a) and server (b): At
loading time, we can decide for a fragment’s column (cf. Figure 5.5)
where to compute its data transformation.

5.3. SHARED LOADING 95

Partition

((—~
Fragment;

Dictionary,
= |Dictionary,,

3
IA

Figure 5.5: Shared Loading transforms a file chunk into a columnar
in-memory fragment. Multiple fragments form a logical partition. A
fragment’s column (gray) may be dictionary-compressed.

The compression step logically assembles multiple o~
fragments into a horizontal partition shown in Fig- :
ure 5.5. In addition, it (physically) merges all tempo- ‘
rary dictionaries of a column into a single dictionary. \F)
This means that a partition’s dictionary is sorted locally. It is not sorted
globally with respect to the entire table, previous partitions or preexist-
ing data on the server to avoid the need for synchronization. We assure,
however, that the order of rows matches their original occurrence in
the input file. Thus, the DBMS can exploit the order of presorted data.
Afterwards, it uses the dictionary to encode the columns of the frag-
ments.

Finally, the client component sends a partition to the
server. It transfers fragment after fragment and subse- w
quently the dictionaries. This enables the server compo-

nent to process a fragment before the partition is transferred completely.
The dictionary compression reduces the transfer size: We show in the
evaluation in Section 5.4.2 that the dictionary compression reduces the
data size of the warehouse data set by 56 % compared to the original file
size.

Server Component. The server component is designed to be part of
the database system with internal access to the storage engine. When
we shift data transformations to the client, it receives a dictionary-

96 CHAPITER 5. SHARED LOADING

compressed, columnar partition. This allows the DBMS to merge the
partition efficiently into its read-optimized storage by updating the
dictionary encoding (instead of creating the dictionary encoding from
scratch). In addition, the compressed columnar format may speed up
the network transfer of the partition.

The merge step merges partitions into the read- -

(P)
optimized storage. It merges all partitions available i
since the last merge operation. For each column of i
the partitions, it merges the dictionaries with the cor- crge ‘

responding dictionary of the optimized storage. First, L

the merge step creates mappings from the dictionaries of the partitions
to the new dictionary. Afterwards, it uses the mappings to update the
optimized storage and to update the data of the partitions, which is
then appended to the optimized storage.

Note that we could merge incoming data into a specific partition of
the target table or create a new partition to avoid updating the dictionary
compression. Furthermore, we could apply additional compression
methods such us bit packing during the merge.

5.3.2 Server-Centric Loading

Client Component. When we shift only deserialization to the client,
but transform data on the server, the client component of Shared Loading
produces an uncompressed, columnar partition (see Figure 5.4b).

The deserialization step produces a fragment just A

as in the case of client-centric loading, described in ‘f/)
Section 5.3.1. Afterwards, the client groups fragments |
logically into a horizontal partition. In particular, it { \I‘{)
does not sort fragments and does not apply dictionary
compression as illustrated by the empty, dotted boxes (3‘;)

in Figure 5.4b. Subsequently, the client transfers !
a partition to the server by sending fragment after fragment over the
network.

Server Component. The server component of Shared Loading re-

ceives an uncompressed, columnar partition. It needs to transform the

partition, before it can merge the partition into optimized storage.
The input for the sort step is a partition consist-)

ing of multiple fragments. This allows the server to ‘ S;/rt ‘

process each fragment independently as soon as a frag- w

5.3. SHARED LOADING 97

ment arrives. For each column of a fragment, it creates a temporary

dictionary—similar to the sort step of the client component.

The merge step merges all partitions available 2

(P)
since the last merge operation into the read-optimized 1
e . Compress
storage. For each column of the partitions, it first i
merges the temporary dictionaries with the corre- erge

sponding dictionary of the optimized storage. After- i
wards, the merge step maps the dictionaries of the optimized storage to
the merged dictionaries. It uses the mappings to update the optimized
storage and the merged dictionaries to compress the partitions, which
are then appended to the optimized storage.

5.3.3 Dynamic Offloading

The architecture of Shared Loading combines client- and server-centric
loading. It allows deciding whether to transform a fragment’s column,
shown in Figure 5.5, on the client or on the server. The decision can be
made at loading time. To that end, Shared Loading can use heuristics
during the sort step at the client. It either creates a temporary dictionary
and performs client-centric loading for a fragment’s column, or it omits
the creation of the temporary dictionary and performs server-centric
loading.

The remaining steps of the bulk loading pipeline adapt to the de-
cision. This is illustrated by the dotted boxes in Figure 5.4. The
compression step at the client only compresses a fragment’s column
if it has a temporary dictionary. Otherwise, the fragment’s column
remains uncompressed in the partition (see Figure 5.5). The sort step
at the server checks if a fragment’s column is not already dictionary-
compressed. Only if that is the case, it creates a temporary dictionary.
Thus, the sort step produces a partition where a fragment’s column
either is dictionary-compressed or has a temporary dictionary. The
merge step either updates the dictionary compression of a fragment’s
compressed column or it encodes a fragment’s uncompressed column
when writing to optimized storage.

Heuristics. The architecture of Shared Loading enables the use of
different heuristics. For instance, we use a heuristic for minimizing
the amount of data sent over the network. In particular, we estimate
the number of unique values in a column using the HyperLogLog algo-
rithm [63] with HIP estimator [44, 152] at loading time. The algorithm al-
lows us to estimate the total memory size of the dictionary-compressed

98 CHAPITER 5. SHARED LOADING

column and the corresponding dictionary. If we estimate the memory
size to be smaller than the uncompressed column, we transform the
column at the client; otherwise we delegate the transformation to the
server. Using the example of this heuristic, we evaluate if dynamically
offloading data transformations is feasible with Shared Loading. We
also demonstrate that the heuristic produces indeed the smallest size in
our evaluation.

Note that other heuristics could decide to shift data transformations
based on the server’s utilization, the client’s and the server’s compute
power, or the network bandwidth. In particular, Shared Loading allows
heuristics to use information that is only available at runtime, e.g., to
implement a feedback loop.

5.3.4 Implementation

Our C++ implementation of Shared Loading exploits independent work
whenever possible to achieve a high degree of parallelism. The im-
plementation is independent of SAP HANA's code base but simulates
major characteristics of SAP HANA'’s architecture.

We execute each step of the data processing pipeline in at least
one thread. In addition, we use the thread pool provided by Intel
Thread Building Blocks [92] to implement fine-grained task parallelism:
We sort, compress and merge columns in parallel, and we implement
parallel algorithms for compressing and merging, e.g., a parallel merge
algorithm similar to P-MERGE [47, p. 800].

We use different sorting algorithms that are optimized for specific
data types. We use a radix sort implementation for integers and dates,
boost::string_sort [173, 174] for strings, and pdgsort [158] for the
remaining types. To facilitate in-place sorting, we represent variable-
sized strings of type VARCHAR(N) as fixed-sized strings of length N in
partitions sent by the client, while the server stores variable-sized
strings. Note that we avoid the increased memory and transfer size
of fixed-sized strings by employing dictionary compression. To im-
plement asynchronous network communications, we use the library
boost::asio [101].

Currently, we do not support delimiter symbols which mark, e.g.,
the end of a column or the end of a row, if they are enclosed in quotes
without being escaped by a preceding backslash. Handling this special
case during parsing is orthogonal to our approach and only affects
the deserialization step of bulk loading. To identify delimiter symbols
that are not escaped by a preceding backslash, others propose, e.g.,

5.4. EVALUATION 99

to perform an additional scan over the input file [137] or to employ
speculative parsing techniques [70].

We additionally annotate each chunk/fragment with an identifier
and assure that the order of the rows in a partition corresponds to the
order of the rows in the file. This allows the database system to exploit
the fact that rows in a file might be sorted, e.g., by the primary key to
accelerate index creation'. Note that we do not exploit presorted data
in our experiments. Furthermore, we reduce the memory footprint of
the merge operation by merging at most two columns in parallel. This
is SAP HANA’s default configuration for systems that have the same
size as the machine used in our evaluation. This restriction reduces the
impact of the merge operation on other workloads.

Our implementation has two configuration parameters: the size of
a file chunk and the size of a partition. In our configuration, we set the
size of a file chunk to 10 MiB, and we group 50 fragments to a partition.
This means that a partition corresponds to 500 MiB of the input file. We
experimentally confirm that both parameters are robust in Section 5.4.4.
The chunk size needs to be big enough to contain multiple rows and to
amortize the parallelization overhead (e.g., 10 KiB) and small enough
to allow a high degree of parallelism (e.g., 100 MiB). Similar arguments
apply to the partition size. In addition, the partition size impacts the
compression ratio because we compute the dictionary compression per
partition. We determine that a partition should contain between 10 and
100 chunks.

5.4 Evaluation

To analyze how Shared Loading can offload work during bulk loading
and how it impacts throughput and query performance and predictabil-
ity, we evaluate Shared Loading and state-of-the-art bulk loading archi-
tectures without and with concurrent query processing. The evaluation
is the final contribution of this chapter.

First, we describe the experimental setup. Afterwards, we evaluate
Shared Loading and state-of-the-art architectures in isolation and with
concurrent query processing. Subsequently, we investigate how robust
the chunk size and the partition size are. Then, we demonstrate that

1For example, the documentation of Amazon’s relational database service for
administrating MySQL suggests creating sorted flat files: “Whenever possible, order
the data by the primary key of the table being loaded. This drastically improves load
times and minimizes disk storage requirements.” [8]

100 CHAPITER 5. SHARED LOADING

our approach works well with additional compression methods. Finally,
we summarize and discuss results.

5.4.1 Setup

Data Set. We evaluate two data sets: the 1ineitem table of the TPC-H
benchmark [197] and the warehouse table, which was extracted from
the data warehouse of a customer offering telecommunication services.
Both data sets are available in the file format of the TPC-H benchmark,
i.e., a plain text file in a delimiter-separated values format: Columns
are separated by the character “|” and rows are separated by a newline
character. We use the lineitem table with a scale factor of 10. The
file has a size of 7.24 GiB, close to 6 - 10’ rows, and 16 columns. On
average, 94.5 % of the values in a column are duplicates. The file of the
warehouse table has a size of 17.57 GiB, around 12 - 10° rows, and 155
columns: 66 decimal columns, 20 integer columns, and 68 variable-sized
string columns with sizes ranging from 1 to 255. On average, 97 % of
the values in a column are duplicates.

Hardware. Our system has 128 GiB of DRAM and two Intel Xeon
E5-2660 v3 processors with 10 physical cores each. We enable simulta-
neous multithreading. The client process and the server process run on
different sockets of the same machine. We allocate 10 physical cores
to the server and vary the number of cores for the client from 2 to 8.
The text files reside on a local, commodity Micron M600 [194] SSD. We
measured a sequential read bandwidth of up to 530 MB/s using fio [15].
Note that in case of a significantly slower storage device, such as a sin-
gle HDD, a weak client could compute all data transformations without
being compute-bound. The SSD is only used for reading. We do not
evaluate persisting and logging because we assume the server’s storage
to be more powerful than the client’s. We clear the page cache of the
Linux kernel (LTS version 4.4) before every run.

Network. We use the tc utility to emulate different network band-
widths in our setup—similar to work from Raasveldt et al. [168]. TCP/IP
messages are sent to the localhost address. Note that we profiled the
transfer of a file both between two machines in a local network and
between two processes via the localhost address on the same machine,
where we emulated the same bandwidth: We did not observe a differ-
ence in execution time nor in CPU time.

5.4. EVALUATION 101

Q1. SELECT SUM(l_extendedprice)
FROM lineitem;

Q2. SELECT COUNT(*) FROM lineitem
WHERE 1_shipdate BETWEEN
'1994-1-1"' AND '1995-1-1";

Listing 5.1: Analytical queries inspired by the TPC-H benchmark.

We evaluate a network bandwidth of 1 and 10 Gbit/s because these
represent 69 % of the market share of sold Ethernet switches [87].
1 Gbit/s represents the maximum Internet bandwidth when loading
data from an on-premise solution into the cloud. 10 Gbit/s, on the other
hand, represents a typical sizing option within the cloud [7, 75] when
performing a cloud-internal bulk loading operation.

Configurations. We evaluate Shared Loading in three different con-
figurations: CLIENT, HEURISTIC, and SERVER. CLIENT corresponds to Fig-
ure 5.4a, i.e., client-centric bulk loading: The client transforms all data
into dictionary-compressed partitions. HEURISTIC uses the heuristic to
minimize data size: The client dynamically decides for each column of
a fragment to compress it either on the client or on the server. SERVER
corresponds to Figure 5.4b, i.e., server-centric bulk loading: The server
transforms all data into dictionary-compressed partitions, while the
client only deserializes the file.

In addition, we compare Shared Loading against two state-of-the-
art approaches: cHUNKS and FILE. They represent the bulk loading
mechanism of current systems, e.g., using terminal-based commands.
CHUNKS means that the client sends file chunks to the server, while
the server ingests the data. FILE means that the client first transfers
the entire file. Afterwards, the server ingests all the data at once. Note
that in all configurations we bypass the write-optimized storage of the
system and ingest data directly into the read-optimized storage.

Query Workload. We use two analytical queries that are based on
the TPC-H benchmark to evaluate the impact of concurrent query
processing. Listing 5.1 shows the SQL statements. Queries run against
a second instance of the lineitem table with a scale factor of 10. Thus,
query processing is independent of bulk loading. We execute each query
ten times in a batch, wait for all queries to finish and then execute the

102 CHAPITER 5. SHARED LOADING

£ B8 Eo6 [14 [12 #cores = B Client U Server

S 500 | < 200

S 400 g 2007

2300 | 5 3001

so 200 | 5 20

£ 100 108 |

= 0 S’Y ¢ g <> %
W 3¢ s «> ¥ AR ARG o gt

C\’X?)‘;)\SQ‘X‘;‘ S?"YN CX\\Sﬂ s cv 6@\3?” v c

Figure 5.6: Results of bulk loading the lineitem table over a 10-Gbit network without query

processing.

next batch. This way, we induce a constant query load from the time
the client starts reading the file until the server has merged all data into
its read-optimized storage. For a given data set and network bandwidth,
we base the duration of the query workload on the maximum loading
time among all configurations.

Measurement Method. We measure throughput, i.e., the size of the
file divided by the execution time of the bulk loading. In addition, we
measure the CPU time of the bulk loading to quantify computational
work. CPU time is the total time which processor cores spent on exe-
cuting instructions. This does not include idle time, i.e., the time cores
spend waiting for asynchronous I/O operations.

To evaluate the impact of query processing, we measure tail latency—
a performance metric for mission-critical systems with stringent service-
level agreements [50, 52, 76]. In particular, we focus on the maximum
response time of 99.9 % of the requests, i.e., the 99.9™ latency percentile.
According to employees of SAP, customers often prefer predictable
response times over peak performance.

5.4.2 Loading in Isolation

To analyze the maximum throughput and CPU time, we evaluate bulk
loading in isolation. We present the results for a 10-Gbit network
connection, followed by the results for a 1-Gbit network connection.

g
AN

. EVALUATION 103

B8 M6 04 [12 #cores — B Client U Server
500 | 1

400 |
300
200
100

CPU time

Throughput [MB/s]

Figure 5.7: Results of bulk loading the warehouse table over a 10-Gbit network without query
processing.

10-Gbit Network

Figure 5.6 and Figure 5.7 show the results for a network bandwidth of
10 Gbit/s. The results demonstrate that Shared Loading can offload a
large amount of work to the client (independent of the number of cores
allocated to the client). For the 1ineitem table, our approach can shift
71 % (CLIENT), 44 % (HEURISTIC), and 7 % (SERVER) of the total CPU time
to the client. For the warehouse table, we are able shift 74 %, 69 %, and
20 % to the client, respectively.

We observe that, for the dynamic configuration of Shared Load-
ing (HEURISTIC), the amount of CPU time shifted to the client varies
due to the heuristic: For the lineitem table, the client compresses 10
out of 16 columns; for the warehouse table, the client compresses 140
out of 155 columns. In particular, the lineitem table contains more
columns that do not profit from dictionary compression, such as the
foreign key columns 1_orderkey and 1_partkey or the decimal column
1_extendedprice, which the heuristics recognize. In addition, the results
demonstrate that the server component of Shared Loading always con-
sumes less CPU time than the state-of-the-art bulk loading architectures
CHUNKS and FILE.

The throughput of Shared Loading is comparable to the state of
the art. For the 1ineitem table, the throughput exceeds in some cases
(SERVER and HEURISTIC) the state-of-the-art architectures—by up to
15 %. For the warehouse table, the throughput of Shared Loading and the
state-of-the-art architectures get close to the maximum read bandwidth
of the SSD. We observe that shifting only deserialization to the client
(SERVER) results in the highest throughput. The results come as no
surprise because the bulk loading is limited by the SSD’s read bandwidth

Throughput [MB/s]

B8 He6 04 [J2 #cores

N ¢
LN e S g O Q15> o
C&xﬁe JENCI anﬁ < C ‘j&\s@)

104 CHAPITER 5. SHARED LOADING

O Client U Server
500 +
400 +
300 +
200 +
100 +

0 i

Network

CPU time [s]

<R 660 6\5‘5 QX‘SJ

Figure 5.8: Results of bulk loading the 1ineitem table over a 1-Gbit network without query
processing.

