Analysis and Application of
Hash-based Similarity Estimation
Techniques for Biological Sequence
Analysis

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Technischen Universitat Dortmund
an der Fakultat Informatik

von

Henning Timm

Dortmund

2021

Tag der mundlichen Prifung: 13.01.2022
Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter:
1. Prof. Dr. Sven Rahmann
2. Prof. Dr. Axel Mosig

Abstract

In Bioinformatics, a large group of problems requires the compu-
tation or estimation of sequence similarity. Tasks ranging from the
detection of malicious genomic variants, over identifying the struc-
ture of different populations of one species, to exploring the capa-
bilities of mixed species communities, all rely on the identification
and quantification of similar strings. However, the analysis of bio-
logical sequence data has, among many others, three capital chal-
lenges: Through the use of high-throughput sequencing the amount
of generated data surpasses the time required for detailed analysis,
making the identification of worthwhile computations important.
Secondly, for most species, no reference genome is available, neces-
sitating the use of alignment-free approaches. Finally, since DNA
sequencing relies on the observation of biological processes, the
generated data contains errors specific to the sequencing technol-
ogy. These errors need to be addressed by analysis approaches to
avoid confounding biological signals and technological artifacts.
Additionally, the explicit computation of sequence similarity re-
mains a computationally expensive endeavor. Through the use of
locality sensitive hashing methods, both the efficient estimation

of sequence similarity and tolerance against the errors specific to
biological data can be achieved.

Locality sensitive hashing (LSH) describes techniques, which
generate similar hash values for similar input keys. Common LSH
variants rely on MinHash values—the numerically smallest hash
values in the input data—to sample an evenly distributed subset of
minimizers from the input data that serves as a reduced representa-
tion. These so called sketches allow to estimate similarity measures
between sequences by employing hash tables, thus circumventing
the need for all-vs-all comparison. MinHashing techniques have
found wide application within the field of Bioinformatics within
recent years, since they do scale well and are able to mitigate many
challenges specific to biological data. For example, possible align-
ment candidates can be identified, which can then be verified by
computing alignments only for candidates with high estimated
similarity. In this dissertation, I provide an overview of their appli-
cation and variations across the field of Bioinformatics.

I developed a variant of the winnowing algorithm for local mini-
mizer computation, which is specifically geared to deal with repet-
itive regions within biological sequences. Repetitive regions can

4 HENNING TIMM

hamper the efficiency of downstream analysis, for example through
introducing a large number of potential alignment positions, all
equally likely and therefore not informative. Through compressing
redundant information, I can both reduce the size of the hash ta-
bles required to save the sketches, as well as reduce the amount of
redundant low quality alignment candidates. Analyzing the distri-
bution of segment lengths generated by this approach, I can better
judge the size of required data structures, as well as identify hash
functions feasible for this technique. My evaluation could verify
that simple and fast hash functions, even when using small hash
value spaces (hash functions with small codomain), are sufficient
to compute compressed minimizers and perform comparable to
uniformly randomly chosen hash values. As an application for
compressed winnowed minimizers, I outlined an index for a taxo-
nomic protein database using multiple compressed winnowings to
identify alignment candidates. To store MinHash values, I present
a cache-optimized implementation of a hash table using Hopscotch
hashing to resolve collisions.

As a biological application of similarity based analysis, I describe
the analysis of double digest restriction site associated DNA se-
quencing (ddRADseq). This sequencing technique, which relies on
cutting the DNA in reproducible positions across individuals of the
same species, is commonly used to judge the biological diversity
and population structure of organisms without reference genomes.
I implemented a simulation software able to model the biologi-
cal and technological influences of this technology to allow better
development and testing of ddRADseq analysis software. Using
datasets generated by my software, as well as data obtained from
population genetic experiments, I developed an analysis workflow
for ddRADseq data, based on the Stacks software. Since the quality
of results generated by Stacks strongly depends on how well the
used parameters are adapted to the specific dataset, I developed a
Snakemake workflow that automates preprocessing tasks while also
allowing the automatic exploration of different parameter sets. As
part of this workflow, I developed a PCR deduplication approach
able to generate consensus reads incorporating the base quality
values (as reported by the sequencing device), without performing
an alignment first. PCR duplicates are technical artifacts—copies of
sequences introduced during sequencing, which can adversely af-
fect analyses relying on sequence abundance—that can be removed
while using their redundant information to mitigate sequencing
errors. Both ddRADseq analysis and PCR deduplication require
sequence clustering approaches, based on sequence similarity. As
an outlook, I outline a MinHashing approach that can be used for
a faster and more robust clustering, while addressing incomplete
digestion and null alleles, two effects specific for ddRADseq that
current analysis tools cannot reliably detect.

Acknowledgements

On these pages I would like to thank several people who have
helped me with the completion of this thesis.

Special thanks go to my advisor Dr. Sven Rahmann for support-
ing me throughout my PhD studies and for giving me this opportu-
nity in the first place. Further, I would like to thank Dr. Axel Mosig
for serving as second reviewer for this thesis and working through
its almost 300 pages. I would also like to thank Dr. Heinrich Miiller
and Dr. Giinter Rudolf for completing my review committee and
helping me with preparing my thesis defense.

Additionally, I owe thanks to Dr. Johannes Koster for his exten-
sive support during the writing period of this thesis, in which he
went out of his way for me multiple times, and for nudging me to-
wards Rust. Thanks also go to Dr. Florian Leese for serving the role
of mentor in my PhD program and to Gundel Jankord and Martina
Gentzer for helping me with the administrative hassles of working
at a university and doctoral procedures.

I would like to thank all the people I had the pleasure to share
an office with: Marianna, Dominik, Nina, Elias, Jens, Nils and Till
Schifer in Dortmund, as well as Christo, Corinna, Bianca, Till Hart-
mann, David, Felix and Daniela in Essen. I enjoyed the time I was
able to spend with you, your input on my academic and recre-
ational projects, and the chance to share the perspectives on the
world of such a diverse group of intelligent and driven people.
Specifically, I would like to thank Denis, David, and Till H. for their
strong and inspiring stances on how to be a better human being
as well as a better scientist. Thank you Denis for our collaborative
work, which I have enjoyed greatly, as well as for being an excel-
lent partner in learning Japanese and rock climbing. Thank you
Bianca for our long conversations about work as well as other top-
ics. Thank you Christo for our interesting discussions about many
different facets of computer science, but also for introducing me to
a selection of interesting hobbies, and for organizing game nights.

Martina and Hannah gave me a glimpse into the field of biol-
ogy. Thank you for walking me through the peculiarities of ddRAD
sequencing. Finally, I would like to thank Dr. Marcel Martin for
asking me to return a copy of Edward Tufte’s Envisioning Informa-
tion he kept in his office to the library. I took the liberty to read
it before returning and thus impacted much of the typesetting of

6 HENNING TIMM

this work, my approach to visualization, and to graphic design in
general.

Special thanks go to Bianca, Kim, David, Daniela, Till, and Maxi
for proofreading this work in parts or as a whole.

I would like to my parents for listening to my problems and
success stories alike during my PhD program as well as giving me
valuable input from outside my own head. Finally, many thanks are
due to my wife Maxi who supported me throughout the whole pro-
cess with both kind and stern words, support, and understanding.

Contents

Introduction 5

1.1 Contributing and Collaborative Work 6

Biological and Mathematical Basics 9
2.1 Biological Sequences 9

2.2 Genomic Mutations 13

2.3 Ploidy and Zygosity 16

2.4 Acquisition of Biological Sequences 17
2.5 Bioinformatic Basics 28

2.6 Probability Distributions 34

2.7 Caching 36

Hashing in Bioinformatics 39
3.1 Hash Functions 39

3.2 Hash Tables 49

3.3 Collision Resolution 56

Reducing Cache Misses in Hopscotch Hash Tables
4.1 Hash Table Architecture 69

4.2 Hash Table Operations 72

4.3 Cache Efficiency 76

4.4 Hash Functions 76

4.5 Evaluation 77

4.6 Conclusion and Discussion 86

Computing and Approximating Resemblance and Containment
5.1 Resemblance and Containment 89

5.2 Similarities and Distances 90

5.3 Containment 95

5.4 Estimation of Similarity and Containment 97

5.5 Locality Sensitive Hashes as Estimators for Resemblance 98

5.6 MinHash 99

5.7 Locality Sensitive Hashing for Edit Distance 105

5.8 Locality Sensitive Hashes as Estimators for Containment 106
5.9 Winnowing and Minimizers 111

5.10 Overview of LSH in Bioinformatics 115

5.11 Conclusion 122

Distribution of Minimizer Segment Lengths 125

6.1 Segmentation of a Sequence 125

6.2 Application: A Segment Reference for Protein Similarity 128
6.3 Compressed Winnowing 131

6.4 Expected Segment Length Distribution 134

6.5 Empirical Analysis of Segment Length Distribution 145

6.6 Distribution of MinHash Values 156

6.7 Segment Number Estimation 157

6.8 Discussion and Conclusion 158

Analysis of ddRAD Data 161

7.1 Acquisition and Structure of ddRAD Data 162
7.2 Simulation of ddRAD Data 168

7.3 A Workflow for ddRAD Data Analysis 192
7.4 PCR Duplicate Removal 213

Conclusion and Outlook 225

8.1 Conclusions 225

8.2 Outlook: Split Sketches for Chimera and Null Allele Detection 228

Appendices 235

Hash Function Code Samples 235

Additional Figures for Segment Length Distribution 239

File Graph for our ddRAD Analysis Workflow 245

Additional Plots for AdRAD Analysis Workflow Evaluation 249
Abbreviations 255

Bibliography 257

List of Figures 274

List of Tables 279

Affidavid 283

1
Introduction

Over the course of the last two decades, DNA sequencing has
evolved from a slow, expensive, and highly specialized endeavor
to a widely used technology. The advent of Second Generation Se-
quencing (SGS), which allows to generate large genomic datasets

at comparably low costs,’ opened new fields of application ranging ' Sboner et al., “The real cost of se-
quencing: higher than you think!”,

from the targeted analyses of single individuals to metagenomic
2011.

and population genomic experiments. While the generation of
sequencing data exploded, the generation of reference genomes
did not keep up. Analyzing sequencing data without a reference
genome requires methods that do not rely on the alignment of se-
quences.

In this thesis, I focus on the analysis of biological sequencing
data through similarity based methods. Abstractly, the similarity
of two items is quantified by a value between o and 1 that is high
if the items are closely related under a defined metric. Similarities
can be efficiently estimated and, if paired with a hashing approach,
can reduce a quadratic all-vs-all comparison to a linear series of
hash table accesses. Similarity-based methods can be used to cluster
input sequences, but also to identify targets for a more detailed
alignment-based analysis.

Since this work spans the realms of computer science and biol-
ogy, I introduce both biological and mathematical concepts required
in the first chapters. The chapter Biological and Mathematical Ba-
sics covers prerequisites from the fields of biology, computer sci-
ence, and mathematics. I placed a special focus on hashing data
structures and techniques, which are described in the chapter Hash-
ing in Bioinformatics.

The first content chapter of this work is the chapter Reducing
Cache Misses in Hopscotch Hash Tables, which describes a hash
table architecture that reduces the number of compulsory cache
misses with respect to its reference implementation.

The following chapter Computing and Approximating Resem-
blance and Containment describes Locality Sensitive Hashing
(LSH) approaches and gives an overview of their use in the con-
text of bioinformatics. I focus on the MinHash and Winnowing
approaches, which rely on the sampling of items from a set or se-
quence via numerically small hash values as representative features.

6 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

The winnowing technique® relies on incorporating locality in-
formation into the MinHash value computation by restricting the
MinHash computation to a fixed length window. This is especially
helpful to find similarities between documents of different sizes,
like a DNA read and a reference database. In the chapter Distri-
bution of Minimizer Segment Lengths I introduce compressed
winnowing, which reduces the influence of repetitive regions on
MinHash value computation, and analyze the distribution of min-
imizers generated by this technique. As an application example, I
describe an index data structure for a protein database using multi-
ple compressed winnowings. Additionally, I explore and evaluate a
technique to store MinHash values in hash tables.

As an application of similarity based analyses, I focus on the
topic of double digest RAD seq (ddRADseq) in the chapter Analy-
sis of ddRAD Data. This sequencing technique is usually applied
for non-model organisms and therefore cannot employ alignment-
based methods for analysis. I first describe our data simulation
software DDRAGE, which incorporates biological and technologi-
cal effects specific to ddRADseq data. Subsequently, I present our
analysis workflow for ddRADseq data and its evaluation through
data simulated by bbRAGE. Rounding up this chapter is a sec-
tion describing a software I developed for our workflow to remove
duplicate reads introduced by Polymerase Chain Reaction (PCR
duplicates).

1.1 Contributing and Collaborative Work

This section provides a detailed description of cooperations and
collaborations contributing to this dissertation. These include pub-
lished papers, software publications (via Zenodo?), and yet un-
published work. Prof. Dr. Sven Rahmann assisted in all stages as
advisor.

Two works works found application in multiple chapters of this
work: The Bioconpa* project and the Python package piNopry. I
partook in improving the BioconNDA software through implemen-
tation, the addition of software packages (recipes) to the repository,
and by performing administrative tasks for adding and maintaining
recipes. Additionally, I assisted in writing and editing the paper.
The piNorY Python package® for DNA input used for several eval-
uations in this work was developed by me with assistance from Till
Hartmann.

I co-wrote the paper on cost-optimal assignments in multi-way
bucketed cuckoo hash tables® (introduced in Chapter 3) and pro-
vided illustrations. The implementation was performed by Jens
Zentgraf and Prof. Dr. Sven Rahmann. The foundation of this pa-
per was the Masters’ thesis of Jens Zentgraf, whom I assisted and
guided with development and evaluation of the approach, as well
as with the implementation of the software.

2 Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003;
Roberts et al., “Reducing Storage
Requirements for Biological Sequence
Comparison”, 2004.

3https://zenodo.org

4 Griining et al., “Bioconda: Sustain-
able and Comprehensive Software
Distribution for the Life Sciences”,
2018.

5 Timm and Hartmann, Dinopy — DNA
input and output for Python and Cython,
2020.

¢ Zentgraf, Timm, and Rahmann,
“Cost-optimal Assignment of Elements
in Genome-scale Multi-way Bucketed
Cuckoo Hash Tables”, 2020.

https://zenodo.org

The bit-packed hopscotch hash table (BPHT) described in Chap-
ter 4 was developed by myself with guidance from Prof. Dr. Sven
Rahmann. I published all parts of the evaluation workflow,” in-
cluding my implementation of the BPHT itself® and the employed
tabulation hash functions,® via Zenodo.

For the development of the TAXMAPPER software'® mentioned
in Chapter 6, I helped devising the architecture and implementation
of the analysis software, along with providing documentation,
installation through the BiocoNDA repository, and refining the
respective section in the paper. The main implementation of the
software was performed by Dr. Daniela Beisser.

I developed the computation of expected segment length dis-
tributions described in Section 6.4 in cooperation with Dr. Denis
Kurz. The structure of the proofs, which are the foundation of my
description, were devised by Dr. Denis Kurz and myself. Dr. Denis
Kurz and myself collaboratively created the first implementation
of the Python program used to compute expected segment length
distribution. I further refined this implementation and published it
via Zenodo as part of the analysis workflow used for this section.™”

For the double digest restriction site associated DNA sequencing
(ddRADseq) simulation software bbRAGE,"? I conceptualized the
simulation workflow, implemented the software, and wrote the
paper. Prof. Dr. Sven Rahmann provided guidance, optimizations,
and code review for the implementation. Prof. Dr. Florian Leese,
Dr. Hannah Weigand, and Dr. Martina Weif$ provided domain
knowledge about ddRADseq technology.

I developed the ddRAD analysis workflow'3 described in Sec-
tion 7.3 in cooperation with Dr. Johannes Koster and Dr. Martina
Weiss, who provided both architectural and domain knowledge.
The in-house Gammarus fossarum dataset analyzed for the evalua-
tion of this workflow was provided by Prof. Dr. Florian Leese and
Dr. Martina Weiss. The evaluation workflow used for this section™
was devised and implemented by myself and has been published
via Zenodo.

Dr. Johannes Koster provided the idea and initial structure for
the PCR deduplication process presented in Section 7.4. Further de-
velopment and implementation was executed by myself. I worked
on improving the implementation in cooperation with Felix Molder,
who devised an implementation for BAM files based on my imple-
mentation for FASTQ files. The evaluation workflow used for this
section’ was devised and implemented by myself and has been
published via Zenodo.

For the remainder of this text, I will use the scientific “we”.

INTRODUCTION 7

7 Timm, BPHT Evaluation Workflow,
2020.

8 Timm, BPHT Source Code, 2020.

9 Timm, Rust-tab-hash Source Code, 2020.
° Beisser et al., “TaxMapper: An Anal-
ysis Tool, Reference Database and
Workflow for Metatranscriptome Anal-
ysis of Eukaryotic Microorganisms”,
2017.

" Timm, Segment Length Analysis
Workflow, 2021.

2 Timm et al., “ddRAGE: A Data Set
Generator to Evaluate ddRADseq
Analysis Software”, 2018.

13 Koster and Timm, snakemake-
workflows/rad-seq-stacks, 2021.

“ Timm, Rad-seq-stacks Evaluation
Workflow, 2021.

> Timm, PCR Deduplication Analysis
Workflow, 2021.

2
Biological and Mathematical Basics

From the perspective of a computer scientist, many important states
and processes in biology can be described using strings. For exam-
ple, deoxyribonucleic acid (DNA) is a string over the nucleotide al-
phabet Zpna := { A, C,G,T}. Nucleotides of a DNA sequence can be
translated into messenger ribonucleic acid (mRNA) which in turn
codes for amino acids using substrings of length three (codons)
thus creating a new string. This chapter covers the description of
biological aspects with mathematical tools. If not noted otherwise,
the biological basics presented here are based on the books Brock

Biology of Microorganisms' and Molecular Biology of the Cell. * Madigan et al., Brock Biology of Mi-
croorganisms, 2012.

2 Alberts et al., Molecular Biology of the
2.1 Biological Sequences Cell, z017.

Most integral functions of living cells are made possible by pro-
teins. These biological molecules realize structural tasks like cell
membranes or cytoskeletons, catalyze (bio-) chemical reactions (en-
zymes), and perform regulatory tasks (for example by binding to
DNA sequences). Hence, in order to build a new cell or maintain
the function of an existing one, a plethora of proteins needs to be
synthesized. The blueprints to synthesize proteins are encoded in
the genome of an organism, consisting of DNA. However, several
steps are required to synthesize a protein from a DNA sequence,
which are illustrated in Figure 2.1.

2.1.1 Structure of DNA and RNA Sequences

The DNA sequence in the nucleus is present as a DNA double
helix, which consists of two complementary strands of nucleobases.

These four nucleobases Adenine, Cytosine, Guanine, and Thymine,? 3 In this work, items of biological
sequences, like bases and amino acids,

. . . will be represented using sans-serif
this work. As a shorthand notation, bases are represented by their monospace font e.g. ACGT.

called bases for short, form the lowest level of sequence analyzed in

first letter A, C, G, and T respectively. Chemically, each nucleobase
comprises a phosphate sugar backbone (consisting of deoxyribose
sugar) that forms the strand structure of DNA molecules and a
nitrogenous base which encodes genetic information.

The phosphate backbone allows nucleobases to form strands,
i.e. strings or sequences of bases, by forming covalent bonds with

10 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

.. .ACGTTGCACAGTTGCAGCAGT . . .

DNA
Transcription \
mRNA
mRNA Functional Protein
m
Translation
Polypeptide mEEN S sS— —>
(Amino Acid Sequence) Folding

other phosphate sugars. Specifically, the 3” carbon atom of a sugar
molecule is connected to the 5" carbon atom of the following sugar
molecule with a phosphate group. Here 3" and 5" prime denote the
position of the carbon atom in the ribose sugar, as illustrated in
Figure 2.2. Due to the asymmetric structure of the sugar molecules,
there is only one direction in which the sequence can extend and
that is on the 3" end.

A DNA string T with a length of |T| = n base pairs (bp) can be
described as

ti € Zpna = {A,C,GT}.

We denote the base at position i of T as T; and the subsequence
from position i to position j (exclusively) as Tj;;. By default, we
denote all DNA sequences in 3" direction.

The distribution of the four bases varies greatly between differ-
ent organisms. A common metric to describe this is the GC-content
(also GC-frequency) of the genome T in question, which is defined
as:

— Sl ee(Ty) 1, te{cc}
0, te{AT}

Analogously, the AT-content is defined as AT(T) = 1 — GC(T). The
GC-content varies between ~0.17 and ~0.80, where extreme values
are often associated with microorganisms, whereas the range for
eukaryotes is smaller.

Each nitrogenous base has a complementary base that it can
form hydrogen bonds with. A and T bind to each other with two
hydrogen bonds, while C and G bind with three hydrogen bonds.

] , ge(t) = (2.1)

Figure 2.1: DNA is translated into
mRNA which is translated into an
amino acid sequence that folds itself
into a functioning protein.

5'end

Ribose

3 2

Phosphodiesterbond ~ 525¢

Ribose

3' direction, growth direction
5' direction

\ 4 °
3'end

Figure 2.2: Structure of DNA and
RNA backbones. Two ribose sugars are
joined with a phosphodiester bond,
connecting the 3’ carbon atom of the
upper to the 5" carbon atom of the
lower sugar ring. Bases are attached to
the 1" carbon atom.

|

/ Phosphate backbone

G wun =wmm C

A =l T

Bases

Figure 2.3: Left: DNA double helix,
i.e. two complementary DNA strands
wound together. Right: Pairs of com-
plementary bases and their binding
type. Graphic derived from "SNP
model" by David Eccles (gringer) CC
BY 4.0

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

BIOLOGICAL AND MATHEMATICAL BASICS 11

We define the complement function

A t=T
T, t=
c(t) = t€Xpna = {ACGT}
C, t=
G, t=C

which returns the complement of a given base t. A DNA double
strand, i.e. a single strand with its bound complement, forms the
characteristic double helix structure as illustrated in Figure 2.3.
This is the default state in which DNA is present in all eukaryotes
(including the human body). Note that the orientation of the com-

plementary strand is reversed. > 3
. . DNA strand
For each DNA (single) strand T, there exists a reverse comple- AGCGTCCTAACCGCACCCTT
mentary strand
— — TCGCAGGATTGGCGTGGGAA
T = (C(tnflfl))zzo , tl E T Complement
3 p
which comprises the complementary bases in reverse orientation, as
1CcCveevlLleeceLeeevy

illustrated in Figure 2.4.
While we focus mostly on the analysis of DNA and protein se-

Reverse
complement

quences in this work, Ribonucleic Acid (RNA) sequences perform 5 3
an important role during protein synthesis. RNA molecules are AAGGGTGCGGTTAGGACGCT

structurally very similar to DNA, however, their backbone is built Figure 2.4: A DNA single strand, its

from ribose sugar instead of deoxyribose and RNA does not usu- complement (read from 3 to 5'), and
ally form double helices. RNA nucleotides do not contain Thymine ;e"erse, iom,lg’lement (complement read
rom 5’ to 3').

but the structurally similar Uracil, which also binds to Adenine.
Due to this, it is possible to build a complementary RNA strand to
a DNA single strand.

2.1.2 Protein Synthesis from DNA

We deliberately skip over which parts
To synthesize a protein, an RNA copy of the template DNA se- of the DNA are actually transcribed,
since gene expression, regulation,

. . splicing etc. are beyond the scope of
amino acids. this work.

First, the DNA sequence is transcribed into an RNA molecule.
An RNA polymerase molecule binds to a DNA double helix and
separates the strands, forming a transcription bubble. Using free

quence is passed to a ribosome which assembles the protein from

nucleotides that are available in the cell, the polymerase constructs Transcription Bubble o

Nucleotides

a complementary RNA strand to a single DNA strand. This is illus-
DNA
trated in Figure 2.5. The created RNA molecule is called messenger

RNA (mRNA) and is transported through the cell to a ribosome for

the next step. A Polymerase %
In the second step of protein synthesis, the mRNA molecule is Transcribed mRNA
translated into an amino acid sequence. This translation takes place
in the ribosomes of the cell, which are, depending on the proteins Figure 2.5: Transcription of DNA into
mRNA.

they synthesize, either located in the cytoplasm or affixed to the
endoplasmatic reticulum.

During translation, the mRNA molecule is pulled into the ribo-
some three bases at a time and read by the ribosome. Depending

12 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

on the base triplet, called a codon in this context, the ribosome
performs one of three actions:

1. If the start codon AUG (») is read and no amino acid sequence is
already being assembled, assembly of an amino acid sequence is
started.

2. If a stop codon € { UAG,UGA, UAA } (@) is read and an amino acid
sequence is being assembled, finish the assembly and release the
amino acid sequence.

3. Otherwise append the amino acid encoded by the codon to the
amino acid sequence.

All possible |Zpna|® = 64 codons with their associated amino
acids or functions are illustrated in Figure 2.6. This visualization

is called the code wheel and was introduced by Bresch and Haus-
mann in the third edition of their book "Klassische und molekulare
Genetik".# It is read by following a codon sequence beginning from
the center of the sun to the outer layer, where the encoded amino
acid is denoted.

Note that not all of the mRINA sequences are translated into
amino acids, but only subsequences that fall between a start codon
and a stop codon. These subsequences are called open reading
frames (ORFs). Parts of the genome that are translated into pro-
teins are called coding regions, as opposed to non-coding regions.
Additionally, there are also RNA sequences of which no part is
translated into amino acids. While these perform important func-
tions in the cell, including the regulation of gene expression and
the transport of amino acids to the ribosome, we focus solely on
translated mRNA sequences.

A sequence of amino acids is called a polypeptide and can be
described as a string over the alphabet

Yaa :={ACD,EF,GHIKLMNPQRSTVWY}, |Zm =20

which comprises the standard amino acids. However, additional
rare amino acids can be formed in some organisms, most of them
bacteria. Most prominently Selenocysteine (U) and Pyrrolysine (0),
which are chemically similar to Cysteine and Lysine respectively.
While Pyrrolysine is extremely rare, Selenocysteine occurs in some
proteins in Escherichia coli. Hence, the extended amino acid alpha-
bet which contains the rare amino acid is defined as

Yaa+ = XaaU{U,0}

and comprises 22 amino acids.

After the translation is terminated by a stop codon, the polypep-
tide is released from the ribosome. Determined mostly by its amino
acid sequence, it then undergoes structural changes, which deter-
mine its function in the body.

Note that the codons are given as RNA
bases. In DNA sequences the Us would
be replaced with Ts.

4 Bresch and Hausmann, Klassische und
molekulare Genetik, 1972.

Figure 2.6: Code wheel for all codons
of the standard amino acid alphabet

> AA. The rare amino acid variants

U and 0 are encoded by UGA and UAG
respectively. Those codons also encode
stop codons. Image released into the
public domain by Wikipedia user
Mouagip.

BIOLOGICAL AND MATHEMATICAL BASICS

2.1.3 Protein Structures and Functions

A polypeptide does not maintain the linear shape that is has after
assembly, but bends into shape by interactions between its amino
acids. Since each amino acid in Xaa has different chemical prop-
erties, a polypeptide is subject to interactions between its build-
ing blocks. Depending on their vicinity and other factors, amino
acids interact with each other and bend the polypeptide into a
three-dimensional shape in a process called folding. These three-
dimensional structures enable the protein to perform a biological
function. For example it allows a potassium channel to be inte-
grated into a membrane, transport ions through the membrane and
to be opened and closed. There are four levels of organization that
are used to describe the structure of a protein:

Primary Structure describes the sequence of amino acids in the
protein.

Secondary Structure describes the expression of local structure,
namely a-helices and B-sheets. Both comprise of small and local
repetitive patterns of amino acids which form hydrogen bonds.
These are typically formed, before the three-dimensional shape is
adopted.

Tertiary Structure describes the three-dimensional folding of the
protein that enables its biological function. A protein folds itself
into the state of minimal free energy, called the native state. For
some polypeptides, this folding process is supported by chaperone
proteins. These guide the folding process and prevent abnormal
folding, for example by slowing the folding process. Abnormally
folded proteins are useless at best and at worst can cause diseases
like Creutzfeld Jakob Disease and Kuru.

Quaternary Structure describes the reversible organization of sev-
eral proteins into a protein complex. Each subunit of the com-
plex has its own primary, secondary, and tertiary structure. Not
all proteins adopt a quaternary structure, but many, including
hemoglobin, ion channels, and RNA polymerase do.

Since we will not focus on protein structure, for the sake of
brevity we will refer to all polypeptides as proteins.

2.2 Genomic Mutations

Mutations are alterations in the genome of an individual or popu-
lation with respect to a specified normal state. These can be intro-
duced by a multitude of factors including exposure to radiation,
errors during DNA replication, and certain viruses. There are sev-
eral ways to classify mutations, including by type, i.e. how they

13

14 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

change the genome, and by effect, i.e. what changes they intro-
duce. We will classify mutations by type and describe their possible
effects.

2.2.1 Single Nucleotide Variations

The smallest variation of a genome is changing a single base. This
is called a single nucleotide variation (SNV) and is the most com-
mon kind of mutation.> While their effect might seem small, it can
be the cause of diseases, like sickle cell disease.® Others may in-
crease the probability of cancer onset, given a particular genetic
makeup.” However, most of the more than 4 million SNVs expected
within a human genome with respect to the reference genome do
not have negative effects and can be counted towards expected
genetic variability.®

An SNV in a coding region can have several effects on the
genome, depending on the changes it introduces in the base’s
codon. For an illustration of the effects discussed, refer to Fig-
ure 2.7. Consider the codon UGU, which encodes the amino acid
Cysteine, and several mutations of its last base:

e If the last U mutates into C, the new codon also codes for Cys-
teine (C) and the resulting protein is identical to the unmutated
one. This is called a silent mutation.

¢ If instead, the U mutates into G, the codon is now translated
into Tryptophan (W). This can alter the three-dimensional struc-
ture of the protein and influence its biological function. Thus,
this is a missense mutation. Depending on the new amino acid,
missense mutations are further classified into conservative and
non-conservative mutations. In a conservative mutation, the new
amino acid has similar properties as the old one, mitigating the
mutation’s effect on the protein structure.

e If U mutates into A instead, a new stop codon is introduced that
terminates the translation of the mRNA prematurely. The result-
ing protein is incomplete and cannot function properly. Hence
this type of mutation is called a nonsense mutation.

¢ Finally, if originally there was a stop codon, like UAG, and the
SNV changed a decisive base, the translation of the mRNA does
not stop as expected, causing a readthrough.

A single nucleotide variation that is present in a significant frac-
tion of a population is also called a single nucleotide polymorphism
(SNP).

2.2.2 Insertions and Deletions

Indel mutations (a portmanteau of insertion and deletion) are ge-
netic variants that either introduce (insertion) one or more new
bases, or remove (deletion) one or more bases from the genome.

5 The 1000 Genomes Project Consor-
tium, “A Global Reference for Human
Genetic Variation”, 2015.

6 Rees, Williams, and Gladwin, “Sickle-
Cell Disease”, 2010.

7 Levy-Lahad et al., “A Single Nu-
cleotide Polymorphism in the Rads1
Gene Modifies Cancer Risk in BRCA2
but not BRCA1 Carriers”, 2001.

8 The 1000 Genomes Project Consor-
tium, “A Global Reference for Human
Genetic Variation”, 2015.

BIOLOGICAL AND MATHEMATICAL BASICS

UGC GAG UUG CUC UAG UGG GAG UUG CUC UAG
C E L L o W E L L e

(a) Silent mutation of UGU — UGC
resulting in the same amino acid (C).

(b) Missense mutation of UGU — UGG
resulting in a different amino acid

).

UGA UGU GAG UUG CUC UCG ...

° C E L L S

(d) Readthrough mutation of UAG —
UCG adding additional amino acids.

(c) Nonsense mutation of UGU — UGA
resulting in premature termination
of the translation.

While indels occur less frequently than SNVs,? their effect on pro-
tein synthesis can be devastating.

If an indel removes (or insertions) a sequence with a length that
is a multiple of three, amino acids are missing from the polypep-
tide, or additional amino acids are present. This is the case, since
only complete codons are removed (or added). However, in the case
that an indel has a length that is no multiple of three, all subse-
quent codons are effected.

Consider a deletion of one nucleotide. This alters the codon,
since the two remaining bases form a new codon with the first
base of the following (old) codon. Such a frameshift passes on
through the entire mRNA and is likely to result in a completely
different protein. Illustrations of both types of indels can be found
in Figure 2.8.

UGU --- UUG CUC UAG UGU CGA GUU GCU CUA ...

cC - L L e C R V A L

(b) Indel of length 1 affecting all sub-
sequent codons due to frameshift.

(a) Indel of length 3 not causing a
frameshift mutation.

2.2.3 Structural Variations

Until now we ignored how the genome of an organism is stored.
For eukaryote species, including humans, most animals, and plants,
the genome is distributed along several DNA molecules, called
chromosomes. Each chromosome is a linear DNA molecule that is
wound up into a space-efficient shape supported by histones and
other scaffold proteins. Among other effects, this allows storing the
whole genome of an organism in the nucleus of each cell. Chromo-
somes play an important role in sexual reproduction, where chro-
mosomes from both parents are combined to form a new genome
(see Section Ploidy and Zygosity).

Structural variations affect a genome on the chromosome level,
i.e. large subsequences (>50bp) within one chromosome are
changed in number (copy number variation, CNV) or location
(structural variation, SV)*°. Among others, the following types

15

Figure 2.7: Effects of different SNVs.
The mRNA sequence is drawn in
green with its codons on top. The
translated polypeptide is drawn in
purple with the translated amino acid
under the template mRNA codon.
Mutated bases in the mRNA as well
as different translated amino acids are
highlighted in red. Stop codons are
denoted as e.

9 Mills et al., “An Initial Map of Inser-
tion and Deletion (INDEL) Variation in
the Human Genome”, 2006.

Figure 2.8: Different types of indel mu-
tations. As in the figure above mRNA
is drawn green, the polypeptide pur-
ple, and changes are highlighted red.

*° Alkan, Coe, and Eichler, “Genome
Structural Variation Discovery and
Genotyping”, 2011.

16 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

of mutations are classified as structural or copy number variations:

Inversions, where a subsequence is replaced
by its reverse complement.

I Duplications, where one or multiple copies
of a subsequence are introduced into the chromosome. A dupli-
cation in which these copies occur next to each other is called a
tandem duplication.

B Translocations, where a subsequence is moved
to a different location within the chromosome or onto another
chromosome.

Large indels (>50bp), which behave like the
indels described above, are also classified as SVs.

SVs and CNVs have been shown to be very prevalent in the hu-
man genome and, due to their size, are responsible for the majority
of mutated bases.""

2.3 Ploidy and Zygosity

As mentioned in Section Structural Variations, many organisms
possess more than one copy of each chromosome; they vary in
ploidy. Organisms with a single set of chromosomes are called
haploid, in contrast to diploid organisms (with two copies) and
polyploid organisms (more than two copies). Humans and many
other organisms are diploid, while many microorganisms possess
greatly differing ploidies. If an organism possesses more than one
chromosome set, i.e. has several copies of the same genome, each of
these sets can contain different genetic variants. The possible states
of a genetic variant, for example the presence of a certain SNP or
combination of SNPs, are called alleles. When different alleles in an
organism are described, they are denoted with capital letters. Since
a variant can either be present or not on both chromosome sets,
there can be three combinations of alleles in a diploid organism.
These combinations of alleles make up the genotype of the organ-
ism. When both chromosomes present the same allele, we speak

of a homozygous genotype; a genotype with diverging alleles is
heterozygous.

Example: We distinguish two alleles of a genetic variant, one where
a deletion removed 3 bases (B) and another without the deletion
(A). The three possible genotypes AA, AB (mutation only on one
chromosome set), and BB (mutated in both chromosome sets) can
each have a different influence on the organism.

Alleles and genotypes are descriptions of biological configura-
tions of an organism. In contrast to this, their effect on the individ-
uals carrying them is called the phenotypic effect.

" Sudmant et al., “An Integrated Map
of Structural Variation in 2,504 Human
Genomes”, 2015.

BIOLOGICAL AND MATHEMATICAL BASICS

Example: Consider a disease that is linked to the genetic variant
described in the previous example. The disease only breaks out for
the genotype BB, i.e. if the variant is present on both chromosome
sets. There are two phenotypes (disease present vs. disease not present)
that are associated with three genotypes (BB vs. AA and AB).

For polyploid organisms that possess more than two chromo-
some sets, the number of potential genotypes is higher. However,
we will not focus on these and hence omit this topic.

2.3.1 Allele Frequency

When several alleles of a genomic site are present in a population,
their abundance can give insight into the mechanisms that caused
them, their effect on the organism, and their evolutionary dynam-
ics. For example the interplay of genotype and phenotype. Allele
frequencies describe how large the fraction of a given population is
that carries the allele in question.

Figure 2.9: Population with |P| =

10
DC:““> individuals of a diploid species.
P= dﬁ?@ The variant is homozygous for all

17

% &C:b individuals, i.e. each individual carries
either two copies of allele A or allele B.

Genotype AA Genotype BB

For example, in the population in Figure 2.9 the allele frequen-
cies of A («2<) and B (=) are:

7
F(A,P)= - =07 F(BP) = 133| 03 (22)
Given a population P of diploid organisms, the frequency of an
allele x is computed as:

1 if i is xx homozygous
Y <L if i is x - or -x heterozygous (2.3)
|P| ieP
0 else

In the diploid case, individuals with heterozygous genotypes
are counted for both alleles, each time weighted by % Note that for
polyploid organisms, the number of possible genotypes rises with
the number of chromosome copies.

2.4 Acquisition of Biological Sequences

Up until now, we offered both a description of the biological se-
quence as well as a mathematical description. We did not touch
on the subject of the acquisition of biological sequences for bioin-
formatic analysis yet. In this section we describe sequencing tech-
nologies, biotechnological workflows that bridge the gap between

18 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

biological sample and a text representation on our hard drive. Their
goal is to provide a bioinformatician with string representations of
(most of the time small) DNA fragments, the so called reads.

All currently available sequencing technologies rely on the re-
construction of a DNA single strand. However, the measured pa-
rameters as well as the volume, structure, and price of the acquired
data vary greatly between different generations of sequencing tech-
nologies. The first generation of sequencing technologies (FGS),

like the Sanger Chain Termination method,"* allows for the anal- 2 Sanger, Nicklen, and Coulson, “DNA
Sequencing with Chain-Terminating

ysis of one DNA molecule at a time, but provides a high level of He
Inhibitors”, 1977.

accuracy. In contrast to this, second generation sequencing (SGS) in-
troduced massively parallel analysis of short reads (<1000 bp), like

the Sequencing by Synthesis approaches employed by Illumina'3 Turcatti et al., “A New Class of
and Pyrosequencing®4 technologies. However, the massive Cleavable Fluorescent Nucleotides:

. 4:54 y 9 & & . Synthesis and Optimization as Re-
gain in throughput, and consequently a lower price per sequenced versible Terminators for Dna Sequenc-
base, came at the cost of a higher error rate. Finally, the current ing by Synthesis”, 2008.

4 Margulies et al., “Genome Sequenc-

. ing in Microfabricated High-Density
sciences (PacBio) Single Molecule Real Time Sequencing and Ox- Picolitre Reactors”, 2005

third generation sequencing (TGS) technologies, like Pacific Bio-

ford Nanopore Sequencing technologies like the MinION are able

to process longer reads.’> Additionally, this analysis can be done in 15 Shendure et al., “DNA Sequencing at

real time, but again introduces an even higher error rate. 40: Past, Present and Future”, 2017.
Currently, SGS is still the most widely used technology, due to

its flexibility and availability. While TGS data are very well suited

to solve problems that were hard to tackle with FGS and SGS data

only, they require the development of new analysis software. For

some of these problems hybrid solutions that combine long TGS

reads with precise and abundant SGS reads are used. FGS, espe-

cially Sanger sequencing, is valued for its high accuracy and is still

employed for single gene analysis and to validate results. Due to

the specific characteristics of the different kinds of sequencing data,

we will take a more detailed look into the different sequencing

technologies. A more comprehensive overview of sequencing tech-

nology has been presented by Heater and Chain,'® Goodwin et al.'” 1 Heather and Chain, “The Sequence
1.18 of Sequencers: The History of Se-
’ quencing DNA”, 2016.
17 Goodwin, McPherson, and McCom-
bie, “Coming of Age: Ten Years of

and Shendure et a

2.4.1 Structure of DNA and RNA Reads Next-Generation Sequencing Technolo-
gies”, 2016.

All sequencing technologies are restricted in the length of reads ¥ Shendure et al., “DNA Sequencing at

they can generate due to the lossyness of the exploited biological 40: Past, Present and Future”, 2017.

processes. Hence, the DNA sequence to analyze is broken up into
fragments as part of the analysis. Depending on the employed se-
quencing technology and its respective fragmentation technology,
the length and structure of the analyzed fragments can vary drasti-
cally. Additionally, the reads that are generated from the fragments
are usually smaller than the fragments themselves and can range
from a few tens of bases to several thousands, as illustrated in Ta-
ble 2.1.

Furthermore, there are two variants of reads that can be ac-
quired, single-end (SE) reads and paired-end (PE) reads. A SE read

BIOLOGICAL AND MATHEMATICAL BASICS 19

Technology Nr. of reads Read length (bp) Type
Sanger 1 700 SE
Mumina (HiSeq X) 3 000000000 150 PE
PacBio RSII 55 000 ~ 20000 SE
ONT MinION >100 000 < 200000 SE

is generated by reading only one end of a fragment, while to gener-
ate a PE read, both ends of the fragments are analyzed. Depending
on context, forward and reverse read are also called p5 and p7 read
respectively In addition to the sequences of both reads in the pair,
the length of the fragment and in turn the distance of the two reads
in the analyzed genome is also analyzed. This distance is called

the insert size of the PE read. The structure of SE and PE reads is
illustrated in Figure 2.10.

DNA

Fragmentation

SEread —> —> <—— PEread

—
insert size

2.4.2 Sequencing Quality and Phred Scores

As mentioned above, all sequencing approaches exploit biological
processes, which are not perfectly effective. While an error that
occurs during sequencing can not be corrected within the sequenc-
ing process itself, uncertainty about the nucleotide detected can be
quantified. Sequencers report a Phred quality score for each base
they analyze, i.e. a measure how certain the sequencer is that it
called the correct base.

The Phred quality score'® describes the quality of the base call as

Q = —10-log;,(e) (2.4)

where e = P(base call was incorrect) is the error probability. For
example, if the base call was correct with 99.99% certainty, this
would result in a Phred score of

Q = —10-logy(1—0.9999) = —10- (—4) = 40. (2.5)

Phred scores are often rounded to the nearest integer and en-
coded using ASCII characters.

Table 2.1: Read length and number

of reads per sequencing run for some
of the most prominent sequencing
technologies. A more comprehensive
list has been presented by Goodwin,
McPherson, and McCombie (“Coming
of Age: Ten Years of Next-Generation
Sequencing Technologies”).

Figure 2.10: Example of a SE read
(left) and a PE read (right). The DNA
sequence is broken apart by a frag-
mentation process. Then, either SE
reads (from one end) or PE reads
(from both ends) can be generated.

9 Ewing and Green, “Base-Calling of
Automated Sequencer Traces Using
Phred. II. Error Probabilities”, 1998.

20 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

2.4.3 Polymerase Chain Reaction

Polymerase chain reaction (PCR) is an important technology for

the preparation of samples that is employed by many sequencing
technologies. As mentioned above, sequencing technologies observe
and analyze the reconstruction of a DNA single strand into a dou-
ble strand. Since each binding reaction occurs on a very small scale,
they are difficult to detect by themselves. SGS sequencing technolo-
gies, for example, rely on detecting fluorescent components added
to DNA bases, which are too dim to be detected by themselves. To
mitigate this, many copies of the DNA molecule to be sequenced
are needed to make the signal detectable. However, most of the
time we start with only a small sample of DNA molecules and need
to amplify it for analysis. This is the realm of PCR, which harnesses
the function of polymerase proteins to multiply DNA sequences

in a structured process. While several improvements to the PCR
process have been introduced, the core concept remains as follows:

Denaturing Complementary DNA strands are separated by heat-
ing. This increase in temperature destroys the hydrogen bonds
connecting the bases of forwards and reverse strands but keeps the
backbone intact.

Primer Annealing Primer sequences that bind to the single strands
are introduced. For this, a high abundance of primer sequences

is required to prevent separated strands from just rebinding. By
lowering the temperature, the primer sequences can bind to the
single strands and offer a surface for DNA polymerase to bind to.

Elongation As described in Section Protein Synthesis from DNA
(p. 11), DNA polymerase (re-)constructs the complementary strand
to the DNA single strands. After this, there are two DNA double
strands, each comprising one strand of the template and one recon-
structed strand.

The three steps detailed above comprise one PCR cycle and are
applied to not one, but many sequences in parallel. If we assume
perfect efficiency of this process, after n PCR cycles there are 2"
copies of each template sequence.

During this process, however, several kinds of errors can occur,
two of which we will highlight: substitution errors and chimeras.
A substitution error describes the case that a single faulty base was
incorporated by the DNA polymerase. Since these errors introduce
changes that are similar to SNVs (as introduced in Section Single
Nucleotide Variations, p. 14), distinguishing them is important to
avoid introducing spurious mutations. The second kind of PCR
error are chimeric reads®°. When the elongation step terminates
prematurely, this incomplete sequence can bind to another similar
(but different) sequence and finish its elongation there. The result-

First affected sequence

Initial sequence

\ L

Cycle 0 1 2 3 4 5
Sequences 1 2 4 8 16 32

Figure 2.11: Propagation of PCR
errors. The error (shown in red) is
introduced in PCR cycle 2. After cycle
5,252 = 8 of the 2° = 32 fragments
carry the PCR error (visualized by the
red bar on the right side).

** Meyerhans, Vartanian, and Wain-
Hobson, “DNA Recombination During
PCR”, 1990; Smyth et al., “Reducing
Chimera Formation During PCR
Amplification to Ensure Accurate
Genotyping”, 2010.

BIOLOGICAL AND MATHEMATICAL BASICS 21

ing DNA double strand is a combination of the prefix of one of its
parent strands and the suffix of another one.

Note that once an error has been introduced in the PCR process,
further copies of the affected strand will all contain this error. Con-
sequently, if exactly one error is introduced in cycle m, there are
2"~ affected reads and 2" — 2" unaffected reads (see Figure 2.11).

2.4.4 Illumina — Cyclic Reversible Termination

Currently, the most wide spread sequencing technology is the cyclic
reversible termination (CRT) approach employed by Illumina de-
vices®'/??. This SGS approach, which implements a massively par-
allelized version of chain termination, is able to generate several
billion reads of length up to 300 bp. An illustration describing the
workflow can be found in Figure 2.12. As described by Goodwin et
al.,?3 the core idea of the Illumina CRT sequencing approach is as
follows.

After fragmentation, primers are ligated to the DNA fragments
which allow them to bind to a specific cluster of probes on a flow
cell. These single samples are amplified using bridge amplification,
a variant of PCR that is local to a cluster on the flow cell. Conse-
quently, all sequences within a cluster are identical, apart from PCR
errors.

After the amplification step is completed, the actual sequencing
can commence. Reverse complementary sequences to the primer
sequences are added, which allow a polymerase to bind to the
strand and initialize reconstructing its complementary sequence.
Then, the following three steps are repeated, until all bases have
been sequenced:

Add modified nucleotides in which the 3" group in the ribose is
blocked to prevent further elongation. All four nucleotides are
contained in the mixture, each of which is labeled with a specific
fluorophore. In this step, all sequences present on the flow cell are
advanced by one nucleotide. Finally, all unbound nucleotides are
removed from the flow cell.

Measure light response of all clusters by exciting the fluorophores
with a laser. Since each cluster was elongated with a particular
nucleotide, all sequences within one cluster produce the same re-
sponse. These added light signals can be detected by a camera and
provide the sequence information for one nucleotide per cluster.

Reverse chain termination by cleaving off the fluorophore and
restoring the 3" end of the ribose. After washing out the debris, a
new cycle can be started.

In each of these three steps, errors can occur which inform the
specific error profile of lllumina sequencers. A major problem is

21 Goodwin, McPherson, and McCom-
bie, “Coming of Age: Ten Years of
Next-Generation Sequencing Technolo-
gies”, 2016.

2 Also known as sequencing by
synthesis (SBS), which describes a
broader class of SGS technologies

that also comprises single nucleotide
addition approaches such as Ion
Torrent and 454 pyrosequencing.

23 Goodwin, McPherson, and McCom-
bie, “Coming of Age: Ten Years of
Next-Generation Sequencing Technolo-
gies”, 2016.

22 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Flow Cell Cluster Bridge Amplification Initialized Cluster

Sequencing Cycle

Figure 2.12: Illustration of the Illumina
CRT sequencing workflow. The lower
box shows the repeating sequencing
cycle for one molecule in a cluster.
Each cycle determines one base of the
analyzed sequence.

BIOLOGICAL AND MATHEMATICAL BASICS

strand desynchronization, i.e. some strands within one cluster
elongate different positions within their respective sequence. This
can occur, for example, when no nucleotide has bound to a strand
in a previous step, or when the terminator is not removed correctly.
Desynchronized strands produce contradictory light responses for
the cluster, which increases the difficulty to call the correct base.
Since these errors accumulate, the quality of base calls degrades
with each step. Consequently, the error rate of base calls increases
towards the end of the read.

The kind of errors introduced by faulty base calls are substi-
tution errors, which are similar to the ones introduced by PCR.
However, while substitution errors from PCR affect several reads,
sequencing substitution errors only affect single reads.

In total, Illumina sequencers generate substitution errors with an
error rate of 0.1 — 1%.

2.4.5 PacBio SMRT and ONT MinION - Single Molecule Sequenc-
ing

In contrast to SGS short reads, TGS approaches are able to yield
longer reads, which helps the detection of structural variations.
However, these longer reads also come with a higher error rate.
This section is based on the more detailed description of these

23

technologies given by Goodwin et al.*4 2 Goodwin, McPherson, and McCom-

The main difference to SGS approaches is, that TGS technologies bie, “Coming of Age: Ten Years of

like Pacific Biosciences” Single Molecule Real Time (SMRT) sequenc- gies”, 2016.
ing and Oxford Nanopore Technologies” (ONT) sequencing do not

require PCR amplification and work with single molecules. While

both technologies produce long reads with a high error rate, the

underlying technologies differ greatly.

SMRT sequencing uses a flow cell with picolitre wells with a
transparent bottom (called Zero Mode Waveguide; ZMV). In each
well, a polymerase molecule is affixed which is used to synthesize
a complementary DNA strand using fluorescent nucleotides. The
emitted light signals for each well are recorded in real time using
a laser and CCD camera, similar to Illumina SBS. Due to the small
size of the ZMW (less than half the wavelength of light, thus re-
ducing interference) and the stationary polymerase, singular light
signals can be detected. A unique feature of SMRT sequencing
is that analyzed DNA molecules can either be linear or circular.
While long linear molecules can be analyzed in single pass mode
with a high error rate (10 - 15%), circular molecules can be passed
through the polymerase multiple times. This reduces the error rate
to ~0.0001, but is only possible for short molecules (<3000 bp).

In contrast to all other sequencing approaches, the ONT sequenc-
ing does not rely on secondary features, like the incorporation
of bases etc. Instead of optical measurements, these devices ana-
lyze changes in electric currents. Using a motor protein, a DNA
strand is pushed through a pore while the changes in electric cur-

Next-Generation Sequencing Technolo-

24 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

rent generated by the DNA nucleotides passing through the pore
is recorded. From the changes in current, g-grams (subsequences
of length g) in the sequence can be inferred. While the error rate of
ONT sequencing is relatively high with up to 30%, its main advan-
tages are:

¢ There is no upper limit on the length of analyzed molecules,
however in practice very long molecules are still a challenge.>>

e The MinlON device itself is very small, about the size of a USB
stick, allowing its use outside of a laboratory.

Another difference to Illumina short reads is that both of these
TGS approaches mainly produce indel errors. Additionally, ONT
reads also suffer from homopolymer errors, i.e. the length of runs
of the same base might not be reported correctly. This is due to the
fact that the detected signal does not change within a run of identi-

cal bases, which makes it hard to discern the length of a run.®

2.4.6 Specialized Application Sequencing Workflows

Going a step further from sequencer technologies, sequencing
workflows are designed to solve a specific problem or provide a
special kind of data. On a very basic level this can be described
by what is sequenced as opposed to how it is sequenced. Two ex-
amples, which are relevant for this work are RNA sequencing and
RAD sequencing.

(Transcriptomic) RNA sequencing focuses the sequencing endeavor

on the RNA in a cell or sample of cells instead of the whole genome.?”

By extracting the mRNA from a cell the analysis can be limited to
transcribed sequences of the genome: the transcriptome. Analyzing
the transcriptome of an organism yields information about abun-
dance and types of proteins the organism produces, which in turn
provide insight into the capabilities of the analyzed species. When
working with a protein reference database, a transcriptomic dataset
has the advantage that it does not contain reads from non-coding
regions. Additionally, transcriptomic RNA sequencing data allows
to perform differential expression analysis, where the abundance of
a transcript is compared between two groups of samples.

Restriction Site Associated DNA (RAD) sequencing, or RADseq for
short, limits the analysis to the cut sites of restriction enzymes. This
technique is frequently applied for the analysis of genetic diversity
in non-model organisms. There are several variants of RADseq,
including basic RADsequ, 2b-RAD?9, and double digest RADseq
(ddRAD)3°, which differ in the type and number of restriction
enzymes used. We will discuss ddRAD in detail in Section Analysis
of ddRAD Data.

5 Goodwin et al., “Oxford Nanopore
Sequencing, Hybrid Error Correction,
and de novo Assembly of a Eukaryotic
Genome”, 2015.

26 Rang, Kloosterman, and Ridder,
“From Squiggle to Basepair: Compu-
tational Approaches for Improving
Nanopore Sequencing Read Accu-
racy”, 2018.

27 Ozsolak and Milos, “RNA Se-
quencing: Advances, Challenges and
Opportunities”, 2011.

Davey and Blaxter, “RADSeq: Next-
Generation Population Genetics”,
2010.

* Wang et al., “2b-RAD: a Simple and
Flexible Method for Genome-Wide
Genotyping”, 2012.

3 Peterson et al., “Double Digest RAD-
seq: an Inexpensive Method for de
novo SNP Discovery and Genotyping
in Model and Non-Model Species”,
2012.

BIOLOGICAL AND MATHEMATICAL BASICS

Metagenomic and Metatranscriptomic sequencing describes sequenc-
ing genetic material from different species at the same time.3* As
an example, consider sampling water from a pond, which is likely
to contain several different species of algae, bacteria, and other
microorganisms. The presence and abundance of certain indica-
tor species provides insight into environmental parameters of the
habitat.

Since for most species there is no reference genome, metage-
nomic analyses often use protein databases to infer the capabilities
of the sequenced communities in lieu of identifying their precise
species. This suggests the use of metatranscriptomics, which, as
above, restricts the sequencing to transcribed sequences.

2.4.7 Reference Genomes and their Bioinformatic Analysis

As mentioned above, genomes of different individuals of the same
species share the majority of their genomic sequences. The small
set of differences accounts for intra-species genomic variation, gen-
erated by mutations and recombinations through sexual reproduc-
tion. Their effects range from different hair and eye colors to the
presence or absence of illnesses. Apart from these small but im-
portant diversifications, most of the genomic sequence of a species
can be sequenced and compared between different individuals to
identify shared parts. By assembling results of one or (more likely)
several sequencing runs into contiguous sequence fragments (con-
tigs), which can in turn be used to derive the sequence of chromo-
somes, a reference genome for a species can be created. Using such
a reference genome, we can perform queries against it to find out, if
data from a different sequencing experiment match this reference.

Creating a reference genome is a time and resource consuming
task, that is only performed for a few organisms of interest, includ-
ing the human genome.3* Beginning with DNA sequencing data,
a huge puzzle needs solving, which determines which reads share
overlapping sequences and can be fused into contigs. This problem,
called de novo assembly, is strongly influenced by the number and
length of the available reads. Longer reads increase confidence in
the correctness of assembled sequences, as does a high coverage,
i.e. a high number of reads that are expected to span a genome po-
sition. Moreover, due to intra-species diversity, a reference genome
is always a consensus and never fits one individuals genomic setup
perfectly. Uncertainty in a determined base is expressed using IU-
PAC ambiguity codes, while longer variations need to be handled
externally. Note that it is also possible to create reference genomes
for a set of similar organisms, for example multiple strains of bacte-
ria. These are called pan-genomes.33

Using a library of reference genomes, we can answer questions
such as: For a given sequenced organism, to which species does it
belong? Does it differ significantly from the reference genome and
are the detected variations already known? Technologically, these

25

3 Bashiardes, Zilberman-Schapira, and
Elinav, “Use of Metatranscriptomics in

Microbiome Research”, 2016.

32 The 1000 Genomes Project Consor-
tium, “A Global Reference for Human

Genetic Variation”, 2015.

3 Tettelin et al., “Genome Analysis

of Multiple Pathogenic Isolates

of

Streptococcus Agalactiae: Implications

for the Microbial “Pan-Genome
2005.

1

’

26 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

questions can be solved by read mapping, i.e. by assigning each read
within the sequencing sample to a likely position in the reference.
Depending on several factors, including the length and error rate of
a read, as well as its sequence, one or more positions can be found.
Finally, the read is aligned to the reference sequence. This means,
the differences between read and reference are computed and eval-
uated using a scoring system, resulting in a mapping quality value.
We will describe alignment methods in more detail in the chapter
Computing and Approximating Resemblance and Containment.
Given mapped reads, we can identify differences between an or-
ganism and the reference, like SN'Vs or other mutations. For each of
the steps detailed above, there are associated file formats commonly
used in bioinformatics. Reference genomes are commonly stored
as FASTA files, sequenced reads in FASTQ files, aligned reads in
SAM (BAM, CRAM) files. Finally, VCF and BCF files describe dif-
ferences between an organism and the reference genome. We will
now describe these file types in detail.

2.4.8 File Formats

Several file formats have been established as de facto standards for
biological sequences. We will now showcase the file formats that
are relevant for this work, omitting SAM files, which only play a
minor role. Regardless of technology, sequenced DNA is mostly
stored as text files.

FASTA files, as described by Pearson and Lipman,34 are used to 3 Pearson and Lipman, “Improved
Tools for Biological Sequence Compari-

store DNA and Protein sequence data in plain text. Each line in a " 1088
son”, .

FASTA file is either a name line, starting with the character > or a
sequence line. A sequence, be it a chromosome, read, or protein, is
encoded by a name line followed by one or more sequence lines.
Usually, all sequence lines have the same length and are limited to
8o or 100 characters. An example of a FASTA file containing two
chromosomes of length 120 and 160:

>Chromosome 1
TACATTTCCATAACAGCCATCGTATCATATCAATGTCGACGAGCCCTTGAAAGTCGATTA
GAATTTGCGATTTCCACAGTTACGCGTTTCAATTAGCCCGTTCATAGCATTAGTAAAGCT
>Chromosome 2
CCTGTTCATGTGAACTAAGGTGTAAGGCTTTTTTAGTCTCTGAGTACGCGCCCGGTGCTT
GTCAGGCAACCCCACAGCGACACGACTTATGCTTTCATTGGGGTGGGTTGCTTACTGCTT
ATACTGTGCATGGAATACAGTACGAGGGTCGTGACGAGCT

FASTQ files, as described by Cock,3> also contain sequence data in 35 Cock et al., “The Sanger FASTQ
file format for sequences with quality

scores, and the Solexa/Illumina
values for each read and are hence used as output by sequencers. A FASTQ variants”, 2009.

plain text. In addition to the sequence, they also contain the quality

FASTQ file can contain the four possible line types:

BIOLOGICAL AND MATHEMATICAL BASICS

Name lines starting with @, followed by an identifier. This identifier
can contain information about the sequencing process, such as the
device used to sequence the read and the position on the flow cell.

Sequence lines containing the sequence.

Plus lines starting with +, which can contain an additional com-
ment, but are usually empty.

Quality lines containing an ASCII-encoded Phred-score for each
nucleotide in the corresponding sequence line.

An exemplary FASTQ file containing two reads with quality
values is illustrated below:

@Read 1
TACATTTCCATAACAGCCATCGTATCATATCAATGTCGACGAGCCCTTGAAAGTCGATTA
+
3+=%(+6.70:;3(4$+x13=/.%"'/$2166%*/=+(92(=$1!18.":;:<<8.""4'$
@Read 2
CCTGTTCATGTGAACTAAGGTGTAAGGCTTTTTTAGTCTCTGAGTACGCGCCCGGTGCTT
+
GEC=<=CG?CHG?GE>FHD;=?BD?>7? :>>GIG@DG<; <@BICE=AE;E:G:F?E>@CD>

There are several formats for the name line, like the Illumina
CASAVA format, which are specific to sequencing technologies.
Additionally, several encodings for quality values are in use. We
will use Illumina 1.8 PHRED+33 encoding, the agreed-upon de-
facto standard, which maps the the quality scores o - 41 to the
ASCII range 33 - 74 (! - J).

Variant Call Format (VCF) files, described by Danecek et al.3° 3 Danecek et al., “The variant call
contain information about genetic variants. They can be used to format and VCFtools”, 2011.
describe the variants present in a set of samples with respect to a
reference FASTA file. A VCEF file contains a header section of lines
starting with ##, which contain meta information and define the
entries in the INFO column and FORMAT column, the latter of which
determines the layout of the SAMPLE columns. The header is fol-
lowed by one line per variant, each of which contains the following
information:

A chromosome and a position on said chromosome where the
variant is located, followed by an identifier, if the variant is present
in a variant database like dbSNP.37 Next the reference sequence 37 Sherry et al., “dbSNP: the NCBI
and sequences of alternative alleles are listed, followed by the
Phred quality score for the presence of such an alternative allele.
Finally, the sample fields contain entries that have been defined
in the header and specified in the FORMAT column. Each of these
fields is associated with one sample and can, for example, contain
genotypes, haplotypes, and read coverage.

27

Database of Genetic Variation”, 2001.

28 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

An exemplary VCEF file is illustrated below, containing two SNPs
(C>T and A>(G or T)), a deletion (TG>T), and an insertion (AG>AGC)
for two individuals. For illustrative purposes, it contains only a
small number of INFO and FORMAT fields and has been modified to
fit the page. In this example, the first SNP is homozygously present
(1) in both samples with a coverage of 15 each. The second SNP is
homozygously present in two different alleles (1: A>G, 2: A>T), one
in each individual. The deletion is only heterozygously expressed
by Individuall while both alleles of Individual2 show the refer-
ence allele (0). Finally, the insertion is present heterozygously in
both individuals.

##fileformat=VCFv4.3
##fileDate=20190326
##reference=file://genome. fasta

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples">

##FORMAT=<ID=GT,Number=1, Type=String,Description="Genotype">

##FORMAT=<ID=DP,Number=1, Type=Integer,Description="Read Depth">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT

1 23 . C T 17 PASS NS=2 GT:DP
1 42 . A G, T 23 PASS NS=2 GT:DP
2 17 . TG T 55 PASS NS=1 GT:DP
3 128 . G GC 31 PASS NS=2 GT:DP

2.5 Bioinformatic Basics

In the previous sections we have already hinted at the mathematical
representation of the biological sequences described there. Here we
will aggregate and complete this information, starting with sets and
sequences.

A set is an unordered collection of unique items, where the items
can be from any domain, for example integers from IN or individ-
uals as in Section Allele Frequency (p. 17). Unordered means that
thesets A :== {1,2,3} and B := {3,2,1} are identical and A = B
holds. Unique items means that the sets A := {1,1,2,3} = {1,2,3}
and B := {1,2,3} are identical and A = B holds. By counting
the number of items in a set A we get its size |A|. We use [x] =
{0,...,x —1} to denote a range, i.e. a set of x integer numbers
starting with 0. Finally, an empty set is denoted as A :={ } =@

The three most prominent operations that can be performed with
two sets are:

The union A U B is the set of items that are contained in
either A or B.

The intersection A N B is the set of items that are contained
in both A and B.

The difference A \ B (resp. B \ A) is the set of items that are
in A and not in B (in B but not in A).

Individuall
1/1:15
1/1:19
0/1:17
0/1:30

Individual2
1/1:15
2/2:18
0/0:12
1/0:21

BIOLOGICAL AND MATHEMATICAL BASICS

A variant of sets are multisets, in which items can occur multiple
times. This number of occurrences is called the multiplicity of an
item. For example, in the multiset { 1,1,2,3 } the item 1 occurs with
multiplicity 2.

The smallest item in a set A—its minimum—is denoted as
min A. When referring to the set of the k smallest items in A, we
use the short hand notation min® A, which is defined as:

X1 =min A

Xy =min(A\ X3)

Xi = min((((A\ X1)\ X2) \...) \ Xi)

The maximum of a set A is denoted as max A and its k largest items
as maxkA (defined analogously to mink).

Sequences are also collections of items but, in contrast to sets,
sequences are both ordered

(1,2,3) = A# B:=(3,2,1)
and allow repetitions of items
(1,1,2,3) =: A # B:=(1,2,3).

Finite sequences of characters chosen from a set of items are also
called strings, where the item set is referred to as the alphabet X.
The size of the alphabet is denoted as |Z| = ¢. For example, 32 bit
words are strings of length 32 from the alphabet © = {0,1} (or
from 32 for short), where ¢ = 2. An empty sequence, or sequence
of length 0, is denoted by the character e:

A=e |Al=0

The item at position i of a sequence A is A;) and a subsequence
beginning at position i and spanning the positions i to j — 1 is
denoted as Aj; .

In the following section, the alphabets used in this work are
described.

2.5.1 Biological Alphabets

As mentioned in the previous sections, different biological se-
quences stem from different alphabets. We already introduced the
DNA alphabet Xpna, 0pna = 4, amino acid alphabet Xaa, 0o =
20, and the extended amino acid alphabet Y7+, 04a+ = 22. While
these alphabets allow the representation of all DNA and protein

29

sequences, additional alphabets that model certain properties of » Cornish-Bowden, “Nomenclature for

biOIOgical sequences are also in use. acid sequences: recommendations
The TUPAC alphabet3® extends the DNA alphabet by characters 1984.”, 1985.

incompletely specified bases in nucleic

30 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Code Bases Code Bases Code Bases
A A Y CorT B CorGorT
C C S GorC D AorGorT
G G W AorT H AorCorT
T T K GorT Vv AorCorG
R AorG M AorC N any base
L VvV I M C A G S T P F Y W
M15 ey C A G S T P y W
M10 - C A G H P -

that model more than one possible base, as illustrated in Table 2.2.
Using this alphabet, uncertainty, missing information, and am-
biguous patterns can be modeled. For example, uncertain base calls

from a sequencer are replaced with Ns and all codons for Q (CAA
and CAG) can be expressed as CAR. The IUPAC alphabet Zjypac is an
extended alphabet, as it introduces additional information.

In contrast to extended alphabets, reduced alphabets are applied
as well. Most notably, for protein sequences the reduced represen-
tation alphabets introduced by Murphy et al.,3? are in common
use. The Murphy alphabets reduce X4 by grouping amino acids
with similar folding properties (see Section Protein Structures and
Functions, p. 13), as illustrated in Figure 2.13.

If we need to distinguish between strings from specific alphabets,
we denote the employed alphabet as a subscript behind the string.
For example:

ACGTpNA

ALYNAp ALFNpgo

Table 2.3 illustrates the alphabets most important for this work.

2.5.2 Interaction of DNA and Protein Data

When working with both DNA and protein sequences, DNA se-
quences are commonly translated into protein sequences. This is
robust against mutations, since, for example all silent mutations still
result in the same protein sequence. As mentioned in Section Struc-
ture of DNA and RNA Sequences (p. 9), each codon after the start
codon is translated into one amino acid. This is modeled by the
function

A:Ea = (ZaaU{»,0})f

which translates a nucleotide sequence into its corresponding se-
quence of amino acids, start and stop codons. A problem that arises
especially with SGS short reads is that the position of the start

Table 2.2: IUPAC code table for DNA
sequences. In the table for RNA
sequences, all Ts are replaced with Us.
Both contain ¢ = 15 characters.

Bl b N Q K R |[H
E b N oQ < H
] H

Figure 2.13: Structure of the M15 and
Mio protein alphabets. Beginning
with the top layer, the full amino
acid alphabet, amino acid groups are
merged to form smaller alphabets.
Merged amino acids are denoted as
smaller text within the square of their
representative. Note that since the
extended amino acids are very rare
and chemically similar to their more
common counterparts, they are not
explicitly mentioned here.

o R

3 Murphy, Wallqvist, and Levy,
“Simplified Amino Acid Alphabets
for Protein Fold Recognition and
Implications for Folding”, 2000.

BIOLOGICAL AND MATHEMATICAL BASICS 31

Sequence Type Alphabet Size
Bits 201 = {0, 1 } g1 = 2
DNA Nucleotides Ypna = {ACGT} ODNA = 4
RNA Nucleotides Yrna = {ACGU} ORNA = 4
TUPAC Nucleotides Ynr:= {ACG,T,R,Y,SWKMB,DHVN} OINT = 15
Amino Acids TAA = {A,C,D,E F,GHIKLMNPQR,STVWY} OAA = 20
IUPAC Amino Acids Yiaa = {ACD,EF,GHIKLMNP,QR,STVWY,»> 0} oan= 22
Extended Amino Acids Xaa::= {ACD,EF,GHIKLMN,O0PQR,STUVWY} OAAs = 22
Mi1o Amino Acids Moo= {ACEFGHKLPS} OM10 = 10
Mi15 Amino Acids Ymi5:= {ACD,EFGHKLNPQ,STW} OMis = 15

codon and consequently the reading frame is unknown. Hence,
the correct offset of the translation can only be guessed by com-
puting the six frame translation (SFT) of a read, as illustrated in
Figure 2.14.

