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1 Introduction

1.1 The Biharmonic equation

The Biharmonic equation is a fourth-order partial differential equation, which
arises as a result of modeling phenomena encountered in problems in science
and engineering. One of the earliest developments, concerning the Biharmonic
equation, is the classical theory of flexure of elastic plates, which goes back,
amongst others, to J. Bernoulli, Euler and Lagrange. Kirchhoff and Poisson
continued the developments of the mathematical modelling of plates (compare
e.g. [Poi38, Lov13, Kir50]). Their contributions have been extensively applied
to the stress analysis of structural plates made of metallic and non-metallic
materials. Additionally, the Biharmonic equation is heavily involved in the
mathematical theory of elasticity, which is part of the mechanics of deformable
media.

The Biharmonic equation is also used to model slow viscous flow problems
involving Newtonian viscous flows. This theory is a particular simplification
of the Navier-Stokes equation and reveals the relation between the Biharmonic
equation and the Stokes equation. The developments in slow viscous flow prob-
lems are applied to many industrial problems, e.g. flow of molten metals, flow of
particulate suspensions and to the modelling of bio fluid-dynamics. For a more
general overview of the history and applications of the Biharmonic equation
compare [Sel13].

For a bounded domain Ω Ă R2 the classical formulation of the Biharmonic
problem is given by

∆2u “ f in Ω,

u “ 0 on BΩ,

∇u ¨ nΩ “ 0 on BΩ,

(1.1.1)

where nΩ is the unit outward normal vector of Ω. In general, analytical solu-
tions of the Biharmonic equation are not known explicitly. Therefore, numerical
methods to approximate their solutions became important.

One branch of these numerical methods is the conforming finite element
method (FEM) used to approximate partial differential equations stated in
variational form over a function space V. The idea is to replace the infinite
dimensional function space V by some finite dimensional subspace VN Ă V,
N “ dimpVN ), in the variational formulation, leading to a discrete solution.
This is called the Ritz-Galerkin Ansatz.

Considering the Biharmonic equation in variational form, the Ritz-Galerkin
Ansatz requires C1-conforming polynomial spaces [AFS68, Cia74, DDPS79] (so
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1 Introduction

called C1-conforming elements), which are typically very cumbersome to im-
plement, since they require polynomial degree ě 5 in 2d or constructions via
macrotriangulations.

Another approach is to rewrite the Biharmonic problem into a system of
second order problems and use a mixed finite element method (see e.g. [BBF13,
dB74, Joh73] and the references therein). Moreover, non-conforming methods
for the Biharmonic equation gained attraction (e.g. [BCI65, Mor68]).

One certain class of non-conforming methods for the Biharmonic equation, are
the so-called C0-interior penalty Galerkin methods (C0IPGM), which are based
on standard continuous Lagrange finite elements of order ě 2. These methods
penalise jumps of the normal derivatives across element interfaces due to the
lack of C1-conformity; compare e.g. [BS05, EGH`02, HL02].

Dropping also C0-conformity, leads to discontinuous Galerkin finite element
methods (DGFEM) (cf. [ABCM02, ABCM00]). These methods allow discon-
tinuities in the trial and test space. Therefore, local element bases can be
chosen independently of interelement continuity requirements, leading to very
sparse stiffness matrices. Moreover, they provide a high amount of flexibility
in mesh-design and adaptivity, i.e. they allow for meshes including hanging
nodes and/or local varying polynomial degrees (even on polygonal, polyhedral
or arbitrarily-shaped meshes); see [CDGH17, GHH06, CDG19, Don18].

In this thesis, we consider the so-called symmetric interior penalty discon-
tinuous Galerkin discretisation (SIPDG) of (1.1.1), which goes back to Baker
([Bak77]). This method uses standard discontinuous Galerkin finite elements of
order r ě 2. Consistency is ensured and jumps of functions and normal deriva-
tives, across element interfaces, are penalised. We refer to [GH09, SM03, SM07,
MSB07, FK07, Don18] for a detailed introduction of (hp)-SIPDG methods for
the Biharmonic equation.

A posteriori error estimators for the SIPDGM were developed in [GHV11] and
can be used to design an adaptive SIPDGM (so-called ASIPDGM) based on the
standard loop

SOLVE Ñ ESTIMATE Ñ MARK Ñ REFINE. (1.1.2)

Convergence theory of (1.1.2), however, becomes a particular challenging
problem for two reasons: First, the discontinuity penalisation terms include
negative powers of the mesh-size h and thus are not necessarily monotone un-
der refinement. Second, the lack of a conforming subspace with proper ap-
proximation properties, since a C1-conforming subspace is only available, if the
polynomial degree exceeds e.g. 4 in 2d (see [dBD83, GS02]).

The first issue is also present in adaptive discontinuous Galerkin methods for
2nd order problems. Here, Dörflers marking strategy typically ensures uniform
error reduction [KP07, HKW09] and even optimal convergence rates [BN10].
All of these results are based on the observation that the penalty is dominated
by the ‘conforming parts’ of the estimator, provided the penalisation parameter
is chosen sufficiently large; see [Doe96, MNS00, CKNS08]. In a similar fash-
ion the authors in [FHP15] attempt to prove convergence of AC0IPGM for the
biharmonic problem (1.1.1). However, the resulting argument is unclear to hold.
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1.2 Overview

A different approach was taken in the convergence result for adaptive dis-
continuous Galerkin methods for 2nd order problems ([KG18], compare also
[KG19]), motivated by the convergence results for conforming adaptive finite
element methods [MSV08, Sie11]. The authors develop a new limit space of
the non-conforming discrete spaces, created by the adaptive loop (1.1.2), and
proof the existence of a generalised Galerkin solution in the limit space. Con-
vergence of the sequence of discrete approximations to the generalised Galerkin
solution is actually a consequence of a version of the medius analysis of Gudi
[Gud10] and a local C0-conforming reconstruction operator. The coincidence of
the exact solution and the generalised Galerkin solution is finally a consequence
of the marking strategy. The convergence result is not restricted to symmetric
problems and holds for all penalty parameters ensuring discrete coercivity and
all practically relevant marking strategies.

Very recently in [DGK19], the convergence result for adaptive discontinuous
Galerkin methods for second order problems ([KG18]) has been extended to
quadratic (polynomial degree r “ 2) AC0IPGM for the Biharmonic problem.
The proof adresses the challenge that a conforming subspace of a Lagrange
finite element space is prohibitive in AC0IPGM unless the polynomial degree
is chosen large enough. The convergence theory of AC0IPGM uses essential
new techniques based on the embedding properties of (broken) Sobolev and BV
spaces. Similarly to the convergence result in [KG18], the convergence theory
also holds for non-symmetric problems and, all practically relevant marking
strategies and all values of the penalty parameter, for which the method is
coercive. This has important consequences in practical computations: Since
the condition number of the respective stiffness matrix grows as the penalty
parameter grows, the magnitude of the penalisation affects the performance
of iterative linear solvers. This fact becomes even more relevant for the here
considered fourth order problem.

In this thesis, we extend the quadratic AC0IPGM ([DGK19]) to an ASIPDGM
for the Biharmonic problem (1.1.1) covering arbitrary polynomial degrees of the
finite element spaces. For simplicity of the presentation, we restrict ourself to
the SIPDG method. We emphasise, however, that other DG methods, e.g. semi-
symmetric interior penalty Galerkin methods (cf. [SM07]) or Baker’s method
(cf. [Bak77]) can be treated analogously. As in the case of AC0IPGM this
convergence result holds for all marking strategies commonly used in praxis and
all penalty parameters ensuring discrete coercivity. We stress, however, that
this technique still not provides linear or even optimal convergence rates.

1.2 Overview

This thesis starts in Chapter 2 giving an analytical background from functional
analysis, in order to give an overview of most notions, which are used in this
work. This includes Lebesgue and Sobolev spaces and a review of the idea of
distributional theory. This theory is important in the context of Sobolev spaces
and in particular in view of spaces of functions of bounded variation. At the end
of this chapter we introduce the fourth order model problem which is used in
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1 Introduction

this thesis and we derive existence and uniqueness of the solution of this model
problem.

In Chapter 3 we give some preliminaries of the discontinuous Galerkin dis-
cretisation of the model problem, including discrete function spaces, meshes and
traces. Afterwards, we recall the discrete bilinear form from [GH09], leading us
to the discrete problem. After that, we prove existence and uniqueness of this
problem. In this chapter we also repeat the proof of an efficient and reliable a
posteriori error estimator ([GHV11]) for the discrete problem. Finally, we intro-
duce the space of functions of bounded variation and state some compactness
properties of this space which will be used later on.

The following Chapter 4 introduces the model algorithm and therefore states
precisely the loop (1.1.2) which produces a sequence of adaptively created dis-
crete solutions. The rest of this chapter is therefore devoted to the proof that
this sequence of discrete solutions is converging to the exact solution of the
model problem and that the related a posteriori error estimators are vanishing
in the limit. The latter is important in view of practical calculations.

Chapter 5 adresses numerical experiments. We examine two different model
problems with different regularities of the exact solutions and analyse the related
rates of convergence.

In Chapter 6 we conclude this thesis by a summary of the achieved results
and consider future directions of research related to this work.

Finally, the Appendix states some results about measure theory and bubble
functions which are important in our context. Furthermore, we present a coun-
terexample to a previous version of [DGK19] which was brought to our attention
by an anonymous referee to whom we wish to express our greatest gratitude.
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2 Analytical background

2.1 Preliminaries

In this chapter, we recall some basics from functional analysis which is useful in
this thesis. Moreover, we introduce function spaces as Lebesgue Spaces, Sobolev
spaces and the space of functions of bounded variation. Furthermore, the aim
of this chapter is to fix the notation and make the exposition self-contained.

Let N “ t1, 2, 3, . . .u be the set of natural numbers and N0 :“ N Y t0u be the
natural numbers including t0u. Moreover, let R be the set of real numbers. By
Rd we denote the d-dimensional euclidean R-vector space. The corresponding
inner product is denoted by v ¨ w “

řd
i“1 vidi, for all v “ pv1, . . . , vdq P Rd,

w “ pw1, . . . , wdq P Rd with induced norm }v}Rd “ pv ¨ vq1{2, for all v P Rd.
If no confusion is possible we drop the subscript, i.e. we write } ¨ }. To avoid
confusion we sometimes write vectors in boldface i.e. v P R2, if necessary.

By Rdˆd we denote d2-dimensional vector space of dˆ d-matrices. The inner
product on a matrix space is denoted by A : B “

řd
i,j“1AijBij , for all A “

pAijq1ďi,jďd P Rdˆd, B “ pBijq1ďi,jďd P Rdˆd. For v P Rn and w P Rm the tensor
product is denoted by vbw P Rdˆd and defined by pvbwqij “ viwj , 1 ď i, j ď d.
Here, we use the convention that a first order tensor can uniquely be represented
by a Rd-vector and a second order tensor can be uniquely represented by a dˆd
matrix if the vector space Rd is equipped with the Euclidean standard basis
te1, . . . , edu. Since no confusion is possible we use the same boldface notation
for tensors of order two and vectors in the sequel, i.e. we simply write T P Rdˆd,
if necessary.

Let ω Ă Rd be a bounded domain, then we denote by ω the closure of ω and
by Bω the boundary of ω. From here on, Ω denotes a bounded domain and we
define the set of continuous functions on Ω as

C0pΩq :“ tf : Ω Ñ R : f is continuous on Ωu

together with the supremum norm

}f}C0pΩq :“ sup
xPΩ

|fpxq| .

For d P N consider a multi-index α “ pα1, . . . αdq P Nd
0 with |α| “: α1`¨ ¨ ¨`αd.

We denote the (pointwise) partial derivative by B
Bxi

“ Bi and for |α| ď k we
write Bα “ B

α1
1 . . . Bαd

d . Moreover, for m P N0 we define the space of (m-times)
differentiable functions

CmpΩq :“ tf : Ω Ñ R : Bαf P C0pΩq exists for |α| ď m

and can be continuously extended to Ωu.
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2 Analytical background

We note that CmpΩq is a vector space and becomes a normed space by using
the norm

}f}CmpΩq
:“

ÿ

|α|ďm

}Bαf}C0pΩq
.

Note that the space of continuous functions and the space of m-times differ-
entiable functions are Banach spaces, i.e. complete normed vector spaces (see
[Alt16, 3.2]).

2.2 Background from functional analysis

In this section we only provide the results without proofs. For more information
see, e.g. [Alt16] or [Rud91].

Let pV, }¨}Vq and pW, }¨}Wq be Banach spaces. We denote the space of all
linear and continuous mappings from V to W by pV,Wq. It is a Banach space
with respect to the operator norm

}B}pV;Wq “ sup
}v}V“1

}Bv}W .

The dual space of V is defined by

V1 :“ pV;Rq “ tf : V Ñ R : f is linear and continuousu (2.2.1)

and we let xf, vyV1,V :“ fpvq. It is a Banach space if it is equipped with the
operator norm

}f}V1 “ sup
}v}V“1

xf, vyV1ˆV “: sup
}v}V“1

fpvq. (2.2.2)

In the subsequent analysis we need to define dual spaces where V is not a normed
space. To this end, we have to extend the definition (2.2.1) to topological vector
spaces which we introduce now (see [Alt16, 2.11]).

Definition 2.1. A topological vector space is a pair pX, τq, where X is a set
and τ is a system of subsets of X (the elements of τ are called open sets), with
the following properties:

(i) H P τ,X P τ ,

(ii) τ̃ Ă τ ùñ
Ť

UPτ̃ U P τ ,

(iii) U1, U2 P τ ùñ U1 X U2 P τ .

Definition 2.2. Let pV, } ¨ }Vq be a Banach space.

1. We say that a sequence tvkukPN Ă V converges weakly to v P V (and write
vk á v as k Ñ 8) if

@v1 P V1 :
@

v1, vk
D

V1,V “
@

v1, v
D

V1,V , as k Ñ 8.

6



2.2 Background from functional analysis

2. We say that a sequence tv1
kukPN Ă V1 converges weakly* to v1 P V1 (and

write v1
k

˚
á v1 as k Ñ 8) if

@v P V :
@

v1
k, v

D

V1,V “
@

v1, v
D

V1,V , as k Ñ 8.

We state two basic properties of weakly convergent and weakly* convergent
sequences.

Proposition 2.3. Let pV, } ¨ }Vq be a Banach space. Then we have that

1. the norm is sequentially lower-semicontinuous, i.e. for all vk á v in V as
k Ñ 8, we have

}v}V ď lim inf
kÑ8

}vk}V .

2. Weakly convergent sequences and weakly* convergent sequences are bounded.

Proof. Compare [Alt16, Chapter 8.2].

We emphasise that if pV, }¨}Vq is a Banach space, then pV1, } ¨ }V1q is also
Banach space and we define the bidual of V by

V2 :“ pV1q1 “ pV1;Rq.

We note that each v P V generates a function Jpvq : V1 Ñ R via

Jpvqpfq :“ xf, vyV1ˆV “ fpvq, f P V1 (2.2.3)

and Jpvq is a continuous linear functional on V1, i.e. Jpvq P V2. Writing J by
using the dual pairing

@

Jpvq, v1
D

V2,V1 “
@

v1, v
D

V1,V

reveals that J P pV;V2q is an isometry and therefore injective.
The following definition deals with the case when J is also surjective, and

therefore J : V Ñ V2 is an isometric isomorphism.

Definition 2.4. Let pV, } ¨ }Vq be a normed space and let J : V Ñ V2 be the
linear map defined in (2.2.3). Then we call

V reflexive :ðñ J is surjective.

As a consequence we have the following weak-compactness property of reflex-
ive Banach spaces.

Theorem 2.5 ([AF03, 1.18 Theorem]). Let pV, }¨}Vq be a reflexive Banach
space. Then, its closed unit Ball

B1p0q “ tv P V : }v}V ď 1u

is weakly sequentially compact, i.e. every sequence in B1p0q has a subsequence
converging weakly in V to a point in B1p0q.

7



2 Analytical background

Definition 2.6 (Bilinear form). A symmetric bilinear form B on a Banach
space pV, } ¨ }Vq is a mapping

B : V ˆ V Ñ R, (2.2.4)

which is symmetric, i.e. Brv, ws “ Brw, vs, for all v, w P V, and linear in
the first and second argument. The bilinear from is continuous if the exists a
constant Ccont ą 0, such that

|Brv, ws| ď Ccont }v}V }w}V , @v, w P V.

Moreover, we call the bilinear form coercive if there exist a constant Ccoerc ą 0,
satisfying

Brv, vs ě Ccoerc }v}
2
V @v P V.

Definition 2.7 (Scalar product and Hilbert Space). A symmetric and positive
definit bilinear form x¨, ¨yV : V ˆ V Ñ R on a vector space V is called scalar
product.

A Banach space pV, } ¨ }Vq is called Hilbert space if there exist a scalar product
x¨, ¨yV : V ˆ V Ñ R, satisfying }v}V “ xv, vy

1{2
Ω , for all v P V. We also use the

notation pV, x¨, ¨yVq to denote a Hilbert space.

The notion of a Hilbert space is crucial in the subsequent analysis. To see
this let pV, x¨, ¨yVq be a Hilbert space. Then the representation theorem of
Riesz (compare [Alt16, p. 163]) implies that for every ψ P V1 there exist a
unique w P V such that

ψpvq “ xw, vyV1,V @v P V.

Hence, V is isomorphic to its dual space V1 and we infer that the dual space
is again a Hilbert space. Hence, by using again the representation theorem of
Riesz every Hilbert space is also a reflexive space (compare[Alt16, 8.11(1)]).

Now, we are in a positon on introduce the notion of a variational problem:
Let pV, x¨, ¨yVq be a Hilbert space with dual V1 and let Br¨, ¨s : V ˆ V Ñ R
be a bilinear form. For a given f P V1 we want to solve the following general
variational problem: Find u P V such that

Bru, vs “ xf, vy @v P V. (2.2.5)

The following theorem provides the existence and uniqueness of a solution of
(2.2.5).

Theorem 2.8 (Lax-Milgram). Let pV, x¨, ¨yVq be a Hilbert space with dual V1

and B be a bilinear form on V which is continuous and coercive on V with
coercivity constant Ccoerc ą 0. Then, (2.2.5) admits for any f P V1 a unique
solution u P V. Moreover, the solution is stable in the sense

}u}V ď
1

Ccoerc
}f}V1 .

Proof. See [EG13, Lemma 2.2].
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2.3 Lebesgue and Sobolev spaces

2.3 Lebesgue and Sobolev spaces

We briefly state the basic properties of two important classes of functions spaces,
namely Lebesgue and Sobolev spaces. For a more detailed introduction into
these function spaces the reader is referred to the books [Alt16], [Gri85], [AF03].

2.3.1 Boundary regularity

Nearly all properties of Sobolev spaces on a domain Ω depend on the regularity
of the boundary BΩ “: Γ. Consequently, the notions of boundary regularity has
to be defined carefully. In this section we follow the lines of [GR86].

Definition 2.9. Let Ω be an bounded domain in Rd. We say that its boundary
Γ is Lipschitz-continuous (resp. of Class Cm, for some m P N) if for every x P Γ
there exists a neighbourhood U Ă Rd of x and new coordinates y “ py1, ydq,
where y1 “ py1, . . . , yd´1q such that:

1. U is a hypercube in the new coordinates:

U “ ty : ´ aj ă yj ă aj , 1 ď j ď du Ă Rd.

2. There exists a Lipschitz-continuous function (resp. a Cm-function) ϕ de-
fined in

U 1 “
␣

y1 : ´ aj ă yj ă aj , 1 ď j ď d´ 1
(

Ă Rd´1

satisfying

a) |ϕpy1q| ď
ad
2 for all @y1 P U 1;

b) Ω X U “ ty : yd ă ϕpy1qu and

c) Γ X U “ ty : yd “ ϕpy1qu.

This definition states that locally Ω is below the graph of some function ϕ,
the boundary Γ is represented by the graph of ϕ and the regularity of Γ is
determined by the regularity of the function ϕ. In particular, the continuity of
ϕ implies that the Ω is never on both sides of Γ at any point of Γ (e.g. think of
domains with a cuts or cusps). However, this definiton allows boundaries with
corners. For example bounded polygons in R2 or bounded polyhedrons in R3.
In the sequel we will say that Ω is a Lipschitz domain, meaning that the Ω is a
bounded domain with Lipschitz-continuous boundary. Note that on a Lipschitz
domain, a unit exterior normal vector, which we denote by nΩ or simply n is
well defined for almost every x P BΩ ([Gri85, Chapter 1.5]).

2.3.2 Definitions and basic properties

In this section we give some basic definitions and results from standard theory
of partial differential equations. Let ω Ă Rd be an Lebesgue-measurable set and
let f : ω Ñ R be a measurable function. We denote the Lebesgue integral of f
over ω by

ş

ω f dx (compare [Bar14] for a detailed introduction of the Lebesgue
integral).

9



2 Analytical background

We define L1
locpΩq to be the space of locally integrable functions, i.e the set

of all measurable functions f : Ω Ñ R, such that
ż

K
f dx ă 8

for all compact subsets K Ă Rd.

Definition 2.10 (Lebesgue space). For 1 ď p ď 8, let

LppΩq :“
!

f : Ω Ñ R : f is measurable and : }f}LppΩq ă 8

)

,

where

}f}LppΩq :“

ˆ
ż

Ω
|f |

p dx

̇1{p

, for 1 ď p ă `8,

}f}L8pΩq :“ ess sup
xPΩ

|fpxq| :“ inf tM ě 0: |fpxq| ě Mon Ωu .

We note that Lebesgue spaces and the space L1
locpΩq are actually defined as

equivalence classes of functions, whose values differ only on a set of Lebesgue
measure zero.

For 1 ď p ď 8 we have that LppΩq is a Banach space if its equipped with the
}¨}LppΩq-norm; compare [AF03, p. 29].

In the case p “ 2, L2pΩq is a (real) Hilbert space when it is equipped with
the inner product ([AF03, p. 31])

xv, wyL2pΩq :“

ż

Ω
vw dx

and the induced norm }¨}L2pΩq. In order to shorten the notation we also write
xv, wyΩ and }¨}Ω in the case p “ 2.

For 1 ď p ď 8, we denote by p1 the conjugate of p, i.e. 1
p ` 1

p1 “ 1, with
p1 “ 1 if p “ `8 and p1 “ `8 if p “ 1. This leads us to Hölder’s inequality
(compare e.g. [Bar01, p. 404]), which states that for v P LppΩq and g P Lp1

pΩq

there holds vw P L1pΩq and
ż

Ω
vw dx ď }v}LppΩq }w}Lp1

pΩq
.

In particular, for p “ p1 “ 2 we end up with the Cauchy-Schwarz inequality,
namely for all v, w P L2pΩq we have

xv, wyL2pΩq ď }v}L2pΩq }w}L2pΩq .

We will also useYoung’s inequality : For a, b ě 0 and 1 ă p ă 8 we have that

ab ď
1

p
ap `

1

p1
bp

1

, (2.3.1)

compare [Alt16, (3-11)].
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2.3 Lebesgue and Sobolev spaces

for 1 ď p ă 8 the dual space of LppΩq can be identified with Lp1

pΩq; see
[Alt16, 6.12]. As a consequence LppΩq is reflexive if 1 ă p ă `8. However, the
spaces L1pΩq and L8pΩq are not reflexive. This is due to the fact that the dual
of L1pΩq is L8pΩq but the dual of L8pΩq is the space of signed Borell measures,
which is strictly larger than L1pΩq (compare [AF03, Chapter 2]).

For a function f : Ω Ñ R we define the support of f by

supppfq :“ tx P Ω: fpxq ­“ 0u.

Moreover, we define the space of continuos function with compact support by

C0pΩq :“ C0
0 pΩq :“

␣

f P C0pΩq : supppfq Ă Ω
(

.

Let

C8pΩq :“
č

mPN

CmpΩq

be the function space of infinitely differentiable functions. The space of test
functions on Ω is then defined by

C8
0 pΩq :“ tφ P C8pΩq : supppφq Ă Ωu .

Moreover, we set

C8
0 pΩq “

!

φ|Ω : φ P C8
0 pRdq

)

.

We remark that there exist a certain topology τ (which is called the canonical
LF topology ; compare [Alt16, 5.20, 5.21]) such that pC8

0 pΩq, τq is a topological
vector space. Henceforth, the topological vector space pC8

0 pΩq, τq will simply
denoted by DpΩq.

The dual space of the topological vector space DpΩq is defined by

DpΩq1 “ tT : DpΩq Ñ R : T is linear and continuousu (2.3.2)

and will play crucial role crucial role in the following definition; compare [Alt16,
5.17].

Definition 2.11 (Distributions). Let T : C8
0 pΩq Ñ R be linear.

1. We call the map T a distribution on Ω, and use the notation T P D1pΩq,
if for all open sets D Ă Ω there exist a constant CD and a kD P N0 such
that

|T pφq| ď CD }φ}CkD pDq
for all φ P C8

0 pΩq with supppφq Ă D.

If k “ kD can be chosen independently of D, then k (if chosen minimally)
is called the order of T .

2. For all multi-indices s, the distributional-derivative BsT is the linear map
BsT : C8

0 pΩq Ñ R defined by

pBsT qpφq :“ p´1q|s|T pBsφq , φ P C8
0 pΩq.

11



2 Analytical background

3. If T is a distribution, then so is BsT for all multi-indices s. If T is a
distribution of order k, then BsT is a distribution of order k ` |s|.

Recalling Definition 2.11 we have the space of distributions D1pΩq on the one
hand and the dual space DpΩq1 from (2.3.2) on the other hand. However, it is
possible to proof that DpΩq1 “ D1pΩq (see [Alt16, 5.23]), i.e. T is a distribution
if and only if T : DpΩq Ñ R is linear and continuous with respect to the topology
chosen on C8

0 pΩq, (i.e. T P pDpΩqq1).
Note that every function in f P L1

locpΩq can be uniquely identified with the
distribution of order zero

Tf : DpΩq Q φ ÞÑ Tf pφq “

ż

Ω
fφdx,

see [Alt16, 4.22].
This observation is crucial since it leads us to the notion of the distributional

derivative of a function: Regard the distribution Tf as defined above, then
Definition 2.11 reveals that Tf P D1pΩq is differentiable in the following sense:
For 1 ď i ď 2 the distributional derivative DiTf P DpΩq1 is defined by

DiTf : DpΩq Q φ ÞÑ DiTf pφq :“ ´Tf p
Bφ

Bxi
q

and more generally for a multi-index α “ pα1, . . . , αdq, the distribution DαTf “

Dα1
1 . . . Dαd

d Tf is defined by

DαTf : DpΩq Q φ ÞÑ DαTf pφq “ p´1q|α|Tf pBαφq.

In the sequel, we will ease the notation by identifying f P L1
locpΩq with Tf P

DpΩq1. Note that Tf is well defined since f ÞÑ Tf is injective, i.e. f can
be reconstructed from Tf ([Alt16, 5.16(2)]). Moreover, we write Dαf for the
distributional derivative of f .

Definition 2.12 (Sobolev Spaces). Let n P N0 and 1 ď p ď `8. We define
the Sobolev space Wn,ppΩq by

Wn,ppΩq :“ tu P LppΩq : Dαu P LppΩq, @ |α| ď nu ,

where we understand the derivatives in the distributional sense (and henceforth
call them ’weak derivatives’). Moreover, we set W 0,ppΩq :“ LppΩq.

We equip the space Wn,ppΩq with the norm

}u}Wn,ppΩq :“

$

&

%

´

ř

|α|ďn }Dαu}
p
LppΩq

¯1{p
for 1 ď p ă `8,

max|α|ďn }Dαu}L8pΩq for p “ `8.

The space pWn,ppΩq, }¨}Wn,ppΩqq is a Banach space. Moreover for 1 ă p ă `8

the space Wn,ppΩq is reflexive; see [Alt16, 8.11(3)].
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2.3 Lebesgue and Sobolev spaces

For the case p “ 2 we denote Wn,2pΩq “: HnpΩq and emphasise that HnpΩq

is a Hilbert space with the inner product

xu, vyn,Ω :“
ÿ

|α|ďn

ż

Ω
DαuDαv dx,

and induced norm }¨}HnpΩq; see [AF03, 3.6 Theorem].
Moreover, we denote

Hn
0 pΩq “ DpΩq

HnpΩq
,

i.e. the closure of DpΩq for the norm }¨}HnpΩq

The following estimate is crucial in the context of Hn
0 pΩq-Sobolev spaces;

see [Alt16, 6.7].

Lemma 2.13 (Poincaré-inequality). If Ω is open and bounded, then there exists
a constant C0 ą 0, which depends on Ω, such that

}v}
2
Ω ď C0

ż

Ω
|∇v|

2 dx @u P H1
0 pΩq.

Throughout this thesis we use the fact that on the space Hn
0 pΩq the following

semi-norm

|u|HnpΩq :“

¨

˝

ÿ

|α|“n

}Dαu}
2
L2pΩq

˛

‚

1{2

is equivalent to the Sobolev norm }u}HnpΩq. Indeed, for the case n “ 1 this is
a consequence of the Poincaré inequality. Using an induction argument, we can
therefore conclude that for any n P N the semi-norm |¨|Hn is a norm on Hn

0 pΩq

and in particular pHnpΩq, |¨|HnpΩqq is a Banach spaces.
For n “ 2 the dual space of H2

0 pΩq is denoted by H´2pΩq. We define a norm
on H´2pΩq by

}f}H´2pΩq :“ sup
vPH2

0 pΩq

v ­“0

xf, vyL2pΩq

}v}H2pΩq

.

In the subsequent analysis we make use of several embedding Theorems wich
we state now (compare [Alt16, 10.9]).

Theorem 2.14 (Embedding of Sobolev Spcaces). Let Ω Ă Rd be a bounded
Lipschitz domain and n1, n2 P N0. Moreover, let 1 ď p1 ă 8 and 1 ď p2 ă 8.

1. If

n1 ´
d

p1
ě n2 ´

d

p2
, and n1 ě n2,
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2 Analytical background

then there exists a continuous embedding

id : Wn1,p1 Ñ Wn2,p2 .

Hence, there exists a constant C ą 0, depending on d,Ω, n1, p1, n2, p2 such
that

}u}Wn2,p2 ď C }u}Wn1,p1 @u P Wn1,p1 .

2. If

n1 ´
d

p1
ą n2 ´

d

p2
, and n1 ą n2,

then the identity mapping

id : Wn1,p1 Ñ Wn2,p2 .

is a compact operator. This means, that for every bounded sequence in
Wn1,p1, there exists a converging subsequence in Wn2,p2.

Remark 2.15. Note that all definitions of this section can be extended to vector-
valued functions with the following convention: A function f : Ω Ñ Rm, m P N
is located in the space LppΩqm if every of its component functions is located in
the space LppΩq. We obtain a Banach space by replacing

}f}LppΩq :“

ˆ
ż

Ω
|f |

p dx

̇1{p

, for 1 ď p ă `8,

by

}f}LppΩq :“

ˆ
ż

Ω
}f}

p
Rm dx

̇1{p

, for 1 ď p ă `8,

in Definition 2.10, for a vector norm } ¨}Rm on Rm. The same holds for the case
p “ 8 and Sobolev spaces of vector-valued functions are generalised the same
way.

2.4 The model problem

From here on Ω Ă R2 denotes a bounded polygonal domain with Lipschitz
boundary BΩ. We consider the following Biharmonic problem

∆2u “ f in Ω, (2.4.1)

with right-hand side f P L2pΩq and Dirichlet boundary values (essential bound-
ary values)

u “
Bu

BnΩ
“ 0 on Γ.
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To deduce the weak formulation of (2.4.1) we multiply both sides with a function
v P H2

0 pΩq and perform integration by parts twice. Now, taking into account
the boundary values, the weak formulation reads: Find u P H2

0 pΩq, such that

Bru, vs “ F pvq, @v P H2
0 pΩq, (2.4.2)

for the bilinear form

Brw, vs :“

ż

Ω
D2w : D2v dx “

ż

Ω

2
ÿ

i,j“1

B2w

BxiBxj

B2v

BxiBxj
dx

and right hand side F pvq :“
ş

Ω fv dx. By using the Cauchy-Schwarz inequality
we have that the bilinear form Br¨, ¨s is continuous on H2

0 pΩq, i.e. there exists
a constant C1 such that

|Brv, ws| ď C1 }v}H2
0 pΩq }w}H2

0 pΩq , @v, w P H2
0 pΩq.

Moreover, the Poincaré inequality (Lemma 2.13) implies that Bp¨, ¨q is also
coercive on H2

0 pΩq, i.e. there exist a constant C2 with

Brv, vs ě C }v}
2
H2

0 pΩq @v P H2
0 pΩq.

Finally, we emphasise that the space L2pΩq is a subspace of H´2pΩq in the sense
that for f P L2pΩq the mapping

v ÞÑ

ż

Ω
fv dx

belongs to H´2pΩq and we have }f}H´2pΩq ď }f}Ω, due to the Cauchy-schwarz
inequality. Whence, we infer from the Lax-Milgram Theorem 2.8 the existence of
a unique solution u P H2

0 pΩq, which solves (2.4.2) and the solution u is bounded
by }u}H2

0 pΩq ď C3 }f}Ω.
Note that the additional regularity f P L2pΩq is necessary due to the a pos-

teriori analysis below. However, despite additional regularity of f , the solution
u does not belong to H4pΩq in general (e.g. compare the model problem in
the numerical example 2, Chapter 5), due to our restriction to polygonal do-
mains. For details of regularity theory for the Biharmonic problem compare
e.g. [Gri85, Gri92, Dau06, BRL80]. Moreover, for the generalisation to various
non-homogenous boundary conditions we refer to [Gri85, GR86, GGS10].
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3 Discontinuous Galerkin Finite
Element Methods

In the first part of this chapter we recall some common definitions, related to
Discontinuous Galerkin finite element spaes which are used throughout the rest
of this thesis. Afterwards, in Section 3.1.1 we derive a discontinuous Galerkin
discretisation for the model problem, leading to the SIPDG-problem which is
defined in Section 3.2. In this section, we also discuss existence and uniqueness of
the SIPDG-problem. In the following Section 3.3 we introduce lifting operators,
ensuring that the resulting discrete bilinear form can be applied to functions of
lower regularity.

In Section 3.4 we recall the a posteriori error estimator developed in [GHV11]
and state the proofs of upper and lower bounds. Finally, in Section 3.5 we
precisely formulate the embedding of discontinuous Galerkin spaces into BV -
spaces.

3.1 Discrete function spaces, meshes and traces

Let T be a conforming (i.e. not containing any hanging nodes) subdivision of
Ω Ă R2 into closed disjoint triangular elements K P T such that Ω “

Ť

KPT K.
We assume that T is constructed by affine linear bijections FK : K̂ Ñ K (with
non vanishing Jacobian), defined on the reference element

K̂ “ tpx, yq : 0 ď x ď 1, 1 ď y ď 1 ´ xu Ă R2.

Let FT :“ FpT q be the set of one-dimensional faces F , associated with the
subdivision T (including BΩ), which are straight lines, due to the restriction to
triangular elements. Moreover, we define FT̊ to be the subset of interior sides
only and Fb

T :“ FT zFT̊ be the boundary faces. The corresponding skeletons
are then defined by

ΓT :“
ď

tF P FT u,

Γ̊T :“
ď

tF P FT̊ u and

Γb
T :“

ď

tF P Fb
T u,

respectively.
Moreover, let hT : Ω Ñ Rě0 the piecewise constant mesh-size function which

is defined by

hT pxq :“

#

hK :“ |K|
1{d , x P KzBK,

hF :“ |F |
1{pd´1q , x P F P F .

(3.1.1)
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Additionally, let hK “ diampKq be the diameter of K and

hK “ sup tr : Br Ă K is a Ball of radius ru

the diameter of the largest inscribed ball in K.
We assume that T is derived by iterative or recursive newest vertex bisection

of an initial conforming mesh T0; compare with [Bae91, Kos94, Mau95]. By G we
denote the family of shape-regular triangulations consisting of such refinements
of T0, i.e. there exists a constant Creg ą 0

hK
hK

ď Creg @K P T , @T P G.

Additionally, we note the following estimate of the Jacobian determinant of
FK : K̂ Ñ K

CJ,1hK ď |detDFK | ď CJ,2hK , (3.1.2)

for constants CJ,1, CJ,2 ą 0, only depending on the T0 (resp. Creg; see [Cia02a,
Theorem 3.1.3]). For T , T‹ P G, we write T‹ ě T whenever T‹ is a refinement of
T . We recall that refinement by bisection has the following property: Let T‹ be
a refinement of T P G. Then, we have that the mesh-size function is monotone
in the interior of elements, i.e.

@K P T‹zT : hT‹
|K̊ ď 2´1{2hT |K̊ , (3.1.3)

whereas hT‹
|F “ hT |F is possible for F Ă K, compare the Definition of the

mesh-size function (3.1.1).
For r ě 2, we define the Discontinuous Galerkin finite-element space by

VpT q :“ PrpT q with PrpT q :“ tv P L2pΩq : v|K P PrpKq @K P T u,

where we use the notation PrpMq for a subset M Ă T . In the same vein,
we define VpT q2 :“

␣

v P L2pΩq2 : v|K P PrpKq2
(

. We note that the dimension
of VpT q equals the global degrees of freedom of VpT q and is given by N “

dimpVpT qq “ p#T q ˆ dimpPrpKqq, due to the fact that the restriction of a
function v P VpT q to each element can be chose independently of its restriction
to other elements. Additionally, we define the L2-projection onto VpT q, i.e.
Π: L2pΩq Ñ VpT q for any v P L2pΩq as

xΠv, wyΩ “ xv, wyΩ , for all v P VpT q. (3.1.4)

Standard estimates reveal that the projection Π is stable in the sense that
}Πv}Ω ď }v}Ω, for all v P L2pΩq. Here }¨}Ω denotes the L2-norm; see Sec-
tion 2.3.2.