Throughput [MB/s]

250
200
150
100

(&)
o o

o
v

B8 W6 4 J2 #cores — M Client I Server
2500 |
g 400 |
5300 1
Network
****************** 2 200 |
O 100
07 8 ¢ S &%
ASgPRNg) VP
g‘ﬂ “C \I?X\ LS X\X’ ‘J@,ﬁ Xgi o N 4
TS g g S o™ oo

Figure 5.9: Results of bulk loading the warehouse table over a 1-Gbit network without query
processing.

and the client’s compute power—not by the network bandwidth. For
a client with at least 6 cores, it can be feasible to shift part of the data
transformations to the client (HEURISTIC).

1-Gbit Network

Figure 5.8 and Figure 5.9 illustrate the results for a network bandwidth
of 1 Gbit/s. We observe that the measured CPU time resembles the re-
sults for a network bandwidth of 10 Gbit/s. The asynchronous network
transfer avoids any impact of the network transfers on CPU time: Pro-
cessor cores enter a power-saving mode whenever there is not enough
data to process; they wake up as soon as data is available.

In addition, the results demonstrate that throughput is network-
bound, and that throughput differs significantly between configurations.
We attribute this to the amount of data, shown in Table 5.1, that the

5.4. EVALUATION 105

Transfer Size [GiB]

Configuration lineitem warehouse
CLIENT 5.80 8.06
HEURISTIC 5.58 7.76
SERVER 7.65 28.33
CHUNKS 7.24 17.57
FILE 7.24 17.57

Table 5.1: The total amount of data (in GiB, per data set) a bulk loading
configuration transfers over the network.

2 | E8 H6 04 02 #cores 2 BQ1 DQz

E 500 SSD ? 800 +

:) L

= <400 |

ab 200 —

g 100 — 200

— o]

£ 0 =0 T «C o S «F
S a0 e & ¥ W3¢ \ GAPRI

C‘*‘i&“‘sﬁ S@‘N@ o 6‘3&4 v C‘)S{YJO?\‘S S@} C@\Sﬁ A

Figure 5.10: Results of bulk loading the 1ineitem table over a 10-Gbit network with concur-
rent query processing.

client transfers to the server depending on the configuration. This is es-
pecially notable for the warehouse table, where dictionary compression
achieves a compression ratio of 2.3. Note that for server-centric bulk
loading (SERVER) without dictionary-compressed network transfers, the
transfer size increases compared to the original file because we transfer
all data types, especially strings, with a fixed size (cf. Section 5.3.4).

We observe that in slower network environments Shared Load-
ing performs best when the client selectively transforms data in or-
der to minimize the transfer size (HEURISTIC). For the 1ineitem table,
HEURISTIC reduces the transfer size to 77 % of the size of the input
file and it increases throughput by 26 % compared to cHUNKS. For the
warehouse table, HEURISTIC transfers data with 44 % of the file size and
it increases throughput by 117 % compared to cHUNKS. Thus, using the
heuristic results indeed in the smallest transfer size.

Throughput [MB/s]

500 ¢
400
300 |
200 ¢
100 |

106 CHAPITER 5. SHARED LOADING

B8 M6 04 02 #cores g 001 Q2
— 800 |
¢ 600 |
(=)
Q
§ | HT |_h
— 200 | HT
=
= 0 ,
¢ 1C _s® P Q}‘ g& \I@?‘ g‘lj’ X\S’
c‘»‘%\w‘s s 06‘36 s C‘”; NS

Figure 5.11: Results of bulk loading the warehouse table over a 10-Gbit network with concur-
rent query processing.

5.4.3 Loading With Concurrent Queries

To analyze throughput and query performance when the server is
stressed, we evaluate bulk loading with queries running in parallel. We
present the results for a 10-Gbit network connection, followed by the
results for a 1-Gbit network connection.

10-Gbit Network

Figure 5.10 and Figure 5.11 show the results for a network bandwidth of
10 Gbit/s. We notice that the results differ from previous results with-
out query processing. For the lineitem table, we observe that Shared
Loading increases throughput as more and more work is offloaded from
the server to the client (SERVER — HEURISTIC — CLIENT).

Compared to the configuration cHUNKS, the configuration CLIENT
increases throughput by 89 %. For the warehouse table, CLIENT improves
throughput by 27 % compared to cHunks. This demonstrates that, by
shifting all transformations including compression to the client (CLIENT),
Shared Loading can maintain a high loading rate even when the server
is stressed—unlike state-of-the-art bulk loading approaches cHUNKS
and FILE.

In addition, Shared Loading leaves the server more resources for
query processing by offloading transformations: When we compare
CHUNKS with CLIENT, tail latency improves by 33 % for Q1 and 53 % for
Q2 for the 1ineitem table. For the warehouse table, tail latency improves
by 45 % and 60 %, respectively. Thus, Shared Loading can improve query
performance and predictability by reducing server load in peak load
situations.

5.4. EVALUATION 107

£ B8 Ee6 [J4 [12 #cores ’g 001 Q2

= 250 | . 800

s 200 | 2 600 |
T etwor Q

% igg | o Network § 400 |

2 oo | = 200 |

= [ay]

£ 0 =0 * S %

T «C <R S <% W5 ¢ VG
SR o™ ¥ e ™ o o
Y

Figure 5.12: Results of bulk loading the 1lineitem table over a 1-Gbit network with concurrent
query processing.

£ B8 o6 04 12 #cores g BQ1 1Q2

= 250 | . 800

5 200 | 2 600 |

% igg [Network § 400 |

2 5o | = 200 HT HT

= <

£ 0 -0 S S b
m‘&ﬁ R &‘? A P

o® A2

Figure 5.13: Results of bulk loading the warehouse table over a 1-Gbit network with concur-
rent query processing.

The client can be relatively weak: The results show that 4 cores
suffice to transform and compress all data on the client while achieving
a higher throughput than the state of the art. Average response times
(not shown) improve by 19 % and 47 % for the lineitem table and by
13 % and 33 % for the warehouse table when comparing cLIENT with
cHUNKS. Note that if the server is under heavy load, job scheduling
cannot effectively reduce resource contention. Shared Loading mitigates
a high system load by leveraging the additional hardware resources of
the client.

1-Gbit Network

Figure 5.12 and Figure 5.13 show the results for a network bandwidth of
1 Gbit/s. We observe that the results on throughput resemble the ones
without query processing: Bulk loading is network-bound. HEURISTIC

Throughput [MB/s]

500 ¢
400
300 |
200 ¢
100 |

108 CHAPITER 5. SHARED LOADING

@ 500 |
/M
=, 400 |
S 300 |
&
a0 200 +
—*+— CLIENT —%— HEURISTIC g —A— CLIENT —— HEURISTIC
— 4+ SERVER CHUNKS = 100 | —+ SERVER CHUNKS
FILE 'ﬁ FILE
1 1 1 1 1 0 1 1 1 1 1
102 10® 10* 10> 10° 102 10® 10* 10> 10°
Chunk size [KiB] Chunk size [KiB]
(a) Lineitem (b) warehouse

Figure 5.14: Results of bulk loading the lineitem (a) and warehouse (b) table over a 10-Gbit
network with varying chunk sizes.

improves throughput by up to 26 % and 116 % compared to CHUNKS. In
particular, we observe that throughput does not degrade even though
the server is stressed. We attribute this to the low network bandwidth:
It gives the server more time to process incoming partitions and makes
merging the data into optimized storage less vulnerable to the con-
tention of CPU resources.

Offloading all transformations to the client (CLIENT) improves tail
latency by 12 % for Q1 and by 32 % for Q2 compared to cHUNKS for the
lineitem table. For the warehouse table, tail latency only improves by
8-16 %. This demonstrates that the transformations of the warehouse
table cause fewer load spikes than the lineitem table. Shared Loading
primarily improves throughput due to the reduced transfer size, while
its efficient offloading never degrades query processing on the server.

5.4.4 Robustness of Parameters

In our implementation of Shared Loading, we choose two parameters:
the chunk size and the partition size. To demonstrate how robust these
parameters are, we evaluate Shared Loading for varying parameter
values. We additionally compare against state-of-the-art bulk load-
ing architectures: We modify the architectures to support different
parameter values®.

%In the previous experiments, CHUNKs has a chunk size of 50; FILE has the maxi-
mum chunk size, i.e., only a single chunk. The partition size of both configurations
equals 1.

5.4. EVALUATION 109

© 500 | “ 500 |

as)] m

=, 400 | =, 400 |

S 300 | 2 300 1

= =

oo 200 T oo 200 + 4

g y —A— CLIENT —— HEURISTIC g —=+— CLIENT —%— HEURISTIC

= 100 .~ — + SERVER CHUNKS = 100 + — 4+ SERVER CHUNKS
= - FILE = FILE

= 0 1 1 1 1 = 0 1 1 1 1

1 10! 10? 10° 1 10! 10? 10°
Number of chunks per partition Number of chunks per partition
(a) lineitem (b) warehouse

Figure 5.15: Results of bulk loading the 1ineitem (a) and warehouse (b) table over a 10-Gbit
network with varying partition sizes.

Chunk Size. The chunk size determines into how many chunks we
split an input file. It affects the level of parallelism because a chunk is
the input for an independent work unit in our architecture. To study the
impact on throughput, we vary the chunk size but keep the partition size
fixed to 500 MiB. The network bandwidth equals 10 Gbit/s. Figure 5.14
visualizes the results.

Throughput decreases for chunk sizes below 1 MiB and for chunks
sizes above 50 MiB. For example, a chunk size of 10 MiB results in the
maximum throughput. Consequently, we choose a chunk size of 10 MiB
in our implementation. However, the results also demonstrate that
the chunk size is relatively robust. The size needs to be big enough to
contain multiple rows and to amortize the parallelization overhead. In
addition, it needs to be small enough to allow a high degree of paral-
lelism. Note that the parameter is also robust for a network bandwidth
of 1 Gbit/s (not shown). Selecting a chunk size between 100 KiB and
100 MiB results in maximum throughput.

Partition Size. The partition size determines the number of parti-
tions the client sends over the network to the server. It affects the
level of parallelism because the server merges at least one partition. In
addition, it affects the compression ratio because Shared Loading com-
putes the dictionary compression per partition. To study the impact on
throughput, we vary the partition size but keep the chunk size fixed to
10 MiB. The network bandwidth equals 10 Gbit/s. Figure 5.15 visualizes
the results.

110 CHAPITER 5. SHARED LOADING

We observe that Shared Loading achieves the highest bulk loading
throughput if 25 to 100 chunks form a partition. This demonstrates that
the parameter is robust. Creating partitions with less than 25 chunks,
e.g., with only one chunk results in 742 partitions for the lineitem
table and 1800 partitions for the warehouse table. Too many partitions
significantly increase the overhead of the processing pipeline resulting
in poor performance. On the other hand, creating partitions with more
than 100 chunks limits the parallelism. In our implementation, we
choose to group 50 chunks into a partition. This results in 15 partitions
for the lineitem table and in 36 partitions for the warehouse table.

Choosing larger partitions with 200 or more chunks results in poor
performance because of the low number of partitions. The total number
of partitions limits both the client and the server in how many partitions
they can process in parallel. In particular, a low number of partitions
causes the server to run idle for long periods of time between merge
operations and increases the amount of data that the server needs to
process once the client has finished processing partitions. Note that
the results are very similar for a network bandwidth of 1 Gbit/s (not
shown).

5.4.5 Additional Compression

To further improve throughput for slow network environments, we can
combine Shared Loading with state-of-the-art compression algorithms.
As an example, we evaluate the use of LZ4 [46], a fast, lossless compres-
sion algorithm. We modify Shared Loading and the state-of-the-art bulk
loading architectures such that the client compresses network transfers
with LZ4. This means that the server needs to decompress data before
processing it. Furthermore, we compare the experimental results to the
results without LZ4 compression presented in Section 5.4.2.

Loading in Isolation (LZ4)

To analyze maximum throughput and CPU time, we evaluate bulk
loading in isolation. We present the results for a 10-Gbit network
connection, followed by the results for a 1-Gbit network connection.
Network transfers are compressed with LZ4.

10-Gbit Network. Figure 5.16 and Figure 5.17 show the results for a
network bandwidth of 10 Gbit/s. The results demonstrate that through-
put degrades by up to 31 % for state-of-the-art bulk loading architec-

Throughput [MB/s]

500
400
300 |
200
100 |

O !

. EVALUATION

- No LzZ4
B8 M6 04 [12 #cores

i

6\36‘@ ¥

QXJ::? ?3%‘

CPU time [s]

500 ¢
400
300 |
200 ¢
100 |

0 !

111

—No LzZ4
[Client O Server

N

5 ¥
T o

c‘»‘&6 %‘e“
‘(‘9

Figure 5.16: Results of bulk loading the lineitem table over a 10-Gbit network without query
processing and with LZ4 compression. For reference, we include the results without LZ4
compression of Figure 5.6.

Throughput [MB/s]

500
400 7
300 |
200
100 |

— No LZ4
B8 M6 04 (12 #cores

—_— SSD

G o
X’\

CPU time [s]

500 ¢
400
300 |
200 ¢
100 |

— No LZ4
[Client [Server

S ¥

)
x}‘aﬂ ‘S'Y @?\qe Y‘
t‘

Figure 5.17: Results of bulk loading the warehouse table over a 10-Gbit network without
query processing using LZ4 compression. For reference, we include the results without LZ4
compression of Figure 5.7.

tures (lineitem, FILE) and by up to 18 % for Shared Loading (warehouse,
SERVER, client with 2 cores) compared to the results without LZ4 com-
pression. In addition, we observe that total CPU time increases by up to
11 % for the state of the art (warehouse, cHUNKS) and by up to 22 % for
Shared Loading (warehouse, sERVER). In fact, the CPU time of the client
increases more than the CPU time of the server, because compression
is more expensive than decompression.

The results are not surprising. We already confirm in Section 5.4.2
that bulk loading is not network-bound for 10-Gbit network environ-
ments. Thus, applying LZ4 compression degrades performance due to
the additional (de)compression costs.

100

Throughput [MB/s]

500 ¢
400
300 |
200 ¢

0 i

112
— No LZ4
B8 EHe6 04 [J2 #cores
_ Network
cv‘@\?aﬁﬁc«a@@ W g
)

CHAPITER 5. SHARED LOADING

— No LZ4
O Client O Server
500 |
400 |
300 |
200 |
100 +
07« «© S g
N ¢ ¢ W
oﬁ@“‘%« e &0&‘ =

Figure 5.18: Results of bulk loading the lineitem table over a 1-Gbit network without query
processing using LZ4 compression. For reference, we include the results without LZ4
compression of Figure 5.8.

100

Throughput [MB/s]

500 ¢
400
300 |
200 ¢

—No LZ4
B8 do

004

]2 #cores

Network

CPU time [s]

—No LZ4
[Client O Server

Figure 5.19: Results of bulk loading the warehouse table over a 1-Gbit network without
query processing using LZ4 compression. For reference, we include the results without LZ4
compression of Figure 5.9.

1-Gbit Network. Figure 5.18 and Figure 5.19 show the results for a
network bandwidth of 1 Gbit/s. The results show that the measured
CPU times resemble previous results for a 10-Gbit network—due to the
asynchronous network transfers (cf. Section 5.4.2). More importantly,
the results show that, for the lineitem table, the use of LZ4 compres-
sion increases throughput of Shared Loading by 86 % (CLIENT), by 91 %
(geurisTIC), and by 137 % (SERVER). The throughput of the state-of-
the-art architecture cHUNKS increases by up 87 %. For the warehouse
table, throughput of Shared Loading increases by 73 % (CLIENT), by
65 % (HEURISTIC), and by 483 % (SERVER). The throughput of the state-
of-the-art architecture CHUNKs increases by up to 184 %. Compared
to CHUNKS, Shared Loading increases throughput by up to 28 %. This

5.4. EVALUATION 113

Transfer Size [GiB]
Configuration lineitem warehouse
with LZ4 without LZ4 | with LZ4 without LZ4

CLIENT 2.67 5.80 3.06 8.06
HEURISTIC 2.56 5.58 2.89 7.76
SERVER 2.97 7.65 4.38 28.33
CHUNKS 3.72 7.24 6.00 17.57
FILE 3.72 7.24 6.00 17.57

Table 5.2: The total amount of data (in GiB, per data set) a bulk load-
ing configuration transfers over the network with LZ4 compression.
For reference, we show transfer sizes without LZ4 compression (from
Table 5.1, italicized).

shows that our approach also outperforms the state-of-the-art bulk
loading architectures if we compress network transfers with LZ4.

In addition, we observe that the throughput of all three configu-
rations of Shared Loading reaches a similar level. We attribute this to
the size of the network transfers, shown in Table 5.2. For the lineitem
table, the additional compression reduces transfer sizes by up to 61 %
for Shared Loading and by 49 % for cHUNKs. For the warehouse table,
LZ4 compression reduces transfers sizes by up to 85% and by 66 %,
respectively.

In fact, the results demonstrate that the combination of selectively
applying dictionary compression based on the heuristic to minimize
data size (HEURISTIC) and LZ4 compression results in the smallest trans-
fer size. Thus, the physical reorganization of the data due to dictionary
compression enables the LZ4 algorithm to achieve a higher compres-
sion rate. It shows that using LZ4 compression together with dictionary
compression works well with Shared Loading.

Loading With Concurrent Queries (LZ4)

To analyze throughput and query performance under load, we evaluate
bulk loading with queries running in parallel. We present the results
for a 10-Gbit network connection, followed by the results for a 1-Gbit
network connection. Network transfers are compressed with LZ4.

