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Abstract
Results are reported for octanol–water partition coefficients (log P) of the neutral states of drug-like molecules provided 
during the SAMPL6 (Statistical Assessment of Modeling of Proteins and Ligands) blind prediction challenge from applying 
the “embedded cluster reference interaction site model” (EC-RISM) as a solvation model for quantum-chemical calcula-
tions. Following the strategy outlined during earlier SAMPL challenges we first train 1- and 2-parameter water-free (“dry”) 
and water-saturated (“wet”) models for n-octanol solvation Gibbs energies with respect to experimental values from the 
“Minnesota Solvation Database” (MNSOL), yielding a root mean square error (RMSE) of 1.5 kcal mol−1 for the best-per-
forming 2-parameter wet model, while the optimal water model developed for the pKa part of the SAMPL6 challenge is kept 
unchanged (RMSE 1.6 kcal mol−1 for neutral compounds from a model trained on both neutral and ionic species). Applying 
these models to the blind prediction set yields a log P RMSE of less than 0.5 for our best model (2-parameters, wet). Further 
analysis of our results reveals that a single compound is responsible for most of the error, SM15, without which the RMSE 
drops to 0.2. Since this is the only compound in the challenge dataset with a hydroxyl group we investigate other alcohols 
for which Gibbs energy of solvation data for both water and n-octanol are available in the MNSOL database to demonstrate 
a systematic cause of error and to discuss strategies for improvement.

Keywords  SAMPL6 · Solvation model · Quantum chemistry · Integral equation theory · EC-RISM · log P

Introduction

The prediction of physicochemical properties of small, 
drug-like molecules has been the focus of the Statistical 
Assessment of the Modeling of Proteins and Ligands series 
of challenges for several years [1]. In the latest instance, 
a subset of the molecules provided during the SAMPL6 
challenge for the prediction of acidity constants (pKa) [2, 3] 
was selected by the organizers to challenge the community 
again with the task to predict their neutral-state partitioning 

thermodynamics measured by the octanol–water partition 
coefficients, log P [4]. Compared to the pKa prediction chal-
lenge the resulting tasks partly overlap (solvation proper-
ties in an aqueous phase, adequate treatment of tautomeric 
or “microstates”), but the problem of partition coefficients, 
translated into the difference of solvation Gibbs (free) ener-
gies, implies additional problems. In contrast to the previ-
ous SAMPL5 challenge on cyclohexane-water distribu-
tion coefficients (log D at a given aqueous pH) [5, 6] the 
problem is simpler as no ionic species have to be accounted 
for, but a non-aqueous polar solvent such n-octanol poses 
an additional difficulty as neglecting or accounting for the 
experimentally known water content of 48.91 mg g−1 at a 
temperature of 298.15 K [7] could have significant impact 
on the accuracy of the predictions.

As in the earlier challenges we here employed the 
“embedded cluster reference interaction site model” (EC-
RISM) to characterize the thermodynamics of the solvation 
process [8]. This method combines 3D RISM integral equa-
tion theory [9–11] with a quantum-chemical (QC) descrip-
tion of the solute to capture electronic solute polarization 
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upon entering a polar solvent environment. This is achieved 
by calculating the solvent distribution functions around the 
solute mapped onto background charges around the solute. 
These are applied in the QC calculations from which, after 
convergence of an iterative cycle, the wave function of the 
solute in solution as well as the excess chemical potential at 
infinite dilution and other properties of the fully polarized 
solute can be determined [12, 13]. As usual, we took the sum 
of the polarized electronic energy and the excess chemical 
potential as an estimate of the Gibbs energy of the molecule 
in solution to calculate derived properties such as solvation 
Gibbs energies (by referencing to a gas phase calculation), 
acidity constants, partition and distribution coefficients, 
or tautomer and conformational populations of molecules 
under ambient and extreme conditions in a variety of sol-
vents [14–21].