In view of regularity we emphasise that in general have VpT q Ć H1
0 pΩq and

thus also VpT q Ć H2
0 pΩq. On the other hand, since each function V P VpT q is

locally a polynomial on each element K P T , we have, however

VpT q Ă HnpT q :“ tv P L2pΩq : v|K P HnpKq, @K P T u,
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for all n P N0. For v P HmpT q, m ě 2, we define the piecewise gradient ∇pwv
and the piecewise Hessian D2

pwv by

p∇pwuq|K :“ ∇pu|Kq P L2pKq2 @K P T ,
pD2

pwuq|K :“ D2pu|Kq P L2pKq2ˆ2 @K P T .

Note that for v P HmpT q, m ě 4, the function v as well as all relevant derivatives
∇v,D2v and ∇ ¨ D2v are measurable on element boundaries BK, K P T and
the corresponding L2-norms are defined.

Let NT be the nodal degrees of freedom of VpT q and be ZT be the set of
nodes (Lagrange nodes) associated with the degrees of NT , i.e. we identify a
node z P Ω with its degree of freedom Nz P NT . For z P Ω, we denote its
neighbourhood by NT pzq :“ tK 1 P T | z P K 1u, and the corresponding domain
is defined by ωT pzq :“ ΩpNT pzqq. Hereafter, we use ΩpXq :“

Ť

tK | K P Xu

for a collection of elements X. With a little abuse of notation for an element
K P T we define its jth neighbourhood recursively by

N j
T pKq :“

!

K 1 P T | K 1 XN j´1
T pKq ­“ H

)

,

where we set N0
T pKq :“ K, and the corresponding domain by ωj

T pKq :“

ΩpN j
T pKqq. We shall skip the superindex if j “ 1, e.g. we write NT pKq “

N1
T pKq and ωT pKq “ ω1

T pKq for simplicity. For a side F Ă FT , we set
NT pF q :“ tK P T : F Ă Ku with corresponding domain

ωT pF q :“
ď

tK P NT pF qu .

We extend the above definitions to subsets M Ă T setting

N j
T pMq :“ tK P T : DK 1 P M such that K P N j

T pK 1qu.

In the sequel we use the notation a À b when a ď Cb for a constant C ą 0
which is independent of the actual element K, but depends on given parameters,
e.g. like the polynomial degree r, the dimension d or the parameter n of a
Sobolev space HnpKq.

Note that the shape regularity and conformity of G implies local quasi-
uniformity, i.e.

sup
T PG

max
K1PNT pKq

|K|

|K 1|
À 1 and sup

T PG
max
KPT

#NT pKq À 1, (3.1.5)

see [BNQ`12, Section 1.5].
In order to formulate the discrete bilinear form, we first need to introduce the

so-called jump and mean of a function on the skeleton ΓT . In fact, for v P VpT q,
we define

rrvssF :“

#

v|K1 ´ v|K2 , F P FT̊ ,

v|K , F P Fb
T , F Ă K,

(3.1.6)
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F

K1

K2

nF

Figure 3.1: Normal direction with respect to a side F .

ttvuuF :“

#

1
2pv|K1 ` v|K2q, F P FT̊ ,

v|K , F P Fb
T , F Ă K,

where F P FT̊ with F “ K1 XK2 and K1,K2 P T are the two adjacent elements
of F (see Figure 3.1). Jump and mean across F P FT are defined analogously
for vector fields w P VpT q2 and tensorfields T P VpT q2ˆ2, i.e. the above jump
and average operators act component wise in these cases.

Remark 3.1. We note that for F P FT̊ the definition of rr¨ss |F in (3.1.6) in
general depends on the choice of the ordering of the elements K1,K2. However,
in combination with face normals the definition of jump terms become symmet-
ric. To be precise, let nK1 and nK2 be the unit outward normal corresponding
to BK1 and BK2 and define nF :“ nK1 “ ´nK2 (compare Figure 3.1). Then, we
have

rrvssnF “ v|K1nK1 ` v|K2nK2 ,

i.e. K1,K2 play symmetric roles. The same holds true if v is replaced by a
vector valued function w P VpT q2. In this case we have

rrwss ¨ nF “ w|K1 ¨ nK1 `w|K2 ¨ nK2

which is again independent of the ordering of K1 and K2.

To simplify the notation, we sometimes drop the subscripts of the unit out-
ward normal, i.e. when no confusion is possible we simple write n instead of
nK or nF .

3.1.1 Derivation of the discontinuous Galerkin finite element
method

This section we loosely follow the same path as in [DPE12] (compare also [SM03,
Section 3]) in order to derive our discontinuous Galerkin bilinear form BT . A
different approach can be found in [GH09]. Here, we give a full derivation of the
discrete bilinear for two reasons: The first reason is, that the presentation of this
thesis should be self-contained. Second, we aim to derive slightly different for-
mulation (related to a bilinear form including piecewise Hessians terms instead
of piecewise Laplace terms) of the discrete bilinear form compared to [SM03]
(compare Remark 3.5 below).
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3.1 Discrete function spaces, meshes and traces

The derivation of the discrete bilinear BT form hinges on consistency, i.e.
BT should satisfy

BT ru, whs “

ż

Ω
fwh dx @wh P VpT q (3.1.7)

whenever the exact solution of (2.4.2) has extended regularity u P H2
0 pΩq X

H4pΩq. This regularity assumption can be asserted for instance for convex
domains Ω.

Before we start, we recall the following Lemma which is crucial in the subse-
quent analysis.

Lemma 3.2. Let ψ P H1pΩ, T q and ϕ P H1pΩ, T q2, then we have
ÿ

KPT

ż

BK
pϕ ¨ nKqψ ds

“
ÿ

FPFT

ż

F
ttϕuu ¨ nF rrψss ds`

ÿ

FPFT̊

ż

F
rrϕss ¨ nF ttψuu ds.

(3.1.8)

Moreover, for T P H1pΩ, T q2ˆ2 and b P H1pΩ, T q2 we have
ÿ

KPT

ż

BK
Tb ¨ nK ds

“
ÿ

FPFT

ż

F
ttT uu rrbss ¨ nF ds`

ÿ

FPFT̊

ż

F
rrT ss ttbuu ¨ nF ds

(3.1.9)

Proof. Equation (3.1.8) directly follows from [DPE12, p. 123] and we restrict
ourself to the proof of (3.1.9). Note that for all F P F̊ with F “ K1 X K2, we
have nF “ nK1 “ ´nK1 (compare figure 3.1) and therefore

ÿ

KPT

ż

BK
Tb ¨ nK ds “

ÿ

FPF̊

ż

F
rrTbss ¨ nF ds`

ÿ

FPFb

ż

F
Tb ¨ nF ds. (3.1.10)

Setting Ci “ T |Ki , Di “ b|Ki , 1 ď i ď 2, gives us

rrTbss “ C1D1 ´ C2D2

“
1

2
pC1 ` C2qpD1 ´D2q ` pC1 ´ C2q

1

2
pD1 `D2q

“ ttT uu rrbss ` rrT ss ttbuu ,

where we used the definitions of rr¨ss and tt¨uu. Hence, inserting the last equation
into (3.1.10), yields

ÿ

KPT

ż

BK
Tb ¨ nK ds “

ÿ

FPFT̊

ż

F
ttT uu rrbss ¨ nF ds`

ÿ

FPFT̊

ż

F
rrT ss ttbuu ¨ nF ds

`
ÿ

FPFb

ż

F
Tb ¨ nF ds

and the desired estimate (3.1.9) follows from the definition of mean- and jump
terms on BΩ.
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3 Discontinuous Galerkin Finite Element Methods

Remark 3.3. We note that for F P F̊, F “ K1 X K2, the proof of Lemma 3.2
reveals

ż

F
rrTbss ¨ nF ds “

ż

F
ttT uu rrbss ¨ nF ds`

ÿ

FPFT̊

ż

F
rrT ss ttbuu ¨ nF ds.

We stress that the jump term on the left-hand side is symmetric with respect to
the ordering of the elements K1 and K2 (compare Remark 3.1) and thus, the
jump-terms on the right-hand side are also independent of this ordering.

In order to ease the notation we restrict ourself to homogeneous boundary
values introduced in Section 2.4. The case of non-homogeneous boundary values
can be handled as in [GH09].

In the subsequent analysis, we make use of a tensor-valued integration by
parts formula. To this end, we note that a 2-tensor

T “

2
ÿ

i,j“1

Tijei b ej P R2ˆ2

is represented by the matrix T “ pTijq1ďi,jď2 P R2ˆ2, where the vector space
R2 is equipped with the standard basis te1, e2u. Consequently, for a sufficiently
smooth 2-tensor-valued function T “ pTi,jq1ďi,jď2 with column vectors T piq “

pT1i, T2iq
T , 1 ď i ď 2, the divergence is defined by

∇ ¨ T “

2
ÿ

i,j“1

BTij
Bxi

ei “ p∇ ¨ T p1q,∇ ¨ T p2qqT .

Let K P T be an arbitrary element, ϕ P H1pKq2 be a vector-valued function
and W P HpKq2ˆ2 be a tensor-valued function, then we have

ż

K
∇ϕ : W T dx “ ´

ż

K
ϕ ¨ p∇ ¨W q dx`

ż

BK
Wϕ ¨ nds.

For K P T , v P H4pKq and wh P VpT q, the last equation implies the following
integration by parts fromula

ż

K
D2v : D2wh dx “

ż

K
p∆2vqwh dx`

ż

BK
D2v∇wh ¨ nK ds

´

ż

BK
p∇ ¨D2v ¨ nKq.

(3.1.11)

Summing (3.1.11) over all K P T and using (3.1.8) and (3.1.9) leads us to
ÿ

KPT

ż

K
D2v : D2wh dx

“
ÿ

KPT

ż

K
p∆2vqwh dx´

ż

F

␣␣

∇ ¨D2v
((

¨ n rrwhss ds

´

ż

F̊

““

∇ ¨D2v
‰‰

¨ n ttwhuu ds`

ż

F

␣␣

D2v
((

rr∇whss ¨ nds

`

ż

F̊

““

D2v
‰‰

tt∇whuu ¨ nds.

(3.1.12)
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3.1 Discrete function spaces, meshes and traces

We observe that on the left-hand side of (3.1.12) we have localised the Hessians
of the bilinear form B (see (2.4.2)) to mesh-elements. Therefore, as a naive
approach we choose B

pncq

T ru,whs “
ř

KPT
ş

K D2u : D2wh dx as our discrete
bilinear form. In order to check the consistency requirement (3.1.7) we chose
v “ u and assume u P H2

0 pΩq XH4pΩq. From this we obtain

B
pncq

T ru,whs :“
ÿ

KPT

ż

K
D2u : D2wh dx

“

ż

Ω
fwh dx´

ż

F

␣␣

∇ ¨D2u
((

¨ n rrwhss ds

`

ż

F

␣␣

D2u
((

rr∇whss ¨ nds.

Hence, the last equation suggest that in order to satisfy the consistency assump-
tion (3.1.7) we have to add consistency-terms to the discrete bilinear form B

pncq

T
i.e.

B
pcq

T ru,whs :“ B
pncq

T ru,whs `

ż

F

␣␣

∇ ¨D2u
((

¨ n rrwhss ds

´

ż

F

␣␣

D2u
((

rr∇whss ¨ nds

“
ÿ

KPT

ż

K
D2u : D2wh dx`

ż

F

␣␣

∇ ¨D2u
((

¨ n rrwhss ds

´

ż

F

␣␣

D2u
((

rr∇whss ¨ nds “

ż

Ω
fwh dx.

(3.1.13)

Unfortunately, the resulting discrete bilinear form B
pcq

T in (3.1.13) is non-symmetric
with respect to the two arguments. In order to recover symmetry of BT , we
have to add symmetry-terms, i.e.

B
psymq

T ru,whs :“ B
pcq

T ru,whs `

ż

F

␣␣

∇ ¨D2wh

((

¨ n rruss ds

´

ż

F

␣␣

D2u
((

rr∇whss ¨ nds

“
ÿ

KPT

ż

K
D2u : D2wh dx

`

ż

F

␣␣

∇ ¨D2u
((

¨ n rrwhss `
␣␣

∇ ¨D2wh

((

¨ n rruss ds

´

ż

F

␣␣

D2u
((

rr∇whss ¨ n`
␣␣

D2wh

((

rr∇uss ¨ nds

“

ż

Ω
fwh dx.

(3.1.14)

Here, we used that rrussF “ rr∇ussF “ 0 for all F P F since u P H2
0 pΩq. Finally,

we have to ensure the coercivity of the discrete bilinear form B
psymq

T . For wh P
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3 Discontinuous Galerkin Finite Element Methods

VpT q we have that

B
psymq

T rwh, whs “
ÿ

KPT

ż

K

ˇ

ˇD2wh

ˇ

ˇ

2
dx

` 2

ż

F

␣␣

∇ ¨D2wh

((

¨ n rrwhss ´
␣␣

D2wh

((

rr∇whss ¨ nds.

We emphasise that the the desired estimate B
psymq

T rwh, vhs ě C |||wh|||
2
T is

unclear since the face integrals
ş

F
␣␣

∇ ¨D2wh

((

¨n rrwhss´
␣␣

D2wh

((

rr∇whss ¨nds
do not have a positive sign in general. In order to cure this issue we add penalty-
terms to the discrete bilinear form i.e.

B
ppenq

T rwh, vhs :“ B
psymq

T rwh, vhs

`

ż

FT

α

hT
rr∇uss ¨ n rr∇whss ¨ n`

β

h3T
rrussn ¨ rrwhssnds

“

ż

T
D2u : D2wh dx

`

ż

FT

␣␣

∇ ¨D2wh

((

¨ rrussn`
␣␣

∇ ¨D2u
((

¨ rrwhssnds

´

ż

FT

␣␣

D2u
((

rr∇whss ¨ n`
␣␣

D2wh

((

rr∇uss ¨ nds

`

ż

FT

α

hT
rr∇uss ¨ n rr∇whss ¨ n`

β

h3T
rrussn ¨ rrwhssnds

“

ż

T
fwh dx.

(3.1.15)

for some α, β ě 1 (to be chosen later). In order to shorten the notation, for
v P VpT q, we also write

rrBnvss |F :“ rr∇vss |F ¨ nF “ ∇v|K1nK1 ` ∇v|K2nK2 ,

where we used nF “ nK1 “ ´nK2 for F “ K1 X K2, compare Figure 3.1.
We emphasise that in this definition K1 and K2 are allowed to play symmetric
roles. Finally, the same holds true for the two remaining jump-terms, due to
Remark 3.3.

Finally, in view of (3.1.15) we are in a position to define our discrete SIPDG
bilinear form by

BT rv, ws :“

ż

T
D2v : D2w dx

`

ż

FT

␣␣

∇ ¨D2v
((

¨ rrwssn`
␣␣

∇ ¨D2w
((

¨ rrvssnds

´

ż

FT

␣␣

D2v
((

rr∇wss ¨ n`
␣␣

D2w
((

rr∇vss ¨ nds

`

ż

FT

α

hT
rrBnvss rrBnwss `

β

h3T
rrvssn ¨ rrwssnds,

(3.1.16)

for all v, w P VpT q.
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3.2 The discrete problem

Remark 3.4. For the ease of notation we restrict ourself to the SIPDG variant
of the bilinear from, in (compare also [SM07]). However, we emphasise, that
by modifying the above derivation we could also obtain the non-symmetric and
the semi-symmetric variant of the interior penalty discontinuous Galerkin bilin-
ear introduced in [SM07]. Even the classical method of Baker [Bak77] can be
obtained in this way; see [GH09, Remark 3.1]).

3.2 The discrete problem

We define the symmetric interior penalty discontinuous Galerkin method (SIPDGM):

Find uT P VpT q such that BT ruT , vT s “

ż

Ω
fvT @vT P VpT q, (3.2.1)

where BT r¨, ¨s : VpT q ˆ VpT q Ñ R is defined in (3.1.16).

Remark 3.5. Similar discontinuous Galerkin methods are derived in [SM03]
and [GH09] although they use a slightly different ’divergence formulation’ of the
method instead of the ’plate formulation’ used in (3.1.16). The bilinear from in
divergence formulation is defined by

Br T rv, ws :“

ż

T
∆v∆w dx

`

ż

F

ˆ

rrvssn ¨ tt∇∆wuu ` rrwssn ¨ tt∇∆vuu

´ tt∆vuu rr∇wss ¨ n´ tt∆wuu rr∇vss ¨ n

̇

ds

`

ż

F

σ

h3T
rrvssn ¨ rrwssn`

τ

hT
rr∇vss ¨ n rr∇wss ¨ nds

(3.2.2)

and follows from a slightly different integration by parts formula. In this defini-
tion all tensor-fields occurring in the method are of order k P t0, 1u. Hence, the
definitions of the trace operators rr¨ss and tt¨uu can be slightly simplified. However,
an advantage of the plate formulation is that we can use more general boundary
conditions of fourth order problems (see e.g.[EGH`02]).

In order to prove continuity and coercivity of the discrete bilinear form BT
on VpT q, we define the energy norm

|||v|||
2
T :“

ż

T
D2v : D2v dx`

ż

FT

α

hT
|rrBnvss|

2
`

β

h3T
}rrvssn}2 ds,

where v P H2
0 pT q and α, β ě 1 are the penalty parameters (to be chosen later).

Additionally, we define for some subset M Ă T

|||v|||
2
M :“

ż

M
D2v : D2v dx` α

›

›

›
h´1{2 rrBnvss

›

›

›

2

ΓpMq
` β

›

›

›
h´3{2 rrvss

›

›

›

2

ΓpMq
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3 Discontinuous Galerkin Finite Element Methods

In order to keep the presentation simple we will henceforth write
ş

Ω

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx

instead of
ş

ΩD
2
pwv : D

2
pwv dx. Moreover, we simply write |¨| instead of the vector-

norm } ¨ }, when no confusion is possible, i.e.
ż

F
|rrvssn|

2 ds “

ż

F
} rrvssn}2,

for v P VpT q and F P F .
The proof of coercivity and continuity of BT is based on the following two

crucial estimates.

Lemma 3.6 (Inverse estimate). Let T P G. Then,

}∇v}K ď Cinvh
´1
K }v}K , @v P VpT q, K P T , (3.2.3)

where Cinv only depends on the shape regularity and the polynomial degree r.

Proof. See [DPE12, Lemma 1.44].

Lemma 3.7 (Trace inequality). Let T P G. Then, for all F P FT , such that
F Ă K P T ,

}v}F ď Ctrh
´1{2
K }v}K , @v P VpT q, (3.2.4)

where Ctr only depends on the shape regularity and the polynomial degree r.

Proof. Compare [DPE12, Lemma 1.46].

In the following proposition we will write down constants related to coerciv-
ity of BT explicitly, since we are interested on the dependence of the penalty
parameters α, β with respect to the polynomial degree r.

Lemma 3.8 (Continuity and Coercivity). Let T P G and chose the penalty
parameters α, β such that α ą 6C2

tr and β ą 6C2
trC

2
inv. Then, there exist positive

constants Ccont, Ccoer such that

BT rv, ws ď Ccont |||v|||T |||w|||T and Ccoer |||v|||
2
T ď BT rv, vs.

for all v, w P VpT q. The constants Ccont, and Ccoer solely depend on α, β, the
mesh parameters and the polynomial degree r.

Proof. Before we establish coercivity and continuity of BT we consider the
following estimates of face integrals: For all v, w P VpT q we have

ˇ

ˇ

ˇ

ˇ

ż

F

␣␣

∇ ¨D2v
((

¨ rrwssnds

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

KPT

ÿ

FĂT
h3F

›

›∇ ¨D2v|K
›

›

2

L2pF q

¸1{2
ˆ
ż

F
h´3
T |rrwssn|

2 ds

̇1{2 (3.2.5)
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3.2 The discrete problem

and

ˇ

ˇ

ˇ

ˇ

ż

F

␣␣

D2v
((

rr∇wss ¨ nds

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

KPT

ÿ

FĂT
hF

›

›D2v|K
›

›

2

L2pF q

¸1{2
ˆ
ż

F
h´1
T |rrBnwss|

2 ds

̇1{2

.

(3.2.6)

This is a consequence of the Cauchy-Schwarz inequality and a regrouping of the
face contributions (compare [DPE12, Lemma 4.11] for details).

In order to proof coercivity, let v P VpT q and write

BT rv, vs ě
›

›D2
pwv

›

›

2

Ω
´ 2

ˇ

ˇ

ˇ

ˇ

ż

FT

␣␣

∇ ¨D2v
((

¨ n rrvss ds

ˇ

ˇ

ˇ

ˇ

´ 2

ˇ

ˇ

ˇ

ˇ

ż

FT

␣␣

D2v
((

rr∇vss ¨ nds

ˇ

ˇ

ˇ

ˇ

`

ż

FT

α

hT
rrBnvss

2
`

β

h3T
|rrvssn|

2 ds.

(3.2.7)

In (3.2.5) we use the trace inequality (3.2.4) and the inverse inequality (3.2.3)
in conjunction with hF |F ď hK |F , for all F Ă BK and all K P T , to obtain

ˇ

ˇ

ˇ

ˇ

ż

F

␣␣

∇ ¨D2v
((

¨ rrwssnds

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

KPT

ÿ

FĂT
h3F

›

›∇ ¨D2v|K
›

›

2

L2pF q

¸1{2
ˆ
ż

F
h´3
T |rrwssn|

2 ds

̇1{2

ď

˜

ÿ

KPT
h3K

›

›∇ ¨D2v|K
›

›

2

L2pBKq

¸1{2
ˆ
ż

F
h´3
T |rrwssn|

2 ds

̇1{2

ď CinvCtr
?
3
›

›D2
pwv

›

›

Ω

ˆ
ż

F
h´3
T |rrwssn|

2 ds

̇1{2

.

(3.2.8)

In the same vein we obtain from (3.2.6) by the trace inequality and similar
arguments

ˇ

ˇ

ˇ

ˇ

ż

F

␣␣

D2v
((

rr∇wss ¨ nds

ˇ

ˇ

ˇ

ˇ

ď Ctr
?
3
›

›D2
pwv

›

›

Ω

ˆ
ż

F
h´1
T |rrBnwss|

2 ds

̇1{2

. (3.2.9)

Using (3.2.8) and (3.2.9) in (3.2.7), in conjunction with Young’s inequality,
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3 Discontinuous Galerkin Finite Element Methods

yields

BT rv, vs ě
1

2

›

›D2
pwv

›

›

2

Ω
´ 6C2

invC
2
tr

ż

F
h´3
T |rrwssn|

2 ds

´ 6C2
tr

ż

F
h´1
T |rrBnwss|

2 ds

`

ż

FT

α

hT
rrBnvss

2
`

β

h3T
rrvss

2 ds

“
1

2

›

›D2
pwv

›

›

2

Ω

`

ż

FT

α ´ 6C2
tr

hT
rrBnvss

2
`
β ´ 6C2

invC
2
tr

h3T
|rrvssn|

2 ds.

(3.2.10)

As a result we obtain coercivity of BT on VpT q since we assumed α ą 6C2
tr and

β ą 6C2
invC

2
tr.

Finally, continuity of BT follows from (3.2.8) and (3.2.9), since we obtain

BT rv, ws

ď
›

›D2v
›

›

Ω

›

›D2w
›

›

Ω
`

ˇ

ˇ

ˇ

ˇ

ż

FT

␣␣

∇ ¨D2v
((

¨ n rrwss ds

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

FT

␣␣

∇ ¨D2w
((

¨ n rrvss ds

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

FT

␣␣

D2v
((

rr∇wss ¨ n

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

FT

␣␣

D2w
((

rr∇vss ¨ nds

ˇ

ˇ

ˇ

ˇ

`

ż

FT

α

hT
rrBnvss rrBnwss `

β

h3T
rrvssn ¨ rrwssnds

ď
›

›D2v
›

›

Ω

›

›D2w
›

›

Ω
` CtrCinv

?
3
›

›D2
pwv

›

›

Ω

›

›

›
h

´3{2
T rrwssn

›

›

›

Γ

` CtrCinv
?
3
›

›D2
pww

›

›

Ω

›

›

›
h

´3{2
T rrvssn

›

›

›

Γ
` Ctr

?
3
›

›D2
pww

›

›

Ω

›

›

›
h

´1{2
T rrBnvss

›

›

›

Γ

` Ctr
?
3
›

›D2
pwv

›

›

Ω

›

›

›
h

´1{2
T rrBnwss

›

›

›

Γ
`

›

›

›
α1{2h

´1{2
T rrBnwss

›

›

›

Γ

›

›

›
α1{2h

´1{2
T rrBnvss

›

›

›

Γ

`

›

›

›
β1{2h

´3{2
T rrwssn

›

›

›

Γ

›

›

›
β1{2h

´3{2
T rrvssn

›

›

›

Γ

ď Ccont |||v|||T |||w|||T .

The following theorem states that the discrete problem (3.2.1) yields a unique
solution, provided the penalty parameters where chosen large enough to ensure
coercivity of the discrete bilinear form.

Theorem 3.9 (Discrete solution). Let T P G and chose the penalty parameters
α, β such that α ą 6C2

tr and β ą 6C2
trC

2
inv. Then, the SIPDG problem (3.2.1)

yields a unique solution uT P VpT q.

Proof. We already established coercivity and continuity of BT on VpT q in
Lemma 3.8. Hence, in order to apply the Lax-Milgram Theorem 2.8, we have
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3.3 Liftings: Definition and stability

to prove that pVpT q, |||¨|||T q is a Banach space. Note that |||¨|||T is obviously a
semi-norm on VpT q and we only have to prove

|||v|||T “ 0 ðñ v “ 0, @v P VpT q.

Whence, let v P V and assume |||v|||T “ 0, then
›

›D2
pwv

›

›

Ω
“ 0 implies D2

pwv “ 0

and therefore ∇pwv is a constant on every K P T . Moreover,
›

›

›
h

´1{2
T rrBnvss

›

›

›

Γ
“ 0

implies that interface and boundary jumps of ∇pwv vanish and therefore ∇pwv ” 0
on the whole domain Ω. Consequently, v is a constant on every K P T . Since
also

›

›

›
h

´3{2
T rrvssn

›

›

›

Γ
“ 0, we infer that v “ 0 on the whole domain Ω. As a

consequence, we have that pVpT q, |||¨|||T q is a Banach space and the assertion
follows from the Lax-Milgram Lemma 2.8.

Remark 3.10 (r-dependency of the penalty parameters). We note, that Cinv
and Ctr depend on the polynomial degree r,. i.e. Ctr scales as

a

rpr ` 2q (com-
pare [WH03] and Cinv scales as r2 on triangles (see [SS98]). Hence Lemma 3.8
implies, that α “ Oppr ` 1q2q and β “ Oppr ` 1q6q. The specific choices of the
penalty parameters in the numerical experiments (Chapter 5) follow from these
estimates.

Unfortunately, we can not apply the discrete bilinear form BT to the exact
solution u of (2.4.2) in cases of minimal regularity u P H2

0 pΩq. The reason is that
the discrete bilinear form requires traces for second and third order derivatives
of u and therefore we need u P H4pΩq which does not hold in general (compare
Section 2.4 and the references therein). In order to solve this problem we have
to introduce so called lifting operators, resp. liftings.

3.3 Liftings: Definition and stability

Lifting operators map scalar valued functions defined on mesh faces to tensor
valued functions defined on mesh elements. In this way, the second and third
order derivatives face integrals are replaced by volume terms.

In order to give a proper definitoon, we fix F P FT and define a local lifting
operator LF

T : VpT q `H2
0 pΩq Ñ Pr´2pT q2ˆ2, by

ż

Ω
LF
T pϕq : ψ dx “

ż

F
tt∇ ¨ψuu ¨ rrϕssn´ ttψuu rr∇ϕss ¨ nds (3.3.1)

for all ψ P Pr´2pT q2ˆ2. A simple interpretation of the lifting operators is
the following: For each ϕ P VpT q ` H2

0 pΩq the right-hand side of (3.3.1) is a
linear operator over Pr´2pT q2ˆ2. Consequently, the lifting operator LF

T pϕq is
the representative of this linear operator in Pr´2pT q2ˆ2 under the L2pΩq-scalar
product in Pr´2pT q2ˆ2. Note that by the definition of LF

T pφq the support is
given by ωT pF q, i.e. the one or two mesh elements of which F is part of the
boundary. We expand the local definition (3.3.1) to a global lifting operator
LT : VpT q `H2

0 pΩq Ñ Pr´2pT q2ˆ2 by

LT pφq :“
ÿ

FPFT

LF
T pφq.
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3 Discontinuous Galerkin Finite Element Methods

We emphasise that v, Bnv P L2pΓT q, for all v P H2pT q and therefore we can
extend the bilinear form BT from VpT q to H2pT q by

BT rv, ws :“

ż

T
D2v : D2w dx`

ż

Ω
LT pwq : D2

pwv ` LT pvq : D2
pww dx

`

ż

FT

α

hT
rrBnvss rrBnwss `

β

h3T
rrvssn ¨ rrwssnds.

(3.3.2)

We emphasise that the bilinear BT defined in (3.1.16) is equivalent to (3.3.2) at
the discrete level, i.e. for v, w P VpT q. In particular, coercivity and continuity
(Lemma 3.8) holds true also (3.3.2). Differences occur on larger spaces, e.g.
broken Sobolev spaces, since (3.1.16) is not defined on H2pT q. For the rest of
this thesis BT always refers to (3.3.2) unless stated otherwise.

In view of consistency, let u, v P H2
0 pΩq. Then, we have from (3.3.1) that

LT puq “ LT pvq “ 0 and therefore

BT ru, vs “ Bru, vs “

ż

Ω
D2u : D2v dx “

ż

Ω
fv dx.

Hence, we infer consistency of the bilinear form BT .
The following lemma states crucial bounds of the lifting operators in the

L2pΩq-norm.

Lemma 3.11 (Bounds on liftings). Let K P T and F P F such that F Ă K.
Then, For all ϕ P H2pT q,

›

›LF
T pϕq

›

›

Ω
ď Ctrh

´1{2
F }rrBnϕss}F ` CtrCinvh

´3{2
F }rrϕssn}F . (3.3.3)

In particular, this implies with

}LT pϕq}Ω ď
?
3

˜

ÿ

FPF

›

›LF
T pϕq

›

›

2

Ω

¸1{2

that

}LT pϕq}Ω ď
?
3

ˆ
ż

F

Ctr

hT
rrBnϕss

2
`
CtrCinv

h3T
|rrϕssn|

2 ds

̇1{2

. (3.3.4)

Proof. Let F P F and K P T such that F Ă K. Note that ϕ P H2pKq implies
that ∇ϕ has a L1-trace on F Ă K. Definition (3.3.1), together with the discrete
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3.3 Liftings: Definition and stability

trace and the inverse inequality (compare (3.2.4) and (3.2.3)) yields

›

›LF
T pϕq

›

›

2

Ω
“

ż

Ω
LF
T pϕq : LF

T pϕqdx

“

ż

F

␣␣

∇ ¨ LF
T pϕq

((

¨ n rrϕss ´
␣␣

LF
T pϕq

((

rr∇ϕss ¨ nds

ď

ˆ

h3F

ż

F

ˇ

ˇ∇ ¨ LF
T pϕq

ˇ

ˇ

2
ds

̇1{2ˆ

h´3
F

ż

F
|rrϕssn|

2 ds

̇1{2

`

ˆ

hF

ż

F

ˇ

ˇLF
T pϕq

ˇ

ˇ

2
ds

̇1{2ˆ

h´1
F

ż

F
rrBnϕss

2 ds

̇1{2

ď

›

›

›
h

´3{2
F rrϕssn

›

›

›

F
CtrCinv

¨

˝p#NT pF qq´1
ÿ

KPωT pF q

ż

K

ˇ

ˇLF
T pϕq

ˇ

ˇ

2
dx

˛

‚

`

›

›

›
h

´1{2
F rrBnϕss

›

›

›

F
Ctr

¨

˝p#NT pF qq´1
ÿ

KPωT pF q

ż

K

ˇ

ˇLF
T pϕq

ˇ

ˇ

2
dx

˛

‚.

Therefore, (3.3.3) follows from
ÿ

KPωT pF q

ż

K

ˇ

ˇLF
T pϕq

ˇ

ˇ

2
dx “

›

›LF
T pϕq

›

›

2

Ω
and #NT pF q´1 ď 1.

The bound of the global lifting operators }LT pϕq}Ω follows from the local ones
since }LT pϕq}

2
Ω ď 3

ř

FPF
›

›LF
T pϕq

›

›

2

Ω
, in conjunction with the fact that the mesh

consists of triangles. Finally, by the last estimate and (3.3.3) we obtain (3.3.4).

In view of the subsequent convergence analysis we are interested in the stabil-
ity of the solution uT with respect to the energy norm. To this end, we observe
from coercivity and (3.2.1)

|||uT |||
2
T À BT ruT , uT s “

ż

Ω
fuT dx ď }f}Ω }uT }Ω .

As a consequence we have

|||uT |||T À }f}Ω, (3.3.5)

due to the following broken Poincaré-Friedrichs inequality (Proposition 3.12)
below.

Proposition 3.12 (Poincaré Inequality on H2pT q). Let T P G and ϕ P H2pT q.
Then,

}ϕ}
2
Ω `

›

›∇pwϕ
›

›

2

Ω
À
›

›D2
pwϕ

›

›

2

Ω
`

›

›

›
h

´3{2
T rrϕssn

›

›

›

2

ΓT
`

›

›

›
h

´1{2
T rrBnϕss

›

›

›

2

ΓT
,

where the constants in 1 À1 are independent of the mesh-size hT . In particular,
for v P VpT q this implies

}v}
2
Ω `

›

›∇pwv
›

›

2

Ω
À |||v|||

2
T .
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3 Discontinuous Galerkin Finite Element Methods

Proof. Compare [BWZ04].

In view of the numerical example 1 in Chapter 5, we are interested in the
convergence rates in case of a arbitrary smooth exact solution.

The next Theorem can be found in [GH09, Theorem 5.5] (compare also
[SM07]) and states that the solution converges upon h-refinement with opti-
mal rates. As usual in a priori analysis, additional regularity beyond u P H2

0 pΩq

leads to higher convergence rates. See [GH09] for hp a priori analysis of SIPDGM.

Theorem 3.13 (A priori error bound). Assume that for the solution u of (2.4.2)
it holds that u|K P HkK`2pKq, kK ě 2, K P T . Then, the following error bound
holds,

|||u´ uT |||
2
T ď C

ÿ

KPT
h2sKK |u|

2
HsK`2pKq

, (3.3.6)

where 1 ď sK ď mintr ´ 1, kKu, and the constant C ą 0 is independent of u
and h.

This theorem implies that for a sufficient smooth solution, i.e. u P H2
0 pΩq X

HℓpΩq, ℓ ě r ` 1 (c.f. also [SM03], [SM07]) we have |||u´ uT |||T “ Ophr´1
T q “

OpN´pr´1q{2q. In particular, we have OpN´1{2q for r “ 2, OpN´1q for r “ 3,
OpN´3{2q for r “ 4 and OpN´2q for r “ 5. Here, N denotes the number of
degrees of freedom. These are exactly the (asymptotical) rates we observe in
Chapter 5, example 1.

3.4 A posteriori error bounds

a In this chapter we recall the residual-based a posteriori error indicator for
SIPDGM from [GHV11]. For the sake of a complete presentation we state full
proofs of reliability and efficiency.

In order to proof upper bounds of the a posteriori error estimator, we consider
a recovery operator from (compare [GHV11, Section 3]), which maps VpT q onto
a H2

0 pΩq-conforming space constructed by macro elements.

3.4.1 Smoothing operator

We start with the definition of the Hsieh-Clough Tocher (HCT) macro element
(compare [DDPS79, BGS10, GHV11]).

Definition 3.14 (HCT element). Let T P G and K P T . Then for m ě 4 the
HCT nodal macro finite element pK, P̂mpKq,N HCT

m pKqq is defined as follows.

a) The local space is given by

P̂mpKq “
␣

p P C1pKq : p|Ki P PmpKiq, i “ 1, 2, 3
(

.

Here, the three triangles K1,K2 and K3 denote subtriangulation of K
obtained by connecting the vertices of K with its barycenter; compare
with Figure 3.2.
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3.4 A posteriori error bounds

b

K3

K2 K1

Figure 3.2: A macro triangle K subdivided into three small sub triangles which
share a common point b.

b) The degrees of freedom N HCT
m pKq are given by (compare also with Fig-

ure 3.3)

(i) the value of the functions and its gradient at the vertices of K;

(ii) the function value at pm´3q distinct points in the interior of each side
F P FT , F Ă BK;

(iii) the normal derivative at pm´ 2q distinct points in the interior of each
side F P FT , F Ă BK;

(iv) the value of the function and its gradient at the barycentre of K;

(v) the function value at pm´4q distinct points in the interior of each edge
F Ă Ki, F R FT , i “ 1, 2, 3;

(vi) the normal derivative at pm´ 4q distinct points in the interior of each
edge F Ă Ki, F R FT , i “ 1, 2, 3;

(vii) the function value at pm ´ 4qpm ´ 5q{2 distinct points in the interior
of each Ki, i “ 1, 2, 3 chosen so that if a polynomial of degree pm´ 6q

vanishes at those points, then it vanishes identically.

The corresponding finite element space is denoted by

VrpT q :“
!

V P C1pΩq : V |K P P̂mpKq for all K P T
)

and its global degrees of freedom are given by

N HCT
m pT q :“

ď

KPT
N HCT

m pKq,

which is well-posed thanks to conformity of VrpT q Ă H2pΩq.

For m “ 4 the degrees of freedom are depicted in Figure 3.3. Obviously,
N HCT

4 pKq contains the point evaluations in the vertices and edge midpoints of K
(the Lagrange nodes ZK of P2pKq). We emphasise that for a general polynomial
degree 2 ď r ď 4 the set of nodal points of the Lagrange basis is a subset of the
set of the nodal points of the macro element of degree r ` 2. This follows
directly from the definition of the macro elements of the respective degree.
Additionally, we have PrpKq Ă P̂r`2pKq, and therefore we can apply N HCT

r`2pKq

to PrpKq. Here, we are not interested in the case r ą 4, since this would imply
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3 Discontinuous Galerkin Finite Element Methods

Figure 3.3: The Lagrange element of degree two and the corresponding macro
element of degree four. Here point evaluations are denoted by small
dots, (first) partial derivatives by circles and normal derivatives by
lines. Compare [GHV11, DDPS79] for degrees of freedom related to
macro elements of degree 5 and 6.

that VpT q contains a conforming discretisation of our fourth order problem,
which would make HCT elements redundant. The reason is that for r ě 5 it is
possible to construct a basis for the space of C1 piecewise polynomials which
is parametrised by ’nodal variables’, i.e. the values and derivatives of the basis
functions at a discrete set of points (compare [MS75] and also [AFS68]). The
case m “ 3 corresponds to the classical HCT-Element ([Cia02b, Ch. 6]) which
is not considered here.

