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1 Introduction

1.1 The Biharmonic equation

The Biharmonic equation is a fourth-order partial differential equation, which
arises as a result of modeling phenomena encountered in problems in science
and engineering. One of the earliest developments, concerning the Biharmonic
equation, is the classical theory of flexure of elastic plates, which goes back,
amongst others, to J. Bernoulli, Euler and Lagrange. Kirchhoff and Poisson
continued the developments of the mathematical modelling of plates (compare
e.g. [Poi38, Lov13, Kir50]). Their contributions have been extensively applied
to the stress analysis of structural plates made of metallic and non-metallic
materials. Additionally, the Biharmonic equation is heavily involved in the
mathematical theory of elasticity, which is part of the mechanics of deformable
media.

The Biharmonic equation is also used to model slow viscous flow problems
involving Newtonian viscous flows. This theory is a particular simplification
of the Navier-Stokes equation and reveals the relation between the Biharmonic
equation and the Stokes equation. The developments in slow viscous flow prob-
lems are applied to many industrial problems, e.g. flow of molten metals, flow of
particulate suspensions and to the modelling of bio fluid-dynamics. For a more
general overview of the history and applications of the Biharmonic equation
compare [Sell3].

For a bounded domain £ < R? the classical formulation of the Biharmonic
problem is given by

A%u=f inQ,
u=0 on 09, (1.1.1)
Vu-ng =0 on 0,

where ngq is the unit outward normal vector of 2. In general, analytical solu-
tions of the Biharmonic equation are not known explicitly. Therefore, numerical
methods to approximate their solutions became important.

One branch of these numerical methods is the conforming finite element
method (FEM) used to approximate partial differential equations stated in
variational form over a function space V. The idea is to replace the infinite
dimensional function space V by some finite dimensional subspace Vy < V,
N = dim(Vy), in the variational formulation, leading to a discrete solution.
This is called the Ritz-Galerkin Ansatz.

Considering the Biharmonic equation in variational form, the Ritz-Galerkin
Ansatz requires C'-conforming polynomial spaces [AFS68, Cia74, DDPS79] (so
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called C'-conforming elements), which are typically very cumbersome to im-
plement, since they require polynomial degree > 5 in 2d or constructions via
macrotriangulations.

Another approach is to rewrite the Biharmonic problem into a system of
second order problems and use a mized finite element method (see e.g. [BBF13,
dB74, Joh73| and the references therein). Moreover, non-conforming methods
for the Biharmonic equation gained attraction (e.g. [BCI65, Mor68|).

One certain class of non-conforming methods for the Biharmonic equation, are
the so-called C-interior penalty Galerkin methods (COIPGM), which are based
on standard continuous Lagrange finite elements of order > 2. These methods
penalise jumps of the normal derivatives across element interfaces due to the
lack of C!-conformity; compare e.g. [BS05, EGH'02, HL02].

Dropping also C-conformity, leads to discontinuous Galerkin finite element
methods (DGFEM) (cf. [ABCM02, ABCMO00]|). These methods allow discon-
tinuities in the trial and test space. Therefore, local element bases can be
chosen independently of interelement continuity requirements, leading to very
sparse stiffness matrices. Moreover, they provide a high amount of flexibility
in mesh-design and adaptivity, i.e. they allow for meshes including hanging
nodes and/or local varying polynomial degrees (even on polygonal, polyhedral
or arbitrarily-shaped meshes); see [CDGH17, GHH06, CDG19, Don18§|.

In this thesis, we consider the so-called symmetric interior penalty discon-
tinuous Galerkin discretisation (SIPDG) of (1.1.1), which goes back to Baker
([Bak77]). This method uses standard discontinuous Galerkin finite elements of
order r = 2. Consistency is ensured and jumps of functions and normal deriva-
tives, across element interfaces, are penalised. We refer to [GH09, SM03, SM07,
MSBO07, FK07, Donl18| for a detailed introduction of (hp)-SIPDG methods for
the Biharmonic equation.

A posteriori error estimators for the SIPDGM were developed in [GHV11] and
can be used to design an adaptive SIPDGM (so-called ASIPDGM) based on the
standard loop

SOLVE — ESTIMATE — MARK — REFINE. (1.1.2)

Convergence theory of (1.1.2), however, becomes a particular challenging
problem for two reasons: First, the discontinuity penalisation terms include
negative powers of the mesh-size h and thus are not necessarily monotone un-
der refinement. Second, the lack of a conforming subspace with proper ap-
proximation properties, since a C'-conforming subspace is only available, if the
polynomial degree exceeds e.g. 4 in 2d (see [dBD83, GS02]).

The first issue is also present in adaptive discontinuous Galerkin methods for
2nd order problems. Here, Dorflers marking strategy typically ensures uniform
error reduction [KP07, HKW09| and even optimal convergence rates [BN10].
All of these results are based on the observation that the penalty is dominated
by the ‘conforming parts’ of the estimator, provided the penalisation parameter
is chosen sufficiently large; see [Doe96, MNS00, CKNS08|. In a similar fash-
ion the authors in [FHP15] attempt to prove convergence of AC°IPGM for the
biharmonic problem (1.1.1). However, the resulting argument is unclear to hold.
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A different approach was taken in the convergence result for adaptive dis-
continuous Galerkin methods for 2nd order problems ([KG18|, compare also
[KG19]), motivated by the convergence results for conforming adaptive finite
element methods [MSV08, Siell]. The authors develop a new limit space of
the non-conforming discrete spaces, created by the adaptive loop (1.1.2), and
proof the existence of a generalised Galerkin solution in the limit space. Con-
vergence of the sequence of discrete approximations to the generalised Galerkin
solution is actually a consequence of a version of the medius analysis of Gudi
[Gud10] and a local C°-conforming reconstruction operator. The coincidence of
the exact solution and the generalised Galerkin solution is finally a consequence
of the marking strategy. The convergence result is not restricted to symmetric
problems and holds for all penalty parameters ensuring discrete coercivity and
all practically relevant marking strategies.

Very recently in [DGK19], the convergence result for adaptive discontinuous
Galerkin methods for second order problems ([KG18|) has been extended to
quadratic (polynomial degree 7 = 2) AC°IPGM for the Biharmonic problem.
The proof adresses the challenge that a conforming subspace of a Lagrange
finite element space is prohibitive in AC’IPGM unless the polynomial degree
is chosen large enough. The convergence theory of ACYIPGM uses essential
new techniques based on the embedding properties of (broken) Sobolev and BV
spaces. Similarly to the convergence result in [KG18], the convergence theory
also holds for non-symmetric problems and, all practically relevant marking
strategies and all values of the penalty parameter, for which the method is
coercive. This has important consequences in practical computations: Since
the condition number of the respective stiffness matrix grows as the penalty
parameter grows, the magnitude of the penalisation affects the performance
of iterative linear solvers. This fact becomes even more relevant for the here
considered fourth order problem.

In this thesis, we extend the quadratic AC’IPGM ([DGK19]) to an ASIPDGM
for the Biharmonic problem (1.1.1) covering arbitrary polynomial degrees of the
finite element spaces. For simplicity of the presentation, we restrict ourself to
the SIPDG method. We emphasise, however, that other DG methods, e.g. semi-
symmetric interior penalty Galerkin methods (cf. [SMO7]) or Baker’s method
(cf. [Bak77]) can be treated analogously. As in the case of AC°IPGM this
convergence result holds for all marking strategies commonly used in praxis and
all penalty parameters ensuring discrete coercivity. We stress, however, that
this technique still not provides linear or even optimal convergence rates.

1.2 Overview

This thesis starts in Chapter 2 giving an analytical background from functional
analysis, in order to give an overview of most notions, which are used in this
work. This includes Lebesgue and Sobolev spaces and a review of the idea of
distributional theory. This theory is important in the context of Sobolev spaces
and in particular in view of spaces of functions of bounded variation. At the end
of this chapter we introduce the fourth order model problem which is used in
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this thesis and we derive existence and uniqueness of the solution of this model
problem.

In Chapter 3 we give some preliminaries of the discontinuous Galerkin dis-
cretisation of the model problem, including discrete function spaces, meshes and
traces. Afterwards, we recall the discrete bilinear form from [GHO09|, leading us
to the discrete problem. After that, we prove existence and uniqueness of this
problem. In this chapter we also repeat the proof of an efficient and reliable a
posteriori error estimator ((GHV11]) for the discrete problem. Finally, we intro-
duce the space of functions of bounded variation and state some compactness
properties of this space which will be used later on.

The following Chapter 4 introduces the model algorithm and therefore states
precisely the loop (1.1.2) which produces a sequence of adaptively created dis-
crete solutions. The rest of this chapter is therefore devoted to the proof that
this sequence of discrete solutions is converging to the exact solution of the
model problem and that the related a posteriori error estimators are vanishing
in the limit. The latter is important in view of practical calculations.

Chapter 5 adresses numerical experiments. We examine two different model
problems with different regularities of the exact solutions and analyse the related
rates of convergence.

In Chapter 6 we conclude this thesis by a summary of the achieved results
and consider future directions of research related to this work.

Finally, the Appendix states some results about measure theory and bubble
functions which are important in our context. Furthermore, we present a coun-
terexample to a previous version of [DGK19] which was brought to our attention
by an anonymous referee to whom we wish to express our greatest gratitude.



2 Analytical background

2.1 Preliminaries

In this chapter, we recall some basics from functional analysis which is useful in
this thesis. Moreover, we introduce function spaces as Lebesgue Spaces, Sobolev
spaces and the space of functions of bounded variation. Furthermore, the aim
of this chapter is to fix the notation and make the exposition self-contained.
Let N = {1,2,3,...} be the set of natural numbers and Ny := N U {0} be the
natural numbers including {0}. Moreover, let R be the set of real numbers. By
R? we denote the d-dimensional euclidean R-vector space. The corresponding

inner product is denoted by v - w = Zle vid;, for all v = (vq,...,v4) € RY,
w = (wy,..., wg) € R? with induced norm [v|ga = (v - v)"?, for all v € R%.
If no confusion is possible we drop the subscript, i.e. we write || - ||. To avoid

confusion we sometimes write vectors in boldface i.e. v € R?, if necessary.

By R%*4 we denote d?-dimensional vector space of d x d-matrices. The inner
product on a matrix space is denoted by A : B = Z;l,j=1 Ai;Bij, for all A =
(Aij)1<ij<d € R4 B = (Bij)1<ij<d € R¥*?. Forv € R™ and w € R™ the tensor
product is denoted by v®@w € R4*? and defined by (V@w);j = viwy, 1 < i,j < d.
Here, we use the convention that a first order tensor can uniquely be represented
by a R%-vector and a second order tensor can be uniquely represented by a d x d
matrix if the vector space R? is equipped with the Euclidean standard basis
{e1,...,eq}. Since no confusion is possible we use the same boldface notation
for tensors of order two and vectors in the sequel, i.e. we simply write T' € R?*¢,
if necessary.

Let w < R? be a bounded domain, then we denote by @ the closure of w and
by ow the boundary of w. From here on, 2 denotes a bounded domain and we
define the set of continuous functions on § as

Cc%(Q) := {f: Q@ > R: fis continuous on 2}
together with the supremum norm

[flgogqy = sup |f(@)]-
zel)

For d € N consider a multi-index o = (g, . .. ag) € Ng with |a| =: a;+---+ag.
We denote the (pointwise) partial derivative by 6%1 = ¢; and for |a| < k we
write 0% = 07 ... 5. Moreover, for m € Ny we define the space of (m-times)
differentiable functions

C™(Q) :={f: Q- R: 0“f € C°(Q) exists for|a] < m

and can be continuously extended to Q}.
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We note that C™(Q) is a vector space and becomes a normed space by using
the norm

Hchm(ﬁ) = 2 HaafHCO(ﬁ) :

||l <m

Note that the space of continuous functions and the space of m-times differ-
entiable functions are Banach spaces, i.e. complete normed vector spaces (see

[Alt16, 3.2]).

2.2 Background from functional analysis

In this section we only provide the results without proofs. For more information
see, e.g. [Alt16] or [Rud91].

Let (V,|-|y) and (W, |-|4) be Banach spaces. We denote the space of all
linear and continuous mappings from V to W by (V, W). It is a Banach space
with respect to the operator norm

|Bllvwy = sup | By -

lolly=1
The dual space of V is defined by
V':= (V;R) = {f: V- R: f is linear and continuous} (2.2.1)

and we let (f, v>V,’V := f(v). It is a Banach space if it is equipped with the
operator norm

[flvr = sup {fs v)yrey =2 sup f(v). (2.2.2)

lvlly=1 lvlly=1

In the subsequent analysis we need to define dual spaces where V is not a normed
space. To this end, we have to extend the definition (2.2.1) to topological vector
spaces which we introduce now (see [Alt16, 2.11]).

Definition 2.1. A topological vector space is a pair (X, 1), where X is a set
and 7 is a system of subsets of X (the elements of 7 are called open sets), with
the following properties:

(i) ger,Xer,
(i) Tcm = UpesUer,
(i) U, UseT = UynUyerT.
Definition 2.2. Let (V,| - |v) be a Banach space.

1. We say that a sequence {v}reny < V converges weakly to v € V (and write
vg — v as k — oo) if

Vo' e V' <U’, Uk>V’,V = <v', ’U>V,’V, as k — oo.
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2. We say that a sequence {v} }ren € V' converges weakly* to v' € V' (and
write v}, — v’ as k — o0) if

YveV: <v§€, U>V,V:<’Ul, U>V,V, as k — o0.
We state two basic properties of weakly convergent and weakly* convergent
sequences.
Proposition 2.3. Let (V,| - |v) be a Banach space. Then we have that

1. the norm is sequentially lower-semicontinuous, i.e. for all vy — v in'V as
k — oo, we have

< liminf .
[oly < liminf fug

2. Weakly convergent sequences and weakly™ convergent sequences are bounded.
Proof. Compare [Alt16, Chapter 8.2]. O

We emphasise that if (V,|-|ly) is a Banach space, then (V’, |- [v) is also
Banach space and we define the bidual of V by

V"= (V) = (V;R).
We note that each v € V generates a function J(v): V' — R via

J)(f) :i={f, vy = f(v), feV (2.2.3)

and J(v) is a continuous linear functional on V’, i.e. J(v) € V”. Writing J by
using the dual pairing

) ! N = ,7 A\
<J(U) v> <v v>

reveals that J € (V;V”) is an isometry and therefore injective.
The following definition deals with the case when J is also surjective, and
therefore J: V — V” is an isometric isomorphism.

Definition 2.4. Let (V,| - |lv) be a normed space and let J: V — V” be the
linear map defined in (2.2.3). Then we call

V reflexive < J is surjective.

As a consequence we have the following weak-compactness property of reflex-
ive Banach spaces.

Theorem 2.5 ([AF03, 1.18 Theorem|). Let (V,|-|y) be a reflexive Banach
space. Then, its closed unit Ball

B1(0) ={veV: |v|y <1}

is weakly sequentially compact, i.e. every sequence in B1(0) has a subsequence
converging weakly in V to a point in B1(0).
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Definition 2.6 (Bilinear form). A symmetric bilinear form B on a Banach
space (V.| - |v) is a mapping

B:VxVoR, (2.2.4)

which is symmetric, i.e. B[v, w] = B[w, v], for all v,w € V, and linear in
the first and second argument. The bilinear from is continuous if the exists a
constant Ceont > 0, such that

B v, ]| < Ceont V] [w]y,  Vv,weV.

Moreover, we call the bilinear form coercive if there exist a constant Ceoerc > 0,
satisfying

B[v, v] = Ceoerc [v]3 Vv e V.

Definition 2.7 (Scalar product and Hilbert Space). A symmetric and positive
definit bilinear form (-, )y : V.x V.— R on a vector space V is called scalar
product.

A Banach space (V, | - |v) is called Hilbert space if there exist a scalar product
Gy oyt VXV — R, satisfying [Jv]y = (v, v>;{2, for all v € V. We also use the
notation (V, (-, -)y) to denote a Hilbert space.

The notion of a Hilbert space is crucial in the subsequent analysis. To see
this let (V,{:, -)y) be a Hilbert space. Then the representation theorem of
Riesz (compare [Alt16, p. 163]) implies that for every 1) € V' there exist a
unique w € V such that

P(v) =(w, vyyy YveV.

Hence, V is isomorphic to its dual space V' and we infer that the dual space
is again a Hilbert space. Hence, by using again the representation theorem of
Riesz every Hilbert space is also a reflexive space (compare[Alt16, 8.11(1)]).

Now, we are in a positon on introduce the notion of a variational problem:
Let (V,{-, -)y) be a Hilbert space with dual V' and let B[, -]: VxV — R
be a bilinear form. For a given f € V' we want to solve the following general
variational problem: Find u € V such that

Blu, v] = (f,v) YveV. (2.2.5)

The following theorem provides the existence and uniqueness of a solution of
(2.2.5).

Theorem 2.8 (Lax-Milgram). Let (V,{-, -)y) be a Hilbert space with dual V'
and B be a bilinear form on V which is continuous and coercive on V with
coercivity constant Ceoere > 0. Then, (2.2.5) admits for any f € V' a unique
solution uw € V. Moreover, the solution is stable in the sense

1
Ccoerc

Proof. See |[EG13, Lemma 2.2]|. O

[l

ullyy <
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2.3 Lebesgue and Sobolev spaces

We briefly state the basic properties of two important classes of functions spaces,
namely Lebesgue and Sobolev spaces. For a more detailed introduction into
these function spaces the reader is referred to the books [Alt16], [Gri85], [AF03].

2.3.1 Boundary regularity

Nearly all properties of Sobolev spaces on a domain ) depend on the regularity
of the boundary 02 =: I'. Consequently, the notions of boundary regularity has
to be defined carefully. In this section we follow the lines of [GR86].

Definition 2.9. Let  be an bounded domain in R%. We say that its boundary
I" is Lipschitz-continuous (resp. of Class C™, for some m € N) if for every x € T’
there exists a neighbourhood U < R? of z and new coordinates y = (', 94),
where ¢ = (y1,...,yq—1) such that:

1. U is a hypercube in the new coordinates:

U={y: —aj<yj<aj,1<j<d}cRd.

2. There exists a Lipschitz-continuous function (resp. a C™-function) ¢ de-
fined in

U/={y’: —aj<yj<aj,1<j<d—1}cRd_1

satisfying
a) |p(y')| < % for all Vy' € U’
b) QU = {y: ya < ¢(y)} and
o) TnU={y:ya=o@)}

This definition states that locally 2 is below the graph of some function ¢,
the boundary I' is represented by the graph of ¢ and the regularity of I' is
determined by the regularity of the function ¢. In particular, the continuity of
¢ implies that the € is never on both sides of I' at any point of I" (e.g. think of
domains with a cuts or cusps). However, this definiton allows boundaries with
corners. For example bounded polygons in R? or bounded polyhedrons in R3.
In the sequel we will say that €2 is a Lipschitz domain, meaning that the € is a
bounded domain with Lipschitz-continuous boundary. Note that on a Lipschitz
domain, a unit exterior normal vector, which we denote by ng or simply n is
well defined for almost every x € 0 (|Gri85, Chapter 1.5]).

2.3.2 Definitions and basic properties

In this section we give some basic definitions and results from standard theory
of partial differential equations. Let w — R?% be an Lebesgue-measurable set and
let f: w — R be a measurable function. We denote the Lebesgue integral of f
over w by Sw fdx (compare [Barl4| for a detailed introduction of the Lebesgue
integral).
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We define L1

loc
of all measurable functions f: 2 — R, such that

(Q) to be the space of locally integrable functions, i.e the set

foda:<oo

for all compact subsets K < R,

Definition 2.10 (Lebesgue space). For 1 < p < o0, let
LP(Q2) := {f Q — R: fis measurable and : | f] ;50 < oo},

where

1/p
Wl = ([ 177 a2) 7 o 1<p< i,
(FATZYS —esssup|f ) :=inf{M =0: |f(x)] = Mon Q}.

We note that Lebesgue spaces and the space LlOC (Q) are actually defined as
equivalence classes of functions, whose values differ only on a set of Lebesgue
measure Zzero.

For 1 < p < oo we have that LP(Q2) is a Banach space if its equipped with the
Il 2o () norm, compare [AF03, p. 29].

In the case p = 2, L?(Q) is a (real) Hilbert space when it is equipped with
the inner product (JAF03, p. 31|)

v, wyp2(q) = J vwdz
Q

and the induced norm |-| r2(0)- In order to shorten the notation we also write
(v, w), and || in the case p = 2.

For 1 < p < o, we denote by p’ the conjugate of p, i.e. % + 1% = 1, with
p)=1if p= 4w and p’ = +0 if p = 1. This leads us to Holder’s inequality
(compare e.g. [Bar01, p. 404]), which states that for v € L?(Q) and g € L” (Q)
there holds vw € L'(Q) and

fﬂ vwda < ol gy 1ol 1o -

In particular, for p = p’ = 2 we end up with the Cauchy-Schwarz inequality,
namely for all v, w € L?(2) we have

W, w2y < vl p20) 1wl 20
We will also use Young’s inequality: For a,b > 0 and 1 < p < o0 we have that

1 1.
ab < —aP + — b, (2.3.1)
p P

compare [Alt16, (3-11)].
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2.3 Lebesgue and Sobolev spaces

for 1 < p < oo the dual space of LP(Q) can be identified with L (Q); see
[Alt16, 6.12]. As a consequence LP(9) is reflexive if 1 < p < +00. However, the
spaces L'(Q) and L®(Q) are not reflexive. This is due to the fact that the dual
of L1(Q) is L®(Q2) but the dual of L®(£2) is the space of signed Borell measures,
which is strictly larger than L'(Q) (compare [AF03, Chapter 2]).

For a function f: 2 — R we define the support of f by

supp(f) = {x € Q: f(z) + 0}.

Moreover, we define the space of continuos function with compact support by

Co(Q) := C(Q) := {f € C°(Q): supp(f) = Q}.
Let
C*(Q) = () C™(Q)

meN

be the function space of infinitely differentiable functions. The space of test
functions on € is then defined by

Cr’(Q) := {p € C*(Q): supp(p) = Q}.

Moreover, we set
CE@) = {¢la: v e CFRD .

We remark that there exist a certain topology 7 (which is called the canonical
LF topology; compare [Alt16, 5.20, 5.21]) such that (C5°(£2),7) is a topological
vector space. Henceforth, the topological vector space (Ci°(€2),7) will simply
denoted by D(Q2).

The dual space of the topological vector space D({2) is defined by

D(Q) ={T: D(2) — R: T is linear and continuous} (2.3.2)

and will play crucial role crucial role in the following definition; compare [Alt16,
5.17].

Definition 2.11 (Distributions). Let T': C°(€2) — R be linear.

1. We call the map T a distribution on 2, and use the notation T € D'(Q),
if for all open sets D < 2 there exist a constant Cp and a kp € Ny such
that

IT(6) < Cp el ennp)  for all ¢ € GF(Q) with supp() = D.

If k = kp can be chosen independently of D, then k (if chosen minimally)
is called the order of T.

2. For all multi-indices s, the distributional-derivative 0°T is the linear map
0°T: CP () — R defined by

(@T)(p) == (~)FIT (2°p),  we Q).

11



2 Analytical background

3. If T is a distribution, then so is ¢°T for all multi-indices s. If T is a
distribution of order k, then 0°T is a distribution of order k + |s].

Recalling Definition 2.11 we have the space of distributions D’(€2) on the one
hand and the dual space D(Q2)" from (2.3.2) on the other hand. However, it is
possible to proof that D(Q2) = D'(Q2) (see [Alt16, 5.23]), i.e. T is a distribution
if and only if T': D(2) — R is linear and continuous with respect to the topology
chosen on C°(2), (i.e. T € (D(2))).

Note that every function in f € LL () can be uniquely identified with the
distribution of order zero

Ty D(Q) 5 ¢ > Ty(p) = L foda,

see [Alt16, 4.22].

This observation is crucial since it leads us to the notion of the distributional
derivative of a function: Regard the distribution 7T as defined above, then
Definition 2.11 reveals that Ty € D'(€) is differentiable in the following sense:
For 1 < i < 2 the distributional derivative D;Tt € D(£2)' is defined by

O
DiTy: D(Q) 3 ¢ — DT (p) := _Tf(é’:n-)
1
and more generally for a multi-index a = (a1, ..., aq), the distribution DT =

DYt ... DyTy is defined by
DTy D(R) 3 ¢ - DTy () = (—)ITy (@),

In the sequel, we will ease the notation by identifying f € Lll0 () with T €
D(Q)’. Note that T is well defined since f — T} is injective, i.e. f can
be reconstructed from 7y ([Alt16, 5.16(2)]). Moreover, we write D f for the
distributional derivative of f.

Definition 2.12 (Sobolev Spaces). Let n € Ny and 1 < p < +00. We define
the Sobolev space W™P(Q) by

W™P(Q) :={ue LP(Q): D*ue LP(Q), V|a| < n},

where we understand the derivatives in the distributional sense (and henceforth
call them "weak derivatives’). Moreover, we set WOP(Q2) := LP(Q).

We equip the space W™P(§2) with the norm

1/p
<Z|a|<n HDO‘UHZ,(Q)) for 1 < p < 400,

”uHWn,p(Q) =
maX|a|<n [D*Ulpe(q)  forp=+o0.

The space (W™P(Q), || yn.p(q)) is a Banach space. Moreover for 1 < p < +
the space W™P(Q) is reflexive; see [Alt16, 8.11(3)].

12



2.3 Lebesgue and Sobolev spaces

For the case p = 2 we denote W™2(Q)) =: H"(f2) and emphasise that H"()
is a Hilbert space with the inner product

{u, vy, = Z J D%uD%v dx,
’ Q

lal<n

and induced norm |- yn(q); see [AF03, 3.6 Theorem)].
Moreover, we denote

Hy (@) =Dy @

i.e. the closure of D() for the norm |- zn (g
The following estimate is crucial in the context of Hg(€2)-Sobolev spaces;
see [Alt16, 6.7].

Lemma 2.13 (Poincaré-inequality). If Q2 is open and bounded, then there exists
a constant Cy > 0, which depends on €, such that

|v]|3, < Co L \Vo|? dz Yue HE(Q).

Throughout this thesis we use the fact that on the space H{'(€2) the following
semi-norm

1/2

|U\Hn(9) = Z HDQUH%?(Q)

laj=n

is equivalent to the Sobolev norm | yn(q). Indeed, for the case n =1 this is
a consequence of the Poincaré inequality. Using an induction argument, we can
therefore conclude that for any n € N the semi-norm |-|;» is a norm on H{'(Q)
and in particular (H" (), |[gn(q)) is a Banach spaces.

For n = 2 the dual space of HZ(Q) is denoted by H2(2). We define a norm
on H~2(Q2) by

(f, U>L2§z
1fl -2y == sup ~r
verz@) 1012

v%0

In the subsequent analysis we make use of several embedding Theorems wich
we state now (compare [Alt16, 10.9]).

Theorem 2.14 (Embedding of Sobolev Spcaces). Let @ < R? be a bounded
Lipschitz domain and ni,no € Ng. Moreover, let 1 < p1 < 0 and 1 < py < 00.

1. If

13



2 Analytical background

then there exists a continuous embedding
id: WnPL s W n2.P2

Hence, there exists a constant C > 0, depending on d, 2, ny,p1,ns, pa such

that
|[ulyynowe < Cllulynye  Yue WP
2. If
d
ny——>ng——, and np>ng,
P D2

then the identity mapping
id: WnPL _, J/n2p2,

is a compact operator. This means, that for every bounded sequence in
WnLPL there exists a converging subsequence in W2:P2,

Remark 2.15. Note that all definitions of this section can be extended to vector-
valued functions with the following convention: A function f: Q2 — R"™, me N
is located in the space LP(Q)™ if every of its component functions is located in
the space LP (). We obtain a Banach space by replacing

1/p
e = (Llflpdfc> L Jorl<p< 4o,

1/p
Flimey = ( | If\ﬁmdx> C jerl<p< i

in Definition 2.10, for a vector norm ||-||gm on R™. The same holds for the case
p = o0 and Sobolev spaces of vector-valued functions are generalised the same
way.

2.4 The model problem

From here on 2 < R? denotes a bounded polygonal domain with Lipschitz
boundary 0€2. We consider the following Biharmonic problem

A*u=f inQ, (2.4.1)

with right-hand side f € L?(Q2) and Dirichlet boundary values (essential bound-
ary values)

u=a—u=0 onI'.
ong
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2.4 The model problem

To deduce the weak formulation of (2.4.1) we multiply both sides with a function
v € H3(Q) and perform integration by parts twice. Now, taking into account
the boundary values, the weak formulation reads: Find u e HZ(€2), such that

Blu,v] = F(v), Yve H(Q), (2.4.2)
for the bilinear form

%[w 1)] ._J Dw: DQ,de_f i (927106271)
’ o QO ) B Qij:l ax,(?:c] (3:[;,(9:1;]

and right hand side F'(v) := SQ fvdx. By using the Cauchy-Schwarz inequality
we have that the bilinear form B[, -] is continuous on HZ(), i.e. there exists
a constant C such that

9B [0, w]| < C1 ol ooy Iz . Voo € HE(Q).