Because the known errors resulting from the approxima-
tions made in 3D RISM theory have been shown to scale 
with the partial molar volume (PMV) of the molecule 
[22–24] that can also be determined from 3D RISM cal-
culations, we have already successfully trained and applied 
corrections for EC-RISM using only two free parameters 
for small-molecule solvation Gibbs energies in water and 
cyclohexane [3, 6]. Similar to Ref. [25] (which was restricted 
to force field-based 3D RISM log P calculations ignoring 
electronic polarization), this scheme was here extended to 
“dry” n-octanol and “wet” saturated n-octanol–water mix-
tures to model the organic phase. We here adhered to our 
physically “conservative” strategy to train models on “basic” 
quantities such as solvation Gibbs energies only. This way 
we avoid overfitting and are able to measure the theoreti-
cal model performance directly which facilitates systematic 
optimization on the premise that any derived quantity (such 
as a partition coefficient) should automatically improve as 
well. Moreover, in contrast to the case of predicting acidity 
constants where a second set of empirical corrections (slope 
parameter and additive constant related to the Gibbs energy 
of the proton [3, 6, 26]) was applied we can here determine 
the partition coefficient directly from the corrected Gibbs 
energies in the respective solvents, making this an even 
stronger test case for the validity of the PMV correction, 
since any potentially existing deficiencies cannot be allevi-
ated by the second correction.

After a brief introduction into methods and computational 
aspects which can be found in full detail in the our earlier 
SAMPL challenge papers [3, 6], we outline model training 
for the calculation of solvation Gibbs energies of molecules 
in dry and wet n-octanol with respect to experimental values 
taken from the Minnesota Solvation Database [27–30], while 
the optimal aqueous solvation model [3] was applied without 
further adjustment. For both octanol compositions two models 
containing 1 or 2 free parameters were derived; the result-
ing four models were then used for predicting the SAMPL6 

compound set log P values. After comparative analysis of 
these results we then discuss the relevance of individual tau-
tomers in both phases, followed by an investigation into the 
origin of a remarkable outlier detected after experimental data 
have been revealed.

Methods

Theory

The (decadic) partition coefficient of a molecule is related to 
the Gibbs energy of transfer, ΔtransG

0 , and therefore, via a ther-
modynamic cycle where the gas phase contributions cancel 
out, to the individual (standard) Gibbs energies, G0 , of the 
compound in the respective solvent (“wat” for water and “oct” 
for octanol) by

where R is the molar gas constant and T is the temperature 
(298.15 K in this work). While the conceptual and theoreti-
cal basis for calculating these individual Gibbs energies is 
the same as in our previous works [3, 6, 14, 17], only neutral 
tautomers (“microstates”, subscript “t”) need to be consid-
ered whose Gibbs energies can be calculated via the discrete 
partition function approximation over conformations (“c”) 
by

Note that we here drop the superscript “0” indicating the 
standard state for simplicity, assuming infinite dilution con-
ditions at an arbitrary formal concentration. The total Gibbs 
energy is then given by a similar partition function over the 
individual microstates as

Within the EC-RISM formalism the Gibbs energy per con-
formation and per microstate is defined as

where Esol
tc

 represents the electronic energy of a conforma-
tion in solution and �ex,corr

tc  is the corrected excess chemical 
potential,

ignoring entropic contributions from rotational and vibra-
tional degrees of freedom. The uncorrected excess chemical 
potential, �ex

tc
 , and the PMV Vm

tc
 can be obtained from 3D 

(1)logP = −
ΔtransG

0
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RISM theory [31, 32], while the molecular net charge is a 
parameter that does not change between different tautomers 
or conformers of the same molecule. As only neutral forms 
were considered in this challenge, the parameter related to 
the net charge q (see Ref. [24] for a discussion on the pos-
sible physical origin of this term) does not play a role here. 
For octanol, we therefore trained only the parameters cµ and 
cV using experimental Gibbs energies of solvation that are 
computed by subtracting the gas phase energy of the mol-
ecule (Evac) from the EC-RISM Gibbs energy via

For water, we directly employed our optimal model 
derived earlier [3], which does not require scaling of the 
excess chemical potential term. We thus used only a single 
parameter (cV) for water and investigated the effect of using 
either one or two parameters for n-octanol, both as dry and 
wet phase.

Computational details

The water model used in this work is identical to the most 
accurate SPC/E-based one used in the earlier SAMPL6 pKa 
challenge [3], there denoted as “MP2/6–311+G(d,p)/φopt”, 
i.e. from EC-RISM calculations using the exact electrostatic 
solute–solvent interactions obtained directly from the wave 
function.