We define the recovery operator ET : VpT q Ñ VrpT q Ă H2
0 pΩq, by setting for

all K P T and all degrees of freedom NK
z P N HCT

K , z P ZHCT
T :

NzpET pvqq “

$

&

%

ř

KPωkpzq

|K|

|ωkpzq|
NK

z pv|Kq z R BΩ,

0 z P BΩ
(3.4.1)

Here, ZHCT
T denotes the set of nodes z associated with some degree of freedom

Nz P N HCT
T and corresponding local degree of freedom NK

z P N HCT
K . Note that

there may be different degrees of freedom associated with one node; compare
with Figure 3.3.

Lemma 3.15. Let T P G. The operator ET : VpT q Ñ H2
0 pΩq defined in (3.4.1)

satisfies

}Dγpv ´ ET pvqq}
2
K À

ż

FpNT pKqq

ˇ

ˇ

ˇ

ˇ

h
3
2

´γ

T rrBnvss

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
h
1{2´γ
T rrvssn

ˇ

ˇ

ˇ

2
ds, (3.4.2)

with γ “ 0, 1, 2, and the hidden constant depends only on the shape coefficient
of T0. In particular this implies

ÿ

KPT

›

›Djpv ´ ET pvqq
›

›

2

K
À

›

›

›
h
3{2´j
T rrBnvss

›

›

›

2

ΓT
`

›

›

›
h
1{2´j
T rrvssn

›

›

›

2

ΓT
. (3.4.3)

Proof. The proof can be found in [GHV11, Lemma 3.1]. For the sake of com-
pleteness, we give a sketch of the proof. Let K P T and v P VpT q, then an
inverse estimate (Lemma 3.6) yields

›

›Djpv ´ ET pvqq
›

›

2

K
À

›

›

›
h´j
T pv ´ ET pvqq

›

›

›

2

K
.
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In order to keep the presentation readable we slightly modify the notation and
write N pKqHCT instead of N HCT

K . From equivalence of norms on a finite dimen-
sional vector space we obtain

›

›Djpv ´ ET pvqq
›

›

2

K
À

1
ÿ

i“0

ÿ

NzPN pK,iqHCT

h
2pi´j`1q

K pNzpv ´ ET pvqqq2,

where N pK, 0qHCT and N pK, 1qHCT are the nodal variables consisting of function
evaluations, and those involving partial and normal derivatives (compare the
Definition 3.14). Now, for each NK

z P N pKqHCT, which is not on the boundary
BΩ, we consider a local numbering K1, . . . ,K#NT pzq´1 of the elements in NT pzq,
such that each pair Ki, Ki`1 share a common face F “ Ki XKi`1.

First, we regard the nodal variables N pK, 0qHCT only and use the arithmetic-
geometric mean inequality (compare [KP03, Lemma 2.2]), to obtain

ÿ

NK
z PN pK,0qHCT

h
2p1´jq

K pNK
z pv ´ ET pvqqq2

“
ÿ

NzPN pK,0qHCT

zPKXΓ̊T

h
2p1´jq

K

¨

˝vpzq|K ´
|K 1|

|ωkpzq|

ÿ

K1Pωkpzq

vpzq|K1

˛

‚

2

`
ÿ

NzPN pK,0qHCT

zPKXΓb
T

h
2p1´jq

K pvpzq|Kq
2

À
ÿ

NzPN pK,0qHCT

zPKXΓ̊T

h
2p1´jq

K

¨

˝

#NT pzq´1
ÿ

j“1

pvpzq|Kj ´ vpzq|Kj`1q2

˛

‚

`
ÿ

NzPN pK,0qHCT

zPKXΓb
T

h
2p1´jq

K pvpzq|Kq
2

À max
zPF

FPFpNT pKqq

ˇ

ˇ

ˇ
h1´j
T rrvpzqssn

ˇ

ˇ

ˇ

2

À

ż

FpNT pKqq

ˇ

ˇ

ˇ
h
1{2´j
T rrvssn

ˇ

ˇ

ˇ

2
ds,

where we used a scaling argument in the last estimate.
The remaining proof of (3.4.2) follows analogously by splitting the nodal vari-

ables N pK, 1qHCT “
␣

N pK,nqHCT Y N pK, pqHCT
(

, into the set of nodal variables
evaluating only normal derivatives (Definition 3.14 b) (iii) and (vi)) and the
remaining set of nodal variables (values of the gradient in Definition 3.14 b) (i)
and (iv)); compare [GHV11, Lemma 3.1].

The second assertion follows from the local estimate (3.4.2) together with the
finite overlap of the neighbourhoods NT pKq, K P T .
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3.4.2 Upper bounds

We introduce the a posteriori error estimators from [GHV11]. For v P VpT q and
K P T let

ηpv,Kq2 :“

ż

K
h4T

ˇ

ˇf ´ ∆2v
ˇ

ˇ

2
dx

`

ż

BKXΩ
h3T

ˇ

ˇ

““

∇ ¨D2
pwv

‰‰

¨ nK

ˇ

ˇ

2
` hT

ˇ

ˇ

““

D2
pwv

‰‰

nK

ˇ

ˇ

2
ds

`

ż

BK

α2

hT
rrBnvss

2
`
β2

h3T
|rrvssn|

2 ds.

(3.4.4)

When v “ uT we simply write ηT pKq :“ ηpuT ,Kq. Moreover, for M Ă T , we
set

ηT pv,Mq :“

˜

ÿ

KPM
ηpv,Kq2

¸1{2

and ηT pMq :“ ηT puT ,Mq.

From [GHV11, Theorem 4.1] we have that (3.4.4) defines a reliable estimator.

Proposition 3.16. Let u P H2
0 pΩq be the solution of (2.4.2) and uT the discrete

solution of (3.2.1). Then,

|||u´ uT |||T À ηT pT q,

where the constants in À are independent of u, uT and hT .

Proof. The statement follows by the same arguments as in [GHV11, Theorem
4.1]. In order to keep this thesis self-contained we give short proof. Let vT P

VpT q and v P H2
0 pΩq be arbitrary (to be defined later) and ψ “ v´vT . Moreover,

let ET puT q P VrpT q X H2
0 pΩq the smoothing operator as in (3.4.1). The error is

decomposed in an H2
0 pΩq-conforming part and nonconforming part via

e :“ u´ uT “ pu´ ET puT qq ` pET puT q ´ uT q ” ec ` enc.

For u, v P H2
0 pΩq we have LT puq “ LT pvq “ 0 since all jump terms vanish.

Consequently, since u is the solution of the weak problem we have BT ru, vs “
ş

Ω fv dx. In conjunction with BT ruT , vT s “
ş

Ω fvT dx this implies

BT re, vs “ BT ru, vs ´ BT ruT , vs “

ż

Ω
fv dx´ BT ruT , v ´ vT s ´ BT ruT , vT s

“

ż

Ω
fψ dx´ BT ruT , ψs

and therefore by using ec “ e´ enc

BT rec, vs “

ż

Ω
fψ dx´ BT ruT , ψs ´ BT renc, vs.

Setting v “ ec in the last equation, we obtain

›

›D2ec
›

›

2

Ω
“ BT rec, ecs “

ż

Ω
fψ dx´ BT ruT , ψs ´ BT renc, ecs. (3.4.5)
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By using the stability of the lifting operators (3.3.4) we deduce for the last term
on the right-hand side of (3.4.5)

|BT renc, ecs|

“

ˇ

ˇ

ˇ

ˇ

ż

Ω
pD2

pwe
nc ` LT pencqq : D2ec dx

ˇ

ˇ

ˇ

ˇ

À

ˆ

›

›D2
pwe

nc
›

›

2

Ω
`

›

›

›
h

´1{2
T rrBnuT ss

›

›

›

2

ΓT
`

›

›

›
h

´3{2
T rruT ssn

›

›

›

2

ΓT

̇1{2
›

›D2ec
›

›

Ω
.

À

ˆ

›

›

›
h

´1{2
T rrBnuT ss

›

›

›

2

ΓT
`

›

›

›
h

´3{2
T rruT ssn

›

›

›

2

ΓT

̇1{2
›

›D2ec
›

›

Ω
,

(3.4.6)

where we also used that the nonconforming part is bounded by

›

›D2
pwe

nc
›

›

2

Ω
“

ÿ

KPT

ż

K

ˇ

ˇD2puT ´ ET puT qq
ˇ

ˇ

2
dx

À

›

›

›
h

´1{2
T rrBnuT ss

›

›

›

2

Γ
`

›

›

›
h

´3{2
T rruT ssn

›

›

›

2

Γ
,

due to Lemma 3.15. For the remaining two terms on the right-hand side of
(3.4.5) we use integration by parts, to obtain

ż

Ω
fψ dx´ BT ruT , ψs

“

ż

Ω
pf ´ ∆2uT qψ dx´

ż

Ω
pLT pψq : D2

pwuT ` LT puT q : D2
pwψq dx

´
ÿ

KPT

„
ż

BK
D2uT ∇ψ ¨ n´ ψ∇ ¨D2uT ¨ nds

ȷ

´

ż

FT

α

hT
rrBnuT ss rrBnψss `

β

h3T
rruT ssn ¨ rrψssnds.

(3.4.7)

On the one hand we have from uT , vT P VpT q and v P H2
0 pΩq by the definition

of the lifting operators
ż

Ω
LT pψq : D2

pwuT

“

ż

F

␣␣

∇ ¨D2
pwuT

((

¨ n rrψss ´
␣␣

D2
pwuT

((

rr∇ψss ¨ nds

(3.4.8)

and on the other hand we have for the sum over element boundaries by (3.1.8)
and (3.1.9)

ÿ

KPT

„
ż

BK
D2uT ∇ψ ¨ n´ ψ∇ ¨D2uT ¨ nds

ȷ

“

ż

FT

␣␣

D2
pwuT

((

rr∇ψss ¨ n´
␣␣

∇ ¨D2
pwuT

((

¨ n rrψss ds

`

ż

FT̊

““

D2uT
‰‰

tt∇ψuu ¨ n´ ttψuu
““

∇ ¨D2
pwuT

‰‰

¨ nds.

(3.4.9)
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3 Discontinuous Galerkin Finite Element Methods

Consequently, using (3.4.8) and (3.4.9) in (3.4.7) we have
ż

Ω
fψ dx´ BT ruT , ψs

“

ż

Ω
pf ´ ∆2uT qψ ´ LT puT q : D2

pwψ dx

´

ż

FT̊

““

D2
pwuT

‰‰

tt∇ψuu ¨ n´ ttψuu
““

∇ ¨D2
pwuT

‰‰

¨ nds

´

ż

FT

p
α

hT
rrBnuT ss rrBnψss `

β

h3T
rruT ssn ¨ rrψssnq ds.

(3.4.10)

In order to bound the right-hand side of (3.4.10), we set vT P VpT q to be the
element-wise polynomial approximation to ec such that

|ec ´ vT |HjpKq ď Chm´j
K |ec|HmpKq 0 ď j ď m ď 2, K P T , (3.4.11)

where, C ą 0 is independent of the mesh-size (compare [Cia02a]). Note that
Langrange interpolation is sufficient in this case since, functions in H2

0 pΩq are
continuous on two-dimensional domains ([Alt16, 10.13]).

Consequently, for the first term on the right-hand side of (3.4.10), we have
by (3.4.11) and the stability of the lifting operators
ˇ

ˇ

ˇ

ˇ

ż

Ω
pf ´ ∆2uT qψ dx´ LT puT q : D2

pwψqdx

ˇ

ˇ

ˇ

ˇ

À

ˆ

›

›h2T pf ´ ∆2uT q
›

›

2

Ω
`

›

›

›
h

´1{2
T rrBnuT ss

›

›

›

2

ΓT
`

›

›

›
h

´3{2
T rruT ssn

›

›

›

2

ΓT

̇1{2
›

›D2ec
›

›

Ω
.

(3.4.12)

From (3.4.11) in conjuncotion with a scaled trace inequality we derive the fol-
lowing estimate:

ż

FT̊

h´1
T |tt∇ψuu|

2 ds “
ÿ

FPFT̊

ż

F
h´1
F |tt∇ψuu|

2 ds

ď C
ÿ

KPT

ż

BK
h´1
K |tt∇ψuu|

2 ds

ď C
ÿ

KPT

´

ˇ

ˇh´1
T ψ

ˇ

ˇ

2

H1pKq
` |ψ|

2
H2pKq

¯

ď C
›

›D2ec
›

›

2

Ω
,

where the constant C ą 0 is independent of the mesh-size. Using the last
estimate for the second term on the right-hand side of (3.4.10) we obtain

ˇ

ˇ

ˇ

ˇ

ż

FT̊

““

D2
pwuT

‰‰

tt∇ψuu ¨ nds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

FT̊

““

D2
pwuT

‰‰

n ¨ tt∇ψuu ds

ˇ

ˇ

ˇ

ˇ

À

›

›

›
h
1{2
T

““

D2
pwuT

‰‰

nF

›

›

›

Γ̊T

›

›D2ec
›

›

Ω
.

(3.4.13)

By similar calculations we derive
ż

FT̊

h´3
T |ttψuu|

2 ds À
ÿ

KPT

´

›

›h´2
T ψ

›

›

2

K
`
ˇ

ˇh´1
T ψ

ˇ

ˇ

2

H1pKq

¯

À
›

›D2ec
›

›

2

Ω
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to bound the third term of (3.4.10) by
ˇ

ˇ

ˇ

ˇ

ż

FT̊

ttψuu
““

∇ ¨D2
pwuT

‰‰

¨ nds

ˇ

ˇ

ˇ

ˇ

À

›

›

›
h
3{2
T

““

∇ ¨D2
pwuT

‰‰

¨ n
›

›

›

Γ̊T

›

›D2ec
›

›

Ω
.

(3.4.14)

Analogous arguments applied to the penalty terms leads us to
ˇ

ˇ

ˇ

ˇ

ż

FT

α

hT
rrBnuT ss rrBnψss `

β

h3T
rruT ssn ¨ rrψssnds

ˇ

ˇ

ˇ

ˇ

À

ˆ

α2
›

›

›
h

´1{2
T rrBnuT ss

›

›

›

2

Γ
` β2

›

›

›
h

´3{2
T rruT ssn

›

›

›

2

Γ

̇

›

›D2ec
›

›

Ω
.

(3.4.15)

Finally, for the conforming part of the error we obtain by (3.4.5), (3.4.6), (3.4.10)
and (3.4.12) -(3.4.15)

›

›D2ec
›

›

Ω
À

ˆ

›

›h2T pf ´ ∆2uT q
›

›

2

Ω
`

›

›

›
h
3{2
T

““

∇ ¨D2
pwuT

‰‰

¨ n
›

›

›

Γ̊T

`

›

›

›
h
1{2
T

““

D2
pwuT

‰‰

n
›

›

›

Γ̊T
` α2

›

›

›
h

´1{2
T rrBnuT ss

›

›

›

2

Γ
β2

›

›

›
h

´3{2
T rruT ssn

›

›

›

2

Γ

̇1{2

.

Finally the triangle inequality
›

›D2
pwe

›

›

Ω
ď
›

›D2ec
›

›

Ω
`
›

›D2
pwe

nc
›

›

Ω

concludes the proof.

3.4.3 Lower Bounds

In this section we state [GHV11, Theorem4.4], providing the efficiency of the
SIPDG error indicator. In the proofs of the so-called lower bounds we make heav-
ily use of the fact, that our finite-element space is finite dimensional. Obviously,
this is not true for L2pΩq. Consequently, we need to project f onto the finite
dimensional space PrpT q by using the L2-orthogonal projection Π: L2pΩq Ñ

PrpT q, defined in (3.1.4). Hence, for v P VpT q the element residual in (3.4.4) is
bounded by

ż

K
h4T

ˇ

ˇf ´ ∆2v
ˇ

ˇ

2
ď

ż

K
h4T

ˇ

ˇΠf ´ ∆2v
ˇ

ˇ

2
`

ż

K
h4T |f ´ Πf |

2 .

The term
ş

K h4T |f ´ Πf |
2 dx :“ oscpK, fq2 is called the local data oscillation

and is bounded by the estimator. Indeed, for all v P VpT q we have by the
properties of the L2-projection operator

ż

K
h4T |f ´ Πf |

2
“

ż

K
h4T

ˇ

ˇf ´ ∆2v ` Πp∆2v ´ fq
ˇ

ˇ

2

ď 2

ż

K
h4T

ˇ

ˇf ´ ∆2v
ˇ

ˇ

2
.

(3.4.16)
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3 Discontinuous Galerkin Finite Element Methods

Proposition 3.17. Let u P H2
0 pΩq be the solution of (2.4.2) and uT the discrete

solution of (3.2.1). Then, for each K P T we have
›

›h2Kpf ´ ∆2uT q
›

›

2

K
À
›

›D2pu´ uT q
›

›

2

K
`
›

›h2Kpf ´ Πfq
›

›

2

K
(3.4.17)

and for each F P FT̊ with F “ K1 XK2 we have
›

›

›
h
1{2
F

““

D2
pwuT

‰‰

nF

›

›

›

F
À
›

›D2
pwpu´ uT q

›

›

2

K1YK2
`
›

›h2T pf ´ Πfq
›

›

2

K1YK2
(3.4.18)

and
›

›

›
h
3{2
F

““

∇ ¨D2
pwuT

‰‰

¨ nF

›

›

›

F
À
›

›D2
pwpu´ uT q

›

›

2

K1YK2

`
›

›h2T pf ´ Πfq
›

›

2

K1YK2
.

(3.4.19)

In particular, for all M Ă T P G and for all v P VpT q and K P T , we have

ηT pMq À |||u´ v|||NT pMq ` oscpNT pMq, fq, (3.4.20)

where all constants in À are independent of uT and hT . Here, the data-oscillation
is defined on M Ă T by

oscpM, fq :“

˜

ÿ

KPM
oscpK, fq2

¸1{2

dx.

Proof. We follow the lines of [GHV11, Theorem 4.4].
1 : For the element residual we fix K P T and let v P H2

0 pΩq XH2
0 pKq, with

v ” 0 on ΩzK, be a polynomial which we define later. Since v is a test function
in H2

0 pΩq and vanishes outside the element K, we have
ż

K
D2pu´ uT q : D2v dx “

ż

K
D2u : D2v dx´

ż

K
D2uT : D2v dx

“

ż

K
fv dx´

ż

K
p∆2uT qv dx,

(3.4.21)

where we used integration by parts in conjunction with the fact that v P H2
0 pKq.

Hence, we have
ż

K
D2pu´ uT q : D2v dx “

ż

K
pf ´ ∆2uT qv dx

“

ż

K
pΠf ´ ∆2uT qv dx`

ż

K
pf ´ Πfqv dx

and as a result
ż

K
pΠf ´ ∆2uT qv dx

ď
›

›D2pu´ uT q
›

›

K

›

›D2v
›

›

K
` }f ´ Πf}K }v}K

À p
›

›D2pu´ uT q
›

›

K
`
›

›h2Kpf ´ Πfq
›

›

K
q
›

›h´2
K v

›

›

K
.

(3.4.22)
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3.4 A posteriori error bounds

Now, fix v|K “ pΠf ´ ∆2uT qb2K , where ψK : K Ñ R is the element bubble
function on the element K (compare Appendix B), defined as ψK :“ ψ̂K̂ ˝ FK ,
where ψK̂ :“ 27λ̂0λ̂1λ̂2 is the bubble function on the reference element K̂ with
barycentric coordinates λ̂0, λ̂1, λ̂2 and the scaling is due to the normalisation, i.e.
ψK̂ attains the value 1 at the barycentre of K̂. Using a scaling argument together
with the fact that PrpKq is finite dimensional, we obtain

›

›Πf ´ ∆2uT
›

›

K
«

›

›pΠf ´ ∆2uT qψK

›

›

K
(compare Lemma B.2, Appendix B, p. 121). Hence, we

deduce

›

›Πf ´ ∆2uT
›

›

2

K
À

ż

K
pΠf ´ ∆2uT q2ψ2

K dx “

ż

K
pΠf ´ ∆2uT qv dx. (3.4.23)

Finally, using the triangle inequality together with (3.4.22) and (3.4.23) yields

›

›f ´ ∆2uT
›

›

2

K
ď }f ´ Πfq}

2
K `

›

›Πf ´ ∆2uT
›

›

2

K

À }pf ´ Πfq}
2
K `

ż

K
pΠf ´ ∆2uT qv dx

À
`›

›D2pu´ uT q
›

›

K
`
›

›h2Kpf ´ Πfq
›

›

K

˘

h´2
K }v}K

À
`›

›D2pu´ uT q
›

›

K
`
›

›h2Kpf ´ Πfq
›

›

K

˘

h´2
K

›

›f ´ ∆2uT
›

›

2

K

which implies (3.4.17).
2 : In order to proof (3.4.18) fix F P F̊, F “ K1 X K2 and let K̃ be the

largest rhombus contained in K1 YK2, compare figure B.2 (p. 119). Moreover,
let ψK̃ : K̃ Ñ R be the bubble function on K̃ and bℓ be a linear polynomial
defined on K̃ such that bℓ|F “ 0 and ∇bℓ “ h´1

F

““

D2
pwuT

‰‰

nK . We define

bF :“

#

bℓψ
3
K̃

on K̃,
0 on ΩzK̃,

satisfying:

(i) bF vanishes on the boundary BK̃ together with its first and second deriva-
tives,

(ii) bF P C2pΩq XH2
0 pΩq,

(iii) rrbF ss |F “ rr∇bF ss |F “ ttbF uu |F “ 0 for all F P F .

(iv) ptt∇bF uuq|F “ pψ3
K̃
h´1
F

““

D2
pwuT

‰‰

nF q|F and ptt∇bF 1uuq|F 1 “ 0 for all F 1 P

FzF .

Here, the statements in (i) and (ii) follow from the construction of the smooth
bubble function bK̃ (compare Appendix B; p.119), (iii) follows from bF P C2pΩq

(resp. bℓ|F “ 0) and (iv) follows again from bℓ|F “ 0 since we have

p∇bF q|F “ pψ3
K̃
∇bℓ ` 0q|F “ ph´1

F

““

D2
pwuT

‰‰

nF q|F
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3 Discontinuous Galerkin Finite Element Methods

Now, let ϕ be a constant function on K̃, and set v “ ϕbF . Using this v and
arguing as in (3.4.21), but on the domain K̃ Ă K1 YK2 instead of K, we get

ż

K̃
D2pu´ uT q : D2v dx

“

ż

K1YK2

D2pu´ uT q : D2v dx

“

ż

K1YK2

pf ´ ∆2uT qv dx

´
ÿ

K1PtK1,K2u

ż

BK1

D2uT ∇v ¨ nK1 ´ v∇ ¨D2uT ¨ nK1 dx,

(3.4.24)

where we used that v vanishes to the second order on BK̃ and v “ 0 on ΩzK̃.
In equation (3.4.24) we reformulate the sum over element boundaries by using
(3.1.8) and (3.1.9), to obtain

ż

K1YK2

D2pu´ uT q : D2v dx “

ż

K1YK2

pf ´ ∆2uT qv dx

´

ż

F

““

D2
pwuT

‰‰

tt∇vuu ¨ nds.

(3.4.25)

Here, we used rr∇vss |F “ rrvss |F “ ttvuu |F “ 0 for all F P F , thanks to property
(iii) of the function bF . Setting ϕ ” h´1

F in (3.4.25) gives
ż

F

““

D2
pwuT

‰‰

tt∇vuu ¨ nds “

ż

F
h´1
F

““

D2
pwuT

‰‰

tt∇bF uu ¨ nds

“

ż

F
h´1
F

““

D2
pwuT

‰‰

b3
K̃
h´1
F

““

D2
pwuT

‰‰

n ¨ nds

“

›

›

›
ψ
3{2

K̃
h´1
F

““

D2
pwuT

‰‰

n
›

›

›

2

F

Á
›

›h´1
F

““

D2
pwuT

‰‰

n
›

›

2

F
,

(3.4.26)

where we used (B.1.2) (Appendix B, p. 121) in the last estimate. Now, in view
of the Poincaré inequality, together with hK̃ À hKi À hF , 1 ď i ď 2 we have

}v}
2
K1YK2

À h2K1
}∇v}

2
K1YK2

À }∇bF }
2
K1YK2

À }∇bℓ}2K1YK2

À

ˇ

ˇ

ˇ
K̃
ˇ

ˇ

ˇ

ˇ

ˇh´1
F

““

D2
pwuT

‰‰

nF

ˇ

ˇ

2
À

›

›

›
h

´1{2
F

““

D2
pwuT

‰‰

nF

›

›

›

2

F
,

(3.4.27)

where we used (B.1.2) (Appendix B, p. 121). Combining (3.4.25) and (3.4.26)
in conjunction with the Cauchy-Schwarz inequality and an inverse estimate we
get

›

›h´1
F

““

D2
pwuT

‰‰

n
›

›

2

F

À

ˆ

h
´3{2

K̃

›

›D2
pwpu´ uT q

›

›

K1YK2
`

›

›

›
h
1{2
T pf ´ ∆2uT q

›

›

›

K1YK2

̇

›

›

›
h

´1{2
F v

›

›

›

K1YK2

,

(3.4.28)
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where we used also hK̃ « hF . Multiplying both sides of (3.4.28) by h
1{2
F and

using (3.4.27) we end up with
›

›

›
h

´1{2
F

““

D2
pwuT

‰‰

n
›

›

›

F
À h´1

K̃

›

›D2
pwpu´ uT q

›

›

K1YK2

`
›

›hT pf ´ ∆2uT q
›

›

K1YK2
.

(3.4.29)

Finally, (3.4.18) follows by multiplying both sides of (3.4.29) by hK̃ and using
hK̃ « hF .

3 : The estimate (3.4.19) follows by similar arguments. Nonetheless, we will
sketch the proof in sake of completeness. Consider the function ψK̃ (continuous
bubble function on the rhombus K̃) and recall from Appendix B:

(i) ψ3
K̃

P C2pΩq XH2
0 pΩq,

(ii)
””

ψ3
K̃

ıı

|F “

””

∇ψ3
K̃

ıı

|F “

!!

∇ψ3
K̃

))

|F “ 0 for all F P F and

(iii)
␣␣

ψK̃

((

|F 1 “ 0 for all F 1 P FzF .

Now, let ξ be a constant function in the normal direction to F and set v “ ξψ3
K̃

.
We use integration by parts as in (3.4.24), reformulate the integral over element
boundaries to face integrals and deduce

ż

K1YK2

D2pu´ uT q : D2v dx “

ż

K1YK2

pf ´ ∆2uT qv dx

´

ż

F
ttvuu

““

∇ ¨D2
pwuT

‰‰

¨ nds.

(3.4.30)

Note that on the right-hand side of (3.4.30) orientation of n is independent of the
ordering of K1 and K2, compare Remark 3.1. Next, set ξ|F “

““

∇ ¨D2
pwuT

‰‰

¨nF

in (3.4.30), use a norm-equivalence, and standard estimates to obtain
›

›

›
h

´1{2
F

““

∇ ¨D2
pwuT

‰‰

¨ nF

›

›

›

F
À

ż

F
ttvuu

““

∇ ¨D2
pwuT

‰‰

¨ nF ds

À h´2
K̃

›

›D2
pwpu´ uT q

›

›

K1YK2
`
›

›pf ´ ∆2uT q
›

›

K1YK2
.

Consequently, (3.4.19) follows by multiplying both side of the last estimate by
h2
K̃

« h2F .
Note that K P T in step 1 (resp. F P F̊ in steps 2 and 3 ) were chosen ar-

bitrarily and therefore the proof of the bounds in (3.4.17)-(3.4.19) is completed.
4 : The global estimate in the last assertion of Proposition 3.17 follows from

the local ones together with the definition of the error indicators on a subset
M Ă T and the definition of the global data-oscillation.

3.5 Functions of Bounded Variation

3.5.1 Motivating example

The following basic example of convergence of conforming adaptive finite el-
ement methods gives an overview of the various theoretical concepts of our
convergence theory (compare e.g. [MSV08, NV11, Sie11] for details).
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3 Discontinuous Galerkin Finite Element Methods

Let Ω Ă Rd be a polygonal domain with Lipschitz boundary. Consider a
Hilbert space ppV, x¨, ¨yVq with underlying domain Ω and let B : V ˆ V Ñ R
be a symmetric bilinear form, which is coercive and continuous with respect to
}¨}V “

a

x¨, ¨yV. Here, we chose

• V “ H2
0 pΩq,

• Brv, ws “
ş

ΩD
2v : D2w dx and

• VpT q a H2pΩq-conforming finite element space (e.g. Argyris finite element
space [AFS68]).

For f P V1, consider the following abstract problem: Find u P V such that

Bru, vs “ xf, vyV1,V @v P V.

Due to the Lax-Milgram Theorem 2.8 there exists a unique solution u P V.
Let T be a conforming and shape regular subdivision of the domain Ω and

VpT q Ă V be a conforming finite dimensional space. We consider the following
discrete problem: Find UT P VpT q such that

BrUT , V s “ xf, V yV1,V @V P VpT q. (3.5.1)

The Lax-MIlgram Theorem 2.8 implies the existence of a unique solution UT P

VpT q of the discrete problem. In this context we emphasise that continuity and
coercivity of BT on VpT q are inherited from continuity and coercivity of BT
on V.

Now, let tTkukě0 be a sequence of partitions of the domain Ω (e.g. think
about the application of some adaptive algorithm for the discrete problem). We
assume that the corresponding discrete spaces satisfy

• for each k P N0 Vk :“ VpTkq is conforming and shape regular and

• we have a nested sequence of discrete spaces, i.e. V0 Ă V1 Ă . . . Ă Vℓ Ă

Vℓ`1 Ă . . . for all ℓ P N0.

Hence, we have a sequence of discrete solutions tUTkukPN (which we denote by
tUkukPN for brevity.) corresponding to the sequence tVkukPN of discrete spaces.

The aim of this section is to prove the convergence of the sequence tUkukPN
to some limit function, located in some limit space. To this end we define the
limit space as the completion V8 :“

Ť

kě0Vk
}¨}V

Ă V. Since V8 is closed in V
we conclude that the following problem yields a unique solution: Find u8 P V8

such that

Bru8, vs “ xf, vyV1,V @v P V8. (3.5.2)

On the one hand, we have a sequence of discrete solution tUkukě0 corre-
sponding to the sequence of partitions and on the other hand we have some
limit solution u8 located in the limit space V8. Consequently, we shall prove
that u8 P V8 is the limit of tUkukě0 with respect to the norm }¨}V, i.e.
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3.5 Functions of Bounded Variation

}Uk ´ u8}V Ñ 0 as k Ñ 8 (neglecting the question if u8 “ u for the mo-
ment). We emphasise that for k P N0 we have from Vk Ă V8 and therefore we
can use Cea’s Lemma ([Cia02a, Theorem 2.4.1]) to obtain

}u8 ´ Uk}V ď inf
V PVk

}u8 ´ V }V Ñ 0

as k Ñ 8 by the definition of V8.
Nonetheless, we want to give a proof of limkÑ8 }Uk ´ u8}V “ 0 which is

closer to the analysis we use in the sequel without using Cea’s Lemma. Observe
that }Uk}V ď C }f}V1 from coercivity and continuity of the bilinear form B.
Since V is a Hilbert space, Theorem 2.5 provides a weak limit u8 P V such that

Uk á u8 P V, as k Ñ 8.

Let v P V8. From the definition of the limit space there exists a sequence
tVkukě0, Vk P Vk, such that }Vk ´ v}V Ñ 0 as k Ñ 8. Consequently

Brū8, vs Ð BrUk, Vks “ xf, VkyV1,V Ñ xf, vyV1,V , as k Ñ 8

and therefore u8 “ u8, thanks to the uniqueness of the solution u8. From the
properties of the bilinear form B we conclude

1

C
}Uk ´ u8}

2
V ď BrUk ´ u8, Uk ´ u8s

“ BrUk, Uks
loooomoooon

“xf, UkyV1,V

´2Bru8, Uks ` Bru8, u8s
looooomooooon

xf, u8yV1,V

Ñ 0

as k Ñ 8. This is the desired convergence Uk Ñ u8, as k Ñ 8.
Coming back to original problem (3.5.1), we observe, that in order to proof

limkÑ8 }Uk ´ u}V “ 0, we have to proof u “ u8. This, in turn, is equivalent to
proof u P V8, thanks to the conformity of the discrete spaces and uniqueness
of the solution u8 of (3.5.2).

This basic examples yields that }Uk ´ u8}V Ñ 0 as k Ñ 8 heavily relies on
the properties of the underlying conforming discrete spaces and the compactness
properties of the Hilbert space V.

If we replace the conforming finite element spaces Vk by nonconforming dis-
continuous Galerkin spaces Vdg

k , we have Vdg
k Ć V for all k P N and we can not

use compactness properties of V for a sequence tVkukPN, Vk P Vdg
k . That means

we have to find a space Ṽ with proper compactness properties such that the
embedding Vdg

k Ă Ṽ holds.
As it turns out, it is possible to embed the non-conforming discontinuous

Galerkin finite element spaces continuously into the space of functions of bounded
variation (i.e. Ṽ “ BV pΩq). This space provides several compactness properties
as we will see in the following section

3.5.2 Space of functions of bounded variation

In This Section we introduce the space of functions of bounded variation (BV -
spaces). For an introduction to the general concept of BV -spaces and all related
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3 Discontinuous Galerkin Finite Element Methods

definitions, compare Appendix A. ByMRpΩ,Rdq we denote the space of regular
Borel measures on the domain Ω with values in Rd.

In order to introduce the BV -space we consider pairs pu, νq with u P L1pΩq

and ν P MRpΩ,Rdq satisfying the following integration by parts formula
ż

Ω
Biφudx “ ´

ż

Ω
φdνi, @φ P C8

0 pΩq, i “ 1, . . . d. (3.5.3)

That means, we have in the distributional sense Diu :“ νi P DpΩq1 and Du “

pD1u, . . .Dduq. We emphasise that (3.5.3) holds true even for φ P C1
0 pΩq, com-

pare Remark A.3. The set

BV pΩq :“
!

u P L1pΩq : there exists ν P MRpΩ,Rdq satisfying (3.5.3)
)

of functions of bounded variation. is a Banach space if equipped with the norm

}u}BV pΩq :“ }u}L1pΩq ` }Du} ,

where }Du} “ |Du|pΩq “ |ν|pΩq and |Du|pΩq is the total variation of the
measure |Du|.

Remark 3.18. Let u P BV pΩq and assume that Du “ 0. Then u is constant
almost everywhere in Ω. This follows from a smoothing property together with
a convolution argument (compare [AFP00, Proposition 3.2])

In order to keep the notation simple, we write (3.5.3) in a single formula

ż

Ω
udivφ “ ´

d
ÿ

i“1

ż

Ω
φi dDiu “ ´

ż

Ω
φ ¨ dDu @φ P C8

0 pΩqd. (3.5.4)

Note that we use the same notation also for functions in BV pΩqm, m P N. In
this case Du is a mˆ d-matrix of meausres Diu

j in Ω satisfying
ż

Ω
uj

Bφ

Bxi
dx “ ´

ż

Ω
φdDiu

j @φ P DpΩq, i “ 1, . . . , d j “ 1, . . . ,m

or equivalently

m
ÿ

j“1

ż

Ω
uj divφj dx “ ´

m
ÿ

j“1

d
ÿ

i“1

ż

Ω
φji dDiu

j @φ P C8
0 pΩqdˆm.

For the last equation we also use the shorthand notation
ż

Ω
u ¨ divφdx “ ´

ż

Ω
φT : dDu @φ P C8

0 pΩqdˆm. (3.5.5)

The space W 1,1pΩq is contained in BV pΩq. In particular, for every u P

W 1,1pΩq the distributional derivative is given by ∇uLd, where Ld denotes the
Lebesgue-measure on Rd. Note that this inclusion is strict as we will see from
the following example.
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3.5 Functions of Bounded Variation

Example 3.19. Let Ω “ p´1, 1q and consider the Heavyside function defined
by

Hpxq “

#

0 if x ă 0

1 if x ą 0.

Let ϕ P C8
0 p´1, 1q then we have by piecewise integration by parts

ż 1

´1
Hpxqφ1 dx “

ż 1

0
Hpxqφ1 dx “ rφpxqsx“1

x“0 “ ´φp0q.

Consequently, in the distributional sense we have d
dxHpxq “ δx“0, where δx“0

denotes the Dirac measure supported at 0. Note that δx“0 R L1pΩq, i.e. there
is no function f P L1pΩq such that φp0q “

ş

Ω fφdx for all ϕ P DpΩq. Otherwise
we could take successively test functions φ P C8

0 p´1, 0q and φ P C8
0 p0, 1q to

conclude that f “ 0 almost everywhere in the domain Ω, which is a contradic-
tion.

Definition 3.20 (Weak* convergence). Let u, uk P rBV pΩqsm. We say that
tukukPN weakly*-converges in BV pΩqm to u if tukukPN converges to u in L1pΩqm

and tDukukPN weakly*-converges to Du in Ω, i.e.

lim
kÑ8

ż

Ω
φ : dDuk “

ż

Ω
φ : dDu @φ P C0pΩqdˆm.

Remark 3.21. We emphasise that Definition 3.20 differs from the definition
of weak* convergence given in the beginning of Chapter 2.3. This is due to the
reason that the dual of BV pΩq as a Banach space is hard to characterise (see
e.g. [FS18, Section 2]). However, at least for sufficiently regular domains Ω
the convergence of Definition 3.20 corresponds to the weak* convergence in the
usual sense (compare [AFP00, Remark 3.12].)