Moreover, the Poincaré inequality (Lemma 2.13) implies that 9B(-,-) is also
coercive on HZ (), i.e. there exist a constant Cy with

Blo,o] > C ol Voe HI Q).

Finally, we emphasise that the space L?(Q) is a subspace of H~2(£2) in the sense
that for f € L?(Q) the mapping

v'—>f fvdx
Q

belongs to H~2(2) and we have 1flr-2¢0) < [ £l due to the Cauchy-schwarz
inequality. Whence, we infer from the Lax-Milgram Theorem 2.8 the existence of
a unique solution u € HZ(), which solves (2.4.2) and the solution u is bounded
by Jul 30y < Cs |l

Note that the additional regularity f € L?(Q) is necessary due to the a pos-
teriori analysis below. However, despite additional regularity of f, the solution
u does not belong to H*(Q) in general (e.g. compare the model problem in
the numerical example 2, Chapter 5), due to our restriction to polygonal do-
mains. For details of regularity theory for the Biharmonic problem compare
e.g. |Gri85, Gri92, Dau06, BRL80|. Moreover, for the generalisation to various
non-homogenous boundary conditions we refer to [Gri85, GR86, GGS10].
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3 Discontinuous Galerkin Finite
Element Methods

In the first part of this chapter we recall some common definitions, related to
Discontinuous Galerkin finite element spaes which are used throughout the rest
of this thesis. Afterwards, in Section 3.1.1 we derive a discontinuous Galerkin
discretisation for the model problem, leading to the SIPDG-problem which is
defined in Section 3.2. In this section, we also discuss existence and uniqueness of
the SIPDG-problem. In the following Section 3.3 we introduce lifting operators,
ensuring that the resulting discrete bilinear form can be applied to functions of
lower regularity.

In Section 3.4 we recall the a posteriori error estimator developed in [GHV11]
and state the proofs of upper and lower bounds. Finally, in Section 3.5 we
precisely formulate the embedding of discontinuous Galerkin spaces into BV -
spaces.

3.1 Discrete function spaces, meshes and traces

Let T be a conforming (i.e. not containing any hanging nodes) subdivision of
Q) = R? into closed disjoint triangular elements K € T such that Q = J xer K.
We assume that T is constructed by affine linear bijections Fg: K — K (with
non vanishing Jacobian), defined on the reference element

K={zy:0<e<l,1<y<l—a}cR

Let Fr := F(T) be the set of one-dimensional faces F, associated with the
subdivision 7 (including 02), which are straight lines, due to the restriction to
triangular elements. Moreover, we define .7-27 to be the subset of interior sides
only and ]:% = ]:T\]-ET be the boundary faces. The corresponding skeletons
are then defined by

rr = J(F e Fr},
D= U{F e Fr} and
% = | J{F e Fp},

respectively.
Moreover, let hy : Q — R the piecewise constant mesh-size function which
is defined by

hi = |K|YY, ze K\0K,

3.1.1
hp = |FIY@Y  zeFerF. (8:1.1)

hr(z) = {

17



3 Discontinuous Galerkin Finite Element Methods

Additionally, let hx = diam(K) be the diameter of K and
hy =sup{r: B, c K is a Ball of radius r}

the diameter of the largest inscribed ball in K.

We assume that T is derived by iterative or recursive newest vertex bisection
of an initial conforming mesh 7p; compare with [Bae91, Kos94, Mau95|. By G we
denote the family of shape-regular triangulations consisting of such refinements
of Ty, i.e. there exists a constant Creg > 0

hi

<Crg YKeT, VT eG.
hy

Additionally, we note the following estimate of the Jacobian determinant of
Fr: K > K

CJJ@K < |det DFK‘ < CJQEK, (3.1.2)

for constants Cj1,C2 > 0, only depending on the 7y (resp. Creg; see [Cia02a,
Theorem 3.1.3|). For T, 7T, € G, we write T, = T whenever 7, is a refinement of
T. We recall that refinement by bisection has the following property: Let 7, be
a refinement of 7 € G. Then, we have that the mesh-size function is monotone
in the interior of elements, i.e.

VK e T\T: h7|; < 2_1/2h7*‘f<, (3.1.3)

whereas hr,|p = hy|p is possible for F' ¢ K, compare the Definition of the
mesh-size function (3.1.1).
For r = 2, we define the Discontinuous Galerkin finite-element space by

V(T) :=P.(T) with P.(T):={ve L*Q): v|g e P.(K) VK € T},

where we use the notation P,(M) for a subset M < 7. In the same vein,
we define V(7)? := {v e L?(Q)?: v|x € P,(K)?}. We note that the dimension
of V(T) equals the global degrees of freedom of V(T) and is given by N =
dim(V(T)) = (#7T) x dim(P,(K)), due to the fact that the restriction of a
function v € V(T) to each element can be chose independently of its restriction
to other elements. Additionally, we define the L2-projection onto V(7), i.e.
II: L*(Q) — V(T) for any v e L*(Q) as

M, wyg = (v, wyqg, forallveV(T). (3.1.4)

Standard estimates reveal that the projection II is stable in the sense that
Mv|g < |vlq, for all v € L*(2). Here |-, denotes the L?-norm; see Sec-
tion 2.3.2.

In view of regularity we emphasise that in general have V(7)) ¢ H}(Q2) and
thus also V(7) ¢ HZ(2). On the other hand, since each function V € V(T is
locally a polynomial on each element K € T, we have, however

V(T)c HY(T):={ve L2(Q): v|g e HY(K), VK € T},

18



3.1 Discrete function spaces, meshes and traces

for all n € Ng. For v e H™(T), m > 2, we define the piecewise gradient Vv
and the piecewise Hessian DP2WU by

(Vewtt)| i := V(ulg) € L*(K)? VYKeT,
(D3 u)|x D2 (ul) e L*(K)*?  VKeT.

Note that for v € H™(T), m > 4, the function v as well as all relevant derivatives
Vv, D?v and V - D?v are measurable on element boundaries 0K, K € T and
the corresponding L2-norms are defined.

Let A7 be the nodal degrees of freedom of V(7) and be Z7 be the set of
nodes (Lagrange nodes) associated with the degrees of N7, i.e. we identify a
node z € Q with its degree of freedom N, € N7. For z € Q, we denote its
neighbourhood by Ny (z) := {K'e T | z€ K'}, and the correspondlng domain
is defined by wy(z) := Q(N7(z)). Hereafter, we use Q(X) := (J{K | K € X}
for a collection of elements X. With a little abuse of notatlon for an element
K €T we define its jth neighbourhood recursively by

NI(K) := {K’ eT | K' n Ny '(K) + @},

where we set N3(K) := K, and the corresponding domain by w%-(K) =
Q(N%-(K)) We shall skip the superindex if j = 1, e.g. we write Ny (K) =
NH(K) and wr(K) = wh(K) for simplicity. For a side F < Fr, we set
Nr(F):={K e T: F c K} with corresponding domain

wr(F) = | JIK € Nr(F)}.
We extend the above definitions to subsets M < T setting

NI (M) := {K € T: 3K’ € M such that K € NJ(K')}.

In the sequel we use the notation a < b when a < Cb for a constant C' > 0
which is independent of the actual element K, but depends on given parameters,
e.g. like the polynomial degree r, the dimension d or the parameter n of a
Sobolev space H"(K).

Note that the shape regularity and conformity of G implies local quasi-
uniformity, i.e.

K|
sup max < and sup max #Nr <1, 3.1.5
TeG K'eN7(K) | K| TeG K () = ( )
see [BNQT12, Section 1.5].
In order to formulate the discrete bilinear form, we first need to introduce the
so-called jump and mean of a function on the skeleton I'r. In fact, for v € V(T),
we define

— , FeF ,
[o], — { 0K e T (3.1.6)
vlK, FeFb FcK,
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3 Discontinuous Galerkin Finite Element Methods

F

Figure 3.1: Normal direction with respect to a side F.

- %(U|K1 + U|K2)7 Fe ]'27'7
{{U}}F T b
vk, FeFr FcK,

where F € ]-ET with F' = K1 n K5 and K1, K5 € T are the two adjacent elements
of F' (see Figure 3.1). Jump and mean across F' € Fr are defined analogously
for vector fields w € V(7)? and tensorfields T € V(7)2*2, i.e. the above jump
and average operators act component wise in these cases.

Remark 3.1. We note that for F € Fr the definition of [-] |r in (3.1.6) in
general depends on the choice of the ordering of the elements Ky, Ko. However,
in combination with face normals the definition of jump terms become symmet-
ric. To be precise, let ng, and ng, be the unit outward normal corresponding
to 0, and Ok, and define np := ng, = —ng, (compare Figure 3.1). Then, we
have

[vlnr = vk nK +vlKknK,,

r.e. Ki,Ksy play symmetric roles. The same holds true if v is replaced by a
vector valued function w € V(T)2. In this case we have

IIw]] "np = Iw‘K1 "MK, + w|K2 "MK,
which is again independent of the ordering of K1 and Ks.

To simplify the notation, we sometimes drop the subscripts of the unit out-
ward normal, i.e. when no confusion is possible we simple write n instead of
Ng Or Ng.

3.1.1 Derivation of the discontinuous Galerkin finite element
method

This section we loosely follow the same path as in [DPE12] (compare also [SMO03,
Section 3|) in order to derive our discontinuous Galerkin bilinear form B7. A
different approach can be found in [GH09|. Here, we give a full derivation of the
discrete bilinear for two reasons: The first reason is, that the presentation of this
thesis should be self-contained. Second, we aim to derive slightly different for-
mulation (related to a bilinear form including piecewise Hessians terms instead
of piecewise Laplace terms) of the discrete bilinear form compared to [SMO03]
(compare Remark 3.5 below).
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3.1 Discrete function spaces, meshes and traces

The derivation of the discrete bilinear %57 form hinges on consistency, i.e.
B should satisfy

Brlu, wy] = jﬂ fwpdx  Ywy € V(T) (3.1.7)

whenever the exact solution of (2.4.2) has extended regularity u € HZ(2) N
H*(Q). This regularity assumption can be asserted for instance for convex
domains €.

Before we start, we recall the following Lemma which is crucial in the subse-
quent analysis.

Lemma 3.2. Let € H'(Q,T) and ¢ € H (Q, T)?, then we have

EJ ) ds

KeT
(3.1.8)
> | teh-nelelas+ 3 | 6D ne g as
Ferr FeFr
Moreover, for T € HY(Q,T)?*? and be H(Q, T)? we have
K;T aKTb-ans
(3.1.9)
- J (Thb] nrds+ Y f [T {b} - nrds
FeFr FeFr

Proof. Equation (3.1.8) directly follows from [DPE12, p. 123] and we restrict
ourself to the proof of (3.1.9). Note that for all F' € F with F' = K; n K, we

have np = ng, = —ng, (compare figure 3.1) and therefore
| Tb ans— f [T6] - npds+ ). f Tb-nrds. (3.1.10)
KeT VK FeF?

Setting C; = T'|k,, D; = b|Ki, 1 <i <2, gives us
[Tb] = C1Dy — CoDs
= S(CL+ C)(Dy — Do) + (Cr — Ca) (D1 + Do)
{7y o] + [TT {o} ,

where we used the definitions of [[-]] and {-}. Hence, inserting the last equation
into (3.1.10), yields

Z Tb ngds = )] f {T}[b] npds+ > f [T] {b} - nrds

KeT FeFr FeFr

J Tb-npds

FeF?

and the desired estimate (3.1.9) follows from the definition of mean- and jump
terms on 0f). O

21



3 Discontinuous Galerkin Finite Element Methods

Remark 3.3. We note that for F € j:, F = K1 n Ky, the proof of Lemma 3.2
reveals

J [Tb] - np ds — J (T IB] nrds+ Y, f [T] {b} - nr ds.

F]:T

We stress that the jump term on the left-hand side is symmetric with respect to
the ordering of the elements Ky and Ko (compare Remark 3.1) and thus, the
Jump-terms on the right-hand side are also independent of this ordering.

In order to ease the notation we restrict ourself to homogeneous boundary
values introduced in Section 2.4. The case of non-homogeneous boundary values
can be handled as in [GH09].

In the subsequent analysis, we make use of a tensor-valued integration by
parts formula. To this end, we note that a 2-tensor

2
2x2
T = Z T%jei®€jER
1,j=1

is represented by the matrix T' = (Tj;)1<i j<2 € R**2, where the vector space
R? is equipped with the standard basis {e1, e2}. Consequently, for a sufficiently
smooth 2-tensor-valued function T' = (T} j)1<i j<2 With column vectors T —
(Thi, To;)T', 1 < i < 2, the divergence is defined by

aﬂ] 1 2N\T
V.-T= 21 i v.TW v.T)T,
’]

Let K € T be an arbitrary element, ¢ € H'(K)? be a vector-valued function
and W e H(K)?*2 be a tensor-valued function, then we have

qub:Wde:—f ¢ (V-W)dz + | Wo nds.
K K oK

For K € T,ve H*(K) and wy, € V(T), the last equation implies the following
integration by parts fromula

J D?v: D*wy, dx = f (A20)wy, dx + D?*uVwy, - ng ds

K K oK (3.1.11)

—j (V- D% - ng).
oK

Summing (3.1.11) over all K € T and using (3.1.8) and (3.1.9) leads us to
> f D?v : D*wy, da
KeT
Z J (A% whd:c—f {v-D*v}  nfw,] ds
KeT (3.1.12)

- f [v- D2v]] -n{w,} ds + f {{DZU}} [Vwy] - nds
f f

+ J [[DZ’U]] {Vwr} - nds.
‘F
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3.1 Discrete function spaces, meshes and traces

We observe that on the left-hand side of (3.1.12) we have localised the Hessians
of the bilinear form B (see (2.4.2)) to mesh-elements. Therefore, as a naive

approach we choose ‘Bgtw) [u,wp] = Dger S D?u : D*wydz as our discrete
bilinear form. In order to check the consistency requirement (3.1.7) we chose
v =u and assume u € HZ(Q) n H*(Q). From this we obtain

%(nc [w, wp] Z f D?u : D*wy, dx
KeT

- L funde— | {V-D*u}-nLu] ds
+ | (P} Ivud - nas

Hence, the last equation suggest that in order to satisfy the consistency assump-

(nc)

tion (3.1.7) we have to add consistency-terms to the discrete bilinear form 8-
ie.

%%E) [w, wp] = %g@c) [w, wp] + Jf {v-D*u} - nfw,] ds
N J {D*u}} [Vwp] - nds

(3.1.13)
f D?u : DQwhdaH-J {v-D*u} - nfw,] ds

KeT

- [ gty nds - | funa.

Unfortunately, the resulting discrete bilinear form ‘B(TC) in (3.1.13) is non-symmetric

with respect to the two arguments. In order to recover symmetry of B, we
have to add symmetry-terms, i.e.

B [y ] = B [ ] + L 4V - 2wy} - n[u] ds

- f {D*u} [Vwy] - nds

J D%y : D*wy, dz
KeT (3.1.14)

- LT {v - D2} - nfw] + {V - D2uwp} - n[u] ds
[ AP T (PP 1900 s

= JQ fwp dz.

Here, we used that [ullp = [Vu]z = 0 for all F' € F since u € H3(Q). Finally,
(sym)

we have to ensure the coercivity of the discrete bilinear form B""". For wy, €
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3 Discontinuous Galerkin Finite Element Methods

V(T) we have that

%gfym)[wh,wh] = Z J ’D2wh|2 dz
KeT VK

+ 2J {v-D*wp} - nwp] — {D*wi} [Vwr] - nds.
f
We emphasise that the the desired estimate 5 (sym) [wp,vn] = C H!whll\?r is
unclear since the face integrals S]__ {{V - D2y, }} n Jwp] — {{Dzwh }} [Vwp] -nds

do not have a positive sign in general. In order to cure this issue we add penalty-
terms to the discrete bilinear form i.e.

%%I—)en) [wh, 'Uh] = %gfym) [wh, T)h]
o B
+LThT[[w]]-n[[th]]-n+hgT[[u]]n-[[wh]]nds
= j D?u: D*wy, dx
-
[ VDl s (VD% Tundnas
Fr
~ [ AT n+ {0 9] s

o B
+LT,W[[w]]-n[[th]]-n+h?,T[[u]]n-[[wh]]nds

= JT fwp dx.

for some o, > 1 (to be chosen later). In order to shorten the notation, for
v e V(T), we also write

(3.1.15)

[[@n’l)]] ‘F = [[VU]] ’F “np = VU’KI’I’LKl + V’U’KQTL[Q,

where we used np = ng, = —ng, for ' = K; n Ky, compare Figure 3.1.
We emphasise that in this definition K7 and K are allowed to play symmetric
roles. Finally, the same holds true for the two remaining jump-terms, due to
Remark 3.3.

Finally, in view of (3.1.15) we are in a position to define our discrete SIPDG
bilinear form by

Brlv, w] = fT D?v: D*wdz

b [ 4 D) ln s (7 D) Rnas
T (3.1.16)
[ tptoimen s g 9 nas

a B
¥ LT o 10 100] + g Dol [,

for all v,w € V(T).
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3.2 The discrete problem

Remark 3.4. For the ease of notation we restrict ourself to the SIPDG variant
of the bilinear from, in (compare also [SM07]). However, we emphasise, that
by modifying the above derivation we could also obtain the non-symmetric and
the semi-symmetric variant of the interior penalty discontinuous Galerkin bilin-
ear introduced in [SMO7]. Even the classical method of Baker [Bak77] can be
obtained in this way; see [GHO09, Remark 3.1]).

3.2 The discrete problem

We define the symmetric interior penalty discontinuous Galerkin method (SIPDGM):
Find uy € V(T) such that By[ur, vr] = f for YoreV(T), (3.2.1)
Q

where B7[-, -]: V(T) x V(T) — R is defined in (3.1.16).

Remark 3.5. Similar discontinuous Galerkin methods are derived in [SMO3]
and [GHO9] although they use a slightly different ’divergence formulation’ of the
method instead of the ’plate formulation’ used in (3.1.16). The bilinear from in
divergence formulation is defined by

Brlv,w] = J AvAwdz
T

+ f <[[v]] n-{VAw} + [w]|n - {VAv}
4 (3.2.2)
— (A0} [Vu] - n — {Aw} [Vo] n) ds

+Lrhgr[[v]]n.|[w]]n+hT[[Vv]]-n[[Vw]]-nds

and follows from a slightly different integration by parts formula. In this defini-
tion all tensor-fields occurring in the method are of order k € {0,1}. Hence, the
definitions of the trace operators [[-]] and {-} can be slightly simplified. However,
an advantage of the plate formulation is that we can use more general boundary
conditions of fourth order problems (see e.q.[EGH' 02]).

In order to prove continuity and coercivity of the discrete bilinear form B
on V(7), we define the energy norm

@ 2, B 2
loll3 = J D*v: D*vdx + J 16,017 + 5 ITvll n* ds,
T T Fr hT h,37-

where v € H3(T) and «, 8 > 1 are the penalty parameters (to be chosen later).
Additionally, we define for some subset M < T

it [ sl o
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3 Discontinuous Galerkin Finite Element Methods

In order to keep the presentation simple we will henceforth write SQ ‘Dngf dz
instead of §, DpQwv: DPQWU dz. Moreover, we simply write || instead of the vector-
norm | - ||, when no confusion is possible, i.e.

| Eanl s = | jpennle

for ve V(T) and F e F.
The proof of coercivity and continuity of 28+ is based on the following two
crucial estimates.

Lemma 3.6 (Inverse estimate). Let T € G. Then,
Vel < Cindhid [olic, VoeV(T), KeT, (3.2.3)

where Cin, only depends on the shape regularity and the polynomial degree r.

Proof. See |DPE12, Lemma 1.44]. O

Lemma 3.7 (Trace inequality). Let T € G. Then, for all F' € Fr, such that
FcKeT,

—1/2
[l < Corhi ol Vo e V(T), (3.2.4)

where Cy only depends on the shape regularity and the polynomial degree r.

Proof. Compare [DPE12, Lemma 1.46]. O]

In the following proposition we will write down constants related to coerciv-
ity of B explicitly, since we are interested on the dependence of the penalty
parameters «, 8 with respect to the polynomial degree r.

Lemma 3.8 (Continuity and Coercivity). Let T € G and chose the penalty
parameters a, 3 such that o > 6C2. and 3 > GCthCiva' Then, there exist positive
constants Ceont, Ccoer Such that

Br[v, w] < Coont ol lwlly  and  Ceoer [0ll7 < B, v].

for all v,w € V(T). The constants Ceont, and Ceoer solely depend on «, 3, the
mesh parameters and the polynomial degree r.

Proof. Before we establish coercivity and continuity of %87 we consider the
following estimates of face integrals: For all v,w € V(T) we have

[ 4502y punas

(3 Z il D%wK\;m)m ([ 7wt as)

KeT FcT

1 (325)
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3.2 The discrete problem

and

‘ L (D0} [Vl -nds

) 1/2 1/2
< (Z Z hF ||D2'U|K||L2(F)> (J‘]: h,}l |[[an/w]]|2 dS) .

KeT FcT

(3.2.6)

This is a consequence of the Cauchy-Schwarz inequality and a regrouping of the
face contributions (compare [DPE12, Lemma 4.11] for details).

In order to proof coercivity, let v € V(7) and write

Brlo, o] > Bl 2| [ (DR mlep as
-2 UfT {D*v} [Vo] - nds

o 2 P 2
+ — [0, v]* + == [[[v]] »|” ds.
J,. o Dol + g 1l

(3.2.7)

In (3.2.5) we use the trace inequality (3.2.4) and the inverse inequality (3.2.3)
in conjunction with hp|rp < hi|p, for all F < 0K and all K € T, to obtain

[ 4502y punas

1/2
< ( Z Z hSF HV . D2U‘K‘i2(F)> <J;__ h,;_?’ ’[[w]] n‘Q d8>

KeT FcT

) 1/2 12
) (Z i ||v-D%|KHL2@K>) ([ #7* Il as)

KeT

1/2

(3.2.8)

1/2
< CinyCerV3| Do, (L h2 | [w] n|? ds) .

In the same vein we obtain from (3.2.6) by the trace inequality and similar
arguments

1/2
< CoV3|Davl, ( L ht ([6,w]|? ds) . (3.2.9)

‘ L (D%} [Voo] - nds

Using (3.2.8) and (3.2.9) in (3.2.7), in conjunction with Young’s inequality,
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3 Discontinuous Galerkin Finite Element Methods

yields
Brlv, v] = % HD}?WU“?l — 6C2,C2 LE h |[w] n|? ds
— 602 J h [0, w]|* ds
F
+ LT % [0,v]% + hgr [v]? ds (3.2.10)
o

— 6C3 - 6Ca,Cr
+f 2w T [0,0]” + P = 0y s | [elnl® ds.
Fr T T

As a result we obtain coercivity of B7 on V(T) since we assumed a > 6C2 and
B> 6C2 C2.

inv

Finally, continuity of B+ follows from (3.2.8) and (3.2.9), since we obtain
Brlv, w]

< |D%ulg D%l + | [ {9 D) nlv] o
R R CIRR R s T
o[ (orwy e nas

a B
+ ffT = 0,01 [0,,w] + E [v]n- [w]nds

< |D%] o[ D?w]g + CuCinV3 | Dav]g |7 [l n|

+ CuCine VB[ Dgnly, |7 [l ]+ Cor/3| Bl 1 nel]
# Cor3| D o ol o+ ol P o] ol el
o b,
< Ceont [[vll 7 llwll-
O

The following theorem states that the discrete problem (3.2.1) yields a unique
solution, provided the penalty parameters where chosen large enough to ensure
coercivity of the discrete bilinear form.

Theorem 3.9 (Discrete solution). Let T € G and chose the penalty parameters
a, B such that o > 6C?. and B > 6C2.C? . Then, the SIPDG problem (3.2.1)

tr~inv"

yields a unique solution ur € V(T).

Proof. We already established coercivity and continuity of B on V(7) in
Lemma 3.8. Hence, in order to apply the Lax-Milgram Theorem 2.8, we have
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3.3 Liftings: Definition and stability

to prove that (V(7),[-|l-) is a Banach space. Note that |-, is obviously a
semi-norm on V(7)) and we only have to prove

lvfl =0<=wv=0, VYveV(T).
Whence, let v € V and assume [|v]l; = 0, then HDPQWUHQ = 0 implies DZv = 0
V2 [[8nv]]’ =0

implies that interface and boundary jumps of Vv vanish and therefore Vp,v = 0
on the whole domain 2. Consequently, v is a constant on every K € 7. Since

also Hh}g/Q Mol nHF = 0, we infer that v = 0 on the whole domain Q. As a

consequence, we have that (V(7),|-[l;) is a Banach space and the assertion
follows from the Lax-Milgram Lemma 2.8. O

and therefore Vp,v is a constant on every K € 7. Moreover, ‘

Remark 3.10 (r-dependency of the penalty parameters). We note, that Ciy,
and Cy depend on the polynomial degree r,. i.e. Cyr scales as A/r(r +2) (com-
pare [WHO03] and Cj,, scales as r* on triangles (see [SS98]). Hence Lemma 3.8
implies, that o = O((r +1)?) and 8 = O((r +1)%). The specific choices of the
penalty parameters in the numerical experiments (Chapter 5) follow from these
estimates.

Unfortunately, we can not apply the discrete bilinear form B to the exact
solution u of (2.4.2) in cases of minimal regularity u € H3(Q). The reason is that
the discrete bilinear form requires traces for second and third order derivatives
of u and therefore we need u € H*(Q) which does not hold in general (compare
Section 2.4 and the references therein). In order to solve this problem we have
to introduce so called lifting operators, resp. liftings.

3.3 Liftings: Definition and stability

Lifting operators map scalar valued functions defined on mesh faces to tensor
valued functions defined on mesh elements. In this way, the second and third
order derivatives face integrals are replaced by volume terms.

In order to give a proper definitoon, we fix ' € 7 and define a local lifting
operator LE: V(T) + H3(Q) — Pr_o(T)?*%, by

f L (¢): pda = f {V -} -[oln—{v} Vo] nds (3.3.1)
Q F

for all ¥ € P,_o(7)?*2. A simple interpretation of the lifting operators is
the following: For each ¢ € V(T) + HZ(Q) the right-hand side of (3.3.1) is a
linear operator over P,_5(7)%?*2. Consequently, the lifting operator Ei—(qﬁ) is
the representative of this linear operator in P,_o(7)?*? under the L?({2)-scalar
product in P,_5(7)**?. Note that by the definition of L4 () the support is
given by wy(F), i.e. the one or two mesh elements of which F' is part of the
boundary. We expand the local definition (3.3.1) to a global lifting operator
L7r:V(T) + H3(Q) — Pr_o(T)?*? by

Lr(p) = > LE(p).
FeFr
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3 Discontinuous Galerkin Finite Element Methods

We emphasise that v,0,v € L2(T'7), for all v € H?(T) and therefore we can
extend the bilinear form B+ from V(T) to H%(T) by

Brlv, w] = j D?v: D*wdz + J L7 (w) D2 v+ Lr(v): DA2wdzx
[ @ 8 ’ (3.3.2)
+ JFT = No,v] [0, w] + E [vn- [w]nds.

We emphasise that the bilinear B defined in (3.1.16) is equivalent to (3.3.2) at
the discrete level, i.e. for v,w € V(7). In particular, coercivity and continuity
(Lemma 3.8) holds true also (3.3.2). Differences occur on larger spaces, e.g.
broken Sobolev spaces, since (3.1.16) is not defined on H?(T). For the rest of
this thesis B always refers to (3.3.2) unless stated otherwise.

In view of consistency, let u,v € H3(Q). Then, we have from (3.3.1) that
L7(u) = L7(v) = 0 and therefore

Brlu, v] = Blu, v] = f D?u: D*vdx = f fvdz.
Q Q

Hence, we infer consistency of the bilinear form B+

The following lemma states crucial bounds of the lifting operators in the
L?(2)-norm.

Lemma 3.11 (Bounds on liftings). Let K € T and F € F such that F c K.
Then, For all ¢ € H*(T),

1£5(8)|g < Cohp? 10,811 + CeCinhz”* |[6] m - (3.3.3)

In particular, this implies with

1£7(6)q < (ZHET >Hé>m

FeF

that

C(t.“r inv

1/2
L&) < V3 ( o ool + ol nl? ds) L (339

Proof. Let F e F and K € T such that F = K. Note that ¢ € H?(K) implies
that V¢ has a L'-trace on F — K. Definition (3.3.1), together with the discrete
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3.3 Liftings: Definition and stability

trace and the inverse inequality (compare (3.2.4) and (3.2.3)) yields
2
eF @l = | £F(0): 50

N L {v L7} nlel - {£7(0)} [Vol - nds

< ([ 17 choP as) v (5 | ket as) -

+ (hp L LB (6) ds> . (h;l L [0, 6] ds) .

<[5 100n], CuCin | 8rE) T X[ (i) da

+ [ 10,00 G [ GNrE) Y J L2 (@) do

Therefore, (3.3.3) follows from
S [ 1eF@ ar=|eF@l;, ma #nre) <1
Kewr(F) VK

The bound of the global lifting operators |L£7(¢)||, follows from the local ones

since | L7(6)[5 < 32 per (rexe) H?z’ in conjunction with the fact that the mesh
consists of triangles. Finally, by the last estimate and (3.3.3) we obtain (3.3.4).
0l

In view of the subsequent convergence analysis we are interested in the stabil-
ity of the solution ws with respect to the energy norm. To this end, we observe
from coercivity and (3.2.1)

lurllF < Brlur, ur] = L Jurdz < || flq |urlq -
As a consequence we have

lurlir = 17le; (3.3.5)

due to the following broken Poincaré-Friedrichs inequality (Proposition 3.12)
below.