For n-octanol the united atom model developed by 
DeBolt and Kollman [33] was used with an additional Len-
nard-Jones parameter of σ = 1.0 Å on the hydrogen atom 
of the hydroxyl group to avoid divergence of the RISM 
equations, similar to the modification used in the SPC/E 
water model. The octanol molecule was assumed to be fully 
extended and rigid (structure and parameters are provided 
as Online Resource 1). During the challenge a particle den-
sity of 3.82054 × 10–3 Å−3 and a dielectric permittivity of 
9.86294 [34] were used for the dry octanol models while 
for the water-octanol mixture a dielectric permittivity of 9.1 
and densities of 1.37473 × 10–3 Å−3 and 3.64253 × 10–3 Å−3 
were chosen for the water and octanol sites, respectively, as 
estimated from the saturation molar fractions x by multiply-
ing the molar mass-scaled x values with the wet octanol mass 
density (0.82883 g cm−3, xwat of 0.274 [35]). During the 
post-challenge analysis we also prepared and tested alterna-
tive solvent properties using a more accurately extrapolated 
value for the dielectric permittivity of wet n-octanol of 8.41 
[36] and the correct number densities of 1.3598 × 10–3 Å−3 
and 3.65787 × 10–3 Å−3, corresponding to n-octanol with the 
experimental water mole fraction of 0.2705 [7]. The dielec-
tric permittivity was estimated by fitting the experimental 
data for 303.15 K and 293.15 K with exponential functions 
and calculating the mean of the extrapolated values obtained 

(6)ΔsolvG
0 = Esol + �

ex,corr − Evac

at the experimental water mole fraction mentioned above. 
Data obtained under these conditions will be specifically 
marked in the Results section. The PMV was calculated via 
the 3D RISM total correlation function (h) route [31] using 
the 1D RISM estimate of the isothermal compressibility for 
water of 0.717062 × 109 Pa−1, while for octanol the experi-
mental compressibility of 0.761 × 109 Pa−1 was used [37].

MNSOL structures for training of the n-octanol models 
were generated using the same workflow described in our 
SAMPL5 challenge paper [6], in this case using Gaussian 
16 rev. B.01 [38] with tight convergence criteria and other-
wise default settings during the QC optimization. For water 
501 molecules were used for training while for n-octanol 
experimental values were available for 224 molecules. In the 
training phase up to five conformations were considered for 
each molecule by using a partition function approach where 
the free parameters occur in the exponents within the parti-
tion function expression, requiring non-linear regression by 
numerically minimizing the loss function

where c′ in the second sum indicates that the vacuum confor-
mations are not necessarily identical to those in n-octanol. 
For the SAMPL6 challenge molecules the initial force-field 
based structures (up to an energy threshold of 5 kcal mol−1) 
were further optimized at the B3LYP/6–311+G(d,p)/IEF-
PCM level of theory for both water and octanol, using 
the same settings described above, unlike the preceding 
SAMPL6 pKa challenge stage [3] where at most the lowest 
two PCM optima were treated by EC-RISM.

3D RISM calculations utilized a periodic rectangular grid 
with 0.3 Å spacing and fixed cubic boxes of 1283 grid points. 
For water the PSE-2 closure was used, while due to conver-
gence issues the PSE-1 (or Kovalenko-Hirata, KH) closure 
had to be used for the octanol calculations [12]. Convergence 
criteria, Lennard-Jones parametrization (GAFF 1.5, the non-
bonded parameters are identical to version 1.4 [39]), and 
EC-RISM settings were chosen identical to our earlier work 
[3, 6], also applied here to octanol calculations.