The following Theorem states a useful compactness property of BV pΩq-spaces
(see [AFP00, Corollary 3.49]).

Theorem 3.22. Let Ω be a Lipschitz domain. Then, the embedding BV pΩq ãÑ

Lp̃pΩq is continuous and the embeddings BV pΩq ãÑ LppΩq are compact for 1 ď

p ă p̃. Here p̃ “ 8 if d “ 1 and d{pd´ 1q otherwise.

The following proposition is motivated by Theorem 3.22 and provides a simple
criterion for weak* convergence in the space of bounded variation

Proposition 3.23 (Weak* convergence in BV pΩq
m). Let tukukPN Ă BV pΩqm.

Then tukukPN weakly* converges to u in BV pΩqm if and only if tukukPN is
bounded in BV pΩqm and converges to u in L1pΩqm.

Proof. Assume first that tukukPN is bounded in BV pΩqm and converges to some
u P L1pΩqm. The boundedness of the total variation implies by Theorem A.4 a
weak*-limit limkÑ8 Duk “ µ of a subsequence (not relabelled here). We have
to prove that Du “ µ in a distributional sense for any subsequence of tukukPN.
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3 Discontinuous Galerkin Finite Element Methods

Note that uk P BV pΩqm and therefore for all k P N,
ż

Ω
uk ¨ divφ “ ´

ż

Ω
φ : dDuk @φ P C8

0 pΩqdˆm. (3.5.6)

Using the convergence of tukukPN in L1pΩqm we obtain in (3.5.6) as k Ñ 8

ż

Ω
u ¨ divφ “ ´

ż

Ω
φ : dµ @φ P C8

0 pΩqdˆm,

where u P BV pΩqm is the weak* limit of tukukPN in BV pΩqm.
Next, let tukukPN be a weak* convergent sequence to u in BV pΩqm. Then

we have the L1pΩqm-convergence by definition of weak*-convergence and as
a consequence the boundedness of tukukPN in L1pΩqm. The boundedness of
|Duk|pΩq for all k P N follows from Proposition 2.3 (2).

The following useful compactness theorem for BV pΩq-functions can be found
in [ABM14, Theorem 3.23].

Theorem 3.24 (Compactness in BV pΩq). Let Ω be a Lipschitz domain with
boundary Γ and punqnPN0 Ă BV pΩq with }un}BV pΩq ă 8 for all n P N. Then,
there exist a subsequence punk

qkPN0 weakly* converging to some u P BV pΩq .

We recall some facts about traces of functions of bounded variation. The
following Theorem states u P BV pΩq has a measurable L1-trace on the boundary
BΩ. In this context, we denote by Hd´1 the pd´ 1q-dimensional Hausdorff.

Theorem 3.25 (Trace Theorem on BV pΩq
m). Let Ω Ă Rd be a Lipschitz do-

main and u P BV pΩqm. There exists a bounded, linear operator T : BV pΩqm Ñ

L1pBΩqm (we write Tu “ u) such that we have
ż

Ω
u ¨ divφdx “ ´

ż

Ω
φ : dDu`

ż

Γ
φ : pub nqdHd´1, @φ P C8

0 pRdqdˆm.

Moreover, for Hd´1-almost every x P BΩ there exists Tupxq P Rm such that

lim
rÑ0

r´d

ż

ΩXBrpxq

}upyq ´ Tupxq} dy “ 0.

Proof. Compare [EG15, Theorem 5.6 and Theorem 5.7].

In order to clarify the various embeddings in the following section we introduce
the so-called variation of a function u P L1

locpΩqm, which is defined by

V pu,Ωq :“ sup

"
ż

Ω
u ¨ divφdx : φ P C1

0 pΩqdˆm, }φ}8 ď 1

*

.

Here, C1
0 pΩqdm denotes the space of continuously differentiable functions with

compact support in Ω. The following Proposition states, that the variation of
u P BV pΩq and the total variation of |Du| pΩq coincide.
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3.5 Functions of Bounded Variation

Proposition 3.26. Let u P L1
locpΩqm. Then u belongs to BV pΩqm if and only if

V pu,Ωq ă 8. In addition, V pu,Ωq coincides with |Du| pΩq for any u P BV pΩqm

and u ÞÑ |Du| pΩq is lower semicontinuous with respect to weak* convergence.
In particular, this implies that the whole BV -norm is lower semi-continuos with
respect to weak* convergence.

Proof. The characterisation of a BV-function u P BV pΩqm ðñ V pu,Ωq ă 8

and the resulting equality V pu,Ωq “ |Du| pΩq for all u P BV pΩqm can be found
in [AFP00, Proposition 3.6].

Now let pukqkPN be a Cauchy sequence in BV pΩqm with limit u P BV pΩqm.
Then we have from the definiton of the BV -space that pukqkPN is also a Cauchy
sequence in L1pΩqm. Hence, for arbitrary φ P C1

0 pΩqdˆm with }φ}8 ď 1 we
have from the definition of the variation of a function

lim inf
kÑ8

V puk,Ωq ě lim inf
kÑ8

ż

Ω
uk ¨ divφdx ě

ż

Ω
lim inf
kÑ8

uk ¨ divφdx

“

ż

Ω
u ¨ divφdx.

Since the last inequality also holds for the supremum over all φ P C1
0 pΩqdˆm

with }φ}8 ď 1 we obtain the lower-semicontinuity of u ÞÑ V pu,Ωq, i.e.

lim inf
kÑ8

V puk,Ωq ě V pu,Ωq.

Consequently, the lower semicontinuity of the BV -norm follows by the equality
of the variation and the total variation of a BV -function and the continuity of
the norm u ÞÑ }u}L1pΩq, u P L1pΩq.

The following lemma can be found in [BO09, Lemma 6] and is a consequence
of the compactness properties stated in Theorems 3.24 and 3.22.

Lemma 3.27 (Friedrichs inequality for BV pΩq). Let u P BV pΩq and let Γr Ă BΩ
with positive pd´1q-dimensional measure. Then, there exists a constant CF such
that

}u}L1pΩq ď CF

ˆ

|Du| pΩq `

ż

Γr
|u| ds

̇

@u P BV pΩq.

Proof. The proof uses various concepts of BV pΩq-spaces, stated in this section.
Hence, for the sake of clarity we give a full proof. We use a proof by contra-
diction. Assume that no such constant CF exists. Then, there exist a sequence
punqnPN0 Ă BV pΩq such that }un}L1pΩq “ 1 for all n P N0 and

|Dun| pΩq `

ż

Γr
|un| ds Ñ 0 (3.5.7)

as n Ñ 8. The limit in (3.5.7) and }un}L1pΩq “ 1 implies that there exist C ą 0
such that }u}BV pΩq ď C. Hence, by Theorem 3.24 there exist a subsequence (not
relabelled here) satisfying un

˚
á u in BV pΩq as n Ñ 8. Applying Theorem 3.22
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we have also that un Ñ u strongly in L1pΩq as n Ñ 8 with }u}L1pΩq “ 1. Note
that the functional

v ÞÑ |Dv| pΩq ` }u}
L1pΓrq

is lower semi-continuous respect to weak* convergence (compare Proposition 3.26
and also [BC`11, Chapter 9] for details). Whence, we infer |Du| pΩq “ 0
and therefore, u is constant almost everywhere in Ω. Moreover, we have that
}u}

L1pΓrq
“ 0 and therefore the trace of u vanishes on Γr. From this we conclude

u “ 0 almost everywhere in Ω, which contradicts the assumption }u}L1pΩq “

1.

Using Theorem 3.25, we can give another example of BV pΩq-functions leading
to a clearer picture of the BV pΩq-space (also compare [AFP00, Example 3.3]).
Before we state the example, we have to declare the restriction of measures: Let
µ P MRpΩq and B the underlying Borel sets. If A P B we set µ|ApBq “ µpAXBq

for all B P B.

Γ1,2

Ω

nΩ1

Ω1 Ω2

Figure 3.4: Domain Ω with subdomains Ω1 and Ω2.

Example 3.28. Assume that Ω1,Ω2 Ă R2 are two disjoint bounded Lipschitz
domains which are included into a bounded Lipschitz domain Ω Ă R2 such that
Ω “ Ω1 Y Ω2, compare Figure 3.4. Let Γ1,2 :“ BΩ1 X Ω2 the common Lipschitz
boundary of the subdomains satisfying H1pΓ1,2q ą 0. We define a function on
the domain Ω as

u “

#

u1 in Ω1,

u2 in Ω2,

where u1 P BV pΩ1q and u2 P BV pΩ2q are chosen arbitrarily. We claim u P

BV pΩq. To see this let φ P C8
0 pΩqd. Then we have in the distributional sense

ż

Ω
φ ¨ dDu “ ´

ż

Ω
u divφdx “ ´

ż

Ω1

u1 divφdx´

ż

Ω2

u2 divφdx. (3.5.8)
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Note that Γ1,2 is Lipschitz-continuous by construction and therefore we obtain
by Theorem 3.25 on each subdomain Ω1 and Ω2

ż

Ω1

u1 divφdx “ ´

ż

Ω1

φ ¨ dDu1 `

ż

Γ1,2

u1φ ¨ nΩ1 dHd´1

and
ż

Ω2

u2 divφdx “ ´

ż

Ω2

φ ¨ dDu2 `

ż

Γ1,2

u2φ ¨ nΩ2φdHd´1.

Combining this with (3.5.8) we have
ż

Ω
φ ¨ dDu “

ż

Ω
φ ¨ p dDu1|Ω1 ` dDu2|Ω2q

´

ż

Ω
φ ¨ pu1nΩ1 ` u2nΩ2qHd´1|Γ1,2 .

Using Theorem 3.25 we see that the L1pΓ1,2q-trace of u1 and u2 is bounded by
their BV pΩ1q and BV pΩ1q norms and we conclude u P BV pΩq.

Regarding the last example, we emphasise that a main advantage of the BV -
space is that it includes, unlike Sobolev spaces, piecewise smooth functions.
This is crucial in the following embedding theorems of discontinuous Galerkin
functions into BV -spaces.

3.6 Embeddings of discontinuous Galerkin spaces into
BV -spaces

In the current section we prove the crucial fact that discontinuous Galerkin func-
tions can be continuously embedded into the space of BV -functions. Starting
point is the following formula of the variation of u P VpT q: Let φ P C1

0 pΩq2,
then we have

´

ż

Ω
u ¨ divφdx “ ´

ÿ

KPT

ż

K
u ¨ divφdx

“
ÿ

KPT

ż

K
∇u ¨ φdx´

ż

BK
φu ¨ nds

“

ż

Ω
∇pwu ¨ φdx´

ż

F
rrussn ¨ φds,

(3.6.1)

where we used the definition of the piecewise gradient and Lemma 3.2 for the
boundary integrals.

Proposition 3.29. For v P VpT q we have that

}v}L1pΩq À

ż

T

ˇ

ˇ∇pwv
ˇ

ˇ dx`

ż

FT

|rrvssn| ds.
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Proof. Let v P VpT q. By Lemma 3.27 the L1pΩq-norm is bounded by

}v}L1pΩq ď CF

ˆ

|Dv| pΩq `

ż

Γr
|v| ds

̇

. (3.6.2)

Moreover, Proposition 3.26 yields |Dv| pΩq “ V pv,Ωq and therefore by (3.6.1),
we obtain

|Dv| pΩq “ V pv,Ωq “ sup

"
ż

Ω
u ¨ divφdx : φ P C1

0 pΩqdm, }φ}8 ď 1

*

ď

ż

T

ˇ

ˇ∇pwv
ˇ

ˇ dx`

ż

FT

|rrvssn| ds,

(3.6.3)

where we used Hölder’s inequality in the last line in conjunction with }φ}8 ď

1. Now, the assertion directly follows by inserting (3.6.3) into (3.6.2) and the
definition of jump-terms on the boundary.

Proposition 3.30. Let v P VpT q. Then, we have

|Dv| pΩq À |||v|||T .

Proof. Let v P VpT q. Then, we obtain from Proposition 3.26 and (3.6.3)

|Dv| pΩq ď

ż

T
|∇v| dx`

ż

FT

|rrvssn| ds. (3.6.4)

Hence, applying Proposition 3.29 to the piecewise gradient, we obtain

|Dv| pΩq À

ż

T

ˇ

ˇD2v
ˇ

ˇ dx`

ż

FT

|rrBnvss| ds`

ż

FT

|rrvssn| ds. (3.6.5)

Since |Ω| ă 8, we have by Hölder’s inequality
›

›D2
pwv

›

›

L1pΩq
À
›

›D2
pwv

›

›

Ω
. (3.6.6)

Another application of Hölder’s inequality to the jump terms reveals
ż

FT

|rrvssn| ds “

ż

FT

h
3{2
T h

´3{2
T |rrvssn| ds

ď

ˆ
ż

FT

h3T ds

̇1{2ˆż

FT

h´3
T |rrvssn|

2 ds

̇1{2

.

Moreover, we note that the sum over mesh-faces is bounded by
ż

FT

h3T ds “
ÿ

FPF

ż

F
h3T ds “

ÿ

FPF
h4F À

ÿ

FPF

ÿ

KPT
FĂK

h4K À
ÿ

KPT
|K|

2
À |Ω|

2 ,

where we used the definition of hT and hF « hK . Hence, we have
ż

FT

|rrvssn| ds À

ˆ
ż

FT

h´3
T |rrvssn|

2 ds

̇1{2

. (3.6.7)
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By analogous arguments we also obtain

ż

FT

|rrBnvss| ds À

ˆ
ż

FT

h´1
T |rrBnvss|

2 ds

̇1{2

. (3.6.8)

Finally, the assertion follows by inserting (3.6.6)-(3.6.8) into (3.6.5).

In the context of SIPDG methods the embedding stated in Proposition 3.30
also transfers to an embedding of the piece-wiese gradient ∇pwv P Pr´1pT q2. In
order to see this, we consider the variation of the piece-wise gradient

V p∇pwv,Ωq “ sup

"
ż

Ω
∇pwu ¨ divφdx : φ P C1

0 pΩq2ˆ2, }φ}8 ď 1

*

.

Moreover, for v P VpT q and φ P C1
0 pΩq2ˆ2 we obtain the following formula from

piece-wise integration by parts

´

ż

Ω
∇pwv ¨ divφdx “

ż

Ω
D2
pwv : φdx´

ż

F
φ
““

∇pwv
‰‰

¨ n. (3.6.9)

Note that the jump terms on the right-hand side of (3.6.9) are independent of
the ordering of the related elements K1 and K2, compare Remark 3.1.

Proposition 3.31. Let v P VpT q and |Dp∇pwvq|pΩq the total variation of ∇pwv P

L2pΩq. Then, we have

|Dp∇pwvq|pΩq À

ż

Ω

ˇ

ˇD2
pwv

ˇ

ˇ dx`

ż

FpT q

|rrBnvss| ds À |||v|||T .

Proof. Using Proposition 3.26 and (3.6.9) we obtain

|Dp∇pwvq|pΩq “ V p∇pwv,Ωq

À

ż

Ω

ˇ

ˇD2
pwv

ˇ

ˇ dx`

ż

FpT q

|rrBnvss| , @v P V pT q,

where we also used Hölder’s inequality in and }φ}8 ď 1 in the last estimate.
The remaining proof is follows by similar arguments as Proposition 3.30.
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4 Convergence of AFEM

In this chapter we give the main result of this thesis. We define an adaptive
algorithm in Section 4.1 based on the a posteriori error indicators introduced
in Section 3.4. The adaptive algorithm produces to a sequence of increasingly
refined grids tTkukPN with a corresponding sequence of adaptively created dis-
crete solutions tUTkukPN. The main result (Theorem 4.3) provides convergence
of the sequence of discontinuous Galerkin solutions, produced by the adaptive
algorithm, to the exact solution u P H2

0 pΩq of (2.4.2). In order to keep this
presentation simple, Section 4.2 provides the general framework of the proof of
the Main Theorem, whereas we postpone the details to Section 4.3.

In this context we have to deal with the problem, that the mesh-size h is in
genereal not strictly monotone under refinement, due to the adaptive algorithm.
In order to fix this, we introduce a domain Ω´ Ă Ω, where we still have h Ñ 0
(see Section 4.2.1). Therefore, on the domain Ω´ we will commonly use the
fact that h Ñ 0 in our convergence analysis (comparable to a priori convergence
analysis).

On the remaining domain Ω` we have h ­Ñ 0 since it is related to elements,
which are not refined anymore. Hence, the local error indicators here have to
be ’small’, compared to elements which are consecutively refined. This is the
idea of the marking strategy introduced below, ensuring convergence also on
this domain.

4.1 Model Algorithm

We start with a precise formulation the adaptive algorithm (1.1.2) based on the
modules SOLVE, ESTIMATE, MARK and REFINE, which are described in more
detail below.

Algorithm 4.1 (ASIPDGM). Let T0 be an initial triangulation. The adaptive
algorithm is an iteration of the following form:

1. uk “ SOLVEpVpTkqq;

2. tηkpKquKPTk “ ESTIMATEpuk, Tkq;

3. Mk “ MARK ptηkpKquKPTk , Tkq ;

4. Tk`1 “ REFINEpTk,Mkq; increment k and go to Step 1.

Here, we have replaced the subscript triangulations tTkukPN0 with the iteration
counter k, i.e. uk “ uTk and ηkpTkq “ ηTkpTkq for brevity. Similar short hand
notations will be frequently used below when no confusion can occur, e.g. we
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4 Convergence of AFEM

write also N j
kpKq “ N j

TkpKq, Γk “ ΓTk or |||¨|||k “ |||¨|||Tk . Next, we comment on
the modules SOLVE, ESTIMATE, MARK and REFINE.

SOLVE. For a given mesh T P G we assume that

uT “ SOLVEpVpT qq

is the exact SIPDG solution of problem (3.2.1).
ESTIMATE. We suppose that

tηT pKquKPT :“ ESTIMATEpuT ,Kq

is the elementwise error indicator defined in (3.4.4).
MARK. We assume a fixed marking strategy

M :“ MARKptηT pKquKPT , T q,

which satisfies

maxtηT pKq : K P T zMu ď gpmaxtηT pKq : K P Muq, (4.1.1)

where g : R`
0 Ñ R`

0 is a fixed function, which is continuous in 0, with gp0q “ 0.
REFINE. We assume for T P G and M Ă T that

T ď Tr :“ REFINEpT ,Mq P G,

such that

K P M ñ K P T zTr , (4.1.2)

i.e., each marked element is at least refined once.
Obviously, the modules SOLVE and ESTIMATE depend on the data of the

of the variational problem, e.g. the right-hand side f . The refinement module
REFINE in contrast is problem independent which is in general also true for the
modul MARK. Some popular marking strategies for Algorithm 4.1 are:

• Maximum Strategy: For a given parameter θ P r0, 1s we let

M “ tK P T : ηT pKq ě θηT ,maxu with ηT ,max “ max
KPT

ηT pKq.

• Equidistribution Strategy: For a given parameter θ P r0, 1s we let

M “

!

K P T : ηT pKq ě θηT pKq{
a

#T
)

.

• Dörfler’s Strategy: For a given parameter θ P r0, 1s we let M Ă T such
that

ηT pMq ě θηT pT q.

Remark 4.2. In the refinement strategy (4.1.2), we only require minimal re-
finement, i.e. each marked element is at least refined once. Of course, in praxis
marked elements may be refined more than once. The standard choice is d bi-
section refinements.
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4.2 Proof of the main result Theorem 4.3

4.1.1 The main result

The main result of this work states that the sequence of SIPDG finite element
approximations produced by the ASIPDG method (Algorithm 4.1) converges to
the exact solution u P H2

0 pΩq of (2.4.2) and also ηkpTkq Ñ 0 as k Ñ 8.

Theorem 4.3 (Main Theorem). Let u P H2
0 pΩq be the solution of (2.4.2) and

tTkukPN be a sequence of triangulation of Ω created by Algorithm 4.1. Moreover,
let tukukPN be the corresponding sequence of discrete solutions, i.e. uk P VpTkq

is the SIPDG solution of (3.2.1) in VpTkq, for all k P N. Finally, let ηkpTkq be
the a posteriori error indicators from (3.4.4), related to Tk, and assume that the
assumptions on the modules SOLVE, ESTIMATE, MARK and REFINE, stated in
Section 4.1, are satisfied. Then, we have

ηkpTkq Ñ 0 and |||u´ uk|||k Ñ 0 as k Ñ 8.

4.2 Proof of the main result Theorem 4.3

The proof of convergence of ASIPDGM is based on ideas of [MSV08, Sie11] for
conforming elements and its generalisation [KG18] to adaptive discontinuous
Galerkin methods for the Poisson problem. For the sake of clarity, in this
section, we present the main ideas of the proof of Theorem 4.3 following the
ideas of [KG18]. In contrast to the latter result here we are faced with the
problem that VpT q contains no proper conforming subspace. This requires new
techniques of proof for two key auxiliary results, Theorem 4.15 and Lemma 4.12,
which proofs are postponed to Section 4.3.

4.2.1 Sequence of Partitions

Similar as in [MSV08, Sie11, KG18], we split the domain Ω into essentially two
parts according to whether the mesh-size function hk :“ hTk vanishes or not.
In order to make this rigorous, we define the set of eventually never refined
elements by

T ` :“
ď

kě0

č

lěk

Tl with corresponding domain Ω` :“ ΩpT `q. (4.2.1)

Additionally, we denote the complementary domain Ω´ “ ΩzΩ`.
For k P N0, we define T `

k :“ Tk X T ` as well as for j ě 1

T j`

k :“ tK P Tk : N j
kpKq Ă T `

k u “ tK P Tk : NkpKq Ă T pj´1q`

k u,

T j´

k :“ TkzT j`

k ,

where we used T 0`
k :“ T `

k and T 0´
k :“ T ´

k in the identities when j “ 0; compare
with Figure 4.1 for an example of an adaptive grid. For the corresponding
domains we denote Ωj´

k :“ ΩpT j´

k q and Ωj`

k :“ ΩpT j`

k q. Moreover, we adopt
the above notations for the corresponding faces, e.g. F j´ :“ FpT j´

k q, F j` :“

FpT j`

k q. Note that for all j, k P N0 we have T j`

k Ă T ` and therefore Ωj`

k Ă Ω`.
In view of the domain Ω´ this also implies Ω´ Ă Ωj´

k .
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4 Convergence of AFEM

Figure 4.1: Example of a sequence of triangulations of Ω “ p0, 1q2. Here, in each
iteration the elements in Ω´ “ r0.5, 1s ˆ r0.5, 1s are refined. The re-
maining elements consisting to the grid T ` and build the domain
ΩzΩ´. These elements are, after some iterations not refined any-
more. Moreover, after some iterations, their whole neighbourhood
is not refined anymore due to Lemma 4.4
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4.2 Proof of the main result Theorem 4.3

We remark that we need the above definitions of T j´

k and T j`

k for techni-
cal reasons. In fact, our analysis involves interpolations based on local L2-
orthogonal projections for which local stability estimates involve neighbour-
hoods. However, for different but fixed js the above sets behave asymptotically
similar for k Ñ 8. This is a consequence of the following Lemma, which states
that neighbours of never refined elements are also eventually never refined again.

Lemma 4.4. For K P T ` there exists a constant L “ LpKq P N0 such that

NkpKq “ NLpKq

for all k ě L. In particular, we have NkpKq Ă T ` for all k ě L.

Proof. See [MSV08, Lemma 4.1].

The next Lemma essentially goes back to [MSV08, (4.15) and Corollary 4.1]
and was proved for j “ 2 in [KG18, Lemma 11].

Lemma 4.5. For j P N0 we have limkÑ8

›

›

›
hkχΩj´

k

›

›

›

L8pΩq
“ 0, where χ

Ωj´

k

denotes the characteristic function of Ωj´

k . Moreover,
ˇ

ˇ

ˇ
Ωj´

k zΩ´

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
Ω`zΩj`

k

ˇ

ˇ

ˇ
Ñ

0 as k Ñ 8.

Proof. In order to see that
ˇ

ˇ

ˇ
Ω`zΩj`

k

ˇ

ˇ

ˇ
Ñ 0 as k Ñ 8, we observe from Lemma 4.4

that for ℓ P N, there exists L “ Lpℓq ě ℓ, such that T `
ℓ Ă T j`

L since T `
ℓ contains

only finitely many elements. Consequently, we have

|Ω`zΩj`

Lpℓq| ď |Ω`zΩ`
ℓ | Ñ 0 as ℓ Ñ 8,

i.e. we have proved the claim for a subsequence. Since the sequence t|Ω`zΩj`

k |ukPN
is monotone, it must vanish as a whole.

The first claim follows for j “ 1 from [Sie11, Corollary 3.3]. By shape regu-
larity, we have for j ą 1 that

hK ≂ |K|1{2 ď |Ωj´

k zΩ1´
k |1{2 ď |Ωj´

k zΩ´|1{2 for all K P T j´

k zT 1´
k .

Consequently, we have
›

›

›
hkχΩj´

k

›

›

›

L8pΩq
ď

›

›

›
hkχΩ1´

k

›

›

›

L8pΩq
`

›

›

›
hkχΩj´

k zΩ1´
k

›

›

›

L8pΩq

ď

›

›

›
hkχΩ1´

k

›

›

›

L8pΩq
` |Ωj´

k zΩ1´
k |1{2 Ñ 0

as k Ñ 8, which concludes the proof.

Remark 4.6. We note that Lemma 4.5 becomes important in the context of the
absolute continuous dependence of an integral to the integration domain. To be
precise: Let f be a function with a finite Lebesgue integral over Ω. Then, for
every ϵ ą 0, there exists a δ “ δpϵq ą 0 such that for every measurable set E of
Ω with L2pEq ă δ, we have

ˇ

ˇ

ˇ

ˇ

ż

E
f dx

ˇ

ˇ

ˇ

ˇ

ă ϵ,
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4 Convergence of AFEM

where L2 denotes the two-dimensional Lebesgue-measure. Compare to [PKJF12,
Theorem 1.21.13] for this statement.

In particular, for f P LppΩq, p P r1,8q, we obtain that for arbitrary ϵ1 ą there
exist δ1 ą 0, such that for every E1 Ă Ω satisfying L2pE1q ă δ1

ˆ
ż

E1

|f |
p dx

̇1{p

ă ϵ1.

Consequently, for p P r1,8q, the Lp-norm is absolutely continuous with re-
spect to the Lebesgue measure (compare with [PKJF12, Examples 6.3.5(i)]) and
Lemma 4.5 implies

lim
kÑ8

›

›

›
fχ

Ωj´

k zΩ´

›

›

›

LppΩq
“ lim

kÑ8

›

›

›
fχ

Ω`zΩj`

k

›

›

›

LppΩq
“ 0,

due to the fact that
ˇ

ˇ

ˇ
Ωj´

k zΩ´

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
Ω`zΩj`

k

ˇ

ˇ

ˇ
Ñ 0 as k Ñ 8.

Remark 4.7. A more intuitiv definition of the refined mesh would be to define
Ω´ “ interiorpΩzΩ`q and

T ´
k “

!

K P Tk : K Ă Ω´

)

which would ease the theory significantly. In particular, in context of the limit
space which is defined later. Defining the grid T `

k as above, we collect all re-
maining elements in T ˚

k “ TkzpT `
k Y T ´

k q, which are not in one the two grids
T `
k and T ´

k (compare e.g. [MSV08, Section 4.2]).
However, the definition of T ´

k is based on the interior of the domain Ω´ and
therefore problems arise, when interiorpΩ´q “ H but ΩzΩ` ­“ H. In Appendix C
we give an example of a sequence of meshes, based on Cantor sets, with the
properties interiorpΩ´q “ H and |ΩzΩ`| ą 0 and analyse the resulting problems.

4.2.2 The limit space

In this section we define the limit of the finite element spaces tVkukPN, based
on [DGK19] and [KG18]. Before we state the definition of the limit space, we
cite the following Lemma, proving a compactness propety of broken Sobolev
spaces in case of vanishing mesh-size h Ñ 0 ([Pry14, Lemma 4.15], compare
also [BO09, Theorem 5.2]) This will be a key property in the definition of the
limit space.

Lemma 4.8. Let tThuhě0 be a sequence of grids with global mesh-size h “

maxKPTh hK and h P p0, 1s. Moreover, let tvhuhě0 be a sequence of finite element
function with vh P VpThq, which is uniformly bounded in the |||¨|||Th-norm. Then,
there exist a subsequence hℓ Ñ 0 as ℓ Ñ 8 and a function v P H2

0 pΩq such that
vhℓ

á v in L2pΩq as ℓ Ñ 8. Moreover,

D2
pwvhℓ

` LThℓ pvhℓ
q á D2v in L2pΩq2ˆ2 as ℓ Ñ 8.
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4.2 Proof of the main result Theorem 4.3

The definition of the limit space is motivated by the following ideas: The space
is generated from limits of discontinuous Galerkin functions in the sequence of
discontinuous Galerkin spaces constructed by the adaptive algorithm. There-
fore, there exists a sequence tvkukPN, vk P Vk, such that limkÑ0 |||vk ´ v|||k “ 0,
as k Ñ 8 and lim supkÑ8 |||vk|||k ă 8 for all limit functions v located in the
limit space.

We emphasise that the evaluation of the energy-norm |||vk ´ v|||k requires
traces of v and ∇pwv on skeletons Γk, k P N. This traces exist due to the follow-
ing observation: Thanks to Propositions 3.12 and 3.30 and the uniform bound
of tvkukPN in the energy-norm lim supkÑ8 |||vk|||k ă 8 we have that tvkukPN is
also uniformly bounded in the BV -norm. Using the compactness property of
the BV -space (Theorem 3.24) there exists ṽ P BV pΩq such that vk

˚
á ṽ in

BV pΩq as k Ñ 8. Unfortunately, it is a priori not clear if the limit ṽ coincides
with v. Motivated by Proposition 3.12 we therefore assume additionally that
tvkukPN satisfies the strong L2-convergence limkÑ0 }vk ´ v}Ω “ 0, which implies
ṽ “ v P BV pΩq. Consequently, for v P BV pΩq there exist the L1-trace on Γk,
k P N; see [AFP00, Theorem 3.88] and the jump terms of v are measurable with
respect to the 1-dimensional Hausdorff measure on Fk. In the same vein we
can use Proposition 3.31 in order to get ∇pwvk

˚
á ∇pwv in BV pΩq2 as k Ñ 8.

Hence, the L1-trace of ∇pwv P BV pΩq2 exists on Γk, k P N and we conclude that
the energy norm |||v|||k, k P N is measurable.

Next, we focus on the domain Ω´ . Using Ω´ Ă Ω´
k and Lemma 4.5 we have

that the mesh-size vanishes in the limit. Consequently, Lemma 4.8 implies that
a limit function v should ensure H2-regularity on the domain Ω´. To makes
this precise: For a limit function v we require v|Ω´ “ w|Ω´ , for some function
w P H2

0 pΩq. In this context we denote by H2
BΩXBΩ´pΩ´q the space of functions

from H2
0 pΩq restricted to the domain Ω´.

Finally, we remark that the set T `, consists of all the elements, which are
eventually no longer refined and therefore we have v|K P PrpKq for all K P T `,
due to the definition of the finite-element space.

Motivated by the discussion above (compare also Proposition 4.10) we ex-
tend the definitions of the piece-wise gradient ∇pwv P L2pΩq2 and the piecewise
Hessian D2

pwv P L2pΩq2ˆ2 to the limit case, i.e.

∇pwv|Ω´ :“ ∇v|Ω´ on Ω´ and ∇pwv|K :“ ∇v|K @K P T `, (4.2.2)

and

D2
pwv|Ω´ :“ D2v|Ω´ on Ω´ and D2

pwv|K :“ D2v|K @K P T `, (4.2.3)

compare also Proposition 4.10 below.
Now, we are in a position to give the definition of the limit-space. Following

the ideas in [KG18, Section 3.2] and [DGK19, Section 3.2] we define

V8 :“
␣

v P BV pΩq : ∇pwv P BV pΩq2, v|Ω´ P H2
BΩXBΩ´pΩ´q,

v|K P PrpKq, @K P T `such that
DtvkukPN, vk P Vk with
lim
kÑ8

|||v ´ vk|||k ` }v ´ vk}Ω “ 0 and lim sup
kÑ8

|||vk|||k ă 8
(

.
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4 Convergence of AFEM

We will use the following bilinear form on V8: For v, w P V8, we define

xv, wy8 :“

ż

Ω
D2
pwv : D

2
pww dx

`

ż

F`

α

h`

““

∇pwv
‰‰

¨ n
““

∇pww
‰‰

¨ n`
β

h3`
rrvssn ¨ rrwssnds,

where we set h` :“ hT ` and F` :“ FpT `q. The induced norm is denoted by
|||v|||8 “ xv, vy

1{2
8 . Note that we use the shorthand notation of the normal jumps

also in the limit case i.e. for F P F` and v P V8 we define
““

∇pwv
‰‰

|F ¨ nF “: rrBnvss |F .

In the subsequent analysis we have to characterise the distributional deriva-
tives of a limit function v P V8. The following Proposition is a key tool to get
this characterisation.

Proposition 4.9. For v P V8, we have

|||v|||k Õ |||v|||8 ă 8 as k Ñ 8.

In particular, for fixed ℓ P N0, let K P Tℓ; then, we have
ż

tFPFk : FĂKu

h´1
k rrBnvss

2 ds Õ

ż

tFPF` : FĂKu

h´1
` rrBnvss

2 ds as k Ñ 8

and
ż

tFPFk : FĂKu

h´3
k |rrvssn|

2 ds Õ

ż

tFPF` : FĂKu

h´3
` |rrvssn|

2 ds as k Ñ 8.

Proof. For v P V8 there exists a sequence vk P Vk, k P N, such that |||v ´ vk|||k `

}v ´ vk}Ω Ñ 0 as k Ñ 8 and lim supkÑ8 |||vk|||k ă 8. Therefore, t|||v|||kukPN is
bounded, since |||v|||k ď |||v ´ vk|||k ` |||vk|||k ă 8 uniformly in k. For m ě k we
have, by inclusion

Ť

FPFk
F Ă

Ť

FPFm
F and mesh-size reduction hk ě hm, that

ż

Fk

h´1
k rrBnvss

2
` h´3

k |rrvssn|
2 ds ď

ż

Fk

h´1
m rrBnvss

2
` h´3

m |rrvssn|
2 ds

ď

ż

Fm

h´1
m rrBnvss

2
` h´3

m |rrvssn|
2 ds.

Consequently, we have that |||v|||k ď |||v|||m and t|||v|||kukPN converges. In partic-
ular, for ϵ ą 0, the exists L “ Lpϵq P N such that for all k ě L and some
sufficiently large m ą k, we have

ϵ ą

ˇ

ˇ

ˇ
|||v|||

2
m ´ |||v|||

2
k

ˇ

ˇ

ˇ
“

ż

FmzpFkXFmq

α

hm
rrBnvss

2
`

β

h3m
|rrvssn|

2 ds

´

ż

FkzpFkXFmq

α

hk
rrBnvss

2
`

β

h3k
|rrvssn|

2 ds

ě

ż

FkzF`
k

α

hk
rrBnvss

2
`

β

h3k
|rrvssn|

2 ds.
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This follows from the fact that hm|F ď 2´1hk|F for all F P FmzpFk XFmq, and
F`
k “ Fm X Fk for sufficiently large m ą k. Therefore,

ż

FmzF`
m

h´1
m rrBnvss

2
` h´3

m |rrvssn|
2 ds Ñ 0

as m Ñ 8 and thus

|||v|||
2
k “

ż

Ω

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ż

F`
k

α

hk
rrBnvss

2
`

β

h3k
|rrvssn|

2 ds

`

ż

FkzF`
k

α

hk
rrBnvss

2
`

β

h3k
|rrvssn|

2 ds

Ñ |||v|||8 ` 0 as k Ñ 8.

The second claim is a localised version and follows by analogous arguments.

The following proposition characterises the distributional Hessian of a limit
function v P V8 and states, that the distributional Hessian is given by the
piece-wise Hessian (4.2.3) with additional contributions of jump-terms since v
is discontinuous. In the same vein, the distributional derivative is given by the
piece-wise gradient (4.2.2) with additional contributions of jump-terms.

Proposition 4.10. Let v P V8. Then, for φ P C8
0 pΩq2ˆ2 the distributional

Hessian of v is given by

xD2v,φy “ ´xDv,divφy “ xv,div divφy

“

ż

Ω
D2
pwv : φ dx´

ż

F`

φ
““

∇pwv
‰‰

¨ nds`

ż

F`

divφ ¨ rrvssnds

and for φ P C8
0 pΩq2 the distributional derivative is given by

xDv,φy “

ż

Ω
∇pwv ¨φdx´

ż

F`

φ rrvss ¨ nds.

Proof. Let v P V8. Then, there exists a sequence tvkukPN0 with |||v ´ vk|||k `

}v ´ vk}Ω Ñ 0 as k Ñ 8. For the distributional Hessian of vk we have by
element-wise integration by parts for φ P C8

0 pΩq:

xD2vk,φy “ ´xDvk,divφy “ xvk, div divφy “

ż

Ω
vk div divφ dx

“

ż

Ω
D2
pwvk : φ dx´

ż

Fk

φ
““

∇pwvk
‰‰

¨ nds`

ż

Fk

divφ ¨ rrvkssnds.

We already now that xD2vk,φy Ñ xD2v,φy as k Ñ 8 since vk Ñ v in L2pΩq

as k Ñ 8. Hence, we are left to analyse the limits of the jump terms. To this
end consider
ż

Fk

divφ ¨ rrvkssnds “

ż

Fk

divφ ¨ rrvk ´ vssnds`

ż

Fk

divφ ¨ rrvssnds

“

ż

Fk

divφ ¨ rrvk ´ vssnds`

ż

F`
k

divφ ¨ rrvssnds

`

ż

F´
k

divφ ¨ rrvssnds.