10-Gbit Network. Figure 5.20 and Figure 5.21 show the results for
a network bandwidth of 10 Gbit/s. Similar to the results without con-

114 CHAPITER 5. SHARED LOADING

— —No LZ4 —No LZ4
[72] —
A B8 E6 4 [12 #cores g 0901 0Q2
=, — 800 |
>
5 2 600 |
£ £ 400 |
o 3
5 = 200 |
= <
= =0

® S g
C‘Jxﬁﬁ Q\y%" ?ﬁ‘\]@ o S g
gv

Figure 5.20: Results of bulk loading the 1ineitem table over a 10-Gbit network with concur-
rent query processing using LZ4 compression. For reference, we include the results without
LZ4 compression of Figure 5.10.

—_ —No LZ4 — No LZ4

w —

A B8 EHo6 4 [12 #cores g 001 0Q2

= = 800 |

2 00 2 400 |

oh 200 | 3

S 100 | = 200

50 * S ¥ oo R S (%
‘)@ﬂ &Y @q‘a R ‘}gé &t @q‘é o gt
9 6 Q e

Figure 5.21: Results of bulk loading the warehouse table over a 10-Gbit network with concur-
rent query processing using LZ4 compression. For reference, we include the results without
LZ4 compression of Figure 5.11.

current query processing, we observe that LZ4 compression does not
improve throughput. In fact, throughput degrades by up to 18 % for
Shared Loading and by 23 % for FiLE. Nevertheless, Shared Loading
improves throughput by up to 61 % (lineitem, CLIENT, client with 8
cores) compared to state-of-the-art architectures (CHUNKs) if network
transfers are compressed with LZ4.

In addition, we observe that the use of LZ4 compression worsens
tail latency for SERVER (warehouse) by up to 41 %. Similar to the results
without concurrent query processing, we observe that Shared Loading
improves tail latency by up to 62 % (CLIENT) compared to the state of
the art (CHUNKS).

5.4. EVALUATION

115

—_ - No LzZ4 —No LzZ4

[72] —

) B8 o6 04 [12 #cores g 0Q1 00Q2

2 00 = 800 | .

= 400 ¢ o 1

%‘0 200 Network 3

© 100 + WM MU BT W e T’Es' 200 +

= 5 R % =0 * S %
C"@g\ﬁ*‘%‘ ?gﬂ?‘ N C\J@‘j Yfﬁ @gﬂ?‘ Qgﬂxk A%

v

Figure 5.22: Results of bulk loading the lineitem table over a 1-Gbit network with concurrent
query processing using LZ4 compression. For reference, we include the results without LZ4
compression of Figure 5.12.

—_ ~ No LZ4 — No LZ4

= W8 M6 D4 2 #cores B mQ1 DQ2

2 200 = 800 |

5 400 | & 600 |

200 £ 400 |

200 | Network .3

o 100 W W B W OB = 200 HT HT ﬂﬂ

ﬁ o 8 C go% <« ¥ a 0 @'ﬁ «;& \,LS \,‘6
c‘»‘%o@‘ﬁ T o c‘»‘%\s 5% S ?‘\I ot ¥

Figure 5.23: Results of bulk loading the warehouse table over a 1-Gbit network with concur-
rent query processing using LZ4 compression. For reference, we include the results without

LZ4 compression of Figure 5.13.

1-Gbit Network. Figure 5.22 and Figure 5.23 show the results for a
network bandwidth of 1 Gbit/s. We observe that using LZ4 compression
improves throughput. For the lineitem table, Shared Loading (CLIENT,
client with 8 cores) increases throughput by up to 35 % compared to
cHUNKS. For the warehouse table, it improves throughput by up to 29 %,
respectively.

Furthermore, the results show that the use of LZ4 compression
worsens tail latency by up to 65 % (cHUNKS). However, Shared Loading
improves tail latency by up to 48 % (CLIENT) compared to the best-
performing state-of-the-art bulk loading architecture cHUNKs. This
demonstrates that even if bulk loading is more expensive because of
LZ4 compression, Shared Loading can keep the tail latency low by

116 CHAPITER 5. SHARED LOADING

offloading data transformation and deserialization. It increases both
performance and predictability.

5.4.6 Discussion

Our evaluation demonstrates that Shared Loading performs up to 2x
better than state-of-the-art architectures in 1-Gbit environments due
to the compressed network transfer. In addition, the approach is very
robust. Throughput never degrades. The performance advantage in 10-
Gbit environments becomes clear once the server is under load. Shared
Loading increases throughput by up to 89 %. At the same time, tail
latencies of the query workload improve by up to 60 %. Offloading data
transformations to the client reduces CPU contention on the server
which benefits query processing and bulk loading.

The results also demonstrate why work needs to be shifted dy-
namically: Different configurations of Shared Loading perform best
depending on network bandwidth, server load, and compute power of
the client: In fast network environments, when loading without query
processing or when the client is weak, it is best to only deserialize on
the client; in slow network environments, it is best to selectively trans-
form data on the client to minimize transfer size; and when loading
with concurrent query processing, it is best to transform all data on the
client.

To further improve throughput for slow networks, we can combine
Shared Loading with additional compression methods, such as LZ4 [46].
Combining Shared Loading with LZ4 compression increases throughput
by up to 91 % compared to using only dictionary compression based on
our heuristic. Tail latency improves by up to 48 %. This demonstrates
that Shared Loading works well with other compression methods. In
particular, the combination of dictionary compression and LZ4 compres-
sion results in the smallest transfer size. Note that we also evaluated
other compression methods (not shown): the (de)compression algo-
rithms of z1ib [4], snappy [74], and zstd [60]. While the heavy-weight
compression of z1ib results in a better compression ratio, bulk loading
throughput and query latency degrade due to the high CPU costs. Both
snappy and zstd give similar results as LZ4 compression.

Ultimately, we envision the client component of Shared Loading to
be part of a lightweight SQL client, shipped with the database. We argue
that the complexity of the client components remains low because it
performs only deserialization and data transformation—no query pro-
cessing or extensive validation. In addition, Shared Loading consumes a

5.5. RELATED WORK 117

low amount of memory due to its architecture. In our implementation,
the client buffers only one partition in-between processing steps result-
ing in 7 partitions in total. If we assume the chunk and partition sizes
discussed in Section 5.3.4, the total memory consumption will not ex-
ceed the in-memory equivalent of 7 - (50 - 10 MiB) =~ 3.5 GiB of file data
for any table. The low resource consumption makes Shared Loading
also a good candidate for implementing bulk loading in a cloud-native
database. When loading a large volume of data, the system could start
a (small) instance running the client component of Shared Loading to
ensure elasticity and reduce costs.

5.5 Related Work

Bulk Loading

Database systems offer a range of interfaces for bulk loading external
files. We group existing approaches into three categories.

First, various systems offer a command for the terminal-based front-
end of the DBMS. The user either manually transfers the file to the
DBMS server or it is transferred during the loading operation. All
data processing is done by the DBMS server. Examples include the
commands IMPORT FROM of IBM Db2 [86] and SAP HANA [176], BULK
INSERT of Microsoft SQL Server [134], LOAD DATA INFILE of MySQL [141],
or COPY of PostgreSQL [163].

Second, systems may support parameterized SQL queries with array
bindings. In contrast to submitting a query for every row of a table,
it allows batching multiple rows in a query with a single INSERT INTO
statement. The database system may support array bindings directly
by processing a single SQL statement per batch or it may emulate
array bindings by processing a prepared statement per row of a batch.
Most systems with support for ODBC [71] or JDBC [12] support array
bindings.

Third, some vendors provide dedicated tools for bulk loading ex-
ternal files. Some of these tools use array bindings, such as bcp from
Microsoft [134], while other tools, such as SQL*Loader from Oracle [154]
or the LOAD utility from Db2 [86], write data blocks “directly to the
database”. Their documentation does not detail, however, what is com-
puted by the client and by the server.

Dziedzic et al. [55] analyze data loading with terminal-based com-
mands for different database systems. They assume that data already

118 CHAPITER 5. SHARED LOADING

resides on the server. They corroborate our results by showing that
bulk loading can be slow and expensive, especially when loading data
into compression-optimized systems. In fact, we close the gap discussed
in their work: Our dynamic loading mechanism accelerates bulk load-
ing and improves query performance by taking the load off the DBMS
server.

In-Situ Query Processing

Query processing on files [3, 6, 25, 37, 70] focuses on analyzing large
files with the goal to minimize initial response times. Thus, first loading
the entire file into a DBMS incurs a high initial cost and is usually
avoided. In addition, it may suffice to read only a subset of the data for
answering a query. This allows, e.g., to push down predicate evaluation
into parsing. Related work identifies the repeated parsing, tokenizing,
and data type conversion as a performance bottleneck but does not
consider network transfers or complex transformations.

While approaches such as NoDB [6] allow (partially) loading and
directly querying files, a user that requires, e.g., ACID properties or the
interoperability and security of a feature-rich system typically chooses
to load data into a DBMS. Similar arguments apply to approaches based
on external tables. For example, Oracle Database supports external
tables [17], or MySQL offers a dedicated CSV storage engine [142].
However, their goal is data integration, not data ingestion. Hence, their
query performance is limited because they have no or reduced support
for caching, indices, or statistics.

Fast Parsing and Ingestion

Miihlbauer et al. [137] use SIMD instructions to accelerate deserializa-
tion and propose mergeable indices for bulk loading. More recently,
Langdale et al. [107] present techniques, e.g., for identifying escaped
quote characters and converting digits to integer values using recent
SIMD instructions. Xie et al. [209] propose a storage layer for analytics
that combines parsing of selected fields and a dynamic, hash-based
subset index for querying data during ingestion. They store data in an
immutable, row-based log. They do not consider data transformations
such as compression or a columnar storage layout.

We do not focus on optimizing parsing and deserialization because
our analysis shows that these operations consume less than 20 % CPU
time in a commercial database system (cf. Section 5.2). Besides, optimiz-

5.5. RELATED WORK 119

ing parsing and deserialization by applying SIMD techniques and using
just-in-time generated glue code is orthogonal to our approach. We fo-
cus on a distributed environment where our approach can dynamically
shift data transformations between client(s) and a server to bring data
into the optimized storage format of the database system.

Network Serialization

Raasveldt et al. [168] analyze data export from various database sys-
tems. They conclude that protocols suffer from a per-row overhead and
expensive (de)serialization. They propose to transfer data in column-
major chunks with variable-sized strings as well as to employ columnar
compression techniques.

In fact, our network protocol resembles their design. However, we
transfer larger chunks of data, i.e., 500 MiB not 1 MB, and we choose
to represent strings fixed-sized instead of variable-sized to simplify
in-place sorting. We reduce transfer volume by employing dictionary
compression. While we focus on efficient data ingestion by offloading
expensive transformation to the client, a variant of our approach could
also help to extract data from the system. We expect, however, a smaller
benefit because transforming data into, e.g., a dictionary-compressed
format, is often more expensive than decompressing the data again.

Dictionary Compression

The in-memory database system SAP HANA [62] makes heavy use of
order-preserving dictionary compression in its read-optimized storage—
other systems employ similar ideas to varying degrees [29, 105, 109,
161] (cf. Section 2.2.1). In our approach, we focus on order-preserving
dictionary compression. Applying additional compression such as bit
packing or prefix encoding is orthogonal. We observed in experiments
(not shown) that they can be combined efficiently by exploiting the
sorting and the known distinct count of dictionary compression.

Buffered Updates

To facilitate data ingestion into optimized storage, SAP HANA trans-
forms new data gradually, by migrating records from write- to read-
optimized storage (cf. Section 2.2.2). Our approach bypasses the write-
optimized storage and merges new data directly into the read-optimized
storage—similar to work from Lamb et al. [105]. However, our approach
enables offloading data transformations at loading time to the client.

120 CHAPITER 5. SHARED LOADING

5.6 Conclusion

In today’s heterogeneous system landscape, bulk loading plain text
files is a performance-critical task for data analysis, replication, sys-
tem integration, and migration. However, for systems that employ a
(highly) compressed storage, bulk loading can stress the system signif-
icantly. In particular, data transformation during bulk loading can be
very expensive and negatively impact workloads running in parallel.

We analyze the costs of bulk loading into a commercial in-memory
database system with a compression-optimized storage. Our analysis
shows that most processing time is spent on transforming data into
a compressed format—not on deserializing the input file. Moreover,
we confirm that state-of-the-art bulk loading significantly degrades
the tail latency of queries running in parallel. At the same time, the
performance of bulk loading suffers as well.

To address this problem, we exploit the hardware setup: a distributed
environment consisting of the DBMS server and one or more client
machines. In particular, we leverage the compute power of the client to
reduce server load and to produce a compressed storage format that
utilizes available network bandwidth more efficiently. We propose the
distributed bulk loading mechanism, Shared Loading, which enables
dynamically offloading deserialization and data transformation—per
column fragment—to the client holding the input file. Our evaluation
using the lineitem table of the TPC-H benchmark and a real-world data
set determines that Shared Loading increases bulk loading through-
put especially in slower network environments or when the DBMS is
stressed. Throughput increases by up to 117 %. At the same time, it can
significantly improve tail latency of a query workload to enable efficient
bulk loading into compression-optimized storage without sacrificing
query performance and predictability. Tail latency improves by up to
60 %. Moreover, we demonstrate that Shared Loading works well with
additional compression methods such as LZ4: It improves throughput
by up to 61 % and tail latency by up to 62 %.

Conclusion

Resource-efficient data processing can cut costs, increase performance,
and improve predictability. However, the complex system environ-
ment of data processing applications, i.e., the combination of complex
software architectures, workloads, and hardware setups makes it very
challenging to identify and solve problems of inefficient resource usage.
In this thesis, we contribute to the research area of resource-efficient
data processing by focusing on three problems that are relevant—but
not limited—to database systems:

(i) we address the problem of analyzing complex system behavior
with memory tracing, which has been considered challenging
because of its prohibitive runtime overhead;

(ii) we address the problem of cache pollution within a microproces-
sor that hurts performance especially in concurrent workloads;
and

(iii) we address the problem of resource contention during bulk load-
ing and query processing across multiple machines which results
in poor performance and predictability.

Our contributions of this thesis include analyses and methods for max-
imizing hardware utilization. In particular, we demonstrate that our
approaches improve resource efficiency at different system levels.

In this chapter we summarize our contributions, give future directions,
and discuss the results of this thesis.

121

122 CHAPTER 6. CONCLUSION

Cache

CPU CPU 77 Processor 77 System System
| pram |

Storage Storage

- =/~ =

Cache Partitioning Memory Tracing Shared Loading
s Chapter 4 Ls Chapter 3 s Chapter 5
L [148] L [149] L [150]

Figure 6.1: Areas of the main contributions of this thesis.

6.1 Summary

In this thesis we develop optimizations for resource-efficient data pro-
cessing. Our three main contributions are (i) efficient memory tracing,
(ii) CPU cache partitioning, which we integrate into the execution
engine of a database system, and (iii) efficient bulk loading into the
compressed storage of a database system. In particular, our three main
contributions cover different levels of the memory and compute hierar-
chy as shown in Figure 6.1 (the same figure as Figure 1.1):

(i) at the level of a single machine, efficient memory tracing allows
us to analyze memory accesses;

(ii) at the level of a single processor, CPU cache partitioning allows
us to utilize the last-level cache more efficiently; and

(iii) at the level of multiple machines in a distributed environment,
efficient bulk loading via Shared Loading allows us to dynamically
balance the computational work of expensive data transforma-
tions between nodes.

Memory Tracing

Memory tracing allows inspecting and analyzing the memory access
characteristics of software. Detailed insights into memory accesses
enable various optimizations of memory usage. However, available
tools for memory tracing suffer from a large runtime overhead. To
address this problem, we develop an efficient mechanism for mem-
ory tracing via hardware-based sampling that leverages Intel’s PEBS
mechanism. We illustrate that memory traces enable us to analyze the

6.1. SUMMARY 123

runtime characteristics of a database system: Memory traces reveal
access patterns and access statistics for individual data structures and
database operators, detect skew at byte level, and allow us to derive the
working set size of a workload as well as to analyze the impact of table
partitioning. For example, deriving the working set size of a workload
allows us to size the page buffer of a database system.

In addition, we demonstrate that our approach has a low runtime
overhead. For example, sampling every 1000™" memory access increases
runtime overhead by 27 %. In summary, our approach makes it possible
to analyze complex systems—even in production environments—and
opens up new possibilities for optimizing resource usage, especially
memory and cache usage.

CPU Cache Partitioning

Conflicts over a shared cache can cause cache pollution and hurt perfor-
mance. We demonstrate that this problem occurs especially in concur-
rent workloads whenever multiple queries or operations compete for
the last-level cache of a processor. To address this problem, we confirm
through an experimental analysis that important in-memory database
operators exhibit different performance characteristics depending on
the available cache size. Subsequently, we derive a cache partitioning
scheme that we deliberately keep simple: We restrict memory-intensive
operators that do not reuse data to a small portion of the cache.

Furthermore, we demonstrate how to integrate cache partitioning
into the execution engine of a commercial DBMS with low engineer-
ing costs. In our evaluation we show that our approach avoids cache
pollution, significantly reduces cache misses, and improves the over-
all system performance by up to 38 %. In summary, our results show
that integrating cache partitioning into a DBMS is worth the effort: It
may improve but never degrades performance for arbitrary workloads
containing scan-intensive, cache-polluting operators.