For a given read 7, its six frame translation is the set

stt(r) = {A(9(r,0)), A((r, 1)), A((r,2)),

B B B (2.6)
A(¢(7,0)), Ag(7,1)),A(¢(7,2)) }
where the ¢ function
. |r| —i .

P(r,i) = iy s:=3 5 +1i (2.7)
provides the reading frame for a sequence r, beginning at position i.

r jr=lr

012 251]

¢(1,0)

¢(r,1)

¢(1,2)
¢(1,0)
¢(,1)
¢(1,2)

Since only one of the six reading frames can be present in an
analyzed organism, this procedure can introduce amino acid se-
quences that are not actually produced by the organism. Addition-
ally, some translations can be eliminated before analysis, based on
the input data. Especially, when working with transcriptomic data,
all sequences are subsequences of ORFs and hence do not contain
stop codons (®@). Eliminating all sequences that contain @, can re-
duce the input data size and prevent the introduction of spurious
proteins, as well as reduce the required runtime of analysis soft-
ware.

For genomic data, sequences in the SFT that contain ® cannot
be excluded, since they might contain untranslated regions. But

Table 2.3: Comparison of the alphabets
used in this work. In the Murphy
alphabets, the extended amino acids
are treated as their more common
equivalents.

Figure 2.14: Six frame translation

of a read r. The six reading frames
comprise three forward reading frames
(black arrows starting on the left) and
three reverse complementary reading
frames (gray arrows starting on the
right). In this case the read length

j = |r| is divisible by 3, so that all
translations have the same lengths. If
this is not the case, the lengths of the
translations can vary.

32 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

T = ATTACATT

. ATT Q(T,3)={ATT, TTA, TAC,ACA, CAT}
% T.-F ﬁ C Q(T,3)={AAT, TAA, GTA, ACA, ATG}
3?0 A(C:ﬁT Q(T,3)=(ATT, TTA, TAC, ACA, CAT,ATT)
= ATT Q(T,3)=(AAT, TAA, GTA, ACA, ATG, AAT)

such sequences can be truncated after ® to exclude untranslated
sequences.

2.5.3 q-Gram Sets and Sequences

For many applications in bioinformatics it is helpful, or even re-
quired, to split large strings up into smaller substrings. Among
other benefits, this approach reduces the impact of sequencing er-
rors and mutations on text comparison algorithms.

When a string T is split up into all its substrings of length g,
these are called the g-grams of T.4° We define the g-gram set of a
string T as:

Q(T,q) := { Tiiirq | 1 € [0,|T] = q] } (2.8)

This is equivalent to moving a window of size q through the text
and emitting all characters covered by this window.

If we need to retain the order of the g-grams, we denote the g-
gram sequence of T as:

AT, q) = (g)y " gi:= Tiiisq) (2.9)

Note that the input text T can be reconstructed from Q(T,q),
while Q(T, q) lacks both the positional information and the cardi-
nality information required for this task.

Since the orientation of a DNA string with respect to a reference
might not be known, canonical g-grams are used to resolve this
uncertainty. A canonical g-gram is the minimum of a g-gram and its
reverse complement under a given order, e.g. lexicographical order
or an integer encoding. When used consistently, canonical g-grams
from the reference sequence and the read are identical. Hence we
define the canonical g-gram set

Q(T,q) := {&(Tjuirg) | i €10,1TI — 4} (2.10)

and canonical g-gram sequence respectively

AT,q) = (31)y " &= K(Tiiieg) (2.11)
for a function
ifg<g
k(g) == é_) §=8 (2.12)
g else

which yields the minimum of a g-gram and its complement. The
3-gram set and sequence of the text T = ATTACATT are illustrated in

Figure 2.15: The 3-gram set and
sequence for the text T = ATTACATT.
The 3-gram ATT occurs twice in the
text. It is present twice in Q(T, 3),

but only once in Q(T, 3). For the
canonical set and sequence, 3-grams
that were replaced by their reverse
complemented are highlighted in gray.

4 Depending on the discipline, other
names are common, including: n-
grams, k-mers, and w-shingles.

BIOLOGICAL AND MATHEMATICAL BASICS 33

T = ATTACATT Figure 2.16: The gapped (3,2)-gram
A-T Q! (T, #-#)={AT,TA, TC,AA,CT} set and sequence for the text T =
2 T-A ~ ATTACATT with the shape { 0,2} = #-#.
% T-C Q'(T, #-#)={AT, TA,GA, AA, AG} For the canonical set and sequence,
= A-A (3,2)-grams that were replaced by
iia C-T 8# (T, #-#)=(AT, TA, TC, AA, CT, AT) their reverse complemented are high-
A-T QT #-#)=(AT, TA, GA, AA, AG, AT) lighted in gray.

Figure 2.15. Implementing such a function is especially easy if the
g-grams are encoded as integer values.

Finally, there are variants of g-grams that change the set of in-
corporated characters. So far, we looked at solid g-grams where
all characters within the g-gram were adjacent in the source text.

However, it can be beneficial to use gapped g-grams,*" which use # Burkhardt and Karkkainen, “Better
a shape of care- and don’t-care positions to generate the g-gram Filtering with Gapped q-Grams”, 2001.
text.4#> Consider a shape (or mask) m = {0,2} = #-#, where # 4 Depending on discipline, gapped
denotes a care-position and - denotes a don’t-care position that 4-grams are also known as spaced

ds.
is moved through the text as with solid g-grams (see Figure 2.16). e

For each start position only the characters from T that are covered
by care-positions are incorporated into the g-gram, the don’t-care
positions are ignored.

We define the set of gapped (g, k)-grams with a shape m contain-
ing k care-positions and a total length of g as

QNTm) = {gilicOITI~ql} &= (Trw)sd (@13)

and the sequence of gapped g-grams as

QH(Tm) = 3y " 8= (TS0 (214)

Canonical gapped g-gram set Q¥ (T, m) and sequence Q¥ (T, m)
are defined analogously, using the minimum of the gapped and
reverse gapped g-grams.

Gapped g-grams offer resilience to substitution errors and SNVs
for sequence analysis. For solid g-grams, one substitution error
affects g consecutive g-grams, while a (g, k)-gram is able to bridge
this gap.

2.5.4 Memory Efficient Storage of q-Grams

To save memory while allowing easy comparisons, g-grams can be
encoded as integer numbers. The most common way to do this is
2-bit encoding, which assigns each base a 2-bit integer value, for
example:

A:=00,, C:=01,, G:=10,, T:=11p (2.15)

A g-gram g is then encoded in a 24-bit bit-vector where the bit
positions b(g)p;—1) and b(g)p; contain the bit encoding of the base
8- Example:
g= T T A C G
b(g)= 11, 11, 00, 01, 10, = 1111000110, = 9661

34 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Blocks of two bits per base are concatenated, forming the bit vector
1111000110,, which is equivalent to the decimal number 966.

The 2-bit encoding allows saving a DNA sequence T € X{j\a
using 2#n bits of memory. To model IUPAC sequences, four bits per
character are required:

A:=0001,, C:=00105, G:=0100,, T := 1000,
R:=0101p, Y:=1010,, S:=0110,, W:= 1001,
K:=1100,, M:=0011p, B:=1110,, D:=1101,
H:=1011p, V:=0111p, N:= 1111,

(2.16)

Note that the presence of a 1-bit in the 4-bit bit vector for each
character from Xjypac represents the possible presence of A, C, G,

or T. For example, the base denoted by S := 0110y, can be either C
or G. The ability to model ambiguous bases comes at the expense
of needing two additional bits per character, giving a 4-bit encoded
IUPAC sequence T € Xjjpac @ memory footprint of 4n bits.

For (reduced) protein alphabets, no widely established bit-
encoding scheme is available. We implemented the following en-
coding of the X5 alphabet for use in our applications on protein
sequences.

L:= 0001, S:=0101, W:=1001,, Q:=1101,
C:=0010,, T:=0110,, E:=1010,, K:= 1110,
A:=0011p, P:=0111p, D:=1011p, H:=1111,
G:=0100,, F:=1000,, N:= 1100,

(2.17)

The value 0000, is reserved for unknown values.
Another convenient aspect of integer encoded g-grams is that we

can use integer hash functions to process them rather than being
restricted to hash functions that work on byte streams.

We do not use a specific notation for integer-encoded sequences.
Rather, when we need to treat a g-gram as an integer number, we
implicitly assume the encoding detailed above. If not noted other-
wise, nucleotide sequences are encoded with 2-bit encoding.

2.6 Probability Distributions

In this section, based on the supplementary material to our article
on DDRAGE,*3 we describe probability distributions used in this
work. A random variable X that is distributed as a probability
distribution D is denoted as X ~ D.

2.6.1 Discrete Uniform Distribution (DUD)

From a consecutive range of the # numbers from a to b, where n =
b —a + 1, all numbers are chosen with the same probability 1/#.

Hence, the probability mass function is constant P(X = k) = 1/n
forallk € {a,a+1,...,b}. The mean and variance of the DUD are

_a+b
2

(b—a+1)2-1

B for

E(X) and Var(X) =

4 Timm et al., “"ddRAGE: A Data Set
Generator to Evaluate ddRADseq

Analysis Software”, 2018.

X ~ DUD(a, b).

(2.18)

BIOLOGICAL AND MATHEMATICAL BASICS 35

2.6.2 Poisson Distribution (PD)

A Poisson distribution can be used to model the number of oc-
currences of independent events with a fixed probability over an
interval of time. The distribution uses one parameter A, which is
the expected number of events in the interval. If X ~ PD(A) for
some A > 0, then the probability mass function is

Aee=A

P(X=k) = R k € Ny, (2.19)
with mean and variance of
E(X)=A and Var(X)=A. (2.20)

2.6.3 Zero-Truncated Poisson Distribution (ZTPD)

This variant of the PD only yields values above zero and is equiva-
lent to sampling from a PD, but rejecting and re-drawing all zeros.
If X ~ ZTPD(A), then

IP(X = k) = m fork € Nzl ’ (2.21)
with mean and variance of
A
E(X) = efe o Var(X)=E[X(1+1 EX]). (222

2.6.4 Binomial Distribution (BD)

The binomial distribution requires a parameter n that specifies a
number of experiments executed and a probability p of each exper-
iment to be successful, independently of the other experiments. If
X ~ BD(n, p), then

n _
Px =) = ()1 py (223
with mean and variance of

E(X) =np, Var(X) = np(1 —p). (2.24)

2.6.5 Beta Distribution (Beta)

The beta distribution has two shape parameters « > 0 and g > 0,
which control the shape of its left and right tailing respectively on
the continuous interval (0,1).

If X ~ Beta(a, B), then

a=1(1 _ \B-1
P(X=x)= xéw x € (0,1), (2.25)
where B(a, B) is the Beta function, which is defined as
_ T(@)r(p)
B(DC,/%) -].—‘(DC ¥ ﬁ) (2.26)

where T is the Gamma function. The mean and variance of the beta

distribution are

__® _ ap
E(X) = Pyt Var(X) = @ PR BT (2.27)

36 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

2.6.6 Beta-Binomial Distribution (BBD)

The BBD has three parameters: the shape parameters « > 0 and g >
0, which control the shape of left and right tailing respectively, and
n € INp, which signifies the maximum number of events. A sample
from this distribution arises as follows: First, a success probability
p is sampled from the beta distribution with parameters « and .
Then X is drawn from a Binomial distribution with parameters n
and the random p.44

If X ~BBD(«, B, 1), then

n)B(k+a,nk+/3) (2.28)

P(X=k= (k B(a, f)

where B(a, B) is the Beta function (see equation 2.26). The mean
and variance of a BBD are

no

E(X) = Var(x) = Pl prn)

(@ +B)2(a+pB+1)"

(2.29)

2.7 Caching

Many decisions in algorithm engineering are informed by mem-
ory latencies and the use of caches to alleviate them. The behavior
of memory hierarchies, as well as commonly used caching strate-
gies, have been thoroughly described by Drepper,4> and we will
only sum up the aspects most important for this work. This sec-
tion is based solely on Drepper’s work and should only serve to
provide some level of intuition to discern cache-friendly and cache-
unfriendly operations. Furthermore, we omit the concept of tiered
cache architectures for the sake of simplicity and just refer to all
cache layers as the cache.

In order to work with any form of data, a processor needs to
load it into processor registers, which are small both in number and
memory capacity. Loading data from main memory, or even from
a HDD, is orders of magnitude slower than the processors clock
cycles.4® This can lead to the processor waiting for data to arrive for
several hundred cycles, while no actual work can be performed. As
a rule of thumb, contemporary memory can either be large or fast,
but not both.

To reduce the time a processor spends in wait state, modern
processor architectures maintain a tiered architecture of small and
fast memory units, so called caches. When the processor reads data,
say a 32-bit integer, from memory for the first time, this integer
value and its neighborhood of values in memory are copied to a
cache (refer to Figure 2.17 for an illustration).

Subsequently, this integer can be accessed quickly from the fast
cache memory. Since caches are small, old values are removed and
overwritten if space is required for newer entries.

The smallest amount of data that caches work with is called a
cache line, which is a contiguous slice of (main) memory. Cache
line size can vary between processor architectures, however, typical

Johnson, Kemp, and Kotz, Univariate
Discrete Distributions, 2005.

4 Drepper, What Every Programmer
Should Know About Memory, 2007.

Loading data from main memory
takes ~240 cycles, accessing a register
<1 cycle.

Figure 2.17: Visualization of a
computer’s main memory. Each

cell represents a 32-bit integer

value, aligned into cache lines of

16 - 4 bytes = 64 bytes. When the value
D is requested, its whole cache line
[] isloaded into the cache.

BIOLOGICAL AND MATHEMATICAL BASICS 37

sizes vary around 64 bytes per cache line, i.e. 16 32-bit integers or
8 64-bit integers. If the processor tries to access memory, it queries
the cache if the desired cache line is already present in cache and
can be accessed quickly. This case is called a cache hit. Accessing
an item that is not yet contained in cache is called a cache miss and
triggers loading its containing line into cache. Cache misses that
arise when data is accessed for the first time are called compulsory
cache misses.

The amount at which caching improves the performance of a
program depends on the kind of memory accesses this program
performs. We denote operations that benefit strongly from caching
as cache-friendly in contrast to cache-unfriendly operations which
cannot benefit from caching. For good cache performance, the
following three aspects are crucial:

Memory locality : If the accessed data is saved contigu-
ously in memory, there is a higher chance that a subsequent
access can benefit from an already cached line.

Temporal locality 777 1. Since with each cache miss an old
cache line is overwritten, cached data only remains relevant for a
limited time. A typical L1 cache holds about 2!° cache lines.

Predictability : If the access pattern is predictable, com-
pilers and processors can optimize the generated and executed
machine code to better leverage caching effects (prefetching).

Consider an integer array a = (a;)"_,, n > |Cache|. Iterating
through a using a for-loop is very cache-friendly, since all entries
are contained within contiguous cache lines (memory local), which
are accessed one after another (temporally local) in a linear fashion
(predictable). On the other end of the spectrum, randomly indexing
of such an array is cache-unfriendly, since lines in the cache only
have a slim chance to be used again before being overwritten.

Another advantage of predictable access patterns is that it al-
lows compiler and processor to prefetch cache lines. This means
preemptively loading cache lines that have not been accessed yet.
Processors can detect linear access patterns of contiguous (see Fig-
ure 2.18) or spaced cache lines (see Figure 2.19) and automatically
prefetch upcoming lines (hardware prefetching). For more complex
patterns, software prefetching can be used to explicitly prefetch cache
lines. This can either be employed by the compiler or manually by
the user.

When designing algorithms, taking caching effects into account
can greatly increase performance. However, this is not trivially
possible for all problems, especially if the core idea of the algorithm
requires random accesses, as for example for hash tables.47

Figure 2.18: Illustration of hardware
prefetching for linear accesses. After
the first two lines| | have been
accessed, the third line[| can be
prefetched.

Figure 2.19: Illustration of hardware
prefetching for spaced linear accesses.
Spaced accesses require an additional
access to be detected. After the first
three lines| | have been ac-
cessed, the fourth line[| can be
prefetched.

4 Heileman and Luo, “How Caching
Affects Hashing”, 2005.

3
Hashing in Bioinformatics

Hashing has a wide range of applications in virtually all fields

of computer science. Abstractly speaking, a hash function takes
items from a (potentially infinite) set of possible items and trans-
lates them into integer values. These computed hash values can for
example be used to efficiently compare items, since integer compar-
isons are more efficient than, say, string comparisons. One applica-
tion of this is the comparison of files using checksums. However,
the main use of hash values is to enter the items into a hash table,
from which they can be efficiently retrieved, using the hash values
as addresses. Hash tables are employed in virtually all fields of
bioinformatics, ranging from text indexing problems and g-gram
counting to more technical applications like the association of chro-
mosome names to sequences.

As we will highlight in this chapter, the implementation of a
hash table does not comprise solely of a hash function, but also
requires choosing an underlying data structure and a collision reso-
lution strategy. Furthermore, several applications of hashing require
different properties of hash functions to uphold their expected per-
formance.

3.1 Hash Functions

We define a hash function # : D — C as a function that assigns
items from the input set (domain) D to integer values from a target
set (codomain) C C INy. For a given item x € D, we call h(x) € C
the hash value of x. An Illustration of such a function can be found
in Figure 3.1. Usually, the codomain is smaller than the domain, so

D C
x O\hm
h(x)

that there are less possible hash values than items (keys) in D. Hash
functions mostly are one-way functions, i.e. for a given hash value

Figure 3.1: Illustration of a hash
function &, mapping an item x from
the domain to a hash value %(x) in the
codomain.

40 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

h(x) it is impossible (or computationally infeasible) to retrieve x. At
this point we do not consider any restriction for the items of D. As
a shorthand, we define a general purpose hash function as a function
that maps arbitrary items to an integer range [|C|]. Further, we
define a family of hash functions as a set H := { /1, }, where p is a
parameter allowing the generation of different hash functions.

If two different keys xg,x1 € D, x¢ # x(receive the same hash
value h(xg) = h(x1) from a given hash function &, these items
cause a collision (see Figure 3.2). Collision properties of a hash
function are one of the most crucial factors which determine their
potential use. For most applications, collision resolution strategies
are employed, which we will highlight later in this chapter.

D C Figure 3.2: Illustration of a collision in
hash function k. Both items xy and x;
xQ o are mapped onto the same hash value
h(xo) = h(x1).
o | h(xo) = h(x1) (o) = hx)
X1 o

In the following sections, we will describe collision properties of
hash functions as well as other aspects that inform the choice of a
hash function for a specific application.

3.1.1 Universality, Independence, and Min-Wise Independence

The concept of universal hashing was introduced by Carter and
Wegman' and describes using randomly chosen hash functions * Carter and Wegman, “Universal
from a family of hash functions. Universal hash functions are em- Classes of Hash Functions”, 1979.
ployed where different hash values for the same keys need to be

computed, for example for MinHashing.> To be feasible for this *See Section Computing and Approxi-
mating Resemblance and Containment,

and other applications, hash functions chosen from a family are 8
p- .

classified by the following properties:
Universal: Hash values are uniformly distributed over C.

Independent: For a set of items chosen from D, their hash values
behave like independent random variables.

Min-Wise Independent: For a set of items chosen from D, all have
the same probability to receive the numerically smallest hash
value.

The most basic constraint is universality. To be universal, a hash
function family needs to satisfy Definition 3.1.1.

Definition 3.1.1. A family H of hash functions is (truly) universal, if
for a hash function h, chosen uniformly at random from H, the following
condition holds:

For any key chosen from D, the chance of it hashing to a specific
hash value i using a randomly selected hash function & € H has to
be at most % This allows expressing constraints for the collision
probabilities, depending on the number of observed keys. The
probability of two keys colliding when hashed by a universal hash
function is at most % If Definition 3.1.1 is satisfied, let i € |C| be
(fixed) hash value, the probability to choose the same hash value
for another key is at most ﬁ This property is also called weak
universality.’

Definition 3.1.2. A family H of hash functions is weakly universal, if
for a hash function h, chosen uniformly at random from H, the following
condition holds:

1
]P(I/l(Xo) = h(xl)) < — x90€D,x1 €D, xg 7é X1

A relaxed version of universality is e-almost universality,* which
allows hash values to collide with an error factor €, as described in
Definition 3.1.3. Thorup> points out that this is sufficient for many
applications.

Definition 3.1.3. A family H of hash functions is e-almost universal
fore € Ry, e > 1, if for a hash function h, chosen uniformly at random
from H, the following condition holds:

P(h(x) = i) < Iil xeD,ieC,

The difference between true universality and e-almost universal-
ity is illustrated in Figure 3.3.

C: { Co, C1, ceey (] }

P(h(x)=c)
required for universality

sufficient for e-universality

In addition to collision probabilities of items, another important
property is the distribution of hash values. Consider the hash func-
tion family # := {h} containing only the identity hash function
h: D — D with h(x) = x. This family is weakly universal, since any
two distinct keys x and x” have a probability of 0 < |D| which is
also the codomain of / in this case. While keys do not collide when
hashed with k, the distribution of hash values for different keys
throughout the table is not well distributed: Its hash values are not
independent.

Wegman and Carter® define k-independent” hash functions fam-
ilies that uniformly distribute the hash values of k different items
throughout C.

HASHING IN BIOINFORMATICS 41

3 Broder et al., “Min-Wise Independent
Permutations”, 1998.

4 Stinson, “Universal Hashing and
Authentication Codes”, 1994.

5 Thorup, “High Speed Hashing for
Integers and Strings”, 2015.

Figure 3.3: Illustration of the difference
between true and e-almost universality.
The probability of an element ¢;

being chosen as hash value h(x) is
symbolized by the height of the gray
blocks. For true universality, all items
from C must have a probability of

at most 1/|C| to be a hash value for

x, i.e. fall beneath the solid line. For
e-almost universality, the probabilities
are allowed to fall below the dashed
line (a multiple of 1/|C]).

® Wegman and Carter, “New Hash
Functions and Their Use in Authenti-
cation and Set Equality”, 1981.

7 Wegman et al. use the term strongly
universaly instead of k-independent.
The names k-strongly universal and
k-wise independent are also used.

42 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Definition 3.1.4. A family H of hash functions is k-independent, if
for a hash function h, chosen uniformly at random from H, the following
condition holds:

1

k-1
]P(/\ h(x]) = 1]) = |C|k (XO,. . .,kal) € Dk, (io,. . .,Z'kfl) S Ck
j=0

If Definition 3.1.4 holds, hash values from h are uniformly dis-
tributed within C. This property is required by several collision
resolution strategies, as we will detail in one of the following sec-
tions.

Analogously to e-almost universality, a relaxed variant of k-
independence was introduced by Siegel.?

Definition 3.1.5. A family H of hash functions is (€, k)-independent for
an error term € > 1, if for a hash function h, chosen uniformly at random
from H, the following condition holds:

€

k-1
P(A h(xj) = ij) < F (x0,...,%_1) € DX, (ig, ..., ix_q) € CF
j=0

The difference between k-independence and (¢, k)-independence
is illustrated in Figure 3.4. Note, however, that all (1, k)-independent
hash function are also k-independent (see Corollary 3.1.6).

D C k exactly ﬁ
required for k-independence

X

€
below W

sufficient for (e, k)-independence

Corollary 3.1.6. A k-independent family of hash functions is also (1,k)-
independent and vice versa.

Proof. Choose € =1 for Definition 3.1.5. O

For use in many applications, like the computation of hash table
addresses, e-almost universal and (e, k)-independent hash function
are sufficient. Some examples of this will be highlighted in the
Section Collision Resolution (p. 56). However, there are use cases
that require stronger properties.

As mentioned above, one such use case is MinHashing, which
we describe in detail in Chapter Computing and Approximating
Resemblance and Containment (p. 89). MinHashing® uses minimal
(as in smallest) hash values of sets of keys to estimate their similar-
ity. This approach requires that minimal hash values are sampled
uniformly from these sets using min-wise independent universal
hash functions. Under a hash function from a min-wise indepen-
dent family, all keys from a set X C U have the same probability to
receive the minimal hash value.

8Siegel, “On Universal Classes of
Extremely Random Constant-Time
Hash Functions”, 2004.

Figure 3.4: Illustration of the difference
between k-independence and (€, k)-
independence. The probability of set

X of keys being mapped to a tuple
from C¥ (column of ellipses in the
center) by a randomly chosen hash
function & (teal arrows) is illustrated
by the gray boxes on the right. For
k-independence, all tuples must

have exactly a probability of 1/[C|¥,

ie. fall onto the teal line. For (¢, k)-
independence, the probabilities are
allowed to fall below the dashed line (a
multiple of 1/|C|).

9 Broder, “On the Resemblance and
Containment of Documents”, 1997.

HASHING IN BIOINFORMATICS 43

Definition 3.1.7. A family H of hash functions is exactly min-wise
independent if for a hash function h chosen uniformly at random from H,
any subset X C U, and any x € X the following condition holds:

1

P(min{ X'} = h(x)) = X

X' :={h(x)|x€ X}

In other words, under a hash function from #, all items in
an input set, for example a set of g-grams, receive the minimal
hash value with the exact same probability |17‘ As Broder et al.™® Broder et al., “Min-Wise Indepen-
pointed out, designing such a function is practically unfeasible, dent Permutations”, 1998.
as the size of exactly min-wise independent permutations grow
exponentially with the size of Y. For practical applications, it is suf-
ficient that items receive the minimal hash value with almost equal

probability:

Definition 3.1.8. A family H of hash functions is e-approximately
min-wise independent if for a hash function h chosen uniformly at
random from H, any subset X C U, any x € X, and an error € the
following condition holds:

—_
m

Pmin{X'} =h(x)) — —| < — X' ={h(x)|xe X}

This allows keys to be chosen with a probability that deviates
from a uniform distribution by at most €, as illustrated in Fig-
ure 3.5. Since e-approximately min-wise independent hash func-
tions are used for all practical purposes, we use the shorter name
e-min-wise independent.

X={ Xor X1, s Xy } Figure 3.5: Illustration of the difference
between exact and e-min-wise inde-
]P(Xi is min) pendence. Probabilities are symbolized

by the height of the gray blocks. For
exact min-wise independence, all items
from X must have the exact same
probability (ﬁ) to be selected as min-
While the properties detailed above are crucial for this work, imal hash value, i.e. fall on the solid
line. For e-min-wise independence,

the probabilities are allowed to fall
between the dashed lines.

exactly 1/ | X| required for exact min-wise independence

sufficient for e-min-wise independence

hash function can be classified into a myriad of other groups.

3.1.2 A Taxonomy of Hash Functions

In addition to the properties detailed above, hash functions are re-
quired to possess certain properties depending on their application,
some of which are mutually exclusive. Consequently, it is not easily
possible to define what an objectively good hash function is without
a given application. In this section we give an overview of specific
use cases, introduce classes that have strong restrictions, and point
out which are used in a bioinformatics context.

Most notably, cryptographic and non-cryptographic hash functions
are distinguished. A cryptographic hash function is required to be

44 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

preimage-resistant (for a given hash value h(x) it is computationally
hard to find x or another key x’ so that h(x’) = h(x)) and collision-
resistant (for a given key x it is computationally hard to find another
key x” with the same hash value i(x) = h(x’))'*. Cryptographic
hash functions, like MDs5,'2 and the SHA-2'3 and SHA-3'4 fam-
ilies, are commonly used to validate the identity of files or store
user passwords in a database'>. In most bioinformatics applications
however, hashes are not required to be cryptographic.

Avalanching describes how different the hash values of similar,
but different keys are under a given hash function. For example, if
one bit is flipped in the input, how many bits change in the hash
value? The highest amount of avalanching, described by the strict
avalanche criterion,'® requires each output bit to flip with a prob-
ability of 0.5. Hash functions with low avalanching allow to guess
similar hash values and are more likely to be less cryptographically
secure.

On the other end of the spectrum, two way hash functions allow
reversing the hashing process, i.e. they allow to reconstruct keys
from hashes. For a reversible (or two-way) hash function & there ex-
ists an inverse function 17!, so that h~!(h(x)) = x. While this class
of functions is obviously unsuitable for cryptographic purposes,
it has many applications in bioinformatics. These include space
efficient storage of g-grams by integer encoding and comparisons
within a single processor cycle.

Rolling hash functions work on input sequences and compute
a new hash value based on the previous hash value. This is only
possible if the hashed items have a high amount of locality. For
example in a g-gram sequence two adjacent items share g — 1 bases.
By eliminating the need to reread the whole g-gram and reuse the
g — 1 known bases, the amount of memory accesses is reduced.

Finally, hash functions can be classified by their input alpha-
bet, most notably integer and string hash functions. Integer hash
functions typically use the domains D = [2%?] or D = [2%%] based
on the integer data types used for their implementation. Conse-
quently, they have a fixed input size. On the other hand, hash func-
tions working on strings (or their representations) can have vari-
able input lengths: for example the set of all nucleotide sequences
D = Lf\a Or the set of all byte strings D = [28]*. Especially hash
functions used for file fingerprinting, like the MD5 and SHA, need
to deal with files of arbitrary lengths. This requires them to read
from an input and incorporate all parts into a hash value.

3.1.3 Hash Functions for Use in Bioinformatics

We will now describe hash functions commonly used with biolog-
ical sequences. These include the integer encoding described in
Section Memory Efficient Storage of g-Grams (p. 33), which can be
used to convert strings from arbitrary alphabets into integer num-
bers, followed by integer hash functions that provide theoretical

" Rogaway and Shrimpton, “Crypto-
graphic Hash-Function Basics: Defini-
tions, Implications, and Separations for
Preimage Resistance, Second-Preimage
Resistance, and Collision Resistance”,
2004.

> Rivest, The MD5 Message-Digest
Algorithm, 1992.

13 Penard and Werkhoven, “On the
Secure Hash Algorithm Family”, 2008.

*4 Bertoni et al., “Keccak Sponge
Function Family Main Document”,
2009.

> Note that MD5 has been successfully
attacked and is no longer considered
safe for cryptographic use.

6 Webster and Tavares, “On the Design
of S-Boxes”, 1986.

guarantees required by hashing techniques like MinHashing. Fi-
nally, we will briefly describe some widely used general purpose
hash functions.

Integer Encoding allows mapping strings onto an integer range.
Hence, integer encoding of sequences can be interpreted as a hash
function

n

hene : 2" — o (3.1)

for a given alphabet X of size o.

Since each hash value encodes exactly one input string, integer
encoding is a reversible hash function. This approach can be im-
plemented as a rolling hash, as shown in Listing 2 in the appendix
(p. 235) for the special case of XpNa. Additionally, for this work we
also implemented integer encoding for the Xy;,, and X5 reduced
protein alphabets.

The H'™ family ~ of hash functions, introduced by Dietzfelbinger,'7
is a universal integer hash function. For a given integer domain

D, |D| = d, integer codomain C, |C| = ¢, and an integer value k > d
it is defined as follows:

HEN = {h, label]} r=|R|=k [C|)
hop(x):=(ax+b modr)divk xe€D, ke N> |D| '

The integer set R is an intermediate domain of size at least d?.
lin

d.c,r
ues a,b are chosen from the intermediate domain. Using these val-

To generate a hash function from an H;" = family, two random val-

ues, the input value is projected into R and subsequently mapped
into the codomain, as illustrated in Figure 3.6.

D R C
° ax +b mod |R| divk [
ha,b(x)
R|=r=k-d ICl=c<r

Choosing the sizes of domain, codomain, and intermediate do-
main as powers of 2, allows an efficient implementation, since mod-
ulo and div operations can be realized using bitwise operations. An
implementation of the 7—[121;}1,264,2128 universal hash function, which is
able to generate 64-bit hash values from 2-bit encoded 32-grams is
shown in Listing 3 in the appendix (p.236).

Note, that the %" family of hash functions is closely related to
the Multiply-Shift hash family'®. As shown by Thorup,’9 the #!i"
family offers stronger guarantees (2-independence, see below) at

HASHING IN BIOINFORMATICS 45

7 Dietzfelbinger, “Universal Hashing
and k-Wise Independent Random
Variables via Integer Arithmetic
without Primes”, 1996.

Recall, that [n] :={0,...,n—1}

Figure 3.6: Illustration of the Hldlr;r
family of hash functions, where 4, c,
and r denote the sizes of the domain,
codomain and intermediate domain
respectively. The hash value h,;(x)

is computed by mapping x into the
larger intermediate (integer) domain
and then mapping this intermadiate
value onto C. In practice, D, R, and
C are usually chosen as powers of 2
so that the second mapping can be
performed using a bit shift operation.

841N js sometimes also referred to
as Multiply-Add-Shift hashing, if 4, c,
and r are powers of 2.

9 Thorup, “High Speed Hashing for
Integers and Strings”, 2015.

46 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

minor additional computational costs. Hence, we omit a detailed
discussion of Multiply-Shift and refer to the paper.>°

While fast, H'I" hash functions are not very well suited for use
with MinHashing, since they are not min-wise independent. We can
show that both 7-[12%}1,264/2128 and H12'1§‘2,232,264 are 2-independent>":

Li

Theorem 3.1.9. The Ho¢, 564 y108 hash family is 2-independent.

Proof. As described by Dietzfelbinger,?* a family of %" hash func-
tions is (1,2)-independent, if:

® d,c, k, and r are all powers of 2: Which is obviously the case for
d=20 =20 r =218 and k = L =20

e k> %: Which holds, for k = 264 > 263 — Z*.

A (1,2)-independent hash function is 2-independent per Corol-
lary 3.1.6. O

Theorem 3.1.10. The leig’z,232,264 hash family is 2-independent.
Proof. Analogous to the proof for 7—[12%}1,264,2128. O

Subfamilies of H" where d, ¢, and r are all powers of 2 can
be efficiently implemented by replacing the modulo operations
with bit shift operations. Hash functions created this way are also
referred to as Multiply-Shift-Add hash functions.

Tabulation Hashing Based on Zobrist hashing,?3 which was devised
to encode game states for board games like chess or Go, tabulation
hashing has recently been developed and analyzed for use with
MinHashing.*4 Tabulation hashing and its variants use a table

]

initialized with random integers, from which values are selected

==

©=(0), icn], jelu

and processed using bitwise exclusive-OR operations (XOR, de-
noted by @®). To index the table, keys k € U = [u], where u is a
power of 2, are split into n chunks (ko, ..., k,_1) of log, un bits.
While a fixed size table restricts tabulation hashing to fixed length
keys, this design is an important performance consideration. A
small table can be kept within one cache line by the processor, al-
lowing fast access to the table entries.

For simple tabulation hashing,?> the hash value (k) for a key

k= (ko,..., ky,—1) is computed as:

h(k) = P 6y,

i€(n)

Each chunk of the key is used to pick an entry of ®, which are
processed using XOR operations as illustrated in Figure 3.7 (a). An
implementation of this hash function is given in Listing 4 (p.237).
Twisted tabulation hashing?® modifies the last step of simple tab-
ulation hashing to incorporate not only the last chunk, but also the

* Dietzfelbinger et al., “A Reliable
Randomized Algorithm for the
Closest-Pair Problem”, 1997.

** Note that Dietzfelbinger uses the
name (¢, !)-universal for this concept.

22 Dijetzfelbinger, “Universal Hashing
and k-Wise Independent Random
Variables via Integer Arithmetic
without Primes”, 1996.

3 Zobrist, A New Hashing Method With
Application for Game Playing, 1970.

2 Dahlgaard and Thorup, “Approxi-
mately Minwise Independence with
Twisted Tabulation”, 2014; Patrascu
and Thorup, “The Power of Simple
Tabulation Hashing”, 2011; Padtrascu
and Thorup, “Twisted Tabulation
Hashing”, 2013.

25 Patrascu and Thorup, “The Power of
Simple Tabulation Hashing”, 2011.

2 Patragcu and Thorup, “Twisted
Tabulation Hashing”, 2013.

split key
into chunks

ko = 0b_10000010

use chunks to
index table ®

255

h(key)

k=2194153702
k = 0b_10000010_11001000_00100000_11100110

R

By«

= B, b
- 2 e
= 168

ky = 0b_11001000

255

91 k1
23

2

0,

D 0Oy @
© 17 &

HASHING IN BIOINFORMATICS 47

k, = 0b_00100000

0
1.7
255
0,5+
e3,k3
132

k3 = 0b_11100110

122
255
0

(a) Visualization of simple tabulation hashing. The key is split up into four 8-bit chunks, each of which is used to index into a table
T initialized with random 32-bit unsigned integer values.

split key
into chunks

ko = 0b_10000010

k=2194153702

k = 0b_10000010_11001000_00100000_11100110

k; = 0b_11001000

k, = 0b_00100000

k3 = 0b_11100110

D

h'(key)
180 388 639 662

0 0 0
180 SSg 626432
use chunks to 13 _241
index table © : @ @
3
255 255 255
90,* 91/* 92’*
h(key) = By D Oy D 02, h(key) =
= 13241 @ 23 @ 180388626432 =
= 180388 639 662 =

180 388 639 662
42

@ = klast
0

>> 32
15
255
05
@ O3 nkeyory >>32
@D O30 (keyygozo >> 32
D 13 >> 32

(b) Visualization of twisted tabulation hashing. In contrast to simple tabulation hashing, the entries of T are 64-bit values and the
last address is computed using the preliminary hash value %’ and k3. To receive a 32-bit hash value, the lower 32 bits are shifted

out.

Figure 3.7: Visualization of simple (a) and twisted tabulation hashing (b) with n = 4 chunks. Gray blocks represent vectors
comprising the index table ©. Teal lines indicate at which position said vector 6; , is accessed.

48 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

preliminary hash value #’(k) computed from all previous chunks.
Additionally, twisted tabulation hashing extends the length of the
entries in ® and uses only the upper bits of the resulting hash
value. For 32-bit twisted tabulation hashing, the hash value h(k) for

akey k = (ko, ..., ky,—1) is computed as

h(k) = (h’(k) ® 9n71,h’(k)@kn4) »32
Wk = D o

ie(n—1]

where k and h(k) are 32-bit integers and the entries of © are 64-bit
integers. The “» x” operator denotes a bit-wise right shift by x bits.
This is illustrated in Figure 3.7 (b). Our Rust implementation of
simple and twisted tabulation hashing?” can be found on GitHub?
and the Rust package repository crates.io®?. An excerpt of this
implementation is shown in Listing 4 in the appendix (p.237).

While both simple and twisted tabulation hashing are 3-inde-
pendent,3° twisted tabulation hashing offers higher approximately
min-wise independence. Simple tabulation hashing is (’)(kl%)—
approximately min-wise independent,3* where k is the size of the
selected subset3* and 7 is the number of chunks. This yields a
higher bias for small set sizes. Twisted tabulation hashing, on the
other hand, is O(ul%)—approximately min-wise independent,33
where u = |C| is the size of the hash functions codomain, which is
independent of the set size.

General purpose hash functions (GPHFs) are used more for their
convenience and speed than for their theoretical properties. There
are several such hash functions that are used in bioinformatics
applications, including Murmur Hash,34 Cityhash,3> and xxHash.3°
All three of these non-cryptographic hash functions capable of
hashing byte sequences and are able to generate 32-bit hash values.
Bigger hash values are also supported, using slight variations of
their respective implementations: For mmh3 a version for 128-bit
hash values exists and xxHash can generate 64-bit hashes. Cityhash
has implementations for 64-bit, 128-bit, and 256-bit hash values.
Furthermore, all of them have been analyzed and benchmarked
with the SMHasher benchmark suite for non-cryptographical hash
functions.37 While almost all claims made in this section would
hold for all mentioned GPHFs, we will focus our explanation on
mmh3 due to its brief and elegant implementation, its use in several
bioinformatics applications like Mash3® and Mashmap,?? and its
wide use in general.4°

While there are architecture specific variants of the mmh3 hash
function family, their main notion is similar. All of them can use an
integer seed value, which allows the generation of hash functions,
making mmh3 behave like a universal hash function for practical

27 Timm, Rust-tab-hash Source Code,
2020.

B https://github.com/HenningTimm/
rust-tab-hash

9 https://crates.io/crates/
tab-hash

3 Patrascu and Thorup, “Twisted
Tabulation Hashing”, 2013.

3t Pétragcu and Thorup, “The Power of
Simple Tabulation Hashing”, 2011.

32 This is equivalent to the number of
hash functions used in MinHashing.
3 Dahlgaard and Thorup, “Approxi-
mately Minwise Independence with
Twisted Tabulation”, 2014.

3¢ Appleby, Murmurhash3, 2016.

35 Pike and Alakuijala, Introducing
CityHash, 2011.

3 Collet, xxHash—Extremely Fast Hash
Algorithm, 2016.

37 Appleby, SMHasher, 2016.

33 Ondov et al., “Mash: Fast Genome
and Metagenome Distance Estimation
using MinHash”, 2016.

3 Jain et al., “A Fast Approximate
Algorithm for Mapping Long Reads to
Large Reference Databases”, 2017.

4° Richter, Alvarez, and Dittrich,

“A Seven-Dimensional Analysis of
Hashing Methods and Its Implications
on Query Processing”, 2015.

https://github.com/HenningTimm/rust-tab-hash
https://github.com/HenningTimm/rust-tab-hash
https://crates.io/crates/tab-hash
https://crates.io/crates/tab-hash

pub fn fmix_32(hash: u32) -> u32 {
let mut hash = hash;
hash ~= hash >> 16;
hash *= 0x_85_eb_ca_6b;
hash "= hash >> 13;
hash %= 0Ox_c2_b2_ae_35;
hash ~= hash >> 16;
hash

Listing 1: Rust implementation of the fmix32 hash mixing function.

purposes:
HOMS = (hg|se 22} ks 28] — 2% o)
HOS = (hy |s e 2P]} ki 28] — 2129

However, while mmh3 performs well in practice, even in the context
of MinHashing#', the function has no proven theoretical guaran-
tees.+*

Since all mmh3 variants behave similarly, we will focus on the 32-
bit version for this section. As input, the hash function requires a
32-bit seed value and sequence of bytes (i.e. 256-bit numbers). The
mmh3 algorithm comprises four steps:

e [Initialize the hash value with the seed.

® Read input in chunks of 32 bits and factor it into the current
intermediate hash value. Each block is multiplied by a big con-
stant, circularly shifted and XOR-ed with the current hash value.

¢ Process all remaining bytes that did not fit into a complete
chunk.

¢ Finalize intermediate hash value using a hash mixing step
(fmix32) using multiplication with big constants and bit shifts.

Note that the hash mixing step can by itself be interpreted as a
non-universal integer hash function h{3%™ : [2%2] — [2%2]. For the
128-bit variant, 1{3* is applied separately to the four 32-bit blocks
of the hash value. A Rust implementation of the fmix32 function is
illustrated in Listing 1, while the C++ implementation of both mmh3

variants can be found in the SMHasher GitHub Repository+3.

3.2 Hash Tables

As mentioned in the introduction of this chapter, one of the main
applications of hash functions is addressing hash tables. A hash
table is a data structure that allows membership queries and re-
trieval operations in expected constant time. To achieve this, items
are stored at a position computed by a hash function, as illustrated
in Figure 3.8.

HASHING IN BIOINFORMATICS 49

4 See MinHash, p. 99.

Thorup, “Fast and Powerful Hashing
Using Tabulation”, 2017; Richter,
Alvarez, and Dittrich, “A Seven-
Dimensional Analysis of Hashing
Methods and Its Implications on
Query Processing”, 2015.

B https://github.com/aappleby/
smhasher/blob/master/src/
MurmurHash3. cpp

T
0
1
2
Items % 13
x /
(L. h(23) =3
7
1 | |T]-1

Figure 3.8: A basic (value store type)
hash table that contains the entries
23,7, and 11 at their respective hash
addresses. The items 7 and 11 have al-
ready been inserted and 23 is currently
being inserted, as denoted by the ar-
rows. Hash addresses of the array T
are shown at the right of T.

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp

50 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Items entered in the table are stored in an underlying data struc-
ture T, usually implemented using an array or a list, which can be
indexed (or addressed) using integer values. We refer to inserted
items as entries. To enter an item x into a hash table, its address is
computed using the hash value i(x) from a hash function / and x
is saved at the index h(x) in T: T[h(x)] = x. Entries of T are also
called (hash) slots, or hash positions. We call the ratio of empty
slots to total available slots

_ # empty slots

~ #total slots
the fill rate (or load) of a hash table. We describe the number of
possible hash addresses of T as 7 = [|T|], where |T| is the size
of the underlying array. Note that, while a hash address can be
the unmodified result of a hash function, often the hash address
is derived. Most commonly, if |T| < |C|, hash values are usually
truncated using the modulo function. If we need to explicitly dis-
tinguish between a hash value and a derived address we use h(x)
for the hash value of x and the address function a : C — T for the
derived hash address a(x). We also use 4 as a shorthand notation
for a specific hash address.

To retrieve x, its address is computed and the table is queried
at position h(x). If the position T[h(x)] is empty, x was not in the
table, otherwise x or an item with a colliding hash value was en-
tered. In the latter case, to be certain x was contained in the table,
and not some item x’ # x with h(x) = h(x’), a collision handling
strategy is required. This chapter focuses on the implementations of
different kinds of hash tables, terminology, and collision resolution
strategies.

There are many possible ways to implement a hash table, dif-
fering greatly in expected run times and memory requirements.
We define basic hash table operations, which we use to describe
implementations:

INsErT(X) Puta new item x into the hash table. If a collision
occurs, it needs to be handled here.

ConTaINS(x) Perform a membership query. Check if the item x is
present in the hash table. If so, return true.

SEARCH(Xx) Return all values stored for the item x. Depending
on the specific implementation, this can either be one value (e.g.
when used as a counter) or multiple values (e.g. when used as a
dictionary).

DELETE(X) Remove item from the hash table and assert, that all
remaining items can still be found. This is not possible with all
collision resolution strategies.

REesize Increase the size of the underlying data structure to ac-
commodate more items. This is required by dynamically sized
hash tables, when not enough empty entries remain.

HASHING IN BIOINFORMATICS 51

The run time of these operations depends on the collision resolu-
tion strategy used by the hash table and we will discuss them while
presenting these strategies later in this chapter.

As with hash functions, hash tables can be classified using sev-
eral properties. For hash tables, these include how they behave in
memory, what kind of items they store, and how they deal with
collisions.

3.2.1 Static and Dynamic Hash Tables

All hash tables need to store their entries in an underlying data
structure. In most cases, this is some variation of an array, into
which items are inserted at a position determined by the hash func-
tion. However, there are several possible layouts. Most prominently,
we distinguish between two types of hash tables in this work: Static
and dynamic hash tables. A static hash table has a constant num-
ber of possible entries, called slots, while the number of slots in a
dynamic hash table can be adjusted at run time.

Dynamic hash tables are familiar to anyone using high-level pro-
gramming languages. For example the Python dictionary, Rust
and C++ hash maps, and Java Hashtable are all dynamic hash ta-
bles. The main advantage of this class of hash tables is their ability
to maintain a low memory footprint for small input datasets, but
to be able to grow with the data. This is achieved by resizing the
table, once a certain fill rate or a predefined number of collisions
has occurred. When computing the hash address, the hash value is
mapped onto the number of slots available in the table at the given
size. Usually this is performed by choosing a table size |T| and de-
riving hash addresses a(x) = h(x) mod |T| from the hash value us-

ing modulo operations#4. When the table is to be resized, choose a 4 The choice of |T| is crucial to prevent
introducing collisions. Prime numbers

, . .) are optimal (see Knuth, The Art of
mod |T’|. However, this comes at the disadvantage that either all Computer Programming: Sorting and

new |T'| > |T| and recompute all hash addresses using a(x) = h(x)

hash values need to be recomputed in a process called rehashing, or Searching, 1997, Chapter 6.4), but in
. ti f t ft d.
the hash values need to be stored and thereby increase the memory practice powers of fwo are offen tse

footprint.

Static hash tables on the other hand, do not allow resizing. While
they require choosing a reasonable size at creation, static hash ta-
bles provide better control over the memory footprint than their
dynamic counterparts. This is especially powerful, when the num-
ber of entries is known beforehand, or if guarantees about the fill
rate or the memory usage are required. Additionally, the hash func-
tion employed can be better tailored to the hash table, since the
codomain of the hash function can be chosen to correlate with the
number of slots. A downside of static hash tables is that they can-
not adapt to unexpected increases in fill rate. With high fill rates,
collisions become much more likely and cannot be compensated as
easily. Depending on the collision resolution strategy this can either

52 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

result in performance drops or the table is simply unable to insert
certain keys. Note, that just using a static sized hash table does
not guarantee a static amount of memory usage, unless a suitable
collision resolution strategy is also employed.

3.2.2 Key-Value Stores and Value Stores

Another important distinction is what is actually stored in the hash
table. Depending on the task a hash table should perform, two
designs are possible: A key-value store, in which a key-value pair
is inserted based on the hash value of a provided key, and a value
store in which the key is not explicitly stored. These two design are
illustrated in Figure 3.9 and Figure 3.10 respectively.

Key-value stores (KVS): A key-value store hash table saves the key
used to compute the hash address as well as an item that should be
associated with this key.

Consider a tuple (or key-value pair) x = (k,v) consisting of a
key k € K and a payload item v € V. When entering x into the
hash table, the hash address at which x is stored, i.e. the index in
the underlying array, is computed using only k. Hence, we store
T[h(k)] = x in the table. Retrieving values works analogously, by
querying T[h(k)] to receive x.

This kind of hash table allows retrieving a value for a given key
(SEARCH) as well as performing membership queries (CONTAINS)
and removing elements (DELETE). For use as a dynamic hash ta-
ble, during the RESIZE step, keys can be extracted from the stored
tuples and items can be rehashed. However, this comes at the cost
of a high memory footprint, since both key and value need to be
saved.

Note that key and value can be identical, as in the initial hash
table example shown in Figure 3.8. The address is computed using
h(k), and k is inserted into the table: T[h(k)] = k. This strategy re-
sults in a lower memory footprint than the traditional KVS model
described above, but also limits its usability, as it is not fit to imple-
ment dictionary type data structures.

Value Stores (VS): In a value-store hash table, the key generating
the address is not stored. Instead, only the payload (value) asso-
ciated with the key is saved. For example, after hashing a g-gram
we might want to store the position at which it is located within a
genome. Consequently, keys used to insert into a value store cannot
be easily retrieved.

VS hash tables can only perform a subset of the operations KVS
hash tables can. Most importantly, VS tables cannot trivially sup-
port REsIZE, since the keys used to enter the values are no longer
known. However, there are ways to circumvent this limitation de-
tailed below. The same holds for the DELETE operation. For CoN-
TAINS and SEARCH, a VS table cannot validate the identity of a

Such a key-value pair can, for exam-
ple, be a g-gram used as key and a
genomic position as payload.

(42,23)

17,7)

h(47)

[T] -1

Figure 3.9: Illustration of a key value
store. An item x = (47,11) where 47
is the key and 11 is the payload item,
is inserted into a hash table T. The
hash address for x is computed as

h(k) = |T| — 1 and is therefore inserted
at T[|T| —1].

query and might yield false positive results. This is the case for col-
liding items h(x) = h(x"),x # x': If x is not in the table, but x’ is,
ConTAINSs(x) would falsely return true.

The main advantage of VS tables is their memory efficiency.

Since keys do not need to be explicitly stored, the memory footprint

of a VS table is about half that of a KVS table. This makes them
suitable for scenarios where neither validation of keys nor resizing
the hash table is required.

Given these two designs, KVS are clearly more flexible which is
indicated by their presence in virtually all modern programming
languages. VS tables allow a more concise and memory efficient
implementation, which can be required for applications that need
to handle large amounts of data. Within some limits, VS tables
can retain some of the properties normally limited to KVS. This
requires using a two-way hash function so that hash keys can be re-
computed from the hash address and in turn retains all advantages
of a KVS table. This comes with two downsides:

1. Using a two-way hash function severely limits the choices of
possible (universal) hash functions. Consequently, it might be
hard to find a suitable hash function with the desired properties.

2. To be unique, a two-way hash function needs to maintain |D| <
|C|. This limits the amount of possible keys, since with growing
D the size of the hash table also needs to grow.

The second restriction can be dealt with by using quotienting, i.e.
by storing a part of the hash value within the hash table entries.

3.2.3 Quotienting and Packing

As outlined by Knuth4> the quotienting technique describes saving
a part of the hash value as part of the hash table entry. This allows
choosing a smaller hash table without restricting the codomain

of the hash function. As above, starting from a tuple x = (k,v)
where k € D, we compute a hash value /(x) to use as hash address
for storing v. However, we do not use h(x) = y as hash address
directly, but using a function

5(y):C = (AxR)

we derive two values: an address a € A and a remainder4® r € R.
Given these values, the original hash value y (or even the key x)
can be restored. An example for such a function is to interpret the
hash value as a bit vector and split up the bits (see Figure 3.11) at a
specific point.

Note that given an identity hash function or a translation, like
integer encoding, x can be restored. For most non-trivial hash func-
tions, collisions between keys cannot be resolved and hence only
the original hash value y = h(x) can be restored. This is enough

HASHING IN BIOINFORMATICS 53

23

[T] -1

Figure 3.10: Illustration of a value
store. An item x = (47,11) is inserted
into a hash table T. The hash address
for x is computed as h(k) = |T| —1
and therefore the value 11 is saved at
T[|T| —1].

4 Knuth, The Art of Computer Program-
ming: Sorting and Searching, 1997.

4 Depending on context also called a
fingerprint. We avoid that term since
it is also used in the context of locality
sensitive hashing.

h(43) = 101011,
1010, 11,

a=101011, =3
r= 11, =10

Figure 3.11: Illustration of quotienting
using the identity hash function and
6-bit values. All numbers without the
subscript, suffix are base 10 numbers.
The address (a) is computed by using
the highest four bits of the hash value
y, while the remainder (r) comprises
the lowest two bits.

54 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

to allow resizing for use with dynamic hash tables, if the modulo
scheme described above is used, since new hash values can be de-
rived from the original value.

To restore y = h(x), we need an inverse function

S (AxXR) = C,

so that for (y) = (a,r) we have §~!(a,r) = y. For the example
given above, this would mean appending the two bit vectors, as
shown in Figure 3.12.

Since a can be easily derived from the position in T, only 7 needs
to be stored within the table in one of two ways:

e As part of a tuple (r,v), as a separate number, or
® encoded as part of the value.

The former option is straight forward, but comes at the cost of
memory efficiency due to fixed size data types. During implemen-
tation, both remainder and value are likely stored as integer vari-
ables, like u8, u32, or u64. Especially when the remainder is small,
like the two bits illustrated in Figures 3.11 and 3.12, some bits of
the saved integer number might not be used. Even when using an

8 bit integer, 75% of the bits are never used. While this can be miti-
gated with strategies like using word packing, these introduce more
computational overhead.

However, it is possible that the values to be stored suffer from
the same effect, i.e. the possible values do not fully saturate the
data type (for example 32-bit integers). In this case, the remainder
can be encoded as part of a stored value v’ using a technique sim-
ilar to the inverse quotienting function detailed above. By limiting
the possible values v to [2"], where 2™ is the maximal size of the
data type used for hash table entries and p is the maximal length of
the remainder in bits, we can define a packing function:

P:(VxR)— [2"]

Ylo,r)=r-2""7F +v (3-4)

This packing function ¢ encodes the remainder in the two highest
bits of the result and fills the lower 30 bits with the value. Note that

N

b?a
&7"& ¢
< N

h(x) =x
5 Ya,r)=a-22+r

a= 1010 ,=3
r= 11, = 10
101011, =43 =y

Figure 3.12: Illustration of inverse
function to restore hash values from
quotiented hash addresses using

the identity hash function and 6-bit
values. All numbers without the
subscript, suffix are base 10 numbers.
The original hash value y = h(x) can
be restored by concatenating the bit
vectors, i.e. shifting a two bits to the
left (multiply by 22) and then add .

Figure 3.13: Two possible packings

of 32-bit integers. The number of bits
allocated to a segment of the resulting
value is denoted by white numbers.
Displayed are the result of the packing
function described in Equation 3.4
(top) and of a more complex packing
function (bottom, encoding four
different values in addition to the
remainder).

this is only one possible function to encode the remainder. Using
this packing technique, additional information can also be added
to the value in more elaborate schemes (see Figure 3.13). In other
words, a tuple v = (v, ..., v,) of values and the remainder can be
combined into a single value for efficient storage in the table.

When used for quotienting, such a packing scheme requires a

tradeoff between the size of the remainder (bigger remainders allow

the use of smaller hash tables) and the size of the payload, i.e. the
size of all encoded values.

For some use cases it is possible to further reduce the memory
footprint of the table by not saving the complete remainder. This of
course prevents restoring the original hash value, since irresolvable
collisions are introduced. Nonetheless, if exact verification is not
required, this approach can be used to maintain a larger payload to
remainder ratio.

3.2.4 Bloom Filter

A special kind of hash table used to answer membership queries
are bloom filters.#”

Definition 3.2.1. A Bloom Filter I3 with error rate p, comprises a

bit array with n bits (initially all 0) and k hash functions. If a key x is

contained in B, the bits Bj,i € { hj(x) | j € 1,...,k} areset to 1.
We denote the bloom filter that contains all items from a set A as

B(A).

To insert a key x¢, hash values are computed using each hash
functions and the respective bits are set to 1. When querying a
bloom filter with a key x4, the bit positions of x; are computed and
used to index the bit array. If all entries for x; are 1, i.e. if

Bipy (x)) = LA Bliyay)) = LA ABp () = 1

holds, x; is contained in B. An example for this can be found in
Figure 3.14.

There is a probability p, that x; € B is a false positive, i.e. x;
is not actually contained in B. This occurs, if all relevant bits for
x1 have been set by other keys, which depends on the size of the
bit array, the number of inserted keys and the number of hash
functions used. For a bloom filter with # bits, k hash functions, and
m inserted elements, the false positive rate

1 mk
p= (1-(1—n>)zl—e_k”‘/”

is minimized by choosing k = In2 - (n/m) hash functions.#®
There are several variants of bloom filters available which im-
prove on different aspects of the concept. Counting bloom filters,

for example, maintain a counter for each slots to count occurrences
of keys*9.

HASHING IN BIOINFORMATICS 55

4 Bloom, “Space/Time Trade-Offs in
Hash Coding with Allowable Errors”,

1970.

B
0
1 .
h L
L hay
hy
X0 — X1
BN
[l I
] n—1

Figure 3.14: Illustration of a bloom
filter with three hash functions con-
taining the key x¢. Hash addresses
computed by the hash functions hy, hy,
and 3 are denoted by arrows; 0-bits
are denoted by empty slots. The key
X1 is not contained in B. While the bits
for hy(x1) and h3(x1) have been set to
1 (teal arrows) by xo, h; points to an
empty slot (light gray arrow).

Bonomi et al., “An Improved Con-
struction for Counting Bloom Filters”,
2006.

4 Fan et al., “Summary Cache: A Scal-
able Wide-Area Web Cache Sharing
Protocol”, 2000.

56 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

3.3 Collision Resolution

Until now, we omitted details about collision resolution strategies,
which are as crucial to an efficient hashing algorithm as a good
hash function. As mentioned above, the term collision describes
two different keys xp # x1 which receive the same hash value
h(xg) = h(x1). When using the hash value as hash address directly,
these keys would map to the same slot of the underlying table

T. Collision resolution describes strategies to resolve these cases,
which can be categorized into three classes:

e Perfect hashing, which prevents collisions in the first place by
designing a hash function tailored to a specific input set.

* Closed addressing, which manages a data structure for each slot
of T that can take up several values.

¢ Open addressing, which allows placing entries in one of multiple
positions within T.

The collision resolution strategy is the main influencing factor on
the run time of a hash table, both asymptotically and practically.
For example variants of cuckoo hashing offer seaArcH in O(1) time,
but can generate a large number of cache misses, due to their use

of multiple hash functions.>® Combinations of these strategies are 5 Erlingsson, Manasse, and McSherry,
“A Cool and Practical Alternative to

al ible. Whil rfect hashing is restricted to ver ific u
SO possible € pertec S g 15 restricted 1o very spectlic use Traditional Hash Tables”, 2006.

cases, combinations of closed and open addressing strategies are
used for example with (k, p)-cuckoo hashing.

Deciding on a collision resolution strategy requires careful con-
sideration of the following questions:

* How much memory is available?
¢ Are run time or cache efficiency restrictions required?
¢ Should the hash table support deletions?

® Are there domain specific restrictions? For example: Are unre-
solvable collisions acceptable or not?

3.3.1 Collision Prevention: Perfect Hashing

In contrast to other collision resolution strategies, the main notion

of perfect hashing5” is to construct a hash function that does not 5! Fredman, Komlés, and Szemerédi,
“Storing a Sparse Table with O(1)

collide for a given static set of keys. In other words: For a given :
Worst Case Access Time”, 1984.

static set S of keys, find a hash function that injectively maps the
keys to an integer range 7, which guarantees that search queries
can be completed in worst case run time O(1). Since many biolog-
ical problems can have large possible key sets, we will only briefly
describe this technique for completeness’ sake.
Perfect hashing is described well by Cormen et al.,>*> who give 52 Cormen et al., Introduction to Algo-
rithms, 2009, Chapter 11.5.

an example of a perfect hash function using universal hash func-
tions (cf. Universality, Independence, and Min-Wise Independence,

p- 40) and two nested hash tables. Since constructing these hash
tables can be memory intensive>3, minimal perfect hash function
(MPHEFs), strive to reduce the memory footprint of perfect hash
functions.

A recent example of a minimal perfect hash function (MPHF)
has been given by Limasset et al.>* Their BBHASH algorithm uses a
series of cascading bit arrays A; with corresponding hash functions
h;. At the beginning, all keys k € S are hashed into Ay using hy,
with an additional temporary array used to count collisions. Each
slot of Ay that received a unique key is marked with a 1, all other
entries with o. After this step, a new and smaller array A, with
a new hash function I, is created and the procedure is repeated.
When all keys have been placed, all arrays Ag, Ay, ..., Ajast are con-
catenated into an array A, as illustrated in Figure 3.15. Using A, the
hash value of k can be computed as the rank of its corresponding 1
entry in A (i.e. the number of 1-bits before its own entry).

Ay
1|k
hy — °
—> 0
0 | kyky
g o | 5
1| k,
0 | kyks
A Ay A,

A

|
1 (4)‘ 0 ‘1 (5)‘1 (6)‘ A (rankof '1’s are indicated in parenthesis)

ho(kz) ha(ks) hy(k2)

1[0 00 e ohnlo

While worst case constant time access is tempting, this technique
requires that all keys are known prior to computation. This can
be a very limiting factor, since if unexpected keys are introduced
at a later time, they either need to be removed with a set query
test or they introduce false positives via collisions. It is possible, to
compute a MPHEF for the whole set of possible keys, i.e. all g-grams,
but this can require an enormous amount of memory. For example
computing a MPHEF for the set of all 19-grams, which is the largest
possible with current technology,>> requires about 600 GB of RAM
and 36 hours.5® When using longer g-grams with the possibility of
unexpected new keys, more flexible approaches are required.

3.3.2 Collision Resolution by Closed Addressing

Closed addressing describes all techniques that store more than
one item in a slots of the array T using a secondary data structure.
The most notable, and most basic, implementation of this pattern
is to make each slot of the hash table a linear list of items. When a
new key x is inserted, create a new list with one item and insert it
into T: T[h(x)] = [x].57 If a collision occurs, i.e. if for a given slot

HASHING IN BIOINFORMATICS 57

53 The second order hash tables pro-
posed in Cormen’s example are of size
|T| = k2, where k is the number of
keys inserted into the second order
table.

54 Limasset et al., “Fast and Scalable
Minimal Perfect Hashing for Massive
Key Sets”, 2017.

Figure 3.15: Illustration of the BB-
Hasn algorithm, showing a MPHF
for the key set S = Fy = {ky,...,k¢ }.
The keys ky, k, ky, ks could not be
uniquely mapped to Ay, resulting in
O-entries at positions Ap[2] and Ap[5],
and are inserted into Aj in the next
step. At the bottom, the combined
array A is shown. To find the hash
value for ky, the unique 1-bit for k; is
found at position A[10] and the rank
for position 10 (shown in braces) is
computed. For this MPHF, the hash
value for kj is h(kp) = 5. This figure
has been derived from Figure 1 in the
paper of (Limasset et al., “Fast and
Scalable Minimal Perfect Hashing for
Massive Key Sets”, 2017), released
under CC-BY 3.0 license.

55 Limasset et al., “Fast and Scalable
Minimal Perfect Hashing for Massive
Key Sets”, 2017.

56 Note, that while this case could
also be solved by integer encoding,
other key sets might not be easily
enumerable.

57 Here we use square brackets to
denote a list data structure. [] denotes
an empty list, [x] a list with only the
item x, and [xo, x1, x2] a list with three
items.

https://creativecommons.org/licenses/by/3.0

58 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

there already is a list, append the item to said list. A sequence of
colliding items (x;)? ,, h(x;) = a would result in the list T[a] =
[x0, ..., xn]. Through this, colliding items form chains in each slot,
lending this technique its name: collision by chaining. This behavior
is apparent in Figure 3.16.

T Figure 3.16: Illustration of a hash table
0 T with collision by chaining. Most
1 el @) buckets are empty. In bucket 1, the
— pair (42,23) is stored in a list with one
KxV - element. The item (23,17) currently
] being inserted hashes to the same
bucket as (13,7) and is appended to

X k v . ’
O¥>(23/ 17) - this buckets list.

h(23) oI (13,7) -

ITI-1

The main downside of using a linear list is the worst case run-
time, as described by Cormen.58 When all items are hashed to the 58 Cormen et al., Introduction to Algo-
same slot, the hash table offers no improvement over searching in rithims, 2009, Chapter 11.2.
a linear list. For this unlikely case the worst case run time is O(n),
where 7 is the number of inserted items. When a universal hash
function is used, both successful and unsuccessful SEARCH opera-
tions can be decided in O(p) time, where p is the hash table load.
Since for a hash table using collision by chaining with linear lists
there is no maximal number of entries in the table, the table load
p is defined as the average length of the lists. Using universal hash

function, the hash table load is expected to be 59 Cf. Universality, Independence, and
" Min-Wise Independence
P

where 7 is the number of items and |T| is the number of slots. Both

INSERT and DELETE can be performed in O(1) time, if the lists are

doubly linked.%° ¢ Cormen et al., Introduction to Algo-
Other variants of closed addressing use different data structures rithims, 2009, Chapter 11.2.

within the slots, offering different run time properties. However,

the employed data structure always influences the INSERT and

DELETE operations. If, for example, a (fully balanced) binary search

tree is used in each slot, the worst case runtime for SEARCH is

reduced to O(logn), while INSERT and DELETE also take O(logn)

61

time. ¢ Cormen et al., Introduction to Algo-

To retain worst case constant time access, the size of the sec- rithms, 2009, Chapter 12.3.
ondary data structure can be restricted. An example of this would

be a paged hash table, where each slot contains an array, called a

page (or bucket), with a constant number p of slots. While this re-

duces each of the INSERT, SEARCH, and DELETE operations to a

constant run time of at most O(p), it introduces a new problem:

Pages can be full. Unless we are willing to accept that the table can

be full and we cannot insert new items, we either need to choose p

so that this event is unlikely or employ another collision resolution

Strategy INSERT SEARCH DELETE

Worst Case
(Doubly) Linked List O(1) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)
Static Pages O(p) O(p) O(p)

Average Case

(Doubly) Linked List O(1) O(p) O(p)
Binary Search Tree O(logp) O(logp) O(logp)
Static Pages O(p) O(p) O(p)

strategy. However, making collisions unlikely requires p > p, which
would be less efficient then directly using lists. The advantage of
this strategy is a guaranteed memory footprint of p - |T| times the
size of the saved data type.

Since the performance of closed addressing strategies depends
on the size of the secondary data structures, it can be influenced
by performing a REs1zk. By increasing the number of available
slots (|T|), while maintaining a constant number of already inserted
keys (n), the load factor is reduced, resulting in better expected
performance. The performance of a REs1ZE, again, depends on the
used secondary data structure.

Another downside of collision resolution by closed addressing
is its poor cache performance due to dynamic memory allocation.
Since the secondary data structures can not generally assure that
colliding items uphold memory locality, additional cache misses
might occur, when resolving collisions. Broder and Mitzenmacher®?
proposed an implementation using static pages, which offers better
cache performance, but requires a costly RESIZE, once a page is
full. Askitis described a variant of collision by chaining, called array
hash, which replaces lists with resizable arrays.®3 If an array is
resized, for example grown to insert a new item, it is reallocated
to remain memory local. While this approach is cache efficient, it
sacrifices efficiency of INSERT and DELETE operations.

Collision resolution by open addressing does not allow expected
constant time access for SEARCH operations, as illustrated in Ta-
ble 3.1, but offers other advantages: Inserting elements is always
possible (for dynamic secondary data structures) and the number
of slots can be chosen smaller than with other strategies, since each
slot can contain multiple items. As noted above, combining closed
address and open address strategies is possible, as we will address
later in this section.

3.3.3 Collision Resolution by Open Addressing

In contrast to closed addressing, which keeps all colliding keys in
one place, open addressing strategies redistribute colliding keys

HASHING IN BIOINFORMATICS 59

Table 3.1: Runtimes for closed ad-
dressing collision resolution. Here
the parameter p denotes the expected
number of items per slot. We omit
the CoNTAINS operation, which is
identical to SEARCH and the REsIZE
operation, which depends on the
INSERT operation.

62 Broder and Mitzenmacher, “Using
Multiple Hash Functions to Improve IP
Lookups”, 2001.

6 Askitis, “Fast and Compact Hash
Tables for Integer Keys”, 2009.

60 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

throughout the hash table. If a collision occurs, a sequence of alter-
native addresses, called a probe sequence, is computed, until a free
slot is found.®* We will describe the basic probing strategies linear
probing, quadratic probing, and double hashing as described by
Cormen et al.,% followed by cuckoo hashing and hopscotch hash-
ing, which guarantee constant time lookups.

Linear Probing: The most basic open addressing strategy is linear
probing, where in case of a collision, we evaluate the following slots
until:

¢ A free slot is found, and we can insert the key, or

¢ we have evaluated all slots without finding an empty one and
terminate.