Proposition 3.12 (Poincaré Inequality on H2(T)). Let T € G and ¢ € H*(T).
Then,

ol + ¥yl < | D20, + 1 [l m] .+ [ 12,01

where the constants in’ <’ are independent of the mesh-size hy. In particular,

for ve V(T) this implies

[0l + | Vpuv]?, < lloll%-
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3 Discontinuous Galerkin Finite Element Methods

Proof. Compare [BWZ04]. O

In view of the numerical example 1 in Chapter 5, we are interested in the
convergence rates in case of a arbitrary smooth exact solution.

The next Theorem can be found in [GH09, Theorem 5.5 (compare also
[SMO7]) and states that the solution converges upon h-refinement with opti-
mal rates. As usual in a priori analysis, additional regularity beyond u € Hg(Q)
leads to higher convergence rates. See [GH09| for hp a priori analysis of SIPDGM.

Theorem 3.13 (A priori error bound). Assume that for the solution u of (2.4.2)
it holds that u|x € H***2(K), kx = 2, K € T. Then, the following error bound
holds,

lu—urllF < C Y7 hE™ |ulfsx2x) (3.3.6)
KeT

where 1 < sg < min{r — 1,kx}, and the constant C' > 0 is independent of u
and h.

This theorem implies that for a sufficient smooth solution, i.e. u € H3(Q) N
HYQ), £ > r+1 (cf. also [SM03], [SMO07]) we have [u — ur|; = O(hfr_l) =
O(N~(=1D/2) In particular, we have O(N~Y2) for r = 2, O(N~1) for r = 3,
O(N~32) for r = 4 and O(N~2) for = 5. Here, N denotes the number of
degrees of freedom. These are exactly the (asymptotical) rates we observe in
Chapter 5, example 1.

3.4 A posteriori error bounds

a In this chapter we recall the residual-based a posteriori error indicator for
SIPDGM from [GHV11]. For the sake of a complete presentation we state full
proofs of reliability and efficiency.

In order to proof upper bounds of the a posteriori error estimator, we consider
a recovery operator from (compare [GHV11, Section 3|), which maps V(7') onto
a H2(Q)-conforming space constructed by macro elements.

3.4.1 Smoothing operator

We start with the definition of the Hsieh-Clough Tocher (HCT) macro element
(compare [DDPS79, BGS10, GHV11]).

Definition 3.14 (HCT element). Let 7 € G and K € T. Then for m > 4 the
HCT nodal macro finite element (K, P, (K), NET(K)) is defined as follows.

a) The local space is given by

P(K) ={pe CHK): p|k, € Prn(K;), i=1,2,3}.

Here, the three triangles K7, Ko and K3 denote subtriangulation of K
obtained by connecting the vertices of K with its barycenter; compare
with Figure 3.2.
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3.4 A posteriori error bounds

Ky K

b
K3

Figure 3.2: A macro triangle K subdivided into three small sub triangles which
share a common point b.

b) The degrees of freedom NECT(K) are given by (compare also with Fig-
ure 3.3)

(i) the value of the functions and its gradient at the vertices of K;

(i) the function value at (m — 3) distinct points in the interior of each side
FeFr, FcikK;

(iii) the normal derivative at (m — 2) distinct points in the interior of each
side F' € Fr, F c 0K,

(iv) the value of the function and its gradient at the barycentre of K;

(v) the function value at (m —4) distinct points in the interior of each edge
FcK;, FéFri=1,23;

(vi) the normal derivative at (m — 4) distinct points in the interior of each
edge Fc K;, F¢ Fr,i=1,2,3;

(vii) the function value at (m — 4)(m — 5)/2 distinct points in the interior
of each K;, i = 1,2,3 chosen so that if a polynomial of degree (m — 6)
vanishes at those points, then it vanishes identically.

The corresponding finite element space is denoted by

~

U(T) = {V e C'(@): Vix e Bp(K) for all K e T}
and its global degrees of freedom are given by

NET(T) = | NE(K),

KeT
which is well-posed thanks to conformity of V(7) « H2(Q).

For m = 4 the degrees of freedom are depicted in Figure 3.3. Obviously,
NHCT(K) contains the point evaluations in the vertices and edge midpoints of K
(the Lagrange nodes Zx of Po(K)). We emphasise that for a general polynomial
degree 2 < r < 4 the set of nodal points of the Lagrange basis is a subset of the
set of the nodal points of the macro element of degree r + 2. This follows
directly from the definition of the macro elements of the respective degree.
Additionally, we have P,(K) c P, 5(K), and therefore we can apply HT(K)
to P,.(K). Here, we are not interested in the case r > 4, since this would imply
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3 Discontinuous Galerkin Finite Element Methods

Figure 3.3: The Lagrange element of degree two and the corresponding macro
element of degree four. Here point evaluations are denoted by small
dots, (first) partial derivatives by circles and normal derivatives by
lines. Compare [GHV11, DDPS79] for degrees of freedom related to
macro elements of degree 5 and 6.

that V(7)) contains a conforming discretisation of our fourth order problem,
which would make HCT elements redundant. The reason is that for r > 5 it is
possible to construct a basis for the space of C'' piecewise polynomials which
is parametrised by 'nodal variables’, i.e. the values and derivatives of the basis
functions at a discrete set of points (compare [MS75| and also [AFS68|). The
case m = 3 corresponds to the classical HCT-Element (|Cia02b, Ch. 6]) which
is not considered here.

We define the recovery operator Er: V(T) — V(T) < HZ(), by setting for
all K € T and all degrees of freedom NX € NJT, » e ZHCT:

2 \UJ:?Z‘)\NZK(MK) z ¢ 09,
N.(Er(v)) = { Kewy(z) (3.4.1)
0 z € 00

Here, Zf‘rCT denotes the set of nodes z associated with some degree of freedom
N. € N¥T and corresponding local degree of freedom N € NET. Note that
there may be different degrees of freedom associated with one node; compare
with Figure 3.3.

Lemma 3.15. Let T € G. The operator E7: V(T) — HZ(Q) defined in (3.4.1)
satisfies

E 2 2
h3- el + ‘hép_q/ To]l n‘ ds, (3.4.2)

ID7(0 - Er()]% < f
F(NT(K))

with v = 0,1,2, and the hidden constant depends only on the shape coefficient
of To. In particular this implies

Z HDJ v—Er(v HK < Hh3/2 j 1o, ]]H n th/Z J [v] nH (3.4.3)
KeT

Proof. The proof can be found in [GHV11, Lemma 3.1]. For the sake of com-
pleteness, we give a sketch of the proof. Let K € 7 and v € V(T), then an
inverse estimate (Lemma 3.6) yields

2

|Di(w — &) < HhT (0 — Er(v ))HK.
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3.4 A posteriori error bounds

In order to keep the presentation readable we slightly modify the notation and
write N (K )T instead of NET. From equivalence of norms on a finite dimen-
sional vector space we obtain

1D (0 — Er ()% < 2 S BTN (v = Er (),
i=0 N, eN (K,i)HCT

where N (K, 0)¥T and N (K, 1)¥T are the nodal variables consisting of function
evaluations, and those involving partial and normal derivatives (compare the
Definition 3.14). Now, for each NX e N(K)H°T which is not on the boundary
€2, we consider a local numbering K7, ..., Ky, ()1 of the elements in N7 (z),
such that each pair K;, K;,1 share a common face F' = K; n K; 1.

First, we regard the nodal variables A/(K,0)T only and use the arithmetic-
geometric mean inequality (compare [KP03, Lemma 2.2]), to obtain

> ETIWE - Erw))?

NEeN(K,0)HcT

i K’
_ Z ]73{(1 ]) U(Z)|K_ ‘u)(z’” Z ’U(Z)|K/
NLeN (K,0)HT U Kran(2)
ZEKH].E‘T

+ Y B )k)?

NZEN(K7O)HCT
zeKmFg—

21} #N7(2)-1
S M @)k, — (@)K, )
N.eN (K,0)HCT Jj=
zeKr\f‘T

2(1—9
+ Y B )k)?
N.eN (K,0)HT
zeKmFb

—_

2
< ’hT Iw(z) n’
Fer(Ny (K))

< JF(NT ’hl/Q : [[v]] nf ds,

where we used a scaling argument in the last estimate.

The remaining proof of (3.4.2) follows analogously by splitting the nodal vari-
ables NV(K, 1)¥T = {N(K,n)iT U N (K, p)¥T}, into the set of nodal variables
evaluating only normal derivatives (Definition 3.14 b) (iii) and (vi)) and the
remaining set of nodal variables (values of the gradient in Definition 3.14 b) (i)
and (iv)); compare [GHV11, Lemma 3.1].

The second assertion follows from the local estimate (3.4.2) together with the
finite overlap of the neighbourhoods Ny (K), K € T. O
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3.4.2 Upper bounds

We introduce the a posteriori error estimators from [GHV11]|. For v € V(7) and
KeT let

n(v, K)? := L{ h3- |f - A2v|2 dz
i J«K Q hr V- D2wv]] ' nK|2 + hT‘[[DI?WU]] nK|2 ds (3.4.4)
onnN

+LK[[8 v]] —I— ][[v]]n\ ds.

When v = ug we simply write 777—(K) := n(ur, K). Moreover, for M < T, we
set

1/2
nr(v, M) := ( > n(v,K)2> and  n7(M) = ny(ur, M).
KeM

From [GHV11, Theorem 4.1] we have that (3.4.4) defines a reliable estimator.

Proposition 3.16. Let u € HZ(S2) be the solution of (2.4.2) and uy the discrete
solution of (3.2.1). Then,

lw = wrll7 < 07 (T),
where the constants in < are independent of u, ur and hr.

Proof. The statement follows by the same arguments as in [GHV11, Theorem
4.1]. In order to keep this thesis self-contained we give short proof. Let vy €
V(T) and v € HZ(£2) be arbitrary (to be defined later) and ¢ = v—v7. Moreover,
let Er(ur) € V(T) N HZ(9) the smoothing operator as in (3.4.1). The error is
decomposed in an HZ(Q)-conforming part and nonconforming part via

e:=u—uyr = (u—Er(ur)) + (Er(ur) —ur) =€+ €™
For u,v € H3(Q) we have L7(u) = L7(v) = 0 since all jump terms vanish.
Consequently, since u is the solution of the weak problem we have Br[u, v] =
§o fvda. In conjunction with By [ur, vr] = {, for da this implies
Brle. v] = Brlu, o] = Brlur, o] = | fodo—Brlur, v—vr] = Brlur, vr]
- | rode—Brlur, v

and therefore by using e¢ = e — "¢

Brle, v] = L fdr — Brlur, ] — Brle", v].

Setting v = e in the last equation, we obtain

HD%CHQ = Br[e” f fibdx — Brlur, ] — Br[e", €. (3.4.5)
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3.4 A posteriori error bounds

By using the stability of the lifting operators (3.3.4) we deduce for the last term
on the right-hand side of (3.4.5)

[Br[e™, ]|

f (Dpre"c + L7(e"°)): D% dx
Q

B 2 B 2 \1/2 (3.4.6)
< (||D§we”0||é U ol RS | I e 5 nHFT) |D%c],

< (|7 w57 tertal}, ) 0,

where we also used that the nonconforming part is bounded by

HDPQWBMH; = > | IP*(ur - Er(ur)’ do
KeT VK

7 powert] + o7 perdal

A

due to Lemma 3.15. For the remaining two terms on the right-hand side of
(3.4.5) we use integration by parts, to obtain

Lm de — Br[ur, ]

= L(f — Aur)ypde — L(ET(@ZJ)! Dgur + L7(ur): Dtp) da

3.4.7

- U D2uTV¢‘n—¢V‘D2u7-nds} (347
oK

KeT

_ LT 2 fourl 0,01 + ,fg,r [ur]n - [¥]nds.

On the one hand we have from u7,vr € V(T) and v € H3(2) by the definition
of the lifting operators
f Lr(v): D3ur
@ (3.4.8)
- | 4V Baar} nll - {Dhar ) V4D - mas

and on the other hand we have for the sum over element boundaries by (3.1.8)
and (3.1.9)

> U D2uTV¢-n—¢V‘D2uT-nds}
KeT LJOK

- [ B2y 9 (B} mslas (349

+ ff [D*ur | {90} -n— {0} [V - D2ur]] - nds.
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3 Discontinuous Galerkin Finite Element Methods

Consequently, using (3.4.8) and (3.4.9) in (3.4.7) we have
| sode—rfur. vl

~ [ (7= 82— Lrtur): Do
(3.4.10)
J [[ UT]] {Voy-n—{u}[V-D UT]] -nds

- L (G 10,071 10,00 + 3 Dl - [0l ) s

In order to bound the right-hand side of (3.4.10), we set vy € V(7)) to be the
element-wise polynomial approximation to e® such that

€ —v7 gy < Chm]\e|Hm k) 0<j<m<2, KeT, (3.4.11)

where, C' > 0 is independent of the mesh-size (compare [Cia02a]). Note that
Langrange interpolation is sufficient in this case since, functions in Hg (Q) are
continuous on two-dimensional domains ([Alt16, 10.13]).

Consequently, for the first term on the right-hand side of (3.4.10), we have
by (3.4.11) and the stability of the lifting operators

(f A*ug ) da — Ly (ur): D) dw

< (130 = 82l + |7 ol + 17" Lurll, ) e
(3.4.12)

From (3.4.11) in conjuncotion with a scaled trace inequality we derive the fol-
lowing estimate:

[ rwerr as= 3 [ nwun s

FE}—T
<0 Y | ni HuR? as
KeT
<C ), (\h?l/’@l(m + lwlfqzm) < C D%,
KeT

where the constant C' > 0 is independent of the mesh-size. Using the last
estimate for the second term on the right-hand side of (3.4.10) we obtain

’J 25 ur ]| {Vey - ndS:’f 1D; cur|n- {Vy} ds

Hh1/2 qu]] n;H HDQeC
I'r

(3.4.13)

lo-

By similar calculations we derive

jf R b ds < Y (10720l + 0 e e ) < 102

KeT
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3.4 A posteriori error bounds

to bound the third term of (3.4.10) by

[, 09 Dr]) - ma

(3.4.14)
Hh3/2 [V - D2ur] - nH |D2e], -
Analogous arguments applied to the penalty terms leads us to
[, i+ 5 Bk [ nas
(3.4.15)

( Hh 1/2 o, u’r]]H + B2 Hh_3/2 Turll n‘i) HDQeCHQ.

Finally, for the conforming part of the error we obtain by (3.4.5), (3.4.6), (3.4.10)
and (3.4.12) -(3.4.15)

ey = (147 = A%un)f + |12 19 - D] nl,
e, v ] i e,

Finally the triangle inequality

+ HDPZWe”C

| Daell, < [ D],

I

concludes the proof. O

3.4.3 Lower Bounds

In this section we state [GHV11, Theorem4.4|, providing the efficiency of the
SIPDG error indicator. In the proofs of the so-called lower bounds we make heav-
ily use of the fact, that our finite-element space is finite dimensional. Obviously,
this is not true for L2(£2). Consequently, we need to project f onto the finite
dimensional space P,.(7) by using the L?-orthogonal projection II: L?(Q) —
P,(T), defined in (3.1.4). Hence, for v € V(T) the element residual in (3.4.4) is
bounded by

2 2
J Wy |f — A% <J hy |ILf — A% +J Wy |f =TI
K K K
The term §, h3-|f — I1f|* dz := osc(K, f)? is called the local data oscillation

and is bounded by the estimator. Indeed, for all v € V(7) we have by the
properties of the L2-projection operator

| whir - = [ iy - At nato- pf
K K
(3.4.16)
<2J - |f — A%
K
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3 Discontinuous Galerkin Finite Element Methods

Proposition 3.17. Let u € HZ(Q) be the solution of (2.4.2) and ur the discrete
solution of (3.2.1). Then, for each K € T we have

[W%(f — A%ur)|5 < DX (u—up) |3 + B3 (f — 1) (3.4.17)
and for each F € Fr with F = K1 n Ko we have
i [Dpaer e, 1D = wr) i e, + 95 =T e, (3:418)
and
WPV - Daer]) - | =D =) [,
+ W5 =T ey, -

In particular, for al M < T € G and for allve V(T) and K € T, we have

(3.4.19)

B (M) S = vl gy + 05N (M), ), (3.4.20)

where all constants in < are independent of ur and hy. Here, the data-oscillation

is defined on M < T by

1/2
osc(M, f) := ( Z osc(K, f)2> dz.

KeM

Proof. We follow the lines of [GHV11, Theorem 4.4].

: For the element residual we fix K € T and let v € H3(Q) n HZ(K), with
v =0 on Q\K, be a polynomial which we define later. Since v is a test function
in H2(2) and vanishes outside the element K, we have

J D?(u — ut): D%dx—f D*u: D*vdx — f D*ur: D*vdx

J fvdx—f 2ur)vdz,

where we used integration by parts in conjunction with the fact that v € Hg(K ).
Hence, we have

(3.4.21)

J D?(u ): D*vdx = J (f — A%ur)vde
K

= J (ILf — A%ur)vde —I—J (f —f)vdz
K K
and as a result

f (ILf — A%ur)vde
K

< [D*(u —ur)|  [D?0] o + I = Tl [0l
S ([D*(w—ur)| e + Wi (F =T ) [ B0 -

(3.4.22)
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3.4 A posteriori error bounds

Now, fix v|x = (IIf — A%ur)b2%, where 1x: K — R is the element bubble
function on the element K (compare Appendix B), defined as ¢ := 0 i o Fk,
where ¢z 1= 275\0;\1 5\2 is the bubble function on the reference element K with
barycentric coordinates 5\0, 5\1, A2 and the sqaling is due to the normalisation, i.e.
;- attains the value 1 at the barycentre of K. Using a scaling argument together
with the fact that P.(K) is finite dimensional, we obtain HHf - AQUTHK ~
H(Hf — A2’LL7‘)1/}KHK (compare Lemma B.2, Appendix B, p. 121). Hence, we
deduce

|y — A%THi{ < f (IIf — A%ur)?3 do = f (IIf — A%ur)vdz.  (3.4.23)
K K
Finally, using the triangle inequality together with (3.4.22) and (3.4.23) yields

|f = A2ur|5 < If = THI% + [ILf — A%ur s
SIG =Tl + | 01f = Aburyods
< (|D%(u =) + [W3e(F = TLA) ) i ol
< (|D%(u—up)| o + W3 =) ) hi2 | £ — A2ur|5,

Which implies (3.4.17).

In order to proof (3.4.18) fix F € F, F = K| n Ky and let K be the
largest rhombus contained in Ky u Ky, compare figure B.2 (p. 119). Moreover,
let 9 : K — R be the bubble function on K and b, be a linear polynomial

defined on K such that by|r = 0 and Vb, = hp [[ pqu]] nrk. We define

5 .
bp = bgwk on K, )
0 on O\K,

satisfying:

(i) bp vanishes on the boundary 0K together with its first and second deriva-
tives,

(i) br € C2(Q) N HE(Q),
(iii) [[bp]] ’F = [[pr]] |F = {{bp}} ‘F =0 for all FeF.

(iV) ({{pr}})‘p [[ UT]] ng |F and ({{pr/}})‘p/ = 0 for all I e
A\F.

Here, the statements in (i) and (ii) follow from the construction of the smooth
bubble function bz (compare Appendix B; p.119), (iii) follows from bp € C%()
(resp. be|p = 0) and (iv) follows again from by|r = 0 since we have

(Vbp)|r = WL Vb +0)|p = (hp' [ Daur] nr)lr
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3 Discontinuous Galerkin Finite Element Methods

Now, let ¢ be a constant function on K, and set v = ¢bp. Using this v and
arguing as in (3.4.21), but on the domain K < K; u K3 instead of K, we get

ﬁ D?(u — ur): D?vdx
K

= J D?*(u—uy): D*vdz
KiuKso

3.4.24
= f (f — A%ur)vde ( )
KiuKs

— Z D*urVu -ngr — oV - D*ur - ng dz,
K'e{K Ky} VK

where we used that v vanishes to the second order on @K and v = 0 on Q\K.
In equation (3.4.24) we reformulate the sum over element boundaries by using
(3.1.8) and (3.1.9), to obtain

j D?(u — ur): D*vdx = J (f — A%ug)vde
Kroke Kok (3.4.25)
- J [[DPQWuT]] {Vu} - nds.
F

Here, we used [Vv] |r = [v] |F = {v} |F = 0 for all F' € F , thanks to property
(iii) of the function bp. Setting ¢ = hj' in (3.4.25) gives

Jo il ved s = [ ! [Ber] (50 mt
= L hp | Daur ]| bihg! [ Daur] - nds

= [w2nz [

2 |k [Dgur ]

(3.4.26)

where we used (B.1.2) (Appendix B, p. 121) in the last estimate. Now, in view
of the Poincaré inequality, together with h i Shk, Shp, 1<1<2 we have

2 2 2 2
loli,oms < e Vol oy < 1V0R K xS VO O,

_ 2 (3.4.27)
nz! [Daur | nel” < e [ Dur ] ne | .

< |k

where we used (B.1.2) (Appendix B, p. 121). Combining (3.4.25) and (3.4.26)
in conjunction with the Cauchy-Schwarz inequality and an inverse estimate we
get

_ 2
7t [Dpur ]| m

< (h;fﬂ D2 = wr)] g i, + [P = A%ur)|

—1/2
T .
KiuKs KiUK>

(3.4.28)
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3.5 Functions of Bounded Variation

where we used also hj; ~ hp. Multiplying both sides of (3.4.28) by h},ﬂ and
using (3.4.27) we end up with
-1/2 12 1|2
HhF [ Dyeur]] nHF < h | Dpa(w = ur)| e, (3.4.20)
+ b (f = A%ur)| e, o, -

Finally, (3.4.18) follows by multiplying both sides of (3.4.29) by hj and using

: The estimate (3.4.19) follows by similar arguments. Nonetheless, we will
sketch the proof in sake of completeness. Consider the function vz (continuous
bubble function on the rhombus K ) and recall from Appendix B:

() 43 e C29) n HZ(Q),
) ||ws]|1r = || e Ir = {0i } 1r =0 for an Fe Fana
(iti) v} |p =0 for all F' € F\F.

Now, let £ be a constant function in the normal direction to F' and set v = fw:}{.
We use integration by parts as in (3.4.24), reformulate the integral over element
boundaries to face integrals and deduce

J D*(u—ug): D*vdz = J (f — A%ur)vde
Kol ok (3.4.30)

- L’ {o} [V DPQWUT]] -nds.

Note that on the right-hand side of (3.4.30) orientation of n is independent of the
ordering of K and Ko, compare Remark 3.1. Next, set {|p = [[V . DprUT]] ‘np
in (3.4.30), use a norm-equivalence, and standard estimates to obtain

he V- D] -ne| | < J {0} [V - D2ur] - nrds
F
-2 "2 2
S hi [ Pouw = wr) g, e, + 10 = 8%u7) g, o, -
Consequently, (3.4.19) follows by multiplying both side of the last estimate by
h%{ ~ h%.
Note that K € T in step | 1] (resp. F' € F in steps |2 |and ) were chosen ar-
bitrarily and therefore the proof of the bounds in (3.4.17)-(3.4.19) is completed.
: The global estimate in the last assertion of Proposition 3.17 follows from

the local ones together with the definition of the error indicators on a subset
M c T and the definition of the global data-oscillation. O

3.5 Functions of Bounded Variation

3.5.1 Motivating example

The following basic example of convergence of conforming adaptive finite el-
ement methods gives an overview of the various theoretical concepts of our
convergence theory (compare e.g. [MSV08, NV11, Siell| for details).
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3 Discontinuous Galerkin Finite Element Methods

Let Q < R be a polygonal domain with Lipschitz boundary. Consider a
Hilbert space ((V,{:, -)y) with underlying domain 2 and let B: V xV — R
be a symmetric bilinear form, which is coercive and continuous with respect to

Iy = m Here, we chose
o V= H§(Q),
o Blv,w] = §, D?%v: D*>wdz and

e V(7) a H%(Q)-conforming finite element space (e.g. Argyris finite element
space [AFS68]).

For f € V', consider the following abstract problem: Find u € V such that
Blu,v] ={f, v)yy VveV.

Due to the Lax-Milgram Theorem 2.8 there exists a unique solution u € V.

Let 7 be a conforming and shape regular subdivision of the domain €2 and
V(T) < V be a conforming finite dimensional space. We consider the following
discrete problem: Find U7 € V(7)) such that

B[O, V] = {f, Vigy ¥V e V(T). (3.5.1)

The Lax-MlIlgram Theorem 2.8 implies the existence of a unique solution Ut €
V(T) of the discrete problem. In this context we emphasise that continuity and
coercivity of B on V(7)) are inherited from continuity and coercivity of B
on V.

Now, let {Ti},~o be a sequence of partitions of the domain Q (e.g. think
about the application of some adaptive algorithm for the discrete problem). We
assume that the corresponding discrete spaces satisfy

e for each k € Ny Vi := V(7}) is conforming and shape regular and

e we have a nested sequence of discrete spaces, i.e. Voc Vi ...V, c
Vi1 < ... for all £ e Ng.

Hence, we have a sequence of discrete solutions {U7; },. (which we denote by
{Uk} ey for brevity.) corresponding to the sequence {V}},  of discrete spaces.

The aim of this section is to prove the convergence of the sequence {Uj} .y
to some limit function, located in some limit space. To this end we define the

limit space as the completion Vo := | ;> VkH'HV c V. Since Vg, is closed in V
we conclude that the following problem yields a unique solution: Find uq, € Vg
such that

Bluo, v] ={f, Vyy Yve Vq. (3.5.2)

On the one hand, we have a sequence of discrete solution {Uy}r=q corre-
sponding to the sequence of partitions and on the other hand we have some
limit solution uq, located in the limit space V. Consequently, we shall prove
that ue € Vo is the limit of {Up},~, with respect to the norm ||y, i.e.
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3.5 Functions of Bounded Variation

|Uy — uwlly — 0 as k& — oo (neglecting the question if ue, = u for the mo-
ment). We emphasise that for k € Ny we have from Vj ¢ V,, and therefore we
can use Cea’s Lemma ([Cia02a, Theorem 2.4.1|) to obtain

luee — UkHV < Vlgk luee — V”V —0

as k — oo by the definition of V.

Nonetheless, we want to give a proof of limy_,o |[Up — uw|y = 0 which is
closer to the analysis we use in the sequel without using Cea’s Lemma. Observe
that |Uxly < C|fly from coercivity and continuity of the bilinear form %B.
Since V is a Hilbert space, Theorem 2.5 provides a weak limit ., € V such that

Uy —Tup eV, ask— .

Let v € V. From the definition of the limit space there exists a sequence
{Vi}k=0, Vi € Vi, such that |V}, —v||y — 0 as k — c0. Consequently

%[aw,v] <« %[Uk, Vk] = <f, Vk>V’,V - <f, U>V/,V’ as k — o

and therefore Wy, = uq, thanks to the uniqueness of the solution uy. From the
properties of the bilinear form %5 we conclude

1

6 HUk - uOOH%/ < %[Uk — Uep, Uy, — Uoo]
—_— —_—
=/, Uk>V’,V {f, uoc>v’,v

as k — oo. This is the desired convergence U — uq,, as k — o0.

Coming back to original problem (3.5.1), we observe, that in order to proof
limy_,o0 |U — uly = 0, we have to proof u = ug. This, in turn, is equivalent to
proof u € V4, thanks to the conformity of the discrete spaces and uniqueness
of the solution uq of (3.5.2).

This basic examples yields that |Uy — uclly — 0 as k — o0 heavily relies on
the properties of the underlying conforming discrete spaces and the compactness
properties of the Hilbert space V.

If we replace the conforming finite element spaces Vi by nonconforming dis-
continuous Galerkin spaces V¥, we have VZQ ¢ V for all k€ N and we can not

use compactness properties of V for a sequence {Vj}ken, Vi € VZQ . That means
we have to find a space V with proper compactness properties such that the
embedding Vzg < V holds.

As it turns out, it is possible to embed the non-conforming discontinuous
Galerkin finite element spaces continuously into the space of functions of bounded
variation (i.e. V = BV(Q)). This space provides several compactness properties
as we will see in the following section

3.5.2 Space of functions of bounded variation

In This Section we introduce the space of functions of bounded variation (BV-
spaces). For an introduction to the general concept of BV -spaces and all related
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3 Discontinuous Galerkin Finite Element Methods

definitions, compare Appendix A. By M R(Q2, R%) we denote the space of regular
Borel measures on the domain  with values in R?.

In order to introduce the BV -space we consider pairs (u,v) with u € L}(Q)
and v € M R(Q,RY) satisfying the following integration by parts formula

J Oipudr = —f edy;, YoeCr(Q), i=1,...d. (3.5.3)
Q Q

That means, we have in the distributional sense D;u := v; € D(Q) and Du =
(Dyu, ... Dgu). We emphasise that (3.5.3) holds true even for p € C}(£2), com-
pare Remark A.3. The set

BV () := {u e L1(Q): there exists v € M R(Q, R?) satisfying (3.5.3)}
of functions of bounded variation. is a Banach space if equipped with the norm

lul gy ) = lul @) + [Dull,

where [[Du| = |Du|(2) = |v|(Q) and |Du|(2) is the total variation of the
measure |Dul.