Shared Loading

Bulk loading large volumes of data can stress the system significantly.
When query processing and bulk loading run in parallel, both operations
compete for resources causing resource contention and underutilization
of the processor cores and network bandwidth. In a first step, we analyze
the costs of bulk loading into a commercial, in-memory database system
with a compression-optimized storage. Our analysis shows that most

124 CHAPTER 6. CONCLUSION

processing time is spent on transforming data into the compressed
storage format of the database system. Additionally, we confirm that, if
state-of-the-art bulk loading and query processing run in parallel, both
operations suffer from poor and unpredictable performance.

To address this problem, we exploit the given hardware setup, i.e.,
a distributed environment consisting of the DBMS server and one or
more client machines holding the input data. Our distributed bulk
loading mechanism, Shared Loading, leverages the compute power of
the client to transform the input data towards the compressed storage
format of the database system. In particular, it enables dynamically
offloading parts of the bulk loading pipeline, i.e., deserialization and
data transformation, at the granularity of column fragments. In our
evaluation we determine that Shared Loading increases bulk loading
throughput by up to 117 %, especially in slower network environments
or when the DBMS is stressed. At the same time, it reduces a query
workload’s tail latency by up to 60 %. Moreover, we demonstrate that
Shared Loading works well with additional compression methods such
as LZ4: It improves throughput by up to 61 % and tail latency by up
to 62 %. In summary, Shared Loading enables efficient bulk loading by
utilizing the available network bandwidth and the combined compute
power of client and server more efficiently.

6.2 Future Directions

We identify several opportunities for extending the work of this thesis.

Memory Tracing

Our memory tracing implementation minimizes runtime overhead. An-
other challenge is the large size of the trace data. While our solution can
restrict memory tracing to specific processes or threads or to kernel-
level or user-level program code, one might want to limit memory
tracing to specific memory regions, such as heap memory, to reduce the
size of the trace data. In addition, one might explore the pre-aggregation
of recurring addresses’, lightweight compression techniques that ex-
ploit the similarity of memory addresses, or fast storage for moving
data asynchronously from memory to storage. How and to what degree

!Note that aggregating recurring addresses might make it challenging to track
access patterns.

6.2. FUTURE DIRECTIONS 125

this is possible without incurring a significant runtime overhead is an
interesting question for future work.

We mainly focus on read-only data structures, e.g., on the encoded
columns and dictionaries of a main-memory database system. Typi-
cally, objects such as columns or dictionaries have the same memory
addresses for a long time. Other objects such as an operator’s interme-
diate results or paged table data that is loaded from a buffer manager
may change memory addresses frequently during runtime. Keeping
track of frequently changing mappings between objects and their mem-
ory addresses is another challenge. Future work may develop efficient
methods for tracking mappings as well as for post-processing mappings
and trace data.

We demonstrate several use cases for memory tracing in our work.
However, we argue that we merely scratch the surface of what is pos-
sible with efficient memory tracing. There are many features of the
PEBS mechanism that we did not make use of, such as hardware perfor-
mance counters for distinguishing accesses to DRAM and NVM DIMMs
or the samples’ timestamps to better analyze memory access patterns
across different processor cores. Additionally, future hardware genera-
tions are expected to provide additional features: Variable-sized PEBS
records may lower the overhead further; and extended PEBS support
for all available hardware performance counters may allow memory
tracing for a wide range of events related to, e.g., transactional memory
operations or TLB misses [91].

Memory tracing reveals memory access statistics such as the quan-
tity, frequency, and locality of memory accesses. One might use that
information in multiple ways. A table’s access statistics could be used
to derive table partition schemes, to classify hot and cold data, or to
choose the storage layout. A column’s access statistics could be used to
decide what type of index or what kind of compression should be used.
An operator’s access pattern could be used to decide how to partition
the cache or how to co-schedule an operator with other operators.

In addition, memory tracing may open up new possibilities not
only for software optimizations but also for hardware optimizations.
Memory traces may guide optimizations for NUMA systems or systems
with NVRAM together with a DRAM cache. Another use case could
be self-tuning systems [36, 199, 212], where detailed access statistics
could open up new possibilities to automatically adapt the system to
hardware or workload characteristics. Furthermore, the low overhead
of our memory tracing implementation might give incentive to revisit

126 CHAPTER 6. CONCLUSION

related work [16, 57, 189, 195]. Last but not least, future work could
explore whether lightweight memory tracing can run as a background
task to provide access statistics during runtime.

CPU Cache Partitioning

In our work we limit scan-intensive operations to a small portion of
the last-level cache of a processor. We classify an operation as scan-
intensive based on its memory access characteristics that we know at
compile-time or that we can derive using a simple heuristic at runtime.
It is a challenge to classify operations that have different memory access
characteristics for different parameters. For example, access character-
istics may depend on user input, such as user defined functions, or on
the workload, e.g., on the data distribution or the number of concurrent
users. How to classify operations that depend on various parameters
and to what extent cache partitioning may improve performance of
workloads with these types of operations is a possible question for
future work. For a classification based on access characteristics, one
might rely on memory tracing.

Since newer generations of processors feature an increasing number
of cores sharing a cache [83], we expect that the negative effects of
contention and cache pollution will continue to be a problem. Newer
generations of processors may also suffer increasingly from cache pol-
lution or cache trashing due to larger L1 or L2 caches shared by an
increasing number of logical processor cores. Future work may explore
how to address cache pollution across all cache levels, e.g., by lever-
aging hardware-based cache partitioning for the last-level cache and
scheduling mechanisms [111, 215] for the remaining cache levels of the
processor.

The idea of allocating resources or isolating resource usage for
specific operations may be applicable in many other situations to im-
prove quality of service. For example, it may pay off to restrict the
DRAM bandwidth of memory-intensive background tasks, such as
transforming data from write- to read-optimized storage. There are
processors that already support hardware-based memory bandwidth
allocation [91]. Similarly, it may pay off to reserve I/O quota exclusively
for some operations, such as logging. Reserving I/O quota is already
possible, e.g., with support from the operating system [132].

6.2. FUTURE DIRECTIONS 127

Shared Loading

In our work we focus on loading all input data into the database system.
However, a user may want to load only a subset, e.g., specific rows and
columns. Related work on in-situ query processing [6, 100] proposes
to push down predicate evaluation into the parsing and deserialization
to skip individual rows or columns early. Skipping individual rows
or columns on the client during bulk loading would significantly re-
duce network transfers. How and to what degree one might allow
(lightweight) query processing on an external, untrustworthy client is
a question for future work. Similarly, being able to evaluate a data par-
titioning strategy, such as range partitioning, on the client would make
it possible to route data directly to the correct node of a distributed
system.

We assume that the client holding the input data is not trustwor-
thy from the perspective of the database system. If the assumption
is relaxed, it would open up new possibilities. In addition to offload-
ing deserialization and data transformation, one might explore the
dynamic offloading of (partially) building indices, collecting statistics,
or checking constraints without the need for expensive verification.
Additionally, a trustworthy client could further optimize network com-
munications by using RDMA operations to write data directly to the
database server’s main memory.

While we focus on loading data into a system, one could use a mod-
ified version of Shared Loading to extract data from a database system.
Transforming the compressed storage format into the target format on
the client could reduce network transfers and offload transformation
costs. Future work could analyze the costs of exporting data from a
database system and explore ways to dynamically offload expensive
operations to the client or server.

In our work we leverage a heuristic that minimizes data size to
illustrate how Shared Loading can decide on offloading at runtime. The
heuristic causes the client to partially compute data transformations
which improves throughput especially if network bandwidth is limited.
However, our evaluation also shows that, in situations where network
bandwidth is limited and the server is stressed significantly, it is best
to fully transform data on the client. Finding a robust and precise
mechanism that incorporates runtime information about the data, the
available network bandwidth, the server’s load factor, and possibly
other indicators to decide the offloading dynamically is an interesting
question for future work.

128 CHAPTER 6. CONCLUSION

Ultimately, our approach of dynamically offloading work to different
nodes matches the general tendency of exploiting network environ-
ments for resource management. A related research area is in-network
computing, which aims at leveraging existing hardware of a distributed
system, such as switches and network interface controllers, to execute
programs within the network. Related work are in-network caching as
a key-value store [98], in-network data aggregation with map-reduce
jobs [177], and initial explorations of in-network, analytical query pro-
cessing [115]. Another related research area is resource disaggregation
for system architectures [69, 181]. The idea is to have a pool of stan-
dalone resource blades, containing, e.g., only processors, only memory,
or only storage devices, that are interconnected using a network fabric—
in contrast to grouping resources together in a single machine. Simi-
larly, future work may explore network-centric system architectures
and leverage network-centric data processing to distribute as many
database operations as possible—in addition to bulk loading—across the
network.

6.3 Discussion

Our contributions advance the field of resource-efficient data processing
in multiple ways. First, our memory tracing implementation improves
the ability to understand complex systems: It allows analyzing the soft-
ware, i.e., the memory access pattern of algorithms for specific instances
of data structures; it allows analyzing the workload, i.e., the quantity,
frequency, or distribution of data accesses, which makes it possible to
detect data and query skew; and it allows analyzing the hardware setup,
i.e., it maps memory addresses to hardware performance counters that
indicate, e.g., cache hits or misses or local or remote DRAM accesses.
Having access to these detailed memory access characteristics provides
new means to identify inefficient resource usage in complex system
environments.

Second, we design and evaluate two approaches for avoiding re-
source contention and maximizing resource utilization: CPU cache par-
titioning and Shared Loading. Within a single processor, we avoid
cache pollution. Our approach improves performance for concurrent
workloads consisting of scan-intensive and cache-sensitive operations.
Across multiple machines, we avoid resource contention of processor
cores and network bandwidth. Our approach improves performance and
predictability of bulk loading and query processing if both operations

6.3. DISCUSSION 129

compete for processor cores or if network bandwidth limits throughput.
CPU cache partitioning and Shared Loading ofter orthogonal solutions.
They address different problems of inefficient resource usage and target
different levels of the memory hierarchy. We argue that they could be
combined to further increase resource efficiency, e.g., for concurrent
workloads running in parallel to bulk loading.

Third, we argue that our approaches enable efficient communication.
Efficient communication is particularly important with respect to the
development of computer architectures. While newer generations of
microprocessors have more and more compute power, memory and
network bandwidth does not grow at the same rate (cf. Section 2.1). The
gap between processor, memory, and network speed makes resource-
efficient data processing necessary: To improve performance, we need
to optimize data transfers. Our approaches optimize data transfers
and improve performance by improving cache, memory, and network
utilization. In particular, we demonstrate that resource-efficient data
processing pays off: We achieve significant performance gains with
reasonable effort. In addition, we argue that our work will have a lasting
impact because efficient communication will continue to be important
in the future.

Fourth, we claim that the contributions of this thesis have an impact
on real systems. Our memory tracing implementation relies on the
Linux kernel. Our evaluation of the implementation uses (a prototype
version of) a commercial database system. In addition, we integrate
CPU cache partitioning into (a prototype version of) a commercial
database system and evaluate end-to-end performance characteristics.
Similarly, the design and implementation of Shared Loading closely
matches the architecture of a commercial database system. Thus, we
demonstrate that the methods proposed in this thesis indeed improve
the resource efficiency of database systems.

130 CHAPTER 6. CONCLUSION

(2]

Bibliography

Daniel J. Abadi, Samuel R. Madden, and Miguel Ferreira. “In-
tegrating Compression and Execution in Column-oriented
Database Systems”. In: Proc. SSIGMOD. ACM, 2006, pp. 671-682.
ISBN: 1-59593-434-0. Do1: 10.1145/1142473.1142548 (page 27).

Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. “Column-
Stores vs. Row-Stores: How Different Are They Really?” In: Proc.
SIGMOD. ACM, 2008, pp. 967-980. 1SBN: 978-1-60558-102-6. DOI:
10.1145/1376616. 1376712 (page 55).

Azza Abouzied, Daniel J. Abadi, and Avi Silberschatz. “Invisible
Loading: Access-Driven Data Transfer From Raw Files Into
Database Systems”. In: Proc. EDBT. 2013, pp. 1-10. 1sBN: 978-1-
4503-1597-5. DOI: 10.1145/2452376.2452377 (pages 88, 118).

Mark Adler and Jean-loup Galilly. zlib Data Compression Library.
URL: https://www.zlib.net/ (visited on 08/21/2019) (page 116).

Soramichi Akiyama and Takahiro Hirofuchi. “Quantitative Eval-
uation of Intel PEBS Overhead for Online System-Noise Anal-
ysis”. In: Proc. ROSS. ACM, 2017. 1sBN: 9781450350860. DOI:
10.1145/3095770.3095773 (page 43).

Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos
Idreos, and Anastasia Ailamaki. “NoDB: Efficient Query Execu-
tion on Raw Data Files”. In: Proc. SIGMOD. ACM, 2012, pp. 241-
252. 1SBN: 978-1-4503-1247-9. por: 10.1145/2213836. 2213864
(pages 88, 92, 118, 127).

Amazon. EC2 Instance Types. URL: https://aws.amazon. com/
ec2/instance-types/ (visited on 08/21/2019) (page 101).

Amazon. Importing Data From Any Source to a MySQL or Mari-
aDB DB Instance. URL: https : / / docs . aws . amazon . com /
AmazonRDS / latest / UserGuide /MySQL . Procedural . Importing .
AnySource.html (visited on 08/21/2019) (pages 88, 89, 99).

131

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/2452376.2452377
https://www.zlib.net/
https://doi.org/10.1145/3095770.3095773
https://doi.org/10.1145/2213836.2213864
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.AnySource.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.AnySource.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.AnySource.html

132

[9]

[14]

BIBLIOGRAPHY

AMD. AMDG64 Architecture Programmer’s Manual: Volumes 1—
5. Apr. 2020. URL: https: //developer . amd . com/ resources /
developer-guides-manuals/ (visited on 05/01/2020) (pages 16,
19, 35).

AMD. AMDé64 Technology Platform Quality of Service Extensions.
Aug. 2018. URL: https://developer . amd . com/wp - content /
resources/56375.pdf (visited on 03/31/2020) (page 67).

Editors of the American Heritage Dictionaries. The American
Heritage Dictionary of the English Language, Fifth Edition: Fifti-
eth Anniversary Printing. Boston, MA, USA: Houghton Mifflin
Harcourt, 2018. 1sBN: 9781328841698 (page 3).

Lance Andersen. JDBC 4.3 API Specification. Oracle Corporation,
July 2017 (page 117).

Mihnea Andrei, Christian Lemke, Giinter Radestock, et al. “SAP
HANA Adoption of Non-Volatile Memory”. In: Proc. VLDB
(2017), pp. 1754-1765. 1ssN: 2150-8097. po1: 10.14778/3137765.
3137780 (page 26).

Joy Arulraj, Andrew Pavlo, and Prashanth Menon. “Bridging
the Archipelago between Row-Stores and Column-Stores for
Hybrid Workloads”. In: Proc. SIGMOD. ACM, 2016, pp. 583-598.
ISBN: 9781450335317. por1: 10.1145/2882903.2915231 (pages 27,
28).

Jens Axboe. fio — Flexible IO Tester. URL: http://git.kernel.dk/
?p=fio.git (visited on 08/21/2019) (page 100).

Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy
Ranganathan. “Classifying Memory Access Patterns for
Prefetching”. In: Proc. ASPLOS. ACM, 2020, pp. 513-526. ISBN:
9781450371025. por1: 10.1145/3373376.3378498 (pages 49, 126).

Hermann Baer, Andy Witkowski, and Allen Brumm. Performant
and Scalable Data Loading with Oracle Database 12c. Oracle
White Paper, 2014 (page 118).

Jean-Loup Baer and Tien-Fu Chen. “Effective Hardware-Based
Data Prefetching for High-Performance Processors”. In: IEEE
Trans. Comput. 44.5 (May 1995), pp. 609-623. 1sSsN: 0018-9340.
DOI: 10.1109/12.381947 (page 24).

https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/wp-content/resources/56375.pdf
https://developer.amd.com/wp-content/resources/56375.pdf
https://doi.org/10.14778/3137765.3137780
https://doi.org/10.14778/3137765.3137780
https://doi.org/10.1145/2882903.2915231
http://git.kernel.dk/?p=fio.git
http://git.kernel.dk/?p=fio.git
https://doi.org/10.1145/3373376.3378498
https://doi.org/10.1109/12.381947

BIBLIOGRAPHY 133

[19]

[25]

[27]

Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer
Ozsu. “Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited”.
In: Proc. VLDB (2013), pp. 85-96. 1ssSN: 2150-8097. por: 10.14778/
2732219.2732227 (pages 7,19, 82).

Yungang Bao, Mingyu Chen, Yuan Ruan, Li Liu, Jianping
Fan, Qingbo Yuan, Bo Song, and Jianwei Xu. “HMTT: A Plat-
form Independent Full-System Memory Trace Monitoring Sys-
tem”. In: Proc. SIGMETRICS. ACM, 2008, pp. 229-240. ISBN:
9781605580050. DOI: 10.1145/1375457.1375484 (page 47).

Claude Barthels, Simon Loesing, Gustavo Alonso, and Don-
ald Kossmann. “Rack-Scale In-Memory Join Processing Using
RDMA?”. In: Proc. SIGMOD. ACM, 2015, pp. 1463-1475. ISBN:
9781450327589. pOI: 10.1145/2723372.2750547 (page 17).

Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Transla-
tor”. In: Proc. ATEC. USENIX Association, 2005, p. 41 (page 47).

Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton.
“Cache-Oblivious B-Trees”. In: SIAM J. Comput. 35.2 (2005),
pp. 341-358. DOI: 10.1137/50097539701389956 (page 82).