(4.2.4)
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Now, the first term on the right-hand side of (4.2.4) vanishes thanks |||v ´ vk|||k Ñ

0 as k Ñ 8. For the second term we have from the definition of F`

ż

F`
k

divφ ¨ rrvssnds “

ż

F`

divφ ¨ rrvssnds´

ż

F`zF`
k

divφ ¨ rrvssnds. (4.2.5)

Moreover, Hölder’s inequality in conjunction with Lemma 4.5 reveals

ż

F`zF`
k

divφ ¨ rrvssnds À

›

›

›
h
3{2
` divφ

›

›

›

Γ`

˜

ż

F`zF`
k

h´3
` |rrvssn|

2 ds

¸1{2

Ñ 0 as k Ñ 8.

Hence, in (4.2.5) we obtain

ż

F`
k

divφ ¨ rrvssnds Ñ

ż

F`

divφ ¨ rrvssnds as k Ñ 8.

For the remaining term in (4.2.4), we have by Hölder’s inequality in conjunction
with the scaled trace inequality and the finite overlap of patches ωkpF q, F P Fk

ż

F´
k

divφ ¨ rrvssnds “

ż

FkzF`
k

divφ ¨ rrvssnds

ď

˜

ż

FkzF`
k

h3T |divφ|
2 ds

¸1{2˜
ż

FkzF`
k

h´3
T |rrvssn|

2 ds

¸1{2

À }φ}H2pΩq

˜

ż

FkzF`
k

h´3
T |rrvssn|

2 ds

¸1{2

Ñ 0 as k Ñ 8,

where we used Proposition 4.9 in the last line. Consequently, in (4.2.4) we have

ż

Fk

divφ ¨ rrvkssnds Ñ

ż

F`

divφ ¨ rrvkssnds as k Ñ 8.

Hence, we obtain

ż

F`
k

divφ ¨ rrvssnds`

ż

F´
k

divφ ¨ rrvssnds Ñ

ż

F`

divφ ¨ rrvssnds

as k Ñ 8. By similar arguments we have for the jump of the normal piece-wise
gradient

ż

F`
k

φ
““

∇pwvk
‰‰

¨ nds Ñ

ż

F`

φ
““

∇pwv
‰‰

¨ nds
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as k Ñ 8. The assertion finally follows since D2
pwvk Ñ D2

pwv as k Ñ 8 in
L2pΩq2ˆ2, due to limkÑ8 |||v ´ vk|||k “ 0 and we we obtain

xD2v,φy Ð xD2vk,φy “

ż

Ω
D2
pwvk : φ dx

´

ż

Fk

φ rr∇vkss ¨ nds`

ż

Fk

divφ ¨ rrvkssnds

Ñ

ż

Ω
D2
pwv : φ dx

´

ż

F`

φ rr∇vss ¨ nds`

ż

F`

divφ ¨ rrvssnds as k Ñ 8.

In order to prove the second assertion, we use again that for v P V8 there
exists a sequence tvkukPN0 with |||v ´ vk|||k ` }v ´ vk}Ω Ñ 0 as k Ñ 8. Hence,
we consider the distributional derivative of vk and use integration by parts to
obtain

xDvk,φy “

ż

Ω
∇pwvk ¨φ dx´

ż

Fk

φ rrvkss ¨ nds @φ P C8
0 pΩq2.

The assertion now follows by completely analogous arguments as in the case
above.

The following corollary states that the estimates of Propositions 3.12, 3.30
and 3.31 holds true on the limit space V8.

Corollary 4.11. Let v P V8. Then, we have

(a) }v}Ω À |||v|||8;

(b)
›

›∇pwv
›

›

Ω
À |||v|||8;

(c) |Dv| pΩq À |||v|||8 and

(d)
ˇ

ˇDp∇pwvq
ˇ

ˇ pΩq À |||v|||8, where
ˇ

ˇDp∇pwvq
ˇ

ˇ pΩq denotes the total variation of
∇pwv P L2pΩq.

Proof. Let v P V8. Then there exists a sequence tvkukPN0 with |||v ´ vk|||k `

}v ´ vk}Ω Ñ 0 as k Ñ 8. Consequently, Propositions 3.12 and 4.9 imply

}vk}Ω À |||vk|||k ď |||v ´ vk|||k ` |||v|||k Ñ |||v|||8 ă 8

as k Ñ 8. We thus conclude that }vk}Ω is bounded uniformly and therefore
vk á v in L2pΩq as k Ñ 8. As a result, we have from lower-semicontinuity of
the L2-norm in conjunction with Proposition 3.12

}v}Ω ď lim inf
kÑ8

}vk}Ω À lim inf
kÑ8

|||vk|||k “ lim
kÑ8

|||vk|||k ď |||v|||8 .

Consequently, Proposition 3.12 holds for all v P V8.
The statement (b) follows by similar arguments. In order to prove state-

ment (c), we argue as above and obtain, that tvkukPN is uniformly bounded in
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the BV -norm, due to Propositions 3.12 and 3.30. Hence, by Theorem 3.24 we
have vk

˚
á v in BV pΩq as k Ñ 8. Consequently, the assertion follows by similar

arguments as above, but here we use lower semicontinuity of the BV -norm with
respect to weak* convergence (compare Proposition 3.26 and Propositions 3.12
and 3.30.

Finally, assertion (d) follows similarly to the proof of statement (c).

The next Lemma is crucial for the existence of a generalised Galerkin solution
in V8, its proof is postponed to Section 4.3.3.

Lemma 4.12. The space pV8, x¨, ¨y8q is a Hilbert space.

In order to extend the discrete problem (3.2.1) to the space V8, we have to
extend the bilinear form BT to the space V8. To this end, we define suitable
liftings for the limit space. Thanks to Lemma 4.4, for each F P F`, there exists
L “ LpF q such that F P F1`

ℓ for all ℓ ě L. We define the local lifting operators

LF
8 :“ LF

L “ LF
TL . (4.2.6)

From the definition of the discrete local liftings (3.3.1), we see that LF
8 vanishes

outside the two neighbouring element K 1,K, with F “ K XK 1. Consequently,
we have LF

ℓ “ LF
L for all ℓ ě L, and therefore this definition is unique. The

global lifting operator is defined by

L8 “
ÿ

FPF`

LF
8. (4.2.7)

From estimate (3.3.4) we have that vℓ :“
ř

FPF`
ℓ
LF

8pvq is a Cauchy sequence
in L2pΩqdˆd with limit L8pvq “

ř

FPF` LF
8pvq. Therefore, L8pvq P L2pΩqdˆd

and the estimate

}L8pvq}
2
Ω À

›

›

›
h

´1{2
` rrBnvss

›

›

›

2

Γ`
`

›

›

›
h

´3{2
` rrvssn

›

›

›

2

Γ`
. (4.2.8)

holds. Here we used the notation Γ` :“
Ť

tF | F P F`u. Now we are in position
to generalise the DG-bilinear form to V8 setting

B8rv, ws : “

ż

Ω
D2
pwv : D

2
pww dx`

ż

Ω
L8pwq : D2

pwv ` L8pvq : D2
pww dx

`

ż

F`

α

h`

rrBnvss rrBnwss `
β

h3`
rrvssn ¨ rrwssnds,

for all v, w P V8.

Corollary 4.13. There exists a unique u8 P V8, such that

B8ru8, vs “

ż

Ω
fv dx @v P V8. (4.2.9)
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Proof. From Lemma 4.12 we have that V8 is a Hilbert space. Moreover, stability
of the lifting operators (4.2.8) and the Cauchy-Schwarz inequality imply the
continuity of B8r¨, ¨s since for v, w P V8 we have

B8rv, ws À
›

›D2
pwv

›

›

Ω

›

›D2
pww

›

›

Ω
` }L8pvq}Ω

›

›D2
pww

›

›

Ω

` }L8pwq}Ω

›

›D2
pwv

›

›

Ω
`

›

›

›
h

´1{2
` rrBnvss

›

›

›

Γ`

›

›

›
h

´1{2
` rrBnwss

›

›

›

Γ`

`

›

›

›
h

´3{2
` rrvss

›

›

›

Γ`

›

›

›
h

´3{2
` rrwss

›

›

›

Γ`

À |||v|||8 |||w|||8 .

In view of coercivity of B8r¨, ¨s we obtain for v P V8 by standard estimates
(compare also with Lemma 3.8)

B8rv, vs ě
›

›D2
pwv

›

›

2

Ω
´ 2 }L8pvq}Ω

›

›D2
pwv

›

›

Ω

`

ż

F`

α

h`

rrBnvss
2

`
β

h3`
|rrvssn|

2 ds

ě
1

2

›

›D2
pwv

›

›

2

Ω
´ 2 }L8pvq}

2
Ω

`

ż

F`

α

h`

rrBnvss
2

`
β

h3`
|rrvssn|

2 ds.

Hence, the stability of the lifting operators (4.2.8) implies coercivity of the limit
bilinear form.

The assertion finally follows from the Lax-Milgram Theorem 2.8.

Remark 4.14. By analogous arguments as in (3.3.5) we observe that the solu-
tion u8 P V8 is also stable in the sense that

|||u8|||8 À }f}Ω .

The following Theorem states that the solution of (4.2.9) is indeed the limit
of the adaptive sequence produced by the SIPDG method. Its proof is postponed
to Section 4.3.

Theorem 4.15. Let u8 the solution of (4.2.9) and let tukukPN0 be the sequence
of SIPDG solutions produced by ASIPDG method. Then,

|||u8 ´ uk|||k Ñ 0 as k Ñ 8.

4.2.3 Proof of the Main Theorem 4.3

In this section the marking strategy (4.1.1) becomes important. In particular,
it essentially forces the maximal indicator to vanish, which allows to control
the error on the sequence tT `

k ukPN0 . Moreover, this has implications on the
regularity of the Galerkin solution u8 P V8 from Corollary 4.13, which finally
allow us to prove that u “ u8. Thanks to the lower bound, we can thus
conclude the proof of Theorem 4.3 from Theorem 4.15 employing the lower
bound in Proposition 3.17.

We start with proving that the maximal indicator vanishes.
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4 Convergence of AFEM

Lemma 4.16. We have that

max
KPTk

ηkpuk,Kq Ñ 0 as k Ñ 8

Proof. Let k P N0, and Kk P T ´
k such that ηkpuk,Kkq “ maxK1PT ´

k
ηkpuk,K

1q.
Then we have by standard scaled trace- and inverse estimates that

ηkpuk,Kkq2 “

ż

Kk

h4k
ˇ

ˇf ´ ∆2uk
ˇ

ˇ

2
dx

`

ż

BKkXΩ
h3k

ˇ

ˇ

““

∇ ¨D2
pwuk

‰‰

¨ n
ˇ

ˇ

2
` hk

ˇ

ˇ

““

D2
pwuk

‰‰

n
ˇ

ˇ

2
ds

`

ż

BKk

α2

hk
rrBnukss

2
`
β2

h3T
|rrukssn|

2 ds

À

ż

Kk

h4k |f |
2 dx`

ż

Kk

|∆uk|
2 dx

`

ż

ωkpKkq

ˇ

ˇD2
pwuk

ˇ

ˇ

2
dx

`

ż

BKk

α2

hk
rrBnukss

2
`
β2

h3k
|rrukssn|

2 ds,

À

ż

Kk

h4k |f |
2 dx`

ż

ωkpKkq

ˇ

ˇD2
pwuk

ˇ

ˇ

2
dx

`

ż

BKk

α2

hk
rrBnukss

2
`
β2

h3k
|rrukssn|

2 ds,

(4.2.10)

where we used
ż

Kk

|∆uk|
2 dx À

ż

ωkpKkq

ˇ

ˇD2
pwuk

ˇ

ˇ

2
dx.

The first term on the right hand side of (4.2.10) converges to zero thanks to
Lemma 4.5. For the remaining terms, we have from triangle inequalities that

ż

ωkpKkq

|D2
pwuk|2 dx`

ż

BKk

α2

hk
rrBnukss

2
`
β2

h3k
|rrukssn|

2 ds

À |||u8 ´ uk|||
2
k `

ż

ωkpKkq

|D2
pwu8|2 dx`

ż

BK

α2

hk
rrBnu8ss

2 ds

`

ż

BKk

β2

h3k
|rru8ssn|

2 ds

ď |||u8 ´ uk|||
2
k `

ż

ωkpKkq

|D2
pwu8|2 dx

`

ż

F`zF`
k

α2

h`

rrBnu8ss
2

`
β2

h3`
|rru8ssn|

2 ds.

We have that |||u8 ´ uk|||k Ñ 0 as k Ñ 8 due to Theorem 4.15 and also the jump
terms vanish as k Ñ 8 by Proposition 4.9, since u8 P V8. For the remaining
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volume term we infer from local quasi-uniformity (3.1.5)

|ωkpKkq| À |Kk| À
›

›h2TkχKk

›

›

L8pΩq
À

›

›

›
h2TkχΩ´

k

›

›

›

L8pΩq
Ñ 0 (4.2.11)

as k Ñ 8, due to Lemma 4.5. Whence, the absolute continuity of the L2-norm,
with respect to the Lebesgue measure implies

ż

ωkpKkq

|D2
pwu8|2 dx Ñ 0 as k Ñ 8,

compare with Remark 4.6. As a consequence, we infer that the maximum error
indicator on T ´

k vanishes, i.e.

max
KPT ´

k

ηkpuk,Kq Ñ 0 as k Ñ 8.

Now using the refinement strategy (4.1.2) we observe that all elements T `
k will

not be subdivided, i.e. T `
k Ă TkzMk. As a consequence we obtain by the

marking strategy (4.1.1)

lim
kÑ8

max
␣

ηkpuk,Kq : K P T `
k

(

ď lim
kÑ8

max tηkpuk,Kq : K P TkzMku

ď lim
kÑ8

gpmax tηkpuk,Kq : K P Mkuq

ď lim
kÑ8

gpmax
␣

ηkpuk,Kq : K P T ´
k

(

q “ 0.

Here, we used in the last inequality, that each element in Mk will be refined by
(4.1.2) and therefore Mk Ă T ´

k .

Lemma 4.17. We have ηkpT `
k q Ñ 0 as k Ñ 8.

Proof. We follow the lines of [MSV08, Proposition 4.3].
Employing Lemma 4.16, for K P T `

k we that ηkpKq Ñ 0 as k Ñ 8. In order
to proof ηkpT `

k q Ñ 0 as k Ñ 8, we reformulate the estimator in an integral
framework and use a generalised Lebesgue dominated convergence theorem.
1 From the definition of T `

k we have that

ωkpKq “ ωℓpKq “: ωpKq

and

NkpKq “ NℓpKq “: NpKq

for all K P T `
k and all ℓ ě k. Moreover, from Proposition 3.17 we obtain for

K P T `
k

η2kpKq À
›

›D2
pwpu´ ukq

›

›

2

ωpKq
`

ÿ

FĂωpKq

ż

F
h´1
k rrBnukss

2
` h´3

k |rrukssn|
2 ds

` oscpNkpKq, fq2

À |||uk ´ u8|||
2
NpKq `

›

›D2
pwu

›

›

2

ωpKq
` |||u8|||

2
NpKq ` }f}

2
ωpKq

“: |||uk ´ u8|||
2
NpKq ` C2

K .

(4.2.12)
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4 Convergence of AFEM

Here, we used in the last estimate the stability of the data-oscillation. Note that
CK does not depend on the integer k P N, and therefore the right-hand side of
(4.2.12) tends to C2

K as k Ñ 8 by Theorem 4.15. Adding up over all K P T `
k

and using the finite overlap of patches ωkpKq, K P Tk leads us to
ÿ

KPT 1`
k

C2
K “

ÿ

KPT 1`
k

›

›D2
pwu

›

›

2

ωpKq
` |||u8|||

2
NpKq ` }f}

2
ωpKq

À
›

›D2u
›

›

2

Ω
` |||u8|||

2
8 ` }f}

2
Ω

À1,

(4.2.13)

where we used the stability of u P H2
0 pΩq as well as the stability of u8 P V8.

2 Now we’re able to give the integral formulation. From Lemma 4.4 we have

T ` “
ď

kPN
T `
k ,

where the sequence
␣

T `
k

(

kPN is nested. Now for x P Ω` let

ℓ “ ℓpxq :“ min
␣

k P N : DK P T `
k , such that x P K

(

.

We define for x P K

ϵkpxq :“ Mkpxq “ 0, for k ă ℓ

and

ϵkpxq :“
1

|K|
η2kpKq, Mkpxq :“

1

|K|

´

|||uk ´ u8|||
2
NpKq ` C2

K

¯

for k ě ℓ.

Consequently, for any integer k P N we obtain

η2kpT `
k q “

ż

Ω`

ϵkpxqdx.

Moreover, the element-wise convergence of the estimator from step 1 implies
pointwise convergence of ϵk in Ω`, i.e.

ϵkpxq “
1

|K|
η2kpKq Ñ 0 as k Ñ 8.

From (4.2.12) and the definition of Mk, we have that each Mk is a majorant
of ϵk which is also integrable thanks to

ř

KPT `
k

|||uk ´ u8|||
2
NpKq À |||uk ´ u8|||

2
k

and (4.2.13).
3 The last step is to prove convergence of the majorants tMkukPN in L1pΩ`q

to a function M , defined by

Mpxq :“
1

|K|
C2
K , x P K, K P T `.

Thanks to the definiton of Mk, we observe

}Mk ´M}L1pΩ`q “
ÿ

KPT `
k

}Mk ´M}L1pKq `
ÿ

KPT `zT `
k

}M}L1pKq ,

70
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since Mk vanishes on T `zT `
k . The first term on the right-hand side satisfies

ÿ

KPT `
k

}Mk ´M}L1pKq “
ÿ

KPT `
k

|||uk ´ u8|||
2
NpKq À |||uk ´ u8|||

2
k Ñ 0

as k Ñ 8 thanks to Theorem 4.15. The second term is a tail of the series
ř

KPT ` }M}L1pKq “
ř

KPT ` C2
K , which is bounded thanks to (4.2.13). Conse-

quently, we have Mk Ñ M in L1pΩ`q.
4 Finally, the application of the generalised majorised convergence Theorem
(see [Zei90, Appendix (19a)]) with ϵk “ fk, Mk “ gk and M “ g leads us to

lim
kÑ8

η2kpT `
k q “ lim

kÑ8

ż

Ω`

ϵk dx “

ż

Ω`

0 dx “ 0.

Remark 4.18. We note, that Lemma 4.17 yields in particular that
ż

F`
k

h´1
k rrBnukss

2
` h´3

k |rrukssn|
2 ds Ñ 0 as k Ñ 8, (4.2.14)

i.e. the jump terms vanish on the non-refined domain Ω`
k . This means we

can conclude additional regularity of the limit function. This is reflected in the
following lemma.

Lemma 4.19. We have for u8 P V8 from Corollary 4.13 that u8 P H2
0 pΩq.

Proof. From Theorem 4.15, we know that

D2
pwuk Ñ D2

pwu8 in L2pΩq2ˆ2 as k Ñ 8.

Additionally, we have that uk Ñ u8 in L2pΩq as k Ñ 8 thanks to u8 P V8

and

}uk ´ u8}Ω ď }uk ´ vk}Ω ` }vk ´ u8}Ω

À |||uk ´ vk|||k ` }vk ´ u8}Ω

À |||uk ´ u8|||k ` |||u8 ´ vk|||k ` }vk ´ u8}Ω

Ñ 0,

as k Ñ 8, for a sequence tvkukPN, vk P Vk due to the defintion of the limit
space and Theorem 4.15.

We have that for φ P C8
0 pΩq2ˆ2 the distributional Hessian of uk is given by

xD2uk,φy “

ż

Ω
D2
pwuk : φdx´

ż

Fk

φ rrBnukss ds`

ż

Fk

divφ ¨ rrukssnds.

Consequently, u8 has second weak derivatives D2
pwu8 if and only if the two jump

terms vanish as k Ñ 8. This follows from
ż

Fk

h´1
k rrBnukss

2
` h´3

k |rrukssn|
2 ds Ñ 0 as k Ñ 8, (4.2.15)
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which implies u8 P H2
0 pΩq since Fk contains also boundary sides. In order to

verify (4.2.15), we estimate
ż

Fk

h´1
k rrBnukss

2
` h´3

k |rrukssn|
2 ds

“

ż

F´
k

h´1
k rrBnukss

2
` h´3

k |rrukssn|
2 ds

`

ż

F`
k

h´1
k rrBnukss

2
` h´3

k |rrukssn|
2 ds

ď 2

ż

F´
k

h´1
k rrBnu8ss

2
` h´3

k |rru8ssn|
2 ds

` 2 |||u8 ´ uk|||
2
k `

ż

F`
k

h´1
k rrBnukss

2
` h´3

k |rrukssn|
2 ds

Thanks to Proposition 4.9, Theorem 4.15 and (4.2.14), we have that all three
terms tend to zero. This proves the assertion.

Next, we have to prove that u8 coincides with the exact solution u P H2
0 pΩq

of (2.4.2). This proof is based on the following Lemma.

Lemma 4.20. Let φ P C8
0 pΩq and uk the discrete solution generated by the

ASIPDG method. Then we have

|xf, φy ´ Bkruk, φs| À
ÿ

KPT
ηkpuk,KqhsKK |φ|H2`sK pω2

kpKqq ,

with sK P t0, 1u, K P Tk.

Proof. Note that by the Galerkin orthogonality we have for all vk P Vk, that

xf, φy ´ Bkruk, φs “ xf, φ´ vky ´ Bkruk, φ´ vks. (4.2.16)

Let vk :“ Ikφ, where Ikφ is the quasi-interpolant from (4.3.5), and define
ρk :“ φ´ Ikφ. Integration by parts yields

xf, ρky ´ Bkruk, ρks

“

ż

Ω
pf ´ ∆2ukqρk ´

ż

Ω
Lkpρkq : D2

pwuk ` Lkpukq : D2
pwρk dx

´
ÿ

KPTk

ż

BK
D2uknK ¨ ∇ρk ´ ρk∇ ¨D2uk ¨ nK ds

´

ż

Fk

α

hk
rrBnukss rrBnρkss `

β

h3k
rrukssn ¨ rrρkssnds.

(4.2.17)

Thanks to D2
pwuk P Pr´2pTkq2ˆ2, we can use the definition of the local lifting

operators
ż

Ω
Lkpρkq : D2

pwuk dx “
ÿ

FPFk

ż

F

␣␣

∇ ¨D2
pwuk

((

¨ nF rrρkss ´
␣␣

D2
pwuk

((

rr∇ρkss ¨ nF ds.

72
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Moreover, reformulation of the boundary integrals to face integrals ((3.1.8) and
(3.1.9)) reveals

ÿ

KPTk

ż

BK
D2uknK ¨ ∇ρk ´ ρk∇ ¨D2uk ¨ nK ds

“

ż

F

␣␣

D2uk
((

rr∇ρkss ¨ nF ´ rrρkss
␣␣

∇ ¨D2uk
((

¨ nF ds

`

ż

Fk̊

““

D2uk
‰‰

tt∇ρkuu ¨ nF ´ ttρkuu
““

∇ ¨D2uk
‰‰

¨ nF ds

Consequently, inserting this in (4.2.17) yields

xf, φ´ Ikφy ´ Bkruk, φ´ Ikφs

“

ż

Ω
pf ´ ∆2

pwukqρk dx´

ż

Ω
Lkpukq : D2

pwρk dx

´

ż

Fk̊

““

D2uk
‰‰

tt∇ρkuu ¨ nF ´ ttρkuu
““

∇ ¨D2uk
‰‰

¨ nF ds

´

ż

Fk

α

hk
rrBnukss rrBnρkss ds`

β

h3k
rrukssn ¨ rrρkssnds.

(4.2.18)

Thanks to φ P C8
0 pΩq standard interpolation estimates provide for j P t0, 1, 2u

and sK P t0, 1u that
ż

K

ˇ

ˇDjpφ´ Ikφq
ˇ

ˇ

2
dx À

ż

ωkpKq

h
2p2`sK´jq

k

ˇ

ˇD2`sKφ
ˇ

ˇ dx K P T ; (4.2.19)

compare e.g. with [Cle75]. For the first term on the right-hand side of (4.2.18),
we have

ˇ

ˇ

ˇ

ˇ

ż

Ω
pf ´ ∆2

pwukqρk dx

ˇ

ˇ

ˇ

ˇ

ď
ÿ

KPTk

›

›f ´ ∆2uk
›

›

K
}ρk}K

À
ÿ

KPTk

›

›h2kpf ´ ∆2ukq
›

›

K
hsKK |φ|H2`sK pωkpKqq ,

Using stability of the lifting operator (3.3.4) (Lemma 3.11), we estimate the
second term on the right-hand side of (4.2.18) by
ˇ

ˇ

ˇ

ˇ

ż

Ω
Lkpukq : D2

pwρk dx

ˇ

ˇ

ˇ

ˇ

À

ˆ

›

›

›
h

´1{2
T rrBnukss

›

›

›

Γk

`

›

›

›
h

´3{2
T rrukssn

›

›

›

Γk

̇

hsKK |φ|H2`sK pωkpKqq .

Combining a scaled trace inequality with (4.2.19), we obtain
ˇ

ˇ

ˇ

ˇ

ż

Fk̊

““

D2uk
‰‰

tt∇ρkuu ¨ nF

ˇ

ˇ

ˇ

ˇ

À
ÿ

FPFk̊

ˇ

ˇ

ˇ

ˇ

ż

F
h´1
k tt∇ρkuu

2 hk
““

D2uk
‰‰2

ds

ˇ

ˇ

ˇ

ˇ

À
ÿ

KPTk

ηkpuk,KqhsKK |φ|H2`sK pω2
kpKqq .
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Analogous arguments, yield
ˇ

ˇ

ˇ

ˇ

ż

Fk̊

ttρkuu
““

∇ ¨D2uk
‰‰

¨ nF

ˇ

ˇ

ˇ

ˇ

À
ÿ

FPFk̊

ˇ

ˇ

ˇ

ˇ

ż

F
h´3
k ttρkuu

2 h3k
ˇ

ˇ

““

∇ ¨D2uk
‰‰

¨ nF

ˇ

ˇ

2
ds

ˇ

ˇ

ˇ

ˇ

À
ÿ

KPTk

ηkpuk,KqhsKK |φ|H2`sK pω2
kpKqq .

Finally, for the last term on the right-hand side of (4.2.18) we deduce in the
same fashion

ˇ

ˇ

ˇ

ˇ

ż

Fk

α

hk
rrBnukss rrBnρkss ds`

β

h3k
rrukssn ¨ rrρkssnds

ˇ

ˇ

ˇ

ˇ

À
ÿ

KPTk

ηkpuk,KqhsKK |φ|H2`sK pω2
kpKqq .

Inserting the above estimates in (4.2.18) proves the claim.

Lemma 4.21. Let u P H2
0 pΩq and u8 P V8 be the solutions of (2.4.2) and (4.2.9)

respectively. Then u “ u8.

Proof. We recall that for v, w P H2
0 pΩq we have Brv, ws “ Bkrv, ws “ B8rv, ws.

Therefore, we obtain from u8 P H2
0 pΩq and (4.2.9) that

|||u´ u8|||
2

À Bru´ u8, u´ u8s

“ Bru, u´ u8s ´ B8ru8, us ` B8ru8, u8s

“ xf, u´ u8y ´ B8ru8, us ` xf, u8y

“ xf, uy ´ Bkru8, us “ xf, uy ´ Bkruk, us ` Bkru8 ´ uk, us

ď xf, uy ´ Bkruk, us ` |||u||| |||u8 ´ uk|||k .

The last product vanishes thanks to Theorem 4.15 and we are left with the
remaining parts. By the density of H3

0 pΩq in H2
0 pΩq, for ϵ ą 0 we choose

uϵ P H3
0 pΩq such that |||u´ uϵ||| ď ϵ. Recalling that xf, vky ´ Bkruk, vks “ 0 for

all vk P Vk, we employ Lemma 4.20 to obtain

|xf, uy ´ Bkruk, us|

ď |xf, uϵy ´ Bkruk, uϵs| ` |xf, u´ uϵy ´ Bkruk, u´ uϵs|

À
ÿ

KPT ´
k

ηkpuk,Kq}hk}L8pΩ1´q|uϵ|H3pω2
kpKqq

`
ÿ

KPT `
k

ηkpuk,Kq |||uϵ|||N2
k pKq ` ϵ}f}L2pΩq

À }hk}L8pΩ1´qηkpuk, T ´
k q|uϵ|H3pω2

kpKqq ` ηkpuk, T `
k q |||uϵ||| ` ϵ}f}L2pΩq.

Here, we have used interpolation estimates in H3 for the first term and stability
of the interpolation for the second term as well as (3.3.5) and the finite overlap
of the neighbourhoods. The first term on the right hand side vanishes thanks
to Lemma 4.5 and since the estimator stays bounded (Proposition 3.17). The
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second term vanishes thanks to Lemma 4.17. Combining the above findings, we
obtain by letting k Ñ 8 that

|||u´ u8|||
2

À ϵ}f}L2pΩq.

Since ϵ was arbitrary, this proves the assertion.

Proof of Theorem 4.3. Thanks to Lemma 4.21 and Theorem 4.15, we have that
|||u´ uk|||k Ñ 0 as k Ñ 8.

Combining the lower bound Proposition 3.17 with Lemmas 4.17, 4.21 and 4.5,
we obtain

ηkpTkq2 À |||u´ uk|||
2
k ` oscpTk, fq2

“ |||u´ uk|||
2
k `

ÿ

KPT ´
k

ż

K
h4k |f ´ Πf |

2 dx`
ÿ

KPT `
k

ż

K
h4k |f ´ Πf |

2 dx

ď |||u´ uk|||
2
k `

›

›

›
hkχΩ´

k

›

›

›

4

L8pΩq
}f}

2
Ω ` ηkpuk, T `

k q2

Ñ 0

as k Ñ 8. Here we have used
ş

K h4k |f ´ Π0f |
2

ď ηkpuk,Kq2 thanks to (3.4.16).

4.3 Proofs of Lemma 4.12 and Theorem 4.15

In this Section we use the ideas of [DGK19, Section 4] to close the proof of the
main result, Theorem 4.3. We emphasise that we still have to verify Lemma 4.12
and Theorem 4.15. The primer states that V8 is a Hilbert space with norm |||¨|||8,
and thus a unique solution u8 P V8 of (4.2.9) exists; see Corollary 4.13. The
latter proves that u8 is indeed the limit of the SIPDG approximations tukukPN0

produced by the ASIPDG method.
We emphasise that in contrast to [KG18], the lack of proper H2-conforming

subspaces of SIPDG spaces, does not allow for a straight forward generalisa-
tion: For example, in order to prove |||u8 ´ uk|||k Ñ 0, in [KG18] the best-
approximation property for inf-sup stable conforming elements [MSV08, Sie11]
is replaced by a variant of Gudi’s medius analysis [Gud10]. However, this re-
quired a discrete smoothing operator into V8, whose construction is heavily
based on the existence of a proper conforming subspace of Vk.

After recalling a Poincaré-type inequality we introduce a interpolation opera-
tor Ik : L2pΩq Ñ Vk and prove the crucial approximation property |||Ikv ´ v|||k Ñ

0 as k Ñ 8 for v P V8. Finally, we conclude the section with the proofs of
Lemma 4.12 and Theorem 4.15.

4.3.1 Preliminary results

In order to prove the Poincaré and Friedrichs estimates below, we state a useful
result from [KG18].
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4 Convergence of AFEM

Proposition 4.22. Let T be a triangulation of Ω and T‹ be some refinement of
T . Then, for v P VpT‹q, K P T and vK :“ |ωT pKq|

´1 ş

ωT pKq
v dx, we have

}v ´ vK}
2
ωT pKq À

ż

ωT pKq

h2T
ˇ

ˇ∇pwv
ˇ

ˇ

2
dx`

ż

FPF‹, FĂωT pKq

h2T h
´1
T‹

|rrvssn|
2 ds,

where F‹ “ FT‹
and the hidden constant depends on d and the shape regularity

of NT pKq.

Proof. See [KG18, Proposition 1].

The following Poincaré estimate is subsequently used to prove stability of the
smoothing and quasi-interpolation operators defined later.

Lemma 4.23. Let T , T‹ be two triangulations of Ω with T ď T‹ and let v P

VpT‹q. Then, there exists a linear polynomial Q, defined on ωT pKq such that
we have

}v ´Q}
2
ωT pKq À

ż

ωT pKq

h4T
ˇ

ˇD2
pwv

ˇ

ˇ

2
dx

`

ż

FPFpT‹q

FĂωT pKq

h4T

´

h´1
T‹

rrBnvss
2

` h´3
T‹

|rrvssn|
2
¯

ds.
(4.3.1)

Proof. Let Q P P1pωT pKqq uniquely defined by
ż

ωT pKq

Bpw,xiv dx “

ż

ωT pKq

BxiQdx, 1 ď i ď 2 and
ż

ωT pKq

v dx “

ż

ωT pKq

Qdx.

As a consequence from Proposition 4.22, together with hT‹
ď hT we get the

following estimate

}v ´Q}
2
ωT pKq À

ż

ωT pKq

h2T
ˇ

ˇ∇pwpv ´Qq
ˇ

ˇ

2
dx

`

ż

FPFpT‹q

FĂωT pKq

h2T h
´1
T‹

|rrvssn|
2 ds.

(4.3.2)

Finally, the proof of (4.3.1) follows from a second application of [KG18, Propo-
sition 1]. Indeed, for the first term on the right-hand side of (4.3.2) we have
ż

ωT pKq

h2T
ˇ

ˇ∇pwpv ´Qq
ˇ

ˇ

2
dx À

ż

ωT pKq

h4T
ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ż

FPFpT‹q

FĂωT pKq

h4T h
´1
T‹

rrBnvss
2 ds.

The following Lemma extends the previous result to the limit space V8.
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Lemma 4.24 (Poincaré-Friedrichs V8). For v P V8, there exists Q P P1pωkpKqq,
such that

}v ´Q}
2
ωkpKq À

ż

ωkpKq

h4k
ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ż

FPF`

FĂωkpKq

h4k

´

h´1
` rrBnvss

2
` h´3

` |rrvssn|
2
¯

ds.

Proof. Let Q P P1pωkpKqq be the L2-orthogonal projection of v defined by
ż

ωkpKq

pQ´ vqP dx “ 0 @P P P1pωkpKqq. (4.3.3)

Moreover, we define another linear polynomial Q̃ P P1pωkpKqq by
ż

ωkpKq

Bpw,xiv dx “

ż

ωkpKq

BxiQ̃dx, 1 ď i ď 2 and
ż

ωkpKq

v dx “

ż

ωkpKq

Q̃dx.

Now for v P V8, there exists a sequence vℓ P Vℓ, ℓ P N, with limℓÑ8 |||v ´ vℓ|||ℓ `

}v ´ vℓ}Ω “ 0 and lim supℓÑ8 |||vℓ|||ℓ ă 8 and Proposition 4.9 implies
ż

ωkpKq

|D2
pwvℓ|

2 dx`
ÿ

FPFℓ
FĂωkpKq

ż

F
h´1
ℓ rrBnvℓss

2
` h´3

ℓ |rrvℓssn|
2 ds

Ñ

ż

ωkpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`

FĂωkpKq

ż

F
h´1

` rrBnvss
2

` h´3
` |rrvssn|

2 ds

as ℓ Ñ 8. Let ℓ ě k. Thanks to Lemma 4.23 there exists Q̃ℓ P P1pωkpKqq with
›

›

›
vℓ ´ Q̃ℓ

›

›

›

2

ωkpKq
À

ż

ωkpKq

h4k|D2
pwvℓ|

2 dx

`
ÿ

FPFℓ
FĂωkpKq

ż

F
h4k

´

h´1
ℓ rrBnvℓss

2
` h´3

ℓ |rrvℓssn|
2
¯

ds (4.3.4)

Ñ

ż

ωkpKq

h4k|D2
pwv|2 dx`

ÿ

FPF`

FĂωkpKq

ż

F
h4k

´

h´1
` rrBnvss

2
` h´3

` |rrvssn|
2
¯

ds,

as ℓ Ñ 8; compare also with Proposition 4.9.
Next, let Qℓ P P1pωkpKqq be the L2-orthogonal projection of vℓ. Then, we

have by the definitions of Q, Qℓ and V8 that

}Qℓ ´Q}
2
ωkpKq ď }vℓ ´ v}

2
ωkpKq ď }vℓ ´ v}

2
Ω Ñ 0

as ℓ Ñ 8. Hence, we have that }vℓ ´Qℓ}ωkpKq Ñ }v ´Q}ωkpKq as ℓ Ñ 8.
Finally, the definitions of Qℓ and Q̃ℓ in conjunction with standard properties
of the L2-orthogonal projection imply }vℓ ´Qℓ}ωkpKq ď

›

›

›
vℓ ´ Q̃ℓ

›

›

›

ωkpKq
and we

conclude the statement of the Lemma in view of (4.3.4) for Q defined in (4.3.3).
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4.3.2 Polynomial Approximation

We fix k ě 0 and define an interpolation operator Ik : L2pΩq Ñ Vk by

ż

Ω
pIkv ´ vqw dx “ 0 @w P Vk, (4.3.5)

that means Ikv is the L2-orthogonal projection of v P L2pΩq onto Vk. We
emphasise that the defintion of Vk implies that for a single element K P Tk the
restriction Ikv|K P PrpKq is defined analogously, i.e.

ż

K
pIkv|K ´ vqP dx “ 0 @P P PrpKq.

Lemma 4.25 (Polynomial interpolation onto Vk). For k ě 0 let Ik : L2pΩq Ñ

Vk be defined as in (4.3.5). Then we have that

(1) Ik : LppΩq Ñ LppΩq is a linear and bounded projection for all 1 ď p ď 8

and is stable in the following sense: If v P L2pΩq, then
ż

K
|Ikv|

2 dx À

ż

K
|v|

2 dx for all K P Tk,

where the constants in ’À’ are independent of the mesh-size hk.

(2) Ikv P Vk for all v P L2pΩq,

(3) Ikv|K “ v|K if K P Tk and v|K P PrpKq.