Remark 3.18. Let u € BV(Q) and assume that Du = 0. Then u is constant
almost everywhere in . This follows from a smoothing property together with
a convolution argument (compare [AFP00, Proposition 3.2[)

In order to keep the notation simple, we write (3.5.3) in a single formula

d
f udivp = — 2 f pidD;ju = —J ¢+ dDu Vo e CP(Q)°. (3.5.4)
0 —Ja 0

Note that we use the same notation also for functions in BV ()™, m € N. In
this case Du is a m x d-matrix of meausres D;u’ in () satisfying

9 )
Juﬂ ‘dez—f@dDiuﬂ YoeDQ), i=1,....d j=1,....m
o Ox; Q

or equivalently
m ' m d .
> f w divpjde = - >1 )" J piidDi? Yo e CP ()™,
j=17e j=1i=1v%

For the last equation we also use the shorthand notation
J u-divpdr = —J ©!: dDu Yo e CP Q)™ (3.5.5)
Q Q

The space WH1(€) is contained in BV(Q). In particular, for every u €
WH1(Q) the distributional derivative is given by Vug?, where £¢ denotes the
Lebesgue-measure on R%. Note that this inclusion is strict as we will see from
the following example.
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3.5 Functions of Bounded Variation

Example 3.19. Let Q = (—1,1) and consider the Heavyside function defined
by

H(x) 0 ifz<O
€Tr) =
1 ifxz>0.

Let ¢ € C°(—1,1) then we have by piecewise integration by parts

1 1
f H(a)g! da = f H(a)g! da = [(2)]724 = —(0).
—1 0

Consequently, in the distributional sense we have %H(m) = 0,—0, where d,—¢
denotes the Dirac measure supported at 0. Note that §,—¢ ¢ L'(Q2), i.e. there
is no function f € L'(Q) such that ¢(0) = §, fe dz for all ¢ € D(£2). Otherwise
we could take successively test functions ¢ € C§°(—1,0) and ¢ € C{(0,1) to
conclude that f = 0 almost everywhere in the domain €2, which is a contradic-
tion.

Definition 3.20 (Weak* convergence). Let u, uy € [BV(Q2)]™. We say that
{uk} ey Weakly*-converges in BV (Q)™ to u if {ug}, .y converges to u in L1 (Q)™
and {Duy},.y weakly*-converges to Du in €, i.e.

k—o0

lim | ¢: dDuy =J @: dDu Yo e Co(Q)P™.
Q Q

Remark 3.21. We emphasise that Definition 3.20 differs from the definition
of weak™® convergence given in the beginning of Chapter 2.3. This is due to the
reason that the dual of BV () as a Banach space is hard to characterise (see
e.g. [FS18, Section 2[). However, at least for sufficiently reqular domains §
the convergence of Definition 3.20 corresponds to the weak™ convergence in the
usual sense (compare [AFP00, Remark 3.12].)

The following Theorem states a useful compactness property of BV (€2)-spaces
(see [AFPO00, Corollary 3.49]).

Theorem 3.22. Let ) be a Lipschitz domain. Then, the embedding BV (2) —
LP(Q) is continuous and the embeddings BV (2) — LP(2) are compact for 1 <
p<p. Herep=00 ifd =1 and d/(d — 1) otherwise.

The following proposition is motivated by Theorem 3.22 and provides a simple
criterion for weak* convergence in the space of bounded variation

Proposition 3.23 (Weak™* convergence in BV (Q)™). Let {uy} .y < BV (Q)™.
Then {up},oy weakly™ converges to w in BV ()™ if and only if {ur}iey @S
bounded in BV ()™ and converges to u in L*(Q)™.

Proof. Assume first that {u},cy is bounded in BV (2)™ and converges to some
u e LY(Q)™. The boundedness of the total variation implies by Theorem A.4 a
weak*-limit limy_,o, Dug = p of a subsequence (not relabelled here). We have
to prove that Du = p in a distributional sense for any subsequence of {u} -
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3 Discontinuous Galerkin Finite Element Methods
Note that u; € BV (2)™ and therefore for all k£ € N,
jﬂ uy - div = — JQ ¢: dDuy, Ve CP(Q)m, (3.5.6)
Using the convergence of {ug}, oy in L' (92)™ we obtain in (3.5.6) as k — o0

f u-divyp = —f @: du Vo e CP(Q)Pm,
Q Q

where v € BV(2)™ is the weak™ limit of {uy},cy in BV (Q2)™.
Next, let {uy},y be a weak® convergent sequence to u in BV (2)™. Then
we have the L!'(£2)™-convergence by definition of weak*-convergence and as

a consequence the boundedness of {uj},.y in L'(Q2)™. The boundedness of
| Dug|(2) for all k € N follows from Proposition 2.3 (2). O

The following useful compactness theorem for BV (2)-functions can be found
in [ABM14, Theorem 3.23|.

Theorem 3.24 (Compactness in BV (Q2)). Let  be a Lipschitz domain with
boundary I' and (un)nen, < BV () with |un| gy o) < % for all n € N. Then,
there exist a subsequence (up, )ren, weakly™ converging to some u e BV (Q) .

We recall some facts about traces of functions of bounded variation. The
following Theorem states u € BV (2) has a measurable L'-trace on the boundary
0Q. In this context, we denote by H?! the (d — 1)-dimensional Hausdorff.

Theorem 3.25 (Trace Theorem on BV (Q)™). Let Q < R? be a Lipschitz do-
main and uw € BV (Q)™. There exists a bounded, linear operator T': BV ()™ —
LY (0Q)™ (we write Tu = u) such that we have

f u-divedr = —J p: dDu—i—J @: (u®n)de_17 V@GCSO(Rd>dxm'
Q Q T

Moreover, for H¥™1-almost every x € 02 there exists Tu(x) € R™ such that

r—0

lim 7 f lu(y) — Tu(z)| dy = 0.
QN By (x)

Proof. Compare [EG15, Theorem 5.6 and Theorem 5.7]. O

In order to clarify the various embeddings in the following section we introduce
the so-called variation of a function u € L} ()™, which is defined by

V(u,Q) := sup {J u-divedr: pe CHQO™ o], < 1} )
Q

Here, C3(€2)% denotes the space of continuously differentiable functions with
compact support in €. The following Proposition states, that the variation of
u e BV(2) and the total variation of |Du| () coincide.
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Proposition 3.26. Let u € L} (™. Then u belongs to BV (Q)™ if and only if
V(u,Q) < o0. In addition, V (u, Q) coincides with |Du| () for any uw € BV ()™
and u — |Du| (2) is lower semicontinuous with respect to weak™ convergence.
In particular, this implies that the whole BV -norm is lower semi-continuos with

respect to weak™ convergence.

Proof. The characterisation of a BV-function v € BV ()" «— V(u,§) < ©
and the resulting equality V' (u, Q) = |Dul| () for all u e BV ()™ can be found
in [AFP00, Proposition 3.6].

Now let (ug)ken be a Cauchy sequence in BV ()™ with limit w € BV (Q)™.
Then we have from the definiton of the BV -space that (u)gen is also a Cauchy
sequence in L*(2)™. Hence, for arbitrary ¢ € C§(Q)¥*™ with |p|, < 1 we
have from the definition of the variation of a function

liminf V' (ug, ) = lim inff uy - divepde > f lim inf ug, - divp dz
k—o0 Q Q koo

k—0o0

=J u - div pdz.
Q

Since the last inequality also holds for the supremum over all ¢ € C&(Q)dxm
with [¢],, < 1 we obtain the lower-semicontinuity of u — V'(u,2), i.e.

liminf V (ug, ) = V (u, ).

k—0o0

Consequently, the lower semicontinuity of the BV -norm follows by the equality
of the variation and the total variation of a BV -function and the continuity of
the norm u — |u 1 (q), u € LY(9). O

The following lemma can be found in [BO09, Lemma 6] and is a consequence
of the compactness properties stated in Theorems 3.24 and 3.22.

Lemma 3.27 (Friedrichs inequality for BV (). Let u € BV () and let T’ < 0Q
with positive (d—1)-dimensional measure. Then, there exists a constant Cg such
that

|ull 1oy < Cr (]Du| Q) + ﬁ |u ds> Yu e BV ().
r
Proof. The proof uses various concepts of BV (€2)-spaces, stated in this section.
Hence, for the sake of clarity we give a full proof. We use a proof by contra-

diction. Assume that no such constant Cp exists. Then, there exist a sequence
(un)neny = BV () such that [up| 1) =1 for all n € Ny and

Dun (@) + f | ds = 0 (3.5.7)
T
as n — c0. The limit in (3.5.7) and |un | ;1) = 1 implies that there exist C' > 0

such that [u| gy () < C. Hence, by Theorem 3.24 there exist a subsequence (not
relabelled here) satisfying u,, — u in BV (Q) as n — c0. Applying Theorem 3.22
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3 Discontinuous Galerkin Finite Element Methods

we have also that u, — u strongly in L'(Q) as n — o with lul 1) = 1. Note
that the functional

v (DU () + Jul 1 gy

is lower semi-continuous respect to weak* convergence (compare Proposition 3.26
and also [BCT11, Chapter 9] for details). Whence, we infer |Du|(Q) = 0
and therefore, u is constant almost everywhere in (2. Moreover, we have that
| 1 = 0 and therefore the trace of u vanishes on I'. From this we conclude

u = 0 almost everywhere in , which contradicts the assumption |luf1 ) =
1. O

Using Theorem 3.25, we can give another example of BV (Q2)-functions leading
to a clearer picture of the BV (Q)-space (also compare [AFP00, Example 3.3]).
Before we state the example, we have to declare the restriction of measures: Let
w € MR(Q) and B the underlying Borel sets. If A € B we set p|4(B) = p(AnB)
for all B € B.

’ngl

o

0 Qy

Figure 3.4: Domain 2 with subdomains €2 and €.

Example 3.28. Assume that €;,Q < R? are two disjoint bounded Lipschitz
domains which are included into a bounded Lipschitz domain € < R? such that
Q = Qq Uy, compare Figure 3.4. Let I'12 := 001 N Qg the common Lipschitz
boundary of the subdomains satisfying H!(I'; 2) > 0. We define a function on
the domain () as

up in €y,
u = .
uo in o,

where u; € BV(§21) and ug € BV (Q2) are chosen arbitrarily. We claim u €
BV (). To see this let p € C(Q)4. Then we have in the distributional sense

f¢~dDu=—J udivgpdavz—j uldivgoda:—f ugdivepdx.  (3.5.8)
Q Q 1951 Qo
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3.6 Embeddings of discontinuous Galerkin spaces into BV -spaces

Note that I'1 2 is Lipschitz-continuous by construction and therefore we obtain
by Theorem 3.25 on each subdomain £2; and s

f up divedr = —J p - dDuy ~|—j ULP - ng, dnd-!
[oF1 1951 IS

and

f ug divpdx = —f @ - dDug + J Uz - ng,p dHIL.
Qo Qo 12

Combining this with (3.5.8) we have

J ¢ dDu = J ¢ - (dDuq|q, + dDusg|q,)
Q Q
- f 2 (u1n91 + u2n92)Hd_1’F1,2'
Q

Using Theorem 3.25 we see that the Ll(I‘LQ)—trace of w1 and us is bounded by
their BV (1) and BV (€;) norms and we conclude v € BV (2).

Regarding the last example, we emphasise that a main advantage of the BV -
space is that it includes, unlike Sobolev spaces, piecewise smooth functions.
This is crucial in the following embedding theorems of discontinuous Galerkin
functions into BV -spaces.

3.6 Embeddings of discontinuous Galerkin spaces into
BV -spaces

In the current section we prove the crucial fact that discontinuous Galerkin func-
tions can be continuously embedded into the space of BV -functions. Starting
point is the following formula of the variation of u € V(T): Let p € C3(Q)?,
then we have

— | u-divpdr = — fu-divgodm
fﬂ Z K

KeT

Z KVu-godar—Lchu-nds (3.6.1)
KeT

—f pru'god:c—f [ul| - ¢ds,
Q F

where we used the definition of the piecewise gradient and Lemma 3.2 for the
boundary integrals.

Proposition 3.29. For v e V(T) we have that

EI. sj Vput] da + f ol ds.
T Fr
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3 Discontinuous Galerkin Finite Element Methods

Proof. Let v e V(T). By Lemma 3.27 the L!(2)-norm is bounded by

Il < Ce (Dol @)+ [ 1ol as). (362

Moreover, Proposition 3.26 yields |Dv|(Q2) = V (v, ) and therefore by (3.6.1),
we obtain

D (@) = Vo) = sup{ [ w-div o e Y@ ol <1}
Q

(3.6.3)
< J | Vowv| da —I—J I[[v]l m| ds,
T Fr

where we used Holder’s inequality in the last line in conjunction with |¢, <
1. Now, the assertion directly follows by inserting (3.6.3) into (3.6.2) and the
definition of jump-terms on the boundary. O

Proposition 3.30. Let ve V(T). Then, we have
[ Dol () < vl

Proof. Let v e V(T). Then, we obtain from Proposition 3.26 and (3.6.3)
| Dol (92 J |Vo| dz —|—J |[v]] | ds. (3.6.4)
FT
Hence, applying Proposition 3.29 to the piecewise gradient, we obtain
|Dv| (Q f |D?v| dz +J [onv]| ds ~|—f [[v] | ds. (3.6.5)
Fr Fr

Since || < oo, we have by Holder’s inequality
2 2
| Dol @ S | D, - (3.6.6)
Another application of Hélder’s inequality to the jump terms reveals

f I[v]| n| ds = f h%ph;—?’p [[v]| n| ds

Fr Fr

1/2 1/2
< (J hi’}ds) ( f h2 | [v] n)? ds) .
Fr Fr

Moreover, we note that the sum over mesh-faces is bounded by

f h3ds—2fh3ds—2h4~2 Yok s DK s 19?,
Fr

FeF FeF FeF KeT KeT
FcK

where we used the definition of hy and hrp ~ hx. Hence, we have

LT elinf ds < <LT h |[v] nf? d5> " (3.6.7)
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3.6 Embeddings of discontinuous Galerkin spaces into BV -spaces

By analogous arguments we also obtain

LT vl ds < (LT ht [[onv]” ds) 1/2. (3.6.8)

Finally, the assertion follows by inserting (3.6.6)-(3.6.8) into (3.6.5). O

In the context of SIPDG methods the embedding stated in Proposition 3.30
also transfers to an embedding of the piece-wiese gradient Vp,v € IP’T_l(T)Z. In
order to see this, we consider the variation of the piece-wise gradient

V(Vpuv, ) = sup {J Vpwtt - divpdz: g e C&(Q)QXQ, o]y < 1} )
Q

Moreover, for v € V(T) and ¢ € C3(Q)?*? we obtain the following formula from
piece-wise integration by parts

_J Vput - div pdz = J DPQWU: pdr — f ¢ [[Vewr] - . (3.6.9)
Q Q F

Note that the jump terms on the right-hand side of (3.6.9) are independent of
the ordering of the related elements K; and K5, compare Remark 3.1.

Proposition 3.31. Let v € V(T) and |D(Vpuv)|(€2) the total variation of Vp,v €
L?(QY). Then, we have

DGl < [ D2l e+ [ (10,00 ds < ol
Q F(T)

Proof. Using Proposition 3.26 and (3.6.9) we obtain

sf D2 da:+f Lol Yo e V(T),
Q F(T)

where we also used Holder’s inequality in and [¢[, < 1 in the last estimate.
The remaining proof is follows by similar arguments as Proposition 3.30. O
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4 Convergence of AFEM

In this chapter we give the main result of this thesis. We define an adaptive
algorithm in Section 4.1 based on the a posteriori error indicators introduced
in Section 3.4. The adaptive algorithm produces to a sequence of increasingly
refined grids {7}y with a corresponding sequence of adaptively created dis-
crete solutions {U; }, - The main result (Theorem 4.3) provides convergence
of the sequence of discontinuous Galerkin solutions, produced by the adaptive
algorithm, to the exact solution u € HZ(Q) of (2.4.2). In order to keep this
presentation simple, Section 4.2 provides the general framework of the proof of
the Main Theorem, whereas we postpone the details to Section 4.3.

In this context we have to deal with the problem, that the mesh-size h is in
genereal not strictly monotone under refinement, due to the adaptive algorithm.
In order to fix this, we introduce a domain Q= < ), where we still have h — 0
(see Section 4.2.1). Therefore, on the domain 2~ we will commonly use the
fact that A — 0 in our convergence analysis (comparable to a priori convergence
analysis).

On the remaining domain Q% we have h + 0 since it is related to elements,
which are not refined anymore. Hence, the local error indicators here have to
be ’small’, compared to elements which are consecutively refined. This is the
idea of the marking strategy introduced below, ensuring convergence also on
this domain.

4.1 Model Algorithm

We start with a precise formulation the adaptive algorithm (1.1.2) based on the
modules SOLVE, ESTIMATE, MARK and REFINE, which are described in more
detail below.

Algorithm 4.1 (ASIPDGM). Let 7p be an initial triangulation. The adaptive
algorithm is an iteration of the following form:

1. ug = SOLVE(V(Tx));

2. {m(K)}ker, = ESTIMATE (ug, T);

3. My = MARK ({n(K)} keTir Th) ;

4. Tg+1 = REFINE(T, My); increment k and go to Step 1.

Here, we have replaced the subscript triangulations {7 }xen, with the iteration
counter k, i.e. up = uy, and ng(7Tx) = 07, (T) for brevity. Similar short hand
notations will be frequently used below when no confusion can occur, e.g. we
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4 Convergence of AFEM

write also N,z(K) = N%C(K), Iy =T7 or ||l = lIll7,- Next, we comment on
the modules SOLVE, ESTIMATE, MARK and REFINE.
SOLVE. For a given mesh 7 € G we assume that

ur = SOLVE(V(T))

is the exact SIPDG solution of problem (3.2.1).
ESTIMATE. We suppose that

(07 (K)} oy := ESTIMATE(ur, K)

is the elementwise error indicator defined in (3.4.4).
MARK. We assume a fixed marking strategy

M := MARK({n7(K)} 7, T),
which satisfies
max{ny(K): K € T\M} < g(max{nr(K): K € M}), (4.1.1)

where g: Rj — R{ is a fixed function, which is continuous in 0, with g(0) = 0.
REFINE. We assume for 7 € G and M < T that

T < T := REFINE(T, M) € G,
such that
KeM = KeT\T, (4.1.2)

i.e., each marked element is at least refined once.

Obviously, the modules SOLVE and ESTIMATE depend on the data of the
of the variational problem, e.g. the right-hand side f. The refinement module
REFINE in contrast is problem independent which is in general also true for the
modul MARK. Some popular marking strategies for Algorithm 4.1 are:

e Maximum Strategy: For a given parameter 6 € [0, 1] we let

M = {K eT: WT(K) = 977’7',max} with N7 ,max = %,127}5 UT(K)-

e Equidistribution Strategy: For a given parameter 6 € [0, 1] we let
M = {K e T: nr(K) = 0nr(K))/ /#T} .

e Dorfler’s Strategy: For a given parameter 6 € [0,1] we let M < T such
that

nr(M) = onr(T).

Remark 4.2. In the refinement strategy (4.1.2), we only require minimal re-
finement, i.e. each marked element is at least refined once. Of course, in prazis
marked elements may be refined more than once. The standard choice is d bi-
section refinements.
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4.2 Proof of the main result Theorem 4.3

4.1.1 The main result

The main result of this work states that the sequence of SIPDG finite element
approximations produced by the ASIPDG method (Algorithm 4.1) converges to
the exact solution u € H3(Q) of (2.4.2) and also nx(Tz) — 0 as k — o0.

Theorem 4.3 (Main Theorem). Let u € H3(Q) be the solution of (2.4.2) and
{Ti} e e a sequence of triangulation of Q created by Algorithm 4.1. Moreover,
let {up} oy be the corresponding sequence of discrete solutions, i.e. uy € V(Ty)
is the SIPDG solution of (3.2.1) in V(Ty), for all k € N. Finally, let ng(Ty) be
the a posteriori error indicators from (3.4.4), related to Ty, and assume that the
assumptions on the modules SOLVE, ESTIMATE, MARK and REFINE, stated in
Section 4.1, are satisfied. Then, we have

me(Tk) >0 and  |lu—ugll, =0 ask — .

4.2 Proof of the main result Theorem 4.3

The proof of convergence of ASIPDGM is based on ideas of [MSV08, Siell] for
conforming elements and its generalisation [KG18] to adaptive discontinuous
Galerkin methods for the Poisson problem. For the sake of clarity, in this
section, we present the main ideas of the proof of Theorem 4.3 following the
ideas of [KG18]. In contrast to the latter result here we are faced with the
problem that V(7) contains no proper conforming subspace. This requires new
techniques of proof for two key auxiliary results, Theorem 4.15 and Lemma 4.12,
which proofs are postponed to Section 4.3.

4.2.1 Sequence of Partitions

Similar as in [MSV08, Siell, KG18], we split the domain €2 into essentially two
parts according to whether the mesh-size function hj := h7, vanishes or not.
In order to make this rigorous, we define the set of eventually never refined
elements by

Tt .= U ﬂ T with corresponding domain Qt=Q(TH). (4.2.1)
k=01=k

Additionally, we denote the complementary domain Q= = Q\Q".
For k € Ny, we define 7," := Ty n T as well as for j > 1

TP = (K eTi: NN(K) © TF} = {K € Te: No(K) = T,971%,

77<;j_ = 779\77gj+)
where we used 72” = 7;’ and 72)_ := T, inthe identities when j = 0; compare
with Figure 4.1 for an example of an adaptive grid. For the corresponding
domains we denote Q7 := Q(777) and Q" := Q(7/"). Moreover, we adopt
the above notations for the corresponding faces, e.g. F/~ := F(T?7), F/t :=
F(T?"). Note that for all j, k € Ng we have 7" = 7+ and therefore Q" < QF.
In view of the domain €2~ this also implies 2~ < Qif.
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4 Convergence of AFEM

Figure 4.1: Example of a sequence of triangulations of Q = (0, 1)2. Here, in each

58

iteration the elements in Q= = [0.5,1] x [0.5, 1] are refined. The re-
maining elements consisting to the grid 7 and build the domain
O\Q~. These elements are, after some iterations not refined any-
more. Moreover, after some iterations, their whole neighbourhood
is not refined anymore due to Lemma 4.4



4.2 Proof of the main result Theorem 4.3

We remark that we need the above definitions of 7757 and 7;Cj+ for techni-
cal reasons. In fact, our analysis involves interpolations based on local L*-
orthogonal projections for which local stability estimates involve neighbour-
hoods. However, for different but fixed js the above sets behave asymptotically
similar for £ — co. This is a consequence of the following Lemma, which states
that neighbours of never refined elements are also eventually never refined again.

Lemma 4.4. For K € T there exists a constant L = L(K) € Ny such that
Ni(K) = Ni(K)

for all k = L. In particular, we have Ni(K) < T for allk > L.

Proof. See [MSV08, Lemma 4.1]. O

The next Lemma essentially goes back to [MSV08, (4.15) and Corollary 4.1]
and was proved for j = 2 in [KG18, Lemma 11].

Lemma 4.5. For j € Ny we have limy_ o HthQj—
k

= 0, where j—
‘LOO(Q) Xoj

denotes the characteristic function of Qi_. Moreover, Q{;\Q*) = ‘Q*\Q{j‘ —

0 as k — o0.

Proof. In order to see that ‘QJF\Q?‘ — 0 as k — o0, we observe from Lemma 4.4

that for £ € N, there exists L = L(¢) > ¢, such that 7, 7'LjJr since 7," contains
only finitely many elements. Consequently, we have

+\Jt +
[Q\Q ] < Q\QS | -0 asl— oo,
i.e. we have proved the claim for a subsequence. Since the sequence {|Q+\Q§;r |} ken
is monotone, it must vanish as a whole.

The first claim follows for j = 1 from [Siell, Corollary 3.3]. By shape regu-
larity, we have for j > 1 that

hie = [K[Y? <]\ 2 < | \Q7|Y2 forall Ke TP\T,! ™.

Consequently, we have

S I
H WX | oo EX0 | oy 1Y\ | o )
e
as k — oo, which concludes the proof. 0

Remark 4.6. We note that Lemma 4.5 becomes important in the context of the
absolute continuous dependence of an integral to the integration domain. To be
precise: Let f be a function with a finite Lebesque integral over Q. Then, for
every € > 0, there exists a 6 = 0(€) > 0 such that for every measurable set E of
Q with £2(E) < §, we have
J fdz
E

<e,
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4 Convergence of AFEM

where £2 denotes the two-dimensional Lebesque-measure. Compare to [PKJF12,
Theorem 1.21.13] for this statement.

In particular, for f € LP(Q), p € [1,00), we obtain that for arbitrary € > there
exist 8 > 0, such that for every E' < Q satisfying £2(E') < &'

1/p
<J Vils dx) <.
E‘/

Consequently, for p € [1,00), the LP-norm is absolutely continuous with re-
spect to the Lebesque measure (compare with [PKJF12, Examples 6.3.5(1)]) and
Lemma 4.5 implies

=0,
Lr(9Q)

= lim HfXQJr\QiJr

i [P
o fXQ{c \Q LP(Q) k—o0

k—o0
due to the fact that ’Qf{_\Q_} = ’Q*\Q{j‘ — 0 as k — 0.

Remark 4.7. A more intuitiv definition of the refined mesh would be to define
Q™ = interior(Q\Q1) and

Efz{KEE:KCF}

which would ease the theory significantly. In particular, in context of the limit
space which is defined later. Defining the grid 7? as above, we collect all re-
maining elements in T = Tp\(T," v T,”), which are not in one the two grids
T.F and T, (compare e.g. [MSVO08, Section 4.2).

However, the definition of T, is based on the interior of the domain Q™ and
therefore problems arise, when interior(Q~) = & but Q\QT + . In Appendiz C
we give an example of a sequence of meshes, based on Cantor sets, with the
properties interior(Q7) = & and |Q\QF| > 0 and analyse the resulting problems.

4.2.2 The limit space

In this section we define the limit of the finite element spaces {Vj}, .y, based
on [DGK19| and [KG18|. Before we state the definition of the limit space, we
cite the following Lemma, proving a compactness propety of broken Sobolev
spaces in case of vanishing mesh-size h — 0 (|Pryl4, Lemma 4.15], compare
also [BO09, Theorem 5.2]) This will be a key property in the definition of the
limit space.

Lemma 4.8. Let {ﬁb}hzo be a sequence of grids with global mesh-size h =
maxge7;, hic and h € (0,1]. Moreover, let {vp},~ be a sequence of finite element
function with v, € V(Ty), which is uniformly bounded in the ||-|| 5, -norm. Then,
there exist a subsequence hy — 0 as £ — o and a function v € HZ () such that
vp, — v in L2(Q) as £ — 0. Moreover,

D;wvh/Z + L, (vn,) — D*v in L*(Q)**?  as £ — oo.
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The definition of the limit space is motivated by the following ideas: The space
is generated from limits of discontinuous Galerkin functions in the sequence of
discontinuous Galerkin spaces constructed by the adaptive algorithm. There-
fore, there exists a sequence {vi},cy, vk € Vi, such that limy_,q [Jugy — v[, = 0,
as k — oo and limsupy_, [|vk], < o for all limit functions v located in the
limit space.

We emphasise that the evaluation of the energy-norm |[|vy — v, requires
traces of v and Vp,v on skeletons I'y, k € N. This traces exist due to the follow-
ing observation: Thanks to Propositions 3.12 and 3.30 and the uniform bound
of {vp}ey in the energy-norm limsupy, o [|vk|l, < oo we have that {vg},oy is
also uniformly bounded in the BV-norm. Using the compactness property of
the BV-space (Theorem 3.24) there exists © € BV(2) such that vy — 9 in
BV () as k — co. Unfortunately, it is a priori not clear if the limit  coincides
with v. Motivated by Proposition 3.12 we therefore assume additionally that
{vi} e satisfies the strong L2-convergence limg_,o |vg — v||, = 0, which implies
? = v e BV(Q). Consequently, for v e BV () there exist the L!-trace on I'y,
k € N; see [AFP00, Theorem 3.88] and the jump terms of v are measurable with
respect to the 1-dimensional Hausdorff measure on Fi. In the same vein we
can use Proposition 3.31 in order to get Vpuuy N Vpw in BV (Q)? as k — .
Hence, the L!-trace of Vpyv € BV (Q)? exists on I'y, k € N and we conclude that
the energy norm |[|v],, £ € N is measurable.

Next, we focus on the domain 2~ . Using 2~ < € and Lemma 4.5 we have
that the mesh-size vanishes in the limit. Consequently, Lemma 4.8 implies that
a limit function v should ensure H2-regularity on the domain ©~. To makes

this precise: For a limit function v we require v|g- = w|q-, for some function
w € HE(2). In this context we denote by H3, o (€7) the space of functions

from HZ(S2) restricted to the domain Q™.