For two colliding keys x,x’ € D h(x) = h(x') = a and a hash table
T, where T[a] = x has already been inserted, we evaluate the slots

d=a+1,d=a+2,...,d =a+|T|—1 mod |T|

until we find an empty slot and insert T[a’] = x’. An example for
such a probe sequence is illustrated in Figure 3.17.
More formally, we use an address function

a(x,i) = (h(x) +i) mod |T| (3-5)

to compute hash addresses for a key x € D and a probe number
i € [|T|]. And during the INSERT operation we insert T[a(x,)] in
the first free slot.

When retrieving an item using SEARCH (x), we follow the same
probe sequence, checking all items along the way. Assuming the
hash table does not support the DELETE operation, the query can
be terminated if either:

e the item was found, or
¢ we find an empty slot.

Encountering an empty slot means that the probe sequence was
exhausted, without encountering x.

Linear probing is attractive due to its simplicity and cache ef-
ficiency. Since colliding keys are stored close in memory, a (pre-)
fetched cache line is likely to contain all colliding items. The down-
side of this is, that if two keys with similar hash addresses receive
many collisions, their probe sequences can overlap and the result-
ing primary clustering® of hash values negatively affects SEARCH
times. In the worst case, both INSERT and SEARCH need to eval-
uate O(n) slots, one for each inserted item, which again demotes
the hash table to a linear list. However, Patrascu and Thorup have
shown that expected constant time performance can be achieved by
using a 5-independent hash function.®” Variants of this approach
change the step size, to avoid its susceptibility to clustering.

% Cormen et al., Introduction to Algo-
rithms, 2009, Chapter 11.4.

¢ Cormen et al., Introduction to Algo-
rithms, 2009, Chapter 11.4.

T

0

(42,23) | 1

(17,7) | 2

a(47,0) 3

N .

(47,11)

IT] -1

Figure 3.17: Illustration of collision
resolution by linear probing. The item
x = (47,11) receives the address
a(x,0) = 1, which is already filled.
Following the probing sequence
(shown as teal arrows) a(x,1) = 2,
which again is a filled bucket, to

a(x,2) = 3, we find an empty bucket to
insert x.

 Cormen et al., Introduction to Algo-
rithms, 2009, Chapter 11.4.

67 Patragcu and Thorup, “On the k-
Independence Required by Linear
Probing and Minwise Independence”,
2010.

Quadratic Probing: One way to avoid primary clustering is to in-

68 as illustrated in

crease the step size beyond a linear step size,
Figure 3.18. The address function for the quadratic probing strategy
combines a linear and a quadratic component, both weighted with

a constant value respectively:
a(x,i) = (h(x) + c1i + c2i%) mod |T| (3.6)

This approach ensures that the probe sequences for different
keys diverge, the further we follow them. However, items receiv-
ing an identical first address a(x,0) = a(x’,0) also have identical
probe sequences, resulting in secondary clustering. Also, note that
the constants c; and ¢ need to be chosen carefully to ensure that
the whole hash table can be reached.®?

While preventing primary clustering, quickly moving away from
the initial hash address sacrifices memory locality and in turn cache
efficiency. Worst case INSERT and SEARCH remain O(n), if ¢; and
¢y are chosen accordingly.

Double Hashing: To avoid secondary clustering, double hashing
employs a second hash function to determine a step size for a linear
probe. This is similar to choosing ¢ = 0 and c¢; depending on x
using quadratic probing: Using the address function

a(x,i) = (h(x) +i-H(x)) mod |T] 67)

where /' is a hash function with the same domain as /. An exam-
ple for double hashing is given in Figure 3.19. For optimal results,

all items from the codomain should be relative prime to the size of
T.7°

As for the other probing strategies, the worst case time for both
INsERT and SEARCH is O(n). However, it is also possible to achieve
constant time access using open addressing.

Cuckoo Hashing Basic cuckoo hashing, as described by Pagh and
Rodler,”* introduced the idea to remove items from the hash ta-
ble during collision resolution. Like the bird lending its name to
this data structure puts its own eggs into other birds’ nests, with
cuckoo hashing the INSERT operation removes an already entered
item and places it elsewhere. Using two hash tables T7 and T, and
corresponding hash functions /1 and hy, an item x can be placed
either at Tq[h;(x)] or at Tp[hy(x)]. If the respective slot is already
full in T, the item y that is currently occupying the slot is removed
from the table, and T;[h1(x)] = x is inserted. To assure that the now
unplaced item y is still present in the table, we try to insert it into
T, using its second hash function. We test if T, [, (y)] is empty, and
repeat as above: Insert y into T, if another item z was pushed out
for this, try inserting it with its other hash function. This continues
until either:

¢ an empty slot is discovered, or

* a cycle of replacements is detected.

HASHING IN BIOINFORMATICS 61

% Cormen et al., Introduction to Algo-
rithms, 2009, Chapter 11.4.

T
0
(42,23) | 1
2
1(47,0) 7 |3
x
(47,11)
7
IT| -1

Figure 3.18: Illustration of collision
resolution by quadratic probing using
the constants ¢; = ¢; = 1. The item
x = (47,11) receives the address
a(x,0) = 1, which is already filled.
Following the probing sequence
(shown as teal arrows) a(x,1) =
1+ (1-1) + (1-1%) = 3, which
again is a filled bucket, to a(x,2) =
1+ (1-2) + (1-22) = 7, we find an
empty bucket to insert x.

% Cormen et al., Introduction to Algo-
rithms, 2009, Chapter 11.4.

7° Cormen et al., Introduction to Algo-
rithms, 2009, Chapter 11.4.

T
0

(42,23) | 1

a(47,0)
(17,7) | 4
x
(47,11)

7
T -1

Figure 3.19: Illustration of collision
resolution by double hashing. The
step size, determined by the seconary
hash function is #’(x) = 3. The item
x = (47,11) receives the address
a(x,0) = 1, which is already filled.
Following the probing sequence (teal
arrows) a(x,1) = 14+ 1 -1 (x) = 4,
which again is a filled bucket, to
a(x,2) =1+2-h'(x) = 7, we find an
empty bucket to insert x.

7t Pagh and Rodler, “Cuckoo Hash-
ing”, 2004.

62 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

If no insertion could be performed, the hash table needs to be re-
hashed. In practice, detecting cycles is hard, and this is solved
using a maximum number of lookups after which the insertion
process is terminated. The probability of cycles depends on the
properties of the used hash functions. Both /11 and hy need to be at
least O(1g|T|)-independent and have to be chosen independently,
however this bound is not tight.”*> Cohen and Kane have shown,
that 5-independence (alone) is not sufficient.”3

The main advantage of a cuckoo hash table is that it can perform
lookups in worst case constant time. While the INSERT operation,
as described above, can create cycles which grow with higher ta-
ble loads, an item can only be present at exactly two positions: at
Ti[h1(x)] or at Ta[ha(x)]. Hence, for a SEARCH operation, exactly
two positions within the tables need to be queried, but this comes
at the cost of memory efficiency. Classical cuckoo hash tables are
only efficient below a table load of p < 0.5, however, a large collec-
tion of variants of cuckoo hash tables address this issue.

Cuckoo hash tables can use only one table T and both hash func-
tions h; and hy map to the same codomain, i.e. the address space of
T. Pushed out elements are reentered at a different position of the
table.74

Another popular modification reduces the number of replace-
ment chains by modifying the INSERT operation. Instead of push-
ing out the item y in the case that T[h;(x)] = y, as described in the
example described above, we first use the second hash function to
try to place x. If T[hy(x)] is still free, x is inserted, otherwise one of
the two elements is pushed out.

Cuckoo hashing has also be generalized to work with a larger
number of hash functions and consequently more possible hash
positions for each item.”> This technique is called k-way or k-ary
cuckoo hashing.

Bucketized (or paged) cuckoo hashing”7® combines open and
closed addressing strategies. Each slot of T, in this case often called
a page’’, can hold a fixed number of items, similar to collision by
chaining with fixed size arrays. Items are inserted until a page is
full. Once a page is full and is to receive another item, an item cur-
rently residing in this page is selected (for example chosen at ran-
dom) and pushed out. This increases the number of collisions that
can be tolerated, before rehashing is required, but again comes at
the cost of a larger memory footprint. A modification of bucketized
cuckoo hashing which uses overlapping pages and can achieve even
higher load factors.”®

Cuckoo hash tables can be augmented to be more robust against
singular colliding items. Consider a set of three keys x, x1, x2, two
(deliberately malevolent) hash functions k4, hy with

72 Cohen and Kane, “Bounds on the
Independence Required for Cuckoo
Hashing”, 2009.
73 Cohen and Kane, “Bounds on the
Independence Required for Cuckoo
Hashing”, 2009.

74 Pagh and Rodler, “Cuckoo Hash-
ing”, 2004; Drmota and Kutzelnigg, “A
Precise Analysis of Cuckoo Hashing”,
2012.

75 Fotakis et al., “Space Efficient Hash
Tables with Worst Case Constant
Access Time”, 2003.

76 Dietzfelbinger and Weidling, “Bal-
anced Allocation and Dictionaries with
Tightly Packed Constant Size Bins”,
2007.

77 These are also commonly referred to
as buckets. We avoid using the term
bucket here to avoid confusion with
normal hash table slots.

78 Walzer, “Load Thresholds for
Cuckoo Hashing with Overlapping
Blocks”, 2018.

and a cuckoo hash table with one array, where a and b are ad-
dresses within T. When x(and x; are already in the table, xp
cannot be entered without rehashing. While the number of these
malevolent cases is low, given a good choice of hash functions,

a small amount of keys can force a REs1zE operation. To avoid
this, a secondary data structure known as a stash can be used.”?

A stash can, for example, be a linked list, which collects all other-
wise unplacable items. If an item cannot be inserted into T, it is put
into the stash instead. While a stash allows to achieve higher table
loads, it means sacrificing worst case constant access time, since we
might be forced to search the stash.

Finally, all strategies described above can be combined. Most
notably, the combination of k-ary with bucketized cuckoo hashing
has proven to achieve high load factors while retaining worst case
constant access time.? We denote this combination as (k, p)-cuckoo
hashing, where k denotes the number of hash functions used and p
describes the number of items per page. Usually these hash tables
are implemented using only one table. The achievable load factors
for both k-ary cuckoo hashing and bucketized cuckoo hashing
quickly rise above p = 0.5 of basic (2,1)-cuckoo hashing, as shown
by Walzer®'. However, when combining these techniques, valid
load factors quickly approach p =~ 1, even for small numbers of k
and p.

We explored optimal assignments to a (3, p)-cuckoo hash table
by computing a cost-optimal matching.8> Using three hash func-
tions to place entries results in up to three accesses into T, each of
which can be expected to cause a cache miss. By increasing the frac-
tion of entries placed using their first or second hash function, we
can reduce the amount of cache misses required for CONTAINS and
SEARCH operation.

We define two vertex sets of a bipartite graph, the first contain-
ing pages, the second comprising items to insert. Hash functions,
or more precisely the pages into which an item can be placed, are
represented by weighted edges. Thus, for each item x there are
three edges pointing to three pages that x can be assigned to. Using
the number of hash functions as costs, e.g. the first hash function
receives cost 1, the third cost 3, we compute the optimal hash func-
tion to store each item by finding a cost-minimal path from all
empty pages to all items we want to insert. Such an augmenting
path, which we compute using a combination of the Bellman-Ford
and Hopcroft-Karp algorithms, represents a chain of replacements
required to insert the new item with minimal costs. An example for
such paths for one item can be found in Figure 3.20. A replacement
constitutes removing an already inserted item from a page and
reinserting it using a more expensive hash function, to make room
for another entry. For more details refer to our paper®3 describing
the approach in detail.

HASHING IN BIOINFORMATICS 63

79 Kirsch, Mitzenmacher, and Wieder,
“More Robust Hashing: Cuckoo
Hashing With a Stash”, 2010.

% Erlingsson, Manasse, and McSherry,
“A Cool and Practical Alternative to
Traditional Hash Tables”, 2006.

81 Walzer, “Load Thresholds for
Cuckoo Hashing with Overlapping
Blocks”, 2018, Table1.

82 Zentgraf, Timm, and Rahmann,
“Cost-optimal Assignment of Elements
in Genome-scale Multi-way Bucketed
Cuckoo Hash Tables”, 2020.

8 Zentgraf, Timm, and Rahmann,
“Cost-optimal Assignment of Elements
in Genome-scale Multi-way Bucketed
Cuckoo Hash Tables”, 2020.

64 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

1 2 3 4
Pages
3 2
Hash
Functions
Items @ @

Hopscotch Hashing: Continuing collision resolution by reallocation
of keys, the core idea of hopscotch hashing® is that an entry x with
hash address h(x) = a is guaranteed to be stored in one of the slots
[a,a + H — 1] for a constant value of H. To assure this property,
entries in the hash table can be moved forward inside their size H
neighborhood to make room for other colliding items.

The inserted values are stored in a data array, that contains C
entries, where C is the codomain size of the hash function used. In
addition to this, we have to maintain a data structure that keeps
track of where values have been moved. This is realized with a
bitmap array, which contains an H bit vector for each position in
the data array.®>

When inserting an element x with h(x) = a, there are three
possible options:

1. The slot a is empty: Insert x into the table, set the first bit in the
bitmap of position i.

2. The slot a is full, but an empty slot b witha < b <=a+ H —
1 exists. Insert x at position b and set the (b — a)-th bit of the
bitmap of a.

3. The slot a is full and its hopscotch neighborhood is full as well,
i.e. the next empty slot b is at a position that is more than H slots
away.

* Find an item that can be moved into position b to free up a
slot closer to a.

¢ If no such item exists: RESIZE

e If such an item exists: Move it to position b (updating bitmaps
for both positions) and take the freed up position as the new
b.

* Repeat from above (find a new element to move) until either
the items can be inserted, or a RESIZE is required.

Through this, empty slots skip towards the insert position, lend-
ing this hashing strategy its name derived from the popular chil-
dren’s game. The structure of a hopscotch hash table with three
keys inserted and H = 3 is illustrated in Figure 3.21.

When checking if a value x is in the hash table, first the bitmap
array is queried at position h(x) = a to get all possible positions

Total Path Costs

Figure 3.20: There are two possible
paths to insert the new item x:
Inserting it into page 5 at a cost of 3,
or moving x; from its first choice (page
3) to its second choice (page 2) at costs
—1+ 2 and inserting x; into page 3

at cost 1. The teal path is cost-optimal
and is therefore selected to insert

x+. This illustration is derived from
Figure 2 of our publication: Zentgraf,
Timm, and Rahmann, “Cost-optimal
Assignment of Elements in Genome-
scale Multi-way Bucketed Cuckoo
Hash Tables”, 2020.

% Herlihy, Shavit, and Tzafrir, “Hop-
scotch Hashing”, 2008.

8 This can be implemented using in-
teger numbers to save memory. This
approach is used by the implementa-
tion in libhhash.

https://github.com/coriolanus/libhhash/blob/master/hhash.c

Data

Bitmaps

Data

Bitmaps

Data

Bitmaps

HASHING IN BIOINFORMATICS

e insert xg at h(xp) =2
e insert xq at h(x;) =3
1 2 3 4 5
a b
00 00

e insert x; at h(xp) =2
e Search for a free bucket between h(x;) and h(xp) + H — 1
e Put x, in bucket 4 and set the third bit in the bitmap

0 1 2 3 4 5
X0 X1 X2
4 4 A
V’ I V’
10 100 000

The dashed lines visualize the information encoded in the
auxiliary array. keys with hash value 2 can be found in bucket
2 (denoted by the first 1-bit) and bucket 4 (denoted by the 1-
bit at position 3), while bucket 3 does not contain a key with

hash value 2.

Figure 3.21: Illustration of a hopscotch hash table with H = 3. Three insert operations with the keys xq, x1, and x, with the

respective hash values 2, 3, and 2 are performed.

65

66 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Strategy INSERT SEARCH DELETE
Worst Case

Linear probing O(n) O(n) O(n)
Quadratic probing O(n) O(n) O(n)
Double hashing O(n) O(n) O(n)
Classic cuckoo hashing O(n) 0(2) 0(2)
(k, p)-cuckoo hashing O(n) O(kp) O(kp)
Hopscotch hashing O(n) O(H) O(H)

Linear probing (5-ind.) O(1) o(1) o(1)
Classic cuckoo hashing O(1) 0(2) 0(2)
(k, p)-cuckoo hashing O(1) O(kp) O(kp)
Hopscotch hashing o(1) O(a) O(u)

of x in the data array. Then, all positions in the data array pointed
to by the bitmap are accessed and evaluated. Due to this design,
a SEARCH call is expected to cause exactly two cache misses. The
first, when accessing the bit vector to get the neighborhood infor-
mation, followed by the access into the storage array, which causes
the second access to an uncached page. Since all positions in which
the value can reside are within the [a,a + H — 1], all possible po-
sitions fall into the same cache line. As long as w - H < L holds,
where w is the size of one entry in the hash table (in bits) and L is
the cache line size (in bits).

Asymptotically, SEARCH and DELETE operations on a hopscotch
hash table can be performed in O(H) time, since there are only
H possible positions at which a query item can be located. While
the INSERT operation requires can create a large chain of displace-
ments, and finally trigger a RESIZE, the expected time required for
INSERT operations is constant.%® As linear probing, hopscotch hash-
ing is affected by primary clustering, which can ultimately result
in several sequential resizes. An example for this is illustrated in
Figure 3.22.

3.3.4 Runtimes of Open Addressing Strategies

In conclusion, open addressing collision resolution offers constant
time queries, similar to perfect hashing. Runtimes for all discussed
strategies are aggregated in Table 3.2.

Deciding for a strategy is a tradeoff that needs to be informed by
the specific use case. Cuckoo hashing, especially the (k, p)—cuckoo
hashing variant, can offer constant time access, but with a rising
number of possible cache misses, as k rises. Hopscotch hashing
guarantees finding an item with exactly two cache misses, how-
ever this comes at the downside of being susceptible to primary
clustering.

Table 3.2: Runtimes for open address-
ing collision resolution. Linear probing
can achieve expected constant time
INSERT and SEARCH operations when
using a 5-independent hash function.
For cuckoo hashing, k and p are con-
stants denoting the number of hash
functions and slots per page respec-
tively. Constant times for INSERT
operations (AC) for cuckoo hashing
are amortized times. The constant H
for hopscotch hashing is the number of
successive slots an item can be stored
in. For the average case of hopscotch
hashing, « = 1+ ((e* —1—2p)/4)

is the expected number of items per
bucket, which is expected to be con-
stant. We omit the CONTAINS opera-
tion, which is identical to SEARCH and
the REs1ZE operation, which depends
on the INSERT operation.

8 Herlihy, Shavit, and Tzafrir, “Hop-
scotch Hashing”, 2008, Lemma 3.5.

HASHING IN BIOINFORMATICS 67

e insert xy at 3
e insert x1 at 2
e insert xp at 1

e insert x3 at 0

X3 X2 X1 X0

10 10 10 10

e insert x4 at 0

e next free slot is 4

e Collision — search for empty slots between b =4 and b — (H—1) =3
e Shift xy from 3 to 4

0 1 2 3 4 5
/—\
X3 X2 X1 X0
10 10 10 01 00

o Shift x; from 2 to 3

e Shift x, from 1 to 2

o 1 2 3 4 5
X3 X2 X1 X0
10 01 01 01 00

e insert x4 at 1

X4 X3 X2 X1 X0

11 01 01 01 00

e insert x5 at 1
e Cannot move x; any further — resize
o If the hash values do not change, insertion fails.

Figure 3.22: Example for failure to insert with hopscotch hashing due to skewed hash values. Each value can be put in one of
H = 2 bins, i.e. in this example a hash value can be moved at most one bin to the right. The content of the auxiliary array for each
bin is written below the bin.

68 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

In Bioinformatics, hash tables have many applications that range
from strong seeds for seed-and-extend alignment algorithms, g-
gram counting, set cardinality estimation, any many additional
tasks so that a complete discussion falls outside the scope of this
work. Instead, we will focus on the use of hash tables for sequence
similarity estimation. Contrary to the notion we held up during this
chapter, collisions may be beneficial, and can harnessed to deter-
mine how similar two sequences are. The chapter Computing and
Approximating Resemblance and Containment (p. 89) describes
the concept of locality sensitive hashing (LSH), i.e. the construction
of hash functions that return identical, or similar, hash values for
similar and identical keys. In the following chapter, we describe a
KVS hash table we developed based on hopscotch hashing, while
also reducing the number of cache misses per SEARCH operation to
one.

4
Reducing Cache Misses in Hopscotch Hash Tables

Previously, we described hopscotch hashing' as a method for open " Herlihy, Shavit, and Tzafrir, “Hop-
addressing collision resolution (cf. Section 3.3.3). One of the main scotch Hashing”, 2008.
advantages of hopscotch hashing is its cache friendliness during

collision resolution. A hopscotch hash table comprises a data ar-

ray, in which values or key-value pairs are stored together with

a bitmap array managing the positions of colliding entries. Keys

are stored either at their target address or in the following H — 1

slots, which have a high chance to reside in the same cache line.

Accessing this array can be expected to cause a compulsory cache

miss. However, a second compulsory cache miss is caused by in-

dexing the bitmap array to identify moved entries. We developed

a bit-packed hopscotch hash table (BPHT) that uses bit-packing in

combination with quotienting to allow SEARCH operations with as

little as one compulsory cache miss.

While other implementations® also interleave the hop infor- *Kim and Kim, “Enhanced Chained
and Cuckoo Hashing Methods for

mation with data information, for example through the use of C-))
Multi-core CPUs”, 2014; Elbayoumi,

structs as hash table entries, they allocate a fixed value of up to 64 “Strategies for Quality and Perfor-

hop bits. The implementation proposed by Kourtis et al.3 utilizes a mance Improvement of Hardware Ver-
. ification and Synthesis Algorithms”,

quotienting approach similar to our architecture, however, they do 2014

not leverage the power of bit-packing and cannot perform in-place 3 Kourtis, Ioannou, and Koltsidas,

resizing. “Reaping the Performance of Fast

NVM Storage with uDepot”, 2019.
4.1 Hash Table Architecture

To eliminate the second cache miss, we save the information of the
bitmap array in the data array alongside the stored values. We re-
alize this, while maintaining a resizable architecture, by employing
two techniques: quotienting and bit-packing (cf. Quotienting and
Packing, p. 53). Through quotienting, we avoid explicitly saving
keys and are still able to perform REs1zE operations. Bit-packing
allows us to encode different information, namely value, quotient-
ing remainder, and collision information, into one integer value.
However, this imposes a restriction on the kind of values we can
store.

The fundamental data structure of a BPHT is an integer array T
of size |T| = |A| + (H — 1) where A = [2%], a € N is the address
space of the quotienting function and H is the hopscotch neighbor-

70 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

hood size.# This array comprises A addresses to which entries can
be assigned and H — 1 additional slots at the end of the array that
serve as hopscotch neighborhood for the last H — 1 addresses. Re-
stricting hash table sizes to powers of 2 allows us to implement an
efficient quotienting strategy and efficient REs1ZE operation. While
the collision properties of this approach are not optimal,> we value
the speedup gained through efficient address computation higher.
We describe the modifications required for arbitrary hash table
sizes in the discussion. Additionally, the possible sizes of our hash
table depend on the amount of bits available to store remainders.
We discuss the used quotienting technique in more detail below,
since it interacts with caching behavior and architecture of RESIZE
operations.

We use an array of 64-bit (unsigned) integer values to realize T
and we require the codomain of the hash function h : D — C to be
C = [2%2]. This is not a hard requirement, as we will describe in the
discussion, but simplifies the architecture for both description and
implementation.

4.1.1 Bit-Packing

An empty BPHT consists of a 64-bit array initialized with zeros.
Into each entry of T we encode three different kinds of information:

¢ The payload of the entry, i.e. the value that is stored in the hash
table.

¢ The remainder of the quotienting function used to resolve soft
collisions.

e H bits used for collision resolution (both soft and hard colli-
sions), which are saved in the bitmap array of basic hopscotch
hashing. We will refer to these as hop bits from now on.

Recall that two entries that are assigned to the same slot but are still
distinguishable through their remainders are called soft collisions,
while different entries stored for the same address and remainders
are called hard collisions.

We allocate 32 bits to the payload value and the remaining 32
bits to administrative bits, namely remainder bits and hop bits.
Note that for specific use cases, fewer bits might be required for
the value. For example for xenograft sorting, where g-grams are
assigned to a host genome, a donor genome, or both, we only need
to assign a g-gram to one of three groups and hence only require
two value bits. While a variable number of value bits allows using
more administrative bits and therefore higher values of H or a
longer remainder, we restrict this implementation to a fixed number
of 32 value bits to simplify its description.

A visualization of this bit-packing layout can be found in Fig-
ure 4.1. Payload data is stored in the high 32 bits of the 64-bit value
(bits 32 to 64). Hop bits are stored in reverse order in the lower H

4 Notice, that we denote the set of
addressesas A = {0,...,2° -1}
which contains A = 2% = | A] different
addresses.

5Knuth, The Art of Computer Program-
ming: Sorting and Searching, 1997,
Chapter 6.4.

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES 71

Value Remainder Hop Bits Figure 4.1: Bit-packing layout of 64-bit

324 entries of a BPHT. The number of bits

allocated to the value (payload) and

32-H-t hop bits are constant, while the num-
Free Bits ber of remainder bits depends on the
Filled Remainder Bits hash table size and is decrease when a

RESIZE operation is performed.

Value Remainder Hop Bits Figure 4.2: Example of a BPHT with
- three inserted elements. Empty slots
except for the first and last slot are

0 ... 00000000 00000000 00000000 00000000 00000 000 .
not shown. Leading runs of zeros are
shown in gray to increase readability.
a ... 00101010 00000000 00000000 00000000 00111 011 Into this table the value 101010, was
a+l ... 00010111 00000000 OOOOOOOO OOOOOO10 01001 010 inserted at address a with remainder
a+2 ... 00010001 00000000 00000000 00000011 11111 000 r = 1115. The value 10111, was
inserted with a2 and r = 1001001, and
A+H-1 ... 00000000 00000000 00000000 00000000 00000 000 stored in slot a + 1. Finally, 10001,

was inserted with address a + 1 and

r = 1111111, and stored in slot a + 2.
The relative positions of entries to
their address is denoted by teal arrows

tarting f thei tive hop bit.
bits. The rightmost (least significant) bit denotes the slot itself, the slarting from Tetr fespective hop o1

bit at position 1 points to the following slot. With H bits assigned
to hop bits, the remaining 32 — H bits hold remainder information
of the quotienting function. Depending on the size of the remainder
space R of the quotienting function, the number of remainder bits ©
can vary between 0 for A = 232 and 32 — H for A = 2H. Remainder
bits populate the bit-positions H to H + t, where v = log, R is the
number of bits required to represent the remainder space of the
quotienting function. An example of a BPHT with H = 3, which
illustrates quotienting remainders saved using the bit-packing
scheme described above, is shown in Figure 4.2.

When we access entries in T, we can unpack the three parts of
an entry using efficient bitwise-AND and bit shift operations. To
extract remainder bits, we maintain a bit-mask that depends on the
size of R. Note that entries that comprise both the value v = 0 and
the remainder r = 0 are distinguishable from unfilled slots through
hop bits. For such a zero entry, there is a slot in T which contains a
hop bit pointing to said entry.

We do not explicitly save the key in a BPHT to reduce the mem-
ory footprint of the hash table. To perform REs1zE operations, we
only need to restore the initial hash value, as we will show below.
For a hash table that allows to retrieve keys in addition to values we
can use an invertible hash function.

4.1.2 Quotienting

When using quotienting in a hash table of size 2%, we interpret hash
values as a bit vector that can be split into address and remainder.
The address is used to select a slot in the array T where the entry

is stored. Remainders are used to resolve soft collisions, i.e. to dis-
tinguish entries that received the same address from different hash

72 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

values. Using a quotienting function
0(y):C = (AxR)

where A is the address space of the hash table, R is the space of
remainder values, and y is a hash value, we denote addresses as
a € A and remainders as r € R.

The number of remainder bits and hop bits as well as the size
of the hash table’s address space are interdependent. We required
above, that both A = [2%] = | A| and R = [2F] = |R| are powers of
2, and a + ¢t = 32. Since only 32 bits out of the 64 bits available per
slot remain, we have to choose R and H so that t + H < 32 holds.
In other words, the number of remainder bits and hop bits need to
be encodable into 32 bits through bit-packing, which leaves us with
a discrete space of possible hash table configurations.

To explore an extreme case as an example for this, consider a
very small hash table of size A = 2°. When using quotienting with
a small hash table, many bits of the hash value are assigned to the
remainder. In this case, v = 32 — 5 = 27 bits are required, leaving
only 5 of the administrative bits for hop bits, restricting H to be
<5.

We employ the quotienting function 6, which uses the highest
a = log, A bits of a 32-bit hash value as address and the low t =
log, R bits as remainder.

Definition 4.1.1. High-bit address quotienting: Given a 32-bit hash value
y € C,C := [2%] and a hash table with size A € 2°,a € [H,32], we
define the High-bit address quotienting function 5,(y) : [2%?] —
([27], [27]) as

daly) == (%, y mod A)

The corresponding inverse quotienting function joins the bit
vectors again.

Definition 4.1.2. Inverse high-bit address quotienting: Given an address
remainder pair (a,r) and a hash table with size A € 2%,a € [H,32], we
define the Inverse high-bit address quotienting function 57 (a,r) :
(129, 2]) — [2%%) as

ot (a,r):=a-2%+r

Figure 4.2 illustrates quotienting remainders saved using the
bit-packing scheme described above.

4.2 Hash Table Operations

The bit-packing and quotienting strategies require additional com-
putations for all hash table operations.

For the handling of hard collisions, i.e. key-value pairs entered
with identical address and remainder, we describe two possible
modes. Hard collisions can be handled as usual for hopscotch hash-
ing, by storing hard colliding keys in the hopscotch neighborhood

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES

(normal mode). We also describe a REPLACING INSERT, which re-
places the value already contained in the table with another entry
(counting mode). This behavior can, for example, be used to im-
plement a g-gram counter, where each insert increments an integer
counter stored in the value bits. Note, that soft collisions are still
handled as usual for hopscotch hashing in both cases.

ConTaINs and SEARCH When performing a SEARCH operation
with a key y, we compute address a and remainder r using the
quotienting function (a,7) = Ja(y). All entries in T,) are
candidates to contain values for y. However, only values in slots
T; i € [0,H — 1] that also satisfy the following conditions actually
contain values for y:

1. The hop bits of T}, indicate that Tj;) is filled with a value for y.

2. The remainder value of Tj; is identical to the remainder r of the
key (soft collision resolution).

In contrast to basic hopscotch hashing, we need to verify for each
entry referenced by hop bits of T, that their remainders are also
identical. For CONTAINS operations, we return true if one matching
remainder was found. Depending on the hard collision handling
strategy of the BPHT, a SEARCH operation can either return the
first entry (replacement strategy), or all up to H entries (chaining
strategy).

INSERT and REPLACING INSERT For INSERT operations with a
key y, we search for the closest empty slot b using linear probing

as with basic hopscotch hashing. If b is within H — 1 slots of the
address a computed for hash value y, we place the entry in the
table and set the corresponding hop bit in slot T};. Otherwise, we
proceed to move empty slots towards 2. When moving entries to
different slots during this process, we modify the bit-packed hop
bits inside T and move both value and remainder to the new slot.
For an entry with address c stored in slot ¢ + o that moved from slot
Tic40) to Tjp), we need to move value and remainder from T, to
T}, while the hop bits of T need to be changed. If no free slot can
be found, a RESI1ZE operation is performed.

For a REPLACING INSERT operation with key y, we perform a
SEARCH operation as described above. If y is found in the table, we
retain hop bits and remainder and replace the value in the target
slot. Otherwise, if no entry for y was found, we proceed as with
INSERT.

DELETE Similarly, for DELETE operations we first identify the
position at which the entry is stored relative to its address using
the hop bits of Tj,). After removing the entry from its assigned slot,
say Tj), by replacing both value and remainder in T, with zero, we
also unset the hop bit pointing to b from the hop bits in Tj,).

73

74 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

REesize A REsizE is performed, when a key needs to be inserted
at a position with no free slots and additionally, no free slot can be
shifted towards the target address a. In this case, a RESIZE increases
the number of slots in T to make additional slots available. This
requires updating addresses and remainders of all entries already
in the table, since the sizes of .4 and R change. However, RESIZE
operations using quotienting can be performed without rehashing
keys. Since we restricted hash table sizes to powers of 2, we receive
new values a’ = a+ 1and v/ = v — 1 so that a hash table with
A+ H —1slotshas A’ = 2A + H — 1 slots after one RESIZE step.
Intuitively, one bit is removed from the remainder stored in T and
used as an additional (least significant) address bit.

Our hash table implementation is able to perform in-place RE-
s1ZE operations on the extended table with 64H bits additional
memory to increase the size of the hash table.

When migrating from the quotienting function 4 to 6,1, the
most significant bit (MSB) of the old remainder » becomes the least
significant bit (LSB) of the new address a’. Thus, the entry can be
moved only to two possible slots, depending on the MSB of r:

a' =2a if the MSB of 7 is 0
a =2a+1 if the MSB of ris 1

The resized hash table can be interpreted as interspersed with new
empty slots, as illustrated in Figure 4.3.

The RESIZE operation is performed according to Algorithm 1.
First, we increase the size of T from A+ H — 1slotsto2A+ H — 1
slots, keeping the old entries in the lower half of T at their old
addresses. Beginning from slot A — 1—the highest possible address
before the resize—and iterating towards lower addresses we remove
all up to H entries for each slot, recompute a’ and ¥/, and reinsert
them at the new address. Until we reach slot 2H — 1, the newly
inserted entries cannot collide with old entries still in the table. For
each slot, we remove and reinsert them at their new addresses.

Theorem 4.2.1. An item inserted into a resizing BPHT T at address
a' > H — 1 cannot be stored in a slot that still contains old (not rehashed)
entries.

Proof. Let a be the highest unshifted address in a BPHT T during

a resize. After removing all entries for a from the table, the highest
non-shifted entry in T can be stored at position (2 —1) + H — 1,
which is the highest colliding entry for address a — 1. To not collide
with a not yet updated entry, the new address a’, which is either 2a
or 2a + 1, has to be larger than this. For the smallest possible new
address a’ = 2a we see:

a>(@—-1)+H-1
& 2a>a+H-2
a>H-2

¢

T T
0 — 0
1 1
2 \ 2
\ ;
4
5
A+H-2 .
A+H-1 \‘ :
2A+H-4
\ 2A+H-3
2A+H-2
2A+H-1

Figure 4.3: Example of the resized
BPHT array. The left column shows the
array before resizing, the right column
after resizing. Entries from slot a can
either be assigned to slot ' = 24 if the
bit added to 4’ was o (black arrows) or
a’ = 2a + 1 if the bit was 1 (light gray
arrows). Note that the H — 1 additional
slots are not doubled.

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES

Algorithm 1: In-place REs1zE of a BPHT. The last H—1 en-
tries need to be handled separety to avoid collisions between
reinserted updated entries and non-updated entries in the
Hopscotch neighborhood of lower addresses.

Input:

e BPHT T, with A+ H — 1 slots and A = [2°]

e An empty vector t holding up to H 64-bit values

Note:

> Entries e of a BPHT comprise an address a, a remainder v and a
value v

Increase size of T from A+ H —1to 2A + H — 1 slots;

> Update all non-colliding entries

fora<+ AtoH—1do
Extract all entries e := (a,7,v) with address a from T into

the vector t;
foreach Entry e € t do
Restore the hash value y = 5, ! (a,7);
Compute new address and remainder a’,7" = 8,1 (y);

Insert v into T at address a’ with remainder #/;
> Update the last H — 1 entries

fora <+ H—1to0do
Extract all entries e := (4,1, v) with address a from T into

the vector t;

foreach Entry e € t do

Restore the hash value y = 5, ! (a,7);

Compute new address and remainder a’, 7' = 6,.1(y);

| Insert v into T at address a’ with remainder r’;

As long as the original address a was at least H — 1, the new ad-
dress @’ is larger than the highest possible slot for addressa — 1. O

Depending on the nature of the keys in T, it is possible that one
REs1zE does not allow the new entry to be inserted. When the
neighborhood of the slot into which the new entry is to be inserted
contains only entries with identical highest remainder bit (identical
to the key to be inserted) this collision is not resolved. A similar
behavior is illustrated in Figure 3.22, however using quotienting,
consecutive RESIZE operations move more remainder bits into the
address and can prevent endless resizing. In this case, a series of
REsIZE operations need to be performed, until at least one slot is
freed for the new entry. To avoid multiple resizing, it is possible
to evaluate the entries of the offending address and compute the
required address space size to resolve the conflict. However, since
entries from other addresses which are moved to different slots dur-
ing a resize can also free up another slot that resolves this conflict,
this strategy is only required for the case that all possible slots for a
are filled with entries for a.

75

76 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

4.3 Cache Efficiency

Our architecture retains the cache-friendliness of hopscotch hash-

ing while also reducing the number of compulsory cache misses

during lookups. Most operations on a BPHT are linear accesses to

a contiguous array with one compulsory cache miss. Consecutive

array accesses can be automatically detected by the processor and

can hence benefit from hardware prefetching.® ¢ Drepper, What Every Programmer
SearcH, CoNTAINS, and DELETE operations need to evaluate at Should Know About Memory, 2007.

most H positions in the array. Depending on the choice of H and

the size of a cache line L (in bytes), the probability that all entries

for one address are contained in one cache line is

max{0,{—(H-1)}
14

IP(H entries in cache line) =

where { = L/8 is the number of 64-bit integers fitting into one
cache line. However, since hopscotch neighborhoods overlap, the
fact that one neighborhood is perfectly cache aligned means that
the following neighborhoods have a higher chance to be unaligned.

INSERT operations can be more expensive, since the array might
be traversed twice, one time forward during linear probing to find
an empty slot and the second time in reverse when empty slots are
moved. However, through temporal locality of these accesses, cache
lines containing the entries can be expected to still be present at a
high cache level for the reverse pass.

RESIZE comprises one iteration of linear array accesses to extract
and reinsert keys. The accesses that occur during reinsertion are not
guaranteed to be in a pattern predictable by hardware prefetching.
However, for high table loads, it is possible that a linear pattern that
can exploit hardware prefetching emerges.

4.4 Hash Functions

We described above that using the quotienting function é,, we do
not require rehashing keys for resizing. To allow restoring keys
from hash values, we employ the invertible multiplicative hash
function family

H™:={h", |[meN, m=1 mod2, AcN}
jﬁ/‘A(x) :=xm mod A
for an uneven multiplier m and a hash table address range of A =
[A]. This hash function allows restoring the initial key from a hash
value by multiplying with the multiplicative inverse:

hi;fl‘gl(x) —xn modA with n:=m?"! mod A

The multiplicative inverse n only needs to be computed once for
each hash function using modular exponentiation. This hash func-
tion has the additional advantage that it is fast to compute. It does,

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES 77

however, not offer any statistical guarantees about its collision be-
havior.

Using a non-invertible universal or independent hash function
forfeits the option to restore keys for the benefit of guaranteed
collision behavior, which can manifest in higher fill rates. This
might also result in a longer computation time for hash function
evaluation. We evaluate several different hash functions described
in the section Hash Functions for Use in Bioinformatics (p. 44).

4.5 Evaluation

To evaluate our hash table architecture, we implemented a BPHT
in the Rust programming language.” This implementation can
also be found on GitHub under the open source MIT License.®

The workflow used to perform the evaluations and to generate the
plots shown in this chapter? is contained in a different repository.'®
Our hash table implements two possible behaviors to resolve hard
collisions: If not noted otherwise, hard collisions are handled by
hopscotch hashing as described above. When used in counting
mode, a BPHT contains an integer counter per slot that is increased

by 1 each time a hard colliding key is inserted.

4.5.1 Fill Rates

The achievable fill rates of a BPHT depend on several aspects: The
number of available hash table slots A = 2% and the size of the hop-
scotch neighborhood H, both in relation to the number of inserted
keys, are major influencing factors. Additionally, the used hash
function and the number of collisions can affect the fill rates.

To show the achievable fill rate of BPHTs in an optimal envi-
ronment, we evaluated sets of randomly chosen unique keys to
rule out the influence of different hash functions and to prevent
hard collisions. Note that for all hash table sizes with a < 32,
soft collisions still occur. We sampled fractions of all possible
232 keys relative to the size of the hash table for each combina-
tion of hash table size and hopscotch neighborhood. These sets of
{0.05A4,0.14,...,0.95A, A } keys were inserted into the BPHT with
fixed size that was not able to resize. Each combination was evalu-
ated 10 times, each time with a new set of keys. At the point when
an unresolvable collision occurred, i.e. no room could be found for
an entry without resizing, we assigned these items to a stash. In
a productive context, stashed items would need to be saved in a
secondary data structure.

Figure 4.4 shows the achieved fill rates of BPHTs. It can be seen,
that fill rates rise linearly with the number of inserted keys, until
a point depending on the value of q, i.e. the table size. After this
break point, keys are started to be assigned to the stash and the
possible fill rates of the tables drop. For smaller table sizes, the
amount of possible soft collisions is increased, since an additional

7 Timm, BPHT Source Code, 2020.

8https://github.com/HenningTimm/
bpht

9 Timm, BPHT Evaluation Workflow,
2020.
https://github.com/HenningTimm/
bpht_evaluation_workflow

https://github.com/HenningTimm/bpht
https://github.com/HenningTimm/bpht
https://github.com/HenningTimm/bpht_evaluation_workflow
https://github.com/HenningTimm/bpht_evaluation_workflow

78 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

a=10

1.0 -1.0
H s
—— H=8 g/s
— H=10 o
0.8- - -08
—e— Measurement -/
/ kel
> ()
- I
©
0.6 - /./ -06 %
[J] w
© — @
T /./ s
0.4- 2 -04 5
/./ g
©
o o
/'/)
0.2 - & -0.2
l/
./
«)
1Y) R AP S SHEED S NN SHE S S - S A S ST M S S M S S -0.0
a=24
1.0 - . -10
H ==z
— hes 343/.
—— H=10 /—:/'
0.8- —— H=12 /: -0.8
— H=14 A
—— H=16 /a E
H=20 o @
0.6- —— H=24 /=/ —06 %
[} w
- - >
e —e— Measurement 5/ g
= /,./ 5
0.4 - s -04§
/a/ %
. ©
e =
0.2- /:/ -02
"
9/
00—~ = - A e e e A e e . -0.0
a=28
1.0 - -1.0
H
— H=8
—— H=10 o
0.8- — H=12 ~ —08
— H=14 -
~ E
—— H=16 * o]
— H=20 _ g
0.6- —— H=24 e -06%
2 —— H=26 /./ 2
£ -~ <
i —e— Measurement /‘ 5
0.4- o -04§
/./ g
©
o ©
/./)
0.2- o -0.2
./
'/
'/
T R — -0.0
1.0 0=32 1.0
. H /o/ .
—— H=8 o
—— H=10 /0/
0.8- — H=12 ot -0.8
—— H=14 .
v °
— H=16 @ [J)
~ G
— H=20 _ a
0.6- — H=24 i -0.61%
2 — H=26 - 2
E -~ g
i —8— Measurement /‘ k]
0.4- o -04§
/./ %
©
- ©
/./ }
0.2 - o -0.2
./
./
./
00— 00
0.2 0.4 0.6 0.8 1.0

Fraction of inserted keys

Figure 4.4: Fill rates achievable by a BPHT. Different hash table sizes—denoted as different values of a—are illustrated along the
rows of the plot. Circles denote the mean achieved fill rate of 10 runs for each measurements, with lines connecting the dots for
better readability. Circles connected by dashed lines in the lower right quadrant of the plots denote the fraction of stashed keys.
Note that no all combinations of a and H are possible, due to the restriction that the 32 — a remainder bits and H hop bits are
stored in one 32-bit integer value.

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES 79

Genome Length (in bp) Source

Myxococcus xanthus 9139763 Ensemble Genomes, M. xanthus DK 1622, 2018

Plasmodium falciparum (Malaria) 23268702 Wellcome Sanger Institute, P. falciparum clone E5
Version 1, 2017

Humulus lupulus (Hops) 1812501705 Natsume et al., “The Draft Genome of Hop (Hu-
mulus lupulus), an Essence for Brewing”, 2015

Homo sapiens HG38 3209286105 NCBI, Genome Reference Consortium Human Build
38, 2019

Table 4.1: Analyzed reference and
draft genomes, sorted by total genome

amount of keys can be assigned to the same slot through quotient- length. Note that the amount of 4-
. . . a grams and therefore the number of
ing. More precisely, for a hash table with A = 2° slots, there are keys generated from each genome
32 — a potential soft colliding keys per slot. is roughly equivalent to the genome

Across all parameter combinations, higher values of H are as- length.

sociated with both higher fill rates and a lower fraction of stashed
keys. This is due to the fact that occurring (soft) collisions are re-
solved by storing colliding keys in the hopscotch neighborhood
for each slot. However, in contrast to the neighborhood, which

is restricted to a small constant value H, the number of possible
colliding keys doubles with each additional remainder bit. Large
values of H allow to store more keys in the neighborhood of each
slot which in turn do not need to be stashed.

4.5.2 Filling a BPHT

To evaluate the time required for inserting items in relation to
parameter choices for a BPHT, we used our hash table to count
g-gram occurrences in four reference genomes. The evaluated
genomes are shown in Table 4.1. We selected a hash table of size

a = 31 for all genomes to remove the influence of RESIZE opera-
tions. This is large enough to accommodate the ~1.5 - 10? distinct
16-grams present in hg38, the largest reference genome we evalu-
ated. All experiments were performed using a single thread on a
compute server with two AMD EPYC 7452 32-Core Processors, with
30 threads running in parallel.

For all genomes, we computed g-grams, hashed them and in-
serted them into the BPHT. We evaluated values g = 11, g = 15,
and g = 16, with 16-grams being the maximal capacity of our cur-
rent BPHT implementation. Since 16-grams require 32 bits when
encoded using 2-bit encoding, higher values would result in more
possible keys than the table can store. A way to mitigate this is
described in the discussion.

We generated all 2-bit encodable g-grams for each genome, skip-
ping all g-grams containing characters from Xypac \ Zpna (i-e.
characters that cannot be represented in 2-bit encoding). Subse-
quently, these g-grams were hashed with randomly chosen hash

80 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Genome = mxanthus Genome = pfalciparum

Genome = hops

1400 "]

® hiin
mult
® tab_simple

1200

1000 @ tab_twisted
O
2 800
€
5
X 600
el
e
400
200
0 .>—— (>——
1400
1200
1000
z
P
g 800
E b
X 600 9
8
L
400
200
0 (— el
1400
1200
1000
z
2 800
£
5
X 600
T
2
400
200
0 (———————— (O———e———D
H=8 H=16 H=24 H=8 H=16 H=24 H=8 H=16 H=24

Hopscotch Neighborhood Hopscotch Neighborhood Hopscotch Neighborhood

functions from the 7—[12%‘2,232,264, 32-bit simple and twisted tabulation
hashing, as well as the invertible multiplicative hash function fam-
ily H'™ described earlier in this chapter (p. 76). In figure captions,
we refer to these hash functions as hlin, tab_simple, tab_twisted, and
inv-mult respectively. For a detailed description of these hash func-
tions, see chapter Hash Functions for Use in Bioinformatics (p. 44f).

We used a BPHT in counting mode, where the value stored for
each key is increased each time the key is inserted into the table
using a REPLACING INSERT. Consequently, each g-gram is present
in the table at most once, with a value indicating how often it was
encountered in the sequence. SEARCH operations yield the count
value for the query key. The run times shown in this section are
wall clock times for reading in the input file, generating and hash-
ing g-grams, and inserting them into the BPHT. Initialization of the
BPHT was not timed.

Figure 4.5 illustrates the total time required to count all g-
gram occurrences in the respective genomes. For the smaller two
genomes—M. xanthus and P. falciparum—with a respective mean
runtime of 8.85s and 13.3s respectively, no stark differences in

Genome = hg38

GL=b

9L=b

H=8
Hopscotch Neighborhood

H=16 H=24

Figure 4.5: Point plot illustrating the
insert time required to fill a BPHT with
all g-grams (values of g increase by
row) from the given genome (column).
Each column within a subplot shows
three different sizes of the hopscotch
neighborhood H. Each point denotes
the mean run time of 10 runs, errors
denoted as vertical bars.

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES 81

Genome = mxanthus Genome = pfalciparum Genome = hops Genome = hg38

hf
hlin
mult
tab_simple
tab_twisted

0.8 -

Time per insert (us)

04 P_éﬁ‘ . :

Time per insert (us)
IS4 =
© o
GL=b

o
o

P
9L =b

Time per insert (us)
o
oo

4
=)

04 t——r—t ———p

H=8 H=16 H=24 H=8 H=16 H=24 H=8 H=16 H=24 H=8 H=16 H=24
Hopscotch Neighborhood Hopscotch Neighborhood Hopscotch Neighborhood Hopscotch Neighborhood

Figure 4.6: Point plot illustrating the

insert time in ps per g-gram (values
runtime could be observed. The larger genomes—H. lupulus and of g increase by row) from the given
genome (column). Insert times for all
items (as shown in the previous figure)
(~18min) respectively. Runtimes increase with increasing g-gram here are normalized by the number of
g-grams inserted.

hg38—show a mean runtime of 661.715s (~11min) and 1129.34s

size, due to the fact that the existence of more g-grams increases
the fill rate of the hash table. Therefore, more shift operations are
required to free up slots during INSERT operations.

For increasing hopscotch neighborhood size H an upward trend
is noticeable, albeit with several exceptions. This can more clearly
be seen in Figure 4.6, which shows the average time required per
insert. In addition to showing a higher error rate, the two smaller
genomes required insert times up to three times as long as larger
genomes. Since for the larger genomes insert times stabilize at
0.3us forg = 11 and at 0.4ps for g = 15and q = 16, this can
be due to external influences. With a total run time of less than 13
seconds for M. xanthus and less than 24 seconds for P. falciparum the

82 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

influence of file operations, including opening the FASTA files, are
more pronounced. This influence could be mitigated by pre-loading
the files into memory and only measuring the insert process itself.
However, our g-gram counting implementation follows an online
approach to avoid the additional amount of memory required to
keep whole chromosomes in memory.

For the different hash functions evaluated, no significant differ-
ences could be observed. Possible influences would have been the
time required to compute each hash values, however, all evaluated
hash functions require only the relatively cost effective operations
multiplication, addition, bit-shifts, and bitwise XOR. Additionally,
an increase in collisions due to less well distributed hash values
could have been observed. Since no differences in runtime could
be observed for different hash functions, other factors, like waiting
for memory accesses, arguably dominated the runtime. The choice
of more complex hash functions which trade stronger theoreti-
cal guarantees for an increase in runtime, could improve fill rates
through better distributions of keys. We evaluated a hash function
family for which we have not proven any guarantees (invertible
multiplication), a 2-independent hash function family (%), and
two 3-independent hash functions (simple and twisted tabulation).
Considering that hopscotch hashing is related to linear probing,
using a 5-independent hash function family could be beneficial
for our approach, as suggested by Patrascu and Thorup for linear

probing.™* ' Pitragcu and Thorup, “On the k-
Independence Required by Linear
Probing and Minwise Independence”,
2010.

4.5.3 Speedup of Access Time Through Bit-packing

To evaluate the speedup of our bit-packed approach over plain hop-
scotch hashing with two arrays we added a modified version of our
BPHT implementation with a dedicated 32-bit hop-bit array (plain
hopscotch hash table, PLHT). Apart from the hop bit computation,
no parts of the code were modified. We performed two evaluations,
one for hash tables in counting mode with only soft-colliding keys
and one for normal mode (i.e. allowing keys to be added to the
table multiple times) with hard collisions.

For the counting evaluation, we compared query times with keys
sampled without replacement from [2%?], using a number of keys
identical to the size of the address space. As above, keys that could
not be inserted were stashed and served as SEARCH operations with
negative result during evaluation. For each set of keys, we filled a
BPHT and a PLHT with the keys and verified an identical assign-
ment by comparing both their fill rates and number of stashed keys.
We then queried each hash table using the previously simulated
key set, measuring the total wall clock time required to perform all
queries.

To judge the influence of both the quotienting and bit-packing
approaches, as well as the size of the hopscotch neighborhood, we
evaluated different combinations of the hash table address space

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES

power a and the neighborhood size H. All experiments were per-
formed 10 times.

Figure 4.7 shows the query times required to retrieve the counts
for all inserted keys using counting mode. We illustrated the range
ofa € { 28,...,31 } with their respective permissible values of H.
Recall, that the address space power a limits the number of hop
bits that can be used, since the 32 administrative bits are required
to be encoded into 32 bits in this implementation. For hash tables
sizes of up a = 31, BPHTs require less time than the their PLHT
counterparts.

As to be expected, query times rise with the size of the hash
table and therefore with the number of queries performed. For
larger hopscotch neighborhoods, query times also rise, as more
array lookups have to be performed during each query. Across all
runs, BPHTs perform the total number of queries faster than their
PLHT counterparts.

For a = 32, a different behavior emerges, since for this case the
remainder length is reduced to t = 0 and hence no soft collisions
can occur in the input data. Consequently, using a key set as de-
scribed above results in a permutation of the key space without
any collisions. In combination with the hash tables in counting
mode, this resulted in trivial problem instances. The total time to
perform the queries dropped by approximately 75% with respect to
the runtimes observed for a = 31, with PLHTs gaining a speedup
over BPHTs. However, since this is not a representative evaluation
of the hopscotch hashing approach, we also evaluated a dataset
containing hard collisions and using hash tables in normal mode.

For the evaluation in normal mode, i.e. allowing multiple entries
for each key in the table, we kept the same setup as with the pre-
vious evaluation. To create a dataset with similar properties to the
ones used above, we sampled 2% keys without replacement from a
multiset containing all items from [22] with a multiplicity of 2, i.e.
{0,0,1,1,...}. This results in the same distribution of collisions as
the case a = 31 for the counting evaluation, however, with hard col-
lisions instead of soft collisions. For all values a < 32, soft collisions
occur in addition to hard collisions.

Figure 4.8 shows the query times required to retrieve the values
for all inserted keys using normal mode. In addition to the param-
eter combinations evaluated for counting mode, we also evaluated
a = 32, which allows also evaluating the largest hopscotch neigh-
borhood H = 32 supported by our current implementation.

As before, BPHTs outperformed PLHTs in all instances, barring
single outliers for a = 31, H = 24 and a = 32, H = 8. The overall
runtime of all queries increased with regards to counting mode,
since queries cannot be terminated after the first successful access.

The mean speedup of BPHTs over PLHTs across all instances
is illustrated in Figure 4.9. For all instances, BPHTs achieved a
speedup of at least 1.082 and up to 1.405 for counting mode and
from 1.077 up to 1.620 for normal mode. While for BPHTs in-

83

84 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Access Time Comparison for Counting Mode

a=28
500
400
z 300
)
£
=
200
1 00 000080000
[ECEEEEEEy esscloves 00C2000 cousuo oillee conmsccs
a=29
500
400
z 300
)
£
=
200
N ecg0000 [T
o o
100
Table
_ ® BPHT
a=30 ® PLHT
500
400
» ° cooegete 000080000
g 300
L] []
[Codbocoe 0000000000 N o s 000ego0000 eecoo0000®
200 eoososcoce 00cc0sce0e °
100
a=31
500 L eooc0000 S0osgsecce
[]
400 °
eoog0000
o 0000300000 esoscsccee ©000ceccce
2 300 .o. .“: ’““nou. eeege0000 00000e000e
° eoc00e
£
=
200
100
H=8 H=12 H=16 H=20 H=24 H=28
H

Figure 4.7: Swarm plot illustrating the total wall clock access time in seconds for BPHTs (blue) and PLHTs (orange) in counting
mode. Different sizes of hopscotch neighborhoods H are shown on the x-axis of each facet, while hash table sizes given by a
increase along the rows. This displayed query time includes SEARCH operations for all simulated keys inserted into the respective
table.

1250

1000

750

Time (s)

500

250

1250

1000

750

Time (s)

500

250

1250

1000

750

Time (s)

500

250

1250

1000

750

Time (s)

500

250

1250

1000

750

Time (s)

500

250

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES

Access Time Comparison for Normal Mode
a=28

ococzvves ecccoloses 00GCO00NGe SC000CCCCCe eO0CCSCUL 08888sess

a=29

00o05ec eS00ES0ULE eB8e0sees °GocEcusite SEoclasst escesccese

a=30

Table
@® BPHT
® PLHT
oocellon

Jssssssge sssilesis esssesasse 8ssalssile S33liliee eesetecee

a=31
LI T
$ L, — o0
3°°°° o
a=232
e) soflooee
@ @ L e ® 00
.I...'...Q. Y e e
H=8 H=12 H=16 H=20 H=24 H=28 H=32
H

Figure 4.8: Swarm plot illustrating the total wall clock access time in seconds for BPHTs (blue) and PLHTs (orange) in normal
mode. Different sizes of hopscotch neighborhoods H are shown on the x-axis of each facet, while hash table sizes given by a
increase along the rows. This displayed query time includes SEARCH operations for all simulated keys inserted into the respective

table.

85

86 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

17 1.7
1.6 1.6
1.5 15
o 1.4 a o 1.4
3 28 3
2 29 2
%)
13 30 013
e 31
1.2 1.2
1.1 1.1
1.0 1.0
H=8 H=12 H=16 H=20 H=24 H=28 H=8 H=12

Hopscotch neighborhood

(a) Speedup for counting mode.

creasing hopscotch neighborhood sizes result in a linear runtime
increase for both counting and normal mode, PLHTs show a sig-
nificant increase in query time depending on the value of H. For
counting mode (Figure 4.7), this first occurred at H = 20, while sin-
gle instances using H = 24 still obtained a faster runtime. Normal
mode instances (Figure 4.8) show a similar behavior for H > 28.
The fact that these runtimes all increase by a similar fraction could
indicate that these instances surpassed a break point of the hard-
ware architecture. Potential causes for this effect could be cache line
alignment, additional cache evictions resulting in additional cache
misses, or different memory allocation behavior used for larger data
structure. Further research and evaluations, focusing on the caching
and memory allocation behavior of these instances, are required to
answer this question.

4.6 Conclusion and Discussion

We have constructed and implemented a hash table using a bit-
packed version of hopscotch hashing that halves the number of
compulsory cache misses. Through bit-packing hop bits into the
data array alongside the values (and remainders), we omit the
access into the hop bit array which caused a second cache miss
that is required by plain hopscotch hashing. Additionally, we could
show that REsIZE operations of our hash table can be performed
with H - 64 bits of additional memory. In comparison with other
implementations of hopscotch hashing, our approach offers the
additional flexibility to use less hop-bits if required. With slight
modifications, this flexibility can be extended to prevent unused
bits, resulting in better memory usage.

We could show, that BPHTs can reach high fill rates, close to
100%, as long as a small fraction of keys can be stashed into a sec-

H=16
Hopscotch neighborhood

28
29
30

H=20 H=24 H=28 H=32

(b) Speedup for normal mode.

Figure 4.9: Mean speedup of BPHTs
over PLHTs in counting mode (a)

and normal mode (b) for different
hash table sizes (color) and hopscotch
neighborhood sizes (x-axis). Hash
tables of size a = 32 were not evalu-
ated for the counting case, since these
degenerated to trivial instances. Mea-
surements for the same hash table size
are connected by lines to guide the

eye. The speedup was computed as
Mean PLHT runtime
Mean BPHT runtime *

REDUCING CACHE MISSES IN HOPSCOTCH HASH TABLES

ondary data structure. The fraction of stashed keys is reduced with
larger hopscotch neighborhoods. In practice, the achievable fill rate
also depends on the used hash function.

The runtime required to fill a BPHT with g-grams from a selec-
tion of different genomes has shown that insert times per g-gram
stabilize on a value dependent on the size the g-grams. An upward
trend in runtime for larger hopscotch neighborhoods could be ob-
served, since more array operations are required for these instances
(especially more shifts of empty slots). The different evaluated hash
functions all performed equally well for this case and did not show
any stark deviations in runtime.

For query times, our BPHT implementation outperformed a
comparable implementation of plain hopscotch hashing using a
dedicated hop bit array on all instances (but for one outlier) in both
normal and counting mode. Especially for larger hopscotch neigh-
borhood sizes H > 24 we observed a significant speedup of more
than 1.29. While the overall speedup of our approach was expected
due to the reduced number of array accesses and the resulting re-
duction in compulsory cache misses a precise explanation of the
runtime increase for PLHTs with large hopscotch neighborhoods
remains open.

In our current implementation we limited the hash function
codomain to [2%2] and the size of entries to 64 bits to simplify the
description. A downside of this approach, apart from the limited
size, is that for larger address spaces, a part of the administrative
bits remains unused. Both of these limitations can be overcome at
the cost of additional computation by bit-packing entries of size
64 into the array through word packing. For the word packing
technique, data types with sizes that are no multiple of a machine
word are stored in a contiguous array. Consider, for example entries
comprising 64 bits of payload, 20 remainder bits, and 8 hop bits,
resulting in a total size of 92 bits per entry. While there is no native
data type that can hold 92-bit values, they can be encoded into one
64-bit integer and the 92 — 64 = 28 high bits of a subsequent slot in
the array. To access a value, we need to compute the beginning slot
of the value and read the following 92 bits from the following 64-bit
slots of the array. On the other hand, entries with less than 64 bits
can also be packed into 64-bit values using this technique to reduce
the memory footprint of the hash table. This approach would lift
the restriction on the hash function codomain, the value size, and
additionally can prevent unused administrative bits. However, all
operations have to perform an additional address computation and
potentially access multiple slots per access, since the slots of the
data array and the hash table slots no longer align.

In the implementation described above, a large part of each hash
table entry is claimed by the remainder of the quotienting function.
The quotienting approach is required to resize the hash table or
to reclaim keys from hash values. In use cases where this is not
required, e.g. for use as a g-gram index for a large protein or DNA

88 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

reference database, the remainder bits can be used as value bits
to store larger payloads. This would allow values of size 64 — H.
Using a hash function of the "™ hash function family'> would 2Cf. The H'™ family, p. 45f
for example be well suited and combines 2-independence with the
ability to restrict hash values to a power-of-two address space.
Lifting the restriction that hash tables have a size that is a power
of two would allow to achieve higher fill rates for given key sets.
Using the current architecture and inserting keys from an input set,
if we had to resize shortly before the end of the input, we receive a
table with a low fill rate. However, for hash table sizes that are no
power of two, we cannot split keys into address and remainder di-
rectly. Instead we have to rely on modulo and division operations,
which are considerably slower to compute. This can be achieved
with an arbitrary size quotienting function

a0+ 27 > (141, [5])
oaly) = (ymod 4, | 1)

where y € C, C := [2%] is a hash value and A is the size of the hash
table’s address space. The respective inverse function is defined as

s (14 [5]) - 2
521(a,r) =r-A+a

where (a,7) € A x R is an address remainder pair. To store remain-
ders for this approach, we require

o (5)

Through this modification, the positions at which entries are

bits in the remainder.

placed after the resize cannot be predicted as easily. Consequently,
we could no longer resize the hash table in-place with our approach
detailed above.

5
Computing and Approximating

Resemblance and Containment

Consider two DNA sequences, obtained from different sources.
When comparing them, there are several question that might be of
interest:

* Are they identical?
* Are they similar?
* Does one occur within the other?

These questions correlate with biological questions. For exam-
ple locating a DNA read in a reference genome or comparing the
genomes of two bacterial strains. On a more abstract level these
question can be answered through the use of sequence similarity
measures. But how can we quantify similarity?

5.1 Resemblance and Containment

Following the nomenclature proposed by Broder,' we are interested
in the resemblance 7(A, B) and the containment ¢(A, B) of two doc-
uments A and B. In this abstract description, a document denotes
anything that can be reasonably compared using its parts: For ex-
ample, a DNA sequence can be described using its g-grams, or a
mathematical set by its items. Resemblance quantifies the notion of
how similar two sets are, whereas containment of A and B quantifies
if A occurs in B.

Both resemblance and containment are values within [0,1]. A
resemblance of ¥(A,B) = 0 denotes two completely dissimi-
lar sets, while ¥(A, B) = 1 denotes identical sets. Resemblance
grows proportionally with the number with the number of items
shared between the sets. Note that resemblance is symmetric:
r(A,B) = r(B, A). For the containment case, c(4,B) = 1 de-
scribes that A is completely contained within B. Unless A = B,
c(A, B) = ¢(B, A) does not hold; Containment is asymmetric. Some
example of resemblance and containment values for two documents
are given in Figure 5.1.

1 Broder, “On the Resemblance and
Containment of Documents”, 1997.

00 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

A B A B A B
r(A,B) 0 0.2 0.3
c(A,B) 0 0.2 0.2
c(B,A) 0 0.2 0.8

In our biological use cases, the question of resemblance arises
when comparing genomes of different species. How much genetic
material do these two strains of bacteria have in common? Con-
tainment, on the other hand, is relevant to judge the quality of
assignments. How well does my mapped read fit to its assigned
protein in the database? While the notions of resemblance and
containment seem rather straight forward, there are many ways to
implement them, which interact in different ways with the expected
documents.

5.2 Similarities and Distances

We can quantify the resemblance of two documents using distances
and similarity measures.? Abstractly, a similarity function s(A, B)
is a function that returns a value between o (not similar at all) and
1 (identical), which is what we need to describe resemblance. How-
ever, depending on the kind of documents, the given application,
and many other factors, there are many possible similarity func-
tions. For biological sequences from SGS, Hamming similarity, edit
similarity, and Jaccard similarity best model the expected effects.

Complementary to a similarity measure s(A, B), we define a nor-
malized distance function d(A, B) := 1 — s(A, B). Hence, identical
documents A = B have a distance of d(A, B) = 0 and the higher the
distance, the further A and B are apart. Similarity measures are of-
ten derived from their complementary distance function. However,
distance functions are not required to fall between o and 1 and can
depend on a cost function assigning weights to different kinds of
deviations.

Formally, a distance function or metric is defined as a function
d: K x K — [0,00) for an item space K with A, B € K, that satisfies
the following four conditions:

NON-NEGATIVITY d(A, B) > 0 Distances are at least o.

DEFINITENESS d(A,B) = 0 & A = B Documents with distance o
are identical.

SYMMETRY d(A, B) = d(B, A) The order of documents is irrelevant
for the distance function.

A B A B
1.0 0.16
1.0 0.16
1.0 1.0

Figure 5.1: Consider two sets A and B
in various cases of overlap. The values
in columns two and three are rough
approximations for illustration.

2> Deza and Deza, Encyclopedia of
Distances, 2009.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT O1

TRIANGLE INEQUALITY d(A,C) < d(A, B) + d(B,C) There cannot
be a shorter way between A and B than the direct one.

The following sections describe three similarity and distance
measures used for biological sequences: Hamming distance, Edit
distance, and Jaccard similarity.

5.2.1 Hamming Distance and Similarity

A common and very intuitive distance measure for documents of
identical length is the Hamming distance.3 We count the number of
positions at which both documents differ.

The Hamming distance of two sequences A, B € " is defined as

n-l 0, x=
=) (A, By) blxy) = Y (5.1)
i

1, else

where §(a,b) is a cost function penalizing mismatches between
the documents. In this case we assume unit costs, i.e. each error is
penalized with a cost of 1. Since there is only one kind of possible
error, all other (positive) cost functions are just a linear scaling of
this case.

Further, the normalized Hamming distance

1 — 0, x=
dyn(A, B) i= — Z 5(x,y) = Y (52)
n .= 1, else

is the Hamming distance, normalized to the range [0,1]. In other
words, the fraction of non-matching to total items in the sequences.
Based on the normalized Hamming distance, we define the Ham-
ming similarity:

H(A,B):=1—-dyn(A,B), A BeX! (5.3)
An example for the Hamming distance (plain and normalized)
and their Hamming similarity is given in Figure 5.2.
dy(A,B) =1+146-0=2
dun(A, B) = 7 =0.25
su(A,B) =0.75

A = GATTACAT
B = AGTTACAT

While the restriction to documents of the same length seems lim-
iting, it allows the hamming distance to be computed fast, namely
in O(n) comparisons.# Additionally, there are many use cases in
which documents of identical length are guaranteed. For exam-
ple the comparison of bit words, which are bound to a fixed size
(most of the time 32- or 64-bit) by the hardware architecture. Most
importantly for us, however, the Locality Sensitive Hashing tech-
niques described in this chapter rely on computing the Hamming
similarity between reduced representations of documents.

3 Hamming, “Error Detecting and

Error Correcting Codes”, 1950.

Figure 5.2: Hamming distance and
similarity of two DNA strings that
differ in the first two characters.

4 Note that (weakly) approximating
the hamming distance is even possible
in sub-linear time (Batu et al., “A
Sublinear Algorithm for Weakly

Approximating Edit Distance”

, 2003).

02 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Note that computing the Hamming distance between docu-
ments A € X", B € ¥, n > m is also possible by padding the
smaller document. We extend B using the padding character -,
with 6(x,-) = 1, Vx € %, until A and B have equal length. The
padding itself introduces m — n mismatches, but, more importantly,
the position of the padding can greatly influence the distance, as
illustrated in Figure 5.3.

A = GATTACAT Figure 5.3: Hamming distance with
padding for two strings of unequal

B= -ATTACAT SH (A/ B) = 0.875 lengths. The string B has a signif-

B — ATTACAT- sy (A, B/) = 0.125 };:/antly higher similarity to A than

5.2.2 Edit Distance and Similarity

Another distance that is widely used in bioinformatics (and many
other contexts) is the edit distance (also named Levenshtein dis-

tance®). Given two sequences A € X", B € ¥, it is defined as the 5 Levenshtein, “Binary Codes Capable
of Correcting Deletions, Insertions, and

minimal number of operations needed to transform one text into
Reversals”, 1966.

the other using the following three operations:

REPLACE one item with another item.

INSERT a new item at any position in one of the documents.
DELETE an item in one of the documents.

Noticing the similarities of these operations with the different
types of mutations described in the Section Genomic Mutations,
making the usefulness of edit distances on DNA strings apparent.
Since the edit operations listed above behave analogous to SNVs
(replacements), insertions, and deletions, respectively, the edit dis-
tance can be used to describe mutation processes.