Results and discussion

Gibbs energies of solvation in water and n‑octanol

The results of the training for the chosen water model, 
repeated here according to the optimal SAMPL6 pKa setup 
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[3], and the dry and wet n-octanol models under investi-
gation are shown in Fig. 1 and Table 1, for the latter also 
including the optional scaling parameter for the excess 
chemical potential (“2-par”) besides the PMV-only correc-
tion (“1-par”). Statistical metrics and the adjustable param-
eters cµ, cV and cq (the latter only for water) are shown for 
each individual octanol model. It is observed that the results 
for the 2-parameter octanol models are generally compa-
rable to those of the neutral compounds in water while 
the 1-parameter models perform slightly worse. The lat-
ter models exhibit a stronger deviation for molecules with 
lower Gibbs energies of solvation which is also visible in 

the significantly worse slope for those models. Somewhat 
counterintuitively, we also observe that the dry model per-
forms slightly better in terms of the RMSE, while the MAE 
(mean absolute error) and MSE (mean signed error) indicate 
slightly better model balance in the wet case. If deduced only 
from the training set, all octanol models would be expected 
to perform reasonably well.

SAMPL6 dataset: partition coefficients log P

The resulting log P values from applying the various 
trained models to the molecules of the SAMPL6 challenge 

Fig. 1   Calculated vs. experimental Gibbs energies of solvation in 
n-octanol for the MNSOL dataset [27] based on EC-RISM calcula-
tions for various n-octanol models: dry octanol (A) and wet octanol 
(B) using either a single (1-par, light blue triangles) or two parame-
ters (2-par, dark blue triangles) in the trained correction. Uncorrected 

data is shown as red squares. Dashed lines indicate descriptive regres-
sion results. Optimized solution and gas phase structures are provided 
as Online Resource 2; calculated data, also split into separate compo-
nents, are provided as Online Resource 3

Table 1   Regression parameters of optimized EC-RISM-based Gibbs 
energy of solvation models (cq, cV  / kcal mol−1 Å−3, cq  / kcal mol−1 
e−1) along with statistical metrics (root-mean-square error RMSE/
kcal mol−1, mean absolute error MAE  /  kcal mol−1, mean signed 

error MSE / kcal mol−1, slope m′, intercept b′ / kcal mol−1, and coef-
ficient of determination R2 from descriptive regression). For water, as 
taken from Ref. [3], separate metrics are reported for neutrals, anions, 
and cations in addition to the full MNSOL dataset

Solvent RMSE MAE MSE m′ b′ R2 cµ cV cq

Water
 All 2.04 1.43 − 0.26 1.00 − 0.35 1.00 – − 0.10251 − 15.728
 Neutrals 1.56 1.13 − 0.36 0.97 − 0.47 0.89 – – –
 Anions 3.07 2.46 0.01 1.10 7.18 0.94 – – –
 Cations 2.98 2.10 0.02 0.96 − 2.62 0.85 – – –

Octanol (dry)
 1-par 1.78 1.33 0.03 0.66 − 2.15 0.85 – − 0.00799 –
 2-par 1.48 1.14 − 0.08 0.89 − 0.78 0.87 1.33446 − 0.00609 –

Octanol (wet)
 1-par 1.73 1.31 − 0.01 0.68 − 2.08 0.85 – − 0.01552 –
 2-par 1.51 1.16 − 0.10 0.87 − 0.93 0.86 1.28924 − 0.01315 –
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are shown in Fig. 2 and Tables 2 and 3. With an RMSE of 
0.47 (rank 5 among all submissions, rank 2 among phys-
ics-based models) and MAE of 0.31 (rank 2 among all and 
physics-based submissions) for the best model (2-par, wet; 
submission ID j8nwc) our results are in line with the best 
performing models of this part of the SAMPL6 challenge 
(best RMSE and MAE: 0.38 and 0.31, respectively, for sub-
mission ID hmz0n). The ranking of the models also con-
firms our expectations with regards to the model quality: 
firstly, the models taking into account the water content of 
the organic phase perform slightly better than those ignoring 
it. Secondly, the octanol models using only a single param-
eter correcting for the partial molar volume perform sig-
nificantly and systematically worse than the two-parameter 
octanol models. This confirms the training set’s trend, where 
the one-parameter models showed slopes deviating signifi-
cantly from unity. Unlike the less clear expectation form the 

Fig. 2   EC-RISM-derived vs. experimental log P values for the 
SAMPL6 log P dataset using either a single parameter (1-par) for the 
n-octanol model (A) or a two-parameter (2-par) n-octanol model (B). 
Data generated using dry/wet octanol are shown as light/dark blue 

squares, respectively. Optimized solution phase structures are pro-
vided as Online Resource 4; calculated data, also split into separate 
components, are provided as Online Resource 5