Finally, we remark that the set 7, consists of all the elements, which are
eventually no longer refined and therefore we have v|x € P,.(K) for all K € T,
due to the definition of the finite-element space.

Motivated by the discussion above (compare also Proposition 4.10) we ex-
tend the definitions of the piece-wise gradient Vv € L?(92)? and the piecewise
Hessian Dp2w1) e L%(9)%*? to the limit case, i.e.

Vout|g- 1= Vu|g- on Q7 and  Vouv|k := Vol VKeT", (422)
and

_Dp2w’l)|ﬂ— .= D%v|o- on @ and DP2WU|K = D% VKeT", (4.2.3)

compare also Proposition 4.10 below.
Now, we are in a position to give the definition of the limit-space. Following
the ideas in [KG18, Section 3.2] and [DGK19, Section 3.2] we define
Vo := {v e BV(Q): Vv € BV(Q)?, v]g- € Hag00- (7)),
v|g € Pr(K), VK € T tsuch that
I{ vk }ren, vk € Vi with
tim [l — vell + [0 — vl = 0 and Tmsup Jugl, < oo}
k—o0 k—o0
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4 Convergence of AFEM

We will use the following bilinear form on V,: For v, w € V,, we define

(0, W) = f D2wv: Dzww dz
Q
+ Jf+ [Vewt]] - 2 [[Veww]] - 1 + h3 [v]n- [w]nds,

where we set hy := hy+ and F* := F(T ). The induced norm is denoted by

vlly = <v, v><1,é2. Note that we use the shorthand notation of the normal jumps
also in the limit case i.e. for F'€ F and v € Vo, we define

[[prv]] |lF-np =:[0v] |F.

In the subsequent analysis we have to characterise the distributional deriva-
tives of a limit function v € V. The following Proposition is a key tool to get
this characterisation.

Proposition 4.9. For v e V,,, we have
ol /vl <00 as k — .

In particular, for fived £ € Ny, let K € Ty; then, we have

J h! [0,v]” ds 7 ht [0,v]* ds as k — oo
{FeF: FcK} {FeFt: FcK}
and
J hI;S [v]nl* ds 7 R3]l n|®>ds as k — .
(FeFy,: FCK} {(FeF+: FcK}

Proof. For v e V, there exists a sequence vy € Vi, k € N, such that v — vy ||, +
|lv —vk|g — 0 as k — o0 and limsupy,_, [|vk|l, < 0. Therefore, {[|v|; }ren is
bounded, since [[oll, < [Jv = wkll), + Jlvgll,, < oo uniformly in k. For m > k we
have, by inclusion Jp 7, I < Upez,, F' and mesh-size reduction hy, > hyy,, that

f hit 10,017 + h 2 [[v] nf® ds < J hot e, 0] + b2 |[v] m)? ds

F Fe

< J hot[o,0] + k2 |[v] nf® ds.
Fm

Consequently, we have that [|v], < [[v||,, and {||v[} ey converges. In partic-
ular, for € > 0, the exists L = L(e) € N such that for all & > L and some
sufficiently large m > k, we have

L U W O (R R
m kNS m

- e I+ g Il s

Fi\FunFm) Dk

>&thﬂ+ Telinf? ds.
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4.2 Proof of the main result Theorem 4.3

This follows from the fact that h,,|p < 27 h|p for all F € F,\(Fix 0 Fm), and
]:lj = Fm N Fi for sufficiently large m > k. Therefore,

J o [6,0]2 + b8 o] mi? ds — 0
Fm\Fih
as m — oo and thus

2 2,12 @ 2 B 2
vl = | |Div dﬂz—i—f ov]” + v]|n|” ds
It = [ 12l a5 Wl + 5 dm

(6 2 5 2
+ — [0,v]I” + = |[[v] n|” ds
e e B+ G

— |Jvll, + 0 as k — 0.

The second claim is a localised version and follows by analogous arguments. [

The following proposition characterises the distributional Hessian of a limit
function v € V, and states, that the distributional Hessian is given by the
piece-wise Hessian (4.2.3) with additional contributions of jump-terms since v
is discontinuous. In the same vein, the distributional derivative is given by the
piece-wise gradient (4.2.2) with additional contributions of jump-terms.

Proposition 4.10. Let v € Vo, Then, for p € CF(2)2*? the distributional
Hessian of v is given by

(D?*v, ) = —(Dv,div ) = (v, divdiv )
=J Dﬁwvchdx—f go[[prv]]'nds—i-f dive - [v] nds
Q F+ F+

and for ¢ € C(Q)? the distributional derivative is given by

(Dv,p) = J prv-godx—f p[v] - nds.
Q Ft

Proof. Let v € V. Then, there exists a sequence {vg}ren, With [[v — vk, +
|lv — vkl — 0 as & — co. For the distributional Hessian of v, we have by
element-wise integration by parts for ¢ € C§°(Q):

(D?vy,, @) = —(Duy, div ) = (v, divdive) = f v div div ¢ dz
Q

=f Dngk:cpd:pj cp[[prvk]]-nds+J div e - [Jug]l mds.
Q Fi

Tk

We already now that (D?uvy, ¢y — (D?v,¢) as k — o0 since v, — v in L%(Q)
as k — o0. Hence, we are left to analyse the limits of the jump terms. To this
end consider

J divcp-[[vk]]nds=f divcp-[[vk—v]]nds—i-J dive - [v] nds
Fr

F Fe

=J divcp-[[vk—v]]nderJ dive - [v] nds (4.2.4)
T I

k

+J dive - [v] nds.

Fi
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4 Convergence of AFEM

Now, the first term on the right-hand side of (4.2.4) vanishes thanks ||v — vy, —
0 as k — o0. For the second term we have from the definition of F*

J dive - [v]nds = J dive - [v]nds — J dive - [v]nds. (4.2.5)
FF Ft FH\FF

Moreover, Hélder’s inequality in conjunction with Lemma 4.5 reveals

1/2
. ( L\ﬁ IOLE ds>
k

—0 ask — oo.

J dive - [v]nds < Hhi/2 div e
FH\FF

Hence, in (4.2.5) we obtain

J divcp-[[v]]nds—»J dive - [v]nds as k — oo.
- Ft

Fi

For the remaining term in (4.2.4), we have by Hélder’s inequality in conjunction
with the scaled trace inequality and the finite overlap of patches wy(F'), F € Fy

fdivcp-[[v]]nds-f +divc,o-[[v]]nd(s:

F; Fi\F;

1/2 1/2
< (J B3 |div 2 ds) (f B3 o] nf? ds)
Fi\F; FR\F;

1/2
< el ( J,. . el ds>
E\ kg

—0 ask— oo,

where we used Proposition 4.9 in the last line. Consequently, in (4.2.4) we have

J divcp-[vk]]nds—>f dive - k] nds as k — oo.
T Ft
Hence, we obtain

f divgo-[[v]]nds+f divgo-[[v]]ndsaf dive - [v] nds
+ — F+

k ‘Fk

as k — 00. By similar arguments we have for the jump of the normal piece-wise
gradient

J LP [[prvk]] ‘nds — J @ [[prv]] -nds
F F+

k
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4.2 Proof of the main result Theorem 4.3

as k — o0. The assertion finally follows since Dpzka — Dpzwv as k — o0 in
L%(Q)?*2, due to limy_« v — vi[l, = 0 and we we obtain

(D*v, ) — (D?vj,, p) = f Dpzka: pdz

Q

—f go[[Vvk]]~nds~|—f div e - k] nds
Fr F

—>JDPQWU:Lpda:
Q

—J cp[[Vv]]-nds—l—f dive - [[v]nds as k — oo.
Ft F+

In order to prove the second assertion, we use again that for v € Vo, there
exists a sequence {vg}ren, With ||[v — vg]l, + v — vk — 0 as & — co. Hence,
we consider the distributional derivative of vy and use integration by parts to
obtain

Do) = | Voo~ | ool -mds Ve G
Q F
The assertion now follows by completely analogous arguments as in the case
above. n

The following corollary states that the estimates of Propositions 3.12, 3.30
and 3.31 holds true on the limit space V.

Corollary 4.11. Let v e Vy. Then, we have
(a) [vlg = vl
(0) [Vpurg, < l1vll0;
(c) [Do| (@) 5 ||vll,, and

(d) |D(Vpuv)| () < [lv]ly,, where |D(Vpuv)| () denotes the total variation of
Vouv € L2(92).

Proof. Let v € V. Then there exists a sequence {vj}ren, with [Jv — vy, +
|v — vgllg — 0 as k — oo. Consequently, Propositions 3.12 and 4.9 imply

lvkllq = Nvklly < llo=vklly + vl = llvlle <0

as k — o0. We thus conclude that v, is bounded uniformly and therefore
v — v in L?(Q) as k — 0. As a result, we have from lower-semicontinuity of
the L2-norm in conjunction with Proposition 3.12

< lim inf < liminf = i < .
[vlq < liminf vkl < liminf o, = hm floelly < vl
Consequently, Proposition 3.12 holds for all v € V.

The statement (b) follows by similar arguments. In order to prove state-
ment (c), we argue as above and obtain, that {vj},.y is uniformly bounded in
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4 Convergence of AFEM

the BV-norm, due to Propositions 3.12 and 3.30. Hence, by Theorem 3.24 we
have v — v in BV (Q) as k — c0. Consequently, the assertion follows by similar
arguments as above, but here we use lower semicontinuity of the BV -norm with
respect to weak™® convergence (compare Proposition 3.26 and Propositions 3.12
and 3.30.

Finally, assertion (d) follows similarly to the proof of statement (c). O

The next Lemma is crucial for the existence of a generalised Galerkin solution
in Vg, its proof is postponed to Section 4.3.3.

Lemma 4.12. The space (Veo, (-, ).,) is a Hilbert space.

In order to extend the discrete problem (3.2.1) to the space Vo, we have to
extend the bilinear form B4 to the space V. To this end, we define suitable
liftings for the limit space. Thanks to Lemma 4.4, for each F' € F 1, there exists
L = L(F) such that F'e F,* for all £ > L. We define the local lifting operators

£l =rf =rh . (4.2.6)
From the definition of the discrete local liftings (3.3.1), we see that £L vanishes
outside the two neighbouring element K’, K, with F' = K n K’. Consequently,

we have Ef = Ef for all £ = L, and therefore this definition is unique. The
global lifting operator is defined by

Lo= > LF. (4.2.7)
FeF+

From estimate (3.3.4) we have that vy := ZFeF[ LY (v) is a Cauchy sequence

in L2(2)44 with limit Loo(v) = Y perr L5 (v). Therefore, Loo(v) € L2(2)%*4
and the estimate

e < |2 10,00, + [ [l (4.28)

holds. Here we used the notation 't := | J{F' | F € F*}. Now we are in position
to generalise the DG-bilinear form to V, setting

B lv, w]: = f Dpzwv: Dprw dz + J Loo(w): Dpzwv + Loyp(v): Dp2ww dz
Q Q
o g
+ J — [opv]l [0, w] + 5 [vln - [w] nds,
F+ hy hZ.

for all v,w € V.

Corollary 4.13. There exists a unique uy € Vo, such that

Boo[Uoo, V] = f fvdx Vv e V. (4.2.9)
Q
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4.2 Proof of the main result Theorem 4.3

Proof. From Lemma 4.12 we have that V, is a Hilbert space. Moreover, stability
of the lifting operators (4.2.8) and the Cauchy-Schwarz inequality imply the
continuity of B[, -] since for v, w € V, we have

Boo[v, w] £ | Dpv ] 1Dl + 120 ()l | Dol
+ 1o ()l [ D20, + A7 [0, |43 [0,
[ ]

S lolles lewll -

T+
—3/2
h2 ]

T+

In view of coercivity of B[, -] we obtain for v € V, by standard estimates
(compare also with Lemma 3.8)

Boo[v, v] > |[DZ0[2 — 20Ls () g | DE0],

o 2 ﬁ 2
+L:+ e [0, v]” + hi I[v]l m|” ds

1 2
> 5 1030l — 2120l
o 2 P 2
— — ds.
# ] el g Ilinf ds

Hence, the stability of the lifting operators (4.2.8) implies coercivity of the limit
bilinear form.
The assertion finally follows from the Lax-Milgram Theorem 2.8. O

Remark 4.14. By analogous arguments as in (3.3.5) we observe that the solu-
tion uy € Vo 18 also stable in the sense that

lucollos = 1l -

The following Theorem states that the solution of (4.2.9) is indeed the limit
of the adaptive sequence produced by the SIPDG method. Its proof is postponed
to Section 4.3.

Theorem 4.15. Let ug, the solution of (4.2.9) and let {uy}ren, be the sequence
of SIPDG solutions produced by ASIPDG method. Then,

luw — ugll, = 0 as k — oo.

4.2.3 Proof of the Main Theorem 4.3

In this section the marking strategy (4.1.1) becomes important. In particular,
it essentially forces the maximal indicator to vanish, which allows to control
the error on the sequence {’7;+}k€N0. Moreover, this has implications on the
regularity of the Galerkin solution uy € Voo from Corollary 4.13, which finally
allow us to prove that u = wus. Thanks to the lower bound, we can thus
conclude the proof of Theorem 4.3 from Theorem 4.15 employing the lower
bound in Proposition 3.17.
We start with proving that the maximal indicator vanishes.
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4 Convergence of AFEM

Lemma 4.16. We have that

K)—0 k—
lrga,;wk(uk, ) as 0

Proof. Let k € Ng, and K}, € T, such that ny(ug, Kj) = MAaX o7 - Nk (ug, K').
Then we have by standard scaled trace- and inverse estimates that

2
77k(“kaKk)2:f hi|f — APuy|” dz
Ky
—i—J hi‘[[V~ uk]] n’ —|—hk’[[ uk]]n‘ ds
0K Q)
2 2
o 2 B 2
+ — &nuk + —= |||ug||n ds
o i Ul + g Wl
sj hﬁyfﬁdmf Augl? da
K Ky

j | uk| dzx

+f f[[ﬁ ug ] + |[[uk]]n| ds,
é’Kk

<[ s dx+f !Dpwuk! da
Ky,

~|—j fllé’ uk]] + 3||Iuk]]n| ds,
8Kk

(4.2.10)

where we used

J |Aug|? dz < f ‘Dpzwukf dz.
Ky, wi (Kk)

The first term on the right hand side of (4.2.10) converges to zero thanks to
Lemma 4.5. For the remaining terms, we have from triangle inequalities that

2 2
| D2,wil* da + & 8, un]? + @3 [ur] |? ds
h h
wi (Kk) 0Ky, "'k k

2
(6%
$|||uoo—uk|||i+f Do+ [ ol s
wi (Ky) oK Nk
f h3 \[[uo@]] n| ds
0K},
<ruuoo—ukmk+f D2 ? da
wi (Kk)

—I—J [[5 uoo]] + \[[uoo]] n\ ds.
FAFS h h3.

We have that ||ue — ug|, — 0 as k — oo due to Theorem 4.15 and also the jump
terms vanish as kK — o0 by Proposition 4.9, since ug € V. For the remaining
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4.2 Proof of the main result Theorem 4.3

volume term we infer from local quasi-uniformity (3.1.5)

— 4.2.11
Loy 0 (4.2.11)

Jwi (K| < Bk < W7 x5 e () < HhQTkXQ,;

as k — 00, due to Lemma 4.5. Whence, the absolute continuity of the L?-norm,
with respect to the Lebesgue measure implies

J |Dp2wuoo|2 dz -0 ask — o,

wie (Kk)

compare with Remark 4.6. As a consequence, we infer that the maximum error
indicator on 7, vanishes, i.e.

max 1 (ug, K) — 0 as k — 0.
KeT,~

Now using the refinement strategy (4.1.2) we observe that all elements ’7? will
not be subdivided, i.e. 7;€+ < Ti\Mg. As a consequence we obtain by the
marking strategy (4.1.1)

lim max {n(ug, K): K € 7,7} < lim max {ng(up, K): K € Tr\My}
k—o0 k—0o0
< klim g(max {ng(ug, K): K € My})
—00
< klim g(max {ny(ug, K): Ke T, })=0.
—00

Here, we used in the last inequality, that each element in M, will be refined by
(4.1.2) and therefore My, < 7, O

Lemma 4.17. We have ni(7,") — 0 as k — 0.

Proof. We follow the lines of [MSV08, Proposition 4.3].
Employing Lemma 4.16, for K € 7, we that n,(K) — 0 as k — o0. In order
to proof ny(7,7) — 0 as k — o0, we reformulate the estimator in an integral

framework and use a generalised Lebesgue dominated convergence theorem.
From the definition of 7? we have that

wr(K) = wi(K) = w(K)
and
Ni(K) = No(K) = N(K)
for all K € ’77: and all £ > k. Moreover, from Proposition 3.17 we obtain for

KeT?

2 _ .
n,%(K) < HDPQW(ZL — uk)Hw(K) + JF h;, 1 [[anuk]]Z + hkd | [ ] n|2 ds
(K)

Fcw

+ osc(N(K), f)?
2
< lluk — u ”|?V(K) + HDSWUHLU(K) + wuoOHﬁV(K) + Hf”i(K)

= Jlur, — woo |30y + C-
(4.2.12)
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4 Convergence of AFEM

Here, we used in the last estimate the stability of the data-oscillation. Note that
Cx does not depend on the integer k € N, and therefore the right-hand side of
(4.2.12) tends to C% as k — o0 by Theorem 4.15. Adding up over all K € T.F
and using the finite overlap of patches wi(K), K € T leads us to

S = Y D2l e + el + 11200
KeTt KeT!*

<[ D2l + llusll + 1712

<1,

(4.2.13)

where we used the stability of u € HZ(£2) as well as the stability of uy € V.
Now we’re able to give the integral formulation. From Lemma 4.4 we have

T+ = U 7;:-’
keN

where the sequence {7;; is nested. Now for z € Q7 let

}keN
¢ ={(z) :=min{k € N: 3K € T;", such that z € K}.
We define for x € K
ex(z) := Mi(x) =0, fork </

and
ex(z) := —1 ?72(1() My (x) = —1 (H]uk — uOOH\Q + C? ) for k > ¢.
‘ K’ k ’ ’ K‘ N(K) K

Consequently, for any integer k € N we obtain

BT = | e

Moreover, the element-wise convergence of the estimator from step 1 implies

pointwise convergence of ¢, in Q% i.e.

1
ex(z) = mn,%(K) — 0 ask— .

From (4.2.12) and the definition of M}, we have that each M} is a majorant
of €, which is also integrable thanks to )| KeT* ke — v Hﬁv( k) S llue — uoo I3

and (4.2.13).
The last step is to prove convergence of the majorants { My}, in L(Q7T)
to a function M, defined by

M(z C%, zeK, KeT".

1
)=

Thanks to the definiton of M}, we observe

M = Mllpagey = Yo IMk— Mg+ Y, 1Ml
KeT," KeT T}
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4.2 Proof of the main result Theorem 4.3

since M}, vanishes on 7 T\7,*. The first term on the right-hand side satisfies

2 2
20 1M = Moy = D) luk = el ey < Juk — ool — 0
KeT;t KeT;t

as k — oo thanks to Theorem 4.15. The second term is a tail of the series
2ixer+ 1My = Zker+ C% which is bounded thanks to (4.2.13). Conse-
quently, we have M, — M in L'(QF).

Finally, the application of the generalised majorised convergence Theorem
(see [Zei90, Appendix (19a)]) with e = fr, My = g and M = g leads us to

lim 77 (7,") = lim e do = Jm 0dz = 0.

k—00 k—w Jo+
O
Remark 4.18. We note, that Lemma 4.17 yields in particular that
f i 0] + P [uil ml® ds — 0 as k — oo, (4.2.14)

k

i.e. the jump terms wvanish on the non-refined domain Q,j This means we
can conclude additional reqularity of the limit function. This is reflected in the
following lemma.

Lemma 4.19. We have for uy, € Vo, from Corollary 4.13 that uy, € HZ(S2).

Proof. From Theorem 4.15, we know that

Dpzwuk - Dpzwuoo in L2(Q)**? as k — oo.

Additionally, we have that up — u in L*(Q) as k — o0 thanks to ue € Vi
and

luk — uwlq < Juk — vilq + vk — uslq
S lluw = vkl + llow = ueollg
S luk = woslly + lluoo = vkl + vk = ucolg

— 0,

as k — oo, for a sequence {vi}ren, vp € Vi due to the defintion of the limit
space and Theorem 4.15.
We have that for ¢ € CP(02)%*2 the distributional Hessian of uy is given by

(D?uy, ) = f DPQWuk: pdr — J p [[Onug] ds + J div ¢ - [ux]] nds.
Q -Fk .Fk

Consequently, us has second weak derivatives DPQWuOO if and only if the two jump
terms vanish as k — 0o0. This follows from

f het [0,ur]]® + hi |[ugl m|* ds — 0 as k — oo, (4.2.15)
F
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4 Convergence of AFEM

which implies u,, € HZ(f2) since Fj contains also boundary sides. In order to
verify (4.2.15), we estimate

f B 0 un]l? + i ® ] mf? ds

F

_ f bt [l + hig? [[u] o ds

k

+ f . ht [onur]? + b2 [[ug] nf* ds

k

< 2J ! [t ]? + b ] mf? ds

]:k
+ 2 |||uoo — ukmz + J ) hlzl [[anuk]]Q + h];3 |[[Uk]] fn,‘2 ds
‘7:/6
Thanks to Proposition 4.9, Theorem 4.15 and (4.2.14), we have that all three
terms tend to zero. This proves the assertion. O

Next, we have to prove that ue, coincides with the exact solution u € HZ(Q)
of (2.4.2). This proof is based on the following Lemma.

Lemma 4.20. Let ¢ € CF(2) and uy the discrete solution generated by the
ASIPDG method. Then we have

[fy v — Brlug, ¢]| < KZTW(UmK)h%( [l 2ok w2 ()) »
€

with si € {0,1}, K € T.

Proof. Note that by the Galerkin orthogonality we have for all v, € Vy, that

(fy o) — Bilug, o] ={f, ¢ — vy — Brug, ¢ — vg). (4.2.16)

Let vy := Zyp, where Zpp is the quasi-interpolant from (4.3.5), and define
ok =  — L. Integration by parts yields

(s pry — Brluk, pkl
= L(f - AQUk)Pk - L Ly (pr): DPQWUk + L (ug): DPQka dz

- D2ung - Vo, — piV - D2uy, - ng ds (4.2.17)

KeTx oK

- [, i1 12 + i Tl g nds

Thanks to DPQWuk € P._2(Tz)?*2, we can use the definition of the local lifting
operators

fg Ly (pr): Dp2wuk dz = 2 JF {{V . DPQWuk}} ‘ng[pk]] — {{Dgwuk}} [Vor] - nrds.

FeFy
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4.2 Proof of the main result Theorem 4.3

Moreover, reformulation of the boundary integrals to face integrals ((3.1.8) and
(3.1.9)) reveals

Z D2uk’l’LK : VPk - ka . D2U}C Nk ds
KeTr oK

- L {0%ur} Vo]l - nr — [oell {V - D*ur}} - nr ds

+ J [[DQUk]] {Vor} nr—{or} [[V . D2uk]] -nrds
Fk
Consequently, inserting this in (4.2.17) yields

{fy o = Ty — Biluk, v — Liy]

- [ (= At~ | Lutu): D

_ J;} [[D2uk]] {Vor} -nr—{pr} [[V . D2uk]] ‘nrds (4.2.18)

| peund 10w ds + L ludn - [odnds.
Fi hy,

Thanks to ¢ € C5°(f2) standard interpolation estimates provide for j € {0, 1,2}
and sx € {0,1} that

j DI (¢ — Thp)[* do < f TR D2 e KeT; (4.2.19)
K wy, (K)

compare e.g. with [Cle75|. For the first term on the right-hand side of (4.2.18),
we have

fﬂ(f — A% k) pr Az

< D5 1 = A% lowlx
KeTy

< Z th(f_AQUk:)HKh%{|¢‘H2+SK(wk(K))’
KeTy

Using stability of the lifting operator (3.3.4) (Lemma 3.11), we estimate the
second term on the right-hand side of (4.2.18) by

J;z [’k (’U,k> : Dp2wpk dx

< ()h?w [Pl + n72 L ”‘pk) RNl v oy (1)) -

Combining a scaled trace inequality with (4.2.19), we obtain

[N AREE 2 IR R L

< 20 (s KPR [l pvenc (1)) -
KeTy,
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4 Convergence of AFEM

Analogous arguments, yield
_ 2
U {o1} [V - D?uy]] ‘n]-" Y U h* o} b [V - D*ur]) - mp|” ds
Tk Fef, F

< ) melug, K)BGE ol m2+sn w2 (k) -
KeTy

Finally, for the last term on the right-hand side of (4.2.18) we deduce in the
same fashion

U;zwmdeJ®+%MdWWﬂ”®

< D (s KV @l pavenc 2 1)) -
KeTy

Inserting the above estimates in (4.2.18) proves the claim. O

Lemma 4.21. Letu € H2(Q) and uy € Vo, be the solutions of (2.4.2) and (4.2.9)
respectively. Then u = Uqp.

Proof. We recall that for v, w € HZ(Q) we have B[v, w] = Bi[v, w] = By [v, w].
Therefore, we obtain from ue, € HZ(2) and (4.2.9) that

ot — oo < Bl — e, 10— 1]
= Bu, U — U] — Boo[Ua, ] + Boo[too, Ueo]
= {f,u — ue) — Boo[too, u] + {f, ux)
= {f,u) — Byluw, u] = (f,u) — By [uk, u] + Br[uw — ug, ul
< {fyw) = Bre[ur, u] + ull flue — ully, -
The last product vanishes thanks to Theorem 4.15 and we are left with the
remaining parts. By the density of H3(Q) in HZ(Q), for ¢ > 0 we choose

ue € H3(Q) such that |lu — uc|| < e. Recalling that {f,vx) — By[uk, vi] = 0 for
all v € Vi, we employ Lemma 4.20 to obtain

[<fsu) — Brlug, u]l
< [(fsue) — Bilug, uel| + [Kfsu — ue) — Brlug, u— uc|
< Z M (re; KO hiel| oo (1) [the| 3 w21
KeT,~

+ > me(ug, K) luell vz (xy + €l fl2e)
KeT.*

S [k oo =y (s T ) tel sz aeyy + (i, ) lluell + €l £l 22(0)-
Here, we have used interpolation estimates in H? for the first term and stability
of the interpolation for the second term as well as (3.3.5) and the finite overlap

of the neighbourhoods. The first term on the right hand side vanishes thanks
to Lemma 4.5 and since the estimator stays bounded (Proposition 3.17). The
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second term vanishes thanks to Lemma 4.17. Combining the above findings, we
obtain by letting k& — oo that

2
lu = ueoll” < €l fllz2()-
Since € was arbitrary, this proves the assertion. O

Proof of Theorem 4.3. Thanks to Lemma 4.21 and Theorem 4.15, we have that
lu — ugll, — 0 as k — oo.

Combining the lower bound Proposition 3.17 with Lemmas 4.17, 4.21 and 4.5,
we obtain

e (T)? < lu = ugllf + ose(Ti, £)?

w2+ Y th;irf—HfF dr+ Y thmf—nf\? d

KeT,~ KeT.t

4
2 2
< o=l + x|, o 1718 + e, T0)?

-0

as k — o0. Here we have used §,. hj, |f — o f|? < mi(uk, K)? thanks to (3.4.16).
0l

4.3 Proofs of Lemma 4.12 and Theorem 4.15

In this Section we use the ideas of [DGK19, Section 4] to close the proof of the
main result, Theorem 4.3. We emphasise that we still have to verify Lemma 4.12
and Theorem 4.15. The primer states that Vo, is a Hilbert space with norm ||| .,
and thus a unique solution us, € Vg, of (4.2.9) exists; see Corollary 4.13. The
latter proves that uy is indeed the limit of the SIPDG approximations {ug }xen,
produced by the ASIPDG method.

We emphasise that in contrast to [KG18], the lack of proper H2-conforming
subspaces of SIPDG spaces, does not allow for a straight forward generalisa-
tion: For example, in order to prove [ugp —ugfl, — 0, in [KG18| the best-
approximation property for inf-sup stable conforming elements [MSV08, Siell]
is replaced by a variant of Gudi’s medius analysis [Gud10|. However, this re-
quired a discrete smoothing operator into Vo, whose construction is heavily
based on the existence of a proper conforming subspace of V.

After recalling a Poincaré-type inequality we introduce a interpolation opera-
tor Zj,: L?(£2) — V} and prove the crucial approximation property [|Zxv — v, —
0 as k — o for v € V4. Finally, we conclude the section with the proofs of
Lemma 4.12 and Theorem 4.15.

4.3.1 Preliminary results

In order to prove the Poincaré and Friedrichs estimates below, we state a useful
result from [KG18|.
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4 Convergence of AFEM

Proposition 4.22. Let T be a triangulation of Q and T. be some refinement of
T. Then, forveV(T.), K €T and vg = |wy(K)| ™ SWT(K) vdz, we have

v — UKHOQJT(K) < j h3- ‘prv’2 dz + J h27h7_—*1 I[v] nf? ds,
wr(K) FeFi, Fcwr(K)
where F. = F7, and the hidden constant depends on d and the shape reqularity
of N7 (K).