The edit distance can be computed recursively as

dg(A,B) = Eag(n,m) = Eap(|Al [B) (5-4)
where the recursive function E is defined as follows:° 6 Levenshtein, “Binary Codes Capable
of Correcting Deletions, Insertions, and
max(i,j) if min(i,j) =0 Reversals”, 1966.
.. EA,B(171/J)+1
EA,B(Z/]) =
min¢ Egp(i,j—1)+1 otherwise.
Eap(i—1,j—1)+6(A;_q), Bjj1)
(5-5)
and, as above, using a function
0, x=y
6(x,y) =
1, else

To normalize the edit distance of two documents, we need to
take their lengths into account:

dg(A,B)

4eN (A B) = Cax (AL 1B

(5-6)

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 03

Using the normalized edit distance we can describe edit similarity
as:

(A, B) = den(A, B) = 1= 0B

(5.7)

While the recursive definition can be elegantly written down, its
implementation is inefficient, since many duplicate computations
are performed. Hence, in practice dynamic programming (DP) ap-
proaches that compute the complete |A| x |B| matrix are employed,
most notably, the Wagner-Fisher Algorithm.” However, several vari-
ations of DP algorithms to compute the edit distance have been
developed.

For biological use cases, it is often helpful to weight the different
operations. This is the realm of alignment algorithms, which com-
pute an assignment that is maximal in respect to a given scoring
function. An example for this is BLOSUM?® substitution matrices
for amino acids, which assign a weight to each pair (a1,a;) € 23,
depending on both their chemical properties (cf. Figure 2.13) and
the biological question at hand. The aforementioned Wagner-Fisher
Algorithm computes the edit distance by minimizing unit costs, i.e.
all operations other than a match are penalized with a cost of 1.

A similar algorithm which can incorporate a different scoring
system (like BLOSUM matrices), including negative weights and
adaptive gap costs? has been proposed by Needleman and Wun-
sch.’ This algorithm computes a global alignment using dynamic
programming and an |A| x |B| matrix. In a global alignment, all
positions of A and B are aligned. Each entry in the matrix is com-
puted depending on its neighbors and the cost-optimal way to
reach this entry. After all entries have been filled, the operations for
the optimal alignment can be retrieved by backtracking through the
matrix.

The Smith-Waterman algorithm™* computes a local alignment,
again using dynamic programming and an |A| x |B| matrix. A
local alignment is not required to incorporate all positions, but
comprises the highest scoring aligned subsequences. Similar to the
Needleman-Wunsch algorithm, Smith-Waterman can use scoring
systems and adaptive gap costs. The highest scoring sequence is
also determined using a traceback starting from the highest scoring
cell in the DP matrix.

Given special restrictions, other specialized alignment algo-
rithms have been developed. Banded alignments restrict the parts
of the DP matrix that are computed, reducing the runtime to
O(w - min(|A, |B])), where w is the width of the band."? The size
of w can be set to restrict alignments to a certain range of scores.

Another possible optimization for small patterns and unit costs
is Myers bit-parallel alignment algorithm for semi-global align-
ments, which relies on bit-encoding the DP matrix in integer val-
ues.”3 For a semi-global alignment, gaps at the end of the smaller
document are not penalized, i.e. it needs to incorporate all positions
of one document, but not the other. If the pattern can be encoded

Recall that DP relies on maintaining a
data structure for intermediate results
of recursive calls. If an intermediate
result is required, we check if it has
already been computed and stored,
otherwise we compute it and store it.

7 Wagner and Fischer, “The String-to-
String Correction Problem”, 1974.

8 Henikoff and Henikoff, “Amino Acid
Substitution Matrices From Protein
Blocks”, 1992.

9 For example affine gap costs, mean-
ing the penalty for opening a gap

can be high, but the cost to extend an
existing gap can be low.

* Needleman and Wunsch, “A General
Method Applicable to the Search

for Similarities in the Amino Acid
Sequence of Two Proteins”, 1970.

1 Smith and Waterman, “Identification
of Common Molecular Subsequences”,
1981.

> Chao, Pearson, and Miller, “Aligning
Two Sequences Within a Specified
Diagonal Band”, 1992.

3 Myers, “A Fast Bit-Vector Algorithm
for Approximate String Matching
Based on Dynamic Programming”,
1999.

94 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

in a processor word, a column of the DP matrix can be computed
using bit-wise operations on integer values, resulting in a runtime
of O(%), where w is the size of the processor word.

5.2.3 Jaccard Similarity and Distance

The similarity of two sets can be described with the Jaccard Index,4 14 Jaccard, “Lois de distribution florale
which is defined as the ratio of items shared by both sets divided dans la zone alpine”, 1902.
by the total number of unique items in both sets. More formally, the

Jaccard similarity (or Jaccard index) of two sets A and B is defined

as: ‘ ‘
|AN B
J(A,B) = = (5.8)
)= [aUB @)
Since identical sets have a Jaccard similarity of
[AnAl _ Al ‘
JAA) == =17—=1 (5.9)
) |[AUA] |A] ‘
disjoint sets have a similarity of
|ANB| 0 ’
A,B) = = = =0 .

and all values in between are proportional to the ratio of shared
items, Jaccard similarity realizes the resemblance of two documents.
The complementary Jaccard distance is defined as:

d;7(AB)=1—J(AB) = |AU|BIL|1U;‘“BI _ ‘ ’

(5.11)
Computing the Jaccard similarity of two sets is straight forward:

Count the shared elements of both documents, count the number

of unique elements present in the union of both sets and divide
these numbers. However, this can be time consuming to compute
for large sets. More specifically, computing union and intersection
of the sets requires inspecting each item in each set at least once, for
each pair of sets. Consequently, the time required to compare two
documents grows at least linearly with the size of the documents.

5.2.4 Weighted Jaccard Similarity

Limiting similarity computation to sets can be a stark restriction.
Consider two sequences A, B € 211351\1 A

A = AAAAAAAAAAAATTT

(5.12)
B = AAATTTTTTTTTTTT

which are very dissimilar on an intuitive level. However, computing
the Jaccard similarity of their g-gram sets reveals the limitation of

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 95

this measure:

Q(A,3) = { AAA, AAT, ATT, TTT }

Q(B,3) = { AAA, AAT,ATT, TTT } (5.13)

J(AB)===1

This example illustrates that the choice of similarity measure

greatly influences similarity values.’> 15 This example is derived from one
presented in the preprint for Margais

. . . . K et al., “Locality-sensitive Hashing for
can be circumvented by using multisets. In a multiset, items can oc- the Edit Distance”, 2019.

Here, the multiplicity of items is lost by using item sets, which

cur multiple times and we maintain a multiplicity function x 4 (x),

which returns the number of times the item x occurs in A. Using

this, we can define weighted Jaccard similarity'®, which incorpo- 1 Also known as Ruzicka similarity.
rates multiplicity.’” Given two multisets A and B, both containing 7 Deza and Deza, Encyclopedia of

items from a set X, the weighted Jaccard similarity is defined as: Distances, 2009.

TW(A,B) = Lxex Wi (Xa(x), x5 (x))

Yxex max (xa(x), xp(x)) (5:14)

Moving back to the example, where A and B contain items from
22 A, We get the following multiplicities:

A: xa(AAA) =9, xa(AAT) =1, xa(ATT) =1, x4(TTT) =1
B: xp(AMA) =1, xp(AAT) =1, xp(ATT)=1, xp(TTT)=9

The weighted Jaccard similarity of A and B is then computed as
follows:

ExeXmln (XA(x)’ ())

TEAB) = £ ma (a0, 1(2)
~ min(9,1) + min(1,1) + min(1,1) + min(1,9)
~ max(9,1) + max(1,1) + max(1,1) + max(1,9)
1+14+1+1 4

= ——=—=02
9+1+1+9 20

in this example, we used the absolute abundance of g-grams for the
multiplicity function x. There are many other possible weighting
functions, for example based on the frequency of items, their setup,
or domain specific information.

5.3 Containment

Containment of documents can not as easily be described using
similarity measures. As shown in the rightmost columns in Fig-
ure 5.1, documents with low resemblance can have high contain-
ment. Intuitively, we are looking for a subset of the larger set which
has a high resemblance with the smaller one. For this section we
will denote the smaller set as A = © and the larger set as B =
Additionally, in contrast to similarity measures, containment mea-
sures are asymmetric:

ASYMMETRY ¢(A,B) # ¢(B,A), A # B The order of documents
influences their containment value.

96 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

For some similarity measures, there are corresponding contain-
ment measures. For example, Jaccard containment describes the
ratio of shared items to items in the contained set:

g(a,B) = 408 - 615)

For Hamming similarity, we can define a containment variant
by not penalizing the leading and trailing run of mismatches.
However, this also complicates the computation, since, as with
end padding for not equally sized documents, the position of the
smaller document within the larger one greatly influences contain-
ment scores.

Similarly, for edit similarity, a containment score can be derived
from a semiglobal alignment. This alignment variant does not pe-
nalize gap opening and gap extensions at the ends of the smaller
documents. Intuitively, this allows shifting the smaller document
to the highest scoring position with the larger one. Using the
Needleman-Wunsch Algorithm for two documents A and B and
not penalizing end gaps for B yields a containment score for B in A.

Containment measures offer a way to deal with documents of
different sizes in a way that similarity measures cannot. Jaccard
similarity, for example, does not cope well with differently sized
sets. Consider a typical read of length 100bp and target chromo-
some of length 1000 000bp. If the read is contained perfectly in the
chromosome the maximal possible similarity can be

100
1000000

while the resemblance of the chromosome subsequence that the

=~ 0.001

read aligns to is

100

-1

100
Observation 5.3.1. The Jaccard similarity of two sets A and B, with
|A| < |B| is at most %.

Proof. The similarity 7 (A, B) is maximized if all items of A are
contained in B. Consequently, the size of the intersection of A and
B can be at most |A|, while the size of their union is |B| (no new
items are added to B through A).

s iia- o

O

If the sizes of B and the intersection of A and B are known, we
can express J using J € and vice versa.

Lemma 5.3.2. For the Jaccard similarity of two sets A and B, with |A| <
|B|, there exists a scaling factor v = |A U B|/|A|, so that J¢(A,B) =

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT Q7

Proof.

_jaus ang @] |9 |09 jans

R N E R

which is the definition of Jaccard Containment (see Equation 5.15).

ANB|
JC(A,B _ |)
(A,B) 1]

Note that while the size of the union |A U B| might also be
unknown, it can be estimated, for example using HyperLogLog

sketching.18 8 Flajolet et al., “Hyperloglog: The
Analysis of a Near-optimal Cardinality

Unfortunately containment measures are harder to compute - : i .
Estimation Algorithm”, 2007.

efficiently. In many applications, we would rather quickly estimate
similarities or containment of documents and compute the exact
values only for likely candidates. While there are many efficient
ways to estimate similarity of documents, estimating containment is
more complicated, as we will describe in the following section.

5.4 Estimation of Similarity and Containment

Referring back to the beginning of this chapter, we can see that

all similarity measures described implement the resemblance of
two documents. Given a specific (biological) task, we can select a
similarity measure informed by the characteristics of the available
data. However, the time to compute similarities grows quickly
with the sizes of the compared documents. In practice, especially
when working with large datasets like reference genomes or reads
from high coverage sequencing experiments, explicitly computing
similarity measures is very costly.

Computing containment measures suffers from the same prob-
lem. The containment of documents can be described using explicit
containment measures, like Jaccard containment, and can be com-
puted by alignment algorithms, using free end costs. Computing
the containment of one document within another requires reading
both documents in full at least once. This motivates using estimates
of resemblance and containment measures, which can be computed
more quickly, and restrict explicit computations to likely candi-
dates.

Consider the case where a newly crafted reference genome for
a microorganism is compared to a reference database. Instead of
explicitly comparing our new sequence with all existing reference
sequences, we can rule out all comparisons that are not even re-
motely similar. Using hash tables, we can maintain a set of reduced
representations (sketches) of known reference sequences which are
much smaller than the actual genomes. By querying these tables
with the sketch of our new sequence, we can quickly estimate its
similarity to existing sequences in the database. Starting from these

98 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

similar sequences we can then compute alignments to quantify the
actual sequence similarities.

Typical use cases for resemblance estimation include one-versus-
all and all-versus-all distance computation of (reference) genome
sets, for example to identify the strain of a sampled Ebola virus
from TGS reads." Containment estimation can be employed for
read mapping and to query protein databases. The estimation of
resemblance and containment measures can be performed using
hash functions that assign similar keys to the same hash value
with a probability depending on their similarity, so called locality
sensitive hash functions. Their implementation and use will be
described in the remainder of this chapter, starting with estimation
of resemblance. Estimating containment remains a harder problem,
for which general practical solutions have been proposed only
recently. Finally, we will provide some examples of bioinformatics
software which harness the Locality Sensitive Hashing paradigm.

5.5 Locality Sensitive Hashes as Estimators for Resemblance

Locality Sensitive Hashing (LSH), as introduced by Indyk, Mot-
wani, and Gionis,*® describes hash functions that hash similar keys
to similar hash values. The polar opposite of cryptographic hash
functions, LSH purposefully incites collisions to find similar items.
Since then, different variants of LSH have been developed and ap-
plied to a variety of tasks ranging from DNA sequence analysis*"
over spam detection®* to querying music databases.>> Most notably,
these include SimHash, MinHash, and Winnowing,.

SimHash>* estimates the cosine similarity®> of documents to
estimate their Jaccard similarity. Documents are projected onto a
unit sphere, which is partitioned using random hyperplanes. A bin
is defined as an area surrounded by a set of hyperplanes. Feature
vectors (i.e. documents) falling into the same bin are considered
similar.

MinHash?® exploits the properties of min-wise independent
hash functions, to uniformly sample items from the documents to
estimate their Jaccard similarity. For each document a reduced set
of items with minimal hash values, called sketch, is computed. The
Jaccard similarity of the sketches is an estimator for the Jaccard
similarity of the documents.

Winnowing?7 computes minimal hash values for a sliding win-
dow, so that the range of minimal hash values is restricted to a local
neighborhood. Comparing the values and order of the selected
items allows judging the similarity and containment of two docu-
ments.

Note that both SimHash and MinHash do not allow to estimate
containment, nor do they incorporate (long range) position infor-
mation within the documents. However, variants of the MinHash-
ing approach can be applied to solve these problems.

% Ondov et al., “Mash: Fast Genome
and Metagenome Distance Estimation
using MinHash”, 2016.

* Indyk and Motwani, “Approximate
Nearest Neighbors: Towards Remov-
ing The Curse of Dimensionality”,
1998; Gionis, Indyk, and Motwani,
“Similarity Search in High Dimensions
via Hashing”, 1999.

** Buhler, “Efficient Large-Scale Se-
quence Comparison by Locality-
Sensitive Hashing”, 2001.

2 Damiani et al., “An Open Digest-
based Technique for Spam Detection”,
2004.

» Ryynanen and Klapuri, “Query by
Humming of Midi and Audio Using
Locality Sensitive Hashing”, 2008.

24 Sadowski and Levin, Simhash: Hash-
Based Similarity Detection, 2007.

5CS(A,B) = 7‘%@‘

26 Broder, “On the Resemblance and
Containment of Documents”, 1997.

27 Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003;
Roberts et al., “Reducing Storage
Requirements for Biological Sequence
Comparison”, 2004.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT Q9

5.6 MinHash

The core concept of the MinHash strategy as described by Broder>®
relies on comparing randomly uniformly selected subsets of docu-
ments, called sketches®9. As visualized in Figure 5.4, if we place a
number of probes randomly within two sets, the fraction of probes
within the intersection of the sets to those in their union is propor-
tional to their Jaccard similarity.

It can be seen that this estimation is only accurate if the probes
are distributed evenly throughout the set. Additionally, when the
number of probe positions is increased, the estimated value ap-
proaches the real Jaccard similarity, as the size of the sketch ap-
proaches the size of the document.

More formally, consider A C [n] and B C [n] and a random
permutation 77 : [n] — [n]. The value min 7t(A) is the smallest
value after the permutation has been applied to A. Note that if
7t is a perfectly random permutation, all items from A have the
same chance to be min 77(A). Using this, the probability that two
documents have the same minimal value is equal to their Jaccard
similarity:3°

_|AnB| _

P[min 7t(A) = min7t(B)] = AUB

A minimal item can be present only in A or only in B, but the prob-

ability that both documents share a minimal item is equal to the
fraction of items they share (cf. Figure 5.4). Hence, by comparing
the minimal values of two documents under several permutations
m,. .., T, we can estimate the Jaccard similarity of these docu-
ments.

The error of this process can be described using Chernoff bounds.3"

Define random variables X; € { 0,1}, which are 1 if min 77;(A) =
min 77;(B), i.e. if the documents share the same minimum. If the
permutations 7t; are independent, X; can be interpreted as a se-
quence of independent Bernoulli trials with p; = J(A, B) (via
Equation 5.16), with = E[X] = Y¥ , p; = k- J(A, B) so that
X = Z?:l X; is binomially distributed.

J(A,B) (5.16)

Figure 5.4: Visualization of a MinHash
sketch (small dots) for two sets. The
fraction of sketch entries that are
shared by both sets (light purple)
allows estimating the number of the
shared items.

28 Broder, “On the Resemblance and
Containment of Documents”, 1997.

* Note that sketching strategies are
also applied for several other ap-
plications other than MinHashing,
including cardinality estimation of
sets, estimating the number of unique
items in data streams, and feature
extraction for machine learning.

3 Broder et al., “Min-Wise Indepen-
dent Permutations”, 1998.

3 Motwani and Raghavan, Randomized
Algorithms, 1995, Chapter 4.1.

100 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

The probability to over- and underestimate 7 (A, B) by a factor
of J for a given number of permutations k can then be described as

&0

P[X > (1+0)y] S A1)+
y (5.17)
= PX>(1+0)k-J(AB)] < A+ o)1
and
P[X < (1—6)u] <t
= P[X<(1-68)k-J(AB) <o
respectively.

In literature, the error of this approach is often stated in a simpli-
fied way to be O(1/vk) using the central limit theorem (CLT). The
CLT provides information about the sum and mean of independent
random variables leveraging the law of large numbers (LoLN)3>.
Given k identical independent Bernoulli trials, as described above,
the expected mean of these trials is approximately normally dis-
tributed around the mean of a single Bernoulli trial. The accuracy
of this approximation increases with the number of trials k. As
shown above, the mean of a single Bernoulli trial X used to model a
MinHash probe is E[X] = p = J (A, B) and its standard deviation
is ¢ = \/p(1 — p). According to the CLT, the standard deviation ox
of the mean of k such Bernoulli trials is
% - ”(\}E”). (5.18)

Consequently, the mean of k Bernoulli trials behaves as if chosen

ox

from a normal distribution with mean p and a standard deviation
of o/ Vk. Intuitively, with increasing k the standard deviation of
this distribution narrows. By observing this distribution, we can
describe the expected deviation of the estimated similarities, for
example ~95% of values sampled from a normal distribution fall
into the range y =+ 2¢. Finally, since the similarity of A and B is
constant and independent of the number of trials, the standard
deviation behaves asymptotically like O(1/+v/k). Additionally, a

tighter bound
o1
T(A, Bk

Computing a series of random permutations 7t that is sufficient

has been proven.33

for this approach has been shown to be computationally infea-
sible. However, random permutations can be realized using (e-
approximately) min-wise independent hash functions, as described
in the section Universality, Independence, and Min-Wise Indepen-
dence. We denote the minimal hash value and its generating item
as follows:

32 For details, cf. Montgomery and
Runger, Applied Statistics and Probability
for Engineers, 2014

3 Thorup, “Bottom-k and Priority
Sampling, Set Similarity and Subset
Sums with Minimal Independence”,
2013.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 101

Figure 5.5: Illustration of a k-mins

h1 - sketch. Each line of gray blocks de-
notes the sequence of hash values for
one hash function, where the height

h 5 W of a block represents the “size” of the
hash value. The MinHash value for
each hash function is denoted by a
blue block. Each entry in the sketch

hk is the minimum of one of k different

K\J hash functions.

S'A)y=(22 D)

Definition 5.6.1 (MinHash values and minimizers). Let h be an
(e-approximately) min-wise independent hash function, and Q(A, q)
the g-gram set for a document A. We define the MinHash value as the
smallest hash value for all g-grams of A under hash function h:

m(A) :==min{h(g;) | gi € Q(A,q) }

and the minimizer as the q-gram that hashed to this this value:

g"(A) :=argmin{h(g;) | g € Q(A q)}

As a shorthand notation we use m and g™ to refer to MinHash values and
minimizers respectively.

A set or sequence of MinHash values can serve as a sketch of
a document, which allow estimating their Jaccard similarity. With
MinHashing, there are two kinds of sketches, k-mins sketches and
bottom-k sketches, where k denotes the size of the sketch.

5.6.1 k-Mins Sketches

The technique described above—selecting items for a MinHash
sketch using the minima of k different hash functions—is called

k-mins sketching.34 34 Broder et al., “Min-Wise Indepen-
dent Permutations”, 1998.

Definition 5.6.2 (k-mins sketch). Let H be a family of (e-approximately)
min-wise independent hash functions, and Q(A, q) the q-gram set for a
document A. For a sequence of hash functions (h,');‘:1 k € IN, we define
the k-mins sketch of A as:

S(A) == (m(A)Ey mi(A) = min{hi(g) | g € Q(A,0)}

Furthermore, if we describe properties that hold for all possible values of
k, we use the short hand notation S™(A).

Figure 5.5 provides an example of how a k-mins sketch is assem-
bled from k sequences of hash values.

Given the two sketches S™(A) and S™(B), the Jaccard similarity Broder, “On the Resemblance and
of the original documents can be estimated.3> Containment of Documents”, 1997.

102 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

h - - | -]

SiA)={- = mmm}

Theorem 5.6.3. Given k-mins sketches for two documents A and B, the
Jaccard similarity of their sketches

T & o
J(AB) = ¢ ; [[5 (A)y =S (B)[i]]] ~ J(A,B)

is an unbiased estimator for the Jaccard similarity of A and B. Here we
use [] as the Iverson bracket.3°

Proof. See (Broder, “On the Resemblance and Containment of Doc-
uments”, 1997). O

Considering the runtime performance of MinHash strategies,
two metrics are of interest for k-mins sketches: Computing a sketch
and comparing two given sketches. The computation of a k-mins
sketch for a document A can be performed in O(k|A|) time. By
iterating through all g-grams of the document, computing their
hash values using all k hash functions, and keeping track of the
smallest hash value for each k;. Comparison of two sketches is
performed in k steps by comparing m;(A) = m;(B) foralli =
1,...,k hash functions. Note that 7*(A, B) = dyn(S™(A),S™(B))
(cf. Equation 5.2, p. 91).

Computing a k-mins sketch comes with the downside of evalu-
ating k hash functions |A| times. A similar approach for the gen-
eration of MinHash sketches that is feasible for many applications
offers a solution with only one hash function.

5.6.2 Bottom-k Sketch

Where a k-mins sketch comprises the smallest hash value of k hash
function, a bottom-k sketch contains the k smallest hash values
using only one hash function.3” Figure 5.6 provides an illustration
for a bottom-5 sketch.

Definition 5.6.4 (Bottom-k sketch). Let h be a (e-approximately) min-
wise independent hash function, and Q(A, q) the g-gram set for a docu-
ment A. We define the bottom-k sketch of A as:

Si(A) :=min* {h(g) | g € Q(A,q) }
where min*X denotes the k smallest items in a set or sequence X (see
p- 29).

Corollary 5.6.5. A bottom-k sketch Si(A) can be constructed by repeat-
edly sampling MinHash values without replacement. Let Q' = Q(A,q)
be the q-gram set of A and g/ i = 1,...,k be the minimizer selected for

Figure 5.6: Illustration of a bottom-
5 sketch. Each entry is one of the k
smallest values under one given hash
function h.

3 The Iverson bracket [P] denotes
an indicator function that is 1 if a
condition P holds, and 0 otherwise.

37 Cohen and Kaplan, “Summarizing
Data Using Bottom-k Sketches”, 2007;
Broder, “On the Resemblance and
Containment of Documents”, 1997.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT

the i-th smallest entry of S%(A), and | { h(g"),... h(g}) } | = k (i.e. no
collisions occur). The bottom-k sketch can be recursively defined as:

Si(A) = {m(Q),m(@Q\{&'}),-..,m(@Q\{gf' ... 881 1)}

Proof. Removing a minimizer from the set does not influence other
hash values. Hence, removing a minimizer gj" from a set leaves a
new minimizer g for the next iteration. O

Estimating the Jaccard similarity is only slightly more compli-
cated than with k-mins sketches. Given the two sketches S*(A)
and S*(B), the Jaccard similarity of the original documents can be

103

estimated.3® 3 Cohen and Kaplan, “Summarizing
Data Using Bottom-k Sketches”, 2007.

Theorem 5.6.6. Given bottom-k sketches for two documents A and B, the
Jaccard similarity of their sketches

ISE(AUB) NS (A) N SE(B)|

T = T s)y osie)

~ J(A,B)

is an unbiased estimator for the Jaccard similarity of A and B.

Proof. See (Broder, “On the Resemblance and Containment of Doc-
uments”, 1997). O

Note that the bottom-k sketch of the union A U B can be com-
puted from the sketches of A and B as

S{(AUB) = S*(S*(A)US (B)) (5.19)

since the k smallest items of the union can only be selected from the

smallest k items of each set.39 3 Cohen and Kaplan, “Summarizing

Computing a bottom-k sketch is less run time intensive than a
k-mins sketch since it requires fewer hash value evaluations. By
maintaining a maximum heap of size k, we can quickly (O(1))
check if the item is eligible to be inserted into the sketch. If that
is the case, we remove the old largest value in the sketch (O(1))
and insert the new value (O(logk)). This results in a worst case
run time of O(|A|logk), however the expected runtime is more
benevolent.

Since the hash function is assumed to be e-approximately min-
wise independent, the k minimizers can be assumed to be uni-
formly distributed throughout A. Additionally, assuming an in-
dependent hash function (see Definition 3.1.4) we can also assume
that all (other) hash values are distributed approximately randomly
throughout the codomain C of the hash function. Consequently, the
expected time is lower since most hashed g-grams can be skipped
after comparing with the max-value of the heap. The further we
progress through the document, the higher the chance that a ran-
domly chosen hash value is smaller than the k smallest of all values
we already saw up until that point. We discuss the distribution of
minimizers, albeit in a slightly different context in chapter Distribu-
tion of Minimizer Segment Lengths.

Data Using Bottom-k Sketches”, 2007.

104 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Comparing two bottom-k sketches is possible in O (k) time by
advancing linearly through both sketches and counting which items
are present in one of the sketches or in both. To ensure that only
the k smallest items of the union are evaluated (cf. Equation 5.19),
we stop the iteration after k comparisons (matches or no matches)
were made.

A beneficial property of bottom-k sketches is that their estimate
J* converges towards J as k approaches |A].

Corollary 5.6.7. Let Si(A) and Si(B) be the bottom-k sketches of two
documents A and B. If k = |A| = |B|, then J(A,B) = J*(A, B).

Proof. S%(A) contains the k smallest hash values of A, hence, if
k = |Al, all items of A are contained in S;(A). Consequently:

|S|iA|(A)mS\iB|(B)| _ |ANB| _
Sty (A)U S, (B)] |AUB|

J*(A,B) = J(A,B)

This does not hold for k-mins sketches, since there is no guaran-
tee that each item of A is selected at least once as minimizer by a
collection of k = |A| = |B| hash functions.

While the reasoning for the Chernoff bounds given in the pre-
vious section is slightly different, the error bounds remain the
same. Each Poisson experiment is described by random variables
X; € {0,1}, which are 1 if a minimizer x € S*(A) is also present in
S(B).

A third technique we will only briefly mention is k-partition
sketching, which combines aspects of both bottom-k and k-mins
sketches. This approach was initially used for cardinality estima-
tion under the name stochastic averaging.4® When assembling a
k-partition sketch, each hash value is assigned to a set using on a
subset of its bits, e.g. its k most significant bits. Within each of these
2k sets, a bottom-1 sketch is computed using the remaining n — k
bits of the initial n-bit hash values. This emulates the behavior of a
2k-mins sketch using only one hash function, albeit using a reduced
range of possible hash values.

All three MinHash techniques provide an efficient way to esti-
mate the Jaccard similarity and thereby the resemblance of docu-
ments. However, since all MinHash approaches inherit the proper-
ties of Jaccard similarity, different sizes of A and B remain a prob-
lem. Especially for read mapping of SGS short reads, this limitation
becomes apparent, as illustrated in the section Containment. Esti-
mating document containment, unfortunately, poses a new set of
challenges. Another limitation of Jaccard-based approaches is that
translations cannot be detected. This would require using another
distance measure, like edit similarity.

4 Flajolet and Martin, “Probabilistic
Counting Algorithms for Data Base
Applications”, 1985.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT

A: 0000000111

] g-gram E
q-grams multi-set: (000,

(

M;(A) ={(

number of occurrence

5.7 Locality Sensitive Hashing for Edit Distance

An LSH approach for the edit similarity based on MinHashing

was recently presented by Marcais et al.#' The Order Min Hash
(OMH) approach combines bottom-k sketching with weighted
Jaccard similarity. To tackle the specific weaknesses of Jaccard based
similarity measures, OMH addresses two problems:

Multiplicity: How often does a g-gram occur in the document?
Order: Where does a g-gram occur in the document?

OMH sketches comprise k entries, each of which is a bottom-¢
sketch of uniquified g-grams ordered by their position in the input
sequence.

To add multiplicity information to a g-gram set, OMH aug-
ments each g-gram with an occurrence number in a process called
uniquification. Each generated g-gram is reported with the number
of times it has already occurred to assemble the set:

M;N(A) = {(g,0) | g : g-gram, o : occurrence number }

An example for this approach using a bit string is illustrated in Fig-
ure 5.7. Since g-grams can occur multiple times in Mgv, it behaves
similarly to a multiset.

Recall that the Jaccard similarity of multisets can be computed
using weighted Jaccard similarity. Since uniquified g-grams encode
multiplicity within the boundaries of sets, the weighted Jaccard
similarity can be computed as

TV (A, B) = T (M} (A), M} (B))

The relative order of g-grams is encoded by keeping the position
of a minimizer within the input sequence to compile a text-ordered
sketch. As mentioned above, each sketch entry of an OMH sketch
comprises a bottom-/ sketch. This sketch is generated from the
uniquified g-grams MZV(A) using a function hZYn(A), where 77 is a
random permutation. The function hZYn(A) returns a text-ordered
bottom sketch of A, comprising the ¢ items of Sé(M;N(A)) in the
order in which they appear in the input sequence.

An example of a bottom-/¢ sketch and its text-ordered counter-
part is illustrated in Figure 5.8.

A S e

N

N

N

N

105

Figure 5.7: Example of uniquified
g-grams. The g-grams of a document
A (gray monospace text) are annotated
with their occurrence number (teal).
This allows assembling them in a
"multiset" containing 8 uniquified
3-grams, as shown on the right.

41 Marcais et al., “Locality-sensitive
Hashing for the Edit Distance”, 2019.

=mmil
Se(A)=(1, 4, 7, 811, 15)
-mil_J

hon(A) =4, 7,11, 1, 15, 8)

Figure 5.8: Comparison of a classic
bottom sketch (above, represented

as a sequence ordered by hash value
size) and a text-ordered bottom sketch
(below). Each bar respresents a sketch
entry, where the height of a bar de-
notes the size of the hash value and
the fraction shaded in teal denotes the
position within the sequence.

106 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

5(4) = (

Uniquified bottom-¢ sketch
in text-order:

Permutation for
hash value size:

By (A) = (my, ..., myg) Tom (A) =
4, 7,11, 1, 8, 15) @4, 7,11, 1, 8, 15)
1
(1, 4, 7, 8 11,12)
h/f,ﬂz(A) = (ml,...,me) r/-"ﬂz(A) = (1’1,..,,7’1) 2
by (A) = (my,...,my) rom(A) = (r1,...,7¢) k

Using these building blocks, a sketch for Edit similarity can be
defined. Such an OMH sketch comprises k text-ordered bottom-¢
sketches. For a practical implementation, the sketch hZYH(A) (con-
taining (g-gram, occurrence number)-tuples) is replaced by hy . (A),
which contains only g-grams in text order. Additionally, a function
70 z(A) encoding a permutation ordering the elements of /1 ,(A)
by size is used to synthesize S;(M){V(A)) An example of an OMH
sketch is shown in Figure 5.9.

Text-order sketches with h; ; allow constructing an LSH for
weighted Jaccard similarity:+*

P17 (A) = b (B)] = TV (A, B).

For all values 1 < ¢ < n —q+ 1, where n is the length of the input,
OMH is a gapped LSH for the edit distance.

A limitation of this approach is that it does not work with canon-
ical g-grams, since the position information becomes inconsistent.
Additionally, the size of the sketch and consequently the time re-
quired to compare sketches is higher than with other MinHashing
approaches.

5.8 Locality Sensitive Hashes as Estimators for Containment

The main problem with estimating containment is that the Min-
Hash sketches described above, by design, always represent their
whole respective set. In the case of radically different sizes, say A is
much smaller than B, as illustrated in Figure 5.10, items that are no
minimizer for B can easily become minimizers for A.

While Broder already proposed a way to estimate Jaccard con-
tainment using MinHash with modulo sketches, the required sketch
size is large. Other approaches to estimate containment via Min-
Hash have only been proposed recently by Koslicki et al.#3 and
Ondov et al.#4. This problem can also be tackled by decomposing

Figure 5.9: Illustration of an OMH
sketch with k entries. Each row con-
tains the sketch for one random per-
mutation 7r. In the first column of each
row, the uniquified bottom-¢ sketch
values are shown. The second column
contains the permutation required to
sort the sketch entries by size (denoted
by teal arrows).

Marqais et al., “Locality-sensitive
Hashing for the Edit Distance”, 2019,
Theorem 1.

4 Koslicki and Zabeti, “Improving
MinHash via the Containment Index
with Applications to Metagenomic
Analysis”, 2019.

Ondov et al., “Mash Screen: High-
throughput Sequence Containment
Estimation for Genome Discovery”,
2019.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 107

the larger of two sets into subsets, which brings forth the ques-
tion of how to find a good decomposition. We will describe static
window decompositions in this section while dynamically sized
decompositions are subject of the following section.

5.8.1 Modulo Sketches

The first approach for containment estimation with MinHash was
proposed by Broder in the original paper.#> He proposed to com-
pute modulo sketches S,;, containing all items with hash value
h(g) =0 mod 2/ instead of minimal hash values.

The modulo size 2%, used to regulate the number of items in the
modulo sketch, needs to be chosen with respect to the document
size. Given two sketches with modulo values 2/ and 2! respec-
tively, a sketch for 2'*! can be computed from the one for 2/ by
dropping all elements that are no multiple of 2+, When com-
puting containment for two documents A and B with A < B, the
modulo value used for the larger document is computed as above.
The resulting sketches are compared to compute the estimated
Jaccard containment

15i(A) N Si(B)|

Cx _
TTAR = T s)

A downside of this approach is that the size of modulo sketches
grows linearly with respect to document size, which sacrifices the

memory efficiency of bottom-k and k-mins sketches. Additionally, it

is not robust against size differences between documents,*® which
is one of the main reasons to choose containment estimation above

resemblance estimation. As a result, modulo sketches have not seen

widespread application.*”

5.8.2 Containment MinHash

Just as containment measures are asymmetric, so are approaches to

estimate containment values. Koslicki et al. proposed computing
a containment index by combining k-mins sketches with a bloom
filter4®, to estimate both Jaccard similarity and containment.

Figure 5.10: Two sketches with k = 11
entries for the sets A (light gray and
teal dots) and B (dark gray and teal
dots), where A C B. The 11 sketch
members of A hit only one of the
sketch members of B (shown as a
larger, teal circle). MinHash values
within S(A) are larger than the largest
MinHash value in S(B), otherwise
they would also have been selected for
S(B).

45 Broder, “On the Resemblance and
Containment of Documents”, 1997.

Example: starting from the sketch for
Sea = {128,320,512,576 } the sketch
S1p8 = {128,512} is computed by
removing 320 = 64 mod 128 and
567 = 64 mod 128.

46 Broder, “On the Resemblance and
Containment of Documents”, 1997.

4 A notable example being (Yang,
Zola, and Aluru, “Parallel Metage-
nomic Sequence Clustering via Sketch-
ing and Maximal Quasi-Clique Enu-
meration on Map-Reduce Clouds”,
2011)

Koslicki and Zabeti, “Improving
MinHash via the Containment Index
with Applications to Metagenomic
Analysis”, 2019.

108 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

B Figure 5.11: Illustration of the contain-
ment index. The MinHash values from
the k-mins sketch $""(A) are shown

A as small circles within the sets A and
B. The fraction of MinHash values
contained within B is an estimate for
the Jaccard containment of A in B.

Given two sets A and B, where |A| < |B|, we want to compute
the Jaccard containment of A in B:

|AN B
Al

J€ (A,B) =

When using classic resemblance MinHash, the k minimizers of A

and B are distributed uniformly within each document (cf. Fig-

ure 5.10). This leads to low Jaccard similarity, since many49 mini- 4 Depending on the size difference of

mizers of B cannot be matched by A. Aand B.
Note that in Figure 5.11, overlapping circles denote shared val-

ues, i.e. all values symbolized by the purple shaded area are con-

tained in both A and B. Consequently, the minimizers of A that

fall into the purple area are contained in B, albeit not as mini-

mizers, and the remaining minimizers of A are not present in B.

This property can be modeled using a bloom filter, containing all

items of B. Recall that a bloom filter B is a data structure that can

answer membership queries with a false positive error rate (see

Section Bloom Filter).
Koslicki et al. populate a bloom filter 5(B) with all elements of

the bigger set B and query it with items from S;"(A). The number

of minimizers of A that are contained in B allow estimating the

containment 7€ (A, B) as

7% (A,B) li (A, B) 1, if m; € B(B)
ki3 0, else

where m; € S;'(A) is the minimizer of the i-th hash function and

B(B) is the bloom filter containing all items of B. Intuitively, this is

equivalent to counting the minimizers within the overlapping area

of A and B in Figure 5.11. In addition to containment estimation,

the containment estimate allows computing a Jaccard similarity

estimate
AT (A, B)
|A| + B — |A|T*(A, B)

Furthermore, Koslicki et al. have shown that computing the con-

J*(A,B) =

tainment index requires less hash functions than classic MinHash.>° 50 Koslicki and Zabeti, “Improving
A downside of this approach is that it requires a potentially large MinHash via the Containment Index
) . with Applications to Metagenomic
bloom filter for each reference set. While the authors argue that Analysis”, 2019.
the size of the bloom filter is amortized by the reduced number of

hash functions required by the Containment MinHash technique,

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 109

C

aETTE - » ()

G S ()
a « » e f
- EE. . [)
GETTEEE— D o

this gain depends on the properties of the application. The use case

described by Koslicki et al. is a large reference set B and a collection

of several smaller query sets A;, for which the space required is
reduced significantly.

5.8.3 Mash Screen

Similarly to the Containment MinHash approach, MAsH SCREEN>'
only sketches one of the two input sets to estimate containment.
This extension of the M AsH software, which uses bottom-k sketches
to estimate resemblance>? is used for the analysis of metagenomic

sequencing data. The MasH software>3 as published in 2016 is
|ANB|
[AUB|

able to estimate the resemblance (
bottom-k sketches.
Given a sequencing dataset B with reads from an unknown

) of (meta-) genomes using

combination of species, and a set of reference genomes A;, |A;| <
|B| Vi, which reference genomes are contained within B? In contrast
to Containment MinHash, MAsH SCREEN uses the complementary
asymmetric solution, sketching the references instead of the query.
First, a bottom-k sketch S,%(Ai) for each reference sequence is
computed and stored. Recall that we assume that minimizers of the
MinHash values m; € S,E(Ai) are uniformly distributed throughout

each set A;. To compare these minimizers of the A; against all items

in the dataset B, all items from B are compared with all sketches
S%(AZ-) directly. In other words, instead of entering the items into a
data structure, MAsSH SCREEN performs a linear scan of the input
set to successively compute containment estimates

inimi : i Si(A;)NB
(A, B) = # minimizers of A; foundin B _ |S;(A;) N B|
k k
for each A;.
This approach, which is illustrated in Figure 5.12, can be used

as an online (streaming) algorithm, for example during the anal-

Figure 5.12: Illustration of the mash
screen workflow with k = 3. For
each reference sequence (a), a bottom-
3 sketch (b) is computed. Iterating
through the read data (d), hashing
each value yields key to query (c) a
count hash table (e). The number of
minimizers (out of k = 3 possible one)
detected in the input is an estimate for
the containment (f). This figure has
been derived from Figure 2 of (Ondov
et al., “Mash Screen: High-throughput
Sequence Containment Estimation for
Genome Discovery”, 2019), released
under CC BY 4.0 license.

5'Ondov et al., “Mash Screen: High-
throughput Sequence Containment
Estimation for Genome Discovery”,
2019.

52 Cf. Overview of LSH in Bioinformat-
ics.

53 Ondov et al., “Mash: Fast Genome
and Metagenome Distance Estimation
using MinHash”, 2016.

https://creativecommons.org/licenses/by/4.0/

110 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

g-gramhashesof B

<a);E R — I —

Segments

! "

ysis of a MinlON dataset. For implementation, sketches are rep-
resented using a count hash table, containing the sketch entries
of all genomes. Each g-gram g in the input is hashed and used to
query the table. If 1(g) is in the table, its counter is incremented.
The number of sketch entries m € S%(Ai) with non-zero entries
in the count hash table are collected and counted, which yields
\S,%(Ai) N B|. Dividing this count by k yields the containment esti-
mate 7 (A;, B).

Through the use of atomic data types,>* this computation can
also be parallelized.

5.8.4 Static Window Decomposition

Another approach to avoid the size difference problem is to limit its
impact by decomposing the larger set into smaller segments. Given

the use cases presented above, i.e. finding occurrences of small
sets within one or more large ones, an intuitive way to do this is to
split up the large set into windows of static size w. This approach,
combining k-mins sketching with overlapping static windows, is
employed by the variant tolerant read mapper VATRAM.55

If a read fits perfectly into the window, a high Jaccard similarity
between reference subsequence By, (i11),] and query sequence A;
is akin to a high containment of A; within B (see Figure 5.13 (a)).
In the less benevolent case that A; spans two reference windows
Bliw:(i+1)w) and Bj(i1)w:(i+2)w), the Jaccard similarities

T (A} Bliw(isyw) T (A BlisD)w(i+2)w])

are bounded by the overlap A; has with each of them. This can be
mitigated by using overlapping windows at the cost of additional
memory (see Figure 5.13 (b)).

The main problem with static window approaches is that win-
dow boundaries and positions of minimizers are independent. It
is not possible to shift window boundaries to react to the sequence
composition. These can be circumvented by directly incorporating
minimizer information into the window decomposition through
dynamically sized windows.

Figure 5.13: Two decompositions of the
sequence B using static window

sizes. Minimizers of a sequence

are denoted by colored blocks and

a line to the sequence they are a
minimizer of. Simple, non-overlapping
decomposition (a), the sequence A

can fall through the minimizers. When
using overlapping windows, in the
case of (b) with an overlap of 0.5w, this
can be averted at the cost of increased
memory consumption.

54 In this context atomic means that
operations are guaranteed to complete
in multi-thread environments and
cannot be interrupted.

5 Quedenfeld and Rahmann, “Variant
Tolerant Read Mapping using Min-
Hashing”, 2017.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 111

] [| [| [| - B =
S (A) =(mAmlal=)

5.9 Winnowing and Minimizers

A class of LSH approaches which relies on sketches generated from
minimal hash values, but is not considered a MinHash variant, are
the Winnowing and Minimizer strategies independently described
by Schleimer et al.>® and Roberts et al.57 Roberts’ minimizer defi-
nition focuses more on encoding biological sequences using their
minimizers only,>® while Schleimer’s approach aims at document
fingerprinting. To avoid confusion with the term minimizers intro-
duced above to denote a g-gram hashing to a minimal hash value,
we will refer to both techniques as winnowing from here on.

Where MinHash approaches with k-mins and bottom-k sketches
always consider whole sets, winnowing introduces locality infor-
mation. The core idea is to compute a MinHash value not for the
whole document but for a moving window, thereby reducing the
range a single minimizer can influence.

A MinHash value is computed for each window of w consecutive
hash values? as illustrated in Figure 5.14.°° However, only changed
minima are reported: if the windows starting at g-gram i and 7 + 1
have the same MinHash value m and the window at i + 2 has a
different MinHash value m’ # m, the sequence of MinHash values
is reported as (m,m’,...).

A simplified version of the winnowing algorithm is illustrated in
Algorithm 2. Note that in a more efficient implementation, explic-
itly computing the minimum for each window can be replaced by
maintaining a list of minimizer positions and only comparing the
new value with the acting MinHash value.

Winnowed MinHash values can be compiled into sketches which
behave similar to the document sketches described above.

Definition 5.9.1 (Winnowed Sketch). Let h be a (e-approximately) min-
wise independent hash function and G := Q(A, q) the g-gram sequence
for a document A. We define the winnowed sketch or the winnowed
MinHash values of A as:

S2(G) == ((py,m))_y 0<j<|G]|

where m; := h(g") is the i-th different MinHash value of the hash values
of G, obtained by computing a MinHash value for each window of size

w. We refer to the corresponding minimizers as the winnowed mini-
mizers of the document. Additionally, the following property holds for all
winnowed minimizer positions:

pis1—pi <w Vi€ [|Sy(G)|]—1]

Figure 5.14: Illustration of a winnowed
sketch with size w. The window (black
bracket on the left) is moved along the
sequence of hash values (gray blocks).
At each position, the window’s Min-
Hash value is computed and compared
with the active minimum. If a new
minimum is found, it is added to

the sketch (blue blocks) and a new
segment starts.

56 Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003.

57 Roberts et al., “Reducing Storage
Requirements for Biological Sequence
Comparison”, 2004.

58 This is possible if the window size is
w < g, since all characters in the input
sequence are covered by a minimizer.

5 Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003.

¢ Note that windows of size w are
effectively w-grams of the g-gram
sequence. For a sequence A there are
|A] —q+1g-grams and (|[A| —g+1) —
w + 1 windows.

112 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Algorithm 2: Implementations of simple and robust winnowing. Both differ only in the way a
new minimizer with the same (minimal) hash value is handled. While simple winnowing up-
dates the minimizer for each new occurrence of the minimal value, robust winnowing keeps a
minimizer as long as possible.

Input:
e Sequence of g-grams Q(A,q)
e Window size w

> Initialization (fill the first window)

Create an empty list M for computed minima;
Create a window W of size w;

Fill W with the first w g-gram hashes;

Set current minimum m := min(W);

> Winnowing iterations for all remaining q-grams
foreach g € Q(A,), do

Compute hash value v = h(g);

Update window: Pop W|0], insert W[w] := v;
Compute new window minimum m’ = min(W);

if m’ # m then
Append m to M;
Set new current minimum m := n’;
else
> Identical minima are resolved differently by simple or robust winnowing:
Simple Winnowing;:
Select the rightmost occurrance as minimizer;
Append m to M;
Set new current minimum m := m’;

Robust Winnowing:
if m was shifted out of the window then
Select the rightmost occurrance as minimizer;
Append m to M;
Set new current minimum m := m’;
else
| Keep m as minimum and continue;

A})pend last minimum m to M;
return M;

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 113

In contrast to bottom-k and k-mins sketches®?, the size of a win- 61 But similar to modulo sketches.
nowed sketch is not constant. How many minimizers are selected
into the sketch depends on both the window size w and the distri-
bution of hash values in the data.

Corollary 5.9.2. Let A be a document of length |A|, with its g-gram

sequence G := (A, q) containing {; = |A| —q + 1 g-grams, and a
window size w < {4 for winnowing. This results in £y, = €3 —w +
1 window starting positions. Then the winnowed sketch S;;(G) of A

contains between {%"—‘ and y, MinHash values.

Proof. * Consider a sequence of £, g-grams with the first MinHash
value myg at position w: MLIMLINLI Slide the window across the
g-gram sequence and place the next minimum ;1 so that it
enters the window, as m; leaves the window. A minimum stays
in the window for w consecutive starting positions, in other
words it covers w input g-grams. Since all window positions
must report a MinHash value, it is not possible to encounter
fewer minima than this.

¢ Consider a sequence of /; g-grams sorted in (w.l.o.g.) decreasing
order: I The first window of w g-grams receives one
MinHash value (initialization). For each of the remaining ¢; — w
start positions of the window, the minimum changes, since a
smaller value is observed.

The density of minimizers, i.e. the amount of g-grams that are
selected to be minimizers in relation to the size of the document,
is a measure how suited the input sequence is for a winnowing
approach.

Definition 5.9.3 (Minimizer Density). The minimizer density of a
g-gram sequence G := Q(A, q) is defined as the fraction

minimizers 1S5, (G)]

Ly (Al —g+1) —w+1
i.e. the fraction of windows for which a new MinHash value is reported.
Applying Corollary 5.9.2, the minimizers density of a document can

w
and 1 (all g-grams are minimizers: I).

range between Vl—‘ [y = % (Widely spaced minimizers: HILINLINLL)

A winnowed sketch with |S;,(G)| = |G| — w + 1 MinHash
values does not offer any edge over just using the g-gram sequence
G. Since a change of MinHash values is expected once every half

window width,%? the expected density assuming independently % Roberts et al., “Reducing Storage
_2 63 Requirements for Biological Sequence
. L. w+l . . Comparison”, 2004.

Assuming the minimizers were computed using an (e-approximately) « g 1imer Wilkerson, and Aiken,
min-wise independent hash function, the density is also an estima- “Winnowing: Local Algorithms for
Document Fingerprinting”, 2003.

uniformly distributed keys is d =

tor for the entropy of the input sequence. As seen in the proof of
Corollary 5.9.2, the density of minimizers does not only depend

114 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

on the qualities of the hash function, but also on setup of the input
sequence.

Recall that in genomic sequences repetitive regions®# can be
present. These have the potential to create repeating runs of equi-
minimal minimizers leading to long sketches that contain mostly
redundant information. Since sketches need to be saved, this can
become a performance concern with respect to memory.

A solution for this problem is a slight variation of the winnowing
algorithm. Instead of updating the sketch with the rightmost occur-
rence of an equiminimal hash value, we keep its first occurrence as
long as possible. This approach is called robust winnowing®> and
intuitively condenses runs of equiminimal sequences. If not explic-
itly mentioned otherwise, we consider all winnowed sketches to be
obtained through robust winnowing.

Computing a minimizer using the winnowing strategy allows the
following interpretation:

Lemma 5.9.4. Let G := Q(A,q) be a g-gram sequence and G’ :=
Gliiyj),] = wasubsequence of G with length at least w. Then the
smallest MinHash value of G’ is contained in the winnowed sketch of G:

Si(G') € 5(G)

Proof. Following Corollary 5.9.2 minimizers can be at most w po-
sitions apart. Since |G'| > w, G’ covers at least one minimizer
m € S, (G). Consequently, m dominates all other hash values in at
least one window of length w of G and must therefore be contained
in S;(G).

Consider a MinHash value m € S%(G’) ¢ S (G). Since m €
S% (G), there is no smaller hash value in the hashes of G’ and
consequently in the subsequence Gj;.; 1, j = w. The value m is
not selected as MinHash value of the windows fully contained
within Gj;;,), from which follows that there is a smaller hash value
m' < m,m" € S.;(G). This leads to a contradiction, since m is the
smallest value of the segment Gy;.; 1 ¢- O

In other words, based on the window size w, we can guarantee
that two sequences which are contained within each other share
a winnowed minimizer, if the smaller contains at least one full
window.

Winnowing approaches are commonly used in plagiarism detec-
tion® through detecting local matching subsequences, e.g. copied
paragraphs. However, using them to estimate similarity measures is
not as well established. While it is possible to treat winnowed Min-
Hash values like a bottom-k sketch, or derive a bottom-k sketch to
estimate Jaccard similarity,7 this approach removes locality infor-
mation. An approach that preserves the order of minimizers would
be to compute an alignment between winnowed sketches of two
documents. However, this does not allow the detection of structural

% Low entropy regions like homopoly-
mers or short tandem repeats.

% Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003.

% Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003.

¢ This approach is used by the
MasHMAP software described be-
low (p. 118).

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT

variations like exchanged subsequences. Due to this, winnowing
approaches are most commonly used to identify single matching
windows for further analysis.

Winnowed sketches can be used to estimate containment of
linear sequences. Given two sequences A < B, where A is a sub-
sequence of B, then S;;(A) is a subsequence of S;,(B). The contain-
ment of A in B can be estimated as:

. matching subsequences of S.;(A) and S;, (B
(A, B) = | g subseq = w(A) wBI (50
w

To avoid performing all-vs-all comparison, in practice, winnowed
MinHash values of the reference sequences B;,i € [n] can be stored
in an index like a hash table mapping winnowed MinHash values
to sequence positions. For a query sequence A, we perform a hash
table lookup with all MinHash values m; € S;/(A) and estimate
the containment c¢*(A, B;) for each observed target sequence as the
number of matches found for that sequence divided by |S;,(A)|.
Storing MinHash values from k-mins, bottom-k, or winnowed
sketches in a hash table offers a new challenge. Through selecting
for small values, the key set used to index the hash table is skewed.
The size distribution of MinHash values in a sketch is influenced
by the hash function, document size, and input data. Sketches
computed using the k-mins or bottom-k strategies are expected to
contain smaller MinHash values for large documents, since there
are more input items that can be selected as minimizer. Through
the locality of winnowing, larger MinHash values are more likely
to occur, since one subsequence of larger hash values is enough
to introduce a large MinHash Value. This influences the decision
for data structures used to save MinHash values. We analyze the
behavior of winnowed MinHash values obtained using different
hash functions, especially focusing on the distribution of segment
lengths in the following chapter. The remainder of this chapter
provides examples for the flexible and widespread use of locality
sensitive hashing strategies applied in bioinformatics.

5.10 Owerview of LSH in Bioinformatics

Bottom-k sketches are widely used in current MinHashing im-

plementations,®®

since they offer superior runtime performance, % Thorup, “Bottom-k and Priority
as illustrated in Table 5.1. The properties of k-mins sketching, on
the other hand, are beneficial for parallelization, i.e. allowing to 2013.
maintain sketches distributed across processor cores. Especially

the tolerance for small errors implemented by the Jaccard simi-

larity makes MinHash strategies a popular tool in bioinformatics.

This section will briefly introduce several uses of MinHash variants

and in bioinformatics software (in alphabetical order of software

names).

115

Sampling, Set Similarity and Subset
Sums with Minimal Independence”,

116 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Strategy Sketch Document Compare Sketches
k-mins sketching O(k-n) O(k)
bottom-k sketching O(lgk-n) O(k)
winnowed sketching O(n) O(n)

Balaur The BALAUR® framework is a read mapping software
designed to run in commercial cloud systems, like Amazon Elastic
Compute Cloud, Azure or Google Cloud. When working with data
from human patients, this poses additional restrictions to protect
the privacy of sensitive genomic data. BALAUR locally computes
candidate alignments using MinHashing which are then verified in
the cloud environment.

After discarding overrepresented g-grams, a k-mins sketch is
computed using a two stage hash function:

hi(x) = hop(W(g)) hap € H™, 1 is a GPHF, g is a g-gram

For a set read length [, a sketch S;"(r) is computed for each window
r of length [of the reference sequence. The computation of these
sketches uses a rolling hash approach which only recomputes Min-
Hash values if necessary. Using these sketches, a reference index,
comprising T tables with B = 2" slots each, is constructed by pro-
jecting k-dimensional sketches down to [B] for each table using a
multiply-shift hash function. The projection for each table is per-
formed by selecting b items from S;"(r), similar to a gapped (b, k)-
gram. When analyzing a read, all segments that share more than
a certain number of hits in the tables are passed to the alignment
step. Verification of alignment position in the cloud is performed
using g-gram voting.

The parameters used to index a human genome (GRCh37) with
this approach as described in the evaluation were: sketches with
k = 128, T = 78 hash tables with M = 18,B = 218 entries and
projections of size b = 2.

Canu, MHAP Both MHAP7° and Canu”" find overlaps of TGS long
reads for assembly using a two step process. Since both employ a
similar approach, with Canu being an updated version of MHAP,7>
we will focus on describing Canu here. Furthermore, we omit the
actual long read assembly and focus this description on step one,
the identification of overlapping fragments.

Overlap identification itself is a two step process. First, likely
candidates are identified using a weighted k-mins sketch, followed
by computing the Mash distance (described in the following para-
graph, see Definition 5.10.1) between the overlapping subfragments
using bottom-k sketches. The weighted MinHash approach applied
by Canu is a variation of tf-idf weighting”3 with discrete weights.
In this context tf stands for term frequency, i.e. how often a g-gram

Table 5.1: Runtimes for k-mins and
bottom-k sketching of documents

with n items. For a k-mins sketch,

k hash functions are evaluated per
item. For a bottom-k sketch only one
function is evaluated, but maintaining
a sorted list of hashes is logarithmic

in k. Computing winnowed sketches
requires one hash function evaluation
per item, as does comparing them
since in the worst case a sketch can
contain all items. Note that computing
multiple winnowings with k hash
functions is also possible, resulting in
a runtime of O(k - n) for sketching and
comparison.

% Popic and Batzoglou, “A Hybrid
Cloud Read Aligner Based on Min-
Hash and Kmer Voting That Preserves
Privacy”, 2017.

7° Berlin et al., “Assembling Large
Genomes with Single-Molecule Se-
quencing and Locality-Sensitive
Hashing”, 2015.

7t Koren et al., “Canu: Scalable and
Accurate Long-Read Assembly via
Adaptive k-Mer Weighting and Repeat
Separation”, 2017.

72 Koren et al., “Canu: Scalable and
Accurate Long-Read Assembly via
Adaptive k-Mer Weighting and Repeat
Separation”, 2017.

73 Chum, Philbin, and Zisserman,
“Near Duplicate Image Detection:
min-Hash and tf-idf Weighting”, 2008.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 117

g occurs in a specific read, and idf denotes inverse document fre-
quency, i.e. the frequency of g across all reads. Each g-gram in

a read is hashed using a number of hash functions based on the
weight

w(g) = tf(g) -idf(g)

tf(g) : = # occurrences of g in the active read (5.21)

) =7 (o (75 <))

where T linearly transforms the idf value to the range [1,idfmax]

and « € [0, 1] parametrizes the influence of less common g-grams.”4
Consequently, overrepresented g-grams are only hashed with 1
hash function, while uncommon and therefore specific g-grams
receive up to idfmnax hash values. Highly weighted g-grams receive
more than one hash function to contribute to the k-mins sketch,
which increases their probability to become a minimizer. The i-

th entry of a tf-idf weighted k-mins sketch is computed from the
following values:

Sl =min J {hi(g) |j:=w(g)}
8€Q(Aq)

Hash values are computed using MMH37> for the first hash value.
This is used to compute w(g) and to seed an XORShift random
number generator (RNG) to derive the hash functions hi,j.

For reads that pass this first stage filter, bottom-k sketches with
k = 1500 entries are used to compute the Mash distances between
active and similar reads as a second stage filter. The overlapping
region is estimated using a combination of these bottom sketches as
well as g-gram counting.

Mash7® MasH computes (meta-) genome distances using bottom-k
sketches to estimate genome similarity and a bloom filter to exclude
erroneous g-grams. To take differences in genome size into account
as well as incorporating a Poisson model for mutations, Ondov et
al. define a distance measure used for clustering of sequences.

Definition 5.10.1. Mash Distance Let A, B € ¥}y, be two sequences.
Assuming unique q-grams and random, independent mutations, the Mash
Distance of A and B is defined as:

where j := J*(A, B) is the estimated Jaccard similarity from bottom-k
sketching.

When working on raw TGS long reads with high error rates,””
MasH uses a bloom filter to exclude likely erroneous g-grams.
Assuming a coverage of at least 5x, g-grams that appear in the in-
put only one time are likely caused by sequencing errors. This is

74 Koren et al., “Canu: Scalable and
Accurate Long-Read Assembly via
Adaptive k-Mer Weighting and Repeat
Separation”, 2017.

75 Appleby, Murmurhash3, 2016.

76 Ondov et al., “Mash: Fast Genome
and Metagenome Distance Estimation
using MinHash”, 2016.

77 Cf. Section PacBio SMRT and ONT
MinION - Single Molecule Sequencing

118 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

compensated by maintaining a MinHash candidate set S’ which
contains pairs of minimizer ¢i" alongside their abundance c;. A
MinHash value only enters the actual bottom sketch S]i{ if it is en-
countered at least ¢ times. For each encountered minimizer g;", the
following two cases can arise, based on abundance:

g™ ¢ St The minimizer g™ has not been encountered in this
dataset and might be a sequencing artifact. It is added to S’
with an abundance of ¢; = 1 to be maintained as a MinHash
candidate.

g™ € S8’ If g™ is already present in the candidate set, then it has
been encountered before. Increase the abundance of ¢ and
compare to the abundance threshold:

c; > ¢ Remove g™ from the candidate list S’ and add g™ to Si.

¢; < ¢ Continue with the next g-gram.

Through this approach, a g-gram can only become part of the
sketch, if it is present more than c times in the input data.

The applications shown in the paper include a clustering of
all ~54118 genomes in NCBI RefSeq, using 32-bit encoded 16-
grams and k = 400. This resulted in a total sketch size of 94 MB
and required 33 hours of CPU time. Another application was the
identification of an Ebola strain from MinION sequencing data
within 10 minutes of the start of the sequencing run.

Mashmap, Mashmap2 MasuMAP7® performs mapping of long,
noisy TGS reads, using a combination of bottom-k sketching and
winnowing. MAasHMAP279 uses a similar approach to compute
whole genome alignments.>°

For MASHMAP, Jain et al. reformulate the read mapping problem
as finding all pairs of read A and reference subsequences B; so
that the Jaccard similarity 7 (A, B;) is higher than the expected
similarity

J (A Bi) > G(e,q) =6

where J is the margin of error for the Jaccard estimation given a
90% confidence interval and G (e, q) is the expected Jaccard similar-
ity based on the per-base error rate €.

Through winnowing the sampling frame is reduced before se-
lecting MinHash values for the bottom-k sketch from the winnowed
sketch. Compute the set S;;(A) of minimizers of read A using win-
nowing®" and find the k smallest hashed g-grams

Si(S:(A)) = minf {x: (x,pos) € S5(A) },

where x is a hash value. The estimated Jaccard similarity J'(A, B;)

of two bottom sketches is computed as

[Si(S5(4) US5(B)) N Si(S5(A)) N (S5 (B))]
SE(S:2(A)) U SE(S3(B))]

J'(A,B;) :=

78 Jain et al., “A Fast Approximate
Algorithm for Mapping Long Reads to
Large Reference Databases”, 2017.

79 Jain et al., “A Fast Adaptive Algo-
rithm for Computing Whole-Genome
Homology Maps”, 2018.

8 More information on this approach
can be found in the dissertation

of Chirag Jain (Jain, “Long Read
Mapping at Scale: Algorithms and
Applications”, 2019).

81 Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 119

Algorithm 3: The mAsuMAP algorithm for mapping long
reads against a reference database.

> Input:

e Read sequence A

o Reference sequences B;

e Window size w

e Sketch size k

e Mapping threshold 7 = G(e,q) — ¢

> Index Reference Sequences
foreach Reference sequence B; do
e Compute winnowed sketch S;;(B;)
e Compute bottom-k sketch S%(Sz'uu(B,')) of winnowed
MinHash values
e Save hash table H, mapping MinHash values to a
dictionary of positions.

> Computing Candidate Intervals
foreach Query read A do
e Compute winnowed bottom-k sketch Si(S;(A))
e Assemble candidate position set T using
IS5, (A) NS5 (B;)| > [k-T] as filter criterion.

> Interval Validation
foreach Candidate position in T do

e Compute similarity J'(A, B;), using H.
L o If similar enough, return (i, 7 (A, B;))

To avoid this computation, if possible, a second level of similarity
estimation is employed: By comparing the number of shared win-
nowed minimizers in relation to bottom sketch size and expected

error rate

Se(A)NSE(B)| > k-T T=G(eq)~0

suitable candidates are identified.

To support variable length reads, MASHMAP uses multi-level
winnowing, i.e. computing multiple references for window sizes
{w,2w,4w, ... }. The optimal window size w is computed with
respect to the read length [. If a read is longer than a minimum
read length Iy, the window size is rounded to the closest smaller
reference window size | € {w,2w,4w,...},l > ly. These sketches
can be computed recursively, since S5, (A) C Si(A),% meaning
that winnowed MinHash values of a bigger window size are a
subset of the MinHash values of a smaller window size.

The MASHMAP algorithm is shown in Algorithm 3. MAasEMAP2
uses a similar sampling and MinHashing approach as MASHMAP.

82 Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003.

120 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Based on identified fragments, it uses a variant of the Shamos-Hoey
algorithm to identify overlapping segments in O(nlogn) time and
filter out low scoring segments before alignment.

MC-MinH® The Metagenome Clustering using Minwise based
Hashing (MC-MinH) approach uses k-mins MinHashing and
greedy agglomerative clustering to solve metagenomic binning.

Givenaset S = {sg,...,5,-1 } of input sequences and a sim-
ilarity threshold 6, sequence similarity for the clustering step is
computed using k-mins sketches computed from the g-grams of
each sequence using the hash function

gi(x) = (a;x+b; mod p) mod m

where p is prime and m is the feature set size.

During the clustering step, a sequence s; that is not yet assigned
to a cluster is selected to form a new cluster. Using the similar-
ities computed from the k-mins sketches for all still unassigned
sequences, sequences that surpass the similarity threshold 6 are
added to the cluster.

Opal®* The OraL software uses a guided approach to the genera-
tion of LSH functions to solve metagenomic binning, i.e. assigning
reads to a reference database.

OraL computes hashes from gapped (g, t)-grams by selecting
columns from the integer encoding of a g-gram. Drawing inspi-
ration from Gallager codes,®5 a k x g binary matrix that covers all
positions of the input g-gram approximately equally is used to en-
sure that all positions of the g-gram are covered. Each line in the
matrix contains a set of ¢ 1-positions, which describe the positions
selected for one LSH function. For a given g-gram g € Z?)N A, and
a set of 1-positions iy, ..., i; obtained from a line in the Gallager
matrix, the hash value

h(8) = (&) &lia) - - -+ 8ir])

is the concatenation of the characters selected by the 1-positions.
This is equivalent to a 2-bit encoding of the (g, t)-gram defined by
the line in the Gallager matrix.

minimap, minimap2, miniasm®® MINIMAP2 is a mapper and pair-
wise aligner for TGS long reads which use winnowed sketches to

identify seeds for seed-and-extend alignments. MINIASM uses over-

laps identified by MINIMAP for de-novo assembly. Since the min-
imizer steps of MINIMAP and MINIMAP2 are similar, we describe
the MiNnIMaP workflow here.

The core idea of MINIMAP computing double-strand (w, q)-
minimizers (m,i,r) comprising the minimizer value m, a position
i within the sequence, and the strand r. The minimizer value m is
computed as

m = h(Sjiisq-1),7) = min{h(n(sﬁp,r’)) 0<p<w,r €{0,1}}

% Rasheed and Rangwala, “MC-
MinH: Metagenome Clustering using
Minwise Based Hashing”, 2013;
Rasheed and Rangwala, “A Map-
Reduce Framework for Clustering
Metagenomes”, 2013.

8 Luo et al., “Metagenomic Binning
Through Low Density Hashing”, 2018.

8 Gallager, “Low-density Parity-check
Codes”, 1962.

% 1i, “Minimap and Miniasm: Fast
Mapping and de novo Assembly for
Noisy Long Sequences”, 2016; Li,
“Minimap2: Pairwise Alignment for
Nucleotide Sequences”, 2018.

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 121

where the strand function 77 : Ly, x {0,1} — Zj, yields
the reverse complement of s for 77(s,1) = 5 and the sequence s
for 77(s,0). The hash function 4 is a compound hash function h =
h'(b(g)), applying an invertible integer hash function /’ to a 2-bit
encoding of g-grams. This approach prevents g-grams starting with
an A homopolymer from being overrepresented as minimizers, since
A = 003 in 2-bit encoding.
The computed minimizers are stored in a two stage hash table to
provide fast access for queries. To provide cache-friendly access, all
minimizers are entered into an array which is then sorted, so that
colliding values maintain memory locality. A hash table maintains a
mapping of minimizer hash values m to triplets (t,i,7), comprising
a target sequence index t, position i within the sequence, and strand
orientation r. For memory efficiency, these triplets are bit-packed
into 64-bit integers.
In the mapping step, this hash table is queried to find e-away
minimizer hits. Similar to identifying a banded alignment, these are
all minimizers shared by both sequences that are max € bases apart
in both strand combinations (in practice, ¢ = 500bp). Identified
minimizer hits are clustered using single-linkage clustering and a
longest increasing sequence problem is solved to find the longest
colinear match. MINIMAP2 improves upon this step with more
elaborate identification of matches.
8 Quedenfeld and Rahmann, “Vari-
VATRAM®7 The variant tolerant read mapper prototype VATRAM ant Tolerant Read Mapping using
) . . Min-Hashing”, 2017; Quedenfeld and
uses static window decomposition and a know reference database Rahmann, “Analysis of Min-Hashing
to reduce the impact of know genetic variants on read mapping. for Variant Tolerant DNA Read Map-
Certain SNPs and short indels are prevalent in human populations ping’, 2017
at a known rate. By adding the g-grams affected by these variants
to the reference and using an LSH approach, VATRAM is able
to mitigate the influence on mapping quality caused by known
variants. This makes unknown variants more easily identifiable.
First, an index data structure is created for a given reference
genome and an associated VCEF file containing known variants.
The reference is split into windows of constant size w < n, where
n is the length of SGS reads to be mapped against the reference.
To avoid the problem of minimizers falling between windows de-
scribed above, the start position of windows is set to overlap. A
new window starts every o positions, where n < 0 < w. Per default,
these parameters are chosen as w = 1.4n and 0 = 1.25#, so that
windows overlap by 0.15# items.
MinHashes are computed for the g-gram of each window using
k-mins sketching and the hash function family

M= (hi)i'czl hi = henc(x) D 71;

where 77; is a random integer value. VATRAM maintains k hash ta-
bles implemented as two layer succinct rank data structures. These

map MinHash values of each window onto reference window posi-
tions.