Carsten Binnig, Stefan Hildenbrand, and Franz Farber.
“Dictionary-Based Order-Preserving String Compression for
Main Memory Column Stores”. In: Proc. SIGMOD. 2009, pp. 283—
296. 1sBN: 978-1-60558-551-2. DOI1: 10.1145/1559845 . 1559877

(page 28).
Spyros Blanas, Kesheng Wu, Surendra Byna, Bin Dong, and
Arie Shoshani. “Parallel Data Analysis Directly on Scientific

File Formats”. In: Proc. SIGMOD. 2014, pp. 385-396. 1SBN: 978-1-
4503-2376-5. DOI: 10.1145/2588555.2612185 (page 118).

Alexander Bohm, Jens Dittrich, Niloy Mukherjee, Ippokratis
Pandis, and Rajkumar Sen. “Operational Analytics Data Man-
agement Systems”. In: Proc. VLDB (2016), pp. 1601-1604. 1sSN:
2150-8097. po1: 10.14778/3007263.3007319 (page 26).

Martin Boissier, Rainer Schlosser, and Matthias Uflacker. “Hy-
brid Data Layouts for Tiered HTAP Databases with Pareto-
Optimal Data Placements”. In: Proc. ICDE. IEEE Computer Soci-
ety, 2018, pp. 209-220. po1: 10.1109/ICDE.2018.00028 (page 43).

https://doi.org/10.14778/2732219.2732227
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.1145/1375457.1375484
https://doi.org/10.1145/2723372.2750547
https://doi.org/10.1137/S0097539701389956
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.1145/2588555.2612185
https://doi.org/10.14778/3007263.3007319
https://doi.org/10.1109/ICDE.2018.00028

134

[28]

[29]

[34]

[35]

BIBLIOGRAPHY

Peter A. Boncz, Angelos-Christos Anatiotis, and Steffen Klabe.
“JCC-H: Adding Join Crossing Correlations with Skew to TPC-
H”. In: Performance Evaluation and Benchmarking for the Ana-
Iytics Era. Springer International Publishing, 2018, pp. 103-1109.
ISBN: 978-3-319-72401-0 (pages 37, 43).

Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. “Break-
ing the Memory Wall in MonetDB”. In: Commun. ACM 51.12
(2008), pp. 77-85. 1ssN: 0001-0782. po1: 10 . 1145 / 1409360 .
1409380 (pages 27, 89, 119).

Peter A. Boncz, Marcin Zukowski, and Niels Nes. “MonetD-
B/X100: Hyper-Pipelining Query Execution”. In: Proc. CIDR.
2005, pp. 225-237. URL: http://cidrdb.org/cidr2005/papers/
P19.pdf (page 7).

Shekhar Borkar and Andrew A. Chien. “The Future of Micro-
processors”. In: Commun. ACM 54.5 (May 2011), pp. 67-77. IsSN:
0001-0782. por1: 10.1145/1941487.1941507 (pages 15, 52, 65, 84).

Derek L. Bruening. “Efficient, Transparent, and Comprehensive
Runtime Code Manipulation”. AAI0807735. PhD thesis. USA:
Massachusetts Institute of Technology, 2004 (page 47).

Derek L. Bruening, Timothy Garnett, and Saman Amarasinghe.
“An Infrastructure for Adaptive Dynamic Optimization”. In:
Proc. CGO. IEEE Computer Society, 2003, pp. 265-275. ISBN:
076951913X (page 47).

Alexandre Bicas Caldeira, Bartlomiej Grabowski, Volker Haug,
Marc-Eric Kahle, Andrew Laidlaw, Cesar Diniz Maciel, Monica
Sanchez, and Seulgi Yoppy Sung. IBM Power Systems S814 and
5824 Technical Overview and Introduction. IBM, Aug. 2014. URL:
https://www.redbooks.ibm.com/redpapers/pdfs/redp5097.pdf
(pages 18, 19).

S. Chatrchyan, G. Hmayakyan, V. Khachatryan, et al. “The CMS
Experiment at the CERN LHC”. In: Journal of Instrumentation
3.08 (Aug. 2008), S08004. po1: 10.1088/1748-0221/3/08/508004
(page 1).

Surajit Chaudhuri and Vivek Narasayya. “Self-Tuning Database

Systems: A Decade of Progress”. In: Proc. VLDB. 2007, pp. 3-14.
ISBN: 9781595936493 (page 125).

https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/1409360.1409380
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.1145/1941487.1941507
https://www.redbooks.ibm.com/redpapers/pdfs/redp5097.pdf
https://doi.org/10.1088/1748-0221/3/08/s08004

BIBLIOGRAPHY 135

[37]

[40]

[45]

Yu Cheng and Florin Rusu. “Parallel In-situ Data Processing
with Speculative Loading”. In: Proc. SIGMOD. 2014, pp. 1287-
1298. 1SBN: 978-1-4503-2376-5. DOI: 10.1145/2588555. 2593673
(pages 88, 92, 118).

Derek Chiou, Prabhat Jain, Larry Rudolph, and Srinivas Devadas.
“Application-Specific Memory Management for Embedded Sys-
tems Using Software-Controlled Caches”. In: Proc. DAC. ACM,
2000, pp. 416-419. 1sBN: 1-58113-187-9. DOI: 10.1145/337292.
337523 (page 83).

Sangyeun Cho and Lei Jin. “Managing Distributed, Shared L2
Caches Through OS-Level Page Allocation”. In: Proc. MICRO.
IEEE Computer Society, 2006, pp. 455-468. 1SBN: 0-7695-2732-9.
DoI: 10.1109/MICRO.2006.31 (page 82).

Young Hoon Cho, Gareth Coates, Bartlomiej Grabowski, and
Volker Haug. IBM Power Systems 5922, S914, and 5924: Technical
Overview and Introduction. IBM, July 2018. URL: http://www.
redbooks . ibm. com/ redpapers /pdfs /redp5497 . pdf (pages 16,
19).

Hong-Tai Chou and David J. DeWitt. “An Evaluation of Buffer

Management Strategies for Relational Database Systems”. In:
Proc. VLDB. 1985, pp. 127-141 (page 84).

Cisco. TPC Benchmark H Full Disclosure Report for Cisco UCS
C480 M5 Rack-Mount Server using Microsoft SQL Server 2017
Enterprise Edition and Red Hat Enterprise Linux 7.6. 2019. URL:
http://www.tpc.org/3337 (page 44).

Edgar F. Codd. “A Relational Model of Data for Large Shared
Data Banks”. In: Commun. ACM 13.6 (June 1970), pp. 377-387.
ISSN: 0001-0782. po1: 10.1145/362384.362685 (page 1).

Edith Cohen. “All-Distances Sketches, Revisited: HIP Estimators
for Massive Graphs Analysis”. In: Proc. PODS. 2014, pp. 88—
99. 1sBN: 978-1-4503-2375-8. Do1: 10 . 1145/ 2594538 . 2594546
(page 97).

Richard Cole and Vijaya Ramachandran. “Resource Oblivious
Sorting on Multicores”. In: ACM Trans. Parallel Comput. 3.4
(Mar. 2017), 23:1-23:31. 1sSN: 2329-4949. port: 10.1145/3040221
(page 82).

Yann Collet, et al. LZ4. UrL: http://www.1z4.org/ (visited on
08/21/2019) (pages 110, 116).

https://doi.org/10.1145/2588555.2593673
https://doi.org/10.1145/337292.337523
https://doi.org/10.1145/337292.337523
https://doi.org/10.1109/MICRO.2006.31
http://www.redbooks.ibm.com/redpapers/pdfs/redp5497.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5497.pdf
http://www.tpc.org/3337
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/2594538.2594546
https://doi.org/10.1145/3040221
http://www.lz4.org/

136

[47]

[48]

[52]

BIBLIOGRAPHY

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. 3rd ed. The MIT Press,
2009. 1sSBN: 9780262033848 (page 93).

Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien
Gaud, Renaud Lachaize, Baptiste Lepers, Vivien Quema, and
Mark Roth. “Traffic Management: A Holistic Approach to Mem-
ory Placement on NUMA Systems”. In: Proc. ASPLOS. ACM,
2013, pp. 381-394. 1SBN: 9781450318709. DOI: 10.1145/2451116.
2451157 (page 49).

Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data Center
Energy Consumption Modeling: A Survey”. In: IEEE Commun.
Surv. Tutorials 18.1 (2016), pp. 732-794. Do1: 10.1109/COMST .
2015.2481183 (page 4).

Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In:
Commun. ACM 56.2 (2013), pp. 74—80. 1ssN: 0001-0782. DoOI:
10.1145/2408776.2408794 (pages 4, 102).

Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stone-
braker, and Stanley B. Zdonik. “Anti-Caching: A New Approach
to Database Management System Architecture”. In: Proc. VLDB
(2013), pp. 1942-1953. DOI: 10. 14778/2556549 . 2556575 (page 48).

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
“Dynamo: Amazon’s Highly Available Key-Value Store”. In: Proc.
SOSP. 2007, pp. 205-220. 1SBN: 978-1-59593-591-5. po1: 10.1145/
1294261.1294281 (pages 4, 102).

Peter J. Denning and Ted G. Lewis. “Exponential Laws of Com-
puting Growth”. In: Commun. ACM 60.1 (Dec. 2016), pp. 54-65.
1SsN: 0001-0782. po1: 10.1145/2976758 (pages 4, 15).

Ulrich Drepper. What Every Programmer Should Know About
Memory. 2007. URL: https://people. freebsd.org/~lstewart/
articles/cpumemory.pdf (visited on 09/01/2020) (page 20).

Adam Dziedzic, Manos Karpathiotakis, loannis Alagiannis, Raja
Appuswamy, and Anastasia Ailamaki. “DBMS Data Loading:
An Analysis on Modern Hardware”. In: In Proc. ADMS/IMDM.
2016, pp. 95-117. 1SBN: 978-3-319-56111-0. pOI1: 10.1007/978-3-
319-56111-0_6 (page 117).

https://doi.org/10.1145/2451116.2451157
https://doi.org/10.1145/2451116.2451157
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.14778/2556549.2556575
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/2976758
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://doi.org/10.1007/978-3-319-56111-0_6
https://doi.org/10.1007/978-3-319-56111-0_6

BIBLIOGRAPHY 137

[56]

[60]

[61]

S. Economo, D. Cingolani, A. Pellegrini, and F. Quaglia. “Con-
figurable and Efficient Memory Access Tracing via Selective
Expression-Based x86 Binary Instrumentation”. In: Proc. MAS-
COTS. 2016, pp. 261-270. po1: 10 . 1109 / MASCOTS . 2016 . 69
(page 47).

Ahmed Eldawy, Justin J. Levandoski, and Per-Ake Larson.
“Trekking Through Siberia: Managing Cold Data in a Memory-
Optimized Database”. In: Proc. VLDB (2014), pp. 931-942. por:
10.14778/2732967.2732968 (pages 48, 126).

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems. 7th ed. London, England: Pearson, 2016. 1SBN:
9780133970777 (page 1).

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. “Dark Silicon and the End
of Multicore Scaling”. In: SIGARCH Comput. Archit. News 39.3
(June 2011), pp. 365-376. 1sSN: 0163-5964. DOI: 10.1145/2024723.
2000108 (pages 16, 52).

Facebook. Zstandard — Fast Real-Time Compression Algorithm.
URL: http://www.zstd.net/ (visited on 08/21/2019) (page 116).

Franz Firber, Alfons Kemper, Per-Ake Larson, Justin J. Levan-
doski, Thomas Neumann, and Andrew Pavlo. “Main Memory
Database Systems”. In: Found. Trends Databases 8.1-2 (2017),
pp. 1-130. po1: 10.1561/1900000058 (page 25).

Franz Farber, Norman May, Wolfgang Lehner, Philipp Grofle,
Ingo Miiller, Hannes Rauhe, and Jonathan Dees. “The SAP
HANA Database — An Architecture Overview”. In: Data Eng.
Bull. 35.1 (2012), pp. 28-33. URL: http://sites.computer.org/
debull/A12mar/hana.pdf (pages 26, 54, 89, 119).

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meu-
nier. “Hyperloglog: The Analysis of a Near-Optimal Cardinality
Estimation Algorithm”. In: Proc. AOFA. 2007 (page 97).

Jessie Frazelle. “Chipping Away at Moore’s Law”. In: Queue 18.1
(Feb. 2020), pp. 5-15. 1sSN: 1542-7730. Do1: 10.1145/3387945.
3388515 (page 15).

Kelly A. Frazer, Dennis G. Ballinger, David R. Cox, et al. “A
Second Generation Human Haplotype Map of Over 3.1 Million
SNPs”. In: Nature 449.1 (2007), pp. 851-861. po1: 10.1038/natur
e06258 (page 1).

https://doi.org/10.1109/MASCOTS.2016.69
https://doi.org/10.14778/2732967.2732968
https://doi.org/10.1145/2024723.2000108
https://doi.org/10.1145/2024723.2000108
http://www.zstd.net/
https://doi.org/10.1561/1900000058
http://sites.computer.org/debull/A12mar/hana.pdf
http://sites.computer.org/debull/A12mar/hana.pdf
https://doi.org/10.1145/3387945.3388515
https://doi.org/10.1145/3387945.3388515
https://doi.org/10.1038/nature06258
https://doi.org/10.1038/nature06258

138

[66]

[69]

[74]

[75]

BIBLIOGRAPHY

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. “Cache-Oblivious Algorithms”. In: Proc. FOCS.
IEEE Computer Society, 1999, pp. 285-. 1SBN: 0-7695-0409-4
(page 82).

Florian Funke, Alfons Kemper, and Thomas Neumann. “Com-
pacting Transactional Data in Hybrid OLTP&OLAP Databases”.
In: Proc. VLDB (2012), pp. 1424-1435. 1ssN: 2150-8097. por1: 10.
14778/2350229.2350258 (pages 7, 41, 48).

Henning Funke, Sebastian Bref3, Stefan Noll, Volker Markl, and
Jens Teubner. “Pipelined Query Processing in Coprocessor En-
vironments”. In: Proc. SIGMOD. ACM, 2018, pp. 1603-1618. por:
10.1145/3183713.3183734 (page 11).

Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Car-
reira, Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott
Shenker. “Network Requirements for Resource Disaggregation”.
In: Proc. OSDI. USENIX Association, 2016, pp. 249-264. ISBN:
9781931971331 (page 128).

Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli,
and Donald Kossmann. “Speculative Distributed CSV Data Pars-
ing for Big Data Analytics”. In: Proc. SIGMOD. 2019, pp. 883-
899. 1SBN: 978-1-4503-5643-5. DO1: 10.1145/3299869 . 3319898
(pages 99, 118).

Kyle Geiger. Inside ODBC. Redmond, WA, USA: Microsoft Press,
1995. 1sBN: 1-55615-815-7 (page 117).

Jana Giceva, Gustavo Alonso, Timothy Roscoe, and Tim Harris.
“Deployment of Query Plans on Multicores”. In: Proc. VLDB
(2014), pp- 233-244. por: 10.14778/2735508.2735513 (page 7).

Jana Giceva, Tudor-Ioan Salomie, Adrian Schiipbach, Gustavo
Alonso, and Timothy Roscoe. “COD: Database / Operating Sys-
tem Co-Design”. In: Proc. CIDR. 2013. URL: http://cidrdb.org/
cidr2013/Papers/CIDR13%5C_Paper71.pdf (page 7).

Google. Snappy, a Fast Compressor/Decompressor. URL: https:
//github.com/google/snappy (visited on 08/21/2019) (page 116).

Google. Virtual Private Cloud Resource Quotas. URL: https://
cloud . google . com/ vpc/ docs / quota (visited on 08/21/2019)
(page 101).

Brendan Gregg. Systems Performance: Enterprise and the Cloud.
1st. Prentice Hall Press, 2013. 1sBN: 9780133390094 (page 102).

https://doi.org/10.14778/2350229.2350258
https://doi.org/10.14778/2350229.2350258
https://doi.org/10.1145/3183713.3183734
https://doi.org/10.1145/3299869.3319898
https://doi.org/10.14778/2735508.2735513
http://cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper71.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper71.pdf
https://github.com/google/snappy
https://github.com/google/snappy
https://cloud.google.com/vpc/docs/quota
https://cloud.google.com/vpc/docs/quota

BIBLIOGRAPHY 139

[77]

[78]

[79]

[81]

802.3 WG - Ethernet Working Group. 802.3-2018 — IEEE Standard
for Ethernet. 2018. URL: https://standards.ieee.org/standard/
802_3-2018.htnl (page 17).

Martin Grund, Jens Kriiger, Hasso Plattner, Alexander Zeier,
Philippe Cudre-Mauroux, and Samuel R. Madden. “HYRISE: A
Main Memory Hybrid Storage Engine”. In: Proc. VLDB (2010),
pp- 105-116. 1ssN: 2150-8097. por: 10.14778/1921071.1921077
(pages 27, 28).

Gabriel Haas, Michael Haubenschild, and Viktor Leis. “Exploit-
ing Directly-Attached NVMe Arrays in DBMS”. In: Proc. CIDR.
2020. URL: http://cidrdb. org/cidr2020/papers/pl16-haas-
cidr20.pdf (page 18).

Theo Haerder and Andreas Reuter. “Principles of Transaction-
Oriented Database Recovery”. In: ACM Comput. Surv. 15.4 (Dec.
1983), pp. 287-317. 1ssN: 0360-0300. por1: 10 . 1145/ 289 . 291
(page 26).

Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ay-
ers, Heiner Litz, Jichuan Chang, Christos Kozyrakis, and
Parthasarathy Ranganathan. “Learning Memory Access Pat-
terns”. In: Proc. ICML. 2018, pp. 1924-1933. URL: http : / /
proceedings.mlr.press/v80/hashemi18a.html (pages 24, 49).

Bingsheng He and Qiong Luo. “Cache-Oblivious Query Process-
ing”. In: Proc. CIDR. 2007, pp. 44-55. URL: http://cidrdb.org/
cidr2007/papers/cidro7p05.pdf (page 82).

John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach. 6th ed. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 2017. 1sBN: 0128119055 (pages 14,
19, 126).

A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R.
Singhal, and R. Iyer. “Cache QoS: From Concept to Reality in
the Intel Xeon Processor E5-2600 v3 Product Family”. In: Proc.
HPCA. IEEE Computer Society, Mar. 2016, pp. 657-668. DOI:
10.1109/HPCA.2016.7446102 (page 83).

Jason Hiebel, Laura E. Brown, and Zhenlin Wang. “Machine
Learning for Fine-Grained Hardware Prefetcher Control”. In:
Proc. ICPP. ACM, 2019. 1sBN: 9781450362955. po1: 10 . 1145/
3337821.3337854 (page 49).

https://standards.ieee.org/standard/802_3-2018.html
https://standards.ieee.org/standard/802_3-2018.html
https://doi.org/10.14778/1921071.1921077
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://doi.org/10.1145/289.291
http://proceedings.mlr.press/v80/hashemi18a.html
http://proceedings.mlr.press/v80/hashemi18a.html
http://cidrdb.org/cidr2007/papers/cidr07p05.pdf
http://cidrdb.org/cidr2007/papers/cidr07p05.pdf
https://doi.org/10.1109/HPCA.2016.7446102
https://doi.org/10.1145/3337821.3337854
https://doi.org/10.1145/3337821.3337854

140

[86]

[89]

[90]

[91]

[92]

[93]

BIBLIOGRAPHY

IBM. IBM Db2 Version 11.1 Data Movement Utilities and Reference.
URL: https://www. ibm. com/support/knowledgecenter/SSEPGG_
11.171.0/com. ibm. db2. luw. admin. dm. doc/com. ibm. db2 .
luw . admin . dm. doc - gentopicl . html (visited on 08/21/2019)
(page 117).

IDC. Worldwide Ethernet Switch and Router Trackers. May 2019.

URL: https://www.idc.com/getdoc. jsp?containerld=prus45119
319 (visited on 08/21/2019) (page 101).

Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold,
K. Sjoerd Mullender, and Martin L. Kersten. “MonetDB: Two
Decades of Research in Column-oriented Database Architec-
tures”. In: Data Eng. Bull. 35.1 (2012), pp. 40-45. URL: http:
//sites.computer.org/debull/A12mar/monetdb. pdf (page 27).

Intel. Improving Real-Time Performance by Utilizing Cache Al-
location Technology. White Paper, Apr. 2015. URL: https://
www . intel . com/content /www/us/en/communications /cache-
allocation-technology-white-paper.html (pages 20, 24, 53, 59,
67).

Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. May 2020. URL: https: //software . intel . com/en-
us/articles/intel-sdm (pages 17-20, 23, 24, 42).

Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. May 2020. URL: https: //software. intel . com/en-us/
articles/intel-sdm (pages 16, 23, 33-36, 68, 125, 126).

Intel. Threading Building Blocks. URL: https://github. com/
0Torg/tbb (visited on 08/21/2019) (page 98).

Intel. User Interface for Resource Allocation in Intel Resource Di-
rector Technology. Documentation of the Linux Kernel, 2017.
URL: https://www.kernel.org/doc/Documentation/x86/intel_
rdt_ui.txt (visited on 10/01/2017) (page 68).

Intel. VTune Profiler. urL: https://software.intel.com/vtune/
(visited on 03/31/2020) (pages 32, 33).

Intel. VTune Profiler: Memory Access Analysis. URL: https://sof
tware. intel.com/en-us/vtune-help-memory-access-analysis
(visited on 03/31/2020) (pages 32, 34).

Zsolt Istvan, David Sidler, and Gustavo Alonso. “Caribou: Intelli-
gent Distributed Storage”. In: Proc. VLDB (2017), pp. 1202-1213.
ISSN: 2150-8097. po1: 10.14778/3137628.3137632 (page 7).

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dm.doc/com.ibm.db2.luw.admin.dm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dm.doc/com.ibm.db2.luw.admin.dm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dm.doc/com.ibm.db2.luw.admin.dm.doc-gentopic1.html
https://www.idc.com/getdoc.jsp?containerId=prUS45119319
https://www.idc.com/getdoc.jsp?containerId=prUS45119319
http://sites.computer.org/debull/A12mar/monetdb.pdf
http://sites.computer.org/debull/A12mar/monetdb.pdf
https://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
https://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
https://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/01org/tbb
https://github.com/01org/tbb
https://www.kernel.org/doc/Documentation/x86/intel_rdt_ui.txt
https://www.kernel.org/doc/Documentation/x86/intel_rdt_ui.txt
https://software.intel.com/vtune/
https://software.intel.com/en-us/vtune-help-memory-access-analysis
https://software.intel.com/en-us/vtune-help-memory-access-analysis
https://doi.org/10.14778/3137628.3137632

BIBLIOGRAPHY 141

[97]

[101]

[102]

[103]

[104]

[105]

Akanksha Jain and Calvin Lin. “Linearizing Irregular Memory
Accesses for Improved Correlated Prefetching”. In: Proc. MICRO.
ACM, 2013, pp. 247-259. 1sSBN: 9781450326384. po1: 10.1145/
2540708.2540730 (page 24).

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun
Lee, Nate Foster, Changhoon Kim, and Ion Stoica. “NetCache:
Balancing Key-Value Stores with Fast In-Network Caching”. In:
Proc. SOSP. ACM, 2017, pp. 121-136. 1sBN: 9781450350853. DOTI:
10.1145/3132747.3132764 (page 128).

Kaan Kara, Jana Giceva, and Gustavo Alonso. “FPGA-Based Data
Partitioning”. In: Proc. SIGMOD. ACM, 2017, pp. 433-445. ISBN:
9781450341974. por1: 10.1145/3035918.3035946 (page 84).

Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Aila-
maki. “Fast Queries over Heterogeneous Data Through Engine
Customization”. In: Proc. VLDB (2016), pp. 972-983. 1sSN: 2150-
8097. DoI: 10.14778/2994509.2994516 (pages 88, 127).

Christopher M. Kohlhoff. Asio C++ Library. urL: https://github.
com/chriskohlhoff/asio (visited on 08/21/2019) (page 98).

Yong Sik Kwon, Joo Yeon Lee, Juchang Lee, Chulwon Lee,
Christian Bensberg, Michael Muehle, Franz Farber, Wolfgang
Lehner, and Arthur H. Lee. “SAP HANA Distributed In-Memory
Database System: Transaction, Session, and Metadata Manage-
ment”. In: Proc. ICDE. IEEE Computer Society, 2013, pp. 1165—
1173. 1SBN: 9781467349093. po1: 10.1109/ICDE. 2013 . 6544906

(page 26).
Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. “MemProf:

A Memory Profiler for NUMA Multicore Systems”. In: Proc. ATC.
USENIX Association, 2012, p. 5 (pages 32, 48).

Tirthankar Lahiri, Shasank Chavan, Maria Colgan, et al. “Oracle
Database In-Memory: A Dual Format In-Memory Database”.
In: Proc. ICDE. 2015, pp. 1253-1258. po1: 10.1109/ICDE. 2015.
7113373 (pages 27, 28).

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran,
Ben Vandiver, Lyric Doshi, and Chuck Bear. “The Vertica An-
alytic Database: C-store 7 Years Later”. In: Proc. VLDB (2012),
pp. 1790-1801. 1SsN: 2150-8097. DoI: 10.14778/2367502.2367518
(pages 27, 28, 89, 119).

https://doi.org/10.1145/2540708.2540730
https://doi.org/10.1145/2540708.2540730
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3035918.3035946
https://doi.org/10.14778/2994509.2994516
https://github.com/chriskohlhoff/asio
https://github.com/chriskohlhoff/asio
https://doi.org/10.1109/ICDE.2013.6544906
https://doi.org/10.1109/ICDE.2015.7113373
https://doi.org/10.1109/ICDE.2015.7113373
https://doi.org/10.14778/2367502.2367518

142

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

BIBLIOGRAPHY

Harald Lang, Tobias Miihlbauer, Florian Funke, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. “Data Blocks: Hybrid
OLTP and OLAP on Compressed Storage Using Both Vector-
ization and Compilation”. In: Proc. SIGMOD. 2016, pp. 311-326.
DOI: 10.1145/2882903. 2882925 (page 27).

Geoff Langdale and Daniel Lemire. “Parsing Gigabytes of JSON
per Second”. In: VLDB journal 28.6 (Dec. 2019), pp. 941-960.
ISSN: 0949-877X. DOI: 10.1007/500778-019-00578-5 (page 118).

Per-Ake Larson, Cipri Clinciu, Campbell Fraser, et al. “Enhance-
ments to SQL Server Column Stores”. In: Proc. SIGMOD. ACM,
2013, pp. 1159-1168. 1SBN: 9781450320375. DOI: 10.1145/2463676.
2463708 (page 27).

Per-Ake Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks,
Susan L. Price, Srikumar Rangarajan, Aleksandras Surna, and
Qingqing Zhou. “SQL Server Column Store Indexes”. In: Proc.
SIGMOD. 2011, pp. 1177-1184. 1SBN: 978-1-4503-0661-4. DOLI:
10.1145/1989323.1989448 (pages 27, 89, 119).

Donghun Lee, Andrew Chang, Minseon Ahn, et al. “Optimizing
Data Movement With Near-Memory Acceleration of In-memory
DBMS?”. In: Proc. EDBT. 2020, pp. 371-374. Do1: 10.5441/002/
edbt.2020.35 (page 84).

Rubao Lee, Xiaoning Ding, Feng Chen, Qingda Lu, and Xiaodong
Zhang. “MCC-DB: Minimizing Cache Conflicts in Multi-Core
Processors for Databases”. In: Proc. VLDB (2009), pp. 373-384.
ISSN: 2150-8097. por: 10.14778/1687627 . 1687670 (pages 7, 65,
66, 82, 83, 126).

Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neu-
mann. “Morsel-Driven Parallelism: A NUMA-Aware Query Eval-
uation Framework for the Many-Core Age”. In: Proc. SIGMOD.
ACM, 2014, pp. 743-754. 1SBN: 9781450323765. po1: 10.1145/
2588555.2610507 (page 19).

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas
Neumann. “LeanStore: In-Memory Data Management beyond
Main Memory”. In: Proc. ICDE. IEEE Computer Society, 2018,
pp. 185-196. DOI: 10.1109/ICDE . 2018.00026 (page 48).

https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1007/s00778-019-00578-5
https://doi.org/10.1145/2463676.2463708
https://doi.org/10.1145/2463676.2463708
https://doi.org/10.1145/1989323.1989448
https://doi.org/10.5441/002/edbt.2020.35
https://doi.org/10.5441/002/edbt.2020.35
https://doi.org/10.14778/1687627.1687670
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1109/ICDE.2018.00026

BIBLIOGRAPHY 143

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Christian Lemke, Kai-Uwe Sattler, Franz Farber, and Alexander
Zeier. “Speeding up Queries in Column Stores: A Case for Com-
pression”. In: Proc. DaWaK. Springer-Verlag, 2010, pp. 117-129.
ISBN: 3642151043 (page 27).

Alberto Lerner, Rana Hussein, and Philippe Cudré-Mauroux.
“The Case for Network Accelerated Query Processing”. In: Proc.
CIDR. 2019. UrL: http://cidrdb.org/cidr2019/papers/pl142-
lerner-cidr19.pdf (page 128).

Justin J. Levandoski, Per-Ake Larson, and Radu Stoica. “Identi-
tying Hot and Cold Data in Main-Memory Databases”. In: Proc.
ICDE. IEEE Computer Society, 2013, pp. 26—-37. po1: 10.1109/
ICDE.2013.6544811 (pages 7, 48).

Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya.
“Accelerating Relational Databases by Leveraging Remote Mem-
ory and RDMA”. In: Proc. SIGMOD. ACM, 2016, pp. 355-370.
ISBN: 9781450335317. poI: 10.1145/2882903.2882949 (page 17).

Letitia W. Li, Guillaume Duc, and Renaud Pacalet. “Hardware-
Assisted Memory Tracing on New SoCs Embedding FPGA
Fabrics”. In: Proc. ACSAC. ACM, 2015, pp. 461-470. ISBN:
9781450336826. DOI: 10.1145/2818000.2818030 (page 47).

Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou,
Chiaheng Tu, and Hucheng Zhou. “Machine Learning-Based
Prefetch Optimization for Data Center Applications”. In: Proc.
SC. ACM, 2009. 1sBN: 9781605587448. DO1: 10.1145/1654059 .
1654116 (page 49).

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong
Zhang, and P. Sadayappan. “Gaining Insights into Multicore
Cache Partitioning: Bridging the Gap Between Simulation and
Real Systems”. In: Proc. HPCA. IEEE Computer Society, Feb.
2008, pp. 367-378. po1: 10.1109/HPCA.2008.4658653 (page 67).

Linux Kernel Developers. Perf. URL: https://perf.wiki.kernel.
org/ (visited on 03/31/2020) (pages 32, 33).

Linux Kernel Developers. Transparent Hugepage Support. Docu-
mentation of the Linux Kernel. urL: https://www.kernel.org/
doc/Documentation/vm/transhuge. txt (visited on 09/01/2020)

(page 20).

http://cidrdb.org/cidr2019/papers/p142-lerner-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p142-lerner-cidr19.pdf
https://doi.org/10.1109/ICDE.2013.6544811
https://doi.org/10.1109/ICDE.2013.6544811
https://doi.org/10.1145/2882903.2882949
https://doi.org/10.1145/2818000.2818030
https://doi.org/10.1145/1654059.1654116
https://doi.org/10.1145/1654059.1654116
https://doi.org/10.1109/HPCA.2008.4658653
https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt

144

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

BIBLIOGRAPHY

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. “Heracles: Improving Re-
source Efficiency at Scale”. In: Proc. ISCA. ACM, 2015, pp. 450-
462. 1SBN: 9781450334020. DOI: 10 . 1145 / 2749469 . 2749475
(page 83).

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. “Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation”. In: SIGPLAN Not. 40.6
(June 2005), pp. 190-200. 1ssN: 0362-1340. DOI: 10.1145/1064978.
1065034 (pages 32, 34, 46, 47).

Clemens Lutz, Sebastian Bref3, Steffen Zeuch, Tilmann Rabl, and
Volker Markl. “Pump Up the Volume: Processing Large Data on
GPUs with Fast Interconnects”. In: Proc. SIGMOD. ACM, 2020,
pp. 1633-1649. 1SBN: 9781450367356. DOI: 10 . 1145/ 3318464 .
3389705 (page 7).

Stefan Manegold, Peter A. Boncz, and Martin L. Kersten.
“Generic Database Cost Models for Hierarchical Memory Sys-
tems”. In: Proc. VLDB. 2002, pp. 191-202. por: 10.5555/1287369.
1287387 (pages 7, 65, 84).

Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. “Op-
timizing Main-Memory Join on Modern Hardware”. In: Trans.
Know. and Data Eng. 14.4 (July 2002), pp. 709-730. 1SsN: 1041-
4347. po1: 10.1109/TKDE.2002.1019210 (page 82).

Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. “What
Happens During a Join? Dissecting CPU and Memory Optimiza-
tion Effects”. In: Proc. VLDB. 2000, pp. 339-350. 1sBN: 1558607153
(page 20).

Stefan Manegold, Peter A. Boncz, Niels Nes, and Martin Kersten.
“Cache-Conscious Radix-Decluster Projections”. In: Proc. VLDB.
2004, pp. 684-695. 1SBN: 0-12-088469-0. DOI: 10.5555/1316689.
1316749 (page 55).

Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. “Feedback-
Directed Page Placement for CC(NUMA via Hardware-Generated
Memory Traces”. In: . Parallel Distrib. Comput. 70.12 (Dec. 2010),
pp- 1204-1219. 1sSN: 0743-7315. po1: 10.1016/ 7. jpdc.2010.08.
015 (page 49).

https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.5555/1287369.1287387
https://doi.org/10.5555/1287369.1287387
https://doi.org/10.1109/TKDE.2002.1019210
https://doi.org/10.5555/1316689.1316749
https://doi.org/10.5555/1316689.1316749
https://doi.org/10.1016/j.jpdc.2010.08.015
https://doi.org/10.1016/j.jpdc.2010.08.015

BIBLIOGRAPHY 145

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

Joe Mario. C2C — False Sharing Detection in Linux Perf. Sept. 2016.
URL: https://joemario.github.io/blog/2016/09/01/c2c-blog/
(visited on 03/31/2020) (pages 32, 36).

Paul Menage, Paul Jackson, and Christoph Lameter. Control
Groups. Documentation of the Linux Kernel. URL: https: //
www . kernel . org/doc/Documentation/cgroup-v1/cgroups. txt
(visited on 09/01/2020) (page 126).

Microsoft. Microsoft SQL Server 2008: The Data Loading Perfor-
mance Guide. 2009. URL: https: //docs . microsoft . com/en-
us/previous-versions/sql/sql-server-2008/dd425070(v=sql.
100) (visited on 08/21/2019) (page 89).