Proof. See |KG18, Proposition 1]. O

The following Poincaré estimate is subsequently used to prove stability of the
smoothing and quasi-interpolation operators defined later.

Lemma 4.23. Let 7,7, be two triangulations of Q with T < T, and let v €
V(Tx). Then, there exists a linear polynomial Q, defined on wr(K) such that

we have
2
o= Qo s | W IDRf as
TEE Jrey T

+ fFef(m h (h:f} [on0]? + b7 |[] n[2) ds.
FCOJT(K)

(4.3.1)

Proof. Let Q € P1(w7(K)) uniquely defined by

J Opu,z; v dx = J 0z;,Qdr, 1<i<2 and
wr (K) wr (K)

J vdr = J Qdx.
wr (K) wr (K)

As a consequence from Proposition 4.22; together with hy, < hy we get the
following estimate

2
o= Qo< [ 15 Vulo - Qf o
w7 (K)

(4.3.2)

+ fFefm) hhy! o] nf® ds.
FCUJT(K)

Finally, the proof of (4.3.1) follows from a second application of [KG18, Propo-
sition 1]. Indeed, for the first term on the right-hand side of (4.3.2) we have

2 2 _
J W | Vieu(v — Q)] dz < J Wy |Dao|” da + JFGFW hyhr! [0nv]” ds.
wr (K) wr (K) Fewr(K)

O

The following Lemma extends the previous result to the limit space V.
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

Lemma 4.24 (Poincaré-Friedrichs Vo, ). Forv € Vo, there exists Q € P1(wy(K)),
such that

o= QI2, e, < f

Wk

2 _ _
hi {DPQWU‘ dx + J Fert hi <h+1 [[anv]]2 + h+3 |[[1)]] n|2> ds.
(K) Fcwy,(K)

Proof. Let Q € Py(wy(K)) be the L2-orthogonal projection of v defined by

j (Q—v)Pdx =0 VP eP(wi(K)). (4.3.3)
wi (K)
Moreover, we define another linear polynomial Q € PPy (wy,(K)) by

f apwﬁivdx = J azZQ d$, 1<i<2 and
wi (K) wi(K)

J vdx = J de.
wi (K) wi (K)

Now for v € V, there exists a sequence vy € Vy, £ € N, with limy_,o v — ve|, +
|v — vl = 0 and limsup,_,, |Jve]l, < o0 and Proposition 4.9 implies

f \DPZWUAQ dr + 2 f h,t [0, ve]? + hy? e n|? ds
wi (K) F

FeF,
Fka(K)
. D2offdet Y f W 0, 0]? + B2 o] nf? ds
wi (K) Fert VF
Fka(K)

as £ — 0. Let £ > k. Thanks to Lemma 4.23 there exists Q, € Py (wy(K)) with

~ 12
vg — < R | D2 ve|? dz
beal <. piDiel
+ Y f B (h;l[[anw]]2+h;3|[[w]]n|2) ds (4.3.4)
FeF, E
Fka(K)
o niDZuPde+ Y] Jhﬁ (h;l[[anv]]2+h;3|[[v]]n|2) ds,
wi (K) reFt VF
Fka(K)

as { — o0; compare also with Proposition 4.9.
Next, let Q; € Pj(wi(K)) be the L?-orthogonal projection of v,. Then, we
have by the definitions of @), QQy and V, that
2 2 2
1Qe — Qllis, () < lve = vl (1) < lve —vfg — 0

as £ — oo. Hence, we have that |[ve — Qe () = v = Qo (k) as £ — 0.
Finally, the definitions of ), and Qz in conjunction with standard properties

of the L2-orthogonal projection imply [vy — Qe (ry < va -Q ( and we
Wk

conclude the statement of the Lemma in view of (4.3.4) for @ defined in (4.3.3).

g

7



4 Convergence of AFEM

4.3.2 Polynomial Approximation
We fix k > 0 and define an interpolation operator Z: L?(Q2) — V}, by

J (Zxv —v)wdx =0 Vw € Vi, (4.3.5)
Q

that means v is the L?-orthogonal projection of v € L?(f2) onto V. We
emphasise that the defintion of V. implies that for a single element K € Ty the
restriction Zyv|x € P, (K) is defined analogously, i.e.

J (Zyv|k —v)Pdz =0 VPeP.(K).
K

Lemma 4.25 (Polynomial interpolation onto Vy). For k > 0 let Zy: L?()) —
Vi be defined as in (4.3.5). Then we have that

(1) Iy.: LP(2) — LP(Q) is a linear and bounded projection for all 1 < p < o
and is stable in the following sense: If v e L*(Q), then

f T da < J v]? da for all K € Ty,
K K

where the constants in <’ are independent of the mesh-size hy,.
(2) Tyv € Vi, for all ve L*(Q),
(3) Tivlx =v|ix if K€ Ty and v|g € Pr(K).

Proof. Assertions (1) and (2) follow directly by the definition of the L?-orthogonal
projection (cf. [EG13, DPE12|). Claim (3) follows from definition (4.3.5) re-
stricted to a single element K € 7. Indeed, we have that P.(K) is a finite

dimensional space with L?-inner product. Hence, if v € P,.(K) then Zyv|x —v =
0eP,.(K). O

We are interested on the projections of limit functions v € V4, onto the finite
element space Vj. In this context we emphasise that we have v € L?(Q2) for
all v € V. Indeed, we have from the continuous embedding of Theorem 3.22
that BV (Q) — L?(Q) and our limit space is a subset of the space BV ({2). In
particular we are interested on the interplay of different refinement levels related
to the sequence {7 }ren, of meshes produced by the ASIPDG method.

Lemma 4.26 (Stability of Zy). Let v € Vg for some £ € Ny u {o0}. Then, for
all K € Ty, k < £, we have
f |D> T da + f hi [0,Zxv]” + b2 [ Zxv] ) ds
K oK

< f |Dp2wv‘2 dz + Z J hyt (0,017 + hy 2 |[w] nf® ds,
w (K) Fer, JF
Fka(K)

where Fy := F* and hy := hy, when { = o0. In particular, we have |Zyvl), <
lloll,-
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

Proof. Let £ < o0 and assume that K € T;. Let (Q be the linear polynomial
from Lemma 4.23 defined on wg(K). Then, the inverse estimate (3.2.3) and
Lemma 4.25(1) and (3) reveal

| DT o= | PT-@F dos [ KT~ QF ds
K K K
<[ mte-@Fdes [ wtie- QF de.
K wi (K)

In order to bound the jump terms, we use again the linear polynomial from
Lemma 4.23 defined on wy(K). We observe that VQ = const and hence does
not jump across interelement boundaries. Consequently, using Lemma 4.25(1)
and (3), together with the trace estimate (3.2.4) and the inverse estimate 3.2.3,
we obtain

f ht [0, Zk]? ds = f ht 10,2k (v — Q)] ds
oK

0K

<[ m'me-Q@Pdsit [ e-aPd
wi (K) )

wi (K

where we also used | J{wi(F'): F < 0K} < wi(K).
In the same vein, using the continuity of the polynomial (), we obtain

[ ezt as = [ 51z - @k as
oK oK

< J ht | Te(v — Q) ds < J hit v — QP ds.
wi(K) wi(K)

Consequently, we proved
J |D2Lr€v|2 dz + f ht [0, Zxv])* + h.? ([ Zxv]] n|? ds
K 0K
< f htlo— QP ds
wi (K)

and the desired estimate is a direct consequence from Lemma 4.23.
For the case ¢ = oo we replace Lemma 4.23 by Lemma 4.24 and proceed as
before. O

In view of the proof of Lemma 4.12 below, we need a stability estimate com-
parable to Lemma 4.26 for w € HZ ().

Corollary 4.27. Let w € HZ(). Then, we have for all k € N
1wl < Dol

Proof. This estimate follows by analogous arguments as in the proof of Lemma 4.26
but replacing Lemma 4.23 by the classical Poincaré-Friedrichs inequality for
functions in HZ(12). O

The next corollary states the convergence of the interpolation operator
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4 Convergence of AFEM

Corollary 4.28. Let v eV, then | Zyv — v|, + | Zkv — v||g — 0 as k — .

Proof. Thanks to the definition of V, there exist a sequence {vk}keNO, v, € Vi
with ||v — ||, + v — vkl — 0 as k& — co. Consequently, the claim follows
from the stability and invariance of the interpolation operator Zj. O

4.3.3 Proof of Lemma 4.12

Remark 4.29. In the sequel, we use the following fact: For k > { and j € Ng we
have 77+ C 7g+ c Tx. Moreover, the triangulation ’776\77r covers the domain

Qi_ and any refinement of Ty will not affect any element in 7}j+. Therefore,
we obtain for all k = £:

Q7 = QTA\TY ) = UT\T).

= 0 holds true on

Consequently, Lemma 4.5 reveals that limy_, o, thxgj_
'
the domain Q(’ﬁc\ﬂﬁ).

Proof of Lemma 4.12. Recall, that we need to prove that (Ve,(:, -),) is a
Hilbert space. Thanks to Corollary 4.11 we have that |[v] gy () < [|v]l,,- Hence,
IIIl, is @ norm on Vo, and (-, )., is a scalar product. Therefore, it remains to
show that Vo, is complete with respect to |||, i.e. we have to prove that an
arbitrary Cauchy sequence in Vo, has a limit in V.

Let {v‘}sen, be a Cauchy sequence in (Vo, [|-]|,). Corollary 4.11(a) and (c)
imply va < |Hv£ — vl }HOO. Consequently, there exists v € BV (£2) such

‘LOC(Q)

— v “BV(Q)
that v/ — v € BV(Q) as { — o, due to the fact that BV (Q) is a Banach
space. We thus have to prove that v € Vo, in order to conclude the assertion of
Lemma 4.12. Using norm equivalence on finite dimensional spaces, we readily
conclude that v|x € P,.(K) for all K € TT.

In the first step of this proof we analyse the jump terms of the sequence
{vé}eeNO. In order to do so we recall that v € BV (Q) has L'-traces on 0K,
K € Ty, k € Ny; see e.g. [AFP00, Theorem 3.88]. In view of Proposition 4.9, we
shall therefore deal first with the jump terms of the function v and prove

f o o] nl? ds ﬂf W o] nf? ds (k= o). (4.3.6)
Fi F+

To this end, we first observe that for k € Ny, {’Ue }een, 1s also a Cauchy sequence
with respect to the ||-||,-norm (Proposition 4.9), and thus Hh/,j%/2 [v* = v7]] nHF —
k

0 as ¢, 7 — o0. Hence, uniqueness of limits on I'y imply that

o Gk

as { — 00. Now, let € > 0 arbitrary fixed and consider

B B 2
Jfk R[]l n|? ds < Jfk h? mv - vg]] n’ ds s

I

-0 (4.3.7)

I
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

For the first term on the right-hand side there exists M = M/(e) such that
ka h,;3 ’[[’U — vé]] n‘Q ds < €, provided £ > M. Additionally, the second term

on the right-hand side is converging to Sf+ hf’ ||:[U£]:| n|2 ds as k — oo (Proposi-
tion 4.9) and consequently we have that § 7 h 2 ] n|? ds is uniformly bounded.

Next, there exists L = L(e), such that [v* — Uj|||k < ot =i |||OO < € for all
j,¢ = L. Thanks to Proposition 4.9, there exists K = K (e, L) such that for all
m =k = K, we have

J h.? H:['UL]] n’2 ds < €. (4.3.9)
F\Fu

In particular, for m = k > K, we have

f B o]l ds = f B o] ml? ds +J B o] nl? ds
Fr Fi\F;+ F

k k

= lim h.? H[vg]] n‘2 ds + LE; h 2 (0]l n|? ds

{—>0 Fi\Fy

and

oy b o a2 o w2 [ it as 40

provided ¢ > L. Due to (4.3.8), the reduction of mesh-size and the inclusion of
skeletons, this proves the convergence stated in (4.3.6), since € > 0 was arbitrary
(compare Proposition 4.9).

Next, we have to prove v|g- € H3, ;- (27), i.e. we need to show that
v is a restriction of a HJ(Q)-function. Thanks to Corollary 4.28, there exists
{me}ren, < No such that ”‘ve — vfne ’”mg + HvZ — vfﬂe”ﬂ < % for vy, = Imevé €
Vn,, where T, 0% is the interpolant from (4.3.5) with respect to Ty,,. Con-
sequently, since {v’} is a Cauchy sequence and thus bounded, we infer from

Proposition 4.9 that
1
el <7+ 1
my 0 g 0

. We now apply the smoothing operator

|

— v

my
il
defined in (3.4.1) to v, , € Vi, Le. we consuier the sequence {&p, (v

HZ(Q). From Lemma 3.15 (with v = 2) we obtain

i.e., the uniform boundedness of H’v

£ mé }EEN

<[t

Hence, there exists w € Hg(Q) such that, for a not relabelled subsequence

my pwUmy

|77

o < 1PtEm 0t =0, + [Pl
Q

Emy (vf;u) —w weakly in HZ(Q), as { — o0. (4.3.10)

In order to prove v|g- = w|o-, we emphasise that for all j € N, we have
Q™ < O, (recall that Q) — Q) and consider

Hfme(vfnz) - vH < Hemz(vﬁ ) — ot £, (4.3.11)

mye my

—l—Hv—v

Q- O,
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4 Convergence of AFEM

For the first term on the right-hand side we have from Lemma 3.15 (with v = 0)
and the scaled trace inequality (3.2.4)
2
e[} =] 0

;_W < L2 ne,, [[anvﬁw]r + T,

my
\ ) (4.3.12)

l 14
Hgml (Umg) - vmg

< _
< [

)

¢
v
LO(Q) H‘ L

where we used HhWHLOC(}-%;) < HhszQ%;é HLOC(Q). Applying Lemma 4.5, the

last term vanishes as £ — oo. Consequently, we have limy_,q &y, (v5, ,) =win
L2(Q7) due to @~ < Q2. Additionally we use
12 ¢ ¢ ¢
vavmzﬂéuvaHQ+Hv — Upp| . —0 as { — o0,
to conclude v|g- = wlg-, ie., v|g- € H3, . (27). Here where we also used

that for d = 2 the embedding BV (Q2) — L?(£2) is continuous (cf. Theorem 3.22)
i.e.Hv — foQ < Hv — Ue“BV(Q) — 0 as ¢ — oo0. The equality v|g- = w|g- implies
that we can use the definitions (4.2.3) and (4.2.2) of the piecewise Hessian and
the piecewise gradient also for v, i.e. on the domain Q7 we have Vpuv|g- =
Vw|q- and Dp2wlU|Qf = D%w|g-. Note, that we already have the piece-wise
gradient and piece-wise Hessian on T since v|x € P, (K) for all K e T+.

In order to deal with the jumps of the normal derivatives, we have to prove
that Vv € BV(2)2. To this end we recall from Corollary 4.11(b) and (d)

S G I ], 0 G0

BV(Q ©

Hence, there exist D € BV (Q)? such that limg_,o |Vpev — D”BV(Q) = 0 and
we have to prove that D = V,v. To this end, we aim to use the representation
of the distributional gradient of v* (Proposition 4.10), i.e.

(Dv, @) = L Vput' - pda — L—‘+ p- [[vf]] n. (4.3.13)

Since prve — D as { — o we only have to investigate the limit of the jump-
terms, i.e.

L+ hyt H[”e - ”]] "‘2 ds >0 as{— 0. (4.3.14)

Thanks to (4.3.6) and Proposition 4.9 we have that

ool o= i ot [l o

and
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

Now, for € > 0 there exists L = L(¢) such that Sf,:’ h? |[[vf = o7 n|2 ds < €2,
for j,¢ > L. Consequently, the convergence stated in (4.3.14) holds true.

Next, we conclude as for (4.3.12) from Lemma 3.15 (but this time with v = 1)
for my = k that

2
vamé (/Ufng) - vavfng

< Lmz\f? Rom, [[anvf;”]]z + Byl

2

[[vﬁw]] nr ds (4.3.15)

2

o] R .
my Qk LOO(Q) my e

where we used Q7 = Q(75,,\7,>") (compare Remark 4.29), the uniform bound-

edness of H‘Ufn , mme and hy = hy,,. Consequently, there exists K’ > K such that

(4.3.15) and [Jv* — ’Ufw ”|m4 < 7 imply

lim
{— 0

JQ (Vpw€m, (vﬁw) — prvg) ~pdx

B Se H‘PHL2(Q)7
k

provided k > K’. Additionally, (4.3.10) implies &, (vh,,) — w in H}(Q) as
¢ — oo and therefore

lim V&, (vfné) ~pdr = Vuw - pdz.
e Jog; 2

Moreover, strong covergence v*|q+ — v|q+ in Pr(7,7) and (4.3.14) yield
k k

L. - . y4
L; Vo' - pdx L+ @ [[v ]] nds
—>f prv-cpdx—f - [v]nds
of F+

as £ — 0.
Now, fix k > K’ and apply the above findings to the distributional gradient
of v e Vo

(D', @) = JQ prve ~pdx — L:+ @ - [[vz]] n

= J prve -pdr + J prvé -pdx
Q o

e [

= Vé’m[(vﬁ”) ~pdx
Q
+ J (VEm, (’Uﬁw) - prvz) ~pdx
Q

k

S e

(4.3.16)
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4 Convergence of AFEM

where ¢ € C(Q)%. A comparison of (4.3.13) and (4.3.16) in conjunction with
the above findings we thus have for all ¢ € C°(Q)? and k > K’

| a0+ g Vot = D) - ta] 5 el (43.17)

Now using the absolute continuous dependence of the integral on the integration
domain (Remark 4.6) as & — oo and recalling that € > 0 was arbitrary, we
conclude the assertion since Vpyv|g- = Vw|q-.

In this step we use the construction of | 2|in order to prove that ”’v —of ”| —
0 as £ — c0. To this end we remark, that Vy,v € BV (Q2)? has L'-traces on 0K,
for all K € T, k € Ny; see e.g. [AFP00, Theorem 3.88| and therefore [[prv]] n
is measurable on I'y. By using similar arguments as (4.3.14) we finally obtain

J Bt [o,0]? ds — f W [o,0]? ds (4.3.18)
-Fk F+

as k — o0 and as a consequence

[ oo =] as =0 43,19

as { — o0. In conjunction with (4.3.14) it therefore remains to prove that
HD2 v — D2 ZHQ — 0 as £ — 0. Since the Cauchy sequence property implies
that HDP%, Z— HQ — 0 for some H € L?(2)?*% as ¢ — oo, it thus suffices
to prove D2 = H and we argue similar as in step [3]. To this end we use
Lemma 3. 15 (with v = 0) and my = k to observe

:Zj [[vfnz]] n’Q ds.

B I et

Hence, arguing as in step [ 1] of this proof, for € > 0 there exists L = L(¢) and
K = K (e, L), such that

pw m[

HDQ o ) D24t

HDQ o ) D24t

pw m[

-1 LT2 -3 L 2
N L%\fﬁ it 0,0 + i [0V ]l ds

2 2
il Sl P L
0
1

26 +€7

for all my > k > K and ¢ > L. From this we infer that for £ > K we have that

my

lim
{—0

f_(DQEmg( )= DY) pdx| < gl

Using (4.3.10) we have strong convergence Smevfwbz — w|Q: as ¢ — oo due to

the fact that P,(7,") is finite dimensional for fixed k and in the same vein we
infer that vz|92 — U|QZ as { — 0. Additionally, (4.3.10) implies that for |s| < 2
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

we have 655,”[(1),{;”) — 0%w in L%(Q) as £ — oo ([Alt16, 8.4 Examples(3)]) and

therefore by (4.3.14) and (4.3.19) we obtain

lim DQSmZ(va): pdr = f B D*w: pdx

{—0 Q b
and
[t e [ v [ o]
-~ fng Dyev: pda + Lﬂ dive - [v] n — @ [[Veur]] - nds,
as { — o0.

We apply this to the distributional Hessian of v’ € Vo, (compare Proposi-
tion 4.10)

(D%, @) = JQ DPQWUEI pdr + Lﬁ Dp2wv€: pdz
k k

o[ e[ mp [T - ma

T+
=\ Dgwgme(vfne): pdr
k (4.3.20)
| (DREw ) - Da): s

k

+ JQ* Dng[: pdz

k
1 . E —_— Z .
+ JF+ div ¢ [[v ]] n—g [[prv ]] nds,
with ¢ € C§°(Q)?*2. The Cauchy property implies
(D%, ) — J H: pdx —i—f Dp2wv: pdz
2 Q
+J divcp-IIv]]n—cp[[prv]]-nds
F+

as £ — o0. In conjunction with the above findings we therefore conclude that
for all p € C§P(Q)2*?

[, (o D2+ xo Dl = )z 0] < el

Now using the absolute continuous dependence of the integral on the integration
domain (Remark 4.6) as k — oo and recalling that € > 0 was arbitrary, we
conclude the assertion since DP2WU| Q- = Dp2ww| Q--
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4 Convergence of AFEM

We conclude by showing that that there exists a sequence {vy} keNg» Uk €
Vi, k € Np, such that we have |Jv — v, + |[v —vg|q — 0 as k& — o0, and
lim supy,_, o, [|vk|l; < o0. To this end, we define vy, as

Ikw’}(, K e 7;:2_
Ukl = 2+
IkU|K, Ke 77€ .

Here, w € HZ(f) is the function defined in (4.3.10) and v|f = limy o v|x €
P,(K) for all K € 7?*. From Lemma 4.26 and Corollary 4.27 we deduce the
uniform boundedness of the sequence

loillz < D] [ L D20, da + L . (h;}l [0, ve]? + b ‘[[vk]]np) ds]

KeTg

< D>l dx

KeT,f*

2 2 . . s )
* Z [Lk(K) |DPWU| d$+LK(h+ 10,v]]” + A7 [[v] n| )d5]

KeT?t

2 2
S |wlizz@) + vl < o

We split [|v — vi||3 according to Ty, = TE UTE de.

2
lv — vk|||z < Z {L{ ‘DQIkw — Dpzwv’ dzx
KET,E*

+ f h [0, (Trw — )] + h 2 | [Zew — o] n)? ds]
oK

Z {f |DQIkU—DP,2wU|2 dz
K

KeT?t

+ J h [0, (Zrv — 0)]? + h? [ Zkv — o] n|? ds]
oK

and consider the corresponding terms separately. On the set 7;627 we use the
density of H3(Q) in H3(Q) and choose for arbitrarily fixed € > 0 some w, €
H3(Q) such that |w — We| g2(o-y < |w — we| g2(q) < €. Thanks to the triangle
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

inequality and the stability of Z; (Lemma 4.26 and Corollary 4.27), we have

[J |D2Ikw pQwv|2 dx
KeTQ_

+ f hit [0, (Trw — o) + hi 2 | [Zew — o] n)? ds]
oK

< > U DT (w — we)[* + | D2 (Zpwe — wo)| + | D (we — )| dz
Ke7}€2_ K

+ | R 0Tk (w — wo )] + k[0, Tkw ] + byt [0,0]7 ds
oK

+ LK h 3 [ Zk(w — w) ] nl* + b2 [ Zewe ] nf* + b2 |[o] nf? ds]
2 — W X e — U 2 2 We — W 2 X
<[ [P0 w0l s [ D0+ | T
+ Z {j L([6,Txwe]” + [0,0]7)
KeT?~
he 2 (I[Zrwe] nf* + |[o] nf® )} ds
(4.3.21)

In order to bound the terms concerning the interpolation operator, we employ
a scaled trace theorem together with Lemma 4.25(1) and (3) to obtain

Z J ’D2 Trwe — w€’ —|—f hy e, Ikwg]] + hy \[[Ikwe]]n] ds
KeT2™

<2 ) J|D2Ik — Q)| + |D*(we — Q)[* da

KETQ_

£ X[ n T Qo + 1 [~ Q) ds

KeT?~

< J Bt we — Qil? + B2 | V(e — Q)|
: wi(K)

+ ‘Dpw(wE — QK)|2 dz

< r2 N |Dw|* < Hhkx .
ka(’r2 |23 ‘ “

2
f Z |Dw,|* d.
L) Ja

laf=3
(4.3.22)

Here, we have used the Bramble-Hilbert Lemma ([DS80]) for suitable chosen
QK € P1(w(K)), K € Ty in the penultimate estimate as well as Q(Ny(7,>7)) =
Qz_ and the finite overlap of neighbourhoods in the last step. Thanks to
Lemma 4.5 the last term vanishes as k — 0.
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4 Convergence of AFEM

For the remaining volume terms on the right-hand side of (4.3.21), we recall
v|g- = w|g- and conclude from Lemma 4.5 in conjunction with the absolute
continuous dependence of the integral on the integration domain

li D>w, — D2v[* d +f D2(w —w)|* d
- K&—%L‘ we = Dyt d Nk(T,f’)‘ o= wa] de

S Jm a2 | D*we — Dyvf” dz + Jwe — wlfp2(q) do

(4.3.23)
< j |D2w6 — D2w|2 dz + lim |D2w6 — DPQWU}2 dx
Q- k=0 Jo-\02-

< Jwe = wlp2(q) < €,

where we also used Q(Ny(7,27)) = Q2 < Q in the first estimate and Q2™ =
Qv Qif\Q_ in the second estimate.

For the remaining jump terms in (4.3.21), we infer from the definition of 7;2_
that

Z LK(hlzl [[anv]]2 + h,;?’ I[v]l n|2) ds

K€7’k27
_ LK(h,;l[[anv]]2+h,;3|[[v]]n|2)ds
KeTp\T2
_ ¥ LK(hkl 10,017 + ki [ mf?) ds
KeTy
_ _ (4.3.24)
- LKW [0,0] + A5% | [v] nf?) ds
KE77€2+
. L 10,0l + 1 ] mf?) ds
KeT+
- %[ 0 Bl b el el s
KeT+
=0

as k — oo, thanks to (4.3.6), (4.3.18) and Lemma 4.5. Inserting this, (4.3.22)
and (4.3.23) into (4.3.21), and recalling that that € > 0 was chosen arbitrary,
we have proved

. 2
fim [ JK]DZIkw—DpZWv\ dz

KeT?™ (4.3.25)
+ f hit [0, (Zrw — o) + h? [[(Zew — v)] ds] =0.
oK
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

Let now K € 7%, Then, Lemma 4.25(3) and v* — v in P,(K) infers
v = Lpv «— Ikve =v' 5v in P.(K)

as { — o0. Consequently, for all £ € Ny, we have

J |D?vy, — DQU‘ diL‘—l—f hit [0, (ve — )] + B2 [[(ve — v)] nf* ds = 0.
7—2+ oK

Combining this with (4.3.25) we have constructed a sequence {vy }ren, with vy €
Vi such that that ||lvg — v|||z — 0 as k — c0. The convergence |vy —v|g — 0
follows by similar arguments.

Overall, we have thus showed that limy_,o, v = v € Vo, which concludes the
proof. O

4.3.4 Proof of Theorem 4.15

To identify a candidate for the limit of the sequence {uy}gen, of discrete approx-
imations computed by the ASIPDG method, we conclude from the boundedness
of {ug}ren in L?(Q) (cf. Proposition 3.12 and (3.3.5))

Ug; — U weakly in L?(Q2) as j — (4.3.26)

for some subsequence {k;}jen, = {k}ren, and Uy, € L(2). In the following we
shall see that uy = Uy € Vo and thus {uy}ren, has only one weak accumu-
lation point and the whole sequence converges. Finally we shall conclude the
section with proving the strong convergence limy_,q ||ug — us||;, = 0 claimed in
Theorem 4.15.

Lemma 4.30. We have Uy € V.

Proof. We want to use the weak* convergence criterion of Proposition 3.23.
To this end, we note that from the uniform boundedness (3.3.5) of “|ukj I -
J

and Propositions 3.12 and 3.30, we have that Huk]. H BV(Q) is bounded uniformly.
Consequently, we infer from (4.3.26) that

g, — Uoo weakly* in BV (Q)) as j — . (4.3.27)

Next, we prove that Uy|g- € H3, 50— (€7). Lemma 3.15 (with v = 2)
yields for the smoothing operator from (3.4.1) that

| D2, (ur ) < | DgalEr, () — )y + [ Do, |y < Ju -
We thus have
Ex; (ug,;) —w  weakly in H2(Q) asj— o (4.3.28)

for a not relabelled subsequence. Arguing as in step [4]in the proof of Lemma 4.12,
we obtain, that Hé'kj (ug,) — ug, ||Qg, — 0 as 7 — o0 and thus (4.3.26) implies
k;

Tplo- = wlo- € Higp0- (7).
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4 Convergence of AFEM

Now, we shall prove that Vy,lis, € BV(Q)%. To this end, the combina-
tion of Propositions 3.12 and 3.31 with (3.3.5) yields that both |Vpyug, |, and
|D(Vpwug, )|(22) are bounded uniformly. Hence, there exists W € BV (€2)? such
that

Voutr, —=* W weakly* in BV (Q)* as j — o (4.3.29)

Consequently, Vpylis is well defined since we have Viylin|g- 1= Vw|q- and Ty
is a piecewise polynomial on 7. The last statement is a consequence of the
wealc*-convergence (4.3.27) and the fact that ug,|x € P.(K) for all K e TF. It
remains to prove Vpuliy = W € BV (Q)2. To this end, we argue similar as in
step [3] in the proof of Lemma 4.3.3:

J Voulg, - pdz = J Voutk; - pd + J Voulg; - ¢ dz
Q Q, Qf

= f 3 (vaukj - vagkj (ukj)) “pdz (4.3.30)

4

+ J Voullk, (ug;) - pdz + J Vpwtig; - g de,
Q, Qf

for ¢ € CP(Q)% Let € > 0 be chosen arbitrary, since ¢ < kj, we obtain from
Lemma 3.15 (with v = 1) for the first term on the right-hand side of (4.3.30)

HVPW“:’% (uk;) — Veulk, “?2;

<[ [ 4 0 L, T s
fkj\fg+

, ) (4.3.31)
< i xoz- | g B,
h i :
< -
< rexo-| 0 g 1712
Hence, in view of Lemma 4.5, we obtain
2
where k; > ¢ > Ks(e, f). Whence, we infer from (4.3.28) and (4.3.31)
i | (Vo — Vil (0,)) - pe| S el (1332
and
lim Voulk; (ug;) - pdr = Vw - pdz, (4.3.33)
I day &

where we used &, (up;) — w as j — o0 in Hj(Q) in the last line, thanks
to (4.3.28) and the fact, that the embedding H2(Q2) — HE(2) is compact.
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

Moreover, since weak convergence implies strong convergence on finite dimen-
sional spaces, we have uy, |+ — Uxp|g+ in P,(7,") and additionally
4 4

f prukj cpdr — J Vpulle - @ d,
QF QF

as j — 00, where we also used norm equivalence of finite-dimensional spaces.
Hence, in view of (4.3.30), (4.3.32) and (4.3.33) we obtain for all ¢ € CF(2)?