122 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

For the read mapping step, the k-mins sketch of a read is com-
puted to query the hash tables. Once a reference window is iden-
tified, a variant tolerant alignment is performed using a variant of
Ukkonen'’s Algorithm for approximate pattern matching.5 This % Ukkonen, “Finding Approximate
also incorporates both SNPs and indels from the VCF file. Patterns in Strings", 185.

5.11 Conclusion

In this chapter we have given an overview of LSH approaches for
the estimation of resemblance and containment values, as well as
their implementation in bioinformatics. Table 5.2 provides an illus-
tration of the LSH approaches most relevant to this work (as well
as their associated notation), including one approach we describe in
detail in the following section. While set-based approaches of sim-
ilarity computation are sufficient for many applications, they can
create false positives. One example of this would be two sequences
A= (x,...,x0,Y1,...,yn) and B = (y1,...,Yn, X1,...,Xn) with
X] = = X3 # Y1 = -+ = Yy, which have a very high Jaccard
similarity based on their g-gram sequences. This is not an uncom-
mon occurrence in biological sequences due to structural mutations
and alternative splicing. While approaches like OMH have been
developed to address this issue, sequence based LSH approaches
like Winnowing can offer additional solutions for this problem.
Another interesting problem is the management of MinHash
and Winnowing hash values. If we want to use a MinHash value
to address into a hash table, we generate an input sequence of keys
which are strongly biased. This can affect the collision resolution
strategy and potentially result in inefficient accesses to the data
structure. In the following chapters we will describe our research
covering the following topics:

* A variation of the winnowing approach which can reduce the
impact of repetitive genomic regions on MinHashing strategies.

* An analysis of the distribution of winnowed segment lengths, i.e.
the number of positions a MinHash value remains minimal.

* A two step hashing approach used to save MinHash values ob-
tained from MinHash and winnowing strategies that does not
rely on retaining the initial g-grams.

¢ Applications of MinHash and Winnowing strategies for biologi-
cal problems, including protein similarity and chimera detection,
including

COMPUTING AND APPROXIMATING RESEMBLANCE AND CONTAINMENT 123

Symbol Description Page

S;'(A) A k-mins sketch contains k entries, each of which was minimal under one of k dif- 101
ferent hash functions hy, ..., .

hy -

hy w-

hy K\j

scay=(2L)
Si(A) A bottom-k sketch contains the k smallest hash values of A using only one hash 102
function h.
h - -] — |
SA={- mmmm}

S (A) A (robust) winnowed sketch contains the minimal hash values for windows of 111

length w using one hash function h. Equiminimal runs can persist for up to w win-
dow positions.

h [| - - - L |
S;‘ (A) :(..----.)

Si(A) A compressed winnowed sketch contains the minimal hash values for windows of 131
length w using one hash function /. Equiminimal runs have no upper limit.

h] [] - v B I I | [|

Table 5.2: Symbols used in this and the
following chapters to denote different
types of sketches for a document A.
Compressed winnowed sketches are
introduced in the following chapter.

6
Distribution of Minimizer Segment Lengths

In the section Winnowing and Minimizers (p. 111) we described
winnowing as an LSH technique that incorporates locality informa-
tion into minimizer-based strategies. The main metric used to de-
scribe how well a sequence is suited for winnowing was minimizer
density, i.e. the amount of items selected as winnowed minimizers.
As shown in Corollary 5.9.2, a winnowed sketch contains between
[¢/w] and £ — w + 1 MinHash values, where ¢ is the number of
g-grams in the input sequence and w is the window size used for
winnowing. However, the minimizer density offers no informa-
tion on how minimizer positions are distributed throughout the
sequence and how they interact with the composition and structure
of the sequence.

In this chapter we describe the distribution of minimizers through
the lens of segmentation, i.e. a decomposition of the input sequence
based on its winnowed minimizers. We define a variant of the win-
nowing algorithm that allows compressing repetitive sequences into
single minimizers and describe the length of runs with the same
MinHash value. Finally, we show the expected distribution of seg-
ment lengths, assuming perfectly random hash values. Using this
we show which hash functions closely approximate the behavior of
perfectly random hash values with respect to winnowing.

6.1 Segmentation of a Sequence

As mentioned in the previous chapter, if two sequences share a
winnowed minimizer, there is a high chance that they share an
identical sequence. Using a winnowed sketch of a sequence, we can
split up said sequence into subsequences that each are identified by
its MinHash value, its start position in the sequence, and its length.

Definition 6.1.1 (Segment). Given a q-gram sequence G := Q(A, q) for
a document A and a hash function h, a segment s := (m, p,1) is defined
as a consecutive interval of winnowing window positions starting at
position p, with identical MinHash value m (equiminimal values) under
the hash function h for | window positions.

A segment can be understood as a subsequence of the input
text that has the same dominating minimizer. An example of seg-

126 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

g-gram
hashes

Windows
w=6

Segments

s=(™05, M54, (7,95,.)

g-gram startinﬁ
positions wit
hashes and - [- n
minimizers \ f>

Dominated
g-gram intervals

Segments

Window position at
first minimizer change

ments induced by winnowed minimizers of a g-gram sequence is
illustrated in Figure 6.1.

We derive the length of a segment from the number of window
positions is covers, so that the sum of all segment lengths is equal
to the number of window positions.

Definition 6.1.2 (Segment Length). The length of a segment s =
(m, p,1) is defined as the number of winnowing window positions it
covers. It is denoted by |s| := L.

Since during winnowing each window position returns a mini-

mizer, the sequence of all segments of a document covers the whole

sequence (cf. Algorithm 2).

Definition 6.1.3 (Segmentation). Given a g-gram sequence G :=
0(A,q) for a document A and a hash function h, a w-segmentation
G, (G,w) := (51-)1.:01 is a decomposition of G into segments, so that:

o Each start position of a winnowing window is covered by a segment.

® Each g-gram g € G can be covered by up to w segments.

* A segmentation does not contain gaps, i.e. there is no window position

that does not have a minimizer.

For convenience, we also write S,(A,q,w) = (51-);‘:_3 to denote the
w-segmentation of the q-gram sequence of A.

Figure 6.1: Example for a segmentation
of a g-gram sequence. The blocks in
the first line represent hash values,
where a hash value is proportional

to the height of the block. The first
segment starts at window position 0
and ends at position 5 (resulting in a
segment length of 5 — 0 = 5), when
the (blue) minimizer at position 4 is
pushed out of the window. After that,
the new (red) minimizer dominates the
second segments (for four positions),
until the smaller (teal) hash value
enters the window.

Last window starting position

Figure 6.2: Decomposition of a se-
quence into segments. Hash values are
symbolized by the height of the boxes
in the first row; winnowed minimizers
are highlighted blue. The g-grams
dominated by a minimizer are shown
as gray segments in the second row.
Note that a g-gram can be dominated
by several winnowing windows. The
segmentation of the sequence is shown
in purple. Each segment starts at the
position its minimizer value is first
encountered. This line is shorter, since
for | = |A| — q +1 g-grams, there are

I — w + 1 window start positions.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 127

0 | Al -1
Document A
0 qg-1
g-grams i i+q-1 |Al -g+1 Al -1
Q(A, q)
g-gram hashes
] |
| =
N | Al -q+1
Windows -
w=6 | |
| U |

Minimizers enmmmBEER

per window

,] |
Segmentation
oA qw ™05 @54 (106

(=,9,1)

Note, that a segment is directly related to an entry in the win-
nowed sketch of a document. Therefore, the number of segments in
a segmentation is described by the number of winnowed minimiz-
ers, as described in Corollary 5.9.2 (p. 113).

An example for a segmentation, illustrating hash values, associ-
ated dominated g-grams, and segments, can be found in Figure 6.2.
Observing the segmentation shown in Figure 6.2, notice that it is
not possible to select a subsequence of w = 6 consecutive g-gram
hashes that does not cover at least one minimizer (cf. Lemma 5.9.4,
p- 114). This allows us to use winnowed minimizers to estimate
containment of sequences with different sizes, leveraging the local-
ity of the computed minimizers to offset the size difference.

A segment of length k obtained by winnowing with a window
size of w covers k window start positions, each of which cover w
items of the winnowed sequence, which in turn are g-grams of the
input sequence. This hierarchy is illustrated in Figure 6.3.

Observation 6.1.4. A segments € Sy,(A,q,w) with |s| = k covers
k +w + g — 2 positions of the input sequence A.

Proof. With length k, a segment covers k 4+ w — 1 consecutive g-
grams. A sequence of k +w — 1 g-grams cover

g+ k+w—-1)—1=k+w+g-2

(Al -g+1)-w+1
Number of winnowing
window positions

Figure 6.3: Different levels of descrip-
tion for a document A. The first layer
shows the |A| document positions,

for example bases in a DNA string.
Below, |A| — g + 1 g-grams, denoted
by horizontal bars labeled with their
start and end position within A are
shown. For each of these g-grams, its
hash value is represented by a ver-
tical bar below its start position. As
before, the numerical size of a hash is
denoted by its height and minimizers
are highlighted by color. Minimizers
for each window are denoted the same
way, with equiminimal runs shown in
the same color. Finally, segments are
denoted as 3-tuples, comprising a Min-
Hash value, a window start position,
and a segment length.

128 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

positions in the input sequence. For the longest possible segment
covering the whole of A with k = (|A| —q+1) — w + 1 we receive:

k+w+g—2
= ((JAl—gq+1) —w+1)+w+g—2
= Al

The distribution of segment lengths is a more detailed metric
for the "winnowability" of a sequence. Note that in addition to
sequence properties and hash function, it is also influenced by
the employed winnowing strategy. After providing a use case for
winnowing in the bioinformatics context, we define a variant of
winnowing suitable to compress repeats. Further we empirically
analyze the distribution of segment lengths using this winnowing
variant and provide a recursive formula to compute the expected
distribution.

6.2 Application: A Segment Reference for Protein Similarity

A practical application of sequence segmentation is creating a ref-
erence index using a hash table of winnowed MinHash values. For
our TAXMAPPER software,” which is aimed to classify the species
within a metagenomic sample, we need to solve the protein similar-
ity problem. We have a protein database containing labeled protein
sequences that support certain taxonomic classifications. Using
DNA reads from a sample, we want to identify the most similar
proteins in the database for each read in order to judge the capabil-
ities and taxonomic distribution of the analyzed community. Since
SGS DNA reads translated into amino acid sequences are shorter
than most proteins, we are interested in the containment of reads
within proteins (cf. Containment p. 95). Note that while the appli-
cation we describe here uses amino acid sequences, the approach
we describe here is feasible for DNA sequences as well.

In our current implementation of TAXMAPPER, we used the
RAPsEARCH? software to compute protein similarities. However,
creating and querying the index created by RAPsEARCH dominated
the runtime of TAxMAPPER. While using other protein alignment
tools like DIAMOND? or PALADIN# could mitigate this issue,
these compute alignments for all identified candidates. Further-
more, for our application, actually computing the alignments is not
even required and similarity estimation would suffice, which can be
performed faster. In this section, we propose an index data struc-
ture using multiple winnowings to identify alignment candidates.
Through the use of reference segmentation, we can identify likely
alignment candidates and classify them before actually computing
any alignment.

A workflow so solve this example application is illustrated in
Figure 6.4. As Figure 6.4 (a) illustrates, reads are sourced from an

' Beisser et al., “TaxMapper: An Anal-
ysis Tool, Reference Database and
Workflow for Metatranscriptome Anal-
ysis of Eukaryotic Microorganisms”,
2017.

2 Ye, Choi, and Tang, “RAPSearch: A
Fast Protein Similarity Search Tool for
Short Reads”, 2011; Zhao, Tang, and
Ye, “RAPSearch2: A Fast and Memory-
efficient Protein Similarity Search Tool
for Next-generation Sequencing Data”,
2011.

3 Buchfink, Xie, and Huson, “Fast and
Sensitive Protein Alignment using
DIAMOND”, 2015.

4+ Westbrook et al., “PALADIN: Protein
Alignment for Functional Profiling
Whole Metagenome Shotgun Data”,
2017.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 129

(a)

Acquisition of metagenomic Protein Databases

or metatranscriptomic data

Second Generation Sequencing

Doy FASTQ (nt) FASTA aa) Species Identification:
— \ Similar to a known
% % > reference genome?
Probl :
ropiems DNA Reads
e Combination of organisms

FASTA (aa)

Functional Annotation:
Similar to a known protein?

e Mostly unknown species

(b)

9

u23

7

=13

LI B N

T ’ — 1 —— :
y’ T T T \ 7 _{

— B9 -8 -7 .5 al2 :

FASTA (aa) —_— e h b L a9 '

—_ by e, L —— :

= -13 i
Protein DB S Index of Protein DB
S —
e
For each protein compute segmentations using s Store mapping of MinHash values to

in the reference ... different hash functions.

protein segments in s hash tables.

C hs
(c) B -
Pos.420f Pr.17 W ||
m] ! hi: Position 42 of Protein 17 Pos. 23 of Pr. 1219 ||
Mv A —— Other I
FASTQ(m) = - ' hz: Position 23 of Protein 1219
h2 = — . Best fit: Pos. 42 of Pr 17
hs [| —=13 i hs: Position 42 of Protein 17
Reads : —
Index of Protein DB
For each read in compute the MinHash values Get all segments associated with ~ Decide on best
the query set ... for each of the shash functions. the Minhash value (for each HF). fitting segment.

Figure 6.4: Illustration of a metagenomic analysis. (a) DNA reads are procured from a diverse population of individuals, for
example the human gut microbiome or lake water (left). For each read, similar sequences are searched for in protein databases
(right). (b) Construction of a winnowed reference index with s hash functions. (c) Query process of the same index.

Pond graphic derived from "ReededPond r1" by Wikipedia user Jkwchui (CC BY-SA 3.0). Human outline derived from "Human
outline by Linda Salzman Sagan (original artwork); Tompw (GIF version); Wikipedia user Holek (SVG) (CC BY-SA 3.0)."

https://commons.wikimedia.org/wiki/File:ReededPond_r1.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/w/index.php?curid=2647647
https://commons.wikimedia.org/w/index.php?curid=2647647
https://creativecommons.org/licenses/by-sa/3.0/deed.en

130 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

unknown mixture of species. For the identification of alignment
targets, we still need to compensate for sequencing errors and mu-
tations. Since we compare DNA reads to a protein database, one
of the input sequence sets—reads or protein reference—needs to
be translated. Through performing a six frame translation of the
reads (SFT; cf. Section 2.5.2) we already introduce a level of error
tolerance. After translation, codons affected by silent mutations (cf.
Section 2.2.1) and sequencing errors that behave the same way are
already alleviated. For an additional level of tolerance, we trans-
late input reads into a reduced amino acid alphabet like M15 (cf.
Section 2.5.1, Table 2.3). Note that for SGS DNA reads, we expect a
read length of approximately 100 to 200 bp, which relate to ~30-66
amino acids.

By choosing a window size w for the winnowing that is equiv-
alent to the read length, we can assure that the minimizer of the
read is also guaranteed to be present in reference. We construct a
hash table mapping MinHash values to sequence positions in the
reference, comprising a sequence identifier (i.e. the number of the
target protein in the reference file), a window starting position, and
a segment length. When querying this table, we compute the Min-
Hash value of the read without winnowing. Since the size w of the
winnowing window and the read length align, we do not require
winnowing the read using a window. Instead we can compute its
MinHash value directly. All segments stored in the table for this
minimal hash value are possible alignment candidates.

We propose using multiple winnowings with different hash func-
tions to create overlapping segmentations with different minimizers
to provide additional error tolerance as well as a better preselection
of alignment targets. The location of the read within the target pro-
tein falls into the intersection of all s segments. Additionally, this
architecture mitigates the influence of sequence deviations that are
not compensated for by the translation to the Murphy alphabet.
Consider, for example, reads R := {r; },r; € 21<415 with length
¢ = 30, from which £ —9 +1 = 22 9-grams can be created. If a
sequencing (substitution) error is present in such a read, up to 9
g-grams are affected. Using multiple winnowings generated using
min-wise independent hash functions, leveraging the uniform dis-
tribution of minimizers within the read sequence, we can estimate
the probability to select an affected g-gram as minimizer as:

IP(unaffected g-gram selected) = p* > (1 — #errors-q)

{—q+1

for each individual winnowing. Assuming a read length of 30
(amino acids), ¢ = 9, and an error rate of ¢ = 0.01 as a ballpark
estimate, we see that we select an unaffected g-gram with a proba-
bility larger than ~0.59. Through use of multiple winnowings, we
can amplify the probability to select an unaffected g-gram at least
once (given that p* > 0.5). The expected number of times we se-
lect an unaffected g-gram using s different hash functions can be

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS

estimated as:
Expected nr. of unaffected g-grams selected > E(X), X ~ BD(s, p")

By increasing the number of hash functions s, and therefore the
number of trials for the binomial distribution, we can increase the
probability to observe unaffected minimizers. Note that while we
already implemented an early prototype of this approach, this
estimate just serves illustrative purposes here and requires a more
rigorous investigation for an actual implementation.

Figure 6.4 (b) and (c) illustrate the index creation and querying
process respectively. The decision on the best alignment targets can
be guided by several factors, like the number of segments support-
ing a certain protein or the total number of candidate sequences.
Most notably, the segment length information obtained from the
index can help to narrow down the exact location of the query se-
quence, by observing the overlap of segments supporting similar
locations in the reference protein.

There are several desired properties of the segment length distri-
bution that lend themselves to the index described above. A high
proportion of segments with length w is beneficial for a smaller
index size. Since each segment needs to be represented in the in-
dex, long segments result in less entries which in turn reduces the
memory footprint and fill rate of the underlying hash tables. Short
segments, while providing a more detailed fix on the position in the
target sequence, can only do so at the expense of a higher (local)
minimizer density and thus increased memory usage of the used
data structures. Additionally, short segment sizes increase the num-
ber of reference positions expected to be associated with a single
minimizer. This causes an increase in colliding entries in the hash
tables used to realize the index, which can have detrimental effects
on the performance.

Another effect causing collisions in the hash tables are repeti-
tive regions within genomes or proteins. Minimizers from these
regions introduce many colliding entries which can also harm the
performance of downstream analysis. However, by introducing
a modification to the winnowing algorithm we can alleviate this
problem.

6.3 Compressed Winnowing

In addition to the two winnowing strategies described before—
simple and robust winnowing (cf. Winnowing and Minimizers,

p. 111f)—we introduce a third variant: compressed winnowing,
which can extend segments beyond a length of w. Where simple
winnowing would start a new segment for each hash in a run of
equiminimal hashes, and robust winnowing would start a new
segment every w steps, compressed winnowing condenses equi-
minimal runs into one segment. The main difference of compressed
winnowing is that we do not start a new segment once we evict

131

132 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

0 5 10 15 20 25 30
Simple
Winnowing - Em - - -
A
Robust
Winnowing = m m - =
Compressed
Winnowing - - -

the minimizer that started it, as long as the subsequent windows
possess the same MinHash value.

Definition 6.3.1 (Compressed Winnowed Sketch). Let h be a (e-
approximately) min-wise independent hash function and G := Q(A,q)
the g-gram sequence for a document A. We define the compressed win-
nowed sketch or the compressed winnowed MinHash values of A
as:

yeng i—1 .
Sa(G) = ((pim))i=y 1<j<|G|
where m; := h(g!") is the i-th different MinHash value of the hash val-

ues of G. We refer to the corresponding minimizers as the compressed
winnowed minimizers of the document.

An example showing the differences between simple, robust, and
compressed winnowing is illustrated in Figure 6.5.

As a result of this approach, the compressed winnowing strategy
does not possess a (non-trivial) lower bound on the number of
segments:

Corollary 6.3.2 (Size of Compressed Winnowed Sketches). Let A

be a document of length |A|, its g-gram sequence Q(A, q) containing
¢ = |A| —q+ 1 g-grams, and a window size w < ¢ for winnowing. Then
the compressed winnowed sketch Sy, (A) contains between 1 and £ —w + 1

MinHash values.

Proof. Since each window receives a minimizer, a sketch always
contains at least one entry.

Consider a sequence of ¢ identical hash values: Since
with compressed winnowing, equiminimal g-grams do not create
a new minimizer, there is no window position that changes the
minimizers.

35 40 45 50

Density = Z—é

Density = 4—55

Figure 6.5: Comparison of the behavior
of three winnowing variants with

w = 6 on an equiminimal region
(positions 33 - 48). Hash values are
represented by vertical bars with their
height representing the size of hash
values and minimizers highlighted
blue (M). Bars in light gray with a
dashed blue outline (£7) represent
skipped equiminimal hash values.
Generated segments are denoted

by horizontal purple bars. Simple
winnowing reports each hash value
in the equiminimal region as a new
segment. Robust winnowing reports
each w-th hash value, skipping 5.
Compressed winnowing only reports
one minimizer and skips all in the
remaining run.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 133

Query (1) (3)
Sequences 2)
Reference B e 000 e
Long Repetitive Region

A sketch contains at most one entry for each window position.
Proof analogous to Corollary 5.9.2. O

Compressed winnowing sacrifices exact positioning informa-
tion to achieve less segments and reduces redundant information.
Depending on the use case, precise positioning information might
not be required, for example within repetitive regions of a biolog-
ical sequence. As an example, consider the repetitive amino acid
sequence

AHHAADAHHAHHAADAHHAHHAADAHHAHHAADAHHAHHA

which is part of the proteome of Plasmodium falciparum.> The g-
gram sequence derived from such a sequence, and in turn its
hashes, follow a repeating pattern, which, depending on the choices
of g and w, can results in one long equiminimal run. Furthermore,
such repetitions in proteins are fairly common.®

However, for most sequence analysis tasks, the precise localiza-
tion of a read within a repetitive region is neither helpful nor possi-
ble. Consider the segment reference described in Section 6.2, where
the size of the query sequence (a read) is much smaller than that of
its reference sequences (genomes, chromosomes, or proteins). The
two cases that need to be distinguished, as illustrated in Figure 6.6,
are reads that are completely contained within a repetitive region
and those that reach into such a region. Reads that are completely
contained within a repetitive region do not benefit from precise
placement. Even worse, they might receive a large number of po-
tential alignment targets within the repetitive region, as illustrated
in Figure 6.7 which need to be resolved. Reads that only overlap a
repetitive region on one side can still be placed on the correct side
of the repetitive region.

Note that a compressed winnowing and a robust winnowing of
a sequence only differ, if a run of windows longer than w has the
same minimizer. Assuming the hash values were sampled from
an e-approximately min-wise independent hash function as well
as a random sequence, this is unlikely. However, as shown above,
biological sequences regularly contain subsequences that violate the
latter assumption.

Figure 6.6: Given a reference (hash
values symbolized by bars) that con-
tains a long repetitive sequence (low
blue bars) and a query sequence that
overlaps the repetitive region there
are two possible outcomes: Either the
query sequence is completely con-
tained within the repetitive sequence,
as (2), or it covers both repetitive and
normal sequence, as (1) and (3). In the
first case, precise positioning infor-
mation is not useful and might result
in a high number of uninformative
reference positions. This is also true
for the second case. All sequences that
touch a repetitive sequence can only be
meaningfully interpreted using their
neighboring windows.

5 Davies et al., “Repetitive Sequences in
Malaria Parasite Proteins”, 2017.

6 Marcotte et al., “A Census of Protein
Repeats”, 1999.

Query
Sequence

S>-< Su

Long Repetitive Region

Figure 6.7: Segments obtained from

a compressed winnowed sketch S
and from a robust winnowed sketch
S for a repetitive region. The robust
sketch contains one entry for each w
positions within the repetitive region.
Each segment is a potential target for
alignments.

134 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

6.4 Expected Segment Length Distribution

In this section we describe the expected distribution of segment
lengths of compressed winnowed minimizers. We want to compute
the expected distribution ¥ = (¢;);>_;, where iy is the probability
to observe a segment of length k as part of a compressed winnowed
sketch S7.

The expected distribution of segment lengths obtained from
compressed winnowing is equivalent to the probability with which
we observe segments of a certain length. For input sequences of
length K, we can compute the probabilities to observe segments
of length k € {1,...,k} independently. Note the we use 1-based
indexing, both for the hash function codomain as well as for win-
dow indices, for a more convenient formulation. Furthermore, we
will assume for our analysis that hash values are independently
and identically chosen. While this does not precisely model our
specific use case of biological g-grams—after a specific DNA g-gram
there are only four possible successors, violating independence—it
is a reasonable assumption for general hash values. For the case of
hashed g-grams, however, this effect diminishes, if the hash func-
tion codomain C is smaller than the number of possible g-grams
and the employed hash functions distribute well over C.7 In the
evaluation of this method in the following sections we will show,
that for practically employed g-gram spaces and hash functions our
model is able to predict the behavior of hashed g-grams.

Consider an input sequence of hash values X = (x;);cz with
its elements x; chosen independently and identically from C =

{1,...,C}. We denote the k-th window of length w, i.e. the subse-
k+w—1

i=k .

The MinHash value of the connected (inclusive) subsequence

quence of length w starting at position k, as X := (x;)

Xb .= X(a:p+1) 1-e. the smallest value contained in said subsequence,
is denoted as
X =min{x; |a<i<b}. (6.1)

A window minimum, i.e. the smallest value in a window of size w
starting at position k, is denoted as X;. For a sequence of consecu-
tive windows, ranging from position a to position b inclusively, we
denote the minimum of this sequence as

Xa. b (6.2)

Note, that fora < b
X, = X5

Throughout this section, we will also use maxima instead of
minima for a more convenient formulation. With respect to the
definitions for minima give above, we denote the subsequence
maximum as Yﬁ, the window maximum as Xj, and the consecutive
window maximum as X, ;. All of these describe the maximal hash
value within their respective domain. A complete compilation of
the notation for minima and maxima can be found in Table 6.1.

7 Consider a hash value x that can be
generated by two different colliding
g-grams: h(go) = h(g1) = x. Since
both the preceding and succeeding
g-grams of go and g; are different,
their resulting hash values are different
as well (with high probability), leaving
more the four possible options. If

|C| < 47 holds there are many possible
g-grams g; with 11(g;) = x and thus
g-gram hashes tend to behave more
like i.i.d. hash values.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 135

Symbol Description

C Size of the hash function codomain C := {1,...,C } used to compute ¥.

m A specific MinHash value m € C.

K Maximum segment length used to compute Y.

‘Fg K Expected distribution of segment lengths computed with a codomain of size C,

with window size w for segments up to length K.

X The k-th length w window of X: (x;)"7*~1,x; € X.

xt Minimum of the subsequence containing positions a to b (inclusive).

X Minimum of the window starting at position a. X; = X’i*w*l.

Xob Minimum of the windows starting at the positions a through b. X, , = Xbrw=1,

X, Maximum of the subsequence containing positions a to b (inclusive).

X Maximum of the window starting at position 4. X = Xﬁﬂuil.

Xop Maximum of the windows starting at the positions a through b. X, = Yzﬂu_l.

Pox Probability for a segment of length at least k with a specific minimum m € {1,...,C }.

El P © EZ ,k Probability for a segment of length at least k with a specific mininimum m € {1,...,C}
that is bounded on the left, on the right, or on both sides.

2 Probability for a segment with length at least k with any minimum.

PP Py Probability for a segment of length at least k with any minimum that is bounded
on the left, on the right, or on both sides.

Pk Probability for a segment of length at least k with a specific maximum m € {1,...,C }.
ﬁlm,k,ﬂn’k,ﬁlr;,k Probability for a segment of length at least k with a specific maximum m € {1,...,C}
that is bounded on the left, on the right, or on both sides.
P Probability for a segment with length at least k with any maximum.
ﬂc,ﬁz, 7x Probability for a segment of length at least k with any maximum that is bounded
on the left, on the right, or on both sides.

Table 6.1: Symbols used in this section.

We write p, := P(X, ;) as the probability, that any minimizer
covers (at least) the windows 1 to k (which is equivalent to a seg-
ment of length at least k). For a given hash function codomain C,
we can compute p,_from the probabilities Pk that there exists a
segment of length at least k with a specific minimum m € C.

6.4.1 Segment Length Distribution

First we describe the basic properties and behavior of MinHash
values, i.e. how a minimum can change between two consecutive
windows. Since a new segment can only be started with a changed
window minimum, there are two options: the new hash value is
either smaller, or larger than the last one.

Lemma 6.4.1. A minimum m; 1 can only be larger than its predecessor
m; if the hash value x; is the minimizer of window X; and is pushed out of
the window (and no other copies of that minimizer remain in the window).

136 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Proof. Consider the windows X; = (xj,...,Xj14_1) and X1 =
(Xj41,--.,Xi1yw). After the move, x; is no longer part of the active
window, but x;,, entered the window.

Assume there exists a new, larger minimum min X;;; > min X;
and min X; # x;.

= minX; = min(%; \ x;) < minX;;; = min((X; \ x;) Uxj,4) 6:3)
. 3
= Jx; € X; \ x; < min((X; \ x;) Uxj14)
Hence, by adding x;,,, the minimum has to increase. However,
adding another element can only further decrease the minimum,
not increase it. 4
Hence, if min X; ;1 > min X;, this can only be due to the mini-
mizer of X; being x;, which was pushed out. O

Lemma 6.4.2. A minimum m;_q can only be smaller than its predecessor
m; if a new, smaller minimizer X;., enters the window.

Proof. Consider the windows X; = (x;,...,Xj14_1) and X; 1 =
(Xj41, .-, Xi1y). After the move x; is no longer part of the active
window, but x;,,, entered the window.

Assume there exists a new smaller minimum min X;,; < minX;
and min X; 1 # x;, (it is not the value just pushed in).

= min(Xj4q \ Xjjy) < mMinX;
. (6.4)
= 3xj € Xi11 \ Xipp < MinX;

However, since X; ;1 \ Xjy, C X;, any minimum of X1 \ Xjj4
would have already been a minimizer of X;. 4
Hence, a new, smaller minimizer has to be the new value x; .
O

As noted above, we will work with maxima instead of minima
throughout this description. While able to express the same proba-
bilities, this allows for a more concise formulation of the following
equations. Instead of Pk for a minimum m, we compute pe_,, ¢
for a maximum C — m + 1, which have the same probability.

Lemma 6.4.3 (Interchangeability of Minimum and Maximum Prob-
ability). For a subsequence containing positions a through b, a hash
codomain of size C, and specific hash value m € {1,...,C },

P(Xt=m)=P(X.=C—m+1)

holds, i.e. the probability that m is the minimum the segment is equal to
the probability that C — m + 1 is its maximum.

Proof. To maintain a minimum m, we rely on the probability to
select only values above or equal to m, as well as values truly larger
than m. This probability depends on the number of values m’ >
m,m’ € IN. Since

|{m,..,CY|=C—m+1=[{1,...,C—m+1}

C—m+1

Figure 6.8: Two partitions of the same
hash function codomain C. To retain

a minimum m, in the left codomain,
only values from the teal part may

be chosen. On the right side, we
inverted the orientaion of values to
choose values retaining the maximum
C — m + 1 with the same probability as
a minimum in the left codomain.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS

the probability to randomly choose a value larger than m is equal to
choosing a value smaller than C — m + 1. Intuitively, we invert the
orientation of permissible values as shown in Figure 6.8. O

Since for every segment of length k with minimum m, there is an
equally probable maximum of length k with maximum C —m +1,
P, = Py holds.

The probability that a consecutive subsequence of windows has
the maximum m is:

Lemma 6.4.4 (Segment Maximum Probability). For a fixed hash value
m € {1,...,C}, and window positions a,b € N witha < b, the
probability that m is the largest value in a segment covering positions a to
bis
mb—a—H _ (m _ 1)b—a+l

Cb—a+1

Proof. For m to be the largest value in a segment of b — a + 1 val-
ues it needs to contain m at least once and all other values have to
be smaller than m. We count all events in which all values are at
most m and subtract the number of events that contain only val-
ues smaller than m (but not m itself). The probability to select a
sequence of hash values, that satisfies the first, but not the second
condition is:

]P(Yg = m) = P(all values are at most m) —IP(all values are at most m — 1)

=P({xe{l,....m}|a<i<b}) -P{xe{l,...m—1}|a<i<b})

(@ ()

mb*ﬂ*kl _ (m _ 1)hfa+1
Cb—a+1

Since the actual positions a and b do not affect the probability
]P(XZ = m), segments can be translated without affecting the
probability for the event.

Observation 6.4.5 (Translation Invariance of]P(XZ = m) and

P(X%,.p)). For any offset r € Z, we can translate a segment and maintain
the same probabilities for

and

lp(xa...b) =]P(xawtr..‘bJrr)

as long as b — a remains unchanged.

For a specific maximum m, we compute the probability to main-
tain this maximum throughout several windows.

137

138 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Theorem 6.4.6. The probability for a single segment with maximum
m € {1,...,C} to cover at least k windows, with C,w,k € N, k' :=
min(w,k — 1), is

_ = m®(m — 1)K —m¥ (m —1)v (m—1)-1
P = P(X, p=m) = Coh T + GlZ:k/ <C7 *Pmk—j (6.5)
S

Proof. For every sample in p,,, , we have X1 = max(xy, ..., Xp) = 1.
Observing the first occurrence of m in the sequence (x, ..., Xy), we
can use the law of total probability. Given that the first occurrence
of m is at position j, we get

Pk = Z P(X; x=m and (xy,...,xj_1) <m and x; = m)
je{1,...w}
6.6)

Since j < w, the first occurrence of m already covers the first j of k
windows. Hence, we can reduce the above statement to

Pux= 3, PEXjj1x=mand (x1,...,x1) <m and x; =m)
je{1,...w}
(6.7)

We now consider the cases k > w, i.e. segments that exceed the
window length through repeated maximum values, and k < w,
segments that can be covered by the first maximizer. For k > w,

the events [X; 1 x = m]and [(x1,...,xj-1) < m,x; = m]are
independent. Using translation invariance, we obtain

Pui= 3, ((x1,..,xj21) <m and xj = m)-P(Xj1. k= m)
je{l,...w}
(m—1)y=1.1 _
=) T Pmk
je{1..w}
(6.8)

For k < w, k windows can be covered by the first maximum at
positionj € {k,...,w} C {1,...,w}. Aggregating the probability
for all (w — k + 1) possible values of j and applying Lemma 6.4.4,

we obtain
- . m—1)J"1.1 _
Pk =P(xq,..., %1 < XZ] =m > Xw, .-, Xoyk—1) % Pk
je{1,..k—1}
(m B 1)k—1 m—k+1 _ (m _ 1)w—k+1 mk—1 N (m — 1)j_1 -1 B 6.9)
= 1 . “k+1 " k-1 a0 k=j 9
C Cw—k+ C je{lk—1} o e
(1 — 11— k=1 — 1)k m—1)7"1.1 _
_ +) p
_ - e Pk
Cktw-1 je{1,k—1} c e

The first summand of Equation 6.5 collapses to 0 for w = k — 1. By
using k' = min(w, k — 1) instead of k, we can unify the cases k > w
and k < w. O

Using the probability p,, , we can derive the probabilities to
observe bounded segments. We denote the probability for the
case that k is the right segment boundary as p;, ;, the left segment

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS

boundary as ?fn,k’ and the case that the segment is bounded on both
sides as ﬁlrzrk.

Lemma 6.4.7. For segments of length k € IN, the following connections
hold:

1. Pr = ?in,k The probabilities that a segment can be extended in one
direction are symmetric.

2. Pk = Pumgs1 T P The probability for a segment with length k is
the sum of the probabilities to observe a segment that can be extended
to the right and the probability that the segment ends with k, i.e. is
right-bounded.

3. ?fﬂ,k = ?fﬂ,k at ?Z,k The probability to observe a left-bounded seg-
ment of length k is the sum of probabilities that a left-bounded segment
can be extended and the probability that it is bounded on both sides.

Proof. For 1, we reverse the hash value sequence by bijectively
mapping (x;); to (x;) ;) where 7t(i) =k +1—1i.

For 2, we partition all events leading to p,, , by observing the
two possible outcomes for Xy, 1 and exploit translation invariance
(Observation 6.4.5):

Pup = P(X1k =m=Xpp1) +P(Xp 4 = m # Xpp1)
= Pukr1 T P

For 3, we analogously get:

P = P(Xo # X1k = m = K1) + P(Xo # Xpp = m # Xpq1)
= Pujpsr + Pk
O
Using the relations described in Lemma 6.4.7, we can express the

probability BZ , to observe a segment of length k with minimum m
using the probability for the unbounded case P

Ir _ Hr
Bm,k - pCferl,k

_ 1

= Pc—mt1k — PC—m+1k+1

= (Pc_msrk = Peomiipr1) = (Pemithir — Poometpra)
(6.10)

Using this, we can compute the distribution of segment lengths
obtained by compressed winnowing for a given hash function
codomain C.

6.4.2 Implementation and Evaluation

We implemented a Python program to compute the probability
distribution for segment lengths obtained by compressed winnow-
ing for a given sequence length K and hash function codomain

139

140 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

C = 4950

0 20 40 60 80 100 120 140

Segment Length

107!

1072

w

10™

1074

Probability

10™

|
o

10

|
~

10

|
<3

10

(a) Predicted segment length probabilities for C = 4950, w = 50, and K = 150. This plot corresponds to the last row in (b).

Segment length probabilities for w=50 and K=150
50 i

1050
1250
1450
1650
1850
2050
2250
C 2450
2650
2850
3050
3250
3450
3650
3850
4050
4250
4450
4650
4850

A~ OMOO N VeEHE~NOMOON OHEAFTN~NOMOON LN
HeE A A NANNMMMINSESTTTNWNWNOOONNNRNOO

97
100
103
106
109
112
115
118
121
124
127
130
133
136
139
142
145
148

(b) Distribution heatmap of multiple values for C. Each line corresponds to a distribution as illustrated in (a) for C = 4950.

Figure 6.9: Expected distributions ‘PgK for small hash function codomains and fixed values w = 50 and K = 150. Both plots are in
logarithmic scale, with the probability to observe a segment of length w at ~0.25.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 141

0.25

/

0.20

o
il
wu

Probability
o
il
o

0.05

Segment Length

||||||||||||||||I||I||||||||||||IIII||||m....
I R)

100

0.00 .

0 1000 2000 c 3000 4000 5000

C = {1,...,C}. The code is available as part of the evaluation
workflow described in Section 6.5. We are ultimately interested in
the probability distribution ‘i[’fulK = (pO)K, UySy, where

Ir

Px

lIJC = =
k le

is the probability to observe a segment of length exactly k when
extending segments (that are left-bounded) to the right. Using the

probability p, to observe an unbounded segment of length at least k

we can compute pf: as follows:

Ir _ r
Bk_Ek

Y
P = Pesa

= (P = Prer) — Py — Pryy)
= (Pr — Prs1) — (Pro1 — Pry2)

:(2 ?C7m+1,k_ Z

me{1,..C} me{1,..C}

Pemiiks1) — (Y.
me{1,..C}

We compute an C x K matrix P containing all values p-_,, 1 ;-
Then, for each value k € {1,...,K}, we compute the probability
EZ using P as a dynamic programming matrix to access already
computed values.

Since P contains K entries for each possible hash value m € C,
the size of P grows fast. While realistic sizes for C and K can cur-
rently not be computed with this approach, we observed that even
for small hash function codomains the computed distribution is
consistent with distributions computed for simulated and refer-
ence genomes. For the same reason we had to limit K to values that
fall significantly below the sequence lengths present in reference
genomes.®

Figure 6.9 illustrates the overall shape of the computed segment

length distributions. The most probable case by far are segments of

Pc—m+1jk+1 —

Figure 6.10: Development of four se-
lected segment lengths for increasing
values of C. Each line corresponds
to a column in the heatmap in Fig-
ure 6.9(b), but shown in linear scale.
For better visualization dashed lines
connect the measurement curves to

a visualization of a linearly scaled
segment length distribution.

Y Peomiipin)
me{1,..,C}

(6.11)

8 For reference, computing the ex-
pected distribution Y2339 required
89.4 hours, using one processor core

on the system described on page 79.

142 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

length w with ¥§ = 0.25, which are caused by small minimizers
that enter the window and remain dominant for the whole w posi-
tions before leaving the window. Segment lengths between 1 and
w — 1 monotonously fall. For segment lengths above w this trend
continues until 2w, albeit with an overall probability that is more
than an order of magnitude smaller than for w — 1. These segment
lengths are still achievable with only one additional (equiminimal)
minimizer. Beyond segment length 2w, we require at least three
equiminimal minimizers, which coincides with further reduced
probabilities for such segments. Finally, we can observe in Fig-

ure 6.9(b) that while the overall shape of the distribution remains
identical for increasing values of C, the probability for segments of
length > w decreases. This is expected, since these segments rely
on the fact that one or more minimizer with the same hash value
occur less than w positions apart from each other. For increasing
hash function codomains C, this probability drastically reduces due
to the increased number of possible hash values.

This can be observed in Figure 6.10, which depicts four columns
from the heatmap shown in Figure 6.9(b). With increasing values
of C, the probability for segments with length 100 decreases, while
the probability for the lengths 1, 25, and 50 increase. Note that the
lower total probability for small values of C is caused by the fact,
that we restrict ‘i’g/K = (¢<,)% , to a constant text size ‘I’LCU’K =
(1pzcl),k)kK:1 as mentioned above. To better show the behavior of the
predicted distributions, we omitted the probability

l

p
C ._ LK+l
Yok=

in these plots, which accumulates the probability mass for all seg-
ment lengths larger than K. This effect is further amplified by the
fact that for the purpose of computation we restrict K to be smaller
than the length of most biological sequences of interest. For our
empirical evaluations in Section 6.5, we aggregate the probability
for all segment lengths beyond w (i.e. all w < k < K and l/)g k), to
incorporate this information into our prediction.

For increasing values of C, differences in subsequent distribu-
tions reduce, due to the decreasing probabilities to observe seg-
ments longer than w. This is illustrated in Figure 6.11 for hash func-
tion codomains from the range { 50,150, ...,29950 } using a step
size of 100. Each point symbolizes the sum of squared differences

K
kz (%Cu,k - labzcu,k)z
—1

for C € {50,150, ...,29850 } and C’ := C + 100. Differences between
successive experiments with a linear increase in hash function
codomain size rapidly decrease. This is due to the fact that with
increasing C the total probability mass beyond w = 50 is reduced
and has increasingly little influence on the total distribution.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS

143

Sum of squared differences between successive values for C

Successive Difference Squares

—&— Measurement

0 5000 10000

Finally, Figure 6.12 shows the differences between ‘YS},K for se-
lected values of C and two distributions computed from 10 random
DNA sequences of length 100 000 000 bp using 31-grams (without
canonization) hashed with twisted tabulation hashing (see p. 46).

For the second distribution (shown in Figure 6.12(b)), we used hash
functions

h(g) = h'(g) mod 30011

where g is a 31-gram, /" a hash function from the 64-bit twisted
tabulation family, and 30011 is a prime number close to the largest
codomain size C = 30000 used for simulation.

While Figure 6.12(a) lacks segments with length > w, in Fig-
ure 6.12(b) the simulated and empiric distribution closely resemble
each other. This is due to the fact that these segment lengths are
exceedingly rare for random DNA sequences and large values of
C. The limited sample that is our 10° simulated bases does not
contain enough cases to encounter these rare events. Similarly, in
Figure 6.12(b), only very few lengths > 100 were observed. The
empirically computed values for segment lengths > 115 with a
probability of ~10~8 correspond to a single segment of this length
in the dataset. Therefore, their probabilities exceeds the predicted
probabilities.

For hash function codomains as small as C = 10000, the dis-
tribution ‘-I’cCU’K closely resembles the distribution computed from
the simulated DNA sequences. However, as we mentioned before,
neither uniformly independently distributed keys, nor completely
random DNA sequences with a GC-content of 0.5 are realistic sce-
narios for biological sequences. In the following section we analyze

different sequence types as well as different combinations of hash
functions and canonization functions.

20000

25000 30000

Figure 6.11: Development of sums of
squared differences between successive
values of C in logarithmic scale. The
measurement point at position C
denotes the sum of squared differences
between C and C — 100.

144 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

e
1071
1073 c=50
>
£
5107
©
o
o
a
C =1050
1077
C = 2050
vt 55200
€ = 5000
— » C =10000
10 ° =15000
»C = 20000
8c 235000
0 20 40 60 80 100 120 140
Segment Length
(a) Predicted segment length probabilities compared to an empiric distribution using C = [2%4].
1071
€Ceqqqq,
1073 c=50
>
E dededecacaqo
3 105 sasssagaan
3
o
a
C =1050
-7 LEr—
10 €Gdedaqqqgq w--i-t-p,.“_.---h" C = 2050
S € = 3050
C = 4050
C = 5000
— » C =10000
10 ° =15000
y» C = 20000
%C =25000
C = 30000
0 20 40 60 80 100 120 140

Segment Length

(b) Predicted segment length probabilities compared to an empiric distribution using C = [30011].

Figure 6.12: Comparison of segment length distributions Tgo,lso with empirically computed distributions. The empiric distri-
butions (gray bars), were computed for 10 DNA sequences with 100 000 000 bases chosen uniformly at random from Ypyna and
31-grams. Distributions for different hash function codomain size C are denoted as colored lines, omitting l[)g g to increase the
readability of the plots. For (a), g-grams were hashed with 64-bit twisted tabulation hashing, while for (b) hash values were limited
to [30011] using modulo.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 145

Genome Length (in bp) _GC-Content Lafs gomomes, sorted by Gtcontent
Myxococcuis xanthus 9139763 ~ 70% For sources please refer to p. 79.
Homo sapiens HG38 3209 286 105 =~ 40%

Humulus lupulus (Hops) 1812 501 705 ~ 40%

Plasmodium falciparum (Malaria) 23268702 ~ 20%

6.5 Empirical Analysis of Segment Length Distribution

To evaluate our computation of the expected segment length dis-

tribution ‘-I’SU,K, we compared it to empirically computed segment

length distributions. While uniformly randomly chosen hash values

as used above ease analysis, biological sequences seldomly behave

like this. Two of the main differing aspects are sequence entropy,

i.e. how (un-)repetitive the sequence is, and GC-content.? 9 Cf. Structure of DNA and RNA
To assess these effects, we analyzed simulated genomes with Sequences p. 10

different sequence properties. These random DNA sequences com-

prised 100000000 bases and were simulated with different levels

of GC-content. If not otherwise noted, the GC-content of simulated

sequences is 0.5. We generated FASTA files comprising a single se- Swap high and

quence with all bases chosen at random, either uniformly or with 64 low words

the specified GC-content. e
Additionally, we analyzed a collection of reference genomes (see RN 7

Table 6.2) selected to cover a great range of parameters, including \\;(/

different length, GC-content, and repetitiveness. o ‘/’/ \\\ 0
Another influencing factor are the employed hash functions and m

canonization strategies. We analyzed the following hash functions Figure 6.13: During swap mixing, the

to cover a broad spectrum of function types: To provide a base level low and high 32-bit of a 64-bit integer
are exchanged. A Rust implementation

. . . . of swap mixing can be found in
DNA sequences and swap mixing, i.e. swapping the higher and Listing 5 (p. 238).

using trivial hash functions, we evaluated plain 2-bit encoding of

lower half of a 2-bit encoded sequence, as illustrated in Figure 6.13.
As an example for a general purpose hash function, we evaluated
Murmur Hash 3 (mmh3),"° specifically its Rust implementation."" © Appleby, Murmurhash3, 2016.
For integer hash functions, we evaluated functions from the invert- " https://crates.io/crates/murmur3
ible multiplicative hash function family described in Section 4.4, the
#H'i" hash function family, and simple as well as twisted tabulation
hashing.
Since using canonical g-grams as described in Section 2.5.3 ap-
proximately halves the number of possible hash values, this poses
the question: Does this influence the efficiency of MinHashing
strategies and of winnowing in particular? Usually, canonical g-
grams are computed as the minimum of g and g, for ¢ € Q, using
the x function (see Equation 2.12, p. 32). In this section, we refer to
these as min-canonical g-grams. To analyze how this minimization
influences winnowing techniques, we also analyzed max-canonical
g-grams, using the function:

g ifg>g
3 else

Kmax (

g) = (6.12)

https://crates.io/crates/murmur3

146 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

We discern non-canonical g-grams, which are not canonized, min-
canonical, and max-canonical, which use the smaller and larger
g-gram of ¢ and g respectively.

For q and w, we chose ranges of values that commonly occur in
bioinformatics applications: We analyzed g-grams with lengths
between 11 and 31 bases. Shorter g-grams are of limited value
for MinHashing approaches, since they are likely to repeat them-
selves frequently. On the other end of the spectrum, 31-grams can
still be encoded in 64-bit integer numbers using 2-bit encoding.
Selecting uneven g-gram lengths prevents the existence of self-
complementary sequences with ¢ = g. Notice, that using g < 32
also reduces the number of possible hash values and that this effect
is amplified by additionally using min- or max-canonical g-grams.

For the winnowing window size w, we evaluated the range 30—
which corresponds to the length of a protein sequence encoded in a
100bp Ilumina SGS read—to 100, corresponding to the length of an
average Illumina SGS DNA short read.

We used K = 3w as sequence length for the computation of ¥,
since these values cover the largest part of the probability mass
of Y. For the size of the hash function codomain we used C =
2000000, which was the largest value still possible to compute
with reasonable effort on our hardware for the sizes of w and K we
analyzed.

We implemented an analysis workflow using SNAKEMAKE"?
to evaluate our approach for the parameters detailed above. This
workflow can be found under the open source MIT license on Zen-
odo"3 and GitHub."4.

The evaluation workflow comprises three main steps:

¢ Genome simulation
* Segment length evaluation

¢ Plotting

During the genome simulation phase, we generate FASTA files as
described above, using a Rust program. To limit the influence of
each single simulated sequence, we simulated a set of 10 sequences.

For segment length evaluation we computed a compressed win-
nowing for each simulated sequence and reference genome, using
the different parameter combinations detailed above. Using this
winnowing, we derived a sequence segmentation and count the
occurrences of sequence lengths |s| fors € &;,(A,q, w). Results
for simulated genomes with normal GC-content (as evaluated in
Section 6.5.1) are aggregated over all generated runs by adding the
observed numbers for each segment lengths.

Finally, plots are generated using matplotlib'> and seaborn.'®

6.5.1 Distribution of Segment Lengths on Random DNA Sequences

In this section we compare the expected segment length distri-
bution to empiric results obtained with different combinations of

2 Koster and Rahmann, “Snakemake
— A Scalable Bioinformatics Workflow
Engine”, 2012.

3 Timm, Segment Length Analysis
Workflow, 2021.

' github.com/HenningTimm/segment_
length_analysis

> Hunter, “Matplotlib: A 2D graphics
environment”, 2007.

¢ Waskom and the seaborn develop-
ment team, mwaskoni/seaborn, 2020.

github.com/HenningTimm/segment_length_analysis
github.com/HenningTimm/segment_length_analysis

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS

parameters. For each plot, we show the segment length on the x-
axis and the amount of segments with this length on the y-axis. In
the case that segment lengths > w occur we plot all of these into
one accumulated bar to better visualize their abundance. We will
refer to these segments as compressed segments.

Figure 6.14 shows the distribution of segment lengths for sim-
ulated genomes using 31-grams. Segments were computed using
compressed winnowing with a window size of w = 50. Each row of
plots shares a hash function, denoted on the right side of the row,
while each column shares a canonization strategy. The expected
segment length distribution Tg&({ggoo is shown in each plot as black
points, connected by lines to guide the eye. For better visualiza-
tion, all segment lengths above w were aggregated into one bar
placed on the right side, alongside with the expected probability
Vw1 (Ys0k) + ¥s0,>k-

All distributions have in common, that—as predicted—most
segments have a length of w. These are caused by relatively small
minimizers, which are neither pushed out of the window by a
smaller minimizer, nor become minimizer through a smaller mini-
mizer leaving the window (cf. Lemma 6.4.1 and Lemma 6.4.2). This
kind of minimizers have the highest rate of compression for robust
winnowing and for compressed winnowing outside of repetitive
regions, meaning that a winnowing with few minimizers covers the
sequence.

On the other end of the spectrum, some combinations of hash
functions and canonization strategies also show a high number
of length 1 segments. Namely, for plain 2-bit encoding (denoted
as hf = 2bit; the first row of Figure 6.14) and swap mixing (hf =
swap) without canonical g-grams (non-canonical) and min-canonical
g-grams, the peak for length 1 segments is in the same order of
magnitude as that for length w. Segments with a length of 1 occur
when the minimum changes after each step.

This case occurs frequently for both 2-bit encoding and swap
mixing since the hash values of consecutive g-grams are not inde-
pendent. Consider the DNA sequence A = TAAACGTT and its 2-bit
encoding

A= T A A A C G T T
b(A)= 11, 00, 00, 00, 01, 10, 11, 11, =1100000001101111,
with the 3-gram sequence
0(A,3) =(110000,, 000000, 000001, 000110, 011011, 101111y)

and the windows for w = 2:

(110000, 000000;) = (48,0)
(000000, 0000015) (0,1)
(0000015, 0001 10,) (1,6)
(000110, 0110115) (6,27)
(0110115, 101111,) = (27,47)

147

AA
IIIIIIIIIIIIIIIIIIIIIIIIII

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

I = mm u ||u\\\\\“\m\m\m\m\nmﬂ
g | RN
: 1 F |
I
‘I I
g | RIS

10 20 30 40 50 > 20 30 20 3

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

w 0 10 40 50 >w
ments (colored bars) on 31-grams with a window of siz =5
th of 100000 000. The y-axis is logarithmic
in one row share the same has
ected dis

0 40 5
0, generated from 10
scaled. All plots in one column
expected distributi
e exp 1

0 10
f size w ,
ally scale

h function. The

tribution, all va

In thi

1 values > w are collected into

e of the plot. In this case, no such values are present

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS

The sequence A contains a run of As, which are 2-bit encoded to

a block of consecutive zeros. When the window used for g-gram
computation slides over such a segment of zeros, it first produces
a sequence of zero values (0000 00,), which are handled according
to the winnowing strategy. At the moment the window moves off
the zero segment (or earlier, if its length is less than w bases i.e. 2w
bits), the following w hash values are of the form:

b(g) = (bo,...,bwfl) = 00... 09 bx bw,1
leading 0-bits

Each additional base pushed into the g-gram, pushes out two zero
bits, and thereby increases the hash value. This results in an in-
creasing subsequence of hash values.

When winnowing such a sequence, as the window passes over
the g-grams, we reach the point where the window minimizer is the
leftmost entry in the winnowing window and the following values
are sorted in increasing order: ssmsmmmmiill . With each step, a new
minimizer is chosen by pushing out the new minimum. Moving
forward, each step pushes out the acting minimizer and starting a
new segment.

Using swap mixing as the hash function, the same effect occurs.
The only difference is, that it occurs split up, one half, when the
zero segment populates the most significant bits of the hash value,
and when they are pushed out again. These dependencies between
hash values violate the assumption we made for modeling, i.e.
that hash values are i.i.d. While we noted above that hash values
from functions with high independence can behave similar to i.i.d.
hash values, these trivial hash functions do not distribute hash val-
ues well enough. Consequently, segment lengths deviate from the
distribution expected for i.i.d. hash values. However, while 2-bit
encoding shows less segments of length 1 when combined with
max-canonical g-grams than swap mixing with the same canoniza-
tion, swap mixing performs better using min-canonical g-grams.

For both of the trivial hash functions described above, segment
lengths between 2 and w are underrepresented with regard to the
expected distribution. A visualization of this effect can be found in
Figure B.1 in the appendix. This effect is most pronounced when
using non-canonical g-grams as well as 2-bit encoding with min-
canonical g-grams. Both min- and max-canonical g-grams show a
reduced presence of segments with lengths 25 to 30—even com-
pared to the already lower distribution—followed by a higher
probability for segments with length 31, which coincides with the
g-gram length. An explanation for this phenomenon remains open.

Out of these two hash functions, 2-bit encoding in combination
with max-canonical g-grams adhered closest to the expected distri-
bution. Especially for the arguably most important segment lengths
1 and w, the empiric distribution most closely resembles the predic-
tion using random hash values.

149

150 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Segment Length Distributions for w =50, g=11

canonicity = non canonicity = min

M |0
M [
1 R

50 >w 50 >w
Segment Length Segment Length

Probability Probability

Probability
=
<

All other hash functions adhere more closely to the expected seg-
ment length distribution. The only exception is the invertible mul-
tiplication hash function, which shows a small over-representation
of length 1 segments, when used without canonization or with
min-canonical g-grams (barely rising above the point denoting the
expected value).

For none of the simulated DNA sequences, segments with length
> w were observed. This is to be expected, since this evaluation
used 64-bit hash values, which realize a hash function codomain
several orders of magnitude larger than we are currently able
to evaluate for ¥. The expected values shown for this evalua-
tion (illustrated in black) used a hash function codomain of size
C = 2000000, which we were still able to analyze. Thus, the prob-
ability of segment lengths > w is overestimated due to technical
limitations.

For different values of w—namely w = 30 and w = 100—
we observed identical effects, with the drop in probability These
plots can be found in Appendix B.2 and Appendix B.3 respectively.
We removed the mmh3, invertible multiplication, Hlin and simple
tabulation hash functions from these plots, keeping only twisted
tabulation hashing as a reference.

For smaller values of g, we observe an increased amount of seg-
ments longer than w. In Figure 6.15 we show the distributions for
g = 11, w = 50, and a reduced set of hash functions. While the
overall shape of the segment length distributions remained as with
q = 31 for all experiments, especially for g = 11, we observed
more compressed segments. This is to be expected, since smaller
g-grams reduce the space of possible hash values and therefore in-

canonicity = max

i,
N

Segment Length

Figure 6.15: Empirical distribution

of segment lengths of random DNA
sequences (colored bars), compared
with expected distribution (black
points) using g = 11 and w = 50.
Expected segment lengths were com-
puted using a hash function codomain
size of C = 2000000. The sum for all
segments of length > w is shown as a
separate darker bar on the right of the
plot.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS

crease the probability to observe the same hash value twice within
w positions. With 11-grams, we can observe at most 4!! different
hash values and only approximately half that amount when us-

ing a canonization strategy. This corresponds to a universe size of
C ~ 4000000 and C ~ 2000000 respectively, which is several or-
ders of magnitude closer to the value used to compute the expected
distribution. Nonetheless, in the evaluation we observed more com-
pressed segments than expected. These deviations could also be
caused by rounding errors in our computation of ¥ and require
further investigation.

Considering the random DNA sequences shown here and their
compressed winnowing segment length distribution all non-trivial
hash functions performed well. As to be expected, using 2-bit en-
coded values directly or swap-mixed values resulted in sub-par
results. However, using max-canonical g-grams partially mitigated
this. We have stated above that DNA sequences with uniformly
randomly distributed bases are a stark simplification with respect
to real genomes. In the next section, we analyze random sequences
that deviate from this assumption by varying the GC-content.

6.5.2 Influence of GC-Content

The GC-content describes the abundance of the bases G and C in a
DNA sequence (cf. Structure of DNA and RNA Sequences, p. 10).
It can be interpreted as the probability that a base from a given
genome is either G or C. We simulated genomes with different GC-
contents

GC(simulated genome) = vy

ranging fromy = Otoy = 1, withP(6) = P(C) = § and

P(A) = P(T) = 1_77 By reducing the GC-content, we reduce the
probability to encounter certain g-grams, resulting in sequences
with reduced complexity. Especially for v = 0 and v = 1, the used
alphabet collapses to a size of ¢ = 2. We simulated sequences of
length 100000 000 bases and analyzed them as before to show the
influence of varying GC-content on segment lengths. Note, that as
with reduced length of g, this effectively reduces the (expected)
abundance of certain g-grams which results in less distinct g-grams
and ultimately a reduction of the hash value space. To show a
broader range of «y values within one plot, we use w = 30 through-

151

out this section. Note that the center column of the following plots

Hash Function Canonization

with a GC-content of v = 0.5 are equivalent to the respective plots in 2bit non
tab6gtwisted non

Figure B.2 (p. 240).

Figure 6.16 illustrates segment length distributions for different fﬂ:\m
GC-content values (columns), obtained by different combinations of tab6gtwisted
hash functions and canonization strategies (rows). We selected the bit max
combinations of hash functions and canonization methods shown in tab64twisted max

Table 6.3. For min-canonical g-grams we also show results for mmh3,

. Table 6.3: Combinati f hash
which performed comparably to tabulation hashing in our previous an’e 3 ODIMATons 0 has

analyses. used.

functions and canonization strategies

152 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

GC-content = 0.0

=
o o
L

Probability
[}

a1

-
° < 5
sk

1

21072 |
2.0
210
& 10

1075
1071
: “““““““““““““
21072 ‘
20
®10-
<
a 1074

1075
1071

102
1073
107°
: |‘“

Probability
=
e 9

—
o
&

Probability

H
b
L

—
o

Probability
[}

a1

-
S ©° 5
RS

107

bility

Segment Length

Figure 6.16: Distribution of segment lengths for random sequences of length 100000000 for multiple GC-contents (columns) with

i Fm

Segment Length Distributions for w =30, g =31

GC-content = 0.25 GC-content = 0.5

GC-content = 0.75

T 117 11

GC-content = 1.0

ﬂ

[T ITr 10w 1

I
[T T T
[T T T

I}
11}
\N““NNN\NNW. \““““N\NNNN\N “N““WWN

30 >w 30 >w

Segment Length Segment Length Segment Length

1'. Nnmmmmm

30 >w

ﬂ

1

30 >w
Segment Length

J-l 10 2
% 1073
& 10
1075

H

30 >w

uou+31qz = uoued+jy

UOU+P3ISIMIF9Qe] = Uoued+JY

ulWw+110Z = uoued+jy

UIW+Pa3SIMIF9Qe] = UOUBI+JY UlW+EYWW = UOUBI+JY

XeW+PaiSIMIp9Qe) = UOURD+JY XBW+1IGZ = Uoued+jy

w = 30 and g = 31. Each row contains plots for one combination of hash function and canonization strategy, with rows using the
same canonization strategy grouped by color. As before, all segments above length w are aggregated into one bar.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS

Both high and low GC-content values result in a higher amount
of segments with length 1 with hash functions that have previously
shown an increase in length 1 segments in Figure 6.14. Addition-
ally, for the extreme cases v = 0 and v = 1, segments of length
> w are observed even for g = 31. This is caused by the drastic

reduction in the input space from 43! to 23! = 4155

, when only two
of the four bases are used. Using g = 31, these segments only occur
when using either min- or max-canonical g-grams, which amplify
the reduction of the hash function codomain size. However, the
number of observed segments with length > w is still close to the
expected value. For smaller g-gram sizes, like g = 17 and g = 11,
this is no longer the case and the observed segments exceed the
expected number. This is illustrated in Figure B.4 and Figure B.5 in
the appendix.

As expected, the number of segments with a length larger than
w increased for extreme GC-content values, as these reduce the
number of possible hash values. However, for g-gram sizes of g =
17 and above, this effect was only measurable for ¢y = 0 and v = 1.
Only for smaller g-gram sizes did this effect also occurred for ¢ =
0.25 and ¢ = 0.75. This effect needs to be taken into account when
analyzing genomes with more extreme GC-content. With regards
to the GC-content of reference genomes (cf. Table 6.2), M. xanthus
and P. falciparum have comparable levels of GC-content. While this
experiment was restricted to random sequences, this effect can be
expected to be present even more pronounced in these reference
genomes, due to their less random sequence structure.

6.5.3 Segment Length Distribution of Reference Genomes

To judge the properties of real genomes with our winnowing ap-
proach, we analyzed the genomes described in Table 6.2. At this
point, we restrict the set of hash functions to 2-bit encoding, Mur-
mur hash 3, and twisted tabulation hashing. Both Murmur and
twisted tabulation have performed equally well in previous tests,
with tabulation hashing offering theoretical guarantees that mur-
mur cannot. The 2-bit encoding serves as a reference to compare
these hash functions to.

The plots shown in this section depict segment lengths computed
with 17-grams and a window size of w = 50. We have selected
these since they best show the performance difference between dif-
ferent hash functions. The versions of these plots with w = 31 can
be found in the appendix as Figures B.6, B.7, and B.8. Figures in
this section are split by canonization strategy, i.e. each figure de-
picts segment length distribution for different genomes (rows) and
hash functions (columns) that all use the same canonization strat-
egy (colors). The same color code for canonization introduced in
Table 6.3 applies. Notice, that for shorter genomes—especially for
M. xanthus—single segments have greater influence on the distribu-
tion through the normalization process.

153

154 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Segment Length Distributions for w =50, g =17
hf = 2bit

— -
- —
I,

0 10 20 30 40 50 20 30 40 50 >w

Segment Length Segment Length

hf = mmh3

Probability
=
<

Probability
=
<

Probability
=
<

1072

Probability
[T
o o
O

,_.
3

O ——

>w 0 1

Figure 6.17, Figure 6.18, and Figure 6.19 illustrate the segment
length distributions for non-, min-, and max-canonical g-grams
respectively. Across all canonization strategies using g = 17, the
P. falciparum and Hg38 genomes contained the highest fraction of
compressed segments, followed by H. lupulus and M. xanthus. No-
tice that the number of possible hash values with ¢ = 17 is larger
than the value K = 2000000 used for the expected distribution,
resulting in an overestimation of these segments’ probabilities.
Nonetheless, for all genomes and all canonization strategies the
number segments with length > w surpasses even the overesti-
mated amount. Using 2-bit encoding, this effect is smaller for non-
and max-canonical g-grams than for min-canonical g-grams. For
the Murmur and tabulation hash functions, differences across can-
onization strategies were less pronounced. In this case, using non-
canonical g-grams reduced the amount of observed segments with
length > w. The fact that less reduction of these segments could be
observed suggests that the segments are caused by repetitive subse-
quences within the genomes, and not by chance through reduction
of the hash value space.

For the M. xanthus genome, we observed a repetitive pattern of
segment length distributions that deviate from the expected distri-
bution when using 2-bit encoding. Across all evaluated values for
g and w and all canonization strategies, segments with lengths that
are multiples of three occur with a higher than expected probability

hf = tab64twisted

i
Bl

Segment Length

Figure 6.17: Segment length dis-
tributions for reference genomes
(rows) using different hash functions
(columns) and non-canonical 17-grams.
The empirical segment length dis-
tribution is shown as bars with the
expected distribution shown by black
points. All segment lengths larger than
w are aggregated into a single bar with
darker shade on the right of each facet.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 155

Segment Length Distributions for w =50, g =17

hf = 2bit hf = mmh3

I

107*

1072
1072
1074
1075 !

Probability

:
M|

107t

—
o

S

Probability

I

I
: \W“WW “NW“WWN“N fi

1| M

I

50 >w 0 10 50 >w
Segment Length

—

e o

I3

—
———
_
_
——
_
—
__
——
—
—
__
—
_
—
__
_
—
—_—
__
—
—
—_—
__
—
—
—_—
__
—
—
—_—
__
_
__
—
—
—
— ___

Seg ment Length

while segments of other lengths are less prevalent. Since this effect
is only present for 2-bit encoding, a possible explanation for this
behavior are (potentially regular) sequence patterns which do not
cause equiminimal segments. Through the application of any kind
of non-trivial hash functions, these patterns would be broken up,
while they remain present under all canonization strategies using
2-bit encoding. The fact that the over-represented sequence lengths
are all multiples of three could be point to the codon distribution of
the M. xanthus genome. An in-depth analysis of this behavior, for
example through evaluating the sequence neighborhood of over-
represented segments, remains open for future research.

For the P. falciparum genome, the number of segments of length
> w exceed both the expected value (by three orders of magnitude)
and the values computed for other genomes (by approximately
one order of magnitude). This increase in segments with length
> w, even in comparison with M. xanthus with a similarly extreme
GC-content, can be attributed to the prevalence of low complexity
regions. The P. falciparum genome contains such regions, which
have a mean length ranging from 111 bp to 270bp and within them
GC-content can fall to ¢y = 0.%7 As described in Section 6.3, these
subsequences are likely to generate equiminimal runs, which result
in long segments when using compressed winnowing.

hf = tab64twisted

Q
o
3
o
3
(0]
il
3
B
3
I 5
f=
&
Q
o
3
o
“ ‘III“II ||| a
(0]
H“I" “
I =
Q
w
=)
Q
o
3
o
3
(0]
““I["\ H ‘\ ﬂ “
=
o
ke
w
Q
o
3
o
i 3
T - . ~ o
i I
he)
g
a
ke
L
c
3
10 2 30 40 50 >w

Segment Length

Figure 6.18: Segment length distribu-
tions for reference genomes (rows) us-
ing different hash functions (columns)
and min-canonical 17-grams. The
empirical segment length distribution
is shown as bars with the expected
distribution shown by black points.
All segment lengths larger than w

are aggregated into a single bar with
darker shade on the right of each facet.

7 Zilversmit et al., “Low-complexity
Regions in Plasmodium falciparum:
Missing Links in the Evolution of an
Extreme Genome”, 2010.

156 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Segment Length Distributions for w =50, g=17
hf = 2bit

M e
I —
a0

107
210 PO Y
3
R10
<
& 1074
107°
0 10 20 30 40 50
Segment Length

6.6 Distribution of MinHash Values

hf = mmh3
107t
21072

81073
o

b

o
& 1074

10°°

107!
21072
3
810
[
& 1074

10°°

20 30 40 50
Segment Length

>w 0 >w

As mentioned above, we assumed hash values to be uniformly,
independently, randomly chosen for the segment distribution anal-
ysis. In our evaluation, we used g-grams from DNA sequences,
which only approximate the behavior of i.i.d. hash values for

|C] < 49. While nominally, we used C = [2%4] for the empirical
analyses, multiple influencing factors reduced the effective size of
C, i.e. the number of possible distinct hash values. Our analysis

in Section 6.4 has shown that the characteristic shape of segment
length distributions observed in the empirical analysis occurs for
very small hash function codomains. Already for values around

C = 5000, the expected distribution closely approximates that for
larger C (cf. Figure 6.10). The main difference for smaller universes
is the probability of segments with a length larger than w, as can be
seen in Figure 6.9.