Proof. Assertions (1) and (2) follow directly by the definition of the L2-orthogonal
projection (cf. [EG13, DPE12]). Claim (3) follows from definition (4.3.5) re-
stricted to a single element K P T . Indeed, we have that PrpKq is a finite
dimensional space with L2-inner product. Hence, if v P PrpKq then Ikv|K ´v ”

0 P PrpKq.

We are interested on the projections of limit functions v P V8 onto the finite
element space Vk. In this context we emphasise that we have v P L2pΩq for
all v P V8. Indeed, we have from the continuous embedding of Theorem 3.22
that BV pΩq ãÑ L2pΩq and our limit space is a subset of the space BV pΩq. In
particular we are interested on the interplay of different refinement levels related
to the sequence tTkukPN0 of meshes produced by the ASIPDG method.

Lemma 4.26 (Stability of Ik). Let v P Vℓ for some ℓ P N0 Y t8u. Then, for
all K P Tk, k ď ℓ, we have

ż

K

ˇ

ˇD2Ikv
ˇ

ˇ

2
dx`

ż

BK
h´1
k rrBnIkvss

2
` h´3

k |rrIkvssn|
2 ds

À

ż

ωkpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPFℓ
FĂωkpKq

ż

F
h´1
ℓ rrBnvss

2
` h´3

ℓ |rrvssn|
2 ds,

where Fℓ :“ F` and hℓ :“ h`, when ℓ “ 8. In particular, we have |||Ikv|||k À

|||v|||ℓ.
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Proof. Let ℓ ă 8 and assume that K P Tk. Let Q be the linear polynomial
from Lemma 4.23 defined on ωkpKq. Then, the inverse estimate (3.2.3) and
Lemma 4.25(1) and (3) reveal

ż

K

ˇ

ˇD2Ikv
ˇ

ˇ

2
dx “

ż

K

ˇ

ˇD2Ikpv ´Qq
ˇ

ˇ

2
dx À

ż

K
h´4
k |Ikpv ´Qq|

2 dx

À

ż

K
h´4
k |pv ´Qq|

2 dx ď

ż

ωkpKq

h´4
k |pv ´Qq|

2 dx..

In order to bound the jump terms, we use again the linear polynomial from
Lemma 4.23 defined on ωkpKq. We observe that ∇Q ” const and hence does
not jump across interelement boundaries. Consequently, using Lemma 4.25(1)
and (3), together with the trace estimate (3.2.4) and the inverse estimate 3.2.3,
we obtain
ż

BK
h´1
k rrBnIkvss

2 ds “

ż

BK
h´1
k rrBnIkpv ´Qqss

2 ds

À

ż

ωkpKq

h´4
k |Ikpv ´Qq|

2 dx À h´4
K

ż

ωkpKq

|v ´Q|
2 dx,

where we also used
Ť

tωkpF q : F Ă BKu Ă ωkpKq.
In the same vein, using the continuity of the polynomial Q, we obtain
ż

BK
h´3
k |rrIkvssn|

2 ds “

ż

BK
h´3
k |rrIkpv ´Qqssn|

2 ds

À

ż

ωkpKq

h´4
k |Ikpv ´Qq|

2 ds À

ż

ωkpKq

h´4
k |v ´Q|

2 ds.

Consequently, we proved
ż

K

ˇ

ˇD2Ikv
ˇ

ˇ

2
dx`

ż

BK
h´1
k rrBnIkvss

2
` h´3

k |rrIkvssn|
2 ds

À

ż

ωkpKq

h´4
k |v ´Q|

2 ds

and the desired estimate is a direct consequence from Lemma 4.23.
For the case ℓ “ 8 we replace Lemma 4.23 by Lemma 4.24 and proceed as

before.

In view of the proof of Lemma 4.12 below, we need a stability estimate com-
parable to Lemma 4.26 for w P H2

0 pΩq.

Corollary 4.27. Let w P H2
0 pΩq. Then, we have for all k P N

|||Ikw|||k À
›

›D2w
›

›

Ω

Proof. This estimate follows by analogous arguments as in the proof of Lemma 4.26
but replacing Lemma 4.23 by the classical Poincaré-Friedrichs inequality for
functions in H2

0 pΩq.

The next corollary states the convergence of the interpolation operator
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Corollary 4.28. Let v P V8, then |||Ikv ´ v|||k ` }Ikv ´ v}Ω Ñ 0 as k Ñ 8.

Proof. Thanks to the definition of V8 there exist a sequence tvkukPN0
, vk P Vk

with |||v ´ vk|||k ` }v ´ vk}Ω Ñ 0 as k Ñ 8. Consequently, the claim follows
from the stability and invariance of the interpolation operator Ik.

4.3.3 Proof of Lemma 4.12

Remark 4.29. In the sequel, we use the following fact: For k ě ℓ and j P N0 we
have T j`

ℓ Ă T j`

k Ă Tk. Moreover, the triangulation TkzT `
ℓ covers the domain

Ωj´

ℓ and any refinement of Tk will not affect any element in T j`

ℓ . Therefore,
we obtain for all k ě ℓ:

Ωj´

ℓ “ ΩpTℓzT j`

ℓ q “ ΩpTkzT j`

ℓ q.

Consequently, Lemma 4.5 reveals that limℓÑ8

›

›

›
hℓχΩj´

ℓ

›

›

›

L8pΩq
“ 0 holds true on

the domain ΩpTkzT j`

ℓ q.

Proof of Lemma 4.12. Recall, that we need to prove that pV8, x¨, ¨y8q is a
Hilbert space. Thanks to Corollary 4.11 we have that }v}BV pΩq À |||v|||8. Hence,
|||¨|||8 is a norm on V8 and x¨, ¨y8 is a scalar product. Therefore, it remains to
show that V8 is complete with respect to |||¨|||8, i.e. we have to prove that an
arbitrary Cauchy sequence in V8 has a limit in V8.

Let tvℓuℓPN0 be a Cauchy sequence in pV8, |||¨|||8q. Corollary 4.11(a) and (c)
imply

›

›vℓ ´ vj
›

›

BV pΩq
À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇvℓ ´ vj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
. Consequently, there exists v P BV pΩq such

that vℓ Ñ v P BV pΩq as ℓ Ñ 8, due to the fact that BV pΩq is a Banach
space. We thus have to prove that v P V8 in order to conclude the assertion of
Lemma 4.12. Using norm equivalence on finite dimensional spaces, we readily
conclude that v|K P PrpKq for all K P T `.

1 In the first step of this proof we analyse the jump terms of the sequence
␣

vℓ
(

ℓPN0
. In order to do so we recall that v P BV pΩq has L1-traces on BK,

K P Tk k P N0; see e.g. [AFP00, Theorem 3.88]. In view of Proposition 4.9, we
shall therefore deal first with the jump terms of the function v and prove

ż

Fk

h´3
k |rrvssn|

2 ds Ñ

ż

F`

h´3
` |rrvssn|

2 ds pk Ñ 8q. (4.3.6)

To this end, we first observe that for k P N0, tvℓuℓPN0 is also a Cauchy sequence
with respect to the |||¨|||k-norm (Proposition 4.9), and thus

›

›

›
h

´3{2
k

““

vℓ ´ vj
‰‰

n
›

›

›

Γk

Ñ

0 as ℓ, j Ñ 8. Hence, uniqueness of limits on Γk imply that
›

›

›
h

´3{2
k

””

vℓ ´ v
ıı

n
›

›

›

Γk

Ñ 0 (4.3.7)

as ℓ Ñ 8. Now, let ϵ ą 0 arbitrary fixed and consider
ż

Fk

h´3
k |rrvssn|

2 ds ď

ż

Fk

h´3
k

ˇ

ˇ

ˇ

””

v ´ vℓ
ıı

n
ˇ

ˇ

ˇ

2
ds

`

ż

Fk

h´3
k

ˇ

ˇ

ˇ

””

vℓ
ıı

n
ˇ

ˇ

ˇ

2
ds ă 8.

(4.3.8)
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

For the first term on the right-hand side there exists M “ Mpϵq such that
ş

Fk
h´3
k

ˇ

ˇ

““

v ´ vℓ
‰‰

n
ˇ

ˇ

2
ds ă ϵ, provided ℓ ě M . Additionally, the second term

on the right-hand side is converging to
ş

F` h
´3
`

ˇ

ˇ

““

vℓ
‰‰

n
ˇ

ˇ

2
ds as k Ñ 8 (Proposi-

tion 4.9) and consequently we have that
ş

Fk
h´3
k |rrvssn|

2 ds is uniformly bounded.
Next, there exists L “ Lpϵq, such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇvℓ ´ vj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇvℓ ´ vj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ď ϵ for all

j, ℓ ě L. Thanks to Proposition 4.9, there exists K “ Kpϵ, Lq such that for all
m ě k ě K, we have

ż

FmzF`
k

h´3
k

ˇ

ˇ

““

vL
‰‰

n
ˇ

ˇ

2
ds ď ϵ2. (4.3.9)

In particular, for m “ k ě K, we have
ż

Fk

h´3
k |rrvss|

2 ds “

ż

FkzF`
k

h´3
k |rrvssn|

2 ds`

ż

F`
k

h´3
k |rrvssn|

2 ds

“ lim
ℓÑ8

ż

FkzF`
k

h´3
k

ˇ

ˇ

ˇ

””

vℓ
ıı

n
ˇ

ˇ

ˇ

2
ds`

ż

F`
k

h´3
k |rrvssn|

2 ds

and
ż

FkzF`
k

h´3
k

ˇ

ˇ

ˇ

””

vℓ
ıı

n
ˇ

ˇ

ˇ

2
ds ď 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓ ´ vL

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

k
` 2

ż

FkzF`
k

h´3
k

ˇ

ˇ

““

vL
‰‰

n
ˇ

ˇ

2
ds ď 4ϵ2

provided ℓ ě L. Due to (4.3.8), the reduction of mesh-size and the inclusion of
skeletons, this proves the convergence stated in (4.3.6), since ϵ ą 0 was arbitrary
(compare Proposition 4.9).

2 Next, we have to prove v|Ω´ P H2
BΩXBΩ´pΩ´q, i.e. we need to show that

v is a restriction of a H2
0 pΩq-function. Thanks to Corollary 4.28, there exists

tmℓuℓPN0 Ă N0 such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇvℓ ´ vℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

mℓ
`
›

›vℓ ´ vℓmℓ

›

›

Ω
ď 1

ℓ for vmℓ
:“ Imℓ

vℓ P

Vmℓ
, where Imℓ

vℓ is the interpolant from (4.3.5) with respect to Tmℓ
. Con-

sequently, since tvℓu is a Cauchy sequence and thus bounded, we infer from
Proposition 4.9 that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

mℓ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓmℓ

´ vℓ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

mℓ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ď

1

ℓ
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
,

i.e., the uniform boundedness of
ˇ

ˇ

ˇ

ˇ

ˇ

ˇvℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

mℓ
. We now apply the smoothing operator

defined in (3.4.1) to vℓmℓ
P Vmℓ

, i.e. we consider the sequence
␣

Emℓ
pvℓmℓ

q
(

ℓPN Ă

H2
0 pΩq. From Lemma 3.15 (with γ “ 2) we obtain

›

›

›
D2Emℓ

pvℓmℓ
q

›

›

›

Ω
À

›

›

›
D2
pwpEmℓ

pvℓmℓ
q ´ vℓmℓ

q

›

›

›

Ω
`

›

›

›
D2
pwv

ℓ
mℓ

›

›

›

Ω
À

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

mℓ

.

Hence, there exists w P H2
0 pΩq such that, for a not relabelled subsequence

Emℓ
pvℓmℓ

q á w weakly in H2
0 pΩq, as ℓ Ñ 8. (4.3.10)

In order to prove v|Ω´ “ w|Ω´ , we emphasise that for all j P N, we have
Ω´ Ă Ωj´

mℓ (recall that Ωj`
mℓ Ă Ω`) and consider

›

›

›
Emℓ

pvℓmℓ
q ´ v

›

›

›

Ω´
ď

›

›

›
Emℓ

pvℓmℓ
q ´ vℓmℓ

›

›

›

Ω´
mℓ

`

›

›

›
v ´ vℓmℓ

›

›

›

Ω
. (4.3.11)
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4 Convergence of AFEM

For the first term on the right-hand side we have from Lemma 3.15 (with γ “ 0)
and the scaled trace inequality (3.2.4)

›

›

›
Emℓ

pvℓmℓ
q ´ vℓmℓ

›

›

›

2

Ω´
mℓ

À

ż

F2´
mℓ

h3mℓ

””

Bnv
ℓ
mℓ

ıı2
` hmℓ

ˇ

ˇ

ˇ

””

vℓmℓ

ıı

n
ˇ

ˇ

ˇ

2
ds

À

›

›

›
hmℓ

χΩ2´
mℓ

›

›

›

4

L8pΩq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

mℓ

,

(4.3.12)

where we used }hmℓ
}L8pF2´

mℓ
q

À
›

›hmℓ
χΩ2´

mℓ

›

›

L8pΩq
. Applying Lemma 4.5, the

last term vanishes as ℓ Ñ 8. Consequently, we have limℓÑ8 Emℓ
pvℓmℓ

q “ w in
L2pΩ´q due to Ω´ Ă Ω2´

mℓ
. Additionally we use

›

›

›
v ´ vℓmℓ

›

›

›

Ω
ď

›

›

›
v ´ vℓ

›

›

›

Ω
`

›

›

›
vℓ ´ vℓmℓ

›

›

›

Ω
Ñ 0 as ℓ Ñ 8,

to conclude v|Ω´ “ w|Ω´ , i.e., v|Ω´ P H2
BΩXBΩ´pΩ´q. Here where we also used

that for d “ 2 the embedding BV pΩq ãÑ L2pΩq is continuous (cf. Theorem 3.22)
i.e.

›

›v ´ vℓ
›

›

Ω
À
›

›v ´ vℓ
›

›

BV pΩq
Ñ 0 as ℓ Ñ 8. The equality v|Ω´ “ w|Ω´ implies

that we can use the definitions (4.2.3) and (4.2.2) of the piecewise Hessian and
the piecewise gradient also for v, i.e. on the domain Ω´ we have ∇pwv|Ω´ “

∇w|Ω´ and D2
pwv|Ω´ “ D2w|Ω´ . Note, that we already have the piece-wise

gradient and piece-wise Hessian on T ` since v|K P PrpKq for all K P T `.
3 In order to deal with the jumps of the normal derivatives, we have to prove

that ∇pwv P BV pΩq2. To this end we recall from Corollary 4.11(b) and (d)
›

›

›
∇pwv

ℓ ´ ∇pwv
j
›

›

›

BV pΩq
À

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓ ´ vj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
Ñ 0 pj, ℓ Ñ 8q.

Hence, there exist D P BV pΩqd such that limℓÑ8

›

›∇pwv
ℓ ´D

›

›

BV pΩq
“ 0 and

we have to prove that D “ ∇pwv. To this end, we aim to use the representation
of the distributional gradient of vℓ (Proposition 4.10), i.e.

xDvℓ,φy “

ż

Ω
∇pwv

ℓ ¨φdx´

ż

F`

φ ¨

””

vℓ
ıı

n. (4.3.13)

Since ∇pwv
ℓ Ñ D as ℓ Ñ 8 we only have to investigate the limit of the jump-

terms, i.e.
ż

F`

h´3
`

ˇ

ˇ

ˇ

””

vℓ ´ v
ıı

n
ˇ

ˇ

ˇ

2
ds Ñ 0 as ℓ Ñ 8. (4.3.14)

Thanks to (4.3.6) and Proposition 4.9 we have that
ż

F`

h´3
`

ˇ

ˇ

ˇ

””

vℓ ´ v
ıı

n
ˇ

ˇ

ˇ

2
ds “ lim

kÑ8

ż

F`
k

h´3
k

ˇ

ˇ

ˇ

””

vℓ ´ v
ıı

n
ˇ

ˇ

ˇ

2
ds

and
ż

F`
k

h´3
k

ˇ

ˇ

ˇ

””

vℓ ´ v
ıı

n
ˇ

ˇ

ˇ

2
ds “ lim

jÑ8

ż

F`
k

h´3
k

ˇ

ˇ

ˇ

””

vℓ ´ vj
ıı

n
ˇ

ˇ

ˇ

2
ds.
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

Now, for ϵ ą 0 there exists L “ Lpϵq such that
ş

F`
k
h´3
k

ˇ

ˇ

““

vℓ ´ vj
‰‰

n
ˇ

ˇ

2
ds ă ϵ2,

for j, ℓ ě L. Consequently, the convergence stated in (4.3.14) holds true.
Next, we conclude as for (4.3.12) from Lemma 3.15 (but this time with γ “ 1)

for mℓ ě k that
›

›

›
∇Emℓ

pvℓmℓ
q ´ ∇pwv

ℓ
mℓ

›

›

›

2

Ω´
k

À

ż

Fmℓ
zF2`

k

hmℓ

””

Bnv
ℓ
mℓ

ıı2
` h´1

mℓ

ˇ

ˇ

ˇ

””

vℓmℓ

ıı

n
ˇ

ˇ

ˇ

2
ds

À

›

›

›
hmℓ

χΩ2´
k

›

›

›

2

L8pΩq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

mℓ

(4.3.15)

where we used Ω2´
k “ ΩpTmℓ

zT 2`
k q (compare Remark 4.29), the uniform bound-

edness of
ˇ

ˇ

ˇ

ˇ

ˇ

ˇvℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

mℓ
and hk ě hmℓ

. Consequently, there exists K 1 ě K such that
(4.3.15) and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇvℓ ´ vℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

mℓ
ď 1

ℓ imply

lim
ℓÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω´
k

p∇pwEmℓ
pvℓmℓ

q ´ ∇pwv
ℓq ¨φdx

ˇ

ˇ

ˇ

ˇ

ˇ

À ϵ }φ}L2pΩq ,

provided k ě K 1. Additionally, (4.3.10) implies Emℓ
pvℓmℓ

q Ñ w in H1
0 pΩq as

ℓ Ñ 8 and therefore

lim
ℓÑ8

ż

Ω´
k

∇Emℓ
pvℓmℓ

q ¨φ dx “

ż

Ω´
k

∇w ¨φ dx.

Moreover, strong covergence vℓ|Ω`
k

Ñ v|Ω`
k

in PrpT `
k q and (4.3.14) yield

ż

Ω`
k

∇pwv
ℓ ¨φ dx´

ż

F`

φ ¨

””

vℓ
ıı

nds

Ñ

ż

Ω`
k

∇pwv ¨φdx´

ż

F`

φ ¨ rrvssnds

as ℓ Ñ 8.
Now, fix k ě K 1 and apply the above findings to the distributional gradient

of vℓ P V8:

xDvℓ,φy “

ż

Ω
∇pwv

ℓ ¨φdx´

ż

F`

φ ¨

””

vℓ
ıı

n

“

ż

Ω´
k

∇pwv
ℓ ¨φdx`

ż

Ω`
k

∇pwv
ℓ ¨φdx

´

ż

F`

φ ¨

””

vℓ
ıı

n

“

ż

Ω´
k

∇Emℓ
pvℓmℓ

q ¨φdx

`

ż

Ω´
k

p∇Emℓ
pvℓmℓ

q ´ ∇pwv
ℓq ¨φ dx

`

ż

Ω`
k

∇pwv
ℓ ¨φdx´

ż

F`

φ ¨

””

vℓ
ıı

nds,

(4.3.16)
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where φ P C8
0 pΩq2. A comparison of (4.3.13) and (4.3.16) in conjunction with

the above findings we thus have for all φ P C8
0 pΩq2 and k ě K 1

ˇ

ˇ

ˇ

ˇ

ż

Ω
pχΩ´

k
∇w ` χΩ`

k
∇pwv ´Dq ¨φ dx

ˇ

ˇ

ˇ

ˇ

À ϵ }φ}L2pΩq . (4.3.17)

Now using the absolute continuous dependence of the integral on the integration
domain (Remark 4.6) as k Ñ 8 and recalling that ϵ ą 0 was arbitrary, we
conclude the assertion since ∇pwv|Ω´ “ ∇w|Ω´ .

4 In this step we use the construction of 2 in order to prove that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇv ´ vℓ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
Ñ

0 as ℓ Ñ 8. To this end we remark, that ∇pwv P BV pΩq2 has L1-traces on BK,
for all K P Tk, k P N0; see e.g. [AFP00, Theorem 3.88] and therefore

““

∇pwv
‰‰

¨n
is measurable on Γk. By using similar arguments as (4.3.14) we finally obtain

ż

Fk

h´1
k rrBnvss

2 ds Ñ

ż

F`

h´1
` rrBnvss

2 ds (4.3.18)

as k Ñ 8 and as a consequence
ż

F`

h´1
`

””

Bnpv ´ vℓq
ıı2

ds Ñ 0 (4.3.19)

as ℓ Ñ 8. In conjunction with (4.3.14) it therefore remains to prove that
›

›D2
pwv ´D2

pwv
ℓ
›

›

Ω
Ñ 0 as ℓ Ñ 0. Since the Cauchy sequence property implies

that
›

›D2
pwv

ℓ ´H
›

›

Ω
Ñ 0 for some H P L2pΩq2ˆ2 as ℓ Ñ 8, it thus suffices

to prove D2
pwv “ H and we argue similar as in step 3 . To this end we use

Lemma 3.15 (with γ “ 0) and mℓ ě k to observe
›

›

›
D2Emℓ

pvℓmℓ
q ´D2

pwv
ℓ
mℓ

›

›

›

Ω´
k

À

ż

F2
mℓ

zF2`
k

h´1
mℓ

””

Bnv
ℓ
mℓ

ıı2
` h´3

mℓ

ˇ

ˇ

ˇ

””

vℓmℓ

ıı

n
ˇ

ˇ

ˇ

2
ds.

Hence, arguing as in step 1 of this proof, for ϵ ą 0 there exists L “ Lpϵq and
K “ Kpϵ, Lq, such that

›

›

›
D2Emℓ

pvℓmℓ
q ´D2

pwv
ℓ
mℓ

›

›

›

Ω´
k

À

ż

F2
mℓ

zF2`
k

h´1
mℓ

““

Bnv
L
‰‰2

` h´3
mℓ

ˇ

ˇ

““

vL
‰‰

n
ˇ

ˇ

2
ds

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vL ´ vℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

8
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
vℓ ´ vℓmℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

mℓ

ď 2ϵ2 `
1

ℓ2

for all mℓ ě k ě K and ℓ ě L. From this we infer that for k ě K we have that

lim
ℓÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω´
k

pD2Emℓ
pvℓmℓ

q ´D2
pwv

ℓq : φ dx

ˇ

ˇ

ˇ

ˇ

ˇ

À ϵ }φ}Ω .

Using (4.3.10) we have strong convergence Emℓ
vℓmℓ

|Ω`
k

Ñ w|Ω`
k

as ℓ Ñ 8 due to
the fact that PrpT `

k q is finite dimensional for fixed k and in the same vein we
infer that vℓ|Ω`

k
Ñ v|Ω`

k
as ℓ Ñ 8. Additionally, (4.3.10) implies that for |s| ď 2
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

we have BsEmℓ
pvℓmℓ

q á Bsw in L2pΩq as ℓ Ñ 8 ([Alt16, 8.4 Examples(3)]) and
therefore by (4.3.14) and (4.3.19) we obtain

lim
ℓÑ8

ż

Ω´
k

D2Emℓ
pvℓmℓ

q : φ dx “

ż

Ω´
k

D2w : φ dx

and
ż

Ω`
k

D2
pwv

ℓ : φdx`

ż

F`

divφ ¨

””

vℓ
ıı

n´φ
””

∇pwv
ℓ
ıı

¨ nds

Ñ

ż

Ω`
k

D2
pwv : φ dx`

ż

F`

divφ ¨ rrvssn´φ
““

∇pwv
‰‰

¨ nds,

as ℓ Ñ 8.
We apply this to the distributional Hessian of vℓ P V8 (compare Proposi-

tion 4.10)

xD2vℓ,φy “

ż

Ω´
k

D2
pwv

ℓ : φ dx`

ż

Ω`
k

D2
pwv

ℓ : φdx

`

ż

F`

divφ ¨

””

vℓ
ıı

n´φ
””

∇pwv
ℓ
ıı

¨ nds

“

ż

Ω´
k

D2
pwEmℓ

pvℓmℓ
q : φ dx

`

ż

Ω´
k

pD2
pwEmℓ

pvℓmℓ
q ´D2

pwv
ℓq : φ dx

`

ż

Ω`
k

D2
pwv

ℓ : φ dx

`

ż

F`

divφ ¨

””

vℓ
ıı

n´φ
””

∇pwv
ℓ
ıı

¨ nds,

(4.3.20)

with φ P C8
0 pΩq2ˆ2. The Cauchy property implies

xD2vℓ,φy Ñ

ż

Ω´
k

H : φ dx`

ż

Ω`
k

D2
pwv : φ dx

`

ż

F`

divφ ¨ rrvssn´φ
““

∇pwv
‰‰

¨ nds

as ℓ Ñ 8. In conjunction with the above findings we therefore conclude that
for all φ P C8

0 pΩq2ˆ2

ˇ

ˇ

ˇ

ˇ

ż

Ω
pχΩ´

k
D2w ` χΩ`

k
D2
pwv ´Hq : φ dx

ˇ

ˇ

ˇ

ˇ

À ϵ }φ}L2pΩq .

Now using the absolute continuous dependence of the integral on the integration
domain (Remark 4.6) as k Ñ 8 and recalling that ϵ ą 0 was arbitrary, we
conclude the assertion since D2

pwv|Ω´ “ D2
pww|Ω´ .
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5 We conclude by showing that that there exists a sequence tvkukPN0
, vk P

Vk, k P N0, such that we have |||v ´ vk|||k ` }v ´ vk}Ω Ñ 0 as k Ñ 8, and
lim supkÑ8 |||vk|||k ă 8. To this end, we define vk as

vk|K “

#

Ikw|K , K P T 2´
k

Ikv|K , K P T 2`
k .

Here, w P H2
0 pΩq is the function defined in (4.3.10) and v|K “ limℓÑ8 vℓ|K P

PrpKq for all K P T 2`
k . From Lemma 4.26 and Corollary 4.27 we deduce the

uniform boundedness of the sequence

|||vk|||
2
k À

ÿ

KPTk

„
ż

K

ˇ

ˇD2vk
ˇ

ˇ

2
dx`

ż

BK

´

h´1
K rrBnvkss

2
` h´3

k |rrvkssn|
2
¯

ds

ȷ

À
ÿ

KPT 2´
k

ż

ωkpKq

ˇ

ˇD2w
ˇ

ˇ

2
dx

`
ÿ

KPT 2`
k

«

ż

ωkpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ż

BK
ph´1

` rrBnvss
2

` h´3
` |rrvssn|

2
q ds

ff

À }w}
2
H2

0 pΩq ` |||v|||
2
8 ă 8.

We split |||v ´ vk|||
2
k according to Tk “ T 2´

k Y T 2`
k , i.e.

|||v ´ vk|||
2
k À

ÿ

KPT 2´
k

„
ż

K

ˇ

ˇD2Ikw ´D2
pwv

ˇ

ˇ

2
dx

`

ż

BK
h´1
k rrBnpIkw ´ vqss

2
` h´3

k |rrIkw ´ vssn|
2 ds

ȷ

ÿ

KPT 2`
k

„
ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx

`

ż

BK
h´1
k rrBnpIkv ´ vqss

2
` h´3

k |rrIkv ´ vssn|
2 ds

ȷ

and consider the corresponding terms separately. On the set T 2´
k we use the

density of H3
0 pΩq in H2

0 pΩq and choose for arbitrarily fixed ϵ ą 0 some wϵ P

H3
0 pΩq such that }w ´ wϵ}H2pΩ´q ď }w ´ wϵ}H2pΩq ă ϵ. Thanks to the triangle
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inequality and the stability of Ik (Lemma 4.26 and Corollary 4.27), we have

ÿ

KPT 2´
k

„
ż

K

ˇ

ˇD2Ikw ´D2
pwv

ˇ

ˇ

2
dx

`

ż

BK
h´1
k rrBnpIkw ´ vqss

2
` h´3

k |rrIkw ´ vssn|
2 ds

ȷ

À
ÿ

KPT 2´
k

„
ż

K

ˇ

ˇD2Ikpw ´ wϵq
ˇ

ˇ

2
`
ˇ

ˇD2pIkwϵ ´ wϵq
ˇ

ˇ

2
`
ˇ

ˇD2pwϵ ´ vq
ˇ

ˇ

2
dx

`

ż

BK
h´1
k rrBnIkpw ´ wϵqss

2
` h´1

k rrBnIkwϵss
2

` h´1
k rrBnvss

2 ds

`

ż

BK
h´3
k |rrIkpw ´ wϵqssn|

2
` h´3

k |rrIkwϵssn|
2

` h´3
k |rrvssn|

2 ds

ȷ

À

ż

NkpT 2´
k q

ˇ

ˇD2pw ´ wϵq
ˇ

ˇ

2
dx`

ż

T 2´
k

ˇ

ˇD2
pwpwϵ ´ vq

ˇ

ˇ

2
`
ˇ

ˇD2
pwpIkwϵ ´ wϵq

ˇ

ˇ

2
dx

`
ÿ

KPT 2´
k

„
ż

BK
h´1
k

`

rrBnIkwϵss
2

` rrBnvss
2 ˘

` h´3
k

`

|rrIkwϵssn|
2

` |rrvssn|
2 ˘

ȷ

ds.

(4.3.21)

In order to bound the terms concerning the interpolation operator, we employ
a scaled trace theorem together with Lemma 4.25(1) and (3) to obtain

ÿ

KPT 2´
k

ż

K

ˇ

ˇD2pIkwϵ ´ wϵq
ˇ

ˇ

2
`

ż

BK
h´1
k rrBnIkwϵss

2
` h´3

k |rrIkwϵssn|
2 ds

ď 2
ÿ

KPT 2´
k

ż

K

ˇ

ˇD2Ikpwϵ ´QKq
ˇ

ˇ

2
`
ˇ

ˇD2pwϵ ´QKq
ˇ

ˇ

2
dx

`
ÿ

KPT 2´
k

ż

BK
h´1
k rrBnIkpwϵ ´QKqss

2
` h´3

k |rrIkpwϵ ´QKqssn|
2 ds

À
ÿ

KPT 2´
k

ż

ωkpKq

h´4
k |wϵ ´QK |

2
` h´2

k

ˇ

ˇ∇pwpwϵ ´QKq
ˇ

ˇ

2

`
ˇ

ˇD2
pwpwϵ ´QKq

ˇ

ˇ

2
dx

À

ż

NkpT 2´
k q

h2k
ÿ

|α|“3

|Dαwϵ|
2

À

›

›

›
hkχΩ3´

k

›

›

›

2

L8pΩq

ż

Ω

ÿ

|α|“3

|Dαwϵ|
2 dx.

(4.3.22)

Here, we have used the Bramble-Hilbert Lemma ([DS80]) for suitable chosen
QK P P1pωkpKqq, K P Tk in the penultimate estimate as well as ΩpNkpT 2´

k qq Ă

Ω3´
k and the finite overlap of neighbourhoods in the last step. Thanks to

Lemma 4.5 the last term vanishes as k Ñ 8.
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4 Convergence of AFEM

For the remaining volume terms on the right-hand side of (4.3.21), we recall
v|Ω´ “ w|Ω´ and conclude from Lemma 4.5 in conjunction with the absolute
continuous dependence of the integral on the integration domain

lim
kÑ8

»

–

ÿ

KPT 2´
k

ż

K

ˇ

ˇD2wϵ ´D2
pwv

ˇ

ˇ

2
dx`

ż

NkpT 2´
k q

ˇ

ˇD2pw ´ wϵq
ˇ

ˇ

2
dx

fi

fl

À lim
kÑ8

ż

Ω2´
k

ˇ

ˇD2wϵ ´D2
pwv

ˇ

ˇ

2
dx` }wϵ ´ w}

2
H2pΩq dx

À

ż

Ω´

ˇ

ˇD2wϵ ´D2w
ˇ

ˇ

2
dx` lim

kÑ8

ż

Ω´zΩ2´
k

ˇ

ˇD2wϵ ´D2
pwv

ˇ

ˇ

2
dx

` }wϵ ´ w}
2
H2pΩq dx

À }wϵ ´ w}
2
H2pΩq ď ϵ2,

(4.3.23)

where we also used ΩpNkpT 2´
k qq Ă Ω3´

k Ă Ω in the first estimate and Ω2´
k “

Ω´ Y Ω2´
k zΩ´ in the second estimate.

For the remaining jump terms in (4.3.21), we infer from the definition of T 2´
k

that

ÿ

KPT 2´
k

ż

BK
ph´1

k rrBnvss
2

` h´3
k |rrvssn|

2
qds

“
ÿ

KPTkzT 2`
k

ż

BK
ph´1

k rrBnvss
2

` h´3
k |rrvssn|

2
qds

“
ÿ

KPTk

ż

BK
ph´1

k rrBnvss
2

` h´3
k |rrvssn|

2
q ds

´
ÿ

KPT 2`
k

ż

BK
ph´1

` rrBnvss
2

` h´3
` |rrvssn|

2
q ds

Ñ
ÿ

KPT `

ż

BK
ph´1

` rrBnvss
2

` h´3
` |rrvssn|

2
qds

´
ÿ

KPT `

ż

BK
ph´1

` rrBnvss
2

` h´3
` |rrvssn|

2
q ds

“ 0

(4.3.24)

as k Ñ 8, thanks to (4.3.6), (4.3.18) and Lemma 4.5. Inserting this, (4.3.22)
and (4.3.23) into (4.3.21), and recalling that that ϵ ą 0 was chosen arbitrary,
we have proved

lim
kÑ8

ÿ

KPT 2´
k

„
ż

K

ˇ

ˇD2Ikw ´D2
pwv

ˇ

ˇ

2
dx

`

ż

BK
h´1
k rrBnpIkw ´ vqss

2
` h´3

k |rrpIkw ´ vqssn|
2 ds

ȷ

“ 0.

(4.3.25)
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Let now K P T 2`
k . Then, Lemma 4.25(3) and vℓ Ñ v in PrpKq infers

vk “ Ikv Ð Ikvℓ “ vℓ Ñ v in PrpKq

as ℓ Ñ 8. Consequently, for all k P N0, we have
ÿ

KPT 2`
k

ż

K

ˇ

ˇD2vk ´D2v
ˇ

ˇ

2
dx`

ż

BK
h´1
k rrBnpvk ´ vqss

2
` h´3

k |rrpvk ´ vqssn|
2 ds “ 0.

Combining this with (4.3.25) we have constructed a sequence tvkukPN0 with vk P

Vk such that that |||vk ´ v|||
2
k Ñ 0 as k Ñ 8. The convergence }vk ´ v}Ω Ñ 0

follows by similar arguments.
Overall, we have thus showed that limℓÑ8 vℓ “ v P V8, which concludes the

proof.

4.3.4 Proof of Theorem 4.15

To identify a candidate for the limit of the sequence tukukPN0 of discrete approx-
imations computed by the ASIPDG method, we conclude from the boundedness
of tukukPN in L2pΩq (cf. Proposition 3.12 and (3.3.5))

ukj á u8 weakly in L2pΩq as j Ñ 8 (4.3.26)

for some subsequence tkjujPN0 Ă tkukPN0 and u8 P L2pΩq. In the following we
shall see that u8 “ u8 P V8 and thus tukukPN0 has only one weak accumu-
lation point and the whole sequence converges. Finally we shall conclude the
section with proving the strong convergence limkÑ8 |||uk ´ u8|||k “ 0 claimed in
Theorem 4.15.

Lemma 4.30. We have u8 P V8.

Proof. 1 We want to use the weak* convergence criterion of Proposition 3.23.
To this end, we note that from the uniform boundedness (3.3.5) of

ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj
,

and Propositions 3.12 and 3.30, we have that
›

›ukj
›

›

BV pΩq
is bounded uniformly.

Consequently, we infer from (4.3.26) that

ukj á˚ u8 weakly* in BV pΩq as j Ñ 8. (4.3.27)

2 Next, we prove that u8|Ω´ P H2
BΩXBΩ´pΩ´q. Lemma 3.15 (with γ “ 2)

yields for the smoothing operator from (3.4.1) that
›

›D2Ekj pukj q
›

›

Ω
ď
›

›D2
pwpEkj pukj q ´ ukj q

›

›

Ω
`
›

›D2
pwukj

›

›

Ω
À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj
.

We thus have

Ekj pukj q á w weakly in H2
0 pΩq as j Ñ 8 (4.3.28)

for a not relabelled subsequence. Arguing as in step 4 in the proof of Lemma 4.12,
we obtain, that

›

›Ekj pukj q ´ ukj
›

›

Ω2´
kj

Ñ 0 as j Ñ 8 and thus (4.3.26) implies

u8|Ω´ “ w|Ω´ P H2
BΩXBΩ´pΩ´q.
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4 Convergence of AFEM

3 Now, we shall prove that ∇pwu8 P BV pΩq2. To this end, the combina-
tion of Propositions 3.12 and 3.31 with (3.3.5) yields that both

›

›∇pwukj
›

›

Ω
and

|Dp∇pwukj q|pΩq are bounded uniformly. Hence, there exists W P BV pΩq2 such
that

∇pwukj á˚ W weakly* in BV pΩq2 as j Ñ 8 (4.3.29)

Consequently, ∇pwu8 is well defined since we have ∇pwu8|Ω´ :“ ∇w|Ω´ and u8

is a piecewise polynomial on T `. The last statement is a consequence of the
weak*-convergence (4.3.27) and the fact that ukj |K P PrpKq for all K P T `. It
remains to prove ∇pwu8 “ W P BV pΩq2. To this end, we argue similar as in
step 3 in the proof of Lemma 4.3.3:

ż

Ω
∇pwukj ¨φ dx “

ż

Ω´
ℓ

∇pwukj ¨φ dx`

ż

Ω`
ℓ

∇pwukj ¨φdx

“

ż

Ω´
ℓ

p∇pwukj ´ ∇pwEkj pukj qq ¨φdx

`

ż

Ω´
ℓ

∇pwEkj pukj q ¨φ dx`

ż

Ω`
ℓ

∇pwukj ¨φdx,

(4.3.30)

for φ P C8
0 pΩq2. Let ϵ ą 0 be chosen arbitrary, since ℓ ď kj , we obtain from

Lemma 3.15 (with γ “ 1) for the first term on the right-hand side of (4.3.30)
›

›∇pwEkj pukj q ´ ∇pwukj
›

›

2

Ω´
ℓ

À

ż

Fkj
zF2`

ℓ

hkj
““

Bnukj
‰‰2

` h´1
kj

ˇ

ˇ

““

ukj
‰‰

n
ˇ

ˇ

2
ds

ď

›

›

›
hkjχΩ2´

ℓ

›

›

›

2

L8pΩq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

kj

ď

›

›

›
hℓχΩ2´

ℓ

›

›

›

2

L8pΩq
}f}

2
Ω .