S el -

JQ(XQZ Vw + Xoi Veulio — W) - pdx

From absolute continuous dependence of the integral on the integration domain
(Remark 4.6), as £ — o0, in conjunction with Uy|g- = w|g- and the fact
that € > 0 was chosen arbitrary we infer W = Vi, € BV (Q)? (compare
also [3] in the proof of Lemma 4.12). In particular, we can apply the piece-wise
gradient (4.2.2) also on Ug.

Next, we have to prove that the energy norm of % is bounded, i.e.
|l < o©. We analyse the jump terms first. Chose k& < k;, then (4.3.26)
implies strong convergence wuy; |Q; — ﬂoo\ﬂz as j — oo on the finite-dimensional

spaces ]P’T(’Ej). In particular equivalence of norms on finite-dimensional spaces
imply Dgwuk].bz — D uoo\Q+ as j — o in P,_o(€2;)?*? and we note that we

can apply the piece-wise Hessian 4.2.3 also on Uy (compare also step [2]). Note
that we already have Vpyug, |+ — Vpuliolgr as j — o0 in ]P’r,l(Q,':)z from
k k

step [3]. The uniform stability of the discrete solution (3.3.5) implies

C?ffkh H&uk]] + hy |[[uk]]n‘2ds

'j
2
fo+ 1[61%]] + hy, HIuk]]n‘ ds
= J:F-%— hlzl [[an“kj]]Q + hl;?) |[[uk]]] n|2 ds,
k
thanks to Fi; > F t o F T and k < k;. Note, that the last estimate holds for

arbitrary k; > k anci that the constant is independet of £ and k;. Consequently,
we have
[ 5 Do 7 + 12 | I f
‘7.'
. (4.3.34)
. L+ o o ]? + b2 [[ae] nf? ds < ©
k

as J — oo and we note that the constant on the right-hand side is independent
of k. We emphasise that

L+ hit (00T + b2 |[do] nf* ds

k
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4 Convergence of AFEM

increases monotonically, when increasing k, due to the positivity of the jump-
norms, .7-'; c .7-";5 for k < K and the decrease of mesh-sizes. Therefore, the
uniform bound (4.3.34) implies that the limit

f W 10,7 ]? + b ([ mf? ds
F+

= lim | A ' [0,80]? + .2 [[n] nf* ds < C
k—o0 ]:+

exists and is bounded.
Regarding the volume terms we obtain similarly for some £ < k; the uniform

bound C > {,+ |Dp2wukj |2 dz and therefore
k

_ 2
C=> . |D§wuoo| dz,
ot
where the constant C' > 0 independet of £ and k;. Consequently, the volume
terms are bounded by

Jm | D3 ? de = Jim of |D§wgw|2 dz < C.
On the domain Q= we have Ty|g- = w|g- with w € HZ(Q) from (4.3.28).
Whence, by combining the above arguments we proved |[us]|,, < 0.

Finally, we have to prove that there exists a sequence {v};.y, i € Vi
such that limg o [Jor — Tollf + [0k — T l?, = 0 and limsupy_,. [Jogll, < oo
We aim to argue similar as in step | 5] in the proof of Lemma 4.12. In contrast to
the proof of Lemma 4.12, we have for the sequence {uy}, .y determining %, via
(4.3.26) that supgey [lukll, < o© (see (3.3.5)), i.e. it is not a Cauchy sequence
in V. This Cauchy property was used to prove (4.3.6) and (4.3.18). Thus, in
order to proceed as in step [5] of Lemma 4.12 we need to show that the jump
terms of Wy, are stable on ]-",3_ in the sense that

f b el + g [P ds — 0, (4.3.35)

k

as k — o0 (compare also Proposition 4.9). The convergence limy o [[op — Too|| 3+
|k, — Too | = 0 and limsupy,_,, Jug]l, < o follows than along the same argu-
ments.

We define a sequence {vj} .y, Uk € Vi by

Z KeT?*
il K = { Kl 7 (4.3.36)

— 2+
Ikuoo|K, K'E’EC .

where w € Hg(2) is the limit of (4.3.28) and Ty |k = limj o uk, |k € Pr(K)
for all K € T,*. In order to prove (4.3.35), we show that {prvk}keNo (resp.
{vk}ren,) are Cauchy-sequences in BV (Q)? (resp. BV(Q)) with limit Vs, €
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

BV (Q)? (resp. g € BV (R)). To make this precise let £ < k and observe that
for V, < V. we have from Proposition 3.31

|D(Vowve — Vowvi)| (€2)

4.3.37
< J ‘Dpzww - Dpzka‘ dz + f |[Grnve — Onug]l| ds. ( )
Q Fi
We define
~ wlg, KeT?
Vol =< _ i €2+ (4.3.38)
For the volume-terms on the right-hand side of (4.3.37) we have that
f ‘ngwvg — DPQWUk’ dx
@ (4.3.39)

< L | D3 ve — D2bg| da + L |DZvr, — D2,vg| da

The first term vanishes on 7}2+ since we have for / < k < k;, by the definition
of vy, that

vp = Loy < Lyug; = Ly, up; = ug; — Uy on K € ’722+, (4.3.40)

as j — . On 722_ we use (4.3.38) in conjunction with the density of H3(Q)
in H2()) and choose for arbitrarily fixed ¢ > 0 some w. € HZ() such that
|w = we| g2(o-y < |w — wel| g2y < €. Consequently, we obtain

J , |D2Igw — Dp2ww| dx
-

¢

< f _ [D*Lo(w — wo)| + |D*Zywe — D*we| + | D*we — D*w] da.
-

By similar arguments as in step | 5] in the proof of Lemma 4.12 we obtain that
the first two terms on the right-hand side of the last estimate vanish as ¢ — oo.
Since € > 0 was chosen arbitrarily we therefore obtain in (4.3.39)

fﬂ ’DPZWW — D}.?wf)g’ dr < e
for £ = L1 = Lyi(€) (enlarge k if necessary).

For the second term on the right-hand side of (4.3.39) we use the definiton of
vy and obtain

2 2 ~ 2 2 ~ 2 2 ~
J | D20y, — D2,0| dz = f . |Dgvn = D] do + f | Do = D] da
Q T\ Tt
The first term vanishes since 773+ c ’722+ :

L’Q‘ |D},2ka — Dpzwf)g| dx = JTQ_ |Dp2wlkw - D2w| dr < ¢
k k
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4 Convergence of AFEM

for k > Ki(€) = L1, as proved above. For the second term we use 722+ c ’77{“
to obtain

JTH |Dp2ka — Dpzwfjg’ dx = J ‘ Ikuoo uoo| dx
k

’ Ikuoo uoo‘ dx.
7—2+\7—2+

Now, the right-hand side of the last estimate vanishes as as k,¢ — oo due to
(4.3.40) and step [4] of this proof. Hence, we have that

|D2 v — D2 ’[Jg’ dzr < e
o TPY pv
k

for k > ¢ with k > Ky = Ks(e) and £ > Ly = Lo(e).
Regarding the jump-terms on the right-hand side of (4.3.37) we observe

f [onve — Bnve]] ds <f [onve — 0nise]| ds
T T (4.3.41)

+ J |[On vk — One]l| ds.
Fr

For the first-term on the right-hand side we have from the definition of ¥, and
FteFpt

f [onve — /]| ds —f I[onve]| ds
T F\F; "
; L{H [owve — O] ds,

where we used that [0,0/] | = [0,w]|r = 0 for F ¢ F;*. For the first
term on the right-hand side we observe that v, € V, = H?(7;) and therefore
from Fy < Fi we have that the jump-terms are only non-zero on the faces
related to 7;. Now, standard trace inequalities reveal (compare e.g. the proof
of Proposition 3.30)

Onve]l| ds = J onZyw]| ds
o Mol as = [ ezl
- f hy 00 Zow — w])| ds
FOFH
< 2 f hy ! |VeuZow — V| do (4.3.42)
FeF,~ we(F)

+ J ‘Dpzwl'gw — DQw’ dx
we(F)

< f ‘DPQWIgw — DQw’ dz,
o(F)
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

where we also used standard interpolation estimates and w € H%(Q) in the last
step. Following the same ideas as above we have that the term on the right-
hand side vanishes as ¢ — co. Hence, for all ¢ > L3(¢), with £ < k (enlarge k if
necessary) in (4.3.41) we have that

f [onve — nie]]| ds < e.
F

The remaining jump-term of (4.3.41) can be bounded by similar arguments,
since we have

f [owvr — niic]]| ds — f [On Tty — ntin]| ds
Fr Fot

+ J . [0nZiw — Opw]l| ds.

k

The first term on the right hand side is zero due to (4.3.40). The last term on
the right-hand side vanishes as k — oo similar as in (4.3.42). For the penul-
timate term on the right-hand side we use Holder’s inequality in conjunction
Lemma 4.25(3) to obtain

[on Tt ]| ds:J [ontio]l ds
‘[7:]34’\;[24“ ®© ]_—2+\]:£2+ @

k

1/2
-1 I
< ( e 1 10T ds>

£

1/2
< (J . D Ton e ])1* ds — J R e Iy ds>
]:k ]:Z
-0

as k,{ — oo, where we also used hy = hj and the ideas of step | 4] of this proof.
Hence, we can chose £ > L4(e) and k > K3(e) with (¢ < k; enlarge k if necessary)
such that

J |[On vk — OnUf]]| ds < €
Fi

Overall, we thus proved the following: First, we can chose ¢ > max{L1, La, L3, L4}
and k > max{/, K1, K5, K3} yielding

|D(prvg — prvk)| (Q)

< J ’Dpzwvg — Dpzka‘ dz + f I[Onve — Onui]l| ds < e.
Q Fr

Since € > 0 was chosen arbitrarily we have that {Vpwv }ren is a Cauchy-Sequence
in BV (2)2.
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4 Convergence of AFEM

In order to identify the limit of this Cauchy sequence, we observe for k < k;
v = Loy — Ikukj = ijukj = Uk; — Uyp on K € 7;2+,

as j — oo. Consequently, vy — Ty In IP’T(7;€2+). On the remaining domain QZ*
interpolation properties infer

[k = T2 < ok — w2 + [[w =T 2

= |Zyw — wHQi_ + fw— EOOHQi_\Qf )

where we used U)o~ = w|q- in the last line. The first term on the right-hand
side vanishes as k — 00 due to Lemma 4.5. For the remaining term we have

[w =T 210 < Iwlgyo- + [Feollgz-o- — 0

as k — oo thanks to Lemma 4.5 and the absolute continuous dependence of the
integral to the integration domain. Hence, the limit of the sequence {v}ren
is given by v, — Ty in L?(Q) as k — o0 and consequently VpuUk — Vpullo €
BV ()2,

Now, let £ < k arbitrary but fixed. Then, from the properties of the trace
operator in BV (Q)? (see Theorem 3.25) in conjunction with the fact that that
{prvk} keN is a Cauchy-sequence, we have that the jumps of {prvk}keN on Ty,
have a unique limit in L'(T';)? (as k — o0). From this we conclude for arbitrary
e>0

f hyt [0nve — Opom])® < e, (4.3.43)
Fi

provided k, m > £ with k, m sufficiently large. Finally, we conclude

J hyt [0nTis])? ds
F2-

£

< f L hy [0t — Onur]? ds + f L hy ! [0nvr — Onve]? ds (4.3.44)

Fi Fi

+J , hyt [Onve]* ds.
2

L

For the last term in (4.3.44) we observe

f hz_l [[anvé]]2 ds = f he_l [0nZow — anw]]2 ds,
]_-2— ]__2_

£ 14

since w € H3(Q). Thus, we are able to chose £ > L; = Li(¢) such that

J . hy ' [0nZow — Opw])? ds < e,

£
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

as in step | 5|in the proof of Lemma 4.12. For the second term on the right-hand
side of (4.3.44) we use hy = hy, for £ < k and inclusion of skeletons to obtain

jfz_ hy ! [Onvr — Onve]? ds <2 J}‘Q_ hyt [Onvr]?® ds + 2 L—‘Q— h,t [Onve]? ds

L 2 4
SJ hit [0nve])? ds+J hy L [Onve]]® ds
Fi F

and argue similarly as in the case above. Finally, we are able to chose k > Ko =
Ks(€) such

J , h[l [Onte — anvk]]2 ds < ¢,
2

4

due to the fact that {prvk} pen 18 Cauchy-sequence with limit Vpyleo.
Hence, we have proved that we can chose £ > L; and then k > max{/(, K1, K2}
such that

f By [onte]? ds
Fi~

¢

< f g (00T — Onur])? ds + J Dyt 0wk — Onv])? ds

4 4
+ J h,t [0nve]? ds < €
Fr-
Consequently, since ¢ > 0 was chosen arbitrarily, in view of (4.3.44) we have

lim hyt [0ntie]” ds = 0,

{—0 ]:22—
By analogous arguments (but now using (3.6.4) instead of Proposition 3.31)
we are able to prove additionally that

lim hy 2 [w]? ds = 0

{—00 ]:62*

holds. Summing up the various arguments we conclude that indeed the limit in
(4.3.35) holds true.

Finally, we consider the sequence {vj} .y, defined in (4.3.36) and obtain from
Lemma 4.26 and step [4] of this proof that [ull, < [D*w|, + [[Twll, < .
The desired convergence limg_, o [|[vx — Tgo |||Z + |vg — Too ||, = 0 follows by split-
ting the error according to T = 7;2_ U 7;€2+ and treating the resulting terms
separately similar to step |5|in the proof of Lemma 4.12. O

In order to prove that Ty solves (4.2.9), we need to identify the limit of its
distributional derivatives. To this end, we note that by (3.3.4) and (3.3.5) we
have HDPQWU’]C]' HQ < 1 and Hﬁkj (uk])HQ < 1. Consequently, there exist T;.,Ts €
L?(£2)2*2 such that for a not relabelled subsequence we obtain

Dgwukj — T, and Ly, ([[Onur, ]|) — Ts (4.3.45)

weakly in L?(2)2*2 as j — 0.
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4 Convergence of AFEM

Lemma 4.31. Let {ukj }jeNo be the subsequence of discrete solutions with weak
L?(Q) limit Up € Vo from (4.3.26). Then, we have for Ts, T, € L*(9)**?
from (4.3.45) that

(T + Ts)|o- = D*Tep|- a.e. in .

Proof. Propositions 3.12 and 3.30 in conjunction with (3.3.5) imply that {ukj }ieNo
is uniformly bounded in BV (). Hence, as in the proof of Lemma 4.30 step [1],

we have that uy; A Uy in BV (Q) as j — oo. In particular this implies Uk; — TUoo

in LY(Q) as j — oo (compare Proposition 3.23). Hence, for ¢ € CF(2)%*2, we

have

<D2ukj, p) = f (div div ) uy; dx

@ (4.3.46)

— f (div div @)t dz = (D, ),
Q

as j — oo and therefore the distributional Hessian D2uk]. convergens to D>y,
as j — oo in the sense of distributions.

Using the fact that @y, € Vo, we have that there exists a sequence {vg}ren,
with vy, € Vi, k € Ny, and ||te — vg||;, + [T — vk|g — 0 as k — c0. On the one
hand, Proposition 4.10 reveals

L(div div @)t = (D%, p)
= f DPQWHOO ~pdr — J p [[prﬂoo]] -nds (4.3.47)
Q Ft

+ f div e - [Ux]| nds,
F+
for ¢ € CL(©2)?*2. On the other hand, we have in (4.3.46)

JQ(div div ) ug, d
= fﬂ Dpzwukj tpdr (4.3.48)

— LE @ [[prukj]] ‘n—dive - [[u;d] nds.
k.

J

From the left-hand side of (4.3.46), we know that {,(div div ¢)uy; dz converges
to the distributional Hessian of Ty, as j — o and (4.3.47) states a formula for
this distributional Hessian. Regarding (4.3.48), we already know that DPQWUkj —
T, in L?(Q)?*? as j — . Hence, in view of (4.3.45) the statement is proved if
on Q~ the jump-terms in (4.3.48) generate the liftings in the limit.

In order to prove this we investigate the limit of jump terms in (4.3.48): Fix
¢ € No, and let 7, = () be the L?-projection of ¢ onto Pr(ﬁj)QXQ, then
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

by using the definition of the lifting (3.3.1) and ¢ € C§°(€2)?*? we have

— L: ) [[prukj]] ‘n—dive - [[ukj]] nds
=— Lﬁ @ [[prukj]] -n—dive - [[ukj]] nds
- f N {e} [[prukj]] -n — {dive} - [[uk]]] nds
Fi\F,
=— Lﬁ ) [[prukj]] ‘n—dive - [[ukj]] nds
| A= m B [Vt ] = vt = i)} o s
-ij\]:z
|t B [V ]~ fdivm - [, ] s
]:k]-\]:[
=— Lﬁ @ [[prukj]] -n—dive - [[ukj]] nds
| A= m B [V, ] = vt = mi )} - o s
Fr;\Fy

- J L (ury): (o — mpy) do + JQ Ly, (ug;): pdu,
4 14

(4.3.49)

for all £ < k;. Thanks to Lemma 4.5, for € > 0, we have

le =k, HLoc(Q—) S Hhk]’XQ; IV o) < thXQ;

[

o [Velimie) <

L*(Q) Le(

for sufficiently large ¢ = {(e, @) < k; and thus

’ - Lk'\ﬁ floo — e, } [Vowun, | - = {ivie — mi) B - [fur, ]| mds

—J Li;(ug;): (¢ — mx;) dz
Q

L

S elfla Vel e -

As a consequence of (4.3.27), (4.3.29) and (4.3.45) in conjunction with the fact,
that uy; |Qé+ € Py(7,") is finite dimensional, we have that

a L—'+ ¥ [[prukj]] n—dive - [[ukj]] nds + JQ_ Ly, (ug;): pdx
14 L

— —f +@[[prﬂoo]] ~n—divcp-[[uoo]]nds+f Ts: pdr
Fe Q,

as j — 0.
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4 Convergence of AFEM

Hence, we have that

lim
Jj—0

f (divdiv p)u; dz — f DPQWukj s pdr
Q Q

+ Jf+ @ [[pruk].]] -n—dive - [[uk].]] nds

L

| ) pds
Q,

J (div div )t dz — f T pdx
Q Q

+ J;+ © [[prﬂoo]] n—dive - [tn]| nds

L

—J Ts: pdx
2

Upon choosing ¢ even larger, we have also from the absolute continuous de-
pendence of the integral on the integration domain (Remark 4.6) in conjunction
with Lemma 4.5

< elflo 1Vl oo -

< €.

J Lp[[prukj]] -n—dive - [[ukj]]nds—f Ts: pdx
FA\FSF Q,\Q-

Inserting this in (4.3.49), we have thanks to the fact that e > 0 was arbitrary,
that

J (divdiv ) - Vpyug, dz
Q
— j T, : pdz +j Ts: pdx —j 7 [[prﬂoo]] n—dive - [ux] nds
Q Q- Ft
as j — . In view of (4.3.46) and (4.3.47), this thus implies that

0= lim | (divdivep)(ug;, —Uyp)dz = J (DPQWEOO —T, —Tsxq-): pdx
J=0JqQ Q

for all ¢ € CF°(£2)?*2. The desired assertion follows from the density of CZ(Q)
in L2(92). O

Now, we are able to proof that T, and ue coincide.

Lemma 4.32. We have that Uy, € Vo solves (4.2.9) and thus Uy = us. In par-

ticular, the limit in (4.3.26) is unique and the full sequence {uy}ken, converges
to ug weakly in L?(£2).

Proof. Let v e Vo and {vg}yen,, vk € Vi such that [lug — vl + vk —v]q — 0
as k — oo. Consequently, for the subsequence (4.3.26) of discrete solutions
{ukj }jeNo’ we have

B, [ur,, vr,] = {f, vkj>Q — (f,v)q asj— . (4.3.50)
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

Using [lvx —v[l, — 0 as k& — oo again, it suffices to prove By, [ug,, v] —
B [Uoo, V] as j — o0.
To see this, we split the bilinear form according to

%k]’ [ukj, ’U] = JQ<D}72WukJ’ + ﬁkj (uk])) . DPQW’U dz + fﬂ Ekj (U) : DPQWUkj dz

|
.ij

= Ij + IIj -I-III]‘.

J

% [0, ux, ]| [6,0] + hﬁi [ur, ]| n - [v] nds

and consider the limit of each term separately.
Here, we consider the limit of I;. From (4.3.45) and Lemma 4.31 we have

JQ (Dswukj + Ly, (ukj)) : Dp2wv dz

— (T, + Ts): Dp2wv dz asj— © (4.3.51)
o-

= | D’uy: Divdz.
o

For ¢ < k; we split the domain € according to
Q=0 v \Q vt
On Q,\Q~, by uniform integrability of DPQW’U, Lemma 4.5 and the stability of
liftings (3.3.4), for € > 0 there exists K (e) such that for all £ > K(¢), we have

‘ Jﬂl\g— (Dpzwukj + Ly, (ug;) — Dp%ﬂoo — .Coo(ﬂoo)> : Dp2wv dx‘
4

< (el + o) 1 D20y < e

From (4.3.26) (compare step [4] of the proof of Lemma 4.30) we observe on QZ
that D2 up, |Q§+ — Dgwawa strongly in L2(€, ") as j — oo since P,_o(7,!)?*?
is finite dimensional for fixed ¢. Therefore, we have

2, .2 2. .2 :
JQH Dygug; » Dyyvde — i Dyt s Dyyvdx  as j — .
£ £

Similar arguments prove
[Vpwtr, [ |71+ = [Vewtioo ] [ 71+ and  [lug, [} |71+ = [tco]l [ 2+

strongly in LQ(]-'ZH) as j — oo and, thanks to the fact that the local defini-
tion (3.3.1) of the liftings eventually does not change on 72”, we have

Li; (ug;): DPQW’U dx = Lo (ug;): DPQWU dz

1+ 1+
Q(’. QZ

— Lo (Uep) : Dp2wv as j — .
ot
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4 Convergence of AFEM
From the estimate
] L <Dp2wukj + Ly, (up;) — DA — Lo (uoo)> . Do d:r’
<| [ (Daa, + £ () - D2 ) Do

+ )fgl—\g (Dgwukj + Ly, (ug,) — DPZWHOO - Eoo(uoo)> : DPQWU dm‘
4

)

- ) LH (Dgwukj + Lp, (uk,) — Do — Loo (uoo)> : DRvda
4

we finally observe that the first and third term on the right-hand side vanish as
j — o0, and arrive at

lim ’ jQ <Dp2wukj + L, (ug;) — Dp%,,ﬂoo - Coo(uoo)> : Dp2wv dx’ <e.

Jj—=©

Since € > 0 was chosen arbitrarily, for j — o0, we conclude
f (D2 uk, + L, (ug;)): Dayvdz — f (D2jico + Loo(TUp)): Dagvdz (4.3.52)
Q Q

In order to identify the limit of I/;, we split the domain 2 according to
Q=) u"

for some ¢ < k;. Thanks to uniform boundedness [|ug, < | fllg, for € > 0, we
have

UQ\QH Lp, (v): Dagun, dx] < || Lk, (v)HQ\Q}+ Iflg <€ (4.3.53)
44

forall kj > £ > K (€). Indeed, the stability of the lifting operator (3.3.3) together
with Proposition 4.9 yields

1/2
-1 2 -3 2 N
|25 @)+ = < ij\fﬁ hit [o,00% + by |[v] | ds> 0,

as k; = ¢ — oo. Similar as in [1], on Qf we employ the strong convergence

D}?wukj|9}+ — DPQWHOO|Q%+ € P,o(T;"1)2*% in L2(Q;7) as j — oo, in order to

obtain from the local definitions of the liftings (3.3.1) and (4.2.6) that

Ekj (U): Dp2wukj dr = EOO (U): Df?wukj dz

1+ 1+
QZ QZ

M2 -
— - Lo (v): Dyt d as j — .

Combining this with (4.3.53) yields

f Ly, (v): Daup, do — f Ly(v): D dz  as k — oo. (4.3.54)
Q Q
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4.3 Proofs of Lemma 4.12 and Theorem 4.15

For the last term I11;, we observe from ]:Zr c ]-',:f, ¢ < kj, that
f —[[8 ug, || [0,0] + 3 [uk, [ 7 - [v] nds
5, W,
L__+ [[(3 U, ]] [0,v] + h3 [[uk ]]n [v]| nds

+ —6nu, 0,V —i——u.n-vnds.
Lfkj\f; hy; Lo, [0 hi, sk, - 1

For the second term on the right-hand side, we conclude from Proposition 4.9
that for arbitrary fixed € > 0 there exists K (e) > 0 such that

»[Fk \]__+ hk; [[5 Uk ]] [[a U]] + h3 [[uk ]]n [[U]]’nds

1/2 1/2
< 0, ds J — [0,,v]” ds
(Lk I L ) (ﬂ S el )
1/2 5 1/2
2 2
+ f ug, || n|” ds f — |[[v]| »|” ds
(]__ \F h3 H:[ k]] ‘ ) (fkj\fzr hi]‘[[]] ‘ )

1/2
o g
Shuly ([l s 5wt )
J J

1/2
< [ flq (J \+h [[(3 Ok to |[[vI|n| ds) <e

whenever k; > ¢ > K(e). As in[1], we use for fixed ¢ that
[[@nukj]] |]:/zl+ — [OnTioo]] |_7_—£1+ and [[uk]]] |]_-£1+ — [T ] |]_—£1+

as j — oo strongly in L%(F,") and consequently

L-‘+h [0n “k]]lla U]]+h3 [[uk]]n [v] nds
= [ S 10l + i Tacdne ) nds
7y 3

as j — 00. Since € > 0 was arbitrary, the desired convergence

J [[(9 ur, || [0, U]]+h3 [uk, ]| n - [v] nds
]:k
(4.3.55)

- *[[5 U || [0, ’U]]—i-h3 [t n-[v]nds  asj—
Fih

follows from

L—‘+\f+ hy Lol vl + h3 [l m - [v] nds — 0 as { — o0.
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4 Convergence of AFEM
Finally, combining (4.3.52), (4.3.54) and (4.3.55), we have proved

By, [ug;, v] > |  D*ue: D*vda + f (D3t + Lo () : Div da
Q- Qr

+ J Lo (v): DPQWEOO dz
O+
o _ B
+ J — [0,us]l [0,0] + 5 (U] m - [v] 7 ds
F+ hy hy
= B [Uso, V] as j — o0.

Hence, by (4.3.50) we have Uy, = uqy, thanks to Ty € Vo, and the uniqueness of
the generalised Galerkin solution (4.2.9). O

We conclude the section by finally proving Theorem 4.15.

Proof of Theorem 4.15. Using the coercivity of the bilinear form, Corollary 4.28,
Lemma 4.32, the interpolation operator Zyuy € Vi and (3.2.1), we observe

Cooer | Titior — uplly < B[ Tt — wn, Tptioo — ;]
= Br[Zrtoo, Trto] — 2Bk[Lrtico, uk] + Brluk, ]
= B[ Truow, Truw| — 2{f, Truwyg + {f, uk)q
— B [Uw, Up] — {f, Un)q =0 as k — 0.

Hence, again with Corollary 4.28, we conclude
lluce — urll < 1 Zwuco — usolly + | Zwuco — urll — 0

as k — 0. O
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5 Numerical Experiments

In the last chapter we proved the convergence of the adaptive Algorithm 4.1.
However, this convergence result says nothing about the rates of convergence.
Therefore, it is a priori not clear if the adaptive Algorithm 4.1 has any numerical
advantages compared to uniform refinement strategies or is even competitive to
them.