Another important factor to be observed with minimizer-based
strategies is the distribution of MinHash values themselves, i.e. the
size distribution of hash values selected as minimum. Consider the
example application described in Section 6.2. When all MinHash
values entered into the hash table are recruited from a small space,
a large number of collisions is to be expected. This can hamper the
effectiveness of such data structures, as the very pattern they aim
to prevent occurs again: A large number of alignment candidates

hf = tab64twisted

i,
Ny
i,
I

Segment Length

Figure 6.19: Segment length distribu-
tions for reference genomes (rows) us-
ing different hash functions (columns)
and max-canonical 17-grams. The
empirical segment length distribution
is shown as bars with the expected
distribution shown by black points.
All segment lengths larger than w

are aggregated into a single bar with
darker shade on the right of each facet.

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 157

for each read. This necessitates the usage of a large (effective) hash
function codomain to prevent creating artificial collisions.

Another more technical challenge of storing minima in a hash
table is the uneven distribution of input keys across the hash table
itself. When directly using the MinHash values as keys for a hash
table, many collision are expected to occur in the lower fractions of
the address space due. This is due to the preselection of small hash
values through MinHashing strategies and can result in unevenly
filled hash tables. There are two possible approaches to mitigate
this effect:

® Rehash the minimizer (i.e. the g-gram) with a different hash
function.

® Rehash the MinHash value with a fast integer hash function.

Since the g-gram has already been selected as minimizer, we can
hash it using a different hash function to store it in the hash table.
While this approach is the most flexible, it introduces another hash
function computation and depending on the hash function used
this can be a runtime concern. The second approach, i.e. rehashing
the MinHash value itself using a fast integer hash function, can be

18

preferable in some situations. 8 Schleimer, Wilkerson, and Aiken,

“Winnowing: Local Algorithms for
Document Fingerprinting”, 2003.

6.7 Segment Number Estimation

Using the expected segment length distribution presented in Sec-
tion 6.4, we can estimate the number of segments in a winnowed
index for a sequence A. For a given w-segmentation & (G, w) of a
g-gram sequence G := (A, g), we have an unknown number of
segments w = |Sg 4| which we want to estimate. We know, that
the sum of all segment lengths sums up to the number of window
starting positions (cf. Definition 6.1.2 and Figure 6.3):

Y, lsl=(Al-q+1)-w+1
5,€6(Aqw)

Choosing the sequence length for the expected distribution K =
(|JA| =g+ 1) — w + 1 equal to the number of window starting
positions in A, we can compute the mean segment length as:

K
E(lsl) =} ¢r -k 9F €¥ox
k=1

Notice that through this choice of K, the term 1/J(>: x of ‘PS) K =
(l[Jlg)lK: Y lpg x collapses to 0 since there are no possible segments
with length > 0. For a precise estimate of expected number of seg-
ments, we would need to consider all combinations of segments
lengths resulting in a length of K weighted by their respective prob-

ability.’ Our goal—using the estimate to pick the size of an index 9 For a solution to a simplified version
of this problem using six-sided dice,

)) refer to Conroy, A Collection of Dice
is faster to compute. Given the sequence length K and the mean Problems, 2018, Problem 31.

data structure—can also be achieved by a more simple estimate that

158 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

segment length for the distribution ¥< ,, we can estimated number
of segments required to cover said sequence as:

=gl

However, as mentioned above, currently we cannot compute ¥ for
lengths K that are applicable to realistic genome sequences. In this
case, our estimate w* can serve as an upper bound for the actual
number. Through choosing K < |A|, we prevent long segments
from influencing the expected number of segments, resulting in
an overestimate of the total number of segments. Since resizing

a winnowed index (i.e. its underlying hash table) is costly, over-
estimating the number of segments is preferable.

Notice, that for growing values of C and therefore decreasing
probabilities for segment lengths > w the expected segment num-
ber for compressed winnowing approaches the expected segment
number for robust winnowing.

Our analysis of reference genomes has shown, that the amount
of compressed segments is higher than expected using randomly
chosen hash values. An approach to improve our prediction of the
number of compressed segments would be to estimate the expected
number of hash values for subsequences of a genome based on
their complexity. By computing w* for each sequence, using dif-
ferent values for C for high and low complexity regions, a better
estimate for the expected number of segments could be achieved.

6.8 Discussion and Conclusion

We presented a novel winnowing approach—compressed winnowing—
which collapses repetitive regions into single segments. For the use
with biological sequences this approach offers the improvement

of reducing common repetitive patterns into a single characteris-
tic segment. Thus reducing the overall number of segments in the
winnowed sketch with respect to robust winnowing while only
losing information that actively hinder many sequence analysis
tasks. We additionally outlined a multiple winnowed sequence
index leveraging our technique to identify alignment candidates
for an application in protein similarity analysis for metagenomic
screening.

Using a recursive function we were able to compute the expected
distribution of compressed winnowing segment lengths for hash
values uniformly and independently chosen from a given hash
function codomain. We could show that segments obtained from
reference and draft genomes, as well as from simulated genomes,
adhered closely to our prediction, if certain standards to the used
hash function were satisfied.

Working with simulated genomes, we could show that segments
of length larger than w, which are specific to our compressed win-
nowing approach, do not occur at random for reasonable hash

DISTRIBUTION OF MINIMIZER SEGMENT LENGTHS 159

function codomain sizes, like C = 2%4.2° This shows that through
compressed winnowing we do not accidentally merge important in-
formation. Moreover, we could show that trivial hash functions like
plain 2-bit encoding and swap mixing do indeed perform poorly
for winnowing approaches since they do not break up the inter-
dependence of neighboring g-grams. All other hash functions
performed significantly better, with tabulation hashing (twisted
more than simple) and mmh3 most closely resembling the expected
distributions ¥ for randomly selected hash values. This is in line
with the properties described for these hash functions in Chapter 3.
Twisted tabulation hashing offers e-approximately min-wise inde-
pendence, and while not offering any theoretical guarantees, mmh3
has already been proven to perform well in the context of MinHash
approaches (cf. Hash Functions for Use in Bioinformatics, p. 44).*"

Using max-canonical g-grams instead of min-canonical g-grams
did not offer a universal improvement. Only when used in com-
bination with 2-bit encoding did max-canonical g-grams improve
the distribution of segment lengths. However, this coincided with
a reduced probability for segments with length g — 1 and less, for
which an explanation remains open. In combination with non-
trivial hash functions, no consistent changes could be observed. For
these cases a detailed analysis of the MinHash value distribution
could be of interest for future research.

We could show that effects that reduce the number of distinct g-
grams, and therefore the number of different possible hash values,
increase the number of segments that exceed the window size w.
Most notably, for a lowered GC-content as well as min- and max-
canonical g-grams, we could observe an increased amount of these
segments. This was most visible when reducing the number of
different possible hash values using simulated genomes that only
comprise two bases through a GC-content of ¥ = 0 or ¢y = 1.

During the analysis of reference genomes we could show that
genomes which are known to contain a high amount of repetitive
sequences—namely the P. falciparum genome—generate a large
amount of compressed segments when analyzed with compressed
winnowing. A direct comparison between robust and compressed
winnowing remains open. While we can observe the number and
length of compressed segments and deduce the number of saved
segments, this remains a topic for future research. Most notably,
this could be performed with regards to the entropy (for example
the Shannon entropy) of the analyzed sequences.**

Interestingly, we obtained the expected segment length distribu-
tion even for hash function codomains as small as |C| = 5000.
However, the practical use of hash functions with such small
codomains is limited, since the computed MinHash values collapse
into a set too small to meaningfully distinguish entries. Most no-
tably, for the future implementation of our segment index outlined
in this chapter, using a large hash function codomain is required to
restrict these to actually (strongly) repetitive regions.

> Notice that effectively a hash func-
tion codomain size of C = 2% is never
reached by our evaluation through
our use of g-grams shorter than 32bp
and canonization. While nominally we
hash to the codomain C = [2%4] the
effective codomain is much smaller,
especially for smaller values of 4. As
noted above, this supports g-gram
hashes in behaving similar to i.i.d.
hash values.

** Thorup, “Fast and Powerful Hashing
Using Tabulation”, 2017; Richter,
Alvarez, and Dittrich, “A Seven-
Dimensional Analysis of Hashing
Methods and Its Implications on
Query Processing”, 2015.

2 Schmitt and Herzel, “Estimating the
Entropy of DNA Sequences”, 1997.

7
Analysis of AdRAD Data

As introduced in the section on Specialized Application Sequencing
Workflows, restriction site associated DNA sequencing (RADseq)
and double digest RADseq (ddRADseq) use restriction enzymes to
fragment DNA sequences at reproducible positions. Due to its abil-
ity to process large sample sizes and relatively low cost per individ-
ual sequenced, data generated by RADseq is used for biodiversity
and population genetic studies of (non-model) organisms." Using
restriction sites, which occur at the same position in all individu-
als of a sample, allows detecting mutations without performing de
novo assembly, i.e. constructing a reference genome of the analyzed
organisms. A possible application would be to judge the effect of
anthropogenic stress on a population, as illustrated in Figure 7.1.

Due to the particularities of this workflow, the analysis of (dd)RAD-
seq presents unique difficulties, both for the technologies to acquire
this kind of data as well as for its analysis. Consequently, analyzing
RADseq data is a complex task with many variables. In order to
test and evaluate the performance of this pipeline, we developed
DDRAGE 2 a software able to simulate ddRAD reads and generate

* Andrews et al., “Harnessing the
Power of RADseq for Ecological and
Evolutionary Genomics”, 2016; Peter-
son et al., “Double Digest RADseq: an
Inexpensive Method for de novo SNP
Discovery and Genotyping in Model
and Non-Model Species”, 2012.

Figure 7.1: Identification of anthro-
pogenic stress on two populations
of fish. The purple population (<=)
is affected by anthropogenic stress
through pollution, while the brown
population (=€) remains unaffected.
It can be expected that the amount of
biodiversity in the <= population is
lower, since individuals not optimally
adapted succumb to the stressor.
Graphic derived from "Christmas
Island Australia 76 FR" by Ewan ar
Born CC BY 3.0 and "Biohazard"
released into the public domain by
Wikipedia User Knyaz-1988.

2Timm et al., “"ddRAGE: A Data Set
Generator to Evaluate ddRADseq
Analysis Software”, 2018; Timm and
Rahmann, ddRAGE — ddRAD Data
Generator (Source Code), 2020.

https://commons.wikimedia.org/wiki/File:Christmas_Island_Australia_76-fr.png
https://commons.wikimedia.org/wiki/File:Christmas_Island_Australia_76-fr.png
https://creativecommons.org/licenses/by/3.0

162 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Figure 7.2: Illustration of a ddRAD
analysis. The DNA sequence of an
individual (purple bar), is cut using
restriction enzymes (red and teal
wedges). Resulting fragments are

sequenced as paired end reads. For
individuals of the same species, loci

’ ‘ ‘ ’ ‘ are likely to occur in all sequenced
p5 individuals, allowing comparison on
| L] the population level. In this example

‘W the purple and brown population
can be distinguished by their level of
&Q biodiversity, denoted by icons in the
fish outlines.

low biodiversity high biodiversity

a diversity of challenging datasets. Additionally, we developed an
analysis pipeline that automates many of the most tedious tasks.
In this chapter, we first describe the ddRADseq technique and
the structure of data it generates. Following that, we describe how
our simulation software DDRAGE models this structure and fi-
nally we present our analysis pipeline. Both the description of
(dd)RADseq technology as well as the description and evaluation

of DDRAGE are based on our publication of bDRAGE.? A list of 3 Timm et al., “ddRAGE: A Data Set
Generator to Evaluate ddRADseq

probability distributions referred to in this section can be found in ,
Analysis Software”, 2018.

the section Probability Distributions (p. 34).

7.1 Acquisition and Structure of AdRAD Data

The core idea of all RAD sequencing approaches is to cut the DNA

using restriction enzymes and sequence the resulting fragments.

Given two individuals of the same species, both individuals pos-

sess almost identical genomes, apart from small genetic variations.

If the genome of the first individual is cut at positions with a spe-

cific DNA motif, these restriction sites* have a high probability to + Also know as cut sites.
be present and in the same position for the second individual as

well. Sequences adjacent to a restriction site, which are sequenced

during the RADseq process, form a so called locus.> Unless muta- 5 Depending on the source, the restric-
tion site, the reads generated from it,

tion has eroded the motif in one of the individuals (leading to one
or both are called locus.

or both alleles in an individual not being sequenced), a locus se-
quenced in one individual will also be sequenced in the other. This
property is exploited by RADseq to uniformly sample sequences
from genomes, allowing to judge their genetic diversity. Compar-
ing RADseq loci between individuals increases the ability to make
population genetic inferences (see Figure 7.2).

From the different RAD sequencing approaches, which aim to
alleviate certain weaknesses of basic RAD sequencing,® we focus on
ddRADseq.” The ddRAD approach employs two different restric-
tion enzymes to assure that the length of generated fragments does
not depend on random shearing effects.

7.1.1 Restriction Enzymes

The cutting process used by RADseq is realized by restriction en-
zymes, which bind to DNA strands at a specific motif and cut the
strand within or next to the motif. This process is also called diges-
tion. Most of the restriction enzymes used in (dd)RAD sequencing
leave behind part of their restriction motif after cutting, as illus-
trated in Figure 7.3. Table 7.1 shows a selection of restriction en-
zymes with their restriction site (motif) and residue (overhang or
sticky ends) remaining in the reads.

Since restriction enzymes bind to specific motifs, the number and
location of restriction sites in a specific genome depend on several
factors. These include the length of the motif (shorter motifs are
more frequently present in a genome) and the GC-content of the
target genome (if the motif contains many Gs and Cs, motifs are less
likely to occur in low GC species). Consequently, the number of loci
generated for a given genome can be influenced by the choice of the
employed restriction enzymes. Based on the number of loci they
are expected to generate, restriction enzymes are classified as rare
cutters or frequent cutters.

After a DNA sequence is cut, the resulting fragments are trun-
cated to lengths that can be analyzed by a SGS device. For basic
RADseq, this is performed by trimming the reads using ultrasound
or other fragmentation techniques, and performing a length selec-
tion. Due to the random nature of the trimming process, RADseq
reads from one locus can have different lengths, as illustrated in
Figure 7.4.

By using both a rare and a frequent cutter and digesting the
DNA twice (thus: double digest), ddRADseq can assure that frag-
ments have fixed sizes, determined by the occurrences of rare and
frequent cut sites within the target genome. A length selection is
performed as well, since the cut fragments can still be too long for
SGS sequencers.

As with any biological process, DNA digestion with restriction
enzymes is a probabilistic process. It is possible, that a restriction
site present in the genome is not cut and remains in the fragments.
This incomplete digestion can influence the layout of reads gener-
ated by ddRADseq.

7.1.2 Sequencing Process and Read Structure

After digestion and size selection have been performed, the re-
maining fragments are sequenced. Parameters like the length and
sequencing errors present in the reads are determined by the se-

ANALYSIS OF DDRAD DATA 163

¢ Andrews et al., “Harnessing the
Power of RADseq for Ecological and
Evolutionary Genomics”, 2016.

7 Peterson et al., “Double Digest RAD-
seq: an Inexpensive Method for de
novo SNP Discovery and Genotyping
in Model and Non-Model Species”,
2012.

Figure 7.3: Cut sites of a restriction en-
zyme that leaves a residue after cutting
(top) and one that does not (bottom).
The first enzyme cuts the motif ATGCAT,
leaving the sequence TGCAT in the
fragment, while the second one cuts
off the whole restriction site GTAC.
Sequences shown in light teal are cut
off, fully saturated fragments remain
to be sequenced.

Name Motif Residue
Cspé6l GTAC TAC
Pstl CTGCAG G
Nsil ATGCAT TGCAT
BamHI GGATCC GATCC
Fatl CATG

Table 7.1: List of selected restriction
enzymes used in RADseq with their
cut site motif and residue.

@)

Genomic Sequence

®)

s Liiill]

— p7 Restriction Site

’

P5 Restriction Site
Figure 7.4: The length of basic RAD-
seq fragments (a) varies due to the
randomness of the fragmentation pro-
cess, while the length of ddRADseq
fragments (b) is determined by the py
restriction enzyme.

164 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

p5 Reads p7 Reads
p5 Partial Adapter p5 Genomic Sequence p7 Partial Adapter p7 Genomic Sequence
ACGTAG G TGCAT ACGTACGT... T GGACG TAC AGGCGGCGCGCGC. ..
In-Li Resid f i
pgafco;ele ;eséourel DSiFeS Genomic Sequence Spacer Residue of p7 Genomic Sequence
&n- Sequence (ambiguous) Recogn. Site
Spacer
Sequence _|_ GGCTAC p7 index barcode, saved in the dataset name,

quencing technology used. While ddRADseq can be performed
with several sequencing technologies, paired-end reads obtained
from Illumina sequencers are widely used. Hence, we will focus
our description on this technology. Due to the applied library
preparation protocol, ddRAD reads contain several sequences in
addition to the genomic sequence from the p5 and p7® end of the
sequenced fragment respectively. A typical setup of ddRAD reads
is illustrated in Figure 7.5. Note that depending on the specific
experiment, not all of these sequences need to be be present.

To achieve a high sequencing throughput, several individuals
are analyzed on the same flow cell lane using barcoding. Before
sequencing, fragments from each individual are tagged with a pair
of short artificial DNA sequences on the p5 and p7 end. Each pair
of p5 + py barcode uniquely identifies one individual. Depending
on library preparation and sequencing protocol, barcodes can be
present as in-line barcodes, which remain in the read after sequenc-
ing, and index barcodes. The latter are part of the adapter sequence
used by the sequencing device. They are trimmed off during the
sequencing process and are used to dispatch the sequenced reads
to different output FASTQ files. The read setup shown in Figure 7.5
contains p5 in-line barcodes and p7 index barcodes. Reads for each
individual can be extracted from the sequencer output through de-
multiplexing, i.e. sorting reads into individual files based on their
p5 + p7 barcode combination.

Spacers are small sequences added to avoid over-saturation of
the sequencer’s camera. Depending on context, these sequences are
also called inserts, or ins for short. We use the term spacer instead,
to avoid confusion with insertion mutations. Since the following
sequences (restriction enzyme residues and fixed parts of the de-
generate base region, both of which we will describe below) are
identical for all individuals on the flow cell lane, one base per se-
quencing cycle yields a very high light response, while the other
three remain dark. This problem is alleviated by purposefully syn-
chronizing reads from different individuals. Each individual is
assigned a pair of sequences of length o to 3, which are added to p5
and py read before the restriction enzyme residue. Individuals with
a spacer of length 1 reach the enzyme residue one sequencing cycle
after those with spacer of length o and before those with longer

index file and in the FASTQ name lines

Figure 7.5: Structure of PE ddRAD
reads obtained from Illumina se-
quencers. In the p7 read, ambiguous
parts of the degenerate base region
(DBR) are shown in light gray. The
p7 index barcode is not part of the
final read, but is removed with the
rest of the adapter. This illustration is
derived from Figure 1 of our publica-
tion: Timm et al., “ddRAGE: A Data
Set Generator to Evaluate ddRADseq
Analysis Software”, 2018.

8 For Illumina reads, forward and
reverse read are also called p5 and p7
read respectively, named after the flow
cell binding sites.

spacers, thus distributing the high light response over several cy-
cles. As a downside, longer spacers reduce the length of genomic
sequence that can be sequenced. Since the read length is constant,
each spacer base truncates the genomic sequence by one base with
respect to a read without spacers.

Depending on the restriction enzymes used to digest the DNA,
restriction enzyme residues are also present in the reads. As de-
scribed in the section on Restriction Enzymes (p. 163), sticky ends
can be left behind by some restriction enzymes (like Nsil or Csp6l)
after cutting. These mark the beginning of the genomic sequence,
even though they provide no usable information themselves, since
they are identical in all reads.

Finally, Unique Molecular Identifiers (UMIs) or Degenerate Base
Regions (DBRs)? are often used to identify and remove PCR dupli-
cates. By adding a partially randomized sequence to the fragments
before PCR amplification, PCR duplicates can be identified with
high probability as reads with identical DBR sequence and identical
genomic sequence. DBR sequences are denoted as a string from
Zjurac, Where ambiguous bases are assigned at random during
library preparation. For example, in Figure 7.5, the DBR comprises
6 completely random bases (denoted by N), followed by two bases
that can either be A or C (denoted by M), and finally the fixed section
GGACG. Assuming a completely random assignment of bases, there
are 4° - 22 = 16 348 possible assignments for this DBR setup. We will
describe handling of PCR duplicates in more detail in the section
PCR Duplicate Removal (p. 213).

The sequences described until now were all either technical
artifacts themselves, or sequences used to cope with technical lim-
itations. However, they do not hold any information about the
sequenced individual. The remaining bases in the read are the
genomic sequence, sequenced from the p5 and p7 end of the frag-
ments extracted. While the sequences described above, which we
will refer to collectively as the partial adapter, are required for
(some) ddRAD experiments, they limit the size of genomic se-
quence that can be analyzed.

Maximal read length is set by the sequencing device used. The
remaining payload of genomic sequence is restricted by the length
of the partial adapter, which can differ between individuals in a
sample. Given the layout shown in Figure 7.5, the lengths of p5 and
p7 genomic sequences for an individual I are:

|p5 genomic sequence(I)| = Total read length from sequencer

ANALYSIS OF DDRAD DATA 165

9 Schweyen, Rozenberg, and Leese,
“Detection and Removal of PCR
Duplicates in Population Genomic
ddRAD Studies by Addition of a
Degenerate Base Region (DBR) in
Sequencing Adapters”, 2014; Tin et al.,
“Degenerate Adaptor Sequences for
Detecting PCR Duplicates in Reduced
Representation Sequencing Data
Improve Genotype Calling Accuracy”,
2015.

— (|ps5 barcode(I)| + |ps5 spacer(I)| + |p5 residue(I)|)

|p7 genomic sequence(I)| = Total read length from sequencer

— (|lp7 spacer(I)| + |DBR| + |p7 residue(I)|)

166 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Extracting the partial adapter from ddRAD reads is one of the
challenges of ddRAD analysis.

7.1.3 Challenges of ddRAD Analysis

The distinctive structure of ddRAD data described above, combined
with the requirements of population genetics, as well as biolog-

ical and technological factors, make ddRAD analysis a uniquely
challenging endeavor. It has to solve the following tasks:

Preprocessing Prepare raw reads for analysis, usually includes the
following tasks:

Demultiplexing Assemble one FASTQ file per individual in the
dataset using barcoding information.

PCR Duplicate Removal Remove PCR duplicates from the FASTQ
files using DBRs in order to achieve better genotype informa-
tion in downstream steps.

Adapter Trimming Trim off parts of the reads that are not ge-
nomic sequences.

Locus Identification Reconstruct the loci with similar genomic se-
quences for each individual.

Genotype Identification Identify genotypes within and between indi-
viduals.

These tasks would be relatively simple if there were no biological
or technological factors influencing the reads. Most prominently,
since for most species no reference genome is available, locus iden-
tification has to be performed without a reference as well as with
an unknown number of loci and an unknown number of alleles. In
short, instead of read mapping, we have to perform read clustering.
This means grouping reads with similar sequences while avoiding
to over-merge loci, that were distinct in the input data. Furthermore,
similar loci also have to be identified between individuals. All of
this is further influenced by an unknown number of genetic vari-
ants, such as SNVs and indels, which in turn can be homozygous or
heterozygous.

In the case that a genetic variant affects a restriction site, its effect
can extend to whole reads or read pairs. This effect is called a null
allele (NA). We distinguish two types of NAs: dropout NAs and
alternative sequence NAs.

When a mutation erodes a restriction site, this site is no longer
cut during digestion. The resulting fragments from the affected cut
site are longer than those from individuals where the restriction site
is intact. During size selection, two outcomes are possible:

1. The size of the newly formed fragment is longer than the maxi-
mum permissible size in the size selection step. Such fragments
are not sequenced and drop out of the dataset, creating a Dropout
NA for the individual at the affected locus.

2. The newly formed fragment passes size selection and is se-
quenced. In this case, a different sequence is observed for the
mutated restriction site, e.g. if the p7 restriction site is mutated,
p7 reads show an alternative genomic sequence while p5 reads
show the expected sequence. This creates an alternative sequence
NA.

Examples for both variants of NAs are illustrated in Figure 7.6.
Since the p5 restriction site is a rare cutter, p5 NAs are more likely
to be dropout NAs, while p7 NAs have a higher chance to be alter-
native sequence NAs.

It is also possible that a new restriction site forms in the genomic
sequence. As with eroded restriction sites, their effects depend on
their position relative to other restriction sites. Additionally, they
can introduce new loci that are not present in other individuals.

As other genetic variants, NAs may be heterozygous or homozy-
gous. Note that an NA caused by a heterozygous mutation of a
restriction site might be mistaken for a homozygous mutation with
very low (half of the expected) coverage.

Another effect that is specific to ddRAD reads are highly repetitive
loci (HRLs)'. If a restriction site is contained in a highly repeti-
tive region of the genome, reads from several restriction sites can
collapse into a single highly repetitive locus (HRL). Consequently,
HRLs show a very high read coverage, but their information for
biological questions is limited, since they contain inseparably mixed
genetic variants from different genomic sites.

While the above mentioned factors are inherent to the biological
samples, there are also technological factors determined by the
sequencing platforms (e.g. sequencing errors) as well as library
preparation protocols (e.g. size selection, number of PCR cycles)
that influence the ddRAD output.

Genotype calling is performed based on the abundance of reads
that present different alleles. Hence, variations in locus coverage
as a result of the sequencing process may result in the incorrect
inference of genotypes. In a low coverage scenario, only one allele
of a heterozygous locus might be sequenced, resulting in a dropout
of the other allele.

Oppositely, PCR duplicates of the sequences may be present
in the dataset which can obscure the real coverage and thereby
influence the analysis significantly. PCR duplicates can lead to
spurious heterozygote calls due to the duplication of PCR errors, or
the failure to call heterozygotes due to uneven PCR amplification of
variant alleles. Additionally, PCR errors during library preparation
or sequencing errors may cause apparent changes in the genomic
sequence and may be confounded with individual variation, or they
may obscure the individual by changing the barcode.

Finally, incomplete enzymatic digestion (ID) of the genome may
result in null alleles or dropouts. These behave similar to effects
from mutated restriction sites, since a restriction site not being cut

ANALYSIS OF DDRAD DATA 167

@)

Genomic Sequence

p7 Restriction Site

-

p5 Restriction Site

®)

il

‘Alternative p7
Sequence

Eroded Cut Site

©

Size Selection
Cutoff
Eroded Cut Site

Figure 7.6: Effects of null alleles on the
generated fragments, with respect to
an unaffected locus (a). For alternative
sequence NAs (b), the next p7 cut
site | is located close to the eroded
one. Generated fragments show an
alternate py genomic sequence (teal).
If the subsequent p7 cut site is further
away than the size selection permits, a
dropout NA occurs (c).

*° Also known as highly repetitive
stacks or lumberjack stacks.

168 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

@)

a
N—

L]
0O
990000
Y
(LI
(TTTTLT]

[11 In}

common dropout

indels

by chance, is not distinguishable from a restriction not being cut
due to a mutation of said site.

Figure 7.7 visualizes how the effects discussed in this section
influence fragment generation and the structure of reads sequenced
from these fragments.

7.2 Simulation of AdRAD Data

A large variety of tools, such as Stacks '* or rYRAD'?/ 1PYRAD"'3
are available to analyze ddRAD data. The two main computational
tasks these tools have to solve are

¢ to generate clusters of reads, that likely originate from the same
locus across individuals, and

* to analyze genomic variation per locus within and between indi-
viduals.

Due to the biological and technological effects described in the
previous section, and in more detail by Mastretta et al.,’* evaluating
optimal parameter values'> for an analysis is difficult. In the worst
case, this has the potential to leave researchers with ill configured
analysis pipelines that might obfuscate biological findings.

While the effects present in real ddRAD datasets cannot be easily
verified, simulated data can be used to evaluate parameters for an
analysis. In order to match the complexity of real ddRAD data,
both biological and technological factors need to be simulated.
Furthermore, technological factors need to be annotated as such to
make them distinguishable from biological factors. A changed base,
for example, could be caused by both a SNP or a sequencing error.
This ground truth comprises a list of events an analysis tool has
to detect, which has to be both as complete as possible and easily
accessible for verification.

There are several tools available to simulate various aspects of
ddRAD experiments in order to choose good parameters for the
analysis. These tools range from read simulation for validation, to
complete simulations of ddRADseq pipelines.

The sIMRRLS software,’® which is used to test PYRAD, simu-

v
>

SNPs and

d)

|
NAs and ID

Figure 7.7: Examples for the influence
of biological and technological factors
on ddRAD reads. For the genomes

of two individuals (upper and lower
bar), two loci for each effect are shown.
Bars in a locus symbolize a fragment,
with its p5 adapter (red) and py
adapter (green). Common loci (a) are
present in both individuals, albeit
with different levels of coverage.

Loci can drop out of the analysis for
single individuals or groups (b). SNPs
and indels, as well as sequencing
errors, can introduce slight differences
between read sequences (c). Null
alleles (NAs) and incomplete digestion
(ID) (d) can move the effective cut
sites (indicated by red and green lines
on the genomes), causing dropouts
(desaturated sequences) or extensions
(teal sequences).

" Catchen et al., “Stacks: an Analysis
Tool Set for Population Genomics”,
2013; Rochette, Rivera-Colén, and
Catchen, “Stacks 2: Analytical methods
for paired-end sequencing improve
RADseg-based population genomics”,
2019.

2 Eaton, “PyRAD: Assembly of de
novo RADseq Loci for Phylogenetic
Analyses”, 2014.

3 Eaton and Overcast, “ipyrad: Interac-
tive Assembly and Analysis of RADseq
Datasets”, 2020.

14 Mastretta-Yanes et al., “Restriction
Site-associated DNA Sequencing,
Genotyping Error Estimation and
de novo Assembly Optimization for
Population Genetic Inference”, 2015.
5 A fact well illustrated by Paris,
Stevens, and Catchen (“Lost in Pa-
rameter Space: A Road Map for
STACKS”).

16 github.com/dereneaton/simrrls

http://github.com/dereneaton/simrrls

lates (dd)RAD reads, but does not provide a detailed account of
the simulated effects. The FRAGMATIC' software performs in-silico
digestion of reference genomes closely related to the target genome
to predict number and characteristics of target loci. The R library
stMrAD'® also allows users to simulate the digestion process on
both real and simulated reference genomes, enabling the prediction
of the number of target loci with different protocols to optimize

a ddRAD experiment. pbDRADSEQToo0Ls" simulates a ddRAD
pipeline to support the optimal design of ddRAD experiments.
Finally, the RADIN1ITIO?*® software also simulates a ddRADseq
pipeline for a given reference genome, while focusing on biolog-
ically correct simulation than on easy and detailed verification.
However, it currently offers no options to simulate effects like HRLs
and NAs, other than providing a reference genome tailored to con-
tain such effects, which is unwieldy for simulation purposes.

We have developed DDRAGE, the ddRAD Data Generator,
which simulates ddRAD reads based on a model, either from a
reference genome or from a simulated genome. For each locus, in-
fluencing biological and technological effects, including mutations,
coverage variations, dropouts, and sequencing errors, are chosen
using mathematical models. Given a set of simulated reads and a
detailed description of the effects that are detectable in this dataset,
analysis software can be tested for specificity and sensitivity, to
further improve their performance concerning questions such as:

* Are PCR duplicates removed from the analysis reliably during
preprocessing?

* Are all loci identified and reconstructed correctly during read
clustering?

¢ Are loci with indel mutations assembled correctly or split up?
¢ Are highly repetitive loci identified and removed?

¢ Which minimal coverage is required to reliably detect heterozy-
gous mutations?

¢ How many SNPs make a locus split up using the applied read
clustering method?

e Is the applied SNP calling approach robust? Are sequencing
errors mistaken for SNPs or are SNPs uncalled?

In contrast to other software like RADiNITIO,?! DDRAGE does not
aspire to provide a detailed phylogenetic simulation or to simulate
different populations, since such simulations would not signifi-
cantly enhance the ability to validate analysis tools. To achieve this,
DDRAGE creates a set of output files, each covering a different as-
pect of the generated data. A detailed specification of all output file
types can be found in the documentation.>*

ANALYSIS OF DDRAD DATA 169

17 Chafin et al., “FRAGMATIC: in silico
Locus Prediction and Its Utility in
Optimizing ddRADseq Projects”, 2017.

8 Lepais and Weir, “SimRAD: an R
Package for Simulation-Based Predic-
tion of the Number of Loci Expected
in RADseq and Similar Genotyping by
Sequencing Approaches”, 2014.

9 Mora-Marquez et al., “ddRADseq-
Tools: a Software Package for in silico
Simulation and Testing of Double
Digest RADseq Experiments”, 2017.

20 Rivera-Colon, Rochette, and Catchen,
“Simulation with RADinitio Improves
RADseq Experimental Design and
Sheds Light on Sources of Missing
Data”, 2020.

21 Rivera-Colon, Rochette, and Catchen,
“Simulation with RADinitio Improves
RADseq Experimental Design and
Sheds Light on Sources of Missing
Data”, 2020.

22 Available at ddrage. readthedocs.
io/en/latest/documentation/output_
format/ and as part of the source code
(Timm and Rahmann, ddRAGE —
ddRAD Data Generator (Source Code),
2020, documentation.zip).

https://ddrage.readthedocs.io/en/latest/documentation/output_format/
ddrage.readthedocs.io/en/latest/documentation/output_format/
https://ddrage.readthedocs.io/en/latest/documentation/output_format/
ddrage.readthedocs.io/en/latest/documentation/output_format/
https://ddrage.readthedocs.io/en/latest/documentation/output_format/
ddrage.readthedocs.io/en/latest/documentation/output_format/

170 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

7.2.1 Using DDRAGE to Simulate Reads

DDRAGE is implemented as a command line tool and can be in-
stalled using the conda package manager®3 and the Bioconda*4
channel:

$ conda install -c bioconda ddrage

After installation, calling the program ddrage from the command
line without parameters will simulate a small dataset containing
reads from three individuals at three loci.

As input, DDRAGE needs the number of loci and individuals,

a barcodes file, and the remaining partial adapter sequences (de-
generate base sequence, enzyme residues and restriction sites).
Instead of the number of loci, a FASTA file containing sequence
fragments can be passed to DDRAGE to simulate reads from a
reference genome. The barcode file is a text file containing bar-
code and spacer sequence pairs for each individual. As default, a
barcode set utilized in the Illumina TrueSeq LT kit is used, which
offers a distance of at least two bases between all barcodes to min-
imize the chance of collision through sequencing errors. However,
other barcode sets allowing more individuals and variable length
barcodes are also supported. For all input parameters reasonable
default values are provided.

The generated reads are saved as annotated FASTQ files. In addi-
tion to basic FASTQ entries (header in CASAVA format, sequence,
plus line, quality values), the header of each read contains a man-
ifest of the effects added to the read. Using this information, for
example, the difference between a SNP and a sequencing error can
be inferred directly from the read name.

The FASTQ files contain the generated reads in the order of their
creation: first all reads from valid loci, followed by PCR duplicates
for each individual, and last all singletons and HRL reads, also
including their PCR duplicates. While this is useful for basic valida-
tion of an analysis workflow, it is advised to shuffle the reads before
analysis using the script randomize_fastq to more closely mimic a
real ddRAD dataset:

$ randomize_fastq in_1.fq in_2.fq out_1.fq.gz out_2.fq.gz

In this example, in_1.fq and in_2.fq are the files generated by
DDRAGE. The randomized reads will be written to the gzipped
output files out_1.fq.gz and out_2.fq.gz.

In addition to the read data, PDRAGE generates two log files:
an annotation file (text) and a statistics file (PDF). The annotation
file provides a first glance view of the created dataset. It contains
the parameters used to create the dataset and a concise collection of
measures to assess the generated dataset, including the total num-
ber of generated reads, PCR copy rate and number of valid reads.
The statistics file is a PDF document with figures illustrating the
structure of the created data. These plots include a breakdown of

23 conda.io/docs/

2 Griining et al., “Bioconda: Sustain-
able and Comprehensive Software
Distribution for the Life Sciences”,
2018.

conda.io/docs/

ANALYSIS OF DDRAD DATA

the read origins, events types per individual, the mean number of
mutations per individual, and PCR duplicate rates. A barcode file
containing a list of individuals in the dataset and their associated
barcodes and spacer sequences is written as well.

Finally, a ground truth file is written with which the results of
analysis tools can be compared. This ground truth file, which is
written in YAML format to be easily accessible and convertible
into other formats, contains three sections: individual information,
loci, and HRLs. The individual information section contains en-
tries describing the partial adapter sequences of all individuals in
the sample. In the second section, locus entries each describe one
simulated locus. They contain the consensus sequences of the lo-
cus, assigned alleles alongside their coverage and frequency at the
locus for each individual, the total coverage of the locus, and the
total number of ID reads. The last section contains an entry for each
HRL locus, which contains a coverage entry for each individual.

If we use a ddRAD analysis software to analyze the FASTQ
files, we receive results which we can validate using the ground
truth YAML file. The profile of detected and undetected effects can
give us insight on how to improve the parameters chosen for the
analysis software.

7.2.2 Simulation Workflow

We will now describe the simulation workflow bbDRAGE uses to
simulate reads under the following three assumptions:

1. The simulated genome is diploid. Hence, an individual can only
have either one allele per locus (homozygous) or two alleles per
locus (heterozygous). Since the majority of animals analyzed in
population genetics is diploid, this is not a severe limitation.

2. The target sequencing depth ds is constant across the genome.
Due to this, the average coverage of loci, meaning the number
of reads simulated for one individual at one locus (without PCR
duplicates), varies only statistically because of sampling effects.
The total coverage of an individual i at a locus ¢ is the sum of the
two allele coverages. An expected coverage value of cov; , = d; is
desired for the simulation.

3. Simulated genomic sequences follow an i.i.d. (independently
and identically distributed) model. Each nucleotide is drawn
independently from the others from the same distribution. By
default, genomic sequences are simulated with a GC-content of
0.5, but this can be changed using the - -gc-content parameter.

Since the main challenges of ddRAD analysis are the reconstruc-
tion of loci and the analysis of said loci, the simulation approach
of pbRAGE is focused on loci. To accurately mimic real ddRAD
data, bpDRAGE simulates individual genetic variation using a locus-
based phylogenetic approach and (partial) adapter sequences in-
duced by the technological constraints. In contrast to simulating

171

172 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Algorithm 4: bbRAGE’s simulation process

> Initialization

e Create n individuals Z := {ij, ..., i, }, choosing barcodes
and spacers for each one

e Create m loci £ := {l1,...,ly}:

foreach locus £ € L do

e Simulate p5 and p7 genomic sequences or read them
from FASTA file

e Compute mutation tree for ¢

foreach individual i € 7 do
L o Create template read for i using partial adapter and

genomic sequences

> Read Simulation
foreach locus ¢ € L do

foreach individual i € 7 do
e Pick individual event type from

{common, mutation, dropout}
and its mutation zygosity, alleles, and coverage

o Create reads from individual template according to
picked event type

e Finalize reads by fixating the DBR, adding PCR
duplicates, incomplete digestion and sequencing
errors

| e Write reads to FASTQ files and events to YAML file

> Post-processing

e Simulate and write singletons and reads from highly
repetitive loci

e Write statistics to log file and figures to PDF file

a whole genome and then creating loci by in-silico digestion, our
approach allows the user to precisely specify the number of desired
loci and avoids the simulation of unused sequences. The simulation
process (see Algorithm 4) is structured into three phases:

e Initialization Phase
e Read Simulation Phase

¢ Post-Processing Phase

In the initialization phase, the structure of the dataset is estab-
lished. As prerequisites, it requires a barcode file which contains
a mapping of individuals to barcode pairs and spacer sequences.
A set of individuals, each represented by a pair of barcodes and a
pair of spacer sequences, is chosen from the barcode file. For each
locus to be simulated, a genomic sequence is generated (either from
a simulated fragment or using a sequence read from a FASTA file).
This sequence is used to generate a template read for each individ-
ual, which is used to create reads in the subsequent read simulation

Dataset Structure

ANALYSIS OF DDRAD DATA 173

Individuals Highly Repetitive Singletons
i1 io is Loci
41 %
common common dropout
— — -
o]
9] — — H H
o I E— L3 [
— b === 3 3 R
common homozygous heterozygous
mutation mutation
b, == . —_ =
I —] N E— T E—
common heteroz. mutation common
with dropout NA with ID

Reads from valid loci

step. Additionally, a mutation tree, comprising relations between
possible alleles that can occur at the locus, is simulated. Each allele
in the tree can contain one or more mutations of the common se-
quence. Based on this foundation, read simulation for each locus
can begin.

In the simulation phase, the effects to be simulated for each in-
dividual at each locus are chosen. For each individual, the se-
quence at the underlying locus is modified according to the ran-
domly drawn individual event for that locus (common — no mu-
tation/modification, mutation, dropout), before generating reads
for that individual at that locus (see next section for additional de-
tails on locus and read simulation). After the valid reads have been
created, reads affected by incomplete digestion are added. Addi-
tionally, simulated PCR copies are added to the locus. As a final
step, sequencing errors are simulated for all generated reads and
the reads are written to the FASTQ files, while the simulated events
are recorded in the YAML file. An example for a dataset with three
individuals is illustrated in Figure 7.8.

Finally, in the post-processing phase, reads from other sources are
added. These are singletons, single reads that do not share the
sequence of any locus, and reads from highly repetitive loci (HRL).
Reads added in this step cannot be interpreted in a meaningful
biological way.

In the following sections we describe the effects simulated as
part of these phases.

Other simulated read types

Figure 7.8: Structure of datasets
generated by DDRAGE. A dataset
contains valid reads, simulated for
each individual at each locus (left)
and reads that are not associated with
valid loci (right). Each pair of lines
signifies one paired-end read; the text
below describes the event type of the
individual at the locus. For each read
pair, PCR copies and sequencing errors
are added subsequently.

174 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

7.2.3 Locus and Read Simulation

DDRAGE simulates three different types of events that can occur
for an individual at a locus: common, dropout and mutation. This
event type determines what kind of reads will be simulated and
how the coverage is sampled. For each individual at each locus,
events are chosen independently. Hence, different individuals can
show different event types and the type information for one indi-
vidual conveys no information about other individuals at the locus.
The probabilities for the different event types can be changed using
the --event-probabilities parameter. We now discuss each event
type in detail.

Common A common individual only has reads that do not deviate
from the expected genomic sequence. No mutations are present and
all reads are coverage copies. Apart from sequencing errors, which
are added in the post-processing phase, and reads resulting from
incomplete digestion (ID), the simulated reads from a common event
are identical to the consensus sequence.

Dropout A locus may not be present at all (dropout) for some

individuals e.g. because of library preparation artifacts.?> While 25 Mastretta-Yanes et al., “Restriction
Site-associated DNA Sequencing,

.) Genotyping Error Estimation and
decrease the fragment length, preventing valid fragments from de novo Assembly Optimization for

being formed, this effect is modeled as part of the mutation event Population Genetic Inference”, 2015.
type. An individual with a dropout event does not have any reads

mutations of the p5 and p7y restriction sites can also increase or

from the locus in question.

Mutation(s) This event type denotes the presence of mutated al-
leles at the current locus for the current individual. Alleles are
chosen from the mutation tree that was created for each locus in
the preprocessing phase, so that all individuals at the same locus
draw from the same pool of alleles. An allele comprises a set of
mutations, namely SNPs, indels, and NAs, which are applied to
the given template reads. For example an allele could contain a C>T
polymorphism at position 21 of the p5 read, a G>C polymorphism
at position 25 of the p5 read, and a deletion of three bases after po-
sition 17 in the py read. The structure of the simulated mutations
and the employed tree process that generates the mutations are
described in the section Mutation Tree (p. 177).

Two subtypes of this event are distinguished: homozygous and
heterozygous; their relative probabilities are user-defined. This
allows, for example, the (unrealistic) generation of a dataset with
purely homozygous genotypes, which can be useful in a simulated
benchmark dataset to test particular features of the analysis tools.

For the homozygous event, one allele is chosen from the muta-
tion tree of the locus. The locus’ template sequence is transformed
for this individual according to the mutations. Hence, all reads gen-

Choosing an individual event type

common no ID

O
Il

ID

II%II

mutation homozyg. no ID

o
L]

ID

iizi!ii

heterozyg. noID

1D
—— o

1 11| 111
Wi M0l
Q

o
=

Event Type Zygosity Incomplete
Digestion

erated by this event share the same mutations and differ from the
consensus sequence.

For the heterozygous event, two different alleles are chosen; here,
the common allele, i.e. the unchanged consensus sequence, is also
considered. Reads are then generated according to the two selected
alleles. The coverage is divided between the two alleles using a
binomial distribution. If coverage is assigned to a dropout NA, no
reads will be generated for the allele and the coverage is lost.

Once the event type has been chosen, additional locus effects are
applied with probabilities defined by the user. These include PCR
duplicates, sequencing errors, etc. and are described in the section
Additional Locus and Dataset Effects (p. 180). Most notably at this
point, for all events that generate reads, there is a chance for incom-
plete digestion, which can introduce new py sequences in a manner
similar to NAs. The complete decision tree illustrating all possible
combinations of events, including incomplete digestion, is illus-
trated in Figure 7.9. Figure 7.10 illustrates the expected distribution
of reads using default parameters.

In the following sections we describe how mutations are simu-
lated and how they affect simulated reads, which additional effects

Common reads

ANALYSIS OF DDRAD DATA 175

dropout No reads from individual
O @ at this locus

Mostly common reads,
some with ID

or @ Reads with mutation, NAs can cause dropout

Mostly mutated reads with one allele,
or @ some with ID, NAs can cause dropout

Reads with two mutated alleles, each with about
50% coverage, NAs can cause partial dropout

Mostly mutated reads with two alleles,
each with about 50% coverage,
some with ID, NAs can cause partial dropout

Figure 7.9: Depending on the event
type, a different profile of reads will
be created. For all types that create
reads, reads with incomplete digestion
(ID, shown in red) can occur. If a
mutation event occurs, the zygosity of
the mutation is also determined.

176 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Dropout

Not simulated;
expected nr. of reads * probability of dropouts

| PCR Copies

common
NA pb5 alternative
NA p7 alternative
NA p7 dropout
NA p5 dropout
insertion

deletion

SNP

|

Singleton | |

HRL

Figure 7.10: Structure of the simulated datasets using standard parameters visualizing the expected distribution of simulated
reads for all loci and all individuals as area of rectangles. Each rectangle symbolizes one specific kind of reads. Valid reads com-
prise reads from common events (most reads) and from mutation events, with the expected amount of reads from each mutation
type symbolized as bars on the right of the valid read area. PCR duplicates are shown in a lighter color in the right column. The
probabilities of NA mutations are not to scale to make them visible in this graphic.

ANALYSIS OF DDRAD DATA 177

Common Figure 7.11: Mutation tree with five
alleles, including the common allele.
Allele 4 is a child of Allele 1 and hence

Allele 1 Allele 3 contains all mutations of Allele 1 plus
p542: C-T p755: +T a deletion. Hence, the total mutations
of Allele 4 are one substitution of C
Allele 2 Allele 4 for T at position 42 of the p5 read and
p542: C-T, p723: T-G p5 42: C-T, p5 76: -CGA the deletion of the sequence CGA after

position 76 in the p5 read.

are simulated, and how the coverage of simulated loci is deter-
mined.

7.2.4 Mutation Tree

Mutation events simulated by pbDRAGE follow a tree based model,
from which alleles are chosen to form a genotype. This process has
several parameters that need to be taken into account. These in-
clude the total number of different genotypes that can be observed
at a locus, the number and type of mutations per allele, and the
structure of the different alleles. DDRAGE computes a mutation
tree for each locus, which contains a selection of possible alleles
each of which comprises one or more mutations. Alleles are stored
as a set of modifications to the original locus sequence, for example
a C>T polymorphism at position 17 of the p7 read is stored as p7
17:C>T. From this model, alleles are randomly chosen to create a
genotype for the mutation event.

During the initialization phase, a mutation tree is constructed for
each locus. Its base is a common allele, representing the unmod-
ified locus sequence. Building on this sequence, different alleles
are added in an iterative process: An already existing allele is ran-
domly selected from the tree, to serve as parent for the new allele.
To this, a new child with an additional mutation2° is added, until % SNPs, indels, NAs; For a full list see
the desired number of alleles is reached. Due to this construction the following section.
method, the alleles in the model can share some similarity with
each other. Alleles from the same subtree share common mutations,
while alleles from two different subtrees might be disjoint. The
structure of the resulting model is illustrated in Figure 7.11.

To make sure that the added mutations can be detected in the
analysis, the last bases, which might be cut off due to variability
in the p5 spacer sequences, are excluded from the model. By this,
mutations of the last bases of a sequence are prevented from being
truncated. Additionally, a position cannot be affected by several
mutations at once. For example, if a SNP has been added to an
allele, no deletion that removes the mutated position can be added.
The one exception from this are null allele mutations, which change
the whole p5 or p7 sequence. NA mutations overwrite existing
mutations or make the read drop out completely. Additionally, no
new mutations will be generated on null alleles.

The number of different mutations that are added to the model
can be changed using the - -diversity parameter, while the chance
that a mutation event is chosen during simulation can be altered

178 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

with the - -event-probabilities parameter. The relative abun-
dance of the different mutation types is controlled by the --muta-
tion-type-probabilities parameter.

To create genotypes for homozygous and heterozygous muta-
tion events, alleles are uniformly chosen from the mutation tree.
The tree structure is not considered at this point, so alleles from
different subtrees are chosen with equal probability.

For a homozygous genotype, one allele other than the common
allele is selected to assure that a detectable mutation is present. To
simulate a heterozygous mutation, two different alleles are chosen
from the model. One of these alleles can be the common allele,
since it is possible that only one allele deviates from the expected
sequence. The genotype for the individual with the mutation event
is saved as the combination of the selected alleles.

The diversity of mutations at the same locus is influenced by the
total number of alleles present in the model. Assuming two ho-
mozygous mutation events (for two different individuals), identical
alleles are chosen with probability 1/|.A|, where A is the set of all
non-common alleles. Hence, by increasing the number of alleles in
the mutation tree through the - -diversity parameter, the expected
number of different mutated positions per locus is increased.

7.2.5 Number of Alleles per Locus

The number of alleles that are added to the mutation tree is chosen
from a zero-truncated Poisson distribution (ZTPD) (see Probability
Distributions, p. 34f). This ensures that if a mutation occurs at
least one allele, in addition to the common allele, is present. The
--diversity command line parameter is used as the parameter

A for the ZTPD. Hence, the expected number of different alleles
can be influenced by the user and is a measure for the simulated
biological diversity, as it increases the pool of alleles to sample
from. With the default value of --diversity 1.0, the expected
number of available mutated alleles per locus is 1. In this case,

for heterozygous mutations there is only one possible genotype
(the common allele and the mutated allele). If the diversity value
is increased, more combinations are possible. For example with a
diversity value of 10, the expected number of mutated alleles is 10.
Together with the common allele, there are (102+ 1) = 55 possible
genotypes, from which one is chosen uniformly at random.

By increasing the diversity value, the expected number of mu-
tations per allele is implicitly increased as well. Hence, datasets
simulated with a high diversity value are expected to show both a
higher number of different alleles and a higher number of muta-
tions per allele.

ANALYSIS OF DDRAD DATA 179

7.2.6 Mutation Types and Their Effects on Simulated Reads

Each mutation added to a mutation tree can be one of the following
mutation types. For a description of the biological effects of SNPs
and indels, see Section Genomic Mutations.
C>T
SNPs Point mutations, substitutions of a single base in the read, .
are the most common mutation type simulated by bbRAGE. Using
default parameters, ~90% of the added mutations are SNPs. A
randomly selected base in the read is changed to a different base.

Insertions and Deletions An insertion is the addition of one or more
bases that are not present in the common sequence, while a dele-
tion describes the absence of bases that are present in the common
sequence. These two behave similarly and are collectively described
as indels. Using default parameters, 5% of the added mutations are
insertions and 5% are deletions.
To use reasonable lengths for insertions and deletions (e.g. in
coding regions, the length is frequently a multiple of three, but
coding regions are rare), we use a published table of the empirical
length distribution of insertion and deletion lengths in the Icelandic

human population.”” The inserted sequence for an insertion muta- %7 Gudbjartsson et al., “Large-scale
Whole-genome Sequencing of the

tion is randomly chosen. It matches the GC-content of the read and ;)
Icelandic Population”, 2015.

does not contain any restriction sites.

Null Alleles NAs arise when a restriction site in an individual @
mutates, preventing the restriction enzyme from cutting the DNA at
that position. Based on the kind of restriction site (p5 or p7) and the
surrounding sequence, this has different effects, as described in the
section Challenges of ddRAD Analysis (p. 166).

Dropout NAs on either the p5 and p7 side make the whole allele
drop out of the simulation. If a dropout allele is chosen for an in-
dividual, no reads are generated and the assigned coverage is lost.
For a homozygous mutation, this has a similar effect as a dropout
event, while for a heterozygous mutation only half of the assigned
coverage is lost.

If the fragment generated by an alternative restriction site fits
the size restriction, reads are generated, but one of both read se-
quences does not match the old one. Such alternate sequence NAs
results in p5 and p7 (depending on the location of the NA) genomic
sequences that do not match the consensus sequence of the locus.

For an alternative sequence NA mutation, the whole p5 or p7
sequence of the read is replaced with a different sequence. These
alternate sequences are the same for all individuals at the locus.
After an alternative sequence NA mutation has been added, no
other mutations can be added to the affected side of the read (e.g.
after a p5 alternative sequence NA has been added, no additional
mutations are added to the p5 read but can be added to the py
read).

180 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Using default parameters, 10~# of the added mutations are NAs
(i.e. the sum of all NA mutation types makes up m of all muta-
tion events). This fraction is a rough estimate of the probability that
a mutation in the simulated sequences hits the restriction sites. As
default 89.9% of NAs simulated are p5 dropout NAs, 0.1% are p5
alternative sequence NAs, 5% are p7 dropout NAs, and 5% are py
alternative sequence NAs. These fractions can be changed using the
last four values of the - -mutation-type-probabilities parameters.

7.2.7 Additional Locus and Dataset Effects

A number of additional effects increases the complexity of the
dataset. These all have in common that they obscure the observ-
able events, for example by altering the coverage of a valid locus,
and should therefore be accounted for. Some of these are specific
to ddRAD, like HRLS or ID, while others are present in most se-
quencing data, including sequencing errors and PCR duplicates.
The following effects are simulated by bDRAGE:

Incomplete Digestion (ID) A simulated locus can be subject to in-
complete digestion, the event that a restriction site stays undigested
(uncut). As with NAs, if the resulting fragment is too long, the lo-
cus drops out due to the size selection in the ddRAD pipeline. If
the resulting fragment is short enough, different p5 or py sequences
are presented by the reads. Since the p5 restriction enzyme is a

rare cutter, only 1% of simulated ID events affect the p5 side of the
reads.

In contrast to NAs (and dropout events), which have this effect
on all reads from one allele of an individual at this locus, ID occurs
randomly and not systematically and may occur when valid reads
are present. For example, a common locus may suffer from incom-
pletely digested reads (with a user defined probability). After the
true coverage for the event has been determined, about 20% (de-
fault) of the coverage is removed due to ID reads (determined by
drawing from a Poisson distribution).

Singleton Reads Most ddRAD datasets will contain singleton reads,
which cannot be associated with any locus of the source DNA.
They can be introduced by different factors, like contamination of
the samples with non-target DNA, incomplete size selection, or
errors during the sequencing pipeline. Hence, singleton reads are
noise that hinder the analysis.

DDRAGE simulates singletons by adding a set of reads that do
not share a genomic sequence with any of the generated loci. They
can also be subject to PCR duplicates, but the PCR duplicate rate
for singletons is by default lower than for valid reads. This rate can
be changed using the - -singleton-pcr-copies parameter. Note
that a singleton, in combination with its PCR duplicates, might pass
as reads from a valid locus.

Highly Repetitive Loci (HRLs) When a restriction site falls into a
highly repetitive region of the source genome, many fragments
with a similar genomic sequence can be generated from different
loci. The different origin loci of these reads cannot be distinguished
in the analysis and collapse into one big HRL. Reads from HRLs
are typically not analyzed further, as detected mutations cannot be
assigned to a specific locus. However, HRL reads can make up a
significant part of real ddRAD datasets.

HRLs are simulated by bbRAGE as additional loci with a higher
coverage, which are added after all reads from valid loci have been
created. The number of HRL loci simulated can be specified as a

fraction of the number of valid loci using the --hrl-number parame-

ter. The default value is 0.05, hence for 20 valid loci one HRL locus
is added. All other steps that are applied to valid reads are applied
to HRL reads as well. They also receive PCR duplicates, albeit by
default with a lower PCR duplicate rate than normal reads. This
rate can be changed using the --hrl-pcr-copies parameter. HRLs
are, however, not added to the list of valid loci in the output files.

PCR Duplicates
necessary PCR amplification steps during library preparation (see

PCR duplicates are copies of reads that result from

Section Polymerase Chain Reaction, p. 20). They distort the analysis
of allele frequencies and should be removed prior to the analysis.
Methods for the removal of PCR duplicates from ddRAD data have
been proposed by Schweyen et al.*® and Tin et al.>% Both rely on
adding a degenerate base region (DBR) to the fragments, which
can be used as an identifier for unique fragments. A DBR is given
as a pattern of possible base types represented as a sequence of
IUPAC ambiguity codes. During library preparation, a sequence

of fitting structure is generated and added to the reads prior to
PCR amplification, thus PCR duplicates contain an exact copy of
the fragments original DBR. If two reads with similar sequence
also have the same DBR, they can be assumed to be PCR duplicates
of each other (with a small false positive rate due to randomly
identical sequences).

DDRAGE simulates PCR duplicates both for valid locus reads
and other reads like singletons and HRL reads. After simulating
all independent reads (by replacing the DBR with a random match-
ing concrete nucleotide sequence from Xpyna, PCR duplicates are
created by inserting a random number of copies of randomly se-
lected reads. The probability of a read having a PCR duplicate can
be adjusted using the --prob-pcr-copy parameter.

Sequencing Errors Sequencing errors are simulated and added to
all generated reads as a final step. The applied sequencing tech-
nology determines which sequencing errors can occur in the reads.
As the ddRADseq pipeline is tailored towards Illumina sequencing

platforms, the characteristic error model of Illumina sequencers is

ANALYSIS OF DDRAD DATA 181

Schweyen, Rozenberg, and Leese,
“Detection and Removal of PCR
Duplicates in Population Genomic
ddRAD Studies by Addition of a
Degenerate Base Region (DBR) in
Sequencing Adapters”, 2014.

»Tin et al., “Degenerate Adaptor Se-
quences for Detecting PCR Duplicates
in Reduced Representation Sequenc-
ing Data Improve Genotype Calling
Accuracy”, 2015.

182 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

PHRED quality value

PHRED quality value

70 -

Quality Value Distribution for p5 Reads of L126-Q70

20 30 40 50 6‘0 70 80 90 100 110
Read position

Quality Value Distribution for p7 Reads of L126-Q70

-0.60

-0.45

-0.30

-0.15

-0.00

used. Specifically an error rate of p, ~ 0.01 for substitution errors

is assumed for all bases in the read. This can be changed using the

--prob-seq-error parameter.

Each error is guaranteed to change the base in the sequence; for

example, a sequencing error changing A to A is not possible. The p7y

index barcode, which is saved in the FASTQ name line of the read

and is not part of the read sequence, is also affected by this step.

Simulated sequencing errors are logged in the FASTQ name line of

the read using read positions.

7.2.8 Quality Values

Quality values for the generated reads are chosen from a position-

specific distribution learned from several real ddRAD datasets. The

distribution of quality has been extracted by computing the relative

abundance of all Phred values per read position. We used three
in-house ddRAD datasets (L126-Q70, L100-Q70-A, L100-Q70-B)

and one publicly available dataset (L150-Q70; extracted from NCBI

SRR5424823) all of which were sequenced on Illumina sequencers.

The resulting distribution for L126-Qyo is illustrated in Figure 7.12.

When assigning quality values to a simulated read, for each

position the quality value is chosen using the position specific dis-

tribution (i.e. a column in Figure 7.12).

The four models listed above can be used with the -q <gmodel-name>

parameter. For example:

$ ddrage -q L150-Q70

To use the quality value distribution of custom datasets, distri-

bution can be learned using the script learn_gmodel. This script is
installed along with bDRAGE. It takes one or more FASTQ files as
input and creates a qmodel file as output:

Figure 7.12: Distribution of quality
values learned from the in-house
ddRAD dataset L126-Q70, sequenced
on an Illumina HiSeq 2500. The

color of each bin denotes the relative
abundance of a quality value per
position (i.e. per column). The darker a
bin is, the more likely it is to be chosen
when sampling quality values.

$ learn_gmodel -1 my_dataset_1.fq -2 my_dataset_2.fq -o my_dataset.gmodel

$ ddrage -gq my_dataset.gmodel.npz

o o o
o o o
IS =3 &

Expected Probability

o
o
)

0.00
1 10 20 30 40 50 60 70 80 90 100

Coverage

Alternatively, a model can also be provided as a matrix (in
numpy format), as described in the documentation.3°

7.2.9 Coverage Simulation

The coverage, i.e. the number of reads simulated for a specific indi-
vidual at a locus before any PCR duplicates are added, is simulated
as a function of the target sequencing depth ds € IN;.. bDRAGE
uses several discrete probability distributions to create a realistic
distribution of reads.

A simplified coverage profile of ddRAD data derived from in
house datasets, as illustrated in Figure 7.13, shows three distinct
influencing factors: singletons, HRLs and valid loci. By definition,
coverage for singletons is one, so no special coverage distribution
is needed for them. When considering the coverage of all loci how-
ever, singletons create a substantial peak due to their abundance.
Reads from HRLs vary widely in coverage and can reach coverage
values beyond 1000. In Figure 7.13, they are visible as the scattered
low probability values beyond coverage 50. The peak generated by
valid loci, which falls between the coverage values of 2 and 40 in
Figure 7.13, is left-skewed and mostly falls below ds with only a
few values above ds.

However, the analysis of ddRAD data has shown also that this
pattern is often heavily distorted in real datasets. As illustrated
in Figure 7.14, coverage might follow a right-skewed distribution
without distinguishable second peak. Due to this pattern of cover-
ages, a special coverage model is applied for each of the three locus
types (singleton, valid, HRL). The coverage model for valid loci
needs to be adaptable to different coverage profiles.

We denote the total coverage for an individual i € I at a locus
¢ € Lascovj; = covjy(ay) + cov;¢(az), where a; and a, are the
alleles assigned to individual i at locus /.

Poisson Coverage Model The Poisson coverage model uses a Poisson
distribution (PD) with a A parameter that is dependent on ds. To

ANALYSIS OF DDRAD DATA 183

Figure 7.13: Simplified coverage
distribution of ddRAD data for one
individual. The red line denotes the
target sequencing depth ds. The x-
axis has been truncated at coverage
100 to increase readability, since
coverage values higher than 1000 may
be observed.

3° Available at ddrage. readthedocs.
io/en/latest/documentation/input_
format/#quality-model and as part
of the source code (Timm and Rah-
mann, ddRAGE — ddRAD Data
Generator (Source Code), 2020, docu-
mentation.zip).

ddrage.readthedocs.io/en/latest/documentation/input_format/#quality-model
ddrage.readthedocs.io/en/latest/documentation/input_format/#quality-model
ddrage.readthedocs.io/en/latest/documentation/input_format/#quality-model

184 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

3000 -
2500 -
2000 -
1500 -
1000 -

Number of detected loci

500 -

0 50 100 150 200 250 300
Locus coverage (Reads per locus)

(a) Distribution of locus coverages for Dataset 1. All coverages below 300 are shown.

Number of detected loci

50 100 150 200 250 300
Locus coverage (Reads per locus) >3

(b) Distribution of locus coverages for Dataset 1. Only coverages > 3 and < 300 are shown.

1000 -
800 -
600 -
400 -

200 -

Number of detected loci

0 50 100 150 200 250 300
Locus coverage (Reads per locus)

(c) Distribution of locus coverages for Dataset 2. All coverages below 300 are shown.

Number of detected loci

L Thefl el o ™ I

0 50 100 150 200 250 300
Locus coverage (Reads per locus) >3

(d) Distribution of locus coverages for Dataset 2. Only coverages > 3 and < 300 are shown.

Figure 7.14: Coverage profiles per locus (sum of all individuals) derived from two ddRAD datasets, analyzed with Stacks using
default parameters. Loci with a coverage above 300 have been truncated in all plots to increase readability. The two upper plots
show Dataset 1, and contain all sizes (a) and sizes >3 (b), while the two lower plots show Dataset 2, and contain all sizes (c) and
sizes >3 (d). Note that through the default parameters of STacks, specifically a minimum stack depth (-m) of 3, there are no loci
with 1 or 2 reads. PCR duplicates in the data have the ability to smoothen peaks, like those shown in Figure 7.13, making them
indistinguishable.

ANALYSIS OF DDRAD DATA

generate coverage values, we use a PD with the following values
for A:

2-(1—9%)+ds| fords< 10,
A = { (1= 1) SJ ° (7.1)
dg otherwise.

Since the variance of the PD is directly dependent on the pa-
rameter A, low coverage values are not expected to receive a lot of
variance from this model. To increase the variance for low values of
ds the values of A are calculated relative to d;.

Since the PD is right-skewed, to yield the desired left-skewed
distribution, it is reflected around its mean:

covig=ds — (X —-E(X))=2-ds — X, X ~PD(A¢) (7.2)

A downside of this model is that the variance of the PD is
smaller than what is observed in reality. Additionally, for larger val-
ues of d, the skew of the PD reduces and it approaches a normal
distribution; hence the desired property of a left-skewed distribu-
tion of coverages is not achieved.

Nevertheless, the Poisson model provides valid coverage values
and can be selected as a coverage model when using bDRAGE.
One application of this model is the creation of easy datasets, where
the simulated coverage is concentrated around the target coverage.

Beta-Binomial Coverage Model A model that better fits the observed
coverage distributions is the Beta-binomial distribution (BBD) with
three parameters « > 0, B > 0, n € IN (see Probability Distribu-
tions p. 34f for details). Using the number of trials n and the shape
parameters « and B, the distribution can be tailored to the desired
shape. To obtain the expected coverage ds, the parameter n must be
chosen as n = dg(a + B) /a.

The two shape parameters control the left and right tailing of the
distribution respectively. Hence, to generate a right-skewed distri-
bution, parameters &« < § have to be chosen. For &« = fand a,f > 1
the BBD approximates a binomial distribution with equal tailing on
both sides. Hence, to simulate a dataset that can contain very low
coverage values, but is unlikely to have coverage values far above ds
choose & >> .

The Beta-binomial coverage model with parameters « = 6 and
B = 2 is the default coverage model used by pbDRAGE. This gen-
erates the expected coverage profiles as described above. To create
a distribution similar to the distorted cases shown in Figure 7.14,

« = 0.55 and B = 1.35 can be used:

$ ddrage --BBD-alpha 0.55 --BBD-beta 1.35

Coverage of HRLs Coverage for highly repetitive loci (HRLs) signif-
icantly surpasses the coverage of valid loci. In principle, we would

185

186 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

add the simulated coverages of valid loci (according to the beta-
binomial model) for each individual and each repeat. However, we
have no information about the repeat number distribution.
DDRAGE samples coverage values for HRLs from a discrete
uniform distribution (DUD) ranging from a minimal to a maximal
coverage value. The minimal value is determined as |y + 20|, where
and o are mean and standard deviation of the coverage model
used for valid reads. This separates HRL coverage from valid cover-
age and maintains a high variance. In real datasets, coverage values
up to the thousands can be observed, so as maximum value, a con-
stant coverage of 1000 is used by default. As for valid loci, coverage
values are sampled for each individual at the locus independently.

Distribution of Coverage for Heterozygous Mutations When facing

a heterozygous mutation, the coverage, generated by a coverage
model, needs to be distributed between two alleles of an individual.
The coverage ratio is expected to be 1:1, assuming that reads are
generated equally from both chromosomes. To allow for statistical
fluctuations, a binomial distribution (BD) with success parameter

p = 0.5 is used.

Redistribution of Coverage Through Incomplete Digestion The proba-
bility for an individual to possess incompletely digested (ID) reads
at a locus is handled by the - -prob-incomplete-digestion parame-
ter, which is prp = 0.1 by default. Hence, each individual at each lo-
cus has a 10% chance to lose coverage to ID. In this case, part of the
coverage assigned to the individual is transferred from valid reads
to ID reads to simulate this loss of coverage. The lost amount X is
sampled from a Binomial distribution using the individuals total
locus coverage and the ID rate parameter, which is rip = 0.2 by de-
fault; this can be changed with the - -rate-incomplete-digestion
parameter,

X ~ BD(covi, D) - (7.3)

Hence, the expected number of ID reads for an individual is

E(covi(ID)) = pip - E(BD(E(coviy), 1)) = pio - 7o - E(coviy)
(7-4)
The number of individuals with ID is controlled by the ID proba-
bility parameter (pip), while the amount of ID reads per individual
with ID is controlled by the ID rate (r1p).

7.2.10 Evaluation of Resource Requirements

We implemented DDRAGE in Python3, using the just-in-time com-
piler numba3" for computationally expensive tasks. DDRAGE sim-
ulates one locus after the other (for all individuals jointly) to keep a
low memory footprint and to allow execution on a consumer grade
PC. After all reads for a locus have been generated, they are writ-
ten to disk and removed from memory. Only statistics about the
generated data and annotations are kept.

3t Lam, Pitrou, and Seibert, “Numba: A
llvm-based Python Jit Compiler”, 2015.