(4.3.31)

Hence, in view of Lemma 4.5, we obtain
›

›∇pwEkj pukj q ´ ∇pwukj
›

›

2

Ω´
ℓ

À ϵ,

where kj ě ℓ ě K2pϵ, fq. Whence, we infer from (4.3.28) and (4.3.31)

lim
jÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω´
ℓ

p∇pwukj ´ ∇pwEkj pukj qq ¨φdx

ˇ

ˇ

ˇ

ˇ

ˇ

À ϵ }φ}
2
Ω (4.3.32)

and

lim
jÑ8

ż

Ω´
ℓ

∇pwEkj pukj q ¨φdx “

ż

Ω´
ℓ

∇w ¨φdx, (4.3.33)

where we used Ekj pukj q Ñ w as j Ñ 8 in H1
0 pΩq in the last line, thanks

to (4.3.28) and the fact, that the embedding H2
0 pΩq ãÑ H1

0 pΩq is compact.
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Moreover, since weak convergence implies strong convergence on finite dimen-
sional spaces, we have ukj |Ω`

ℓ
Ñ u8|Ω`

ℓ
in PrpT `

ℓ q and additionally
ż

Ω`
ℓ

∇pwukj ¨φ dx Ñ

ż

Ω`
ℓ

∇pwu8 ¨φ dx,

as j Ñ 8, where we also used norm equivalence of finite-dimensional spaces.
Hence, in view of (4.3.30), (4.3.32) and (4.3.33) we obtain for all φ P C8

0 pΩq2

ˇ

ˇ

ˇ

ˇ

ż

Ω
pχΩ´

ℓ
∇w ` χΩ`

ℓ
∇pwu8 ´W q ¨φdx

ˇ

ˇ

ˇ

ˇ

À ϵ }φ}Ω .

From absolute continuous dependence of the integral on the integration domain
(Remark 4.6), as ℓ Ñ 8, in conjunction with u8|Ω´ “ w|Ω´ and the fact
that ϵ ą 0 was chosen arbitrary we infer W “ ∇pwu8 P BV pΩq2 (compare
also 3 in the proof of Lemma 4.12). In particular, we can apply the piece-wise
gradient (4.2.2) also on u8.

4 Next, we have to prove that the energy norm of u8 is bounded, i.e.
|||u8|||8 ă 8. We analyse the jump terms first. Chose k ď kj , then (4.3.26)
implies strong convergence ukj |Ω`

k
Ñ u8|Ω`

k
as j Ñ 8 on the finite-dimensional

spaces PrpT `
k q. In particular equivalence of norms on finite-dimensional spaces

imply D2
pwukj |Ω`

k
Ñ D2

pwu8|Ω`
k

as j Ñ 8 in Pr´2pΩ`
k q2ˆ2 and we note that we

can apply the piece-wise Hessian 4.2.3 also on u8 (compare also step 2 ). Note
that we already have ∇pwukj |Ω`

k
Ñ ∇pwu8|Ω`

k
as j Ñ 8 in Pr´1pΩ`

k q2 from

step 3 . The uniform stability of the discrete solution (3.3.5) implies

C ě

ż

Fkj

h´1
kj

““

Bnukj
‰‰2

` h´3
kj

ˇ

ˇ

““

ukj
‰‰

n
ˇ

ˇ

2
ds

ě

ż

F`
kj

h´1
kj

““

Bnukj
‰‰2

` h´3
kj

ˇ

ˇ

““

ukj
‰‰

n
ˇ

ˇ

2
ds

ě

ż

F`
k

h´1
k

““

Bnukj
‰‰2

` h´3
k

ˇ

ˇ

““

ukj
‰‰

n
ˇ

ˇ

2
ds,

thanks to Fkj Ą F`
kj

Ą F`
k and k ď kj . Note, that the last estimate holds for

arbitrary kj ě k and that the constant is independet of k and kj . Consequently,
we have

ż

F`
k

h´1
k

““

Bnukj
‰‰2

` h´3
k

ˇ

ˇ

““

ukj
‰‰

n
ˇ

ˇ

2
ds

Ñ

ż

F`
k

h´1
k rrBnu8ss

2
` h´3

k |rru8ssn|
2 ds ď C

(4.3.34)

as j Ñ 8 and we note that the constant on the right-hand side is independent
of k. We emphasise that

ż

F`
k

h´1
k rrBnu8ss

2
` h´3

k |rru8ssn|
2 ds

91



4 Convergence of AFEM

increases monotonically, when increasing k, due to the positivity of the jump-
norms, F`

k Ă F`
K for k ď K and the decrease of mesh-sizes. Therefore, the

uniform bound (4.3.34) implies that the limit
ż

F`

h´1
` rrBnu8ss

2
` h´3

` |rru8ssn|
2 ds

“ lim
kÑ8

ż

F`
k

h´1
k rrBnu8ss

2
` h´3

k |rru8ssn|
2 ds ď C

exists and is bounded.
Regarding the volume terms we obtain similarly for some k ď kj the uniform

bound C ě
ş

Ω`
k

ˇ

ˇD2
pwukj

ˇ

ˇ

2
dx and therefore

C ě

ż

Ω1`
k

ˇ

ˇD2
pwu8

ˇ

ˇ

2
dx,

where the constant C ą 0 independet of k and kj . Consequently, the volume
terms are bounded by

ż

Ω`

ˇ

ˇD2
pwu8

ˇ

ˇ

2
dx “ lim

kÑ8

ż

Ω`
k

ˇ

ˇD2
pwu8

ˇ

ˇ

2
dx ď C.

On the domain Ω´ we have u8|Ω´ “ w|Ω´ with w P H2
0 pΩq from (4.3.28).

Whence, by combining the above arguments we proved |||u8|||8 ă 8.
5 Finally, we have to prove that there exists a sequence tvkukPN, vk P Vk

such that limkÑ8 |||vk ´ u8|||
2
k ` }vk ´ u8}

2
Ω “ 0 and lim supkÑ8 |||vk|||k ă 8.

We aim to argue similar as in step 5 in the proof of Lemma 4.12. In contrast to
the proof of Lemma 4.12, we have for the sequence tukukPN determining u8 via
(4.3.26) that supkPN |||uk|||k ă 8 (see (3.3.5)), i.e. it is not a Cauchy sequence
in V8. This Cauchy property was used to prove (4.3.6) and (4.3.18). Thus, in
order to proceed as in step 5 of Lemma 4.12 we need to show that the jump
terms of u8 are stable on F2´

k in the sense that
ż

F2´
k

h´1
k rrBnu8ss

2
` h´3

k rru8ss
2 ds Ñ 0, (4.3.35)

as k Ñ 8 (compare also Proposition 4.9). The convergence limkÑ8 |||vk ´ u8|||
2
k`

}vk ´ u8}
2
Ω “ 0 and lim supkÑ8 |||vk|||k ă 8 follows than along the same argu-

ments.
We define a sequence tvkukPN, vk P Vk by

vk|K “

#

Ikw|K , K P T 2´
k

Iku8|K , K P T 2`
k .

(4.3.36)

where w P H2
0 pΩq is the limit of (4.3.28) and u8|K “ limjÑ8 ukj |K P PrpKq

for all K P T 2`
k . In order to prove (4.3.35), we show that

␣

∇pwvk
(

kPN0
(resp.

tvkukPN0
) are Cauchy-sequences in BV pΩq2 (resp. BV pΩq) with limit ∇pwu8 P
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BV pΩq2 (resp. u8 P BV pΩq). To make this precise let ℓ ď k and observe that
for Vℓ Ă Vk we have from Proposition 3.31

ˇ

ˇDp∇pwvℓ ´ ∇pwvkq
ˇ

ˇ pΩq

À

ż

Ω

ˇ

ˇD2
pwvℓ ´D2

pwvk
ˇ

ˇ dx`

ż

Fk

|rrBnvℓ ´ Bnvkss| ds.
(4.3.37)

We define

ṽℓ|K :“

#

w|K , K P T 2´
ℓ

u8|K , K P T 2`
ℓ .

(4.3.38)

For the volume-terms on the right-hand side of (4.3.37) we have that
ż

Ω

ˇ

ˇD2
pwvℓ ´D2

pwvk
ˇ

ˇ dx

ď

ż

Ω

ˇ

ˇD2
pwvℓ ´D2

pwṽℓ
ˇ

ˇ dx`

ż

Ω

ˇ

ˇD2
pwvk ´D2

pwṽℓ
ˇ

ˇ dx

(4.3.39)

The first term vanishes on T 2`
ℓ since we have for ℓ ď k ď kj , by the definition

of ṽℓ, that

vℓ “ Iℓu8 Ð Iℓukj “ Ikjukj “ ukj Ñ u8 on K P T 2`
ℓ , (4.3.40)

as j Ñ 8. On T 2´
ℓ we use (4.3.38) in conjunction with the density of H3

0 pΩq

in H2
0 pΩq and choose for arbitrarily fixed ϵ ą 0 some wϵ P H3

0 pΩq such that
}w ´ wϵ}H2pΩ´q ď }w ´ wϵ}H2pΩq ă ϵ. Consequently, we obtain

ż

T 2´
ℓ

ˇ

ˇD2Iℓw ´D2
pww

ˇ

ˇ dx

ď

ż

T 2´
ℓ

ˇ

ˇD2Iℓpw ´ wϵq
ˇ

ˇ `
ˇ

ˇD2Iℓwϵ ´D2wϵ

ˇ

ˇ `
ˇ

ˇD2wϵ ´D2w
ˇ

ˇ dx.

By similar arguments as in step 5 in the proof of Lemma 4.12 we obtain that
the first two terms on the right-hand side of the last estimate vanish as ℓ Ñ 8.
Since ϵ ą 0 was chosen arbitrarily we therefore obtain in (4.3.39)

ż

Ω

ˇ

ˇD2
pwvℓ ´D2

pwṽℓ
ˇ

ˇ dx ă ϵ

for ℓ ě L1 “ L1pϵq (enlarge k if necessary).
For the second term on the right-hand side of (4.3.39) we use the definiton of

ṽℓ and obtain
ż

Ω

ˇ

ˇD2
pwvk ´D2

pwṽℓ
ˇ

ˇ dx “

ż

TkzT 2`
k

ˇ

ˇD2
pwvk ´D2

pwṽℓ
ˇ

ˇ dx`

ż

T 2`
k

ˇ

ˇD2
pwvk ´D2

pwṽℓ
ˇ

ˇ dx.

The first term vanishes since T 2`
k Ă T 2`

ℓ :
ż

T 2´
k

ˇ

ˇD2
pwvk ´D2

pwṽℓ
ˇ

ˇ dx “

ż

T 2´
k

ˇ

ˇD2
pwIkw ´D2w

ˇ

ˇ dx ă ϵ
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4 Convergence of AFEM

for k ě K1pϵq ě L1, as proved above. For the second term we use T 2`
ℓ Ă T 2`

k

to obtain
ż

T 2`
k

ˇ

ˇD2
pwvk ´D2

pwṽℓ
ˇ

ˇ dx “

ż

T 2`
ℓ

ˇ

ˇD2
pwIku8 ´D2

pwu8

ˇ

ˇ dx

`

ż

T 2`
k zT 2`

ℓ

ˇ

ˇD2
pwIku8 ´D2

pwu8

ˇ

ˇ dx.

Now, the right-hand side of the last estimate vanishes as as k, ℓ Ñ 8 due to
(4.3.40) and step 4 of this proof. Hence, we have that

ż

T 2`
k

ˇ

ˇD2
pwvk ´D2

pwṽℓ
ˇ

ˇ dx ă ϵ

for k ě ℓ with k ě K2 “ K2pϵq and ℓ ě L2 “ L2pϵq.
Regarding the jump-terms on the right-hand side of (4.3.37) we observe

ż

Fk

|rrBnvℓ ´ Bnvkss| ds ď

ż

Fk

|rrBnvℓ ´ Bn ṽℓss| ds

`

ż

Fk

|rrBnvk ´ Bn ṽℓss| ds.

(4.3.41)

For the first-term on the right-hand side we have from the definition of ṽℓ and
F2`
ℓ Ă F2`

k

ż

Fk

|rrBnvℓ ´ Bn ṽℓss| ds “

ż

FkzF2`
ℓ

|rrBnvℓss| ds

`

ż

F2`
ℓ

|rrBnvℓ ´ Bnu8ss| ds,

where we used that rrBnṽℓss |F “ rrBnwss |F “ 0 for F R F2`
ℓ . For the first

term on the right-hand side we observe that vℓ P Vℓ Ă H2pTℓq and therefore
from Fℓ Ă Fk we have that the jump-terms are only non-zero on the faces
related to Tℓ. Now, standard trace inequalities reveal (compare e.g. the proof
of Proposition 3.30)

ż

FkzF2`
ℓ

|rrBnvℓss| ds “

ż

FℓzF2`
ℓ

|rrBnIℓwss| ds

“

ż

FℓzF2`
ℓ

h´1
ℓ |rrBnIℓw ´ wss| ds

À
ÿ

FPF1´
ℓ

ż

ωℓpF q

h´1
ℓ

ˇ

ˇ∇pwIℓw ´ ∇w
ˇ

ˇ dx

`

ż

ωℓpF q

ˇ

ˇD2
pwIℓw ´D2w

ˇ

ˇ dx

À

ż

ωℓpF q

ˇ

ˇD2
pwIℓw ´D2w

ˇ

ˇ dx,

(4.3.42)
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

where we also used standard interpolation estimates and w P H2pΩq in the last
step. Following the same ideas as above we have that the term on the right-
hand side vanishes as ℓ Ñ 8. Hence, for all ℓ ě L3pϵq, with ℓ ď k (enlarge k if
necessary) in (4.3.41) we have that

ż

Fk

|rrBnvℓ ´ Bn ṽℓss| ds ă ϵ.

The remaining jump-term of (4.3.41) can be bounded by similar arguments,
since we have

ż

Fk

|rrBnvk ´ Bn ṽℓss| ds “

ż

F2`
ℓ

|rrBnIku8 ´ Bnu8ss| ds

`

ż

F2`
k zF2`

ℓ

|rrBnIku8ss| ds

`

ż

F2´
k

|rrBnIkw ´ Bnwss| ds.

The first term on the right hand side is zero due to (4.3.40). The last term on
the right-hand side vanishes as k Ñ 8 similar as in (4.3.42). For the penul-
timate term on the right-hand side we use Hölder’s inequality in conjunction
Lemma 4.25(3) to obtain
ż

F2`
k zF2`

ℓ

|rrBnIku8ss| ds “

ż

F2`
k zF2`

ℓ

|rrBnu8ss| ds

À

˜

ż

F2`
k zF2`

ℓ

h´1
k |rrBnu8ss|

2 ds

¸1{2

ď

˜

ż

F2`
k

h´1
k |rrBnu8ss|

2 ds´

ż

F2`
ℓ

h´1
ℓ |rrBnu8ss|

2 ds

¸1{2

Ñ 0

as k, ℓ Ñ 8, where we also used hℓ ě hk and the ideas of step 4 of this proof.
Hence, we can chose ℓ ě L4pϵq and k ě K3pϵq with (ℓ ď k; enlarge k if necessary)
such that

ż

Fk

|rrBnvk ´ Bn ṽℓss| ds ă ϵ

Overall, we thus proved the following: First, we can chose ℓ ě maxtL1, L2, L3, L4u

and k ě maxtℓ,K1,K2,K3u yielding
ˇ

ˇDp∇pwvℓ ´ ∇pwvkq
ˇ

ˇ pΩq

À

ż

Ω

ˇ

ˇD2
pwvℓ ´D2

pwvk
ˇ

ˇ dx`

ż

Fk

|rrBnvℓ ´ Bnvkss| ds ă ϵ.

Since ϵ ą 0 was chosen arbitrarily we have that t∇pwvkukPN is a Cauchy-Sequence
in BV pΩq2.
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4 Convergence of AFEM

In order to identify the limit of this Cauchy sequence, we observe for k ď kj

vk “ Iku8 Ð Ikukj “ Ikjukj “ ukj Ñ u8 on K P T 2`
k ,

as j Ñ 8. Consequently, vk Ñ u8 in PrpT 2`
k q. On the remaining domain Ω2´

k

interpolation properties infer

}vk ´ u8}Ω2´
k

ď }vk ´ w}Ω2´
k

` }w ´ u8}Ω2´
k

“ }Ikw ´ w}Ω2´
k

` }w ´ u8}Ω2´
k zΩ´ ,

where we used u8|Ω´ “ w|Ω´ in the last line. The first term on the right-hand
side vanishes as k Ñ 8 due to Lemma 4.5. For the remaining term we have

}w ´ u8}Ω2´
k zΩ´ ď }w}Ω2´

k zΩ´ ` }u8}Ω2´
k zΩ´ Ñ 0

as k Ñ 8 thanks to Lemma 4.5 and the absolute continuous dependence of the
integral to the integration domain. Hence, the limit of the sequence tvkukPN
is given by vk Ñ u8 in L2pΩq as k Ñ 8 and consequently ∇pwvk Ñ ∇pwu8 P

BV pΩq2.
Now, let ℓ ď k arbitrary but fixed. Then, from the properties of the trace

operator in BV pΩq2 (see Theorem 3.25) in conjunction with the fact that that
␣

∇pwvk
(

kPN is a Cauchy-sequence, we have that the jumps of t∇pwvkukPN on Tℓ
have a unique limit in L1pΓℓq

2 (as k Ñ 8). From this we conclude for arbitrary
ϵ ą 0

ż

Fℓ

h´1
ℓ rrBnvk ´ Bnvmss

2
ă ϵ, (4.3.43)

provided k,m ě ℓ with k,m sufficiently large. Finally, we conclude
ż

F2´
ℓ

h´1
ℓ rrBnu8ss

2 ds

ď

ż

F2´
ℓ

h´1
ℓ rrBnu8 ´ Bnvkss

2 ds`

ż

F2´
ℓ

h´1
ℓ rrBnvk ´ Bnvℓss

2 ds

`

ż

F2´
ℓ

h´1
ℓ rrBnvℓss

2 ds.

(4.3.44)

For the last term in (4.3.44) we observe
ż

F2´
ℓ

h´1
ℓ rrBnvℓss

2 ds “

ż

F2´
ℓ

h´1
ℓ rrBnIℓw ´ Bnwss

2 ds,

since w P H2
0 pΩq. Thus, we are able to chose ℓ ě L1 “ L1pϵq such that

ż

F2´
ℓ

h´1
ℓ rrBnIℓw ´ Bnwss

2 ds ă ϵ,
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

as in step 5 in the proof of Lemma 4.12. For the second term on the right-hand
side of (4.3.44) we use hℓ ě hk for ℓ ď k and inclusion of skeletons to obtain
ż

F2´
ℓ

h´1
ℓ rrBnvk ´ Bnvℓss

2 ds ď 2

ż

F2´
ℓ

h´1
ℓ rrBnvkss

2 ds` 2

ż

F2´
ℓ

h´1
ℓ rrBnvℓss

2 ds

À

ż

F2´
k

h´1
k rrBnvkss

2 ds`

ż

F2´
ℓ

h´1
ℓ rrBnvℓss

2 ds

and argue similarly as in the case above. Finally, we are able to chose k ě K2 “

K2pϵq such
ż

F2´
ℓ

h´1
ℓ rrBnu8 ´ Bnvkss

2 ds ă ϵ,

due to the fact that
␣

∇pwvk
(

kPN is a Cauchy-sequence with limit ∇pwu8.
Hence, we have proved that we can chose ℓ ě L1 and then k ě maxtℓ,K1,K2u

such that
ż

F2´
ℓ

h´1
ℓ rrBnu8ss

2 ds

ď

ż

F2´
ℓ

h´1
ℓ rrBnu8 ´ Bnvkss

2 ds`

ż

F2´
ℓ

h´1
ℓ rrBnvk ´ Bnvℓss

2 ds

`

ż

F2´
ℓ

h´1
ℓ rrBnvℓss

2 ds ă ϵ

Consequently, since ϵ ą 0 was chosen arbitrarily, in view of (4.3.44) we have

lim
ℓÑ8

ż

F2´
ℓ

h´1
ℓ rrBnu8ss

2 ds “ 0,

By analogous arguments (but now using (3.6.4) instead of Proposition 3.31)
we are able to prove additionally that

lim
ℓÑ8

ż

F2´
ℓ

h´3
ℓ rru8ss

2 ds “ 0

holds. Summing up the various arguments we conclude that indeed the limit in
(4.3.35) holds true.

Finally, we consider the sequence tvkukPN, defined in (4.3.36) and obtain from
Lemma 4.26 and step 4 of this proof that |||vk|||k À

›

›D2w
›

›

Ω
` |||u8|||8 ă 8.

The desired convergence limkÑ8 |||vk ´ u8|||
2
k ` }vk ´ u8}

2
Ω “ 0 follows by split-

ting the error according to Tk “ T 2´
k Y T 2`

k and treating the resulting terms
separately similar to step 5 in the proof of Lemma 4.12.

In order to prove that u8 solves (4.2.9), we need to identify the limit of its
distributional derivatives. To this end, we note that by (3.3.4) and (3.3.5) we
have

›

›D2
pwukj

›

›

Ω
À 1 and

›

›Lkj pukj q
›

›

Ω
À 1. Consequently, there exist Tr,Ts P

L2pΩq2ˆ2 such that for a not relabelled subsequence we obtain

D2
pwukj á Tr and Lkj p

““

Bnukj
‰‰

q á Ts (4.3.45)

weakly in L2pΩq2ˆ2 as j Ñ 8.
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4 Convergence of AFEM

Lemma 4.31. Let
␣

ukj
(

jPN0
be the subsequence of discrete solutions with weak

L2pΩq limit u8 P V8 from (4.3.26). Then, we have for Ts,Tr P L2pΩq2ˆ2

from (4.3.45) that

pTr ` Tsq|Ω´ “ D2u8|Ω´ a.e. in Ω´.

Proof. Propositions 3.12 and 3.30 in conjunction with (3.3.5) imply that tukjujPN0

is uniformly bounded in BV pΩq. Hence, as in the proof of Lemma 4.30 step 1 ,
we have that ukj

˚
á u8 in BV pΩq as j Ñ 8. In particular this implies ukj Ñ u8

in L1pΩq as j Ñ 8 (compare Proposition 3.23). Hence, for φ P C8
0 pΩq2ˆ2, we

have

@

D2ukj , φ
D

“

ż

Ω
pdiv divφqukj dx

Ñ

ż

Ω
pdiv divφqu8 dx “

@

D2u8, φ
D

,

(4.3.46)

as j Ñ 8 and therefore the distributional Hessian D2ukj convergens to D2u8

as j Ñ 8 in the sense of distributions.
Using the fact that u8 P V8, we have that there exists a sequence tvkukPN0

with vk P Vk, k P N0, and |||u8 ´ vk|||k ` }u8 ´ vk}Ω Ñ 0 as k Ñ 8. On the one
hand, Proposition 4.10 reveals

ż

Ω
pdiv divφqu8 “

@

D2u8, φ
D

“

ż

Ω
D2
pwu8 ¨φdx´

ż

F`

φ
““

∇pwu8

‰‰

¨ nds

`

ż

F`

divφ ¨ rru8ssnds,

(4.3.47)

for φ P C8
0 pΩq2ˆ2. On the other hand, we have in (4.3.46)

ż

Ω
pdiv divφq ukj dx

“

ż

Ω
D2
pwukj : φ dx

´

ż

Fkj

φ
““

∇pwukj
‰‰

¨ n´ divφ ¨
““

ukj
‰‰

nds.

(4.3.48)

From the left-hand side of (4.3.46), we know that
ş

Ωpdiv divφqukj dx converges
to the distributional Hessian of u8 as j Ñ 8 and (4.3.47) states a formula for
this distributional Hessian. Regarding (4.3.48), we already know that D2

pwukj á

Tr in L2pΩq2ˆ2 as j Ñ 8. Hence, in view of (4.3.45) the statement is proved if
on Ω´ the jump-terms in (4.3.48) generate the liftings in the limit.

In order to prove this we investigate the limit of jump terms in (4.3.48): Fix
ℓ P N0, and let πkj “ πkj pφq be the L2-projection of φ onto PrpTkj q2ˆ2, then
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

by using the definition of the lifting (3.3.1) and φ P C8
0 pΩq2ˆ2 we have

´

ż

Fkj

φ
““

∇pwukj
‰‰

¨ n´ divφ ¨
““

ukj
‰‰

nds

“ ´

ż

F`
ℓ

φ
““

∇pwukj
‰‰

¨ n´ divφ ¨
““

ukj
‰‰

nds

´

ż

Fkj
zF`

ℓ

ttφuu
““

∇pwukj
‰‰

¨ n´ ttdivφuu ¨
““

ukj
‰‰

nds

“ ´

ż

F`
ℓ

φ
““

∇pwukj
‰‰

¨ n´ divφ ¨
““

ukj
‰‰

nds

´

ż

Fkj
zF`

ℓ

␣␣

φ´ πkj

(( ““

∇pwukj
‰‰

¨ n´
␣␣

divpφ´ πkj q
((

¨
““

ukj
‰‰

nds

´

ż

Fkj
zF`

ℓ

␣␣

πkj

(( ““

∇pwukj
‰‰

¨ n´
␣␣

divπkj

((

¨
““

ukj
‰‰

nds

“ ´

ż

F`
ℓ

φ
““

∇pwukj
‰‰

¨ n´ divφ ¨
““

ukj
‰‰

nds

´

ż

Fkj
zF`

ℓ

␣␣

φ´ πkj

(( ““

∇pwukj
‰‰

¨ n´
␣␣

divpφ´ πkj q
((

¨
““

ukj
‰‰

nds

´

ż

Ω´
ℓ

Lkj pukj q : pφ´ πkj qdx`

ż

Ω´
ℓ

Lkj pukj q : φdx,

(4.3.49)

for all ℓ ď kj . Thanks to Lemma 4.5, for ϵ ą 0, we have

›

›φ´ πkj

›

›

L8pΩ´
ℓ q

ď

›

›

›
hkjχΩ´

ℓ

›

›

›

L8pΩq
}∇φ}L8pΩq ď

›

›

›
hℓχΩ´

ℓ

›

›

›

L8pΩq
}∇φ}L8pΩq ă ϵ

for sufficiently large ℓ “ ℓpϵ,φq ď kj and thus

ˇ

ˇ

ˇ

ˇ

´

ż

Fkj
zF`

ℓ

␣␣

φ´ πkj

(( ““

∇pwukj
‰‰

¨ n´
␣␣

divpφ´ πkj q
((

¨
““

ukj
‰‰

nds

´

ż

Ω´
ℓ

Lkj pukj q : pφ´ πkj qdx

ˇ

ˇ

ˇ

ˇ

À ϵ }f}Ω }∇φ}L8pΩq .

As a consequence of (4.3.27), (4.3.29) and (4.3.45) in conjunction with the fact,
that ukj |Ω`

ℓ
P P2pT `

ℓ q is finite dimensional, we have that

´

ż

F`
ℓ

φ
““

∇pwukj
‰‰

¨ n´ divφ ¨
““

ukj
‰‰

nds`

ż

Ω´
ℓ

Lkj pukj q : φ dx

Ñ ´

ż

F`
ℓ

φ
““

∇pwu8

‰‰

¨ n´ divφ ¨ rru8ssnds`

ż

Ω´
ℓ

Ts : φdx

as j Ñ 8.
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4 Convergence of AFEM

Hence, we have that

lim
jÑ8

ˇ

ˇ

ˇ

ˇ

ż

Ω
pdiv divφqukj dx´

ż

Ω
D2
pwukj : φdx

`

ż

F`
ℓ

φ
““

∇pwukj
‰‰

¨ n´ divφ ¨
““

ukj
‰‰

nds

´

ż

Ω´
ℓ

Lkj pukj q : φdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω
pdiv divφqu8 dx´

ż

Ω
Tr : φdx

`

ż

F`
ℓ

φ
““

∇pwu8

‰‰

¨ n´ divφ ¨ rru8ssnds

´

ż

Ω´
ℓ

Ts : φ dx

ˇ

ˇ

ˇ

ˇ

À ϵ }f}Ω }∇φ}L8pΩq .

Upon choosing ℓ even larger, we have also from the absolute continuous de-
pendence of the integral on the integration domain (Remark 4.6) in conjunction
with Lemma 4.5

ˇ

ˇ

ˇ

ˇ

ˇ

ż

F`zF`
ℓ

φ
““

∇pwukj
‰‰

¨ n´ divφ ¨
““

ukj
‰‰

nds´

ż

Ω´
ℓ zΩ´

Ts : φ dx

ˇ

ˇ

ˇ

ˇ

ˇ

ă ϵ.

Inserting this in (4.3.49), we have thanks to the fact that ϵ ą 0 was arbitrary,
that
ż

Ω
pdiv divφq ¨ ∇pwukj dx

Ñ

ż

Ω
Tr : φ dx`

ż

Ω´

Ts : φdx´

ż

F`

φ
““

∇pwu8

‰‰

¨ n´ divφ ¨ rru8ssnds

as j Ñ 8. In view of (4.3.46) and (4.3.47), this thus implies that

0 “ lim
jÑ8

ż

Ω
pdiv divφqpukj ´ u8q dx “

ż

Ω
pD2

pwu8 ´ Tr ´ TsχΩ´q : φdx

for all φ P C8
0 pΩq2ˆ2. The desired assertion follows from the density of C8

0 pΩq

in L2pΩq.

Now, we are able to proof that u8 and u8 coincide.

Lemma 4.32. We have that u8 P V8 solves (4.2.9) and thus u8 “ u8. In par-
ticular, the limit in (4.3.26) is unique and the full sequence tukukPN0 converges
to u8 weakly in L2pΩq.

Proof. Let v P V8 and tvkukPN0
, vk P Vk such that |||vk ´ v|||k ` }vk ´ v}Ω Ñ 0

as k Ñ 8. Consequently, for the subsequence (4.3.26) of discrete solutions
␣

ukj
(

jPN0
, we have

Bkj rukj , vkj s “
@

f, vkj
D

Ω
Ñ xf, vyΩ as j Ñ 8. (4.3.50)
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Using |||vk ´ v|||k Ñ 0 as k Ñ 8 again, it suffices to prove Bkj rukj , vs Ñ

B8ru8, vs as j Ñ 8.
To see this, we split the bilinear form according to

Bkj rukj , vs “

ż

Ω
pD2

pwukj ` Lkj pukj qq : D2
pwv dx`

ż

Ω
Lkj pvq : D2

pwukj dx

`

ż

Fkj

α

hkj

““

Bnukj
‰‰

rrBnvss `
β

h3kj

““

ukj
‰‰

n ¨ rrvssnds

“: Ij ` IIj ` IIIj .

and consider the limit of each term separately.
1 Here, we consider the limit of Ij . From (4.3.45) and Lemma 4.31 we have

ż

Ω´

`

D2
pwukj ` Lkj pukj q

˘

: D2
pwv dx

Ñ

ż

Ω´

`

Tr ` Ts
˘

: D2
pwv dx as j Ñ 8

“

ż

Ω´

D2u8 : D2
pwv dx.

(4.3.51)

For ℓ ď kj we split the domain Ω according to

Ω “ Ω´ Y Ω1´
ℓ zΩ´ Y Ω1`

ℓ .

On Ω´
ℓ zΩ´, by uniform integrability of D2

pwv, Lemma 4.5 and the stability of
liftings (3.3.4), for ϵ ą 0 there exists Kpϵq such that for all ℓ ě Kpϵq, we have

ˇ

ˇ

ˇ

ż

Ω1´
ℓ zΩ´

´

D2
pwukj ` Lkj pukj q ´D2

pwu8 ´ L8pu8q

¯

: D2
pwv dx

ˇ

ˇ

ˇ

À

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj
` |||u8|||8

¯

›

›D2
pwv

›

›

Ω1´
ℓ zΩ´

ď ϵ.

From (4.3.26) (compare step 4 of the proof of Lemma 4.30) we observe on Ω`
ℓ

thatD2
pwukj |Ω1`

ℓ
Ñ D2

pwu8|Ω1`
ℓ

strongly in L2pΩ1`
ℓ q as j Ñ 8 since Pr´2pT 1`

ℓ q2ˆ2

is finite dimensional for fixed ℓ. Therefore, we have
ż

Ω1`
ℓ

D2
pwukj : D

2
pwv dx Ñ

ż

Ω1`
ℓ

D2
pwu8 : D2

pwv dx as j Ñ 8.

Similar arguments prove
““

∇pwukj
‰‰

|F1`
ℓ

Ñ
““

∇pwu8

‰‰

|F1`
ℓ

and
““

ukj
‰‰

|F1`
ℓ

Ñ rru8ss |F1`
ℓ

strongly in L2pF1`
ℓ q as j Ñ 8 and, thanks to the fact that the local defini-

tion (3.3.1) of the liftings eventually does not change on T 1`
ℓ , we have

ż

Ω1`
ℓ

Lkj pukj q : D2
pwv dx “

ż

Ω1`
ℓ

L8pukj q : D2
pwv dx

Ñ

ż

Ω1`
ℓ

L8pu8q : D2
pwv as j Ñ 8.

101



4 Convergence of AFEM

From the estimate
ˇ

ˇ

ˇ

ż

Ω

ˆ

D2
pwukj ` Lkj pukj q ´D2

pwu8 ´ L8pu8q

̇

: D2
pwv dx

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż

Ω´

ˆ

D2
pwukj ` Lkj pukj q ´D2

pwu8

̇

: D2
pwv dx

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ż

Ω1´
ℓ zΩ´

ˆ

D2
pwukj ` Lkj pukj q ´D2

pwu8 ´ L8pu8q

̇

: D2
pwv dx

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ż

Ω1`
ℓ

ˆ

D2
pwukj ` Lkj pukj q ´D2

pwu8 ´ L8pu8q

̇

: D2
pwv dx

ˇ

ˇ

ˇ
,

we finally observe that the first and third term on the right-hand side vanish as
j Ñ 8, and arrive at

lim
jÑ8

ˇ

ˇ

ˇ

ż

Ω

ˆ

D2
pwukj ` Lkj pukj q ´D2

pwu8 ´ L8pu8q

̇

: D2
pwv dx

ˇ

ˇ

ˇ
ă ϵ.

Since ϵ ą 0 was chosen arbitrarily, for j Ñ 8, we conclude
ż

Ω
pD2

pwukj ` Lkj pukj qq : D2
pwv dx Ñ

ż

Ω
pD2

pwu8 ` L8pu8qq : D2
pwv dx (4.3.52)

2 In order to identify the limit of IIj , we split the domain Ω according to

Ω “ pΩzΩ1`
ℓ q Y Ω1`

ℓ

for some ℓ ď kj . Thanks to uniform boundedness |||uk|||k À }f}Ω, for ϵ ą 0, we
have

ˇ

ˇ

ˇ

ż

ΩzΩ1`
ℓ

Lkj pvq : D2
pwukj dx

ˇ

ˇ

ˇ
À
›

›Lkj pvq
›

›

ΩzΩ1`
ℓ

}f}Ω ă ϵ (4.3.53)

for all kj ě ℓ ě Kpϵq. Indeed, the stability of the lifting operator (3.3.3) together
with Proposition 4.9 yields

›

›Lkj pvq
›

›

ΩzΩ1`
ℓ

À

˜

ż

Fkj
zF2`

ℓ

h´1
kj

rrBnvss
2

` h´3
kj

|rrvssn|
2 ds

¸1{2

Ñ 0,

as kj ě ℓ Ñ 8. Similar as in 1 , on Ω1`
ℓ we employ the strong convergence

D2
pwukj |Ω1`

ℓ
Ñ D2

pwu8|Ω1`
ℓ

P Pr´2pT 1`
ℓ q2ˆ2 in L2pΩ1`

ℓ q as j Ñ 8, in order to
obtain from the local definitions of the liftings (3.3.1) and (4.2.6) that

ż

Ω1`
ℓ

Lkj pvq : D2
pwukj dx “

ż

Ω1`
ℓ

L8pvq : D2
pwukj dx

Ñ

ż

Ω1`
ℓ

L8pvq : D2
pwu8 dx as j Ñ 8.

Combining this with (4.3.53) yields
ż

Ω
Lkj pvq : D2

pwukj dx Ñ

ż

Ω
L8pvq : D2

pwu8 dx as k Ñ 8. (4.3.54)
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

3 For the last term IIIj , we observe from F`
ℓ Ă F`

kj
, ℓ ď kj , that

ż

Fkj

α

hkj

““

Bnukj
‰‰

rrBnvss `
β

h3kj

““

ukj
‰‰

n ¨ rrvssnds

“

ż

F`
ℓ

α

hkj

““

Bnukj
‰‰

rrBnvss `
β

h3kj

““

ukj
‰‰

n ¨ rrvssnds

`

ż

Fkj
zF`

ℓ

α

hkj

““

Bnukj
‰‰

rrBnvss `
β

h3kj

““

ukj
‰‰

n ¨ rrvssnds.