Based on a numerical example the current chapter adresses this issue. Theo-
rem 3.13 reveals that a lacking Sobolev regularity leads to suboptimal rates of
convergence (in view of the polynomial degree) in the case of uniform refine-
ment. However, the optimal rates of convergence can be recovered by using the
adaptive Algorithm 4.1 instead of a uniform refinement strategy.

In this regard the following numerical example suggest the advantage of adap-
tive SIPDGM compared to a non-adaptive method.

5.1 The exact solution

We analyse the perfomance of ASIPDGM for a non-smooth solution wu (c.f.
[GHV11, Section 5.2]). To this end, let 2 be the L-shaped domain (—1,1)%\[0, 1) x
(—1,0] and set f = 0. By (r,¢) we denote a system of polar coordinates of R?
and set

u = 3 sin(5p/3).

For appropriate inhomogeneous Dirichlet boundary conditions u solves the
non-homogeneous version of (2.4.2) with right-hand side f (compare |GRS6,
Section 1.5] for a treatment of the Biharmonic problem with non-homogenous
boundary values). We emphasise that v € H 8/3—¢ ¢ > 0 due to a corner
singularity at the origin of €; see [Gri85, Chapter 7.

We apply the ASIPDGM with polynomial degree between 2 < r < 5 and
penalty parameters o = 12.5(r + 1)? and 38 = 2.5(r + 1)°.

5.2 Uniform refinement.

We use uniform refinements of the mesh. Regarding the specific Sobolev regu-
larity of the solution u, we expect from Theorem 3.13 that (asymptotically) the
error |Ju — ug|,, and the estimator n;, tend to zero with rate O(h?/3) = O(N~1/3)
independent of the polynomial degree . Here, N = #DOFs is the total number
of degrees of freedom. Figure 5.1 confirms the expected (suboptimal) rates of
convergence and therefore show the sharpness of the a priori estimate in The-
orem 3.13. Moreover, Table 5.1 lists the results of the computations for r = 2
and r = 3 in detail. Hence, this numerical example verifies that in the case
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5 Numerical Experiments

of uniform refinement the best possible rate of convergence is restricted by 2/3
irrespective of the polynomial degree . However, in the next section we will see
that ASIPDGM improve the rate with respect to #7 .

10 10

DOFs0-33 DOFs0-33

r=2 —s—

r=3 ——

4
5

r
r 100 L

100 ¢

Tk

lu = wnll,
=
9

DOFs DOFs

Figure 5.1: Error estimator and error in case of uniform refinements with poly-
nomial degree 2 < r < 5.

h r=2 r=3
7.07x 1071 [ 020 0.21
3.53x 1071 | 041 0.64
1.77x 107 | 0.55  0.66
8.84 x 1072 | 0.61  0.66
442 x1072 | 0.63 0.66
2.21 x 1072 | 0.64 0.66
1.10 x 1072 | 0.66  0.66

Table 5.1: Rate of convergence of the error |[u —uy||, in the case of uniform
refinements for polynomial degree r = 2 and r = 3.

5.3 Adaptive refinement.

The adaptive meshes are created by using the Ddrfler Strategy

>0 d i K) > K),
nr(M) = 0nr(T) an [Igﬂrznf( ) K?%%”T( )

with 6 = 0.3.

e the global error estimator n; and the error [|u — ugl, as functions of the
total number of degrees of freedom (#DOFs) on a log-log scale (top left
and top right);

e the associated effectivity index ny/ ||u — ug, (bottom left);

e an adaptive generated mesh for some iteration levels. (bottom right).
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5.3 Adaptive refinement.

Additionally, in Table 5.2 we compare the EOCs (Ezperimental orders of con-
vergence) for different polynomial degrees, which is defined by

* o (Uk+1(77c+1) /log DOFsg+1 ( )

where DOFsy, are the degrees of freedom related Ty; compare [BNQ™ 12, Section
5.2]. Table 5.2 lists also the corresponding effectivity indices.

In contrast to uniform refinement we see the optimal rates of convergence (in
view of polynomial degree), of the error estimator and the error |Ju — ur|; =
nr = O(N-=D2) ie. O(NV2) for r = 2, O(NY) for r = 3, O(N—3/2) for
r =4 and O(N~2) for r = 5, where N = #DOFs denotes the total number of
degrees of freedom.

For polynomial degree 2 < r < 4 the advantage of adaptive refinements
is apparent for DOFs > 10% (compare also Table 5.2). The calculations with
polynomial degrees r = 5 show this beneficial effect for DOFs > 10%.

The exemplary meshes in Figures 5.2-5.5 show significant refinements in a
vicinity of the reentrant corner, due to the singularity of the exact solution,
which can be traced back to this reentrant corner. Moreover, we observe that
the local refinements near the reentrant corner a much more pronounced for
higher polynomial degrees compared to lower polynomial degrees.

The effectivity indices are between 1.0 and 5.0 for all polynomial degrees.
Figures 5.2-5.5 only display the results before round-off errors have influences
on the numerical results.

level ~ #DOFs  EOC effectivity
1 9x 101  0.26 3.07
3 1.88x10%2 0.28 3.61

5  8.22x10% 0.33 2.67
7 233x10° 0.49 2.61
9  6.35x 10> 048 2.68
11 1.64 x 10* 0.49 2.75

13 4.05 x 10* 0.49 2.79
15 9.52x 10* 0.49 2.78
17  2.19x10° 0.50 2.84
19  5.16 x 10° 0.50 2.84
21  1.17x10% 0.49 2.87

Table 5.2: EOCs and effectivity indices for polynomial degree r = 2.
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5 Numerical Experiments

102 . 102
DOFs ™% ——
o b r=2 —
10!
10° b
- = 10°
. 107 b E
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1074 b
10—5 L \' L \— ! L 10—3 L \' L \— ! - !
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I3}
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=
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0 L \‘ L L L -
10 10% 103 104 10° 108 107

DOFs

Figure 5.2: Error estimator, error, effectivity index and adaptively created mesh
(k =12) for r = 2.
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5.3 Adaptive refinement.

10°
DOFs™! ——
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10-° . - . - . .
10 10% 10% 104 10° 108 107 108
DOFs
§ VAN
NN

5.3: Error estimator, error, effectivity index and adaptively created mesh
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r=5 —=——o r=5 —=——o0m
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Figure 5.5: Error estimator, error, effectivity index and adaptively created mesh
(k = 30) for r = 5.
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6 Summary and outlook

6.1 Summary

In this thesis we generalised the convergence theory of AC’IPGM ([DGK19])
to ASIPDGM covering arbitrary polynomial degrees of related discontinuous
Galerkin spaces. We developed a new space limit of the discrete space se-
quences, created by the adaptive loop of (1.1.2). Based on embedding properties
of (broken) Sobolev and BV spaces, we proved that the space limit possesses a
Hilbert space structure and therefore yields a generalised (weak) Galerkin solu-
tion. The convergence of the sequence of DGFEM approximations to the gener-
alised Galerkin solution is actually a consequence of the embedding properties
mentioned above. Combing convergence of the sequence of DGFEM approx-
imations to the generalised Galerkin solution with properties of the marking
strategy finally yields coincidence of the generalised Galerkin solution and the
exact solution. Moreover, numerical experiments confirm the theoretical result
and suggest convergence rates as expected.

6.2 Summary and future work

We outline some possible future directions that could arise from the theory
presented here:

e Generalisations to linear convergence or even optimal convergence rates

of ASIPDGM.

e The convergence theory is not restricted to symmetric problems, which
we used here. Therefore, generalisations to non-symmetric problems and
different discontinuous Galerkin methods as proposed in [SH18| are pos-
sible.

e The development of a posteriori error estimator for non-homogenous prob-
lems could lead to ASIPDGM with non-homogenous boundary values. We
note that in case of adaptive conforming Galerkin method for second order
problems there are convergence results including non-homogenous prob-
lems ([MNS03, AFK*13, FPP14]). However, for ASIPDGM including non-
homogeneous boundary values this issue is far from solved. Compare also
[GHV11, Remark 4.2].

e To ease the presentation we restricted ourself to conforming meshes with-
out hanging nodes. We note that including hanging nodes would compli-
cate the definition of the smoothing operator, defined in chapter 3.4, and
we therefore avoided it. However, in view of practical computation, this
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6 Summary and outlook

112

is quite restrictive, since discontinuous Galerkin methods naturally allow
hanging nodes due to the fact that element base functions are independent
of neighbouring elements. Hanging nodes of the mesh can be handled as
in [BN10, KP07|. Moreover, generalisations of the convergence theory to
polygonal, polyhedral or arbitary-shaped elements are conceivable (com-
pare e.g. |GHH06, CDGH17, CDG19, Donl18]).

Extensions of the results to more general fourth order problems are also
possible, compare e.g. [JB12, page 81 ff.], [HLO2].

Generalisations to arbitrary dimension d > 2. We note that various C-
conforming elements for d > 2 are available in literature (compare [LS07]).
Unfortunately, we used exhaustively that HCT-elements only contain first
order derivatives and function evaluations as degrees of freedom and there-
fore leading to estimates (3.4.2). To the best of our knowledge, deriv-
ing equivalent estimates in the presence of second (or even higher) order
derivaties as degrees of freedom is still an open question.
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Appendix A

Theory of measures and Riesz-Radon’s Theorem

The theorem of Radon-Riesz states that the dual space of Cy(€2) is isomorphic
to some space of measures. An application of this theorem motivates the space
of functions of bounded variation (Section 3.5), which plays an important role
in the context of the convergence theory in Chapter 4. Before we state Riesz-
Radon’s theorem we give a short introduction of basic notions of measure theory,
where we follow the lines of [Alt16, 6.20]. We provide the statements without
proofs and refer to [Alt16] for proofs and are more detailed introduction.

Let U < R? be equipped with the relative topology of R%, and B the Borel-o
algebra of U, i.e. the smallest o-algebra containing the open sets of U. Consider
the mappings p: B — R™ satisfying

1 (U Ai) = > (A, (A.1.1)
i=1 im1

for all sequences (A4;);2,, with A; € B pairwise disjoint. Note that in the case
m = 1 the mappings are not assumed to be positive. For p: B — R™ we
introduce a mapping |u|: B — [0, 0] via

k
|i|(A) := sup {Z |pe(As)|lgm = k € N, A; € B pairwise disjoint, A; A} ,
i=1

called the variational measure and we call |u| := |u|(U) the total variation of
. We define the following vector space of Borel measures

M(U,R™) := {u: B— R™: u satisfies (A.1.1), |pul| < oo},

and we simply write M (U) in the case m = 1. Moreover, M (U, R"™) becomes
a Banach space, if it is equipped with the variational norm (compare [Alt16,
6.20]).

Unfortunately, the space M (£2) is to rich to be isomorphic to Cy(£2), therefore
we have to restrict ourself to so called regular measures. We call p e M (U, R™)
reqular, if for all A € B, we have for its variational measure

|u|(A) = sup {|u|(C): C < A, C compact}
= inf {|u|(0): A< O, O open}.

Finally, we define the space of reqular Borel measures

MR(U,R™) :={pue M((UZR™): uis a regular measure} ,
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Appendix A

and note that M R(U,R™) is also a Banach space if it is equipped with the total
variation as a norm. For the case m = 1, we simply write M R(U) instead of
MR(U,R). A measure p € MR(U), is also called a signed measure, since we
allow it to have negative values. For the case m > 1 we have p = (u1,..., tm)
and p; is a signed measure for all ¢ = 1,...,m.

Remark A.1 (Radon measure). We emphasise that some notions of measure
theory slightly differ in literature, e.g. in [EG15, Definition 1.9] a measure p on
a set X is reqular if for each set A < X there exists a u-measurable set B such

that A < B abd j1(A) = u(B)

Observing that continuous functions are measurable with respect to regular
Borel measure, we get the following theorem. Note that for simplicity we restrict
ourself to real valued measures, i.e. m = 1.

Theorem A.2 (Riesz-Radon theorem (Dual space of Cp)). Let K < RY be
compact. Then, every bounded linear functional L: Co(K) — R is represented
uniquely by a regular Borel measure v € M R(K) such that

L(f) := L{fdy VfeCy(K).

Moreover, we have |L| = |v|.

Proof. Compare e.g. [Alt16, Section 6.23], [ABM14, Theorem 2.4.6] or|[AFP00,
Theorem 1.54]. O

By using the Riesz-Radon theorem we can provide a distributional character-
isation of regular measures (compare e.g. [Alt16, 6.24 Corollary|). To this end
we assume 2 < R? is open and bounded and let C' > 0 such that the linear map
T: Cy(2) — R satisfies

TN <Clfly Ve Co(®).
Then, there exists a unique v € M R({) satisfying

Ivll = sup{|T(f)] : feCo(), [flo=1}<C

and
T(7) = | sdv e cu@).
Remark A.3. Note that by a convolution argument it suffices to assume that
TeD(Q) with |T(p)|<Clel, VYoe Q)

since T' can be uniquely extended to a linear map on Cy(Q2), which satisfies the
above estimate.
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Theory of measures and Riesz-Radon’s Theorem

We emphasise that M R(£2, R™) is isomorphic to the product space [M R(£2)]™
and that we have

pwe MR(Q,R™) < pu = (u1,...,n) and p; € Co(Q) Vi=1,...,m.

Consequently, the dual of Cy(€2,R™) can be identified with M R(£2, R™). From
the definition of weak*-convergence we have, that {p}ren € MR(Q,R™) con-
verges weakly* to pu (u — g in Co(€, R™)’) if

k—o0

lim JQ(;S- duk=L¢- du Vo e Co(Q,R™).

Next, we prove that on the space M R(Q,R™) we have a weak*-compactness
property, which is a consequence of Theorem of Alaoglu (see [Alt16, 8.7(3)] and
the above identification of the dual of [Cy(€2)]™ and M R(2,R™). However, we
give a proof, which is based on rather basic properties of measure spaces and
gives a more detailed insight into this compactness property.

Theorem A.4 (Weak* compactness). Let < R? be open and bounded and
let {ux}tren be a sequence in M R(Q,R™) satisfying sup {|ux|(2): k € N} < 0.
Then, it has a weakly® converging subsequence in M R(,R™).

Proof. Without loss of generality we assume that |uz|(2) < 1 for all k € N. Let
{ce}oen < [Co(2)]™ be a sequence, from which we assume, that [cg|, < 1 for all
¢ € N and whose linear span L is dense [C((£2)]™. We note that such a sequence
exists, due to the separability of Cy(€2). We will use the following notation: For
a measure ;4 € MR(2,R™) and a function c € [Cy(2)]™ we write

ey = | e dn=ute)

as a shorthand notation for the duality bracket.
By the properties of {u}ren and {cg}ren, we have

Hi(er) = L e1 - dpr, < el (@) e, < 1.

Hence, there exists a; € R and a subsequence {kjl} c N such that pg1(c1) —
J

jeN
a1 as j — o0 and

1 .
‘uk;(cl) —a1’ < 7 Vi=1.

Using an inductive argument we observe that for pyn < M R(Q,R™) there
exists a subsequence such that pn+1 — a1 as j — o0 and
J

1
‘Mk;"+1(cn1) - 6Ln+1’ < i
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Consequently, for y,; and j > n we have
J

1
Nk;j (cn) —an| < 5

and therefore for all n € N we have

lim 15 (cn) = an.
j—oo T

Note, that by the properties of {¢s},. this limit exists in the whole of L. We
define p on M R(2,R™) by p(c,) = a, and observe as above

p(cn) = i, Hys (en) < [y 1 () flenflop < 1.

Hence, p is a bounded linear functional and can be extended to the whole of
[Co(2)]™ by density.
To prove that p is the weak™*-limit of iy we have to prove that for all
ce [Co(22)]™ we have
tim s (¢) = p(c).

J—0

To this end, let € > 0 be arbitrary and d € L such that ¢ —d|, < e. Then, by
the triangle inequality we conclude

(€)= 1(€)| < |ty e = )] + |y (d) = ()| + e = D)

< 2fle—dl, + |y (@) — u(d)| < 36

provided j large enough. Consequently, since € was arbitrary, we proved that
p.i (c) weakly™ converges to p. O
J
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Bubble functions

In order to unserstand the understand the various concepts of Chapter 3.4.3
(lower bounds of the error indicators), we recall some definitions of a posteriori
analysis (compare also [Verl13]).

Let K = {(z,y):0<2<1,0<y<1—2} c R? be the reference triangle
with vertices 2g, 21, 22. By 5\0, A1 and Ay we denote the barycentric coordinates
on f{, i.e. 5\1(2’]) = 51']' for 0 < ’i,j < 2.

We note that the interior bubble function on K is defined by

b = 2T0M he.

Now, let K € T be an arbitrary element and F : K — K be an invertible and
affine linear mapping. Then, the associated bubble function on K is defined by

1,[1[( = {Z}IA(OFI;I

We extend g by zero to the whole domain §2 and obtain a piecewise polyno-
mial which is globally continuous and therefore located in W1*(Q) but not in
W2L(Q). In order to derive lower bounds of the local error indicators for fourth
order problems, we need to construct local bubble functions of class C1(9), i.e.
bubble functions located in W2® (). To this end, on K we define

b = (Vi)*.

By construction we have that bx als well as the first derivative of bx vanishes
on the boundary of K. Consequently, bx € Hg (K) and by extending by by zero
on O\K we also have bx € HZ(f2) (compare figure B.3(b)).

Figure B.1: Reference triangle K.
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Figure B.2: Rhombus K contained in K 1 U K5 with common edge F'.

In order to extend the above idea to face bubble functions we consider the
reference triangle K < R? with one dimensional faces Fg, F'1, F». Simple cal-
culations reveal that the buble function on Fy (compare figure B.1) is defined

by
qZ;FO = 4\ Ao

and the remaining bubble functions on Fy and F5 are then defined analogously.
Now, let K € T be arbitrary with ' < K. Then, the associated face bubble
function on F' ¢ K is defined by

~K . _
wF = ¢FOFK1.

~K
Since ¢ is a local polynomial, only defined on the element K o F'| we extend
the face bubble function to the domain w7 (F') via

~K
Yvp in K
~K'
Vrp=91p inK’
0 in R:\wr(F),

where the neighbouring element K’ € T is chosen such that K’ n K = F.

Note that the face bubble functions are piecewise polynomials on each element
and therefore the function 1 is not differentiable across inter-element faces
(compare figure B.3(c)). Hence, we observe that the above simple device does
not suffice in this case.

To overcome this issue, fix F' € ]0-", F = K; n Ky and let K be the largest
rhombus contained in K; U K, that has F' as one diagonal (compare figure B.2).

Regarding K as a quadrilateral in R? we are able to construct a bubble func-
tion bz on K as follows: We define a reference quadrilateral

K={(z,y): —1<z<1,-1<y<1}

together with an invertible mapping Fix : K — K and define an interior bubble
function on K via

Y= (1-a)(1-y°).
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In an analogous fashion as above we define
] -1
Vg i=1poFy

to be the (continuous) bubble function on K c R2. )
Finally, for m € Ny we define a smooth bubble function on the rhombus K
via

b = (i)™t

Note that bz together with all its derivatives up to order m vanishes on the
boundary of K. Consequently, bj; is contained in C™(§2) and in particular
in Wm+Lr(Q) for every Lebesgue exponent p. Moreover, b i is positive on the
interior of F and vanishes on Q\K. Hence, we can use it as a smooth face bubble
function in the proof of the lower bounds of the error indicators on element faces
(see section 3.4.3)

Remark B.1. [t is also possbile to define face bubble function on the whole

patch wr(F') by extending the local polynomials 12? to global polynomials defined
on the whole domain R?. Compare [Verl3, Section 3.2.5] for details and also
figures B.3(c) and B.3(d) for an example.

The following Lemma goes back to [Virl0, Lemma B.1]|.

Lemma B.2. Let T be a triangulations of Q and K < T. Then, we have for
any fized £ € Ng and m e N

IS fK W do < ol , (B.11)

for all v € Py(K), ¢ € Ng. Here, i denotes the (continuous) interior bubble
function on K and the constants in’ <" are independent of K and the mesh-size
h.

Moreover, let F € F such that F = K, UK_and Ky, K_€T. Let K
Ky u Ky be an quadrilateral, contained in K1 U Ko having F' as one diagonal.
Then, for any fived j € Ng and n € N we have that

ol < L W2 ds < o, (B.12)

or all v e P;j(F), j € Ng. Here, ¢z denotes the (continuous) interior bubble
J K

function on K. and the constants in ' <’ are independent of F the mesh-size

h.

Proof. Fix £ € Ny, let K € T and u,v € Py(K). Using the reference mapping
Frg: K — K and the definition of Py(K) we have, that 4,0 € Py(K) with
w(z) = u(Fk(2)) and 0(%) = v(Fk(2)) for all z € K.

We fix m € N and prove that

X 1/2
b (f V2 d:&) =: ()
K
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(a) Continuous element bubble (b) Smooth element bubble
function on the left element function on the left element

(¢) Continuous face bubble (d) Smooth face bubble

function on an intersection of elements function on an intersection of elements

Figure B.3: Example of various bubble functions
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defines a morm on Pg(f( ). Since 0 i 1s non-negative on K we have also that
©(0) = 0. Moreover, if ¢(0) = 0, then {pK > 0 in the interior of K implies & = 0
almost everywhere in K. Now let a € R, then

. 1/2
ﬂm»=(&wkﬁﬁdﬁ _ o] o(v)

and additionally we have
f @b i+ f) dz
f Vil dfc+f {b%?dmrzf Dt di
= (@)% + (0 +2J P di

< o()* + (0)* + 20(0) (D) = (p(@) + (D).

By taking the square root on both sides in the last estimate, we deduce that
©(+) also satisfies the triangle inequality and in particular defines a norm on the
finite dimensional space Py(K). Since |[v]|; also defines a norm on Py(K), we
have from equlvalence of norms on finite dimensional spaces, that there exist
constants C’l, Cy >0 (depending on the refenrence element K )

Culil < | O ai < Culol
Using the transformation formula for integrals we get
|v]|% :j v? da :f 92 |det DFg| d
K k
and
= j PP do = f U702 |det DFg| d.
K

Hence, assumption (3.1.2) together with the estimates above implies

&vﬁ<L¢vdxcbmp

with C; = 0201 and Oy = ;C’QC,eg. The proof of (B.1.2) follows by similar
arguments. 0
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A Sequence of triangulations based on Cantor sets

In a previous version of [DGK19| (compare with [DGK19a]), we resorted to a
simpler convergence proof for the adaptive method Algorithm 4.1 making use
of the condition

Q = interior(Q~) U QF; (C.1.1)

see also [KG17] and [KG20]. During the review process of [DGK19|, one of
the anonymous referees proved that (C.1.1) is wrong in genreal by means of
an elaborate counterexample, which we present in full detail to the anonymous
referee’s credit.

Based on the idea of Cantor sets, a sequence of refinements is constructed,
such that Q1| < || and interior(Q~) = &, which clearly contradicts (C.1.1).

(a) To (b) T

Figure C.1: Triangulations 7y and 77 with atoms of level 0 (resp. 1) which are
shaded in dark blue (resp. light blue).

We partition the unit square Q = (0,1)? into 42 equal-sized squares, each of
which is again meshed by a criss-cross triangulation. This is the initial triangu-
lation as depicted in Figure C.1(a). The four criss-cross squares in the center
of Q (shaded in dark blue) will be called atom. Since we are exclusively deal-
ing with right-angled isosceles triangles, newest vertex bisection corresponds to
longest edge refinement. The mesh 77 is then constructed by partitioning each
of the 12 non-atomic criss-cross squares into 82 equal-sized squares each of which
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is again meshed by a criss-cross triangulation. The atom will be only further
refined in order to ensure conformity and it gets clear from Figure C.2, that
eventually the whole interior of the atom will belong to Q. Again, the center
four criss-cross squares in each of the non-atomic criss-cross squares from 7 will
be atoms of level 1 (shaded in light blue in Figure C.1(b)) and not marked for
refinement any more.

(a) iteration k = 0 (b) iteration k =1

(c) iteration k = 2 (d) iteration k = 3

Figure C.2: Atomic refinements.

This construction is now continued recursively, i.e. 7; is created from 7;_1,
by splitting each non-atomic criss-cross square into (22“)2 criss-cross squares,
performing necessary refinements due to conformity and taking the four center
criss-cross squares in each criss-cross square of 7;_1 as new atoms of level i.
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A Sequence of triangulations based on Cantor sets

In each triangulation 7; there are thus created less that

i—1

[T

j=0

new atoms (we neglect that no new atoms are created inside lower level atoms)
of size

4
[T (22472
j=0

Therefore, the union of all atoms of a fixed level ¢ > 1 occupy an area of size

i—1

4] @)
I=0 g 9202+ _ 9-2(it])
[T (22%9)

§=0

The set of Q1 of the constructed sequence of meshes consists of the union of the

interiors of the atoms. Recalling, that the atom of level 0 has size 1/4 = 2-2(0+1),

we conclude that

0
Q| < D22 é <1 (C.1.2)
1=0

From any point = € ) the distance to the closest atom of level < ¢ is bounded
by the diameter of the smallest criss-cross squares in 7;_;, which is 4/2-270@+1),
Therefore, we have that Q% is dense in 2 and

interior(Q2”) = interior(Q\Q") = &.

Together with (C.1.2) this contradicts (C.1.1).
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Notation Index

V(T) =P,(T) discontinuous Galerkin finite element space, page 18

cm(Q)

-l

r

T

hr(x)
Ny (K)
osc(K, f)

hi

space of m-times continuously differentiable functions f: 2 — R,
page b5

Lebesgue space of real valued measurable functions with exponent
p, page 10

pair of Hilbert space with corresponding inner product (-, - )y, page 44
boundary of the set D = R%, page 5

m x n-matrix with (ij)-th entry v;w;, v e R” and w € R™, page 5
lifting operator, page 29

d-dimensional Hausdorff measure, page 48

skeleton of T, page 17

discrete bilinear form of the SIPDG method, page 24

energy norm, related to V(7), page 25

skeleton of T, including only boundary faces, page 17

conforming and shape regular subdivision of €2, page 17

piecewise constant mesh-size function, page 17

jth neighbourhood, page 19

local data oscillation of f on K € T, page 39

diameter of K € T, page 18

MR(U,R™) Regular Borel measures with values in R, page 115

hy
(%)

H™(T)
Lioe()

M(U,R™)

diameter of the largest inscribed ball in K € T, page 18
space of continuous functions f: 2 — R, page 5

space of piecewise H™-functions, page 18

set of locally integrable functions on 2, page 10

Space of Borel measures with values in R, page 115
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Notation Index

B entries of a multi-index o € N¢ or absolute value of some scalar,
page b5

B Borel-o algebra of some U < R?, page 115

D(Q2) = CP(Q) test functions, page 11

D2 piecewise Hessian of v € H%(T), page 19

N (K) degrees of freedom of P.(K), K € T, page 78

n(v, K) (local) error estimator of v € V(7) on K € T, page 36

aii = 0; classical (pointwise) i-th partial derivative, page 6
Tt set of eventually never refined elements, page 57
To initial mesh, page 18

T.=>T T. is a refinement of 7T, page 18

T.F set of T located in T, page 57

T complementary set of of 7,7, defined by located in T, = 7}\7;’,
page 57

776j+ set of Tx with N,g(K) < 7., page 57

’7;‘7_ complementary set of 7;j+, defined by 7}\7}5*, page 57

K reference simplex in R?, page 17

fT skeleton of T, including only internal faces, page 17

[-1z jump operator on F € F, page 19

d d-dimensional Lebesgue measure, page 46

{3}z average operator on F' € F, page 19

wl A restriction of a measure p to a Borel set A € B, page 50

N natural numbers without zero, page 5

Ng natural numbers including zero, page 5

V- divergence of a vector-valued function 1, page 22

v-T divergence of a tensor valued-function T', defined by V- T = (V -
7L, V. T(2)), where T is the ith column vector of T, 1 < i < 2,
page 22

V¥ piecewise gradient of v € H'(T), page 19

Ny (2) discrete neighbourhood of z € Z7, page 19
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Notation Index

Zr Lagrange nodes of V(7)) (nodal degrees of freedom), page 19
np unit outward normal vector on a domain D, page 20

ot domain of the set 71, defined by Q(7 ), page 57

Q- complementary domain of Q% defined by Q\Q", page 57
wr (F) neighbourhood of F' € F, page 19

wr(z) domain of the neighbourhood N7 (z), page 19

w%—(K) domain of the jth neighbourhood Ng—(K), page 19
ij domain of the set 7734”, page 57
Q?; domain of the set 7757, page 57

osc(7T,f) global data oscillation of f, page 40

D closure of a set D < R?, page 5

<I>§ dual basis element of @f , page 78

dK Lagrange basis function of the node z on K € T, page 78
1I L?-projection onto the finite element space., page 18

P vectorfield, page 22

Br(x) ball around = with radius r., page 48

BV (Q) space of functions of bounded variation, page 46

D; i-th partial distributional derivative., page 12
Du distributional derivative of u, page 12
HY () Sobolev space of functions with zero boundary values and weak

derivatives up to order n in L*(Q), page 12

N number of degrees of freedom (#DOF), page 18
v-w inner product on Rd, page 5

Vp — v weak convergence of vy — v in V as k — o0, page 7
v — v weak™ convergence v;, — v' in V' as k — oo, page 7

Wy’ (2)  Sobolev space of functions with zero boundary values and weak
derivatives up to order n in LP(Q2), page 12
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