ANALYSIS OF DDRAD DATA 187

Table 7.2: Running times and peak

number of individuals
memory usage of several runs of

#loci 12 48 96 DDRAGE using different parameter
combinations. The values shown are
time 1.59 7.30 15. 46 mins wall-clock running times in minutes
1000 and peak memory usage in megabytes.
memory 180.44 228.60 264.70 MB The running time depends linearly

on both the number of loci and on

time 10.1 6 176.08 mins the number of simulated individuals,
10 000 9-14 70-39 70 allowing the extrapolation of running

memory 196.41 256.48 306.63 MB times for larger datasets.

i : , _ .
100 000 ime 191.17 770.36 1555.49 mins
memory 252.02 436_41 590.26 MB

Both running time and memory requirements of the simulation
are linear in the number of loci, number of individuals, coverage,
and read length. Note that the read length can be considered con-
stant, as it is fixed to 100-300bp for Illumina sequencers. While
the simulation of longer reads with bpRAGE is possible, those
do not accurately reflect real ddRAD experiments. DDRAGE offi-
cially supports read lengths between 50 and 500 bp. Increasing the
amount of HRLs (- -hrl-number) which is computed as a fraction
of the number of total valid loci, also linearly increases the running
time. Other parameters, such as different mutation rates, sequenc-
ing error probability, etc. do not affect the running time. Table 7.2
shows a benchmark of bDRAGE when called with different pa-
rameter combinations for the number of individuals and number
of loci simulated (using a coverage of 30, read length of 100). For
all other parameters, the default values were used. All experiments
were conducted on workstation with 16 GB of RAM and an Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz processor.

The results show that even large datasets, containing more than
100000 loci from 96 individuals with a coverage of 30, can be cre-
ated using a consumer grade computer. The main limiting con-
straint is the available disk space.

We compared the running time of bDRAGE with that of other
read simulation tools. Since neither bbDRADSEQTOOLS nor SIMRRLS
simulates HRLs or singletons, we disabled these aspects of the sim-
ulation in DDRAGE for this analysis. We did not evaluate the per-
formance of RADINITIO, since it does not offer the option to select
a number of loci to simulate. The simulation of PCR duplicates was
disabled for both bbRAGE and bpRADSEQTooLs. To simulate
a dataset with 100000 loci and 96 individuals, DDRAGE required
514 minutes and 188.60 MB of RAM. For a similarly sized dataset
DDRADSEQTOOLS required 327 minutes and 121.20 MB of RAM,
while SIMRRLS required 216 minutes and 468.04 MB of RAM. This
shows that bDRAGE works in the same order of magnitude for
both running time and memory usage as similar tools. However,
each tool offers different features and options, resulting in different
time and memory requirements that are not easily comparable.

188 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

7.2.11 Application Examples

To show how DDRAGE can be used to evaluate a ddRAD analysis
tool and help choosing parameter combinations for such a tool, we
analyzed a generated dataset with both PYRAD version 3.0.647*
and Stacks version 1.46.33 Note that the goal of this analysis is
not to compare the performance of the two tools, but to show pos-
sible applications of bDRAGE. We analyzed only one dataset and
performed no parameter optimization for the analysis tools.

Both tools required preprocessing the data, specifically removing
the DBR. Stacks additionally required removing the annotation
from the FASTQ name lines. For the analysis with Stacks the p5
and py reads were concatenated to allow for better comparison of
loci. We tested a dataset simulated with bDRAGE with 1 000 loci
from 6 individuals using a coverage of 30 and read length of 100. It
contains 285 unique SNPs, 14 insertions and 25 deletions.

We analyzed the results using bottom-s sketching to estimate
Jaccard similarity of the g-gram sets of the locus sequences sim-
ulated by bbDRAGE to the locus sequences computed by Stacks
and PYRAD. The parameters used for the sketching were a g-gram
size of § = 6 and a sketch size of s = 30. A similarity threshold
of J = 0.2 was used, which allows for a sensitive clustering while
keeping a low false positive rate. The results are aggregated in
Table 7.3.

PYRAD StaAcks

Total number of loci identified 309 727
Valid loci (correctly assembled) 300 640
% of total loci simulated 30% 64%
Valid loci (split up) 0 26
% of total loci simulated 0% 2.6%
False positive loci 9 35
SNPs identified 62 92
% of total SNPs 21.78% 32.80%
% of SNPs in valid loci 68.13% 53.77%
False positive SNPs 0 3

Example of STACKS evaluation On the simulated dataset, STACKS
identified 727 loci using default parameters. STACks was run with
a minimum stack depth of -m 3, -M 2 allowed mismatches between
loci, - -gapped alignment, and the -t parameter to remove HRLs.
Of the 1000 loci simulated, 640 loci were correctly assembled,
but some loci were split up during analysis. 26 loci simulated by
DDRAGE were associated with two Stacks loci (52 of the total 727
identified loci). Of these 26 loci, 23 were loci for which bbRAGE
simulated ID reads, which are likely responsible for the splitting.
One might argue that this is intended behavior, since it cannot be
determined with certainty which p7 sequence is the correct se-

3 Eaton, “PyRAD: Assembly of de
novo RADseq Loci for Phylogenetic
Analyses”, 2014.

3 Catchen et al., “Stacks: an Analysis
Tool Set for Population Genomics”,
2013.

Table 7.3: Analysis results of STACKS
and PYRAD on a simulated dataset
with 1000 valid loci and 285 SNPs.

ANALYSIS OF DDRAD DATA

quence. However, to not skew the analysis, loci with identified ID
reads should either be removed completely or resolved (keeping
only one of the two, preferably the one present in more individu-
als). By joining the p5 and p7 reads for the analysis, STACKs cannot
easily identify and resolve this kind of error.

A total of 334 loci of the 1000 loci simulated by bDRAGE were
not identified by Stacks at all. These might have been sorted out
because of low coverage, for example introduced by a large fraction
of dropout events or low values sampled from the coverage model.
On the other end, Stacks identified 35 loci that were not part of
the valid loci simulated by ddRAGE. These loci have been assem-
bled from HRL reads and singletons.

Stacks correctly identified 32.8% of the simulated SNPs with
at least one locus that could be linked to the respective DDRAGE
locus. The remaining 192 SNPs were not identified. For the 640
assembled loci, Stacks found 46.23% (92 out of 199) of the SNPs
simulated for these loci. However, STAacks identified three SNPs
that were not simulated by bDRAGE and are likely either the result
of a simulated sequencing error or an indel mutation. STACKs also
did not report any indel mutations, since the identification of indel
variants is not supported by STAcks.

For the coverage per individual, Stacks found values between
28.6 and 30.4, which is close to the simulated coverage of 30.

Example of PYRAD evaluation We analyzed the same dataset fol-

lowing a tutorial’4 provided by the author of PYRAD. PYRAD was 34 nbviewer. jupyter.org/gist/
run with a minimum cluster coverage of Mindepth 6, a clustering
threshold of 0.85, allowing for NQual 4 low quality sites per read,
and a maximum of 10 heterozygous sites per consensus sequence.

Using the default parameters provided by the tutorial, P YRAD
identified 309 loci. Of these 309 loci, 300 could be assigned to a
valid pDRAGE locus. The remaining 9 loci did not show similarity
with any valid locus simulated by bbRAGE and are likely to origi-
nate from HRLs or singletons, as described above. PYRAD did not
identify any split up loci. However, many loci were not identified at
all. Loci with many dropout events or low simulated coverage might
be responsible for these missing loci. We speculate that the default
PYRAD parameters are not well suited for the simulated dataset; so
the situation may improve with parameter optimization.

PYRAD excluded 21 loci from the analysis because they did not
pass its final filtering step. All of these were valid loci simulated by
DDRAGE. However, 33.33% of these 21 rejected loci had ID reads,
which may have been a factor for the exclusion.

PYRAD found 21.78% of the unique SNPs in the dataset and did
not report any indels. For the 300 assembled valid loci, P YRAD
found 68.13% of the SNPs simulated for these loci. Additionally it
identified four SNPs for the g invalid loci. Since SNPs were neither
simulated for singletons nor for HRLs, these SNPs likely stem from
sequencing errors. For the valid loci, PYRAD did not call any SNPs

189

dereneaton/dc6241083c912519064e/
tutorial_pairddRAD_3.0.4.ipynb

nbviewer.jupyter.org/gist/dereneaton/dc6241083c912519064e/tutorial_pairddRAD_3.0.4.ipynb
nbviewer.jupyter.org/gist/dereneaton/dc6241083c912519064e/tutorial_pairddRAD_3.0.4.ipynb
nbviewer.jupyter.org/gist/dereneaton/dc6241083c912519064e/tutorial_pairddRAD_3.0.4.ipynb

190 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

that were not simulated by bDRAGE. These observations suggest
that the SNP calling approach used by PYRAD works well, even
with default parameters.

Some locus alignments discovered by PYRAD show gaps that
cannot be explained by sequencing errors or mutations. Neither
indel mutations nor SNPs were simulated for these loci. However,
the individuals for which gaps were added in the alignment were
affected by ID, while the ones correctly assembled were not. This
suggests that the alignment step of PYRAD is not coping well with
ID reads.

7.2.12 Discussion and Conclusion

We developed bpRAGE, a simulation software for ddRAD reads
with the goal to evaluate ddRAD analysis pipelines. Instead of
optimizing experiment design, its generated datasets are aimed

at evaluating the analysis process of ddRAD software. The abil-

ity to validate early analysis steps holds great potential, as errors
arising early in the analysis process of ddRAD data, for example
during sequence clustering, can propagate into later stages of the
analysis and either skew results or increase the computational com-
plexity of the analysis. If a read is removed during the analysis
process, knowing the effects that might have led to this decision can
help with parameter optimization in order to craft better analysis
pipelines. While other simulation software exists, none of them pro-
vide a detailed ground truth alongside the simulated reads which is
necessary for such an evaluation.

The closest comparable software —bDRADSEQTOOLS —is
also able to simulate reads from scratch or from a given reference
genome. However the software does not simulate sequencing er-
rors, quality values, and technological artifacts like singletons and
HRLs. SNPs, indels, and dropout events are simulated, but null al-
leles are not modeled. Due to that, NAs with alternate sequence are
not simulated, and dropout events by technological effects and by
NAs cannot be simulated independently. For each locus, bDDRAD-
SEQTooLs simulates a number of mutated sequences that can occur
as alleles. However, each allele is simulated independently, mak-
ing closely related alleles highly uncommon. Most importantly
though, pbDRADSEQToOLSs does not provide a record of the simu-
lated effects. While a verbose output mode is available that prints
all simulated mutations for all loci and the simulated reads are
marked either as mutated or unmutated, there is no readily avail-
able account for which effect is present in which read. But since
the main focus of bDRADSEQToOLS is the optimization of ddRAD
experiments, this is not a required feature.

The SIMRRLS software is able to simulate ddRAD reads from
scratch. It simulates SNPs, indels, NA dropout, and sequencing
errors, but does not include the simulation of PCR duplicates, sin-
gletons and HRLs. Additionally NAs with alternate sequence are

not simulated. SIMRRLsS models genotypes using a phylogenetic
tree and a coalescent model, however, these simulated genotypes
are not provided as output. While read data simulated by sSIMRRLS
might be sufficient to test the functionality of PYRAD, their use for
a comprehensive evaluation of ddRAD analysis software is limited.

RADINITIO is able to simulate population level structures and
dependencies for a given reference genome, but is not able to sim-
ulate reads from scratch. This comes with the limitation that the
number of loci, mutations, etc. cannot be fine tuned for evaluation
purposes.

The sIMRAD and FRAGMATIC tools both perform in-silico diges-
tion of a reference genome and do not generate simulated reads.
While this is valuable information for the design of ddRAD ex-
periments, these tools cannot be used to evaluate ddRAD analysis
software.

DDRAGE provides both the simulated reads and a detailed
record of all simulated effects, including genotypes assigned to each
individual, position and kind of mutations, and sequencing errors.
This enables the users and designers of ddRAD analysis software to
evaluate the performance of their software.

The implementation of bDRAGE is memory-efficient and al-
lows users to simulate datasets of sizes that are realistic for a real
ddRAD experiment. Due to its modular structure, pbDRAGE facili-
tates inclusion of future features, such as phylogenetic simulations,
the simulation of individuals from different populations, or addi-
tional coverage models. The code is available under the open source
MIT license on Bitbucket, and users are encouraged to contribute to
the project.

As shown in the application examples, different analysis tools
show different error profiles in their results. This can most promi-
nently be seen in the performance of the applied genotyping, error
correction and sequence assembly solutions. The genotyping pro-
cess of PYRAD, for example, did not introduce any false positives
and found a higher amount SNPs in the assembled loci, while
Stacks assembled more loci in the first place and found a higher
number of SNPs. Using a ground truth simulated by bbRAGE,
these profiles can be identified and used as a starting point for fur-
ther development of ddRAD analysis software. This may include
the development and testing of new software, improvements of
established tools, and allows testing of analysis pipelines for sensi-
tivity and specificity. The development of such an analysis pipeline
is described in the following section.

ANALYSIS OF DDRAD DATA

191

192 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

7.3 A Workflow for ddRAD Data Analysis

In the previous section, we described which effects influence the
analysis of ddRAD data. Coping with these effects requires a com-
bination of different measures:

® Preprocessing steps to mitigate the influence of technical effects.

¢ Intermediate processing steps to facilitate and optimize the inter-
action between analysis steps.

¢ Parameter choices for the analysis software, tailored to the ex-
pected data.

The different, sequential steps required for the analysis are usually
performed by a collection of specialized tools. Such a combination
of tasks, performed in a reproducible manner, is called pipeline or

workflow and can be realized in different ways, ranging from shell
scripts to workflow management systems like SNAKEMAKE.3> The

main advantage of managed workflows is producing reproducible
results through a controlled environment paired with the reuse of

intermediate results.

We used Stacks3® to implement a ddRAD analysis workflow,
which leverages these capabilities. Since STACKs follows a work-
flow architecture itself, the single steps of this software can be eas-
ily integrated into another workflow system. The main components
of the Stacks workflow that we focus on are locus reconstruction
per sample followed by merging into a catalog of loci across all
samples. Locus reconstruction is performed by the usTACKks pro-
gram, followed by the merging step performed by the csTacks
program. One of the main influencing factors on the analysis of
ddRAD data with the STAacks software is the choice of the follow-
ing three parameters:

¢ The minimum depth of coverage required to form a locus. This
is controlled by the -m parameter of ustacks with a default
value of 3.

* Stacks merges loci with similar sequences, after they were as-
sembled. The maximal number of different nucleotides allowed
between loci is controlled by usTAcks parameter -M (default: 2).

¢ When building the catalog, STACKSs performs another locus
merging step, this time between samples. The default number
of different nucleotides allowed between loci for a merge is con-
trolled by the -n parameter of cstacks (default: 1).

These parameters control the reconstruction of loci and their post-
processing. Depending on the expected number of mutations and
sequencing errors, read length, and several other factors, radically
different numbers and sizes of loci may be detected by Stacks
within the same dataset. However, since in the absence of a refer-
ence genome, many of these influencing factors cannot be deter-

35 Koster and Rahmann, “Snakemake
— A Scalable Bioinformatics Workflow
Engine”, 2012.

3% Catchen et al., “Stacks: an Analysis
Tool Set for Population Genomics”,
2013; Rochette, Rivera-Colén, and
Catchen, “Stacks 2: Analytical methods
for paired-end sequencing improve
RADseq-based population genomics”,
2019.

mined, it is useful to explore several different parameter combina-
tions for each dataset in a structured manner.

We developed a workflow that automates the preprocessing
of ddRAD datasets and allows the exploration of sTACK’s pa-
rameter space while reusing intermediate results. To achieve our
goal of reproducible results, we implemented our workflow using
SNAKEMAKE.?7 SNAKEMAKE allows to retain control over software
versions used for the analysis, via the integration of cONDA envi-
ronments, which allows us to use the Btoconpa3® repository for
bioinformatics software. We implemented additional Python scripts
using our own open source input/output library piNory,39 which
is also available via BioconDa. The workflow itself is available
under the MIT License as part of the SNAKEMAKE-WORKFLOWS
project.4°

In the following sections, we describe our workflow for ddRAD
analysis as well as its evaluation with bbpRAGE.

7.3.1 Workflow Structure

A SNAKEMAKE workflow is defined through a set of rules, each

of which can generate a set of output files from a set of input files
using a given shell command or script. The root of a workflow

is a rule named all, which has no output files, but contains a

set of all input files that need to be generated. Starting from this
rule, SNAKEMAKE constructs a directed acyclic graph of rules (rule
graph) that can be used to generate these files. During this process,
SNAKEMAKE automatically determines the values of wildcards in
the input and output file names, which can also encode parameters
used to generate the files.

We developed a more detailed visualization for SNAKEMAKE
workflows called a filegraph, showing the input and output files
for each rule. The option to generate a filegraph was added to
SNAKEMAKE in version 5.7.0.4" While filegraphs are best viewed on
digital devices, a filegraph version of our workflow can be found in
the appendix on p. 246f.

Our workflow can be structured into three stages, as illus-
trated by the rule graph shown in Figure 7.15: In the preprocessing
phase, we prepare paired end reads for analysis, then we evoke the
Stacks analysis workflow using different parameter sets. Finally,
we assemble quality control plots for each parameter to compare
the performance of different parameter sets.

The input data for our workflow is a set of paired end (gzipped)
FASTQ files, split up by p7 index barcode. These are called the
sample files. Each sample file contains reads from a set of se-
quenced individuals with different p5 in-line barcodes. The files
individuals.tsv and samples.tsv contain a mapping of individ-
uals to a p5 + py barcode pair and a p5 + p7 spacer pair, as well as
paths to all sample files.

ANALYSIS OF DDRAD DATA 193

37 Koster and Rahmann, “Snakemake
— A Scalable Bioinformatics Workflow
Engine”, 2012.

3 Griining et al., “Bioconda: Sustain-
able and Comprehensive Software
Distribution for the Life Sciences”,
2018.

3 Timm and Hartmann, Dinopy —
DNA input and output for Python and
Cython, 2020.

4 Koster and Timm, snakemake-
workflows/rad-seq-stacks, 2021.

4 snakemake. readthedocs.io/en/
stable/project_info/history.html

snakemake.readthedocs.io/en/stable/project_info/history.html
snakemake.readthedocs.io/en/stable/project_info/history.html

194 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

trim_p7_spacer | Remove spacers from p7 reads

}

generate_consensus_reads barcodes | Assemble barcode file

N

extract | Demultiplex FASTQ files, create one file per individual

\

trim_residue| Remove p7 enzyme residue

/

concatenate_read_files| Join p5 and p7 reads into one file

;

force_same_length

\

Merge PCR duplicates
into consensus reads

Truncate reads to same length to mitigate
variable read lengths caused by different spacer lengths

STACKS workflow for ddRAD analysis

ustacks
ustacks creates loci within one \
sample, which are assembled into a
catalog by cstacks. cstacks
sstacks matches samples against S—— link_ustacks
the catalog.
tsv2bam el E Count the number of reads

assigned to each locus

N

gstacks assembles locus sequences Create a violin plot comparing the

and calls SNPs for the detected loci gstacks plot_comparison locus coverages for each parameter
based on aligned reads and a point plot comparing the
number of loci identified for each

parameter set.
Rules to analyze other metrics can
be added here.

populations performs population
level analysis and generates output files populations
in different formats

all

Figure 7.15: This SNAKEMAKE rule graph for our ddRAD analysis workflow illustrates the different steps performed during
analysis. Note that rules can be evoked multiple times, e.g. generate_consensus_reads is called once per pair of FASTQ files,
while populations is only called once per run. Our workflow begins with preprocessing steps (shown in teal). In the second

stage, we start the STACKs analysis pipeline with different parameters supplied by the user (green). To judge the influence of the
parameter choices, a series of quality control plots is assembled (purple). For a more detailed description of the rules including the
generated files, please refer to the Appendix File Graph for our ddRAD Analysis Workflow (p. 245).

ANALYSIS OF DDRAD DATA

Preprocessing During preprocessing, we first trim off py spacers
for each sample file using sEQTk.** Since p7 spacers are linked to “ github.com/1h3/seqtk
p7 barcodes, all reads within a sample file also have the same p7
spacer.
In the following rule, PCR duplicates are removed and merged
into consensus reads using the CALL-CONSENSUS-READS software
we contributed to the RUST-BI0-TOOLS*3 project. We describe the # github.com/rust-bio/
details of this PCR deduplication process in the subsequent section rust-bio-tools
PCR Duplicate Removal (p. 213). This step also removes the DBR
sequence from the reads.
Using the barcodes file, we demultiplex the sample files into
individual FASTQ files utilizing the PROCESS_RADTAGS tool of
Stacks. After this step, p7 restriction enzyme residues are re-
moved.
Our analysis has shown, that the paired-end analysis mode of
Stacks has trouble identifying a high number of loci. By setting
the user defined mode parameter of our pipeline, we can pass reads
to Stacks in three different configurations to address this problem:

* p5_only is the default behavior, where only the p5 reads are used
for clustering and paired-end information can be incorporated in
a later step.

* The merged mode horizontally joins the reads by merging p5 and
p7 sequence into one read.

¢ In concatenated mode, the py read file is vertically appended to
the p5 read file. The p5 and p7 reads are added to the same file.

As a final preprocessing step, we assure, that all reads have the
same length. After trimming variable length sequences like spacers
from the reads, total read lengths can differ (cf. Sequencing Process
and Read Structure, p. 165). Since the last bases of the reads cannot
support a strong biological signal, we trim all reads to the shortest
length in the dataset.

Stacks Workflow Following this, we call the remaining steps of
the Stacks analysis workflow. These perform the tasks mentioned
at the beginning of this chapter, i.e. reconstruct loci and identify
genotypes within the analyzed population. We call this process sev-
eral times with different combinations of the parameters m (minimal
number of reads per locus), M (maximum number of differing nu-
cleotides between loci within samples), and n (maximum number
of mismatches for loci between samples). Note, that all steps until
this point only need to be executed once. Different instances of the
Stacks workflow with their respective parameter sets can process
the same input files.

Evaluation and Quality Control To evaluate the results of a param-
eter set, we generate a histogram of locus sizes, i.e. the number
of loci with a certain coverage. These can be compared between

195

github.com/lh3/seqtk
github.com/rust-bio/rust-bio-tools
github.com/rust-bio/rust-bio-tools

196 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

parameter sets and act as a guide when optimizing the analysis
parameters. In order to make this comparison easier, we also gen-
erate violin plots comparing the distributions of locus sizes across
all parameter sets, as well as a scatterplot illustrating the number of
detected loci per individual. Due to the structure of our workflow,
parameters for the analysis can be changed in a central configura-
tion file.

7.3.2 Workflow Evaluation

To evaluate the performance of our workflow, we simulated datasets
with bDRAGE and compared several metrics of its results with the
ground truth. We analyzed the number and the size distribution of
loci identified by Stacks, depending on the presence of our PCR
duplicate removal step (PCR deduplication) and other scenarios.
For this evaluation, we restricted the analysis to the locus level.
Workflows to reproduce the evaluations described in this section
can be found on Zenodo* and GitHub.%>

Influence of PCR deduplication To show the influence of PCR dedu-
plication, we simulated a dataset using PDRAGE with the param-
eters illustrated in Table 7.4. For each individual, approximately
9500 valid loci with an expected coverage of 30 are present in the
dataset (10000 loci, 5% of which are expected to be dropout events).
Additionally, 500 highly repetitive loci (HRLs) with reads from all
individuals were simulated, in addition to ~1 200 0oo singleton
reads. We then analyzed this dataset using two identical versions
of our workflow, one with and the other without PCR deduplica-
tion. The PCR deduplication was performed with a DBR distance
of 1 and a sequence distance of 6. For the workflow variant with-
out deduplication, we only trimmed out DBR sequences, so that
subsequent rules in the workflow could be executed as before.

For calls to the STtacks workflow, we evaluated the parameter
combinations illustrated in Table 7.5 to span a variety of signatures.
We maintained a minimum locus size of 3 at this point, since this
dataset has a high coverage where variations in the minimum locus
size are unlikely to influence valid loci. We performed the analy-
sis using the p5_only read handling mode. This means, that after
extraction, we passed only the p5 reads on to STACKs for analysis.

Figure 7.16 illustrates the distributions of locus sizes with and
without deduplication enabled. It can be seen that workflow runs
without deduplication step possess a large peak for coverage values
between 2 and 10. These are caused by singleton reads which, in
combination with their respective PCR duplicates, are identified
by Stacks as loci. For runs with our deduplication enabled, these
peaks vanish. Through PCR deduplication, these false loci are not
identified by Stacks, since PCR duplicates collapse back into sin-
gular reads. These do not satisfy a locus size of > m = 3, and are

Timm, Rad-seq-stacks Evaluation
Workflow, 2021.

45 github.com/HenningTimm/
rad-seq-stacks_evaluation

Parameter Value
--loci 10 000
--individuals 24
--prob-seq-error 0.01

Table 7.4: Parameters for the dataset
simulated with bbRAGE. For all
parameters that are not explicitly
mentioned here, we used default
parameters.

Max. dist. Max. dist. ~ Min. locus

(sample) n (indiv.) M size m
2 2 3

2 3 3

3 4 3

5 5 3

15 16 3

Table 7.5: Parameter sets evaluated
for our pipeline. n is the number of
mismatches for merging loci between
samples, M is the permissible number
of mismatches for merging loci, and
m denotes the minimum coverage
required to form a locus.

github.com/HenningTimm/rad-seq-stacks_evaluation
github.com/HenningTimm/rad-seq-stacks_evaluation

ANALYSIS OF DDRAD DATA 197

Deduplication

B no
[yes
n=2.M=2.m=3
n=5.M=5.m=3 Lf
2
o}
15}
£ n=3.M=2.m=3
jof
©
o
n=4.M=3.m=3 ‘f
n=16.M=15.m=3 ‘f
0 20 40 60 80 100

Coverage

Figure 7.16: Violin plots comparing the distributions of locus sizes (x-axis in reads per individual and locus) for different param-
eter sets for STACKS (rows). (n: maximum distance between sample loci for merging, M: maximum distance of loci for merging
within a sample, m: minimum stack stack size.) Each parameter set was run both with (orange) and without (blue) our PCR dedu-
plication step. Coverage values above 100 were truncated to increase readability. Locus sizes of up to 1400 reads per individual,
introduced by HRLs were contained in the data. An untruncated version of this plot can be found in Appendix D (Figure D.1).

198 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

; Parameter set = n=2.M=2.m=3 Parameter set = n=5.M=5.m=3 Parameter set = n=3.M=2.m=3 Parameter set = n=4.M=3.m=3 Parameter set = n=16.M=15.m=3
2500

12000
©
o
3 11500
153
2
[}
°
S 11000
3
o
€
=]
Z 10500

10000

no yes no yes no yes no yes no yes
Deduplication Deduplication Deduplication Deduplication Deduplication

Figure 7.17: Point plots comparing
the number of loci identified for
each individual (y-axis) for runs
. . o . without (left) and with (right) PCR
the simulated left-tailed coverage distribution can be seen. deduplication. Individuals share a

Figure 7.17 shows the number of loci identified per individual by CO]OTband fa1re CC;nneCtedaThS exlpec’fid
USTACKS, again without (left) and with (right) PCR deduplication. nhmber o7 “ocl ToT an individuat i tis

dataset was ~g 500.
For all parameter sets and individuals, the number of loci identified

consequently excluded. Note, that for the deduplicated workflow,

dropped significantly when using deduplication. The additional
loci identified in non-deduplicated runs are mostly singleton loci,
which were removed by PCR deduplication. This is supported by

the total number of loci contained in the csTAcks catalog after loci Deduplication
from all samples are merged, as illustrated in Table 7.6. Parameter set no yes
The additional loci identified for the single individuals accumu- n=2M=2m=3 57759 10659

n=3.M=2.m=3 57756 10656

late during catalog creation and result in a large number of invalid
n=4M=3.m=3 57753 10654

loci, which need to be processed in downstream analysis steps. n=5M=5.m=3 57756 10654
Figure 7.18 displays the number of stacks blocklisted (excluded n=16M=15m=3 57761 10656
from further analysis) as HRLs by Stacks as well as the mean size Table 7.6: Number of loci contained
of loci during the first clustering step of usTacks. Note, that at this in the csTACKs catalog for different
. . . parameter sets, with and without
point we refer to a stack as a cluster of reads identified by usTAcks. deduplication.

In later steps, stacks of reads can be merged with other stacks. The
remaining postprocessed stacks returned by UsTACKs are treated as
loci.

For runs without deduplication, a much higher number of stacks
are blocklisted than for runs with deduplication enabled. The cause
for this is twofold:

1. HRLs are split into many different loci during the first clustering
step.

2. The mean size of stacks identified in the first clustering step is
lower.

HRLs possess a very high coverage and every read is expected to
contain 1 sequencing error. Since the first clustering step of Us-
TACKS builds clusters from perfect matches, HRLs are split into
many different stacks. The blocklisting of HRL loci is performed
based on the mean size of all initial stacks. Stacks with a cover-
age higher than y + 30, where y and ¢ are the mean and standard

ANALYSIS OF DDRAD DATA 199

16000 21 Deduplication
() o () () . no
14000 o o o o yes
o o o o 20
Q:. .:. ..:. .0:.
12000 e e o ot v
— 219
8 o
S 10000 S
el
g %:) 18
@ 8000 o
~ (9]
5 =
= 6000 [
= 16
4000
2000 15
I e e 14
M=5.m=3 M=15.m=3 M=3.m=3 M=2.m=3 M=5.m=3 M=15.m=3 M=3.m=3 M=2.m=3
Parameter set Parameter set

Figure 7.18: Swarm plots comparing
the number of loci blocklisted as
HRLs (left) and the mean size of initial

deviation of the distribution of stack coverage, are blocklisted as o
loci identified by usTacks before

HRLs. merging (right). In both plots, each
The deduplication step mitigates both of these effects, since con- point of the same color symbolizes one
individual from the dataset. Runs with
sensus reads have a much lower error rate than unprocessed reads. deduplication enabled are shown in
Since sequencing errors occur for each read and read position in- orange, runs without deduplication in
dependently, the chance for n reads (one original and n — 1 PCR blue. The simulated dataset contained
] T 500 HRLs (shown as a gray, dotted
duplicates) to show the same error twice is low. Consequently, line in the left plot). Note that the 1
during PCR deduplication, many sequencing errors are removed. parameter for CSTACKS is not shown

here since this data is produced before

This results in both less initial stacks, since less differing reads are CSTACKS is run.

present, and a higher mean size, which in turn raises the coverage
ceiling for valid stacks. Especially in the left part of Figure 7.18, it
can be seen that with deduplication, the amount of HRLs identified
is very close to the 500 HRLs simulated for the dataset.

For all evaluations, the parameters chosen for Stacks did not
strongly influence the results. This is caused mainly by the high
coverage and low diversity of the simulated dataset. We did not
change the minimum number of reads per locus, however, with a
simulated coverage of 30, this parameter is unlikely to have any
effect. For the maximum number of mismatches between loci, the
low number of simulated mutation events paired with the low
number of affected positions does not introduce enough diversity to
break apart loci. In the following evaluations we will show that our
pipeline can detect such events through the parallel exploration of
different parameter sets.

Influence of Minimum Reads per Locus (m) First, we simulated a
dataset with low expected coverage to explore the influence of dif-
ferent STACKS parameters. Most notably, a low coverage interacts
with the minimum number of reads required to form a locus (m).

200 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

AN
RN N N

. LT |
0.10 -
0.08 -

0.06 -

0.04 -

Expected Probability

o

o

]
'

o
=3
S

1 10 20
Coverage

The parameters for bDDRAGE used to simulate the dataset to ex-
plore the influence of this parameter are detailed in Table 7.7. The
left-tailed coverage distribution described by the BBD parameters
« = 3 and B = 2 paired with a low expected coverage of 10 results
in a high chance of loci containing less than m reads. We analyzed
this dataset both with and without PCR deduplication using the
parameter sets shown in Table 7.8.

The expected coverage distribution, alongside the values for m
we used for the analysis, is illustrated in Figure 7.19. We used a
DBR distance of 1 and a sequence distance of 6 for the deduplica-
tion step.

Figure 7.21 (p. 202) shows the number of loci detected by us-
TACKS using the different parameter sets. With a minimum number
of m = 3 reads to form a locus, approximately 8 000 — 9 000 loci
are detected for all individuals using PCR deduplication. As above,
without deduplication the number of detected loci per individual is
higher. For an increasing number of reads required, the number of
loci detected continually falls, until for m = 10 less than 500 loci are
identified.

Figure 7.20 shows the distribution of locus sizes with and with-
out deduplication enabled. It can be seen that for a minimal locus
size of m = 5, the peak for singleton loci disappears even without
PCR deduplication. This is due to the fact, that singletons cannot
reach this limit even with their PCR duplicates. However, not only
singletons are removed, but also most valid loci (cf. Figure 7.21,

p. 202). Therefore, the coverage values shown for the lower parame-
ters are not a robust quality measure in this case.

This pattern of decreasing locus numbers with increasing values
of m is specific for low coverage data and can guide the analysis
towards the parameter sets best suited for this scenario. In this case,
the results computed with low m yield the arguably best results,
since they contain more correctly identified loci. On the other hand,
using both a low and a high value for m can serve as a filter: Loci
identified using the higher value can be attributed a high weight,
since they are supported by many reads.

Figure 7.19: Expected coverage distri-
bution of valid loci for one individual
in the low coverage dataset. The red
line denotes the target sequencing
depth ds. Teal lines denote the ex-
plored values for m, the minimal
number of reads required to form a
locus.

Parameter Value
--loci 10 000
--individuals 24
--prob-seq-error 0.01
--coverage 10
--BBD-alpha 3
--BBD-beta 2

Table 7.7: Parameters for the low
coverage dataset simulated with
DDRAGE. For all parameters that are
not explicitly mentioned here, we used
default parameters.

Max. dist. ~ Max. dist. ~ Min. locus
(sample) n (indiv.) M size m
2 2 3
2 2 4
2 2 5
2 2 7
2 2 10

Table 7.8: Parameter sets evaluated for
the low coverage dataset. n is the num-
ber of mismatches for merging loci
between samples, M is the permissible
number of mismatches for merging
loci, and m denotes the minimum
coverage required to form a locus.

ANALYSIS OF DDRAD DATA 201

Deduplication

I no
[yes
n=2.M=2.m=3 *
n=2.M=2.m=4 f
[
[}
©
£ n=2.M=2.m=5
S
©
o
n=2.M=2.m=7 f
n=2.M=2.m=10 f
0 10 20 30 40 50 60

Coverage

Figure 7.20: Violin plots for the low coverage case comparing the distributions of locus sizes (x-axis in reads per individual and
locus) for different parameter sets for STACKS (rows). (n: maximum distance between sample loci for merging, M: maximum dis-
tance of loci for merging within a sample, m: minimum number of reads to form a locus.) Each parameter set was run both with
(orange) and without (blue) our PCR deduplication step. Due to the lower coverage, coverage values above 60 were truncated to
increase readability. Jagged shapes for low parameter values in the upper three plots are an artifact of Kernel Density Estimation
used by the violin plots.

202 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Parameter set = n=2.M=2.m=3 Parameter set = n=2.M=2.m=4 Parameter set = n=2.M=2.m=5

10000

8000

6000

4000

Number of detected loci

2000

no yes no yes no yes
Deduplication Deduplication Deduplication

Influence of Locus Distance (M, n) The M and n parameters both
govern the merging of loci within and between samples. To judge
the influence of these parameters, we simulated a dataset with a
high level of diversity using the parameters shown in Table 7.9.

The high diversity parameter for bDRAGE increases the number
of alleles in the mutation tree. Through this, alleles chosen for a
mutation event have a higher chance to contain multiple mutations,
and thus generate reads that differ significantly from the root allele.
These changes are expected to cause loci to break up during the
USTACKS clustering. Additionally, we chose a longer read length of
150 bp to allow for more sequence deviations. Increasing the values
for the parameters M and n should mitigate the influence of this
and allow the loci to be merged again. Higher values for M and n
are expected to merge more loci and in turn result in a higher locus
coverage.

We analyzed the simulated dataset using two pipelines with and
without PCR deduplication. The deduplication was performed with
a DBR distance of 1 and a sequence distance of 8 (the maximum
distance value possible, cf. Section 7.4.2), to compensate for the
longer read length. For each pipeline, we evaluated the parameters
described in Table 7.10.

Figure 7.22 shows that the number of loci detected for each indi-
vidual by usTAcks does not change with different parameter sets.
However, when observing all individuals (i.e. the catalog generated
by cstacks), the number of detected loci approaches the simulated
number of 10000 loci (no dropout events were simulated), as illus-
trated in Table 7.11. This indicates, that usTAcks misses different
subsets of loci for each individual based on their specific alleles
and allele coverages, but most simulated loci are contained in the
catalog. For higher values of 1, more loci are merged between sam-
ples when building the catalog, resulting in a number of loci that
closely resembles the simulated data. While an increased number of
merged loci can be seen both with and without deduplication, only

Another effect, which can be observed in Figure 7.23, is an in-
crease in locus coverage with increasing parameter values for M

Parameter set = n=2.M=2.m=7

no

Deduplication

Parameter set = n=2.M=2.m=10

yes no yes
Deduplication

Figure 7.21: Point plots comparing

the number of loci identified for

each individual (y-axis) for runs
without (left) and with (right) PCR
deduplication. Individuals share a
color and are connected. The expected
number of loci for an individual in this
dataset was ~9 500 (10000 simulated,
with 500 expected dropouts).

Parameter Value
--loci 10 000
--individuals 24
--prob-seq-error 0.01
--read-length 150
--diversity 12.0
--event-probabilities 0,0,1

Table 7.9: Parameters for the dataset
simulated with bbRAGE. For all
parameters that are not explicitly
mentioned here, we used default
parameters. The vector 0,0,1 passed to
--event-probabilities denotes that
no common and dropout events are
simulated, only mutation events.

Max. dist. ~ Max. dist. ~ Min. locus
(sample) n (indiv.) M size m
1 2 3

2 2 3

3 3 3

5 5 3

10 10 3

Table 7.10: Parameter sets evaluated
for the high diversity dataset. n is the
number of mismatches for merging
loci between samples, M is the per-
missible number of mismatches for
merging loci, and m denotes the min-
imum coverage required to form a
locus.

Number of loci

Parameter set No deduplication With deduplication

ANALYSIS OF DDRAD DATA 203

Table 7.11: Number of loci from the
high diversity dataset contained in
the csTACKs catalog for different
parameter sets, with and without

n=1.M=2.m=3 62883 16 510 deduplication.
n=2.M=2.m=3 58 541 12222
n=3.M=3.m=3 57241 10931
n=5M=5.m=3 56877 10608
n=10.M=10.m=3 56 864 10 601
Parameter set = n=1.M=2.m=3 Parameter set = n=2.M=2.m=3 Parameter set = n=3.M=3.m=3 Parameter set = n=5.M=5.m=3 Parameter set = n=10.M=10.m=3

7000

6500

6000

5500

no yes no yes no yes
Deduplication Deduplication Deduplication

Number of detected loci

and 7. This is to be expected, since merged loci result in higher lo-
cus coverage. However, it can also be seen that for higher parameter
values, i.e. the lower subplots in Figure 7.23, the coverage distribu-
tion exceeds the simulated coverage of 30 both with and without
deduplication. While overmerging loci is a possible explanation for
this, collisions between sequences of 150 bp are unlikely. A more
probable explanation is that this is caused by PCR duplicates, since
for these longer read lengths the effect of PCR deduplication is re-
duced. The modes for deduplicated runs indicate a lower mean
coverage than for non-deduplicated runs, which supports this hy-
pothesis. However, it is not possible to choose a higher sequence
similarity value, due to limitations of the clustering software used
in our PCR deduplication workflow.

Note, that for low parameter values for M and n, i.e. the upper
subplots in Figure 7.23, the coverage distributions are closer to the
simulated coverage value of 30. When considering that not all PCR
duplicates could be removed from the dataset, this indicates a lower
locus coverage than simulated. The increase in locus coverage for
higher values, relative to those for lower values, indicates that more
loci are merged.

While high values for locus merging allow a more precise re-
construction of loci, they also increase the runtime of the usTacks
and csTACKS programs. Values for M and n need to be chosen in
relation to the available computational resources.

yes no yes
Deduplication Deduplication

Figure 7.22: Point plots comparing the
number of loci identified in the high
diversity dataset for each individual
(y-axis) for runs without (left) and
with (right) PCR deduplication.
Individuals share a color and are
connected. The expected number of
loci for an individual in this dataset
was 10 000.

204 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Deduplication

B no
[yes
n=1.M=2.m=3
4
2
5]
£ n=3.M=3.m=3
o
©
o
n=5.M=5.m=3 ‘—';
n=10.M=10.m=3 L*
0 20 40 60 80 100

Coverage

Figure 7.23: Violin plots for the high diversity dataset comparing the distributions of locus sizes (x-axis in reads per individual
and locus) for different parameter sets for STACKS (rows). (n: maximum distance between sample loci for merging, M: maximum
distance of loci for merging within a sample, 7: minimum number of reads to form a locus.) Each parameter set was run both
with (orange) and without (blue) our PCR deduplication step. Coverage values above 100 were truncated to increase readability.

Detection of SNPs To evaluate the mutations detected by our work-
flow, we compared the mutations identified by Stacks to the mu-
tations contained in a simulated dataset. As before, we simulated a
dataset using DDRAGE, using the parameters shown in Table 7.12.
Since STACKS is not capable of detecting indel mutations and null
allele mutations, we restricted the simulated mutations to SNPs.

To judge the influence of PCR deduplication on the workflow, we
executed two versions of the analysis workflow, one with and the
other without PCR deduplication enabled. In order to rule out in-
fluence of incomplete digestion, we analyzed the dataset using only
p5 reads through the p5_only read handling mode of our analysis
pipeline.

However, identifying that the correct mutations are detected by
StAcks remains a challenging problem. During the usTacks clus-
tering, a gapped alignment is performed to compensate for (but not
detect and classify) indel mutations and errors. This can introduce
a difference between simulated mutation position and detected mu-
tation position. Additionally, when the allele frequency F(A, P) (cf.
Allele Frequency, p. 17) for a simulated allele A in the simulated
population P is higher than F(A,P) = 0.5, it is possible that the
mutated allele is detected as reference. Introducing both of these
effects into the analysis requires a high amount of error tolerance,
which can lead to an increased false positive rate in the evaluation.
We simplified this evaluation to comparing SNPs simulated by
DDRAGE and detected by STacks across all genotypes.

For each parameter set, we computed sequence similarities be-
tween locus sequences from the Stacks catalog and ground truth
sequences using bottom-k sketching. Through this, we assigned
Stacks loci to ground truth loci to compare their respective geno-
types. We deemed locus sequences similar that received an es-
timated similarity of 7*(Ly,L,) > 0.2 and validated their sim-
ilarity by computing their global alignment. The bottom sketch
SgO(Q(L, 7)) of a locus sequence L was computed as described in
section Bottom-k Sketch (p. 102). From this assignment, we com-
puted the number of split-up loci, i.e. the number of ground truth
loci, for which more than one STAcks locus was identified.

We subsequently compared all simulated p5 mutations to all
detected p5 mutations on the locus level. To compensate for devi-
ations during locus assembly, we deem the simulated mutation as
detected if its base change (e.g. C>G) is detected with an offset of up
to 2 positions from its simulated position. We additionally consider
the respective inverted base changes (e.g. C>6 and G>C) for these
offset position to be a successfully detected SNP.

Figure 7.24 (a) and (b) show that the amount of correctly iden-
tified SNPs increases with higher parameter values for n and M.4°
The highest amount of correctly detected SNPs is reached by the
parameter set n=>5, M=5, m=3, with a sensitivity of ~0.985. The
parameter set n=2, M=2, m=3 shows a lower amount of correctly
classified SNPs than the other parameter: About 35 SNPs less out

ANALYSIS OF DDRAD DATA 205

Parameter Value
--loci 10 000
--individuals 24
--prob-seq-error 0.01
--coverage 30
--event-probs 0.85, 0.05, 0.10

--mutation-probs 1,0,0,0,0,0,0

Table 7.12: Parameters for the SNP
detection dataset simulated with
DDRAGE. For all parameters that

are not explicitly mentioned here,

we used default parameters. The
vector 0.85,0.05,0.10 passed to
--event-probabilities denotes

that 10% of simulated events are muta-
tion events. All of these mutations are
SNPs, since the vector passed to the
mutation probabilities parameter de-
notes a probability of 1 to select SNPs
when adding an allele to the mutation
tree.

4 To provide better context for the
sensitivity values shown in (a), (b)
depicts the absolute numbers of
correctly detected SNPs.

206 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Deduplication —e
0.984
e no -
e yes
_,?0.982
2
)
2
o 0.980
n
0.978
n=2 M=2 m=3 n=3 M=2 m=3 n=4 M=3 m=3 n=5 M=5 m=3 n=16 M=15 m=3
(a) Sensitivity of SNP detection.
6625 e e e e ————
n 6600
o
=
n 6575
g Deduplication
S 6550 e no
a e yes
& 6525
9]
2 —
= 6500
6475
n=2 M=2 m=3 n=3 M=2 m=3 n=4 M=3 m=3 n=5M=5m=3 n=16 M=15 m=3

(b) Number of successfully identified SNPs (true positives) out of 6 624 simulated SNPs (denoted by a gray dashed line).

Deduplication

w25 x Nno
= x yes
v 20
v
2
15
o
o
g 10
©
[V
5
n=2 M=2 m=3 n=3 M=2 m=3 n=4 M=3 m=3 n=5M=5 m=3 n=16 M=15 m=3
(c) Number of SNPs identified by STACKS that were not simulated by bDRAGE (false positives).
Deduplication
15 X no
X yes
©
S10
=
a
n
5
0
n=2 M=2 m=3 n=3 M=2 m=3 n=4 M=3 m=3 n=5M=5 m=3 n=16 M=15 m=3

Parameters

(d) Number of ground truth loci split up by Stacks.
Figure 7.24: Metrics for SNP analysis of a dataset simulated with bDRAGE both with (orange) and without (blue) PCR deduplica-
tion. (a) shows the sensitivity of SNP detection (b) show the total amount of correctly detected SNPs, (c) illustrates the amount of
falsely identified SNPs, and (d) shows the number of split-up loci. Lines have been added to guide the eye for easier comparison
of values.

ANALYSIS OF DDRAD DATA 207

PCR duplicates Figure 7.25: (a) Shows a locus with-
out PCR deduplication. Valid reads
(brown) in combination with their
PCR duplicates (light brown, dashed)
decrease the influence of the read with
Read with a sequencing error (purple). When
removing PCR duplicates, as shown
in (b), the ratio of unaffected reads

to reads with sequencing errors is
(a) (b) reduced, which could lead to errors

being misclassified as mutations.

Unaffected reads

sequencing error e e

of 6624 simulated SNPs were detected, compared with the follow-
ing parameter set (n=3, M=2, m=3). For all parameter sets, the
amount of true positive SNPs increased when using PCR dedupli-
cation. This increase in sensitivity can be attributed to better locus
reconstruction due to deduplicated reads. For the lowest value of
n=2, which denotes the maximum distance between sample loci,
loci containing SNPs cannot be reliably merged. Thus, loci shared
between individuals cannot be connected and identified as the same
locus, resulting in two (or more) loci without mutations rather than
one locus with a mutation.

Figure 7.24 (c) shows the number of erroneously identified SNPs,
i.e. SNPs detected by Stacks that are not contained in the ground
truth data. The amount of false positives for all parameter sets
is higher when using PCR deduplication. Especially for n=16,
M=15, m=3 with deduplication, an increase in false positives can
be observed. A possible explanation for this effect is the reduced
amount of PCR duplicates in combination with singular reads
containing sequencing errors, as illustrated in Figure 7.25. During
the simulation, not all reads receive PCR duplicates, hence there
are reads that are analyzed as they were simulated. Sequencing
errors in reads without PCR duplicates cannot be mitigated by PCR
deduplication through consensus read computation. Removing
PCR duplicates in this case reduces the (apparent) ratio of reads
without this error to reads with the error which can result in it
being misinterpreted as a SNP by Stacks. Another aspect that
could potentially affect this is the PCR deduplication step itself,
which could consolidate sequencing errors. However, identifying
the exact cause of this increase is a topic for future research.

The amount of split loci decreases with increasing values of n
and M. For all parameter sets, the amount of split loci is reduced
by PCR deduplication, with no split-up loci remaining for n=5,
M=5, m=3 and n=16, M=5, m=3 with PCR deduplication. The
highest amount can be observed with 18 split loci for n=2, M=2,
m=23 without deduplication. This is expected, as loci are split due
to mismatching positions. PCR deduplication reduces the amount
of mismatches through consensus read generation and the parame-
ters n and M govern the merging process to restore such loci.

While this evaluation has shown, that the parameter set n=5,
M=5, m=3 has arguably produced the best results, showing the

208 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Parameter set = n=2.M=2.m=3 Parameter set = n=4.M=3.m=3

80000
70000
60000
50000

40000

of loci with deduplication

> 30000

Nr.

20000

10000

Parameter set = n=5.M=5.m=3

10000 20000 30000 40000 50000 60000 70000 80000 10000 20000 30000 40000 50000 60000 70000 80000 10000 20000 30000 40000 50000 60000 70000 80000

Nr. of loci without deduplication Nr. of loci without deduplication

highest sensitivity without the increase in false positive rate and
no remaining split up loci, these results cannot be generalized from
our simulated dataset. However, for realistic datasets an analysis of
split loci could be introduced to help identify the optimal parame-
ter set. This evaluation of our pipeline could further be improved,
by taking genotypes per individual, including their allele frequen-
cies, into account.

Analyzing a Large In-house Dataset To judge the performance of
our pipeline on real data, we analyzed an in-house ddRADseq
dataset of Gammarus fossarum.*7 The dataset contained paired-end
reads from 315 individuals, sequenced in 4 different lanes using
an Illumina HiSeq 2500 device. Three lanes were sequenced with
a read length of 125bp, the remaining lane was sequenced with

a length of 150bp. Note, that before reads are passed to STacks
for analysis, all reads are trimmed to the same length. In total, the
input data comprise ~103 GB of gzipped FASTQ files.

We analyzed this dataset using the parameter sets described in
Table 7.13. As above we applied our workflow twice, once with
deduplication enabled and once without deduplication, using a
DBR distance of 1 and a sequence distance of 7.

Figure 7.26 shows the number of detected loci both with and
without PCR deduplication. A point plot as shown in the previous
evaluations can be found as Figure D.2 in Appendix D. As before,
applying PCR deduplication reduces the number of detected loci
per individual. It can be seen that the number of detected loci is re-
duced for all individuals, since all data points fall below the diago-
nal. While without deduplication some individuals show a number
of up to 800000 loci, the maximum number of loci observed after
deduplication is reduced to ~41000. This overall drop in locus de-
tection through PCR deduplication can be attributed to the fact that
singleton reads can no longer form loci after their PCR duplicates
have been removed.

Another effect that can be observed is that the amount of loci per
individual decreases with increasing parameter values. This can be

Nr. of loci without deduplication

Figure 7.26: Scatter plot comparing
the number of loci identified for each
individual without deduplication (x-
axis) and with deduplication (y-axis).
Each point denotes one individual,
columns show different parameter
values. The gray diagonal denotes an
identical number of loci before and
after deduplication.

4 Clade 11 (Type B)

Max. dist. ~ Max. dist. ~ Min. locus
(sample) n (indiv.) M size m
2 2 3
4 3 3
5 5 3

Table 7.13: Parameter sets evaluated
for the G. fossarum dataset. n is the
number of mismatches for merging
loci between samples, M is the per-
missible number of mismatches for
merging loci, and m denotes the min-
imum coverage required to form a
locus.

ANALYSIS OF DDRAD DATA 209

Number of identified SNPs Table 7.14: Numb.er of SNPs identified
by our workflow in the G. fossarum
Parameter set ~ No deduplication = With deduplication dataset for different parameter sets,
without (left) and with (right) PCR
n=2, M=2, m=3 545524 184 355 deduplication.
n=4, M=3, m=3 752 467 216 449
n=5, M=5, m=3 802459 230391

explained by a higher number of loci merged during clustering and
catalog assembly in the Stacks pipeline. Higher values of n and
M allow loci with more differing bases to be merged, regardless if
these deviations stem from sequencing errors or from SNPs.

Figure 7.27 show the distribution of stack sizes for the G. fos-
sarum dataset. Compared with simulated datasets shown in the
previous sections, the effect of deduplication is less pronounced.
This is the case due to the lower coverage of the real dataset, while
our simulated ddRAD loci were simulated with very high cover-
age. In this scenario, low coverage loci comprise both actual loci
with only a few associated reads as well as singletons with PCR
duplicates.

It can be seen that the number of loci with coverage 3 — 5 is re-
duced through PCR deduplication. This is caused by the removal
of singleton reads. In contrast to the simulated datasets analyzed
in the previous sections, the coverage distribution of this dataset
is strongly biased towards lower coverages. The fact that a large
number of low coverage loci remain after PCR deduplication can
be attributed to two effects: These loci are either valid low coverage
loci that should not be removed or that they comprise PCR dupli-
cates that exceed the sequence distance that can be compensated by
our PCR deduplication workflow. As we describe in Section 7.4.2,
the number of sequence differences that can be compensated is cur-
rently limited by the employed clustering software. The longer read
lengths present in this dataset result in a higher amount of possible
sequencing errors, which can prevent the successful deduplication
of reads.

Concerning the number of identified SNPs in the dataset, we
can also see a strong influence of both deduplication and different
parameter choices. Table 7.14 shows the number of SNPs identified
in the G. fossarum dataset.

Regardless of deduplication, for the parameter sets with higher
values of M and n, which allow more loci to be merged, the num-
ber of SNPs increases. This is expected, since loci containing SNPs
are split up during the first step of the ustacks clustering. If they
cannot be merged again, either in the later steps of the usTacks
clustering or during catalog construction by cstacks, such SNPs
cannot be identified. The multiple locus fragments that emerge
through this behavior show a low amount of genetic variation, since
different alleles of mutations are distributed to the different frag-
ments. This increases the number of loci detected, while also reduc-
ing the number of identified SNPs. Through higher tolerances for

210 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Deduplication

I no
[yes
n=2.M=2.m=3
4
9]
=
9]
€ n=4.M=3.m=3
o
©
o
n=5.M=5.m=3
0 3 5 10 15 20 25 30 35 40 45 50

Coverage

Figure 7.27: Violin plots for the G. fossarum dataset comparing the distributions of locus sizes (x-axis in reads per individual and
locus) for different parameter sets for STACks (rows). (n: maximum distance between sample loci for merging, M: maximum
distance of loci for merging within a sample, 7m: minimum number of reads to form a locus.) Each parameter set was run both
with (orange) and without (blue) our PCR deduplication step. Coverage values above 50 were truncated to increase readability. An
additional tick on the x-axis at a coverage of 3 denotes the smallest used value of m. A version of this plot showing coverages up
to 1000 can be found in Appendix D (Figure D.3).

ANALYSIS OF DDRAD DATA

merging, the probability to merge these locus fragments increases,
resulting in the observed increasing number of SNPs.

The number of identified SNPs is about ~3 times higher without
deduplication. This can be attributed to the removal of small loci as
well as reducing the influence of sequencing errors. Small loci have
a higher chance to misidentify sequencing errors as SNPs, since
the available evidence that could distinguish these cases is limited.
Especially for singletons and their PCR duplicates, single sequenc-
ing errors can be mistaken as SNPs. Removing these loci reduces
the number of misidentified SNPs. Additionally, our PCR dedu-
plication computed consensus reads, which reduces the impact
of sequencing errors. If a read and several of its PCR duplicates
are present, single sequencing errors do not persist in the consen-
sus read. Especially in a low coverage scenario as with the dataset
analyzed here, PCR deduplication has the potential to reduce the
number of misidentified SNPs.

7.3.3 Discussion

We implemented a workflow for ddRAD analysis, which allows to
explore several parameter choices for the analysis in parallel, based
on the Stacks software. Using several preprocessing steps, we
prepared read data once, and were able to reuse them for all further
analysis steps. Through the use of SNAKEMAKE and CONDA, our
workflow generates reproducible results and is easily portable to
new platforms, including cluster or cloud computing environments.
Finally, we provide a condensed overview of the number of loci and
the size distribution of loci, both per individual and per sample, as
crucial metrics to judge the analyzed data.

Using simulated data, we could show that our PCR deduplica-
tion step is able to remove singleton reads from the dataset, thereby
significantly reducing the number of loci that require downstream
analysis. Through exploring multiple parameter sets, we could
identify loss of loci through high minimal locus sizes in a low cov-
erage scenario and offered means to detect this effect. Additionally,
we have shown that for high diversity datasets, increasing values
for locus distances receive a higher locus coverage. For datasets
with less diversity, low choices for the evaluated parameters in
combination with our PCR deduplication approach yielded high
quality results. Since values that allow higher differences between
loci increase the overall runtime, especially of the csTACks pro-
gram, these should not be used extensively. However, our workflow
structure allows the exploration of these parameters limited to one
parameter set and compare the results of both executions. We sug-
gest combining increasing values for the minimal locus size ()
with several low and at most one high parameter set for M and n.
This allows the identification of both unexpectedly low coverage
data as well as high diversity data.

211

212 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

For a real dataset, we could show that the amount of SNPs de-
tected is linked to the choice of the M and #n parameters. We ob-
served an increased number of detected SNPs for higher values of
M and n, likely due to the re-merging of loci split up by their SNPs
during clustering as well as correctly merging loci with variants be-
tween samples. Applying PCR deduplication reduced the number
of identified SNPs, which can be attributed to the removal of both
singletons and PCR duplicates forming loci as well as to compensa-
tion of sequencing errors through consensus read computation.

For all analyses, the result quality was increased by the applica-
tion of PCR deduplication. Coverage distributions were closer to
the simulated coverage values, which can increase the quality of
genotype detection. Through the removal of PCR duplicates, allele
frequencies can be reconstructed more precisely and erroneously
called genotypes in low coverage scenarios can be mitigated. To
further optimize this process, especially for longer reads, a version
of our PCR deduplication process that allows larger sequence dif-
ferences is required. Since this is a restriction of the STARCODE*®
software?9 used for the read clustering in this process, a different
clustering approach is required.

During the SNP analysis, PCR deduplication increased the sensi-
tivity of SNP detection and reduced the number of split-up loci at
the cost of an increased false positive rate. Our simplified SNP eval-
uation could be improved by using a more sophisticated approach
for variant comparison. While the comparison of locus sequences is
straight forward, validating whether the correct mutation was de-
tected is impeded by small deviations in alignment in combination
with the uncertainty which allele will be identified as normal and
which as mutated by Stacks. A solution for this could be to con-
vert the ground truth file generated by bpbRAGE to a VCF file and
compare the VCF file generated by Stacks with this ground truth
VCE. For this comparison, specialized tools like hap.py>° could be
employed.

48 Zorita, Cusco, and Filion, “Starcode:
Sequence Clustering Based on All-
pairs Search”, 2015.

49 Cf. Deduplication Workflow p. 214.

5¢github.com/Illumina/hap.py

github.com/Illumina/hap.py

7.4 PCR Duplicate Remouval

Removing PCR duplicates from SGS reads is a variation of the read
clustering problem. We have to find reads with identical DBR>"

as well as identical genomic sequences and from these keep only
one read, which is representative for the cluster. To solve this prob-
lem, we implemented the CALL-CONSENSUS-READS software in
cooperation with Johannes Koster and Felix Molder, which is able
to merge PCR duplicates of PE reads into consensus reads. CALL-
CONSENSUS-READS is implemented in the Rust programming lan-
guage and is available as part of the RUST-BI0-TOOLS>? software
package.

7.4.1 Problem Definition and Related Work

Consider a read and its PCR duplicates, for example a ddRAD
read as described in the previous section. Differences between the
original and its copies can be classified into two categories:

® Sequencing errors, added during sequencing. As before, we
focus on SGS reads and the Illumina error model (cf. Illumina -
Cyclic Reversible Termination p. 21).

¢ PCR errors, introduced during the PCR duplication process (cf.
Polymerase Chain Reaction p. 20).

Due to their respective origins, sequencing errors are expected to
be present in one read, while PCR errors can affect multiple reads,
depending on the PCR cycles in which they were introduced.

To merge all PCR duplicates of a read, we need to account for
these deviations, using an error tolerant clustering approach. Since
error rates can vary, errors rates of the clustering need to be chosen
depending on the number of sequencing errors and PCR errors
expected in the data.

Finally, for a computed cluster, we need to decide on a final read
to return. Picking one read from the input, either at random or
using some heuristic, has a high probability to contain at least one
error. There are several approaches to solve this problem.

UMI-Tootrs>3 can deduplicate reads using aligned SAM or BAM
files. For each cluster it selects the read with highest mapping qual-
ity and lowest number of mapping coordinates as representative.

If these measures cannot be used, a read is chosen at random. The
FGBIO toolkit>* also offers PCR deduplication for aligned SAM

or BAM files. Consensus bases are computed using a likelihood-
based approach, incorporating the information about base qualities.
STARCODE? can also perform PCR deduplication through the
STARCODE-UMI script. The consensus read returned by STARCODE-
uMI is the centroid of the cluster, i.e. a read selected from the input.
For PE reads, STARCODE-UMI requires a DBR sequence on each
read. The CaL1B software3° for UMI clustering and deduplication
performs a base-wise majority voting to determine consensus bases

ANALYSIS OF DDRAD DATA 213

51 We continue to use the term DBR
here, to be consistent with the previous
sections. For other fields, the term
UMI is more widely used.

52 github.com/rust-bio/
rust-bio-tools. CALL-CONSENSUS-
READS was stabilized in version o.5.0.
Note that it has since been renamed
COLLAPSE-READS-TO-FRAGMENTS in
newer versions.

53 Smith, Heger, and Sudbery, “UMI-
tools: Modeling Sequencing Errors
in Unique Molecular Identifiers to
Improve Quantification Accuracy”,
2017.

54 https://github.com/
fulcrumgenomics/fgbio

55 Zorita, Cusco, and Filion, “Starcode:
Sequence Clustering Based on All-
pairs Search”, 2015.

5 Orabi et al., “Alignment-free Cluster-
ing of UMI Tagged DNA Molecules”,
2018.

github.com/rust-bio/rust-bio-tools
github.com/rust-bio/rust-bio-tools
https://github.com/fulcrumgenomics/fgbio
https://github.com/fulcrumgenomics/fgbio

214 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

with four possible quality values. This does not preserve the known
and quantifiable uncertainty about these bases in the consensus
read.

Approaches that rely on the presence of aligned reads in SAM
or BAM files are not feasible for ddRADseq data for which usually
no reference is available. For example the consensus read compu-
tation of ¥GB10 requires BAM files sorted by DBR sequences and
mapping positions. While the mapping positions could be derived
from an external clustering step and we could construct a BAM
file to pass to the consensus calling step of FGBI0, this approach
requires several additional files to be written. This significantly
increases the disk space requirements and runtime overhead of
this approach. The sTARCODE-UMI approach requires a specific
read setup and DBR position, which is not satisfied by ddRADseq
reads. While CAL1B is able to process FASTQ files, its quality value
computation is too coarse too accurately reflect the certainty of the
selected consensus base. Consequently, we developed a PCR dedu-
plication workflow that works on FASTQ files directly and offers
a configurable DBR position. We compute a consensus sequence
assembled from all reads within the cluster, which also quantifies
and preserves the certainty of each consensus base.

7.4.2 Deduplication Workflow

Our workflow to solve the problem stated above comprises three
steps:

1. Cluster reads by DBR (first order clustering)

2. Cluster each read within a first order cluster by sequence (sec-
ond order clustering)

3. Compute consensus reads for each second order cluster

We perform both clustering steps using sTARCODE,>” which clusters 57 Zorita, Cusco, and Filion, “Starcode:
Sequence Clustering Based on All-

sequences using all-pairs search and a variation of the Needleman- , Y
pairs Search”, 2015.

Waunsch algorithm. This recursive clustering algorithm is designed
to correct sequencing errors while preventing overmerging. The
STARCODE clustering can be parameterized to allow matches within
a certain Levenshtein distance (at most 8). A sequence clusters is
merged with its closest neighbor as long as this neighboring cluster
is within the specified distance and contains at least five times the
number of reads.

An illustration of our deduplication workflow can be found in
Figure 7.28.

First Order Clustering During the first step of our pipeline, we ex-
tract the DBRs from the reads and cluster them with STARCODE.
Since the DBR usually is short with respect to the read length,

we allow only a few errors. We discuss the parameter choices in
detail in the section Evaluation and Parameter Choices. To avoid

ANALYSIS OF DDRAD DATA 215

Input Dataset Read Setup
|
. p5 Read p7 Read
im []

DBR Genomic Sequence

First starcode clustering using only
the DBR with Levenshtein distance
max-dbr-dist =1.

For this case this yields 3 clusters.

®)

\

Cluster mml: DBRs with up to 1 errors ©)

= - [| . —> [| . .,

Cluster rmm: Only identical DBRs

[1 1 " . ..
: — —>

Cluster mmm: Not similar to other DBRs

ma e —— -
The reads in a cluster have different Second starcode clustering using The reads in the first cluster are
DBRs that are within Levenshtein genomic sequences of p5 and p7 similar enough (<=2 different
distance 1 of each other. read with max-seq-dist =2 positions) and stay together. In
The read in cluster 3 does not have inside each cluster. the second cluster, two new
another read with Levenshtein clusters are formed.

distance <=1 and hence is put into
a new cluster.

Output Dataset
T ' "
For each inner (second step) cluster, .) . .
a consensus read is computed. . (e)

DBRs are trimmed from the output reads. >

Figure 7.28: Example for the PCR deduplication workflow of CALL-CONSENSUS-READS. Paired-end SGS reads are denoted by

a pairs of gray bars, where colored segments on the p7 read denote a specific DBR configuration. Light gray boxes that enclose
groups reads denote clusters and datasets. In the first step, reads from the input set (a) are clustered with sSTARCODE, using only
their DBR sequences, allowing for a Levenshtein distance of 1. The resulting clustering (b), groups all reads with similar DBRs.
Since |DBRs| << |reads|, each cluster contains reads with potentially differing genomic sequences, denoted by colored squares
outside the DBR in (c). For each cluster in (c), another clustering with STARCODE is performed, to split these reads apart. The
resulting inner clusters (d) contain reads with both identical DBR as well as genomic sequences and are merged into consensus
reads, which are written into the output dataset (e).

216 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

reading input files multiple times, we keep read sequences within
a RocksDB3® key value store. Since we cluster only on DBR se-
quences, this step partitions the problem into approximately as
many sub-problems, as there are different possible combinations of
DBR sequences.

Second Order Clustering For each of the clusters generated in the
first step, we retrieve the read sequences without the DBR from

the RocksDB. We concatenate p5 and py genomic sequence into
one sequence and perform another clustering on these sequences.
Since all reads within one first order cluster share (very) similar
DBRs, reads that also share genomic sequences are likely to be PCR
duplicates. For this second clustering we allow more errors, due to
the longer sequences.

Consensus Read Computation For each cluster of reads identified
by the second order clustering, both DBR and genomic sequence
are similar. To merge these reads into a consensus read, we use a
maximum a-posteriori estimator over each position of the read. At
this point, we require all reads within one second order cluster to
be of same length. Singleton clusters, i.e. second order cluster that
contain only one read, are written directly to the output file.

We compute the bases and quality values for the consensus read
based on the work presented by DePristo et al.5% and Li,® similar
to the approach used by FGB10.%" For each position, the maximum
a-posteriori estimate for an allele & € {A,C,G, T} at position i are
computed as

d; = argmax L;(6) (7.5)
0c{ACGT}

with the likelihood function:

1-— w,»,j 0= 7’]'/1'

Li(6) = ﬁﬂ-(e,;’) £(6,j) = 76)
1

c-wj; else

Here, n is the number of reads in the cluster, ri is the j-th read as-
signed to the cluster with 7;; being the i-th base in said read. The
function f;(6, j) computes the posterior probability to observe the
allele 7;; in the read, given that the real allele was 6. The confusion
constant ¢ = % models the probability of observing each of the
remaining three alleles from {A,C,G, T} \ 0 in case of a miscalled
base. As weight for each base, we use the error probability w; ; of
read j at position 7, computed from the Phred score of the corre-
sponding base (as reported by the sequencer). In other words, for
one column, we examine each of the four alleles 6 € {A,C,G, T} and
compute the likelihood to observe the bases present in the column,
given that the real base was . The base written to the consensus
read is the allele with the highest likelihood, i.e. the allele with the
most supporting reads weighted by Phred score. An example for
this is illustrated in Figure 7.29.

58 github.com/facebook/rocksdb

59 DePristo et al., “A Framework for
Variation Discovery and Genotyping
Using Next-generation DNA Sequenc-
ing Data”, 2011.

% i, Mathematical Notes on SAMtools
Algorithms, 2010.

¢ Fennel and Homer, fgbio, 2017.

https://github.com/facebook/rocksdb

ANALYSIS OF DDRAD DATA 217

T Li(A) = Li(G) = Figure 7.29: Example of likelihood
computation for the alleles A and G
" 0.9999 (1/3-0.0001) for one second order cluster. Gray
bars denote reads with colored blocks
denoting bases (top) and error proba-
bilities (bottom) of the active column i.

Tj1 (1/3-0.1) 0.9 The likelihood for the allele A is high,
since two of the shown bases support
7 0.9999 (1/3 - 0.0001) this with low error probability. Like-

lihood computations for the alleles A
and G are shown on the right.

We compute an error probability @; for each position of the
consensus read as

3 Li(9)
Zee{ ACGT} Li(e) 77)

@ =1

where § is the maximum posterior from Equation 7.5.