For the second term on the right-hand side, we conclude from Proposition 4.9
that for arbitrary fixed ϵ ą 0 there exists Kpϵq ą 0 such that

ż

Fkj
zF`

ℓ

α

hkj

““

Bnukj
‰‰

rrBnvss `
β

h3kj

““

ukj
‰‰

n ¨ rrvssnds

ď

˜

ż

Fkj
zF`

ℓ

α

hkj

““

Bnukj
‰‰2

ds

¸1{2˜
ż

Fkj
zF`

ℓ

α

hkj
rrBnvss

2 ds

¸1{2

`

˜

ż

Fkj
zF`

ℓ

β

h3kj

ˇ

ˇ

““

ukj
‰‰

n
ˇ

ˇ

2
ds

¸1{2˜
ż

Fkj
zF`

ℓ

β

h3kj
|rrvssn|

2 ds

¸1{2

À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj

˜

ż

Fkj
zF`

ℓ

α

hkj
rrBnvss

2
`

β

h3kj
|rrvssn|

2 ds

¸1{2

À }f}Ω

˜

ż

F`zF`
ℓ

α

h`

rrBnvss
2

`
β

h3`
|rrvssn|

2 ds

¸1{2

ď ϵ

whenever kj ě ℓ ě Kpϵq. As in 1 , we use for fixed ℓ that
““

Bnukj
‰‰

|F1`
ℓ

Ñ rrBnu8ss |F1`
ℓ

and
““

ukj
‰‰

|F1`
ℓ

Ñ rru8ss |F1`
ℓ

as j Ñ 8 strongly in L2pF1`
ℓ q and consequently

ż

F`
ℓ

α

hkj

““

Bnukj
‰‰

rrBnvss `
β

h3kj

““

ukj
‰‰

n ¨ rrvssnds

Ñ

ż

F`
ℓ

α

h`

rrBnu8ss rrBnvss `
β

h3`
rru8ssn ¨ rrvssnds

as j Ñ 8. Since ϵ ą 0 was arbitrary, the desired convergence
ż

Fkj

α

hkj

““

Bnukj
‰‰

rrBnvss `
β

h3kj

““

ukj
‰‰

n ¨ rrvssnds

Ñ

ż

F`

α

h`

rrBnu8ss rrBnvss `
β

h3`
rru8ssn ¨ rrvssnds as j Ñ 8

(4.3.55)

follows from
ż

F`zF`
ℓ

α

h`

rrBnu8ss rrBnvss `
β

h3`
rru8ssn ¨ rrvssnds Ñ 0 as ℓ Ñ 8.
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4 Convergence of AFEM

4 Finally, combining (4.3.52), (4.3.54) and (4.3.55), we have proved

Bkj rukj , vs Ñ

ż

Ω´

D2u8 : D2v dx`

ż

Ω`

pD2
pwu8 ` L8pu8q : D2

pwv dx

`

ż

Ω`

L8pvq : D2
pwu8 dx

`

ż

F`

α

h`

rrBnu8ss rrBnvss `
β

h3`
rru8ssn ¨ rrvssnds

“ B8ru8, vs as j Ñ 8.

Hence, by (4.3.50) we have u8 “ u8, thanks to u8 P V8 and the uniqueness of
the generalised Galerkin solution (4.2.9).

We conclude the section by finally proving Theorem 4.15.

Proof of Theorem 4.15. Using the coercivity of the bilinear form, Corollary 4.28,
Lemma 4.32, the interpolation operator Iku8 P Vk and (3.2.1), we observe

Ccoer |||Iku8 ´ uk|||
2
k ď BkrIku8 ´ uk, Iku8 ´ uks

“ BkrIku8, Iku8s ´ 2BkrIku8, uks ` Bkruk, uks

“ BkrIku8, Iku8s ´ 2 xf, Iku8yΩ ` xf, ukyΩ

Ñ B8ru8, u8s ´ xf, u8yΩ “ 0 as k Ñ 8.

Hence, again with Corollary 4.28, we conclude

|||u8 ´ uk|||
2
k ď |||Iku8 ´ u8|||

2
k ` |||Iku8 ´ uk|||

2
k Ñ 0

as k Ñ 8.
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5 Numerical Experiments

In the last chapter we proved the convergence of the adaptive Algorithm 4.1.
However, this convergence result says nothing about the rates of convergence.
Therefore, it is a priori not clear if the adaptive Algorithm 4.1 has any numerical
advantages compared to uniform refinement strategies or is even competitive to
them.

Based on a numerical example the current chapter adresses this issue. Theo-
rem 3.13 reveals that a lacking Sobolev regularity leads to suboptimal rates of
convergence (in view of the polynomial degree) in the case of uniform refine-
ment. However, the optimal rates of convergence can be recovered by using the
adaptive Algorithm 4.1 instead of a uniform refinement strategy.

In this regard the following numerical example suggest the advantage of adap-
tive SIPDGM compared to a non-adaptive method.

5.1 The exact solution

We analyse the perfomance of ASIPDGM for a non-smooth solution u (c.f.
[GHV11, Section 5.2]). To this end, let Ω be the L-shaped domain p´1, 1q2zr0, 1qˆ

p´1, 0s and set f “ 0. By pr, φq we denote a system of polar coordinates of R2

and set

u “ r5{3 sinp5φ{3q.

For appropriate inhomogeneous Dirichlet boundary conditions u solves the
non-homogeneous version of (2.4.2) with right-hand side f (compare [GR86,
Section 1.5] for a treatment of the Biharmonic problem with non-homogenous
boundary values). We emphasise that u P H8{3´ϵ, ϵ ą 0 due to a corner
singularity at the origin of Ω; see [Gri85, Chapter 7].

We apply the ASIPDGM with polynomial degree between 2 ď r ď 5 and
penalty parameters α “ 12.5pr ` 1q2 and β “ 2.5pr ` 1q6.

5.2 Uniform refinement.

We use uniform refinements of the mesh. Regarding the specific Sobolev regu-
larity of the solution u, we expect from Theorem 3.13 that (asymptotically) the
error |||u´ uk|||k and the estimator ηk tend to zero with rate Oph2{3q “ OpN´1{3q

independent of the polynomial degree r. Here, N “ #DOFs is the total number
of degrees of freedom. Figure 5.1 confirms the expected (suboptimal) rates of
convergence and therefore show the sharpness of the a priori estimate in The-
orem 3.13. Moreover, Table 5.1 lists the results of the computations for r “ 2
and r “ 3 in detail. Hence, this numerical example verifies that in the case
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5 Numerical Experiments

of uniform refinement the best possible rate of convergence is restricted by 2{3
irrespective of the polynomial degree r. However, in the next section we will see
that ASIPDGM improve the rate with respect to #T .

10´2

10´1

100

101

101 102 103 104 105 106 107 108

η k

DOFs

DOFs´0.33

r “ 2
r “ 3
r “ 4
r “ 5

10´3

10´2

10´1

100

101

101 102 103 104 105 106 107 108

|||
u

´
u
h
|||
h

DOFs

DOFs´0.33

r “ 2
r “ 3
r “ 4
r “ 5

Figure 5.1: Error estimator and error in case of uniform refinements with poly-
nomial degree 2 ď r ď 5.

h r “ 2 r “ 3

7.07 ˆ 10´1 0.20 0.21
3.53 ˆ 10´1 0.41 0.64
1.77 ˆ 10´1 0.55 0.66
8.84 ˆ 10´2 0.61 0.66
4.42 ˆ 10´2 0.63 0.66
2.21 ˆ 10´2 0.64 0.66
1.10 ˆ 10´2 0.66 0.66

Table 5.1: Rate of convergence of the error |||u´ uh|||h in the case of uniform
refinements for polynomial degree r “ 2 and r “ 3.

5.3 Adaptive refinement.

The adaptive meshes are created by using the Dörfler Strategy

ηT pMq ě θηT pT q and min
KPM

ηT pKq ě max
KPT zM

ηT pKq,

with θ “ 0.3.

• the global error estimator ηk and the error |||u´ uk|||k as functions of the
total number of degrees of freedom (#DOFs) on a log-log scale (top left
and top right);

• the associated effectivity index ηk{ |||u´ uk|||k (bottom left);

• an adaptive generated mesh for some iteration levels. (bottom right).
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5.3 Adaptive refinement.

Additionally, in Table 5.2 we compare the EOCs (Experimental orders of con-
vergence) for different polynomial degrees, which is defined by

EOCk :“ ´ log

ˆ

ηkpTkq

ηk`1pTk`1q

̇

{ log

ˆ

DOFsk
DOFsk`1

̇

, (5.3.1)

where DOFsk are the degrees of freedom related Tk; compare [BNQ`12, Section
5.2]. Table 5.2 lists also the corresponding effectivity indices.

In contrast to uniform refinement we see the optimal rates of convergence (in
view of polynomial degree), of the error estimator and the error |||u´ uT |||T “

ηT “ OpN´pr´1q{2q, i.e. OpN´1{2q for r “ 2, OpN´1q for r “ 3, OpN´3{2q for
r “ 4 and OpN´2q for r “ 5, where N “ #DOFs denotes the total number of
degrees of freedom.

For polynomial degree 2 ď r ď 4 the advantage of adaptive refinements
is apparent for DOFs ą 103 (compare also Table 5.2). The calculations with
polynomial degrees r “ 5 show this beneficial effect for DOFs ą 104.

The exemplary meshes in Figures 5.2-5.5 show significant refinements in a
vicinity of the reentrant corner, due to the singularity of the exact solution,
which can be traced back to this reentrant corner. Moreover, we observe that
the local refinements near the reentrant corner a much more pronounced for
higher polynomial degrees compared to lower polynomial degrees.

The effectivity indices are between 1.0 and 5.0 for all polynomial degrees.
Figures 5.2-5.5 only display the results before round-off errors have influences
on the numerical results.

level #DOFs EOC effectivity
1 9 ˆ 101 0.26 3.07
3 1.88 ˆ 102 0.28 3.61
5 8.22 ˆ 102 0.33 2.67
7 2.33 ˆ 103 0.49 2.61
9 6.35 ˆ 103 0.48 2.68
11 1.64 ˆ 104 0.49 2.75
13 4.05 ˆ 104 0.49 2.79
15 9.52 ˆ 104 0.49 2.78
17 2.19 ˆ 105 0.50 2.84
19 5.16 ˆ 105 0.50 2.84
21 1.17 ˆ 106 0.49 2.87

Table 5.2: EOCs and effectivity indices for polynomial degree r “ 2.
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10´5

10´4

10´3
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10´1

100

101
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101 102 103 104 105 106 107 108

η k

DOFs

DOFs´0.5

r “ 2

10´3

10´2

10´1

100

101

102

101 102 103 104 105 106 107 108

|||
u
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u
k
|||
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DOFs
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1

2
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5
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101 102 103 104 105 106 107

η k
{
|||
u

´
u
k
|||
k

DOFs

r “ 2

Figure 5.2: Error estimator, error, effectivity index and adaptively created mesh
(k “ 12) for r “ 2.
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5.3 Adaptive refinement.
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101 102 103 104 105 106 107 108
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DOFs
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r “ 3
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|||
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|||
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r “ 3

0
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102 103 104 105 106 107

η k
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u
k
|||
k

DOFs
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Figure 5.3: Error estimator, error, effectivity index and adaptively created mesh
(k “ 20) for r “ 3.
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Figure 5.5: Error estimator, error, effectivity index and adaptively created mesh
(k “ 30) for r “ 5.
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6 Summary and outlook

6.1 Summary

In this thesis we generalised the convergence theory of AC0IPGM ([DGK19])
to ASIPDGM covering arbitrary polynomial degrees of related discontinuous
Galerkin spaces. We developed a new space limit of the discrete space se-
quences, created by the adaptive loop of (1.1.2). Based on embedding properties
of (broken) Sobolev and BV spaces, we proved that the space limit possesses a
Hilbert space structure and therefore yields a generalised (weak) Galerkin solu-
tion. The convergence of the sequence of DGFEM approximations to the gener-
alised Galerkin solution is actually a consequence of the embedding properties
mentioned above. Combing convergence of the sequence of DGFEM approx-
imations to the generalised Galerkin solution with properties of the marking
strategy finally yields coincidence of the generalised Galerkin solution and the
exact solution. Moreover, numerical experiments confirm the theoretical result
and suggest convergence rates as expected.

6.2 Summary and future work

We outline some possible future directions that could arise from the theory
presented here:

• Generalisations to linear convergence or even optimal convergence rates
of ASIPDGM.

• The convergence theory is not restricted to symmetric problems, which
we used here. Therefore, generalisations to non-symmetric problems and
different discontinuous Galerkin methods as proposed in [SH18] are pos-
sible.

• The development of a posteriori error estimator for non-homogenous prob-
lems could lead to ASIPDGM with non-homogenous boundary values. We
note that in case of adaptive conforming Galerkin method for second order
problems there are convergence results including non-homogenous prob-
lems ([MNS03, AFK`13, FPP14]). However, for ASIPDGM including non-
homogeneous boundary values this issue is far from solved. Compare also
[GHV11, Remark 4.2].

• To ease the presentation we restricted ourself to conforming meshes with-
out hanging nodes. We note that including hanging nodes would compli-
cate the definition of the smoothing operator, defined in chapter 3.4, and
we therefore avoided it. However, in view of practical computation, this
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6 Summary and outlook

is quite restrictive, since discontinuous Galerkin methods naturally allow
hanging nodes due to the fact that element base functions are independent
of neighbouring elements. Hanging nodes of the mesh can be handled as
in [BN10, KP07]. Moreover, generalisations of the convergence theory to
polygonal, polyhedral or arbitary-shaped elements are conceivable (com-
pare e.g. [GHH06, CDGH17, CDG19, Don18]).

• Extensions of the results to more general fourth order problems are also
possible, compare e.g. [JB12, page 81 ff.], [HL02].

• Generalisations to arbitrary dimension d ą 2. We note that various C1-
conforming elements for d ą 2 are available in literature (compare [LS07]).
Unfortunately, we used exhaustively that HCT-elements only contain first
order derivatives and function evaluations as degrees of freedom and there-
fore leading to estimates (3.4.2). To the best of our knowledge, deriv-
ing equivalent estimates in the presence of second (or even higher) order
derivaties as degrees of freedom is still an open question.
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Appendix A

Theory of measures and Riesz-Radon’s Theorem

The theorem of Radon-Riesz states that the dual space of C0pΩq is isomorphic
to some space of measures. An application of this theorem motivates the space
of functions of bounded variation (Section 3.5), which plays an important role
in the context of the convergence theory in Chapter 4. Before we state Riesz-
Radon’s theorem we give a short introduction of basic notions of measure theory,
where we follow the lines of [Alt16, 6.20]. We provide the statements without
proofs and refer to [Alt16] for proofs and are more detailed introduction.

Let U Ă Rd be equipped with the relative topology of Rd, and B the Borel-σ
algebra of U , i.e. the smallest σ-algebra containing the open sets of U . Consider
the mappings µ : B Ñ Rm satisfying

µ

˜

8
ď

i“1

Ai

¸

“

8
ÿ

i“1

µpAiq, (A.1.1)

for all sequences pAiq
8
i“1, with Ai P B pairwise disjoint. Note that in the case

m “ 1 the mappings are not assumed to be positive. For µ : B Ñ Rm we
introduce a mapping |µ| : B Ñ r0,8s via

|µ|pAq :“ sup

#

k
ÿ

i“1

}µpAiq}Rm : k P N, Ai P B pairwise disjoint, Ai Ă A

+

,

called the variational measure and we call }µ} :“ |µ|pUq the total variation of
µ. We define the following vector space of Borel measures

MpU,Rmq :“ tµ : B Ñ Rm : µ satisfies (A.1.1), }µ} ă 8u ,

and we simply write MpUq in the case m “ 1. Moreover, MpU,Rmq becomes
a Banach space, if it is equipped with the variational norm (compare [Alt16,
6.20]).

Unfortunately, the spaceMpΩq is to rich to be isomorphic to C0pΩq, therefore
we have to restrict ourself to so called regular measures. We call µ P MpU,Rmq

regular, if for all A P B, we have for its variational measure

|µ|pAq “ sup t|µ|pCq : C Ă A, C compactu
“ inf t|µ|pOq : A Ă O, O openu .

Finally, we define the space of regular Borel measures

MRpU,Rmq :“ tµ P MpU,Rmq : µ is a regular measureu ,
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Appendix A

and note thatMRpU,Rmq is also a Banach space if it is equipped with the total
variation as a norm. For the case m “ 1, we simply write MRpUq instead of
MRpU,Rq. A measure µ P MRpUq, is also called a signed measure, since we
allow it to have negative values. For the case m ą 1 we have µ “ pµ1, . . . , µmq

and µi is a signed measure for all i “ 1, . . . ,m.

Remark A.1 (Radon measure). We emphasise that some notions of measure
theory slightly differ in literature, e.g. in [EG15, Definition 1.9] a measure µ on
a set X is regular if for each set A Ď X there exists a µ-measurable set B such
that A Ď B abd µpAq “ µpBq

Observing that continuous functions are measurable with respect to regular
Borel measure, we get the following theorem. Note that for simplicity we restrict
ourself to real valued measures, i.e. m “ 1.

Theorem A.2 (Riesz-Radon theorem (Dual space of C0)). Let K Ă Rd be
compact. Then, every bounded linear functional L : C0pKq Ñ R is represented
uniquely by a regular Borel measure ν P MRpKq such that

Lpfq :“

ż

K
f dν @f P C0pKq.

Moreover, we have }L} “ }ν}.

Proof. Compare e.g. [Alt16, Section 6.23], [ABM14, Theorem 2.4.6] or[AFP00,
Theorem 1.54].

By using the Riesz-Radon theorem we can provide a distributional character-
isation of regular measures (compare e.g. [Alt16, 6.24 Corollary]). To this end
we assume Ω Ă Rd is open and bounded and let C ą 0 such that the linear map
T : C0pΩq Ñ R satisfies

|T pfq| ď C }f}8 @f P C0pΩq.

Then, there exists a unique ν P MRpΩq satisfying

}ν} “ sup t|T pfq| : f P C0pΩq, }f}8 “ 1u ď C

and

T pfq “

ż

Ω
f dν @f P C0pΩq.

Remark A.3. Note that by a convolution argument it suffices to assume that

T P D1pΩq with |T pφq| ď C }φ}8 @φ P C8
0 pΩq,

since T can be uniquely extended to a linear map on C0pΩq, which satisfies the
above estimate.
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We emphasise thatMRpΩ,Rmq is isomorphic to the product space rMRpΩqsm

and that we have

µ P MRpΩ,Rmq ðñ µ “ pµ1, . . . , µmq and µi P C0pΩq1 @i “ 1, . . . ,m.

Consequently, the dual of C0pΩ,Rmq can be identified with MRpΩ,Rmq. From
the definition of weak*-convergence we have, that tµkukPN Ă MRpΩ,Rmq con-
verges weakly* to µ (µk

˚
á µ in C0pΩ,Rmq1) if

lim
kÑ8

ż

Ω
ϕ ¨ dµk “

ż

Ω
ϕ ¨ dµ @ϕ P C0pΩ,Rmq.

Next, we prove that on the space MRpΩ,Rmq we have a weak*-compactness
property, which is a consequence of Theorem of Alaoglu (see [Alt16, 8.7(3)] and
the above identification of the dual of rC0pΩqsm and MRpΩ,Rmq. However, we
give a proof, which is based on rather basic properties of measure spaces and
gives a more detailed insight into this compactness property.

Theorem A.4 (Weak* compactness). Let Ω Ă Rd be open and bounded and
let tµkukPN be a sequence in MRpΩ,Rmq satisfying sup t|µk|pΩq : k P Nu ă 8.
Then, it has a weakly* converging subsequence in MRpΩ,Rmq.

Proof. Without loss of generality we assume that |µk|pΩq ď 1 for all k P N. Let
tcℓuℓPN Ă rC0pΩqsm be a sequence, from which we assume, that }cℓ}8 ď 1 for all
ℓ P N and whose linear span L is dense rC0pΩqsm. We note that such a sequence
exists, due to the separability of C0pΩq. We will use the following notation: For
a measure µ P MRpΩ,Rmq and a function c P rC0pΩqsm we write

xµ, cy “

ż

Ω
c ¨ dµ “ µpcq

as a shorthand notation for the duality bracket.
By the properties of tµkukPN and tcℓuℓPN, we have

µkpc1q “

ż

Ω
c1 ¨ dµk ď |µk|pΩq }c1}8 ď 1.

Hence, there exists a1 P R and a subsequence
!

k1j

)

jPN
Ă N such that µk1j pc1q Ñ

a1 as j Ñ 8 and
ˇ

ˇ

ˇ
µk1j

pc1q ´ a1

ˇ

ˇ

ˇ
ă

1

j
@j ě 1.

Using an inductive argument we observe that for µknj Ă MRpΩ,Rmq there
exists a subsequence such that µkn`1

j
Ñ an`1 as j Ñ 8 and

ˇ

ˇ

ˇ
µkn`1

j
pcn1q ´ an`1

ˇ

ˇ

ˇ
ă

1

j
.
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Consequently, for µ
kjj

and j ą n we have

ˇ

ˇ

ˇ
µ
kjj

pcnq ´ an

ˇ

ˇ

ˇ
ă

1

j

and therefore for all n P N we have

lim
jÑ8

µ
kjj

pcnq “ an.

Note, that by the properties of tcℓuℓPN this limit exists in the whole of L. We
define µ on MRpΩ,Rmq by µpcnq “ an and observe as above

µpcnq “ lim
jÑ8

µ
kjj

pcnq ď |µ
kjj

|pΩq }cn}8 ď 1.

Hence, µ is a bounded linear functional and can be extended to the whole of
rC0pΩqsm by density.

To prove that µ is the weak*-limit of µkjpjq we have to prove that for all
c P rC0pΩqsm we have

lim
jÑ8

µ
kjj

pcq “ µpcq.

To this end, let ϵ ą 0 be arbitrary and d P L such that }c´ d}8 ă ϵ. Then, by
the triangle inequality we conclude

ˇ

ˇ

ˇ
µ
kjj

pcq ´ µpcq
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
µ
kjj

pc´ dq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
µ
kjj

pdq ´ µpdq

ˇ

ˇ

ˇ
` |µpc´ dq|

ď 2 }c´ d}8 `

ˇ

ˇ

ˇ
µ
kjj

pdq ´ µpdq

ˇ

ˇ

ˇ
ă 3ϵ,

provided j large enough. Consequently, since ϵ was arbitrary, we proved that
µ
kjj

pcq weakly* converges to µ.
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Bubble functions

In order to unserstand the understand the various concepts of Chapter 3.4.3
(lower bounds of the error indicators), we recall some definitions of a posteriori
analysis (compare also [Ver13]).

Let K̂ “ tpx, yq : 0 ď x ď 1, 0 ď y ď 1 ´ xu Ă R2 be the reference triangle
with vertices ẑ0, ẑ1, ẑ2. By λ̂0, λ̂1 and λ̂2 we denote the barycentric coordinates
on K̂, i.e. λ̂ipẑjq “ δij for 0 ď i, j ď 2.

We note that the interior bubble function on K̂ is defined by

ψ̂K̂ :“ 27λ̂0λ̂1λ̂2.

Now, let K P T be an arbitrary element and FK : K̂ Ñ K be an invertible and
affine linear mapping. Then, the associated bubble function on K is defined by

ψK :“ ψ̂K̂ ˝ F´1
K .

We extend ψK by zero to the whole domain Ω and obtain a piecewise polyno-
mial which is globally continuous and therefore located in W 1,8pΩq but not in
W 2,1pΩq. In order to derive lower bounds of the local error indicators for fourth
order problems, we need to construct local bubble functions of class C1pΩq, i.e.
bubble functions located in W 2,8pΩq. To this end, on K we define

bK “ pψKq2.

By construction we have that bK als well as the first derivative of bK vanishes
on the boundary of K. Consequently, bK P H2

0 pKq and by extending bK by zero
on ΩzK we also have bK P H2

0 pΩq (compare figure B.3(b)).

ẑ0 ẑ1

ẑ2

F̂ 0

F̂ 2

F̂ 1

Figure B.1: Reference triangle K̂.
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K1

K2

F

Figure B.2: Rhombus K̃ contained in K1 YK2 with common edge F .

In order to extend the above idea to face bubble functions we consider the
reference triangle K̂ Ă R2 with one dimensional faces F̂ 0, F̂ 1, F̂ 2. Simple cal-
culations reveal that the buble function on F̂ 0 (compare figure B.1) is defined
by

ψ̂F̂ 0
:“ 4λ̂1λ̂2

and the remaining bubble functions on F̂ 1 and F̂ 2 are then defined analogously.
Now, let K P T be arbitrary with F Ă K. Then, the associated face bubble
function on F Ă K is defined by

ψr
K

F :“ ψ̂F̂ ˝ F´1
K .

Since ψr
K

F is a local polynomial, only defined on the element K Ą F , we extend
the face bubble function to the domain ωT pF q via

ψF “

$

’

’

&

’

’

%

ψr
K

F in K

ψr
K1

F in K 1

0 in R2zωT pF q,

where the neighbouring element K 1 P T is chosen such that K 1 XK “ F .
Note that the face bubble functions are piecewise polynomials on each element

and therefore the function ψF is not differentiable across inter-element faces
(compare figure B.3(c)). Hence, we observe that the above simple device does
not suffice in this case.

To overcome this issue, fix F P F̊, F “ K1 X K2 and let K̃ be the largest
rhombus contained in K1YK2, that has F as one diagonal (compare figure B.2).

Regarding K̃ as a quadrilateral in R2 we are able to construct a bubble func-
tion bK̃ on K̃ as follows: We define a reference quadrilateral

K̂ “ tpx, yq : ´ 1 ď x ď 1, ´1 ď y ď 1u

together with an invertible mapping FK : K̂ Ñ K̃ and define an interior bubble
function on K̂ via

ψ̂ “ p1 ´ x2qp1 ´ y2q.
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In an analogous fashion as above we define

ψK̃ :“ ψ̂ ˝ F´1
K̃

to be the (continuous) bubble function on K̃ Ă R2.
Finally, for m P N0 we define a smooth bubble function on the rhombus K̃

via

bK̃ “ pψK̃qm`1.

Note that bK̃ together with all its derivatives up to order m vanishes on the
boundary of K̃. Consequently, bK̃ is contained in CmpΩq and in particular
in Wm`1,ppΩq for every Lebesgue exponent p. Moreover, bK̃ is positive on the
interior of F and vanishes on ΩzK̃. Hence, we can use it as a smooth face bubble
function in the proof of the lower bounds of the error indicators on element faces
(see section 3.4.3)

Remark B.1. It is also possbile to define face bubble function on the whole
patch ωT pF q by extending the local polynomials ψr

K

F to global polynomials defined
on the whole domain R2. Compare [Ver13, Section 3.2.5] for details and also
figures B.3(c) and B.3(d) for an example.

The following Lemma goes back to [Vir10, Lemma B.1].

Lemma B.2. Let T be a triangulations of Ω and K Ă T . Then, we have for
any fixed ℓ P N0 and m P N

}v}
2
K À

ż

K
ψm
Kv

2 dx À }v}
2
K , (B.1.1)

for all v P PℓpKq, ℓ P N0. Here, ψK denotes the (continuous) interior bubble
function on K and the constants in 1 À1 are independent of K and the mesh-size
hT .

Moreover, let F P F̊ such that F “ K` Y K´ and K`,K´ P T . Let K̃ Ă

K1 Y K2 be an quadrilateral, contained in K1 Y K2 having F as one diagonal.
Then, for any fixed j P N0 and n P N we have that

}v}
2
F À

ż

F
ψn
K̃
v2 dx À }v}

2
F , (B.1.2)

for all v P PjpF q, j P N0. Here, ψK̃ denotes the (continuous) interior bubble
function on K̃. and the constants in 1 À1 are independent of F the mesh-size
hT .

Proof. Fix ℓ P N0, let K P T and u, v P PℓpKq. Using the reference mapping
FK : K̂ Ñ K and the definition of PℓpKq we have, that û, v̂ P PℓpK̂q with
ûpx̂q “ upFKpx̂qq and v̂px̂q “ vpFKpx̂qq for all x̂ P K̂.

We fix m P N and prove that

v̂ ÞÑ

ˆ
ż

K̂
ψ̂
m

K̂ v̂
2 dx̂

̇1{2

“: φpv̂q
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(a) Continuous element bubble
function on the left element

(b) Smooth element bubble
function on the left element

(c) Continuous face bubble
function on an intersection of elements

(d) Smooth face bubble
function on an intersection of elements

Figure B.3: Example of various bubble functions
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defines a morm on PℓpK̂q. Since ψ̂K̂ is non-negative on K̂ we have also that
φpv̂q ě 0. Moreover, if φpv̂q “ 0, then ψ̂K̂ ą 0 in the interior of K̂ implies û “ 0

almost everywhere in K̂. Now let α P R, then

φpαv̂q “

ˆ
ż

K̂
ψ̂
m

K̂ α̂
2v2 dx̂

̇1{2

“ |α|φpvq

and additionally we have

φpû` v̂q2 “

ż

K̂
ψ̂
m

K̂pû` v̂q2 dx̂

“

ż

K̂
ψ̂
m

K̂ û
2 dx̂`

ż

K̂
ψ̂
m

K̂ v̂
2 dx̂` 2

ż

K̂
ψ̂
m

K̂ ûv̂ dx̂

“ φpûq2 ` φpv̂q2 ` 2

ż

K̂
ψ̂
m

K̂ ûv̂ dx̂

ď φpûq2 ` φpv̂q2 ` 2φpûqφpv̂q “ pφpûq ` φpv̂qq2.

By taking the square root on both sides in the last estimate, we deduce that
φp¨q also satisfies the triangle inequality and in particular defines a norm on the
finite dimensional space PℓpK̂q. Since }v}K̂ also defines a norm on PℓpK̂q, we
have from equivalence of norms on finite dimensional spaces, that there exist
constants Ĉ1, Ĉ2 ą 0 (depending on the refenrence element K̂)

Ĉ1 }v̂}
2
K̂

ď

ż

K̂
ψ̂
m

K̂ v̂
2 dx̂ ď Ĉ2 }v̂}

2
K̂
.

Using the transformation formula for integrals we get

}v}
2
K “

ż

K
v2 dx “

ż

K̂
v̂2 |detDFK | dx̂

and

φpvq2 “

ż

K
ψm
Kv

2 dx “

ż

K̂
ψ̂
m

K̂ v̂
2 |detDFK | dx̂.

Hence, assumption (3.1.2) together with the estimates above implies

C̃1 }v}
2
K ď

ż

K
ψm
Kv

2 dx ď C̃2 }v}
2
K ,

with C̃1 “ C2Ĉ1
C1Creg

and C̃2 “ C1
C2
Ĉ2Creg. The proof of (B.1.2) follows by similar

arguments.
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A Sequence of triangulations based on Cantor sets

In a previous version of [DGK19] (compare with [DGK19a]), we resorted to a
simpler convergence proof for the adaptive method Algorithm 4.1 making use
of the condition

Ω “ interiorpΩ´q Y Ω`; (C.1.1)

see also [KG17] and [KG20]. During the review process of [DGK19], one of
the anonymous referees proved that (C.1.1) is wrong in genreal by means of
an elaborate counterexample, which we present in full detail to the anonymous
referee’s credit.

Based on the idea of Cantor sets, a sequence of refinements is constructed,
such that |Ω`| ă |Ω| and interiorpΩ´q “ H, which clearly contradicts (C.1.1).

(a) T0 (b) T1

Figure C.1: Triangulations T0 and T1 with atoms of level 0 (resp. 1) which are
shaded in dark blue (resp. light blue).

We partition the unit square Ω “ p0, 1q2 into 42 equal-sized squares, each of
which is again meshed by a criss-cross triangulation. This is the initial triangu-
lation as depicted in Figure C.1(a). The four criss-cross squares in the center
of Ω (shaded in dark blue) will be called atom. Since we are exclusively deal-
ing with right-angled isosceles triangles, newest vertex bisection corresponds to
longest edge refinement. The mesh T1 is then constructed by partitioning each
of the 12 non-atomic criss-cross squares into 82 equal-sized squares each of which
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is again meshed by a criss-cross triangulation. The atom will be only further
refined in order to ensure conformity and it gets clear from Figure C.2, that
eventually the whole interior of the atom will belong to Ω`. Again, the center
four criss-cross squares in each of the non-atomic criss-cross squares from T0 will
be atoms of level 1 (shaded in light blue in Figure C.1(b)) and not marked for
refinement any more.

(a) iteration k “ 0 (b) iteration k “ 1

(c) iteration k “ 2 (d) iteration k “ 3

Figure C.2: Atomic refinements.

This construction is now continued recursively, i.e. Ti is created from Ti´1,
by splitting each non-atomic criss-cross square into p22`iq

2 criss-cross squares,
performing necessary refinements due to conformity and taking the four center
criss-cross squares in each criss-cross square of Ti´1 as new atoms of level i.
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In each triangulation Ti there are thus created less that

i´1
ź

j“0

p22`jq
2

new atoms (we neglect that no new atoms are created inside lower level atoms)
of size

4
i
ś

j“0
p22`jq

2

.

Therefore, the union of all atoms of a fixed level i ě 1 occupy an area of size

4
i´1
ś

j“0
p22`jq

2

i
ś

j“0
p22`jq

“ 4 ¨ 2´2p2`iq “ 2´2pi`1q.

The set of Ω` of the constructed sequence of meshes consists of the union of the
interiors of the atoms. Recalling, that the atom of level 0 has size 1{4 “ 2´2p0`1q,
we conclude that

ˇ

ˇΩ`
ˇ

ˇ ď

8
ÿ

i“0

2´2pi`1q “
1

3
ă 1. (C.1.2)

From any point x P Ω the distance to the closest atom of level ď i is bounded
by the diameter of the smallest criss-cross squares in Ti´1, which is

?
2 ¨2´pi`1q.

Therefore, we have that Ω` is dense in Ω and

interiorpΩ´q “ interiorpΩzΩ`q “ H.

Together with (C.1.2) this contradicts (C.1.1).
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VpT q “ PrpT q discontinuous Galerkin finite element space, page 18

CmpΩq space of m-times continuously differentiable functions f : Ω Ñ R,
page 5

LppΩq Lebesgue space of real valued measurable functions with exponent
p, page 10

pV, x¨, ¨yVq pair of Hilbert space with corresponding inner product x¨, ¨yV, page 44

BD boundary of the set D Ă Rd, page 5

v b w mˆ n-matrix with pijq-th entry viwj , v P Rn and w P Rm, page 5
ş

Ω LT p¨q lifting operator, page 29

Hd d-dimensional Hausdorff measure, page 48

ΓT skeleton of T , page 17

BT r¨, ¨s discrete bilinear form of the SIPDG method, page 24

|||¨|||T energy norm, related to VpT q, page 25

Γb
T skeleton of T , including only boundary faces, page 17

T conforming and shape regular subdivision of Ω, page 17

hT pxq piecewise constant mesh-size function, page 17

N j
T pKq jth neighbourhood, page 19

oscpK, fq local data oscillation of f on K P T , page 39

hK diameter of K P T , page 18

MRpU,Rmq Regular Borel measures with values in Rm, page 115

hK diameter of the largest inscribed ball in K P T , page 18

C0pΩq space of continuous functions f : Ω Ñ R, page 5

HnpT q space of piecewise Hm-functions, page 18

L1
locpΩq set of locally integrable functions on Ω, page 10

MpU,Rmq Space of Borel measures with values in Rm, page 115
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Notation Index

|¨| entries of a multi-index α P Nd
0 or absolute value of some scalar,

page 5

B Borel-σ algebra of some U Ă Rd, page 115

DpΩq “ C8
0 pΩq test functions, page 11

D2
pwv piecewise Hessian of v P H2pT q, page 19

NrpKq degrees of freedom of PrpKq, K P T , page 78

ηpv,Kq (local) error estimator of v P V pT q on K P T , page 36

B
Bxi

“ Bi classical (pointwise) i-th partial derivative, page 6

T ` set of eventually never refined elements, page 57

T0 initial mesh, page 18

T‹ ě T T‹ is a refinement of T , page 18

T `
k set of T ` located in Tk, page 57

T ´
k complementary set of of T `

k , defined by located in T ´
k “ TkzT `

k ,
page 57

T j`

k set of Tk with N j
kpKq Ă T `

k , page 57

T j´

k complementary set of T j`

k , defined by TkzT j`

k , page 57

K̂ reference simplex in Rd, page 17

Γ̊T skeleton of T , including only internal faces, page 17

rr¨ssF jump operator on F P F , page 19

d d-dimensional Lebesgue measure, page 46

tt¨uuF average operator on F P F , page 19

µ A restriction of a measure µ to a Borel set A P B, page 50

N natural numbers without zero, page 5

N0 natural numbers including zero, page 5

∇ ¨ψ divergence of a vector-valued function ψ, page 22

∇ ¨ T divergence of a tensor valued-function T , defined by ∇ ¨ T “ p∇ ¨

T p1q,∇ ¨ T p2qq, where T piq is the ith column vector of T , 1 ď i ď 2,
page 22

∇pwv piecewise gradient of v P H1pT q, page 19

NT pzq discrete neighbourhood of z P ZT , page 19
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Notation Index

ZT Lagrange nodes of VpT q (nodal degrees of freedom), page 19

nD unit outward normal vector on a domain D, page 20

Ω` domain of the set T `, defined by ΩpT `q, page 57

Ω´ complementary domain of Ω`, defined by ΩzΩ`, page 57

ωT pF q neighbourhood of F P F , page 19

ωT pzq domain of the neighbourhood NT pzq, page 19

ωj
T pKq domain of the jth neighbourhood N j

T pKq, page 19

Ωj`

k domain of the set T j`

k , page 57

Ωj´

k domain of the set T j´

k , page 57

oscpT , fq global data oscillation of f , page 40

D closure of a set D Ă Rd, page 5

ΦK
z dual basis element of ΦK

z , page 78

ΦK
z Lagrange basis function of the node z on K P T , page 78

Π L2-projection onto the finite element space., page 18

Φ vectorfield, page 22

Brpxq ball around x with radius r., page 48

BV pΩq space of functions of bounded variation, page 46

Di i-th partial distributional derivative., page 12

Du distributional derivative of u, page 12

Hn
0 pΩq Sobolev space of functions with zero boundary values and weak

derivatives up to order n in L2pΩq, page 12

N number of degrees of freedom (#DOF), page 18

v ¨ w inner product on Rd, page 5

vk á v weak convergence of vk Ñ v in V as k Ñ 8, page 7

vk
˚

á v weak* convergence v1
k Ñ v1 in V 1 as k Ñ 8, page 7

Wn,p
0 pΩq Sobolev space of functions with zero boundary values and weak

derivatives up to order n in LppΩq, page 12
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