Microsoft. Microsoft SQL Server 2017 Documentation. URL: https:
//docs . microsoft.com/en-us/sql/sql-server/sql-server-
technical - documentation?view=sql - server-2017 (visited on
08/21/2019) (page 117).

Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker.
“Revisiting Network Support for RDMA”. In: Proc. SIGCOMM.
ACM, 2018, pp. 313-326. 1SBN: 9781450355674. pO1: 10.1145/
3230543.3230557 (page 17).

Gordon E. Moore. “Cramming More Components onto Inte-
grated Circuits, Reprinted from Electronics, Volume 38, Number
8, April 19, 1965, pp.114 ft.” In: IEEE Solid-State Circuits Society
Newsletter 11.3 (Sept. 2006), pp. 33—35. 1SsN: 1098-4232. poI:
10.1109/N-SSC.2006.4785860 (page 15).

Tobias Miihlbauer, Wolf Rodiger, Robert Seilbeck, Angelika
Reiser, Alfons Kemper, and Thomas Neumann. “Instant Loading
for Main Memory Databases”. In: Proc. VLDB (2013), pp. 1702—
1713. 1sSN: 2150-8097. po1: 10.14778/2556549. 2556555 (pages 88,
92, 99, 118).

Ingo Miller. “Engineering Aggregation Operators for Relational
In-Memory Database Systems”. PhD thesis. Karlsruhe Institute
of Technology, Germany, 2016 (page 14).

Ingo Miller and Cornelius Ratsch and Franz Farber. “Adaptive
String Dictionary Compression in In-Memory Column-Store
Database Systems”. In: Proc. EDBT. 2014, pp. 283-294. DO1: 10.
5441/002/edbt.2014.27 (page 28).

https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008/dd425070(v=sql.100)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008/dd425070(v=sql.100)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008/dd425070(v=sql.100)
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation?view=sql-server-2017
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.14778/2556549.2556555
https://doi.org/10.5441/002/edbt.2014.27
https://doi.org/10.5441/002/edbt.2014.27

146

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

BIBLIOGRAPHY

Ingo Miiller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner,
and Franz Farber. “Cache-Efficient Aggregation: Hashing Is
Sorting”. In: Proc. SIGMOD. ACM, 2015, pp. 1123-1136. ISBN:
978-1-4503-2758-9. DOI: 10.1145/2723372.2747644 (pages 7, 82).

MySQL. MySQL 8.0 Reference Manual: LOAD DATA Statement.
URL: https://dev.mysql.com/doc/refman/8.0/en/load-
data.html (visited on 08/21/2019) (page 117).

MySQL. MySQL 8.0 Reference Manual: The CSV Storage Engine.
URL: https://dev.mysql.com/doc/refman/8.0/en/csv-storage-
engine.html (visited on 08/21/2019) (page 118).

Nicholas Nethercote and Julian Seward. “Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation”. In:
SIGPLAN Not. 42.6 (June 2007), pp. 89-100. 1ssN: 0362-1340. DOTI:
10.1145/1273442.1250746 (pages 32, 34, 46, 47).

Thomas Neumann. “Efficiently Compiling Efficient Query Plans
for Modern Hardware”. In: Proc. VLDB (2011), pp. 539-550. ISSN:
2150-8097. po1: 10.14778/2002938.2002940 (page 7).

Thomas Neumann and Michael J. Freitag. “Umbra: A Disk-Based
System with In-Memory Performance”. In: Proc. CIDR. 2020. URL:
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
(pages 7, 42).

Stefan Noll, Henning Funke, and Jens Teubner. “Energy Effi-
ciency in Main-Memory Databases”. In: Datenbank-Spektrum
17.3 (2017), pp. 223-232. por: 10. 1007 /s13222-017-0262-9
(pages 10, 11).

Stefan Noll, Norman May, Alexander Bohm, Jan Mihlig, and
Jens Teubner. “From the Application to the CPU: Holistic Re-
source Management for Modern Database Management Sys-
tems”. In: Data Eng. Bull. 42.1 (2019), pp. 10-21. URL: http:
//sites.computer.org/debull/A19mar/p10.pdf (page 11).

Stefan Noll, Jens Teubner, Norman May, and Alexander B6hm.
“Accelerating Concurrent Workloads with CPU Cache Partition-
ing”. In: Proc. ICDE. 2018, pp. 437-448. por1: 10.1109/ICDE.2018.
00047 (pages 9-11, 52, 122).

Stefan Noll, Jens Teubner, Norman May, and Alexander Bohm.
“Analyzing Memory Accesses with Modern Processors”. In: Proc.
DaMoN. ACM, 2020. 1sBN: 9781450380249. po1: 10.1145/3399666.
3399896 (pages 9, 11, 32, 122).

https://doi.org/10.1145/2723372.2747644
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.14778/2002938.2002940
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1007/s13222-017-0262-9
http://sites.computer.org/debull/A19mar/p10.pdf
http://sites.computer.org/debull/A19mar/p10.pdf
https://doi.org/10.1109/ICDE.2018.00047
https://doi.org/10.1109/ICDE.2018.00047
https://doi.org/10.1145/3399666.3399896
https://doi.org/10.1145/3399666.3399896

BIBLIOGRAPHY 147

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Stefan Noll, Jens Teubner, Norman May, and Alexander Bohm.
“Shared Load(ing): Efficient Bulk Loading into Optimized Stor-
age”. In: Proc. CIDR. 2020. URL: http://cidrdb.org/cidr2020/
papers/p2-noll-cidr20.pdf (pages 9-11, 88, 122).

Aleix Roca Nonell, Balazs Gerofi, Leonardo Bautista-Gomez, Do-
minique Martinet, Viceng Beltran Querol, and Yutaka Ishikawa.
“On the Applicability of PEBS Based Online Memory Access
Tracking for Heterogeneous Memory Management at Scale”. In:
Proc. MCHPC. ACM, 2018, pp. 50-57. 1sBN: 9781450361132. DOTI:
10.1145/3286475. 3286477 (page 48).

Hideaki Ohno. C++ Implementation of HyperLogLog Algorithm
and HIP (Historic Inverse Probability) Estimator. URL: https://
github.com/hideo55/cpp-HyperLoglog (visited on 08/21/2019)
(page 97).

Matthaios Olma, Manos Karpathiotakis, Ioannis Alagiannis,
Manos Athanassoulis, and Anastasia Ailamaki. “Slalom: Coast-
ing Through Raw Data via Adaptive Partitioning and Index-
ing”. In: Proc. VLDB (2017), pp. 1106-1117. 1ssN: 2150-8097. DOI:
10.14778/3115404.3115415 (page 88).

Oracle. Oracle Database 18c Database Utilities: Part Il SQL *Loader.
URL: https://docs.oracle. com/en/database/oracle/oracle
- database /18 / sutil / oracle - sql - loader . html (visited on
08/21/2019) (pages 89, 117).

Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis,
and Thomas Willhalm. “SOFORT: A Hybrid SCM-DRAM Stor-
age Engine for Fast Data Recovery”. In: Proc. DaMoN. ACM, 2014.
ISBN: 9781450329712. por: 10.1145/2619228.2619236 (page 26).

David A. Patterson and John L. Hennessy. Computer Organiza-
tion and Design: The Hardware/Software Interface. 5th ed. The
Morgan Kaufmann Series in Computer Architecture and Design.
Academic Press, 2013. 1sBN: 9780124077263 (page 14).

Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris.
“Locating Cache Performance Bottlenecks Using Data Profiling”.
In: Proc. EuroSys. ACM, 2010, pp. 335-348. 1SBN: 9781605585772.
DoIL: 10.1145/1755913.1755947 (pages 32, 49).

Orson Peters. Pattern-Defeating Quicksort. URL: https://github.
com/orlp/pdgsort (visited on 08/21/2019) (page 98).

http://cidrdb.org/cidr2020/papers/p2-noll-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p2-noll-cidr20.pdf
https://doi.org/10.1145/3286475.3286477
https://github.com/hideo55/cpp-HyperLogLog
https://github.com/hideo55/cpp-HyperLogLog
https://doi.org/10.14778/3115404.3115415
https://docs.oracle.com/en/database/oracle/oracle-database/18/sutil/oracle-sql-loader.html
https://docs.oracle.com/en/database/oracle/oracle-database/18/sutil/oracle-sql-loader.html
https://doi.org/10.1145/2619228.2619236
https://doi.org/10.1145/1755913.1755947
https://github.com/orlp/pdqsort
https://github.com/orlp/pdqsort

148

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

BIBLIOGRAPHY

Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and Pinar
Toziin. “Open-Channel SSD (What is it Good For)”. In: Proc.
CIDR. 2020. URL: http://cidrdb.org/cidr2020/papers/p17-
picoli-cidr20.pdf (page 18).

Meikel Poess and Raghunath Othayoth Nambiar. “Energy Cost,
the Key Challenge of Today’s Data Centers: A Power Consump-
tion Analysis of TPC-C Results”. In: Proc. VLDB (2008), pp. 1229-
1240. 15sN: 2150-8097. po1: 10.14778/1454159.1454162 (page 4).

Meikel Poess and Dmitry Potapov. “Data Compression in Or-
acle”. In: Proc. VLDB. 2003, pp. 937-947. 1SBN: 0-12-722442-4
(pages 27, 89, 119).

Orestis Polychroniou and Kenneth A. Ross. “Vectorized Bloom
Filters for Advanced SIMD Processors”. In: Proc. DaMoN. ACM,
2014, 6:1-6:6. 1SBN: 978-1-4503-2971-2. po1: 10.1145/2619228.
2619234 (page 55).

PostgreSQL. PostgreSQL 11 Documentation: COPY. URL: https:
//www . postgresqgl . org/docs/11/sql-copy . html (visited on
08/21/2019) (page 117).

Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader
Sellami, and Anastasia Ailamaki. “Adaptive NUMA-Aware Data
Placement and Task Scheduling for Analytical Workloads in
Main-Memory Column-Stores”. In: Proc. VLDB (2016), pp. 37-48.
ISSN: 2150-8097. Do1: 10.14778/3015274.3015275 (pages 7, 19).

Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader
Sellami, and Anastasia Ailamaki. “Scaling Up Concurrent Main-
Memory Column-Store Scans: Towards Adaptive NUMA-Aware
Data and Task Placement”. In: Proc. VLDB (2015), pp. 1442-1453.
ISSN: 2150-8097. Do1: 10.14778/2824032.2824043 (pages 69, 70).

Moinuddin K. Qureshi and Yale N. Patt. “Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches”. In: Proc. MICRO. IEEE
Computer Society, 2006, pp. 423—-432. 1SBN: 0-7695-2732-9. DOI:
10.1109/MICRO. 2006 .49 (page 83).

Mark Raasveldt and Hannes Miithleisen. “Data Management for
Data Science — Towards Embedded Analytics”. In: Proc. CIDR.
2020. URL: http://cidrdb.org/cidr2020/papers/p23-raasveld
t-cidr20.pdf (page 38).

http://cidrdb.org/cidr2020/papers/p17-picoli-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p17-picoli-cidr20.pdf
https://doi.org/10.14778/1454159.1454162
https://doi.org/10.1145/2619228.2619234
https://doi.org/10.1145/2619228.2619234
https://www.postgresql.org/docs/11/sql-copy.html
https://www.postgresql.org/docs/11/sql-copy.html
https://doi.org/10.14778/3015274.3015275
https://doi.org/10.14778/2824032.2824043
https://doi.org/10.1109/MICRO.2006.49
http://cidrdb.org/cidr2020/papers/p23-raasveldt-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p23-raasveldt-cidr20.pdf

BIBLIOGRAPHY 149

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

Mark Raasveldt and Hannes Miihleisen. “Don’t Hold My Data
Hostage: A Case for Client Protocol Redesign”. In: Proc. VLDB
(2017), pp. 1022-1033. 1SSN: 2150-8097. DO1: 10.14778/3115404.
3115408 (pages 100, 119).

Raghu Ramakrishnan and Johannes Gehrke. Database Manage-
ment Systems. 3rd ed. McGraw-Hill, 2003. 1sBN: 978-0-07-115110-

8 (page 25).

Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. “A
Case for Fractured Mirrors”. In: Proc. VLDB. 2002, pp. 430-441
(page 28).

Vijayshankar Raman, Gopi Attaluri, Ronald Barber, et al. “DB2
with BLU Acceleration: So Much More than Just a Column

Store”. In: Proc. VLDB (2013), pp. 1080-1091. 1sSN: 2150-8097.
DOI: 10.14778/2536222.2536233 (pages 27, 28).

Jun Rao and Kenneth A. Ross. “Making B+-Trees Cache Con-
scious in Main Memory”. In: Proc. SIGMOD. 2000, pp. 475-486.
ISBN: 1-58113-217-4. poOI: 10.1145/342009. 335449 (page 29).

Steven J. Ross. C++ Implementation of Templated Hybrid String
Sort Algorithm in Boost Framework. URL: https://www.boost .
org/doc/1libs/1_69_0/1ibs/sort/doc/html/boost/sort/sprea
dsort/string_sort_idp52153312.html (visited on 08/21/2019)

(page 98).
Steven J. Ross. “The Spreadsort High-Performance General-

Case Sorting Algorithm”. In: Proc. PDPTA. CSREA Press, 2002,
pp. 1100-1106. 1SBN: 1-892512-89-0 (page 98).

Karl Rupp, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L.
Hammond, and C. Batten. Microprocessor Trend Data. 2020. URL:
https://github.com/karlrupp/microprocessor-trend-data
(visited on 09/15/2020) (page 16).

SAP. SAP HANA SQL and System Views Reference for SAP HANA
Platform 2.0 SPS 04. URL: https://help.sap.com/viewer/4fe295
14fd584807ac9f2a04f6754767/2.0.04/en-US/b4bleec1968f41a0
99c828a4a6c8cadf . html (visited on 08/21/2019) (page 117).

Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco
Canini, and Panos Kalnis. “In-Network Computation is a Dumb
Idea Whose Time Has Come”. In: Proc. HotNets. ACM, 2017,
pp. 150-156. 1SBN: 9781450355698. DoI: 10.1145/3152434.31524
61 (page 128).

https://doi.org/10.14778/3115404.3115408
https://doi.org/10.14778/3115404.3115408
https://doi.org/10.14778/2536222.2536233
https://doi.org/10.1145/342009.335449
https://www.boost.org/doc/libs/1_69_0/libs/sort/doc/html/boost/sort/spreadsort/string_sort_idp52153312.html
https://www.boost.org/doc/libs/1_69_0/libs/sort/doc/html/boost/sort/spreadsort/string_sort_idp52153312.html
https://www.boost.org/doc/libs/1_69_0/libs/sort/doc/html/boost/sort/spreadsort/string_sort_idp52153312.html
https://github.com/karlrupp/microprocessor-trend-data
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/3152434.3152461

150

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

BIBLIOGRAPHY

Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar,
and Didem Unat. “ComDetective: A Lightweight Communica-
tion Detection Tool for Threads”. In: Proc. SC. ACM, 2019. 1SBN:
9781450362290. por: 10.1145/3295500. 3356214 (page 49).

Tobias Scheuer, Norman May, Alexander Bohm, and Daniel
Scheibli. “JexLog: A Sonar for the Abyss”. In: Proc. VLDB (2016),
pp- 1493-1496. po1: 10.14778/3007263.3007292 (page 32).

Harald Servat, Germéan Llort, Juan Gonzalez, Judit Giménez,
and Jesus Labarta. “Low-Overhead Detection of Memory Access
Patterns and Their Time Evolution”. In: Euro-Par 2015: Parallel
Processing. Springer Berlin Heidelberg, 2015, pp. 57-69 (page 48).

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang.
“LegoOS: A Disseminated, Distributed OS for Hardware Re-
source Disaggregation”. In: Proc. OSDI. USENIX Association,
2018, pp. 69—-87. 1SBN: 9781931971478 (page 128).

Reza Sherkat, Colin Florendo, Mihnea Andrei, et al. “Native Store
Extension for SAP HANA”. In: Proc. VLDB (2019), pp. 2047-2058.
ISSN: 2150-8097. po1: 10.14778/3352063.3352123 (pages 28, 42).

Vishal Sikka, Franz Farber, Wolfgang Lehner, Sang Kyun Cha,
Thomas Peh, and Christof Bornhovd. “Efficient Transaction
Processing in SAP HANA Database: The End of a Column
Store Myth”. In: Proc. SIGMOD. ACM, 2012, pp. 731-742. 1SBN:
9781450312479. por: 10.1145/2213836.2213946 (page 26).

Avi Silberschatz, Henry F. Korth, and S. Sudarshan. Database
System Concepts. 7th ed. McGraw-Hill Book Company, 2020.
ISBN: 9780078022159 (pages 1, 25).

Sam Silvestro, Hongyu Liu, Tong Zhang, Changhee Jung, Dongy-
oon Lee, and Tongping Liu. “Sampler: PMU-Based Sampling to
Detect Memory Errors Latent in Production Software”. In: Proc.
MICRO. IEEE Press, 2018, pp. 231-244. 1SBN: 9781538662403. DOI:
10.1109/MICR0O.2018.00027 (page 49).