For a singular read we retain both bases and quality values of
the input. Consider a read that contains the allele 8* at position i.
Assuming 0* was called with a Phred score of at least 2 (w < 0.75),
the likelihood L;(6*) = 1 — w;; is larger than for the other alleles
with L;(0) =c-w;; 60 # 0"

1
g c Wi <1-— wj1

= w1 < 3(1 — will)
= w1 < 3 - 3(4)1',1
= 40_)1"1 <3

3
w1 < Z

Consequently, 6* is selected as base for the consensus read. The
quality value of 6* is computed

. 1—w;
wi_1_3~%~will+1—wi,l
1 1—-w;q
wi1+1—-wj
=1-(1-wi)
= Wiy

and collapses back into w; ;. In our implementation we omit this
computation for singleton clusters by directly returning the input
read.

As an example for more than one read, consider a cluster with
two reads. At position i, the first read contains A with w;; = 0.001,

218 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

the second read contains G with w;, = 0.1. The likelihood values

A .0999

Lw) = (1—oaon) . 21 _ 00

(o) 2001 01 ~0.0001
3 3 9

0.001 0.0009

0.001 0.1 0.0001

are maximized by L;(A) = 0.0333, for which we compute the error
probability @; as:
0.0333

@i =1~ Gooe9 o000 . 00009 oooer = 001
3 t-9 T73 t79

We can see that the quality for the consensus allele A falls between
wi1 and wj».

By performing the estimation described above for all positions in
the reads, we compute the consensus read

P=(ly hi=0; (7.8)
with quality values

7= (q)iLo = 1 -@)Z, (7.9)

where m is the length of the input reads. This read is written as
output, alongside an annotation how many reads mere merged
into this consensus read. Since at this point the DBR has served its
purpose, it is not written to the new FASTQ file.

After each second order cluster has been processed, either by
merging it into a consensus read or by writing it to file as a single-
ton, the pipeline terminates. In the next section we show, how the
specified Levenshtein distances influence the results of the work-
flow.

7.4.3 Evaluation and Parameter Choices

While we have already shown in the previous section the positive

influence our PCR deduplication has on ddRAD analysis by elim-

inating singletons, we will now evaluate its influence on cluster

sizes. Additionally, we explain how we chose the default param-

eters. The analysis workflow described in this section®> was pub- 62 Timm, PCR Deduplication Analysis

lished on Zenodo and GitHub.%3 Workflow, 2021.
% github.com/HenningTimm/pcr_

The main technological factors influencing our PCR deduplica- deduplication_analysis_workflow

tion workflow are the length of the DBR and genomic sequence as
well as the expected error rate. Assuming the Illumina error model,
which introduces substitution errors with a probability of p, ~ 0.01,
we can estimate the number of errors expected to affect DBR and
sequence. For a PE read of length 2 - 100bp, with a DBR of length
13, we expect to see

|DBR| - p. = 0.13

github.com/HenningTimm/pcr_deduplication_analysis_workflow
github.com/HenningTimm/pcr_deduplication_analysis_workflow

ANALYSIS OF DDRAD DATA 219

sequencing errors within the DBR and

100 + 87
~ 100
errors within the genomic region. Consequently, we use d =
[0.13] = 1for the DBRand d = [1.87] = 2 for the genomic
sequence as the default parameter choices for the Levenshtein dis-

((2-100) — [DBR|) - pe =1.87

tances allowed during the respective clustering steps.

To evaluate the impact of these parameters, we simulated reads
with DDRAGE that contain a known amount of PCR duplicates.
Simulated datasets did not contain any HRLs, singletons, ID, or
dropout events, which could obfuscate the validation of the results.
Mutations simulated for the dataset were all homozygous. Apart
from that, we used default parameters, most notably a substitution
error rate of p. = 0.01, a coverage of 30, and the DBR sequence
NNNNNNMMGGACG (which has 16 348 possible configurations).

Figure 7.30 shows the number of actual non-duplicate reads per
locus before duplication, locus sizes including all reads, and locus
sizes after deduplication. The first two values were derived from
DDRAGE’s ground truth. For this we employed our python pack-
age DINOPY,* which offers convenient access to optimized and 64 Timm and Hartmann, Dinopy —
compiled input and output classes for FASTA, FASTQ, and other g\t]]‘; ;”};b(‘;?)”d output for Python and
file types for biological sequences. To compute coverage values af-
ter deduplication, we extracted the names of source loci for each
read from the FASTQ annotation written by bDRAGE. Using these,
we assembled a list of source loci for each second order cluster in
the FASTQ annotation of the deduplicated reads. We then analyzed
how many reads remained after deduplication and screened for
erroneously merged reads using DINOPY. Across all parameter
combinations, no erroneous merge (i.e. reads from different loci
merged into a single consensus read) was performed.

As illustrated in Figure 7.30, an increasing number of permis-
sible errors during first and second order clustering increases the
number of deduplicated reads. It can be seen that the maximal
Levenshtein distance permissible for the DBR clustering (1 in the
left and 2 in the right column) does not have a strong influence
on the distribution. This is to be expected, since the DBR takes up
only a small fraction of the read and hence has a low probability to
contain only one error. As shown above, the number of expected
sequencing errors within the DBR used for this evaluation is 0.13,
which is surpassed even by a Levenshtein distance of 1.

The number of permissible errors between sequences (max.
sequence distance 1 — 4, 6, and 8, shown along the rows) has a
stronger influence on the results. While the distribution of read
sizes is reduced even for a Levenshtein distance of 1, a notable
fraction of PCR duplicates remains in the data. For Levenshtein
distances 2 — 4, the distributions further approximate the ground
truth distribution. The locus size distributions for a maximal se-
quence distance of 6 and 8 most closely approximate the ground
truth. This trend can be expected to continue with increasing val-

220 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Max. sequence distance = 1 | Max. DBR distance = 1 Max. sequence distance = 1 | Max. DBR distance = 2

Max. sequence distance = 2 | Max. DBR distance = 1 Max. sequence distance = 2 | Max. DBR distance = 2

Max. sequence distance = 3 | Max. DBR distance = 1 Max. sequence distance = 3 | Max. DBR distance = 2

Max. sequence distance = 4 | Max. DBR distance = 1 Max. sequence distance = 4 | Max. DBR distance = 2

Max. sequence distance = 6 | Max. DBR distance = 1 Max. sequence distance = 6 | Max. DBR distance = 2

Max. sequence distance = 8 | Max. DBR distance = 1 Max. sequence distance = 8 | Max. DBR distance = 2

real real+pcr after_dedup real real+pcr after_dedup
Read Types Read Types

Figure 7.30: Size distribution of 100000 loci with an expected coverage of 30 for one individual, simulated by ppDRAGE. No HRLs,
singletons, and dropout events were simulated and all simulated mutations were homozygous. For all remaining parameters,
default values were used, including a substitution error rate of 0.01 and a read length of 100. The left (blue) distribution shows the
real locus sizes without any PCR duplicates. In the middle (orange), the distribution including PCR duplicates is illustrated. The
right (green) plot depicts the distribution of locus sizes after PCR deduplication. Each facet of the plot shows one combination of
maximum DBR distance (x-axis, 1 — 2) and maximum sequence distance (y-axis, 1 - 4, 6, 8).

ANALYSIS OF DDRAD DATA

ues, until overmerging starts to create large clusters. Note however,
that starcode restricts Levenshtein distances for clustering to be at
most 8. However, as shown by the upper tailing of the violins (and
especially the upper adjuncts, denoted as vertical gray lines), some
loci with an increased number of reads remain. This can occur for
single reads that receive a high number of sequencing errors and
are not associated to the same cluster in the second clustering step.

Figure 7.31 plots the simulated coverage for a locus (x-axis)
against its coverage after deduplication (y-axis). For a perfect dedu-
plication, all points would need to align on the red diagonal line.
Before any deduplication is performed, all loci are above or exactly
on the diagonal, depending on the number of PCR duplicates simu-
lated for the locus. This can be seen for low parameter values as in
the upper left facet of Figure 7.31.

With increasing parameter values, loci coverages shift towards
the simulated diagonal. For an increasing number of permissible
sequence errors, there are values which closely resemble the simu-
lated coverage. Most notably, a DBR distance of 1 with a sequence
distance of 6 and a DBR distance of 2 with a sequence distance of 4.
For these parameter combinations, coverages evenly scatter around
the diagonal, minimizing their bias. Beyond this point, most loci
show a lower coverage after deduplication than we originally simu-
lated. This is a sign of overmerging. The effect of overmerging loci
is stronger for a DBR distance of 2, resulting in a higher variance
around the diagonal. This is due to the fact that a Levenshtein dis-
tance of 2 between two DBRs greatly increases the number of col-
liding DBRs. Since both DBRs are of length 13, with a Levenshtein
distance of 1 there are only 13 - (opna — 1) = 39 possible collid-
ing DBRs. These are those with a Levenshtein distance of 1, since
with only one edit operation, we can only perform replacements
while maintaining a length of 13. If we increase the permissible
Levenshtein distance to 2, we can perform

1
(;) '(UDNA*1)278~3:234

replacements and additionally up to
1312 - opNa = 624

combinations of deletions and insertions. This models removing
one of the 13 bases and then adding one of the four possible bases
at a different position. Note, that this is an upper limit, since de-
pending on the DBR sequence compositions some of these se-
quences will be identical. Using a DBR distance of 2, the number
of colliding DBRs is increased from 39 to 858, thus increasing the
chance of collision by an order of magnitude.

Reads from the same locus with different DBRs, which are still
within a Levenshtein distance of 2, are assigned to the same first
order cluster and are subsequently merged into a single read af-
ter the second order clustering. This effect increases with higher

221

222 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Locus Coverage
After Deduplication

Locus Coverage Locus Coverage Locus Coverage Locus Coverage
After Deduplication After Deduplication After Deduplication

After Deduplication

Locus Coverage
After Deduplication

Max. sequence distance = 1 | Max. DBR distance = 1

%}

Max. sequence distance = 1 | Max. DBR distance = 2

70 +
60
50 1
40 +
30 1
20 1
10 A
0-

Max. sequence distance = 2 | Max. DBR distance = 2

70 A
60
50 1
40 A
30 1
20 1
10 A
04

Max. sequence distance = 3 | Max. DBR distance = 1

Max. sequence distance = 3 | Max. DBR distance = 2

70 +
60
50 1
40 1
30
20 1
10 A
04

Max. sequence distance = 4 | Max. DBR distance = 1

Max. sequence distance = 4 | Max. DBR distance = 2

70
60
50 +
40 +
30
20
10 A

0

Max. sequence distance = 6 | Max. DBR distance = 1

Max. sequence distance = 6 | Max. DBR distance = 2

70 1
60
50 +
40 +
30 1
20
10 A

0

Max. sequence distance = 8 | Max. DBR distance = 1

Max. sequence distance = 8 | Max. DBR distance = 2

5 10 15 20 25 30 35
Simulated Locus Coverage

40

5 10 15 20 25 30 35 40
Simulated Locus Coverage

Figure 7.31: Illustration of simulated (x-axis) vs. deduplicated (y-axis) coverage for each simulated locus. As above, only one
individual was simulated, so that locus and individual locus coverage are identical. Each subplot illustrates one parameter combi-
nation. Max. DBR distance increases by columns and max. sequence distance by rows.

ANALYSIS OF DDRAD DATA 223

permissible sequence distance as well. When reads from the same
locus with different genotypes are assigned to the same first order
cluster, we risk merging reads from different genotypes. Therefore,
a conservative choice of parameters is advisable to avoid artificially
reducing the coverage of certain events.

7.4.4 Discussion

We have implemented an approach for PCR deduplication based on
a two-stepped clustering using sSTARCODE and using a maximum
a-posteriori estimator to generate consensus sequences. As shown
in the previous section, our approach is able to remove PCR du-
plicates from a simulated read dataset. Especially singleton reads
that only appear in the clustering computed by Stacks due to PCR
duplicates can be removed effectively.

We have chosen a maximal distance of 1 for DBR clustering
and 2 for sequence clustering as default parameters as a conser-
vative default. While our evaluation has shown, that more reads
are merged using a higher permissible Levenshtein distance for
sequence clustering, this approach mitigates overmerging. As over-
merging, we denote incorrectly merging biological variants, instead
of PCR duplicates. This is possible in the unlikely case, that reads
with a heterozygous variant are added to the same cluster as reads
from the same locus with the different allele. Using our default
parameters, differences that surpass the expected 1.87 sequencing
errors, like mutations introduced by the heterozygous allele, make
merging these reads unlikely. On the other hand, if these reads
were merged due to a high choice of permissible sequence Leven-
shtein distance, our quality value computation would reflect this.
Consider an allele introducing a single SNP. Since the reads carry-
ing the allele all support a different variant than is present in the
consensus read, the computed base quality is low due to a high
likelihood for both alleles.

A limitation to our approach is that it works best on SGS se-
quencing data due to their error model. Since (unaligned) TGS
reads contain indel errors, we cannot assure that the bases of a
cluster line up correctly using our current approach. Additionally,
recently DBRs helped to discover a new type of PCR errors—PCR

stutter—which are tandem repeats in low entropy regions.®> This 6 Sena et al., “Unique Molecular
Identifiers Reveal a Novel Sequencing

L. . . Artefact with Implications for RNA-
pose of PCR deduplication. Through the use of Levenshtein dis- Seq Based Gene Expression Analysis”,

kind of errors is functionally identical to indel errors for the pur-

tance for clustering, reads with small indels or PCR stutter errors 2018.
are sorted into the same cluster. Our approach can be adapted to

mitigate these errors by performing a multi sequence alignment

within each second order cluster. Read positions with detected

insertions or deletions can be excluded from the consensus read
computation. To quickly reduce problem size and identify loci af-

fected by this kind of error, we can pre-sort the multi alignment

224 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

by categorizing reads that share the same beginning and ending
g-grams.

Another problem is posed by the detecting of PCR substitution
errors. In contrast to sequencing errors, PCR errors occur in a sub-
set of reads, since once introduced, they are propagated through all
derived copies. Additionally, they do not usually show a low Phred
score, which further complicates their handling with our approach.
Depending on the PCR cycle in which the error is introduced, the
number reads presenting such an error can be used to distinguish
them from SNPs. For one diploid individual, the expected allele
frequency of a heterozygous mutation is 0.5, while the number of
copies for a PCR error is expected to be in the order of 2*, depend-
ing on the PCR cycle x in which it was introduced.®®

As a possible optimization for our approach, the performance of
the clustering could be optimized by using a locality sensitive hash-
ing approach. In our current workflow, the first clustering step cre-
ated |DBRs| cluster, which are then processed in a second cluster-
ing run. We have chosen this approach to control the memory use
and performance of STARCODE. Using an alignment free approach
for clustering would allow to create more candidate clusters based
on similarity of both DBR and sequence. Additionally, alignment
free approaches can be designed with a runtime independent of
the chosen similarity. This is a limiting factor for sTARcODE, which
increases greatly with increasing distance.®” An LSH approach
would also not suffer from the restrictions STARCODE imposes on
the maximum number of differences. In the section Outlook: Split
Sketches for Chimera and Null Allele Detection (p. 228) we describe
an LSH approach using split sketches for different parts of the same
sequence, which could reduce the clustering step to one pass.

Another possible optimization would be to restrict the clustering
steps to a Hamming distance of 1 instead of using Levenshtein dis-
tance. Based on the error model for Illumina sequencers, most se-
quencing errors are substitution errors, which can be modeled well
by Hamming distance, which can be computed more efficiently.

 More precisely, the number of copies
is expected to be (1 + 77)*, where 7 is
the efficiency of the employed PCR
process and described by the efficiency
of the four PCR phases—denaturing,
annealing, polymerase binding, and
target elongation—depending on the
PCR cycle (Booth et al., “Efficiency of
the Polymerase Chain Reaction”, 2010;
Louw et al., “Experimental Validation
of a Fundamental Model for PCR
Efficiency”, 2011).

67 Zorita, Cusco, and Filion, “Starcode:
Sequence Clustering Based on All-
pairs Search”, 2015.

8
Conclusion and Outlook

In this thesis, we provided an overview of similarity-based ap-
proaches for sequence analysis and presented as well as analyzed
new techniques. To close out our work with this chapter, we aggre-
gate our conclusions and sketch out potential future applications of
the techniques we described.

8.1 Conclusions

Locality Sensitive Hashing and MinHashing strategies in particular
have been used in the field of bioinformatics since their inception.
Nonetheless, in recent years this class of techniques experienced

a notable influx of biological applications. As we have shown in
Chapter 5, similarity and containment estimation through LSH
and MinHashing techniques are applied to a variety of biological
challenges in state-of-the-art analysis software. This is due in part
to the existence of large and ever growing amounts of sequencing
data, which lend themselves to reduced representation analysis
using sketches.

In Chapter 6, we analyzed the length distribution of segments
obtained with compressed winnowing, a sketching technique that
condenses repetitive regions, which are prevalent in biological
sequences. In contrast to the (robust) winnowing techniques as pre-

sented by Schleimer et al.” and Roberts et al.,*> our approach is able ' Schleimer, Wilkerson, and Aiken,
“Winnowing: Local Algorithms for

to mitigate the influence of repetitive regions by representing them ‘ i
Document Fingerprinting”, 2003.

with one sketch entry only. This is especially useful when using * Roberts et al., “Reducing Storage
winnowed segments to create reference indices, where many identi- Requirements for Biological Sequence
cal segments result in a high number of similar and uninformative Comparison”, 2004.
alignment targets. To analyze the influence of this modification, we

presented a recursive formula to compute the expected segment

length distribution of uniformly independently chosen random

hash values. Based on the expected distributions for random hash

values, we have shown that minimal hash values for g-grams com-

puted with compressed winnowing behave similar to randomly

chosen hash values for our experiments. Comparing the expected

distribution to simulated DNA sequences with different GC-content

as well as a selection of reference genomes, we could show, that our

226 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

approach is able to reduce the number of reported segments and
thereby the number of alignment targets.

Additionally, we evaluated different combinations of hash func-
tions and canonization strategies to judge their influence on the
generated segment length distribution. Our analysis has shown
that using most hash functions, the distribution of segment lengths
behaves as predicted by our expected distribution. While trivial
hash functions like unmodified 2-bit integer-encoded g-grams or
swap-mixed g-grams performed poorly, even a simple invertible
multiplicative hash function yielded results behaving similar to
randomly chosen hash values. We obtained the best results using
twisted tabulation hashing and mmh3. Considering canonization,
using max-canonical g-grams instead of min-canonical g-grams did
not offer an obvious improvement of segment length distribution.
While using max-canonical g-grams with trivial hash functions
reduced the number of segments with length 1 and adhered bet-
ter to the expected distribution than with min-canonical g-grams,
this coincided with a reduced number of segments with lengths
less than g. Across all experiments, segment lengths obtained with
non-canonical g-grams did show a behavior closer to the prediction
than with min- and max-canonical g-grams. This is due to the fact
that canonizing g-grams reduces the space of possible hash values.
Hence, especially in scenarios where short g-grams are required, it
can be beneficial to forego canonization when using MinHashing
techniques when this is feasible for the analysis.

As an application that could benefit greatly from this technique,
we outlined an index built upon multiple compressed winnowing
of a reference database. Using multiple winnowings in combination
with segment length information allows to narrow possible align-
ment locations, resulting in a smaller input size for the subsequent
local or semiglobal alignment computation.

Further, we presented in Chapter 4 a cache efficient hash table—
the bit-packed hopscotch hash table (BPHT)—which can be used to
realize such an index. By combining bit-packing and quotienting,
we were able to reduce the number of compulsory cache misses
caused by accessing a separate hop bit array. We have shown that
our implementation can speed up the runtime for lookups with
respect to a reference implementation using two separate arrays.
While we made restrictive assumptions for the implementation
presented in this work, for example restricting hash table sizes to
powers of 2 and hash values to [23?], these limitations are not inher-
ent to the described architecture. Through the use of word-packing
we can break up the reliance on entries to fit into 64-bit integer
values which allows the use of arbitrary size address, remainder,
and value spaces. While this technique introduces a small overhead
of computations to access array entries, we can assume this will
not significantly impact the runtime of our data structure. Since
our evaluation has shown that even the use of computationally ex-
pensive hash functions did not influence the runtime in a notable

way, we can assume the computation to be dominated by input and
output operations.

Finally, in Chapter 7 we described ddRADseq analysis as an
application of similarity based analysis techniques. For this, we
presented our simulation software bDRAGE, an analysis workflow
for ddRADseq data, and the PCR deduplication approach used for
this workflow. Analyzing ddRADseq data relies on similarity-based
approaches, since most of the time no reference genome is available
for the analyzed species. First, we described bbRAGE, our simula-
tion software that can generate ddRADseq datasets that model the
biological and technological effects prevalent in ddRADseq reads.

Using data simulated with DDRAGE as ground truth, we imple-
mented and evaluated a ddRADseq analysis workflow employing
the STACKs software for the main analysis. We have shown that
the results yielded by Stacks vary by a large amount based on the
provided parameters. A core feature of our pipeline is the ability to
explore multiple sets of these parameters in parallel, while reusing
input data from a single run of its preprocessing phase. Through
the analysis of simulated reads, we were able to identify patterns
that emerge for certain read configuration when comparing runs
with different parameters. For example a decreasing number of
detected loci with increasing minimal required coverage m points
towards a low coverage data set, while a drastic reduction in the
number of detected loci between raw and deduplicated analysis
runs can indicate a dataset with high genetic diversity. This allows
us to pick parameters that best suit the dataset at hand.

Merging loci that were identified as distinct during the usTAcks
and csTAcKks phases of the STacks analysis has proved to be the
most influencing task. Through the modular architecture of our
workflow, we can replace single parts of the pipeline with different
software, as long as it generates compatible output files. This would
allow us to replace the csTACKS clustering with a custom clustering
approach leveraging a MinHashing technique to avoid the merging
step by joining loci in the first place.

Finally, we implemented a PCR deduplication software, which
we have shown to improve the results of the STAcks analysis across
all runs. We have shown that through the early removal of PCR
duplicates, we were able to greatly reduce the number of candidate
loci that need to be processed in the analysis pipeline. To be as ef-
fective for longer reads than for the SGS short reads we analyzed in
our evaluation, we need to replace the clustering approach, which
can only deal with a limited Levenshtein distance. An approach
that could incorporate the detection and removal of PCR chimeras
into PCR deduplication is outlined as future research in the fol-
lowing section. Additionally, this approach is also able to solve an
open challenge in ddRADseq analysis: the detection of alternative
sequence null alleles.

CONCLUSION AND OUTLOOK

227

228 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Initial sequence Continuing sequence

Chimericread

8.2 Outlook: Split Sketches for Chimera and Null Allele Detec-

tion

Over the course of this work, we introduced two biological effects
that are characterized by the recombination of sequence suffixes
and prefixes. Both chimeric reads (cf. Section 2.4.3) and alternative
sequence Null Alleles (NA, cf. Section 7.1.3) exhibit the following
pattern:

® Reads share a common prefix, but a different suffix (or vice
versa).

® The split occurs exactly (for ddRADseq NAs in paired-end
reads), or approximately (for certain kinds of chimeric reads)
in the middle of read sequences.

* We want to identify read clusters for which at least one of the
two halves are identical.

An illustration of such reads is shown in Figure 8.1. We collectively
refer to this kind of reads as conjoined reads and to a set of reads
caused by conjoined read events as conjoined read clusters.

For ddRADseq reads with an alternative sequence NA, either the
p5 or the p7 sequence of a paired-end read are identical to other
reads from the same locus (within the same or across multiple
individuals). To retain the information for at least the unaffected
part of the read pair, we require to identify a locus matching only
one of the read parts. An example of reads showing this pattern is
illustrated in Figure 8.2.

Chimeric reads occur during PCR amplification when a prema-
turely terminated PCR copy reanneals with another sequence and
continues with that sequence.3 For a specific class of reads used for
taxonomic classification, this break point is located in the middle
of a genomic fragment, resulting in chimeric reads. Reads obtained
from amplicon sequencing of the latter part of the 185 rRNA gene
and the first part of the internal transcribed spacer (ITS) comprise
two variable regions flanking a strongly conserved region (see Fig-
ure 8.3).

The two variable sequence parts—the 185 and the ITS sequences—

allow taxonomic classification, while the strongly conserved region
enables primers to bind. Due to this, there is a high chance that an
incomplete copy is continued during the next PCR cycle combining

Figure 8.1: Structure of conjoined
reads caused by PCR chimeras. The
combined read shown below com-
prises a prefix of the teal (left) and a
suffix of the purple (right) read. For
conjoined reads caused by ddRADseq
NAs (or incomplete digestion), we
would observe only one of the matches
(depending on the location of the

NA—p5 or py).

I p7
g
5
~
f Sequencing f
| u 0
= m =
= = £
| u 50
L | IS
- = =

Figure 8.2: Structure of conjoined
reads caused by an alternative se-
quence p7 null allele. Reads generated
from the affected fragments show a
different p7 sequence (shown in teal)
than their unaffected counterparts.
Both groups of reads share the same
p5 read sequence.

3 Haas et al., “Chimeric 165 rRNA
Sequence Formation and Detection in
Sanger and 454-Pyrosequenced PCR
Amplicons”, 2011.

Reads

18s rRNA ITS

Strongly con-
served region

Figure 8.3: Structure of reads obtained
from 18S amplicon sequencing. Reads
span the suffix of the 185 rRNA, a
strongly conserved region, and an
internal transcribed spacer (ITS). Dur-
ing PCR amplification, the elongation
of the sequence can abort at the con-
served region and finish in a later cycle
with a different sequence.

CONCLUSION AND OUTLOOK

two 18S and ITS sequences that are not contained in the input data,
thus creating a chimeric read.

For both cases, we are interested in identifying the deviant
reads and relate them back to their parent reads, i.e. the unaffected
ddRADseq locus or the two similar other DNA fragments for PCR
chimeras. We propose identifying two classes of similarity matches
to identify this relation: weak matches, which have a high similarity
to only one half of another read, and strong matches, which are
similar to both halves of the other sequence. A high similarity, in
this case, refers to a similarity threshold taking the specific sequenc-
ing technology, sequence length, etc. into account.

Solving this with plain k-mins or bottom-k sketching is not reli-
able, since a resemblance 7(x;, x;) = 0.5 does not offer any infor-
mation about which parts of the reads x; and x; are similar. Using
winnowing techniques mitigates this problem, but we still cannot
completely rule out that minimizers of the first and the second part
Cross over.

Hence, we propose explicitly encoding the locality information
using a split sketch

5% (x) = (8" (x), (%)) = (S(xpoa), S(xpp))

where x is a read sequence, { = |x|,and b = |¢/2] denotes the
break point within the sequence. Sketches for the prefix and suffix

229

of x are denoted by S*(x) and S (x) respectively.# For the remain- 4 The two parts of the sketch denoted

by S without any superscript can

. . . . be realized by k-mins or bottom-k
Note that when referring to paired-end ddRAD reads in this con- sketches.

der of this section we will assume them to be bottom-k sketches.

text, we assume x to be the concatenated p5 and py sequence which
both have a length of b.

Using such split sketches allows confidently identifying matches
from which the structure of conjoined read clusters can be derived.
If, for example, only one half of the sketch of a sequence x; shows
a high similarity to a sequence x;, e.g. 7(S* (x;), 5" (xj)) =~ 1but
(8" (x:),5"(xj)) ~ 0, we can be sure that x; and x; have a match-
ing prefix. Based on this, we can define a set of rules (shown in
Table 8.1) to derive weak and strong links between reads from their
split sketch similarity. From now on, we focus on chimeric reads
since these express more complex behavior than NA reads. We will
return to NA reads later in this section.

A chimeric read cluster is characterized by weak and strong
links, where a weak link denotes a match of only S* or S, and a
strong link denotes a match of both. Computing weak and strong
links allows the identification of read cluster groups that follow the
pattern illustrated in Figure 8.4. Identical reads fall into strongly
linked connected cliques, which are interconnected by weak links.

Notice, that in practice we are are not interested in identifying
cliques (a problem that is NP-complete for general graphs). We
are actually interested in connected components in the graph G =
(R,ESUEY), where E® and E% denote edge sets that model strong
and weak links respectively. From this information, we derive a

230 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Similarity Link type Interpretation

§* 1 §%1 = strong chimeric read vs. chimeric read or
— strong unaffected read vs. unaffected read

3
o

— weak Chimeric read vs. unaffected read
weak Chimeric read vs. unaffected read

e

n |l n
|3

— |+ =

nl|lwn n
I

— | =«
I

none no similarity

tiered clustering of reads as illustrated in Figure 8.5, i.e. a clique
graph in which cliques act as nodes and weak connections between
cliques as edges.

The presence of different kinds of original and chimeric reads
manifests in different structures in the clique graph. We start from
the fact that a clique with a weak connection to only one other
clique has to comprise original reads, since a chimeric read requires
two (similar, hence connected) parent reads: one read containing
their prefix and another one containing their suffix sequence. In the
simplest case, as illustrated in Figure 8.5, we can identify chimeras
as cliques that possess weak links to two other cliques, which them-
selves are only weakly connected to this one clique. More com-
plicated patterns arise for original reads that form chimeras with
multiple other reads or even with other chimeras. An example for
such a structure with three different reads is shown in Figure 8.6.
For such instances, we need to identify which reads (i.e. cliques) are
original and which are chimeric. This problem is similar to find-
ing a vertex cover on the clique graph, where original read nodes
are selected into the vertex cover. While the vertex cover problem
without restrictions is NP-complete, we can impose the following
restrictions:

¢ Nodes with a degree of one have to be selected into the vertex
cover.

Table 8.1: Different links for chimeric
reads that can be derived from sim-
ilarity patterns in split sketches of
two reads. The entries in the simi-
larity columns, e.g. $™ 1, are short
hand notation for a high similarity

of r(§*"(x;), 5" (xj)) > t for two
sequences X;, X; and a given similarity
threshold t.

Figure 8.4: Clustering of chimeric
reads. Reads are shown as circles with
color denoting their sequence of origin.
Thick lines == symbolize strong
links contained in the edge set ES and
thinner lines — symbolize weak
links contained in EY.

Unaffected reads

/
<\

Chimericreads

¢ Nodes selected into the vertex cover must have a distance of at
least two.

e Every chimeric read node is connected to at most two original
read nodes.

However, the influence of these restrictions, as well as the size and
benevolence of the instances resulting from actual datasets, re-
main open. Depending on the presence of all chimeric combina-
tions of such reads, resolving which reads are original and which
are chimeric might not be possible based solely on graph struc-
ture. However, secondary information like the size of cliques—
original reads can be expected to possess more duplicates than PCR
chimeras—could allow a heuristic approach.

More formally, we propose the following approach to detect
chimeric reads: Consider an input file containing a set of reads
‘R. To avoid all-vs-all comparison, we propose computing link
information using the following process:

1. Iterate through R and compute the split sketch $**(x;) for all
reads x; € R. Store the sketches in two separate hash tables T*
and T for the head and the tail sketch respectively.

2. Create two linking arrays L% and LV with |LS| = [LY| = |R|.
These will be used to map read number (used as array index for
L) to a cluster representative (the entry stored in that slot of L)
using a leader clustering approach. Sketch x; € ‘R again (or reuse
the previously computed sketches) to retrieve all similar reads
for x; (using a similarity threshold of t). Query both T* and
T with each part of $**(x;) and collect reads that are strongly
and weakly linked to x; into a candidate list £ using the rule
set shown in Table 8.1. Check if an entry in £ has already been
assigned to a cluster by strong or weak links. If yes, then assign

CONCLUSION AND OUTLOOK 231

Figure 8.5: Illustration of a conjoined
read cluster. Mirroring the structure of
Figure 8.1, the lower cluster contains
strongly connected chimeric reads,
while the upper clusters contain
strongly connected non-chimeric reads
that served as parents for the chimeric
read. The circles and interconnecting
weak links (shows as thin lines)
describe the induced clique graph.

Figure 8.6: Illustration of a complete
clique graph for three reads and all
their chimeric combinations. Each pair
of colored blocks denotes a clique,
with the color of blocks denoting a
specific sequence. Pairs with match-
ing colors denote original reads,

those with mismatched colors denote
chimeric reads. Solid edges between
nodes all denote weak similarity, with
edges between original and chimeric
reads drawn as thick lines. The edges
shown as dashed lines denote weak
similarity between chimeric reads.

232 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

1- g Figure 8.7: Exemplary weight func-
- tions for head and tail sketch.
3
0.5 -
= G
0- =

0 /2 /
Read Position

all identified candidates to this cluster, if not create a new cluster
with x; as representative and assign the remaining reads to this
cluster. If conflicts arise, i.e. if entries of £ have been assigned

to different clusters, either merge these clusters, mark them as
conflicting and revisit them later to resolve these conflicts, or
reject the assignments all together. The best strategy to resolve
these conflicts remains as future research.

3. Using L% and LY, identify connected components within the
read graph G = (R, E® U EV). Within each connected component,
identify strongly connected subsets (i.e. connected components
using only strong edges) and subsequently identify the structure
of weak links between these subsets to construct a clique graph.
Cf. Figure 8.5 for an example.

4. For each connected component of the clique graph, distinguish
original and chimeric reads, as described above.

To adapt this workflow to the detection of alternative sequence NAs
in ddRAD data, we only need to adapt the last step of the analy-
sis. For this case, we only expect pairs of strongly connected read
subsets. While a locus with both a p5 and a py alternative sequence
NA is possible, it is highly unlikely and the case where only the p7y
read is affected can be expected to be the most prevalent). Conse-
quently, the resulting clique graphs can be expected to only contain
small connected components, resulting in problem instances that
can be solved quickly.

Notice that this approach can also be modified to additionally
perform PCR deduplication. To achieve this, we need to exclude
the degenerate base region (DBR) from the reads. This can either
be done explicitly by cropping this sequence and using it in a sub-
sequent step to discern PCR duplicates within one cluster. Alterna-
tively the DBR can be incorporated into a third part of a split sketch
that is only evaluated within a cluster. Since clusters are already se-
lected to share similar sequences, they can be expected to be small
problem instances for which an explicit comparison is valid. Note
that this is different to the approach that we followed in Section 7.4,
where we first grouped input reads by their DBR to achieve smaller
subproblems. However, based on current read and DBR lengths,
the benefit from using a MinHash technique for DBR comparison is
limited.

CONCLUSION AND OUTLOOK

For cases where the break point is not as clear as with the exam-
ples given above, we can employ a weighted MinHash approach for
the sketch generation (cf. Section 5.10 p. 116f). Using the distance to
the read start and read end as weights as illustrated in Figure 8.7.

While we already implemented a working prototype using this
approach for chimera detection, its further development and evalu-
ation as well as its application for NA detection and PCR dedupli-
cation remain for future research.

233

A
Hash Function Code Samples

//! Integer Encoding

const ENCODING_2BIT: [u32; 256] = [

// 0b0OO, 0ObO1, OblO, and Obll for

// 65 (A), 67 (C), 71 (G) and 84 (T)

// respectively. Zero for all other values.
1

pub struct IntegerEncoding<'a> {
seq: &'a [u8],
g: usize,
pos: usize,
value: u32,
mask: u32,
bits_per_char: usize,

impl<'a> IntegerEncoding<'a> {
// Initialization [...]

fn next_encoding(&mut self) -> u32 {
self.value <<= bits_per_char;
let enc = ENCODING_2BIT[
self.seq[self.pos + self.q - 1] as usize
1
self.value |= enc;
self.value &= self.mask;
self.value

Listing 2: Rust implementation of 2-bit integer encoding for DNA
sequences. The ENCODING variable holds a stack-allocated integer
array mapping byte values to integer values specific for the alpha-
bet. This code omits the initialization of the first full g-gram in the
constructor.

236 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

//! Hlin Hashing

use rand;
use rand::Rng;

#[derive(Clone)]
pub struct HlinParams {
ab4: ub4,
b64: ub4,
al28: ul2s,
b128: ul2s,
}

impl HlinParams {
pub fn new () -> Self {
HlinParams{
ab4: rand::random::<u64>(),
b64: rand::random::<u64>(),
al28: rand::random::<ul28>(),
b128: rand::random::<ul28>(),

pub fn with_params(a64: u64, b64: u64, al28: ul28, bl28: ul28) -> Self {

HlinParams{
ab4: ab64,
b64: b64,
al28: al2s,
b128: b12s,

}

/// H*{lin} hash function for 32-bit keys and hash values
pub fn df_32(x: u32, params: &HlinParams) -> u32 {
((params.a64.wrapping_mul(x as u64).wrapping_add(params.b64)) >> 32) as u32

/// H*{lin} hash function for 64-bit keys and hash values
pub fn df_64(x: u64, params: &HlinParams) -> u64 {
((params.al28.wrapping_mul(x as ul28).wrapping_add(params.bl28)) >> 64) as u64

Listing 3: Rust implementation of the 7—[121?2/232,264 and leié}l,264,2128
subfamilies of hash functions. An instance of the HlinParams struct

represents one hash function h € H".

HASH FUNCTION CODE SAMPLES 237

//! Twisted Tabulation Hashing

/// Split 32-bit value into four 8-bit integers
/// This could also be realized using std::mem::transmute
fn byte_chunks (x: u32) -> [u8; 4] {
[(x & OxOOOOOOFF) as u8, ((x & OxOOOOFFOO) >> 8) as ul,
((x & OxO00FFO000) >> 16) as u8, ((x & OxFFOOOOOO) >> 24) as u8
]

/// 32-bit simple tabulation hashing
pub fn tab32_simple(x: u32, T: &[[u32; 256]1; 4]) -> u32 {
let mut h: u32 = 0; // initialize hash value as 0

// iterate over all chunks
for (i, c) in byte_chunks(x).iter().enumerate() {
h = T[i as usize][+*c as usize];

return h

/// 32-bit twisted tabulation hashing
pub fn tab32_twisted(x: u32, T: &[[u64; 256]; 4]) -> u32 {
let mut h: u6d4 = 0; // initialize hash value as 0

// iterate over first three chunks

let chunks = byte_chunks(x);

for (i, c) in chunks[0..3].iter().enumerate() {
h = T[i as usize][*c as usize];

// factor in last chunk

let ¢ = chunks[3] * (h & OxFF) as u8;
h ~= T[3][c as usize];

h = h.overflowing_shr(32).0;

return (h as u32)

Listing 4: Rust implementation of simple and twisted tabulation
hashing. Generating and filling the table T is not shown.

238 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

//! Swap Mixing

/// Bit masks to extract high and low words of a 64-bit integer
const LOW: u64 = 0b_00000000_00000000_00000000_00000000_11111111 11111111 11111111 11111111;
const HIGH: u64 = 0b_ 11111111 11111111 11111111 11111111 00000000_00000000_00000000_00000000;

/// Swap low and high words of a u64 integer value.
pub fn swap_words_q (hash: u64, q: u64) -> u64 {

let low;

let high;

if q == 32 {
low = LOW;
high = HIGH;

} else {

low = 2 u64.pow(q as u32) - 1;
high = (2 u64.pow(2 * q as u32) - 1) ~ 2 u6d.pow(q as u32) - 1;
}
let low = hash & low;
let high = hash & high;
return (low << q) | (high >> q)

Listing 5: Swap mixing, a simple hash function used for the evalu-
tation of segment length distributions in Chapter 6.

B
Additional Figures for Segment Length Distribution

Segment Length Distributions for w =50, g =31
canonicity = non canonicity = min canonicity = max
0.125

0.100
0.075

0.050

Difference
gz =4y

0.025 I
0.000 - L S— - . - .

—0.025

0.125
0.100
0.075
0.050

Difference
dems = Jy

0.025

0.000 - W TTEEE - [T Liha 1
—0.025

0.125
0.100
0.075
0.050

Difference

0.025

parsimip9qe) = Jy

0.000 - -

—0.025

0 10 20 50 >w 0 10 20 30 40 50 >w 0 10 20

30 40 30 40 50 >w
Segment Length Segment Length Segment Length

Figure B.1: Differences between an empirically computed segment length distribution and the predicted segment length distribu-
tion 1}‘5238(1)%800_ This plot shows the differences for the first three rows of Figure 6.14. Empiric values were computed on 31-grams
with a window of size w = 50, generated from 10 simulated genomes with a GC-content of 0.5 and a length of 100000 000. All plots
in one column share the same canonicity (non, , max), while all plots in one row share the same hash function. Bars denote the
difference between the empiric and the predicted distribution, i.e. bars above the x-axis denote that more segments than expected
were found for the specific segment length. Both for the empirical and the predicted distribution, all values > w are collected into
a single bar on the right side of the plot. In this case, no such values are present.

For both 2-bit encoding and swap mixing, the number of segments with length 1 is notably higher than predicted. Addition-
ally, for 2-bit encoding with max-canonical g-grams, while the number of segments of length 1 is less pronounced, this effect
is also present for segments of length 2 and 3. For the remaining segment lengths computed using these hash functions, most
segment lengths occur less frequently than predicted. Note, that for the twisted tabulation hash function, deviations from the
predicted distribution were too small to render on this scale, leaving this plot virtually empty.

240 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Segment Length Distributions for w =30, g =31

canonicity = non canonicity = min canonicity = max
107!
— — i
>10-2 TTTTTTIT T M—‘W""‘-w—v-.w—-a-. TITrree -
= -
5 I
©1073
g ¥
a10* =2
10-° : :
107!
R - -
21072 TITTTTTTTITT T - =S
3 . I
810 2
o [
a 1074 °
107° : ;
107! =
I
21072 T — "
2 g
Qo
-3
10 2
2 =
a 1074 &
@
®
10-5 Q
0 5 10 15 20 25 3 >w 0 5 10 15 20 25 30 >w O 5 10 15 20 25 30 >w
Segment Length Segment Length Segment Length
Figure B.2: Length distribution of segments (colored bars) on 31-grams with a window of size w = 30, generated from 10 simu-
lated genomes with a GC-content of 0.5 and a length of 100000 000. The y-axis is logarithmically scaled. All plots in one column
share the same canonicity (color), while all plots in one row share the same hash function. The expected distribution ¥33%3%% is
shown as black points. Both for the empirical and the expected distribution, all values > w are collected into a single, darker bar
(or point for the expected value) on the right side of the plot. In this plot, no such segments are present.
Segment Length Distributions for w =100, g =31
canonicity = non canonicity = min canonicity = max
107!
I
2102 z
% I
2107? S
& &
104
107 . .
107!
21072 =
3 | [
[P "
g0 5
a ©
107
1073 -
107t =
I
210 [e T g
=S e AN e e ey N 11 1 A e 3
2 eed (A S
21073 2
2 2
104 g
[}
103 % = =
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Segment Length >w Segment Length >w Segment Length >w

Figure B.3: Length distribution of segments (colored bars) on 31-grams with a window of size w = 100, generated from 10 sim-
ulated genomes with a GC-content of 0.5 and a length of 100000 000. The y-axis is logarithmically scaled. All plots in one column
share the same canonicity (color), while all plots in one row share the same hash function. The expected distribution ‘Y%gggggo is
shown as black points. Both for the empirical and the expected distribution, all values > w are collected into a single, darker bar

(or point for the expected value) on the right side of the plot. In this plot, no such segments are present.

GC-content = 0.0

107t
10-2 ""-----......
1
1
1
: “““ 1
107!
; 102 BT *eeenn,)
3107 -3
ft’ 1074
107°

107t

Probability
%939

1
@

102
1073

Probability

x 104
107°

bability

1072

bility

fﬂloB

rob.

a 104

103

1071
1072

>
£
o
©
a
=

o
a 1074

1071
102
1073

Probability

1074

107°

1071
1072

obability

10 3
n. 1074
107

30 >w 0
Segment Length

I
]
:)
I .

30 >w

ADDITIONAL FIGURES FOR SEGMENT LENGTH DISTRIBUTION 241

Segment Length Distributions for w =30, g =17

GC-content = 0.5

[
[T
[
Il
]
Il

GC-content = 0.25

N
T
m

O>w 0

Segment Length Segment Length

GC-content = 1.0

GC-content = 0.75

m i
M
m
m
.
[Wi
L

30>w 0
Segment Length

Segment Length

Figure B.4: Distribution of segment lengths for random sequences of length 100 000 000 for multiple GC-contents (columns) with

w = 30and g =

17. Each row contains plots for a combination of hash function and canonization strategy, with rows using the

same canonization strategy grouped by color. As before, all segments above length w are aggregated into one bar.

30 >w

uou+31qz = uoued+jy

UOU+P3ISIMIF9Qe] = Uoued+JY

ulWw+110Z = uoued+jy

UIW+Pa3SIMIF9Qe] = UOUBI+JY UlW+EYWW = UOUBI+JY

XeW+PaISIMIp9Qe) = UOURD+JY XBW+1IGZ = Uoued+jy

242 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR

BIOLOGICAL SEQUENCE ANALYSIS

Segment Length Distributions for w =30, g =11

GC-content = 0.0 GC-content = 0.25 GC-content = 0.5
102 Tereeerane,] iiteesee.,,. | l v
1073
1074
107°
107t

10~ 2 I ’
1073
x 104
1075 !
1

102 eeead Tt eeeseed ii I
103
T 1074
10-%
2102 | : ‘ | ‘ :
5 3
®10-
[3
a 1074

103
21072 ‘ | : i | : ‘ "
5 3
& 10-
[
a 1074

107°

1071

Probability
—
<

Probability
1

,_‘
S)
L

Probability

Probability

Segment Length Segment Length Segment Length

GC-content = 0.75 GC-content = 1.0

THT. T
.
T, T
]
]

102 ‘ : | :
1073
1074
1075
21072
5 -3
% 10
& 10
1075

30 >w 0 30 >w 0 30>w 0 30>w 0 30 >w

Segment Length Segment Length

Figure B.5: Distribution of segment lengths for random sequences of length 100 000 000 for multiple GC-contents (columns) with

w = 30 and g = 11. Each row contains plots for a combination of hash function and canonization strategy, with rows using the

same canonization strategy grouped by color. As before, all segments above length w are aggregated into one bar.

uou+31qz = uoued+jy

UOU+P3ISIMIF9Qe] = Uoued+JY

ulWw+110Z = uoued+jy

UIW+Pa3SIMIF9Qe] = UOUBI+JY UlW+EYWW = UOUBI+JY

XeW+PaiSIMIp9ge) = UOURD+JY XBW+1IGZ = Uoued+jy

ADDITIONAL FIGURES FOR SEGMENT LENGTH DISTRIBUTION 243

Segment Length Distributions for w =50, g =31

hf = 2bit hf = mmh3 hf = tab64twisted
Q
1071 3
> 3
£10°? TTHTR il 3
E I
21073 3
S 5
1070 2
105 ! ! | ¢
10-? a
21072 T T —— 3
H | 3
© o
21073 I
8 =
1074 e
oo
10°°
10-? @
> T e —— =1
2102 TTITTT T T o
- it E
81072 I
S =
a
1074 S
I3
! | l
;]
10-? H
S e 3
£107 ey SRS S ®
= — Il
© . T
g 103 &
a Q.
107 s
o
10 5
0 10 20 30 40 50 >w 0 10 20 30 40 50 >w 0 10 20 30 40 50 >w

Segment Length Segment Length Segment Length

Figure B.6: Segment length distributions for reference genomes (rows) using different hash functions (columns) and non-canonical
31-grams. The empirical segment length distribution is shown as bars with the expected distribution shown by black points. All
segment lengths larger than w are aggregated into a single bar with darker shade on the right of each facet.

Segment Length Distributions for w =50, g =31

0T, I

|
A, W, o
[, AR, D0mo
“““““““““““““““““ /[N

Segment Length Segment Length Segment Length

107t

Probability

snyjuexw = awouab

Probability
e e
9%
geby = awouab

.ﬂ
2

g
g 8

Probability
o
o o
FO—
sdoy = awouab

-
=)
o

-2

wnuedpjeyd = sawouab

Probability

[
o o o o o
s L4 &
(=}
e
——
iy
O —————
N —
o
) —
o

Figure B.7: Segment length distributions for reference genomes (rows) using different hash functions (columns) and min-canonical
31-grams. The empirical segment length distribution is shown as bars with the expected distribution shown by black points. All
segment lengths larger than w are aggregated into a single bar with darker shade on the right of each facet.

244 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Segment Length Distributions for w =50, g =31
hf = 2bit hf = mmh3 hf = tab64twisted

0, W,
0, e
00, W,
U0y O T

0 40 5 30
Segment Length Segment Length Segment Length

Probability
=
o
&
snyjuexw = awouah

P
2

Probability
=
Q

,_.
o
IS

gebhy = awouab

Probability
-
2

=
o
1
i
sdoy = awouab

Probability

,_.
o
1
IS
wnuedpjeyd = awousb

,_.
1)
&

Figure B.8: Segment length distributions for reference genomes (rows) using different hash functions (columns) and max-canonical
31-grams. The empirical segment length distribution is shown as bars with the expected distribution shown by black points. All
segment lengths larger than w are aggregated into a single bar with darker shade on the right of each facet.

C
File Graph for our ddRAD Analysis Workflow

246 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

trim_p7_spacer
< input
<input function>
output -
trimmed-spacer/{unit}.2.fq.gz

!

generate_consensus_reads
< input barcodes

<input function>
trimmed-spacer/{unit}.2.fq.gz

output -
output - .
barcodes/{unit}.tsv
dedup/{unit}.consensus.1.fq.gz
dedup/{unit}.consensus.2.fq.9z
extract
< input

barcodes/1.tsv
barcodes/2.tsv
dedup/1.consensus.1.fq.gz
dedup/1.consensus.2.fq.gz
dedup/2. consensus . 1.fq.gz
dedup/2. consensus.2.fq.gz

output -
extracted/I1.1.fq.gz
extracted/I1.2.fq.gz
extracted/I2.1.fq.gz
extracted/I2.2.fq.g9z
extracted/I3.1.fq.g9z
extracted/I3.2.q.gz

trim_residue
< input
extracted/{individual}.2.fq.9z
output -

trimmed-residue/{individual}.2.fq.gz

concatenate_read_files
< input
extracted/{individual}.1.fq.gz
trimmed-residue/{individual}.2.fq.gz
output -

concatenated/{individual}.fq.gz

force_same_length
< input
concatenated/{individual}.fq.gz
output -
trimmed/{individual}/{individual}.fq.gz

tsv2bam ustacks

Figure C.1: SNAKEMAKE filegraph for the preprocessing phase of our ddRADseq analysis workflow. The test dataset shown here
contains three individuals I1, I2, and I3, from two units unit1 and unit2. Detailed descriptions of the single steps can be found in
Section 7.3.1. Continued on page 247.

FILE GRAPH FOR OUR DDRAD ANALYSIS WORKFLOW 247

force_same_length

output -
trimmed/{individual}/{individual}.fq.gz

< input

trimmed/{individual}/{individual}.fq.gz

ustacks

output -
ustacks/M={max_individual_mm}.m={min_reads}/{individual}.alleles.tsv.gz
ustacks/M={max_individual mm}.m={min_reads}/{individual}.snps.tsv.gz
ustacks/M={max_individual mm}.m={min_reads}/{individual}.tags.tsv.gz

< input

ustacks/M={max_individual_mm}.m={min_reads}/I1.tags.tsv.gz

cstacks

ustacks/M={max_individual mm}.m={min_reads}/I2.tags.tsv.gz
ustacks/M={max_individual mm}.m={min_reads}/I3.tags.tsv.gz

output -
stacks/n={max_locus_mm}.M={max_individual_mm}.m={min_reads}/catalog.alleles.tsv.gz
stacks/n={max_locus_mm}.M={max_individual_mm}.m={min_reads}/catalog.snps.tsv.gz
stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/catalog.tags.tsv.gz

< input

stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/catalog.tags.tsv.gz I i n k ustac kS
ustacks/M={max_individual mm}.m={min_reads}/I1.tags.tsv.gz
ustacks/M={max_individual mm}.m={min_reads}/I2.tags.tsv.gz

sstacks

< input

ustacks/M={max_individual mm}.m={min_reads}/{individual}.{type}.tsv.gz

ustacks/M={max_individual mm}.m={min_reads}/I3.tags.tsv.gz

output -

output -
stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/{individual}.{type}.tsv.gz

stacks/n={max_locus_mm}.M={max_individual_mm}.m={min_reads}/Il.matches.tsv.gz
stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/I2.matches.tsv.gz
stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/I3.matches.tsv.gz

'

tsv2bam
< input
stacks/n={max_locus_mm}.M={max_individual_mm}.m={min_reads}/I1l.matches.tsv.gz t
stacks/n={max_locus_mm} .M={max_individual mm}.m={min_reads}/I2.matches.tsv.gz population map . eonn
stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/I3.matches.tsv.gz — © input
stacks/n={max_locus_mm}.M={max_individual _mm}.m={min_reads}/{individual}.alleles.tsv.gz oljtpllt = stacks/{parameter_set}/{individual}.tags.tsv.gz
stacks/n={max_locus_mm}.M={max_individual _mm}.m={min_reads}/{individual}.snps.tsv.gz . output -
stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/{individual}.tags.tsv.gz [RSTRCIE K SO counts/{parameter set}/{individual}.dat

trimmed/{individual}/{individual}.fq.gz

output -
stacks/n={max_locus_mm}.M={max_individual _mm}.m={min_reads}/{individual}.matches.bam

\

gstacks

< input

population-map.tsv

stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/I1.matches.bam

stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/I2.matches.bam

stacks/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/I3.matches.bam
output -

stacks/n={max_locus_mm}.M={max_individual _mm}.m={min_reads}/catalog.calls

stacks/n={max_locus_mm}.M={max_individual _mm}.m={min_reads}/catalog.fa.gz

/
plot_comparison

'
populations

< input

counts/n=4.M=4.m=3/I1.dat
counts/n=4.M=4.m=3/I2.dat
counts/n=4.M=4.m=3/13.dat
counts/n=7.M=6.m=3/I1.dat
counts/n=7.M=6.m=3/I2.dat
counts/n=7.M=6.m=3/13.dat

< input

stacks/n={max_locus_mm}.M={max_individual_mm}.m={min_reads}/catalog.calls

output -
calls/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/populations.haplotypes.tsv
calls/n={max_locus_mm}.M={max_individual_mm}.m={min_reads}/populations.haps.vcf
calls/n={max_locus_mm}.M={max_individual_mm}.m={min_reads}/populations.hapstats.tsv

calls/n={max_locus_mm}.M={max_individual _mm}.m={min_reads}/populations.snps.vcf output -

plots/distribution_comparison/stacks_counts.pdf
plots/distribution comparison/stacks size distribution.pdf

/

calls/n={max_locus mm}.M={max_individual mm}.m={min_reads}/populations.sumstats.tsv
calls/n={max_locus_mm}.M={max_individual mm}.m={min_reads}/populations.sumstats_summary.tsv

all

< input

calls/n=4.M=4.m=3/populations.haps.vcf
calls/n=4.M=4.m=3/populations.snps.vcf
calls/n=7.M=6.m=3/populations.haps.vcf
calls/n=7.M=6.m=3/populations.snps.vcf
plots/distribution_comparison/stacks_counts.pdf
plots/distribution_comparison/stacks_size distribution.pdf

Figure C.2: SNAKEMAKE filegraph for the STacks workflow and Evaluation phases of our ddRADseq analysis workflow. Detailed
descriptions of the single steps can be found in Section 7.3.1. Continuation from page 246.

D
Additional Plots for ddRAD
Analysis Workflow Evaluation

250 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

dedup
I no
I yes
n=2.M=2.m=3 - ‘
n=5.M=5m=3 - ‘*
w
E ‘
© n=3.M=2.m=3 4
©
Q
n=4.M=3.m=3 ‘*
n=16.M=15.m=3 ‘*
0 200 400 600 800 1000 1200 1400

count

Figure D.1: Violin plots, comparing the distributions of locus sizes (x-axis in reads per individual and locus) for different param-
eter sets for STACKS (rows). (n: maximum distance between sample loci for merging, M: maximum distance of loci for merging
within a sample, m: minimum stack stack size.) Each parameter set was run both with (orange) and without (blue) our PCR dedu-
plication step. Note, that coverage values < 0 shown in this plot are introduced by the kernel density estimation (KDE) used to
generate the violin plots.

80000

70000

60000

50000

40000

Number of detected loci

30000

20000

10000

ADDITIONAL PLOTS FOR DDRAD ANALYSIS WORKFLOW EVALUATION 251

Parameter set = n=2.M=2.m=3

no yes
Deduplication

Parameter set = n=4.M=3.m=3

Deduplication

Parameter set = n=5.M=5.m=3

no yes
Deduplication

Figure D.2: Point plots comparing

the number of loci identified in the G.
fossarum dataset for each individual (y-
axis) for runs without (left) and with
(right) PCR deduplication. Connected
points (of the same color) denote the
same individual, owever, we omitted
labels for specific individuals to
increase the readbility of the figure.
Individuals share a color and are
connected.

252 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Deduplication

B no
EE yes
n=2.M=2.m=3
4
s
9
£ n=4.M=3.m=3
o
©
a
n=5M=5.m=3
] 100 200 300 400 500 600 700 800 900 1000

Coverage

Figure D.3: Violin plots, comparing the distributions of locus sizes (x-axis in reads per individual and locus) for different param-
eter sets for STACKS (rows). (n: maximum distance between sample loci for merging, M: maximum distance of loci for merging
within a sample, m: minimum stack stack size.) Each parameter set was run both with (orange) and without (blue) our PCR dedu-
plication step. Note, that coverage values < 0 shown in this plot are introduced by the kernel density estimation (KDE) used to
generate the violin plots.

ADDITIONAL PLOTS FOR DDRAD ANALYSIS WORKFLOW EVALUATION 253

Abbreviations

AC
BAM

BBD
BD
BLOSUM
bp

BPHT

CLT
CNV
CRAM
CIR

DBR
ddRADseq
DNA

DP

DUD

FASTA
FASTQ
FGS
GPHF

GRCh3y

HDD
HF
hgs8

HRL
HT

Average Case

Binary Alignment Map; File format to store
sequence alignments

Beta-Binomial Distribution

Binomial Distribution

Blocks Substitution Matrix

Base Pairs

Bit-packed Hopscotch Hash Table

Central Limit Theorem

Copy Number Variation

File format to store sequence alignments
Cyclic Reversible Termination

Degenerate Base Region
Double Digest RADseq
Deoxyribonucleic Acid
Dynamic Programming
Discrete Uniform Distribution

File format to store DNA and amino acid
sequences

File format to store DNA sequences and their
associated (sequencing) quality values
First Generation Sequencing

General Purpose Hash Function
Genome Reference Consortium Human
Build 37

Hard Disk Drive

Hash Function

Genome Reference Consortium Human
Build 38

Highly Repetitive Locus

Hash Table

256 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

iid. Independent and identically distributed

ID Incomplete (Enzymatic) Digestion

Indel Insertion and Deletion Mutations

ITS Internal Transcribed Spacer

IUPAC International Union of Pure and Applied
Chemistry

KDE Kernel Density Estimation

KVS Key-Value Store

LoLN Law of Large Numbers

LSB Least Significant Bit

LSH Locality Sensitive Hashing

Mio, M15 Murphy Alphabets with 10 and 15 charac-
ters; Reduced Representation Amino Acid

Alphabets
MDs5 MD5 Message-Digest Algorithm
mmhs3 Murmur Hash 3

MPHF Minimal Perfect Hash Function
mRNA Messenger Ribonucleic Acid

MSB Most Significant Bit

NA Null Allele

NCBI National Center for Biotechnology Informa-
tion

NP Complexity class; Nondeterministic Polyno-
mial Time

OMH Order Min Hash

ONT Oxford Nanopore Technologies

ORF Open Reading Frame

p5 Read Forward Read
p7 Read Reverse Read

PacBio Pacific Biosciences

PCR Polymerase Chain Reaction

PD Poisson Distribution

PE Read Paired-end Read

PLHT Plain Hopscotch Hash Table

RAD Restriction Site Associated DNA

RADseq Restriction Site Associated DNA sequencing
RNA Ribonucleic Acid

RNG Random Number Generator

rRNA Ribosomal RNA

SAM

SBS

SE Read

SFT

SGS

SHA

SMRT Sequencing
SNP

SNV

SSD

SV

TGS
tmRNA
tRNA
UMI

VCF
VS

WC
XOR

ZMW
ZTPD

Sequence Alignment Map; File format to store
sequence alignments

Sequencing by Synthesis

Single-end Read

Six Frame Translation

Second Generation Sequencing

Secure Hash Algorithm

Single Molecule Real Time sequencing
Single Nucleotide Polymorphism
Single Nucleotide Variant

Solid-state Drive

Structural Variation

Third Generation Sequencing
Transfer-messenger RNA
Transfer RNA

Unique Molecular Identifier

Variant Call Format
Value Store

Worst Case
Exclusive (Bitwise) OR

Zero Mode Waveguide
Zero-Truncated Poisson Distribution

ABBREVIATIONS

257

Bibliography

Alberts, Bruce, Alexander Johnson, Julian Lewis, David Morgan,
Martin Raff, Keith Roberts, and Peter Walter. Molecular Biology of
the Cell. 6th Edition. New York, USA: Garland Science, 2017. DOT:
10.1201/9781315735368.

Alkan, Can, Bradley P. Coe, and Evan E. Eichler. “Genome Struc-
tural Variation Discovery and Genotyping”. Nature Reviews Ge-
netics 12.5 (2011), pp. 363—376. DOIL: 10.1038/nrg2958.

Andrews, Kimberly R., Jeffrey M. Good, Michael R. Miller, Gordon
Luikart, and Paul A. Hohenlohe. “Harnessing the Power of RAD-
seq for Ecological and Evolutionary Genomics”. Nature Reviews
Genetics 17.2 (2016), pp. 81—92. DOI: 10.1038/nrg.2015.28.

Appleby, Austin. “Murmurhash3”. https://github.com/aappleby/
smhasher/wiki/MurmurHash3. Accessed on 17.01.2019. 2016.

— “SMHasher”. https://github.com/aappleby/smhasher/wiki/
SMHasher. Accessed on 27.06.2019. 2016.

Askitis, Nikolas. “Fast and Compact Hash Tables for Integer Keys”.
In: Proceedings of the Thirty-Second Australasian Conference on Com-
puter Science-Volume 91. Australian Computer Society, Inc. 2009,
pp. 113-122.

Bashiardes, Stavros, Gili Zilberman-Schapira, and Eran Elinav. “Use
of Metatranscriptomics in Microbiome Research”. Bioinformatics
and Biology Insights 10 (2016). DOIL: 10.4137/BBI.S34610.

Batu, Tugkan, Funda Ergiin, Joe Kilian, Avner Magen, Sofya Raskhod-
nikova, Ronitt Rubinfeld, and Rahul Sami. “A Sublinear Algo-
rithm for Weakly Approximating Edit Distance”. In: Proceedings
of the Thirty-Fifth Annual ACM Symposium on Theory of Computing.
ACM. 2003, 316-324. DOI: 10.1145/780542.780590.

Beisser, Daniela, Nadine Graupner, Lars Grossmann, Henning
Timm, Jens Boenigk, and Sven Rahmann. “TaxMapper: An Anal-
ysis Tool, Reference Database and Workflow for Metatranscrip-
tome Analysis of Eukaryotic Microorganisms”. BMC Genomics
18.1 (2017). DOI: 10.1186/512864-017-4168-6.

Berlin, Konstantin, Sergey Koren, Chen-Shan Chin, James P. Drake,
Jane M. Landolin, and Adam M. Phillippy. “Assembling Large
Genomes with Single-Molecule Sequencing and Locality-Sensitive
Hashing”. Nature Biotechnology 33.6 (2015), pp. 623—630. DOL:
10.1038/nbt.3238.

https://doi.org/10.1201/9781315735368
https://doi.org/10.1038/nrg2958
https://doi.org/10.1038/nrg.2015.28
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/SMHasher
https://github.com/aappleby/smhasher/wiki/SMHasher
https://doi.org/10.4137/BBI.S34610
https://doi.org/10.1145/780542.780590
https://doi.org/10.1186/s12864-017-4168-6
https://doi.org/10.1038/nbt.3238

260 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Bertoni, Guido, Joan Daemen, Michaél Peeters, and Gilles Van
Assche. “Keccak Sponge Function Family Main Document”.
Submission to NIST (Round 2) 3.30 (2009).

Bloom, Burton H. “Space/Time Trade-Offs in Hash Coding with Al-
lowable Errors”. Communications of the ACM 13.7 (1970), pp. 422-
426. DOI: 10.1145/362686.362692.

Bonomi, Flavio, Michael Mitzenmacher, Rina Panigrahy, Sushil
Singh, and George Varghese. “An Improved Construction for
Counting Bloom Filters”. In: European Symposium on Algorithms.
Springer. 2006, pp. 684—-695. DOI: 10.1007/11841036_61.

Booth, Christine S., Elsje Pienaar, Joel R. Termaat, Scott E. Whit-
ney, Tobias M. Louw, and Hendrik J. Viljoen. “Efficiency of the
Polymerase Chain Reaction”. Chemical Engineering Science 65.17
(2010), pp. 4996—5006. DOI: 10.1016/j.ces.2010.05.046.

Bresch, Carsten and Rudolf Hausmann. Klassische und molekulare
Genetik. Springer Berlin Heidelberg, 1972. por: 10.1007/978-3-
642-87168-09.

Broder, Andrei and Michael Mitzenmacher. “Using Multiple Hash
Functions to Improve IP Lookups”. In: Proceedings IEEE INFO-
COM 2001. Conference on Computer Communications. Twentieth
Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No. 01CH37213). Vol. 3. IEEE. 2001, pp. 1454-1463.
DOI: 10.1109/INFCOM.2001.916641.

Broder, Andrei Z. “On the Resemblance and Containment of Doc-
uments”. In: Proceedings. Compression and Complexity of Sequences
1997. IEEE. 1997, pp. 21—29. DOI1: 10.1109/SEQUEN. 1997.666900.

Broder, Andrei Z., Moses Charikar, Alan M. Frieze, and Michael
Mitzenmacher. “Min-Wise Independent Permutations”. In: Pro-
ceedings of the thirtieth annual ACM symposium on Theory of comput-
ing. 3. ACM. 1998, pp. 630—-659. DOI: 10.1006/jcss.1999.1690.

Buchfink, Benjamin, Chao Xie, and Daniel H. Huson. “Fast and
Sensitive Protein Alignment using DIAMOND”. Nature Methods
12.1 (2015), pp. 59—60. DOIL: 10.1038/nmeth.3176.

Buhler, Jeremy. “Efficient Large-Scale Sequence Comparison by
Locality-Sensitive Hashing”. Bioinformatics 17.5 (2001), pp. 419—
428. DOI: 10.1093/bioinformatics/17.5.419.

Burkhardt, Stefan and Juha Kérkkédinen. “Better Filtering with
Gapped q-Grams”. In: Combinatorial Pattern Matching. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 73-85. DOIL:
10.1007/3-540-48194-X_6.

Carter,]. Lawrence and Mark N. Wegman. “Universal Classes of
Hash Functions”. Journal of Computer and System Sciences 18.2
(1979), pp. 143-154. DOIL: 10.1016/0022-0000(79)90044-8.

Catchen, Julian, Paul A. Hohenlohe, Susan Bassham, Angel Amores,
and William A. Cresko. “Stacks: an Analysis Tool Set for Popu-
lation Genomics”. Molecular Ecology 22.11 (2013), pp- 3124—3140.
DOI: 10.1111/mec.12354.

Chafin, Tyler K., Bradley T. Martin, Steven M. Mussmann, Marlis R.
Douglas, and Michael E. Douglas. “FRAGMATIC: in silico Locus

https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/11841036_61
https://doi.org/10.1016/j.ces.2010.05.046
https://doi.org/10.1007/978-3-642-87168-9
https://doi.org/10.1007/978-3-642-87168-9
https://doi.org/10.1109/INFCOM.2001.916641
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1006/jcss.1999.1690
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/bioinformatics/17.5.419
https://doi.org/10.1007/3-540-48194-X_6
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1111/mec.12354

BIBLIOGRAPHY

Prediction and Its Utility in Optimizing ddRADseq Projects”.
Conservation Genetics Resources 10.3 (2017), pp. 325-328. DOIL:
10.1007/512686-017-0814-1.

Chao, Kun-Mao, William R. Pearson, and Webb Miller. “Aligning
Two Sequences Within a Specified Diagonal Band”. Bioinformatics
8.5 (1992), pp. 481—487. DOI: 10.1093/bioinformatics/8.5.481.

Chum, Ondrej, James Philbin, and Andrew Zisserman. “Near Du-
plicate Image Detection: min-Hash and tf-idf Weighting”. In: Pro-
ceedings of the British Machine Vision Conference. Vol. 810. BMVA
Press, 2008, 50:1-50:10. DOI: 10.5244/C.22.50.

Cock, Peter J. A., Christopher J. Fields, Naohisa Goto, Michael L.
Heuer, and Peter M. Rice. “The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina FASTQ
variants”. Nucleic Acids Research 38.6 (2009), pp. 1767-1771. DOIL:
10.1093/nar/gkpl137.

Cohen, Edith and Haim Kaplan. “Summarizing Data Using Bottom-
k Sketches”. In: Proceedings of the twenty-sixth annual ACM sym-
posium on Principles of distributed computing. ACM. 2007, 225-234.
DOI: 10.1145/1281100.1281133.

Cohen, Jeffery S. and Daniel M. Kane. “Bounds on the Indepen-
dence Required for Cuckoo Hashing”. Manuscript. Accessed on
28.12.2020. 2009. URL: https://cseweb . ucsd . edu/~dakane/
cuchkoohashing.pdf.

Collet, Yann. “xxHash-Extremely Fast Hash Algorithm”. http :
//cyan4973.github.io/xxHash/. Accessed on 26.06.2019. 2016.
Conroy, Matthew M. “A Collection of Dice Problems”. Manuscript.
Accessed on 01.11.2020. 2018. URL: https://msekce.karlin.mff.

cuni.cz/~nagy/NMSA202/dicel.pdf.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. 3rd Edition. MIT Press,
2009. URL: http://mitpress.mit.edu/books/introduction-
algorithms.

Cornish-Bowden, Athel. “Nomenclature for incompletely specified
bases in nucleic acid sequences: recommendations 1984.” Nucleic
Acids Research 13.9 (1985), pp. 3021-3030. DOI: 10.1093/nar/13.
9.3021.

Dahlgaard, Seren and Mikkel Thorup. “Approximately Minwise In-
dependence with Twisted Tabulation”