Table 2   Individual experimental and corresponding predicted log P 
values for all models

Submission IDs for the individual submission are 2tzb0 (dry, 1-par), 
rdsnw (wet, 1-par), qyzjx (dry, 2-par), j8nwc (wet, 1-par)

log Pexp Dry, 1-par Wet, 1-par Dry, 2-par Wet, 2-par

SM02 4.09 3.74 3.66 4.56 4.19
SM04 3.98 2.97 3.00 4.08 3.86
SM07 3.21 2.60 2.65 3.62 3.46
SM08 3.10 1.55 1.62 3.78 3.37
SM09 3.03 2.23 2.31 3.41 3.22
SM11 2.10 0.22 0.29 2.25 2.01
SM12 3.83 3.19 3.15 4.25 3.92
SM13 2.92 1.99 2.22 3.28 3.22
SM14 1.95 0.05 0.18 1.51 1.42
SM15 3.07 0.42 0.51 1.85 1.71
SM16 2.62 1.64 1.65 3.00 2.73

Table 3   Statistical metrics for log P predictions (root-mean-square error RMSE, mean absolute error MAE, mean signed error MSE, slope m′, 
intercept b′, and coefficient of determination R2 from descriptive regression) for various models, encoded according to Table 2

Model Submission ID RMSE MAE MSE m’ b′ R2

Dry, 1-par 2tzb0 1.38 1.21 − 1.21 1.58 − 2.99 0.79
Wet, 1-par rdsnw 1.32 1.15 − 1.15 1.51 − 2.72 0.77
Dry, 2-par qyzjx 0.54 0.45 0.15 1.22 − 0.51 0.73
Wet, 2-par j8nwc 0.47 0.31 − 0.07 1.14 − 0.51 0.73
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training phase, the dry models perform consistently worse 
than the wet models. This is of course reasonable from a 
physical point of view as the wet models contain relevant 
solute-water interactions and are capable of describing pref-
erential solvation as a possible factor, but the overall perfor-
mance is, surprisingly, still reasonable which indicates that 
the models are not dramatically overfitted. The quality loss 
of using only the PMV parameter (1-par models) is, how-
ever, more significant, which is somewhat unexpected, as a 
2-parameter approach turned out to be unnecessary for water 
[6]. It is possible that the chosen united atom octanol model 
systematically underestimates the interactions between 
octanol and the solute, leading to the deviations seen in both 
the training set and the SAMPL6 challenge set of molecules.

Furthermore, using the more accurate values for the den-
sity and dielectric constant does not significantly change the 
results obtained. The largest change is observed for the mol-
ecule SM12, for which the calculated log P increases from 
3.92 to 3.93. Hence, the force field model impact is likely 
higher than small density uncertainties.

An interesting aspect to be derived from the present cal-
culations concerns the so far unknown relevance of certain 
tautomers in both phases. While not explicitly part of this 
challenge, the tautomeric state of a compound in different 
environments, such as different solvents or a protein bind-
ing pocket in contrast to free aqueous solution is of general 
interest. In analogy to our calculation of microstate pKa val-
ues during the first part of the SAMPL6 challenge [3] we 
therefore calculated the most stable tautomer in each phase 
and the relative tautomer stabilities of every other tautomer 
in that phase. Results are shown in Table 4. Throughout, the 
relative destabilization of the next higher tautomer compared 
to the most abundant one increases in octanol compared to 
water, the reasons for which require further investigation. 
Remarkably, we do not detect any tautomer shift or change 
of relative rankings upon changing the solvent environment. 
Again, this may be specific for this dataset and related to 
the large energetic gaps between dominant and next higher 
tautomer.