L. Soares, D. Tam, and M. Stumm. “Reducing the Harmful Effects
of Last-Level Cache Polluters with an OS-Level, Software-Only
Pollute Buffer”. In: Proc. MICRO. Nov. 2008, pp. 258-269. DOI:
10.1109/MICRO.2008.4771796 (page 82).

https://doi.org/10.1145/3295500.3356214
https://doi.org/10.14778/3007263.3007292
https://doi.org/10.14778/3352063.3352123
https://doi.org/10.1145/2213836.2213946
https://doi.org/10.1109/MICRO.2018.00027
https://doi.org/10.1109/MICRO.2008.4771796

BIBLIOGRAPHY 151

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki,
and Babak Falsafi. “Spatio-Temporal Memory Streaming”. In:
SIGARCH Comput. Archit. News 37.3 (June 2009), pp. 69—-80. ISSN:
0163-5964. por1: 10.1145/1555815.1555766 (page 24).

Michael Stonebraker and Ugur Cetintemel. ““One Size Fits All”:
An Idea Whose Time Has Come and Gone”. In: Proc. ICDE.
IEEE Computer Society, 2005, pp. 2—-11. I1SBN: 0769522858. DOI:
10.1109/ICDE.2005.1 (page 26).

Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu
Liu. “Redundant Loads: A Software Inefficiency Indicator”. In:
Proc. ICSE. IEEE Press, 2019, pp. 982-993. por: 10.1109/ICSE.
2019.00103 (pages 32, 49, 126).

Alex Szalay, Ani R. Thakar, and Jim Gray. “The sqlLoader Data-
Loading Pipeline”. In: Computing in Science and Engg. 10.1 (2008),
pp- 38—48. 15sN: 1521-9615. po1: 10.1109/MCSE . 2008. 18 (page 88).

David K. Tam, Reza Azimi, Livio B. Soares, and Michael Stumm.
“RapidMRC: Approximating L2 Miss Rate Curves on Commodity
Systems for Online Optimizations”. In: Proc. ASPLOS. ACM,
2009. 1sBN: 978-1-60558-406-5. DOI: 10.1145/1508244 . 1508259
(pages 48, 49, 82, 84).

Andrew S. Tanenbaum and David Wetherall. Computer Net-
works. 5th ed. Pearson Education, 2010. 1SBN: 978-0-13-212695-3

(page 17).
George Taylor, Peter Davies, and Michael Farmwald. “The TLB
Slice—a Low-Cost High-Speed Address Translation Mechanism”.

In: Proc. ISCA. ACM, 1990, pp. 355-363. 1SBN: 0-89791-366-3. DOTI:
10.1145/325164.325161 (page 66).

Micron Technology. M600 2.5-Inch SATA NAND Flash SSD. 2014.
URL: https://media-www.micron.com/-/media/client/global/
documents / products/data- sheet /ssd/m600 _2_5_ssd. pdf?

rev=ead5eb20949d47fcbbeb52e56ace0297 (visited on 09/01/2020)
(pages 17, 100).

Pinar Tozun, Islam Atta, Anastasia Ailamaki, and Andreas
Moshovos. “ADDICT: Advanced Instruction Chasing for Trans-
actions”. In: Proc. VLDB (2014), pp. 1893-1904. 1ssN: 2150-8097.
DOI: 10.14778/2733085. 2733095 (pages 48, 126).

https://doi.org/10.1145/1555815.1555766
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/ICSE.2019.00103
https://doi.org/10.1109/ICSE.2019.00103
https://doi.org/10.1109/MCSE.2008.18
https://doi.org/10.1145/1508244.1508259
https://doi.org/10.1145/325164.325161
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/ssd/m600_2_5_ssd.pdf?rev=ead5eb20949d47fcbbeb52e56ace0297
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/ssd/m600_2_5_ssd.pdf?rev=ead5eb20949d47fcbbeb52e56ace0297
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/ssd/m600_2_5_ssd.pdf?rev=ead5eb20949d47fcbbeb52e56ace0297
https://doi.org/10.14778/2733085.2733095

152

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

BIBLIOGRAPHY

Pinar Té6ziin, Brian Gold, and Anastasia Ailamaki. “OLTP
in Wonderland: Where Do Cache Misses Come from in Ma-
jor OLTP Components?” In: Proc. DaMoN. ACM, 2013. 1SBN:
9781450321969. DOI: 10.1145/2485278. 2485286 (page 48).

Transaction Processing Performance Council (TPC). TPC Bench-
mark H (Decision Support) Standard Specification Revision 2.17.1.
2018. URL: http://www. tpc. org/ tpc _documents _current _
versions/pdf/tpc-h_v2.17.1.pdf (pages 37, 71, 100).

F. Transier, C. Mathis, N. Bohnsack, and K. Stammerjohann. “Ag-
gregation in Parallel Computation Environments with Shared
Memory”. US Patent App. 12/978,194. 2012 (page 56).

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bo-
han Zhang. “Automatic Database Management System Tun-
ing Through Large-Scale Machine Learning”. In: Proc. SIGMOD.
ACM, 2017, pp. 1009-1024. 1sBN: 9781450341974. po1: 10.1145/
3035918.3064029 (pages 32, 125).

Vish Viswanathan, Karthik Kumar, Thomas Willhalm, Patrick
Lu, and Blazej Filipiak. Intel Memory Latency Checker v3.3. Apr.
2017. URL: https://software.intel.com/en-us/articles/inte
1r-memory-latency-checker (visited on 10/01/2017) (page 59).

Kefei Wang, Jian Liu, and Feng Chen. “Put an Elephant into a
Fridge: Optimizing Cache Efficiency for In-Memory Key-Value
Stores”. In: Proc. VLDB (2020), pp. 1540-1554. 1ssN: 2150-8097.
poI: 10At.14778/3397230.3397247 (page 83).

Vince Weaver. Linux Programmer’s Manual — perf_event_open.
URL: http://man7.org/linux/man-pages/man2/perf_event_
open.2.html (visited on 03/31/2020) (page 37).

Thomas Willhalm, Roman Dementiev, and Patrick Fay. Intel
Performance Counter Monitor. Jan. 2017. URL: www . intel . com/
software/pcm (visited on 10/01/2017) (page 59).

Thomas Willhalm, Ismail Oukid, Ingo Miiller, and Franz Farber.
“Vectorizing Database Column Scans with Complex Predicates”.
In: ADMS. 2013, pp. 1-12 (pages 28, 55, 60).

Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso
Plattner, Alexander Zeier, and Jan Schaffner. “SIMD-Scan: Ultra
Fast in-Memory Table Scan Using on-Chip Vector Processing
Units”. In: Proc. VLDB (2009), pp. 385-394. 1ssN: 2150-8097. DOTI:
10.14778/1687627.1687671 (pages 7, 28, 55, 60).

https://doi.org/10.1145/2485278.2485286
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3035918.3064029
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://doi.org/10´.14778/3397230.3397247
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
www.intel.com/software/pcm
www.intel.com/software/pcm
https://doi.org/10.14778/1687627.1687671

BIBLIOGRAPHY 153

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

NVM Express Workgroup. NVM Express Specifications. URL: htt
ps://nvmexpress.org/specifications/ (visited on 09/01/2020)

(page 18).
William A. Wulf and Sally A. McKee. “Hitting the Memory
Wall: Implications of the Obvious”. In: SSGARCH Comput. Archit.

News 23.1 (Mar. 1995), pp. 20—-24. 1sSN: 0163-5964. DOI: 10. 1145/
216585.216588 (page 14).

Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Ying-
wei Luo, and Zhenlin Wang. “DCAPS: Dynamic Cache Allo-
cation with Partial Sharing”. In: Proc. EuroSys. Porto, Portugal:
ACM, 2018. 1sBN: 9781450355841. po1: 10.1145/3190508.3190511

(pages 49, 84).

Dong Xie, Badrish Chandramouli, Yinan Li, and Donald Koss-
mann. “FishStore: Faster Ingestion With Subset Hashing”. In:
Proc. SIGMOD. 2019, pp. 1711-1728. 1SBN: 978-1-4503-5643-5.
DOI: 10.1145/3299869.3319896 (page 118).

Yang Ye, Kenneth A. Ross, and Norases Vesdapunt. “Scalable
Aggregation on Multicore Processors”. In: Proc. DaMoN. ACM,
2011, pp. 1-9. 1sBN: 978-1-4503-0658-4. DOI: 10.1145/1995441 .
1995442 (page 56).

Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim
Kraska. “Rethinking Database High Availability with RDMA
Networks”. In: Proc. VLDB (2019), pp. 1637-1650. 1ssN: 2150-8097.
DOI: 10.14778/3342263.3342639 (page 17).

Ji Zhang, Yu Liu, Ke Zhou, et al. “An End-to-End Automatic
Cloud Database Tuning System Using Deep Reinforcement
Learning”. In: Proc. SIGMOD. ACM, 2019, pp. 415-432. 1SBN:
9781450356435. po1: 10.1145/3299869.3300085 (page 125).

Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. “Towards Prac-
tical Page Coloring-Based Multicore Cache Management”. In:
Proc. EuroSys. ACM, 2009, pp. 89-102. 1sBN: 978-1-60558-482-9.
DOI: 10.1145/1519065.1519076 (pages 67, 82).

Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghu-
raman, Yuanyuan Zhou, and Sanjeev Kumar. “Dynamic Track-
ing of Page Miss Ratio Curve for Memory Management”. In:
Proc. ASPLOS. ACM, 2004, pp. 177-188. 1SBN: 1-58113-804-0. DOI:
10.1145/1024393.1024415 (page 84).

https://nvmexpress.org/specifications/
https://nvmexpress.org/specifications/
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/3190508.3190511
https://doi.org/10.1145/3299869.3319896
https://doi.org/10.1145/1995441.1995442
https://doi.org/10.1145/1995441.1995442
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/1519065.1519076
https://doi.org/10.1145/1024393.1024415

154 BIBLIOGRAPHY

[215] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.
“Addressing Shared Resource Contention in Multicore Proces-
sors via Scheduling”. In: Proc. ASPLOS. ACM, 2010, pp. 129-
142. 1sBN: 978-1-60558-839-1. po1: 10.1145/1736020 . 1736036
(pages 82, 126).

[216] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo
Fonseca, and Tim Kraska. “Designing Distributed Tree-Based
Index Structures for Fast RDMA-Capable Networks”. In: Proc.
SIGMOD. ACM, 2019, pp. 741-758. 1sBN: 9781450356435. DOI:
10.1145/3299869.3300081 (page 17).

https://doi.org/10.1145/1736020.1736036
https://doi.org/10.1145/3299869.3300081

1.1

2.1
2.2
2.3
2.4

2.5
2.6

3.1

3.2
3.3
3.4
3.5

3.6

3.7

3.8
3.9
3.10

4.1
4.2
4.3

4.4

List of Figures

Areas of the main contributions of this thesis. 9

Memory hierarchy across different compute components. 15

Trend data of microprocessors from 1972 to 2020. . . . 16
Access latency of a pointer-chasing benchmark. 21
Access latency of a pointer-chasing benchmark suffer-

ing from cache pollution. 23
Order-preserving dictionary compression. 27
Buffered updates in SAP HANA. 29
Difference between instruction-based and memory-based
profiling. 33
Overview of the PEBS mechanism.. 35
Overview of our memory tracing implementation. . . . 36
Memory trace of running DuckDB. 39
Memory trace of running SAP HANA’s aggregation
operator. Lo 40
Analysis of the working set size of the JCC-H bench-
mark running on SAPHANA. 42
Memory trace of running the JCC-H benchmark with
SAPHANA. 43
Impact of partitioning on 1_shipdate. 44
Impact of partitioning on 1_orderkey. 45
Impact of partitioning on o_orderdate. 46
Impact of cache pollution on an OLTP query. 53
Overview of cache partitioning. 54
Normalized throughput of the column scan at varying
LLCsizes.. 60
4 MiB dictionary: normalized throughput of aggrega-

tion with grouping at varying LLC sizes. 61

155

156

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1
5.2

5.3
54
5.5
5.6
5.7

5.8

LIST OF FIGURES

40 MiB dictionary: normalized throughput of aggrega-

tion with grouping at varying LLC sizes. 62
400 MiB dictionary: normalized throughput of aggrega-
tion with grouping at varying LLC sizes. 63
Normalized throughput of the foreign key join at vary-
ing LLCsizes. 64
Simplified example of using Intel’s Cache Allocation
Technology. 67
Integration of cache partitioning into SAP HANA. . . . 70

4 MiB: normalized throughput of the column scan and
aggregation with grouping with and without cache par-
titioning. Lo 73
40 MiB: normalized throughput of the column scan and
aggregation with grouping with and without cache par-
titioning. L Lo 74
400 MiB: normalized throughput of the column scan
and aggregation with grouping with and without cache
partitioning.o 75
10° primary keys: normalized throughput of aggrega-
tion with grouping and the foreign key join with and
without cache partitioning. 76
10® primary keys: normalized throughput of aggrega-
tion with grouping and the foreign key join with and

without cache partitioning. 77
Normalized throughput of the column scan and each
TPC-H query with and without cache partitioning. . . 78
Normalized throughput of the column scan and an
OLTP query with and without cache partitioning. . . . 80
Impact of bulk loading on query processing. 89
Processing steps for bulk loading data from a file into
optimized storage. 90
Cost analysis of bulk loading into SAP HANA. 91
Architectural overview of Shared Loading. 94
Storage layout of Shared Loading. 95
Results of bulk loading the 1ineitem table over a 10-Gbit
network without query processing. 102
Results of bulk loading the warehouse table over a 10-
Gbit network without query processing. 103

Results of bulk loading the lineitem table over a 1-Gbit
network without query processing. 104

LIST OF FIGURES

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

6.1

Results of bulk loading the warehouse table over a 1-Gbit
network without query processing.
Results of bulk loading the 1ineitem table over a 10-Gbit
network with concurrent query processing.
Results of bulk loading the warehouse table over a 10-
Gbit network with concurrent query processing.
Results of bulk loading the lineitem table over a 1-Gbit
network with concurrent query processing.
Results of bulk loading the warehouse table over a 1-Gbit
network with concurrent query processing.
Results of bulk loading the 1ineitem and warehouse table
over a 10-Gbit network with varying chunk sizes.
Results of bulk loading the 1ineitem and warehouse table
over a 10-Gbit network with varying partition sizes. . .
Results of bulk loading the lineitem table over a 10-
Gbit network without query processing and with LZ4
COMPIESSION. v v v it
Results of bulk loading the warehouse table over a 10-
Gbit network without query processing using LZ4 com-
Pression.o
Results of bulk loading the lineitem table over a 1-Gbit
network without query processing using LZ4 compres-

Results of bulk loading the warehouse table over a 1-Gbit
network without query processing using LZ4 compres-

Results of bulk loading the 1ineitem table over a 10-Gbit
network with concurrent query processing using LZ4
COMPIESSION. o v v vt it
Results of bulk loading the warehouse table over a 10-
Gbit network with concurrent query processing using
LZ4 compression.
Results of bulk loading the lineitem table over a 1-Gbit
network with concurrent query processing using LZ4
COMPIESSION. v v v v vt e
Results of bulk loading the warehouse table over a 1-Gbit
network with concurrent query processing using LZ4
COMPIESSION. v v vttt

Areas of the main contributions of this thesis.

157

158 LIST OF FIGURES

2.1

3.1

5.1

5.2

List of Tables

Capacity, latency, and bandwidth of memory components. 17

Tracing overhead for different thresholds for the PEBS
mechanism. 0 0 0oL 47

The total amount of data a bulk loading configuration

transfers over the network. 105
The total amount of data a bulk loading configuration
transfers over the network with LZ4 compression. . . . 113

159

160 LIST OF TABLES

3.1
3.2
4.1
4.2

5.1

List of Listings

SQL query executed with DuckDB. 38
SQL query executed with SAP HANA. 40
The operator-specific SQL queries of the experimental
analysis. 57
The different SQL table schemata used in the experi-
mental analysis. L. 58

Analytical queries inspired by the TPC-H benchmark. . 101

161

162 LIST OF LISTINGS

	Abstract
	Acknowledgments
	Introduction
	Resource Efficiency
	Motivation
	Challenges
	Contributions and Outline

	Preliminaries
	Memory Hierarchy
	Compute Components
	Memory Components
	Experimental Analysis of Cache Performance

	Main-Memory Database Systems
	Order-Preserving Dictionary Compression
	Buffered Updates

	Memory Tracing
	Introduction
	Background: Profiling & PEBS
	Implementation
	Use Cases
	Detecting Access Patterns
	Access Counting at Byte level
	Hot Working Set Size
	Table Partitioning

	Overhead
	Related Work
	Conclusion

	CPU Cache Partitioning
	Introduction
	Query Execution in SAP HANA
	Data Structures
	Operations

	Analysis of LLC Usage
	Experimental Setup
	Column Scan
	Aggregation With Grouping
	Foreign Key Join
	Discussion

	Cache Partitioning in SAP HANA
	Cache Partitioning With CAT
	Cache Partitioning Scheme
	Integration Into SAP HANA

	Evaluation
	Experimental Setup
	Column Scan & Aggregation With Grouping
	Aggregation With Grouping & FK Join
	Column Scan & TPC-H Queries
	Column Scan & OLTP Query
	Discussion

	Related Work
	Conclusion

	Shared Loading
	Introduction
	Cost Analysis of Bulk Loading Pipeline
	Overview of Loading Steps
	Costs of Loading Steps

	Shared Loading
	Client-Centric Loading
	Server-Centric Loading
	Dynamic Offloading
	Implementation

	Evaluation
	Setup
	Loading in Isolation
	Loading With Concurrent Queries
	Robustness of Parameters
	Additional Compression
	Discussion

	Related Work
	Conclusion

	Conclusion
	Summary
	Future Directions
	Discussion

	Bibliography
	List of Figures
	List of Tables
	List of Listings