Post‑submission analysis: correlation of errors 
with structural features

A striking observation in the post-submission phase was the 
fact that only a single outlier, SM15, was responsible for 
the largest part of the error, omission of which would bring 
the RMSE down to 0.2. This compound is structurally very 
similar to the other molecules in this subset of the original 
SAMPL6 challenge, especially SM14, but it is unique in 
that it is the only species containing a hydroxyl group. Curi-
ously, its log P is underestimated by many of the challenge 

participants (median error of ca. − 0.9 log P units, − 1.36 
for our best model) in a way that is not seen for any other 
compound, as can be seen in the analysis files provided by 
the challenge authors [40]. This result led us to investigate 
the training dataset more closely during the post-submis-
sion phase, see Fig. 3. Comparing the calculated partition 

Table 4   Calculated Gibbs energies of the neutral microstates relative 
to the most favorable tautomer (microstate) of each compound for 
both solvents (in kcal mol−1)

Microstate Water Octanol 
(wet, 
2-par)

Octanol 
(dry, 
2-par)

Octanol 
(wet, 
1-par)

Octanol 
(dry, 
1-par)

SM02_micro002 0.00 0.00 0.00 0.00 0.00
SM02_micro003 5.16 5.57 5.66 5.65 5.71
SM02_micro007 6.18 8.86 8.80 10.30 10.40
SM04_micro003 0.00 0.00 0.00 0.00 0.00
SM04_micro004 8.45 9.81 9.74 10.68 10.76
SM04_micro009 11.10 11.72 11.78 12.15 12.24
SM07_micro002 8.97 10.59 10.61 11.63 11.78
SM07_micro003 6.75 7.97 8.00 8.34 8.41
SM07_micro004 0.00 0.00 0.00 0.00 0.00
SM08_micro008 10.26 24.63 24.61 32.59 33.52
SM08_micro010 5.69 6.05 6.56 4.70 4.89
SM08_micro011 0.00 0.00 0.00 0.00 0.00
SM09_micro002 6.79 9.55 9.45 11.45 11.57
SM09_micro003 0.00 0.00 0.00 0.00 0.00
SM09_micro011 5.60 6.02 6.09 6.46 6.55
SM11_micro005 0.00 0.00 0.00 0.00 0.00
SM11_micro028 7.14 8.07 8.21 8.46 8.61
SM11_micro029 14.81 17.69 17.68 18.81 18.93
SM11_micro030 26.91 34.04 34.12 36.10 36.40
SM12_micro002 4.73 5.21 5.32 5.35 5.43
SM12_micro011 5.76 8.48 8.42 10.04 10.14
SM12_micro012 0.00 0.00 0.00 0.00 0.00
SM13_micro005 0.00 0.00 0.00 0.00 0.00
SM13_micro007 6.23 6.28 6.31 6.69 6.76
SM13_micro009 8.01 10.72 10.51 12.78 12.84
SM14_micro001 0.00 0.00 0.00 0.00 0.00
SM14_micro005 28.76 37.41 37.02 41.99 42.23
SM15_micro001 9.24 19.80 18.80 26.68 26.76
SM15_micro002 0.00 0.00 0.00 0.00 0.00
SM16_micro002 0.00 0.00 0.00 0.00 0.00
SM16_micro003 12.41 13.39 13.61 12.68 12.79
SM16_micro007 6.75 11.48 11.49 13.61 13.93

Individual tautomer Gibbs energies in each solvent are provided as 
Online Resource 6. In contrast to the calculation of the partition coef-
ficients where special treatment is not necessary, we here made sure 
that individual conformations undergoing a protonation shift during 
QC optimization were manually assigned to the correct microstate 
before evaluation of the partition function
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coefficients for all alcohols contained in the MNSOL Data-
base for which solvation Gibbs energies in both water and 
n-octanol are available shows that a similar systematic offset 
is found for these molecules (Fig. 3a). The great benefit of 
the MNSOL data is that not only the partition coefficients 
but also the individual solvation Gibbs energies are avail-
able. Hence, we can dissect whether the error is due to insuf-
ficient accuracy in only one of the two phases. The errors 
in the solvation Gibbs energies revealed a mixed picture 
(Fig. 3b). For almost every aliphatic alcohol the prediction in 
n-octanol is better than that in water. Conversely, for almost 
every aromatic alcohol the water predictions are significantly 
better. The exception, m-cresol, is puzzling, especially since 
the experimental Gibbs energies of solvation of the three 
cresol isomers are within 0.6 kcal mol−1 for both solvents, 
while the predicted value fluctuates, only in octanol, by as 
much as 1.8 kcal mol−1. Still, the difference in the individual 
errors which gives rise to the constant deviation in the Gibbs 
energy of transfer and thus the log P remains almost con-
stant across the entire range of compounds. This hints at a 
systematic problem with a model parameter that we have not 
touched in any of the preceding challenges, the dispersion-
repulsion force field underlying the exact QC electrostatics. 
So far, we relied entirely on GAFF parameters [39] which 
might require further adjustment in order to make significant 
progress.

Concluding remarks

In this challenge we were able to blindly predict the 
octanol–water partition coefficients of a set of small 
organic molecules to within 0.5 log P units. We achieved 
this by successfully reusing and improving older mod-
els and applying them to this new problem. In the earlier 
SAMPL6 pKa challenge we already improved the water 
model by developing a new scheme for the treatment of 
exact electrostatics within EC-RISM in the post-submis-
sion phase. In the present challenge we thus focused on the 
n-octanol model. Modeling water-saturated octanol instead 
of dry octanol leads to a small, but consistent improve-
ment of the predictive properties. Furthermore, unlike our 
findings for water, it appeared to be necessary to use a 
two-parameter model to achieve accurate solvation Gibbs 
energies after applying the PMV correction for n-octanol. 
Using more conformations per microstate does not lead 
to significantly improved results in all cases. For exam-
ple, in the SAMPL6 pKa challenge the inclusion of the 
second lowest conformation improved the total RMSE by 
only 0.02–0.08. However, it is not necessarily the case that 
the PCM minimum conformation is identical to the EC-
RISM one, especially for large, flexible molecules with the 
potential for intramolecular interactions, so the inclusion 
of more than one conformer is still advisable.

There are multiple avenues for further improvement of 
the n-octanol model: like water, the octanol is modeled as 

Fig. 3   Calculated vs experimental log P of the combined SAMPL6 
and MNSOL datasets (A) and errors in the solvation Gibbs ener-
gies of the MNSOL compounds in both solvents (B). In panel (A), 
SAMPL6 data are represented by squares, MNSOL data by triangles. 
Additionally, alcoholic compounds and their regression statistics are 
colored in red (y = 1.03 x − 1.16) while all other compound classes 

are shown in blue (y = 1.14  x − 0.37). In panel (B), aliphatic alco-
hols are depicted as squares while aromatic alcohols are depicted as 
triangles. Dark blue data points represent the errors of the solvation 
Gibbs energy in water, whereas light blue points refer to the errors 
of the solvation Gibbs energies in wet n-octanol, sorted in ascending 
n-octanol error order per group
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a rigid body. While for water this ignores only the vibra-
tion of the molecule, which has been shown to be insignifi-
cant for such a small molecule [41], for a long, chain-like 
molecule such as n-octanol the significant torsional free-
dom of the carbon chain is lost. While unpublished results 
obtained in our group using intramolecular distribution 
functions extracted from molecular dynamics simulations 
do not indicate that this yields significantly improved sol-
vation Gibbs energy predictions, these works were done 
before our participation in the SAMPL5 and SAMPL6 
challenges which helped us improve the performance and 
reliability of EC-RISM. A reinvestigation, especially in 
combination with the wet octanol model is thus sensible.

A second area of improvement is the octanol model 
itself. While for water a variety of models have already 
been tested in our group, the octanol model by DeBolt and 
Kollmann [33] is the only one we have used in combina-
tion with EC-RISM. To find the best-performing model 
for this application, a comparison with other established 
models for the simulation of octanol such as the OPLS-UA 
or the TraPPE-UA models [42, 43] might be necessary.

Finally, the systematic deviation of molecules con-
taining a hydroxyl group needs to be addressed in future 
works. The significantly smaller error in the transfer Gibbs 
energies and the correlation of the errors in the solvation 
Gibbs energies imply that the reasonable results obtained 
in this work relied on error cancellation between water and 
octanol terms to a certain extent. While it is necessary to 
establish this link on a larger and more diverse dataset, a 
reparametrization of certain atom types in the dispersion-
repulsion (Lennard-Jones) force field might be the next 
step toward systematic EC-RISM performance improve-
ment in general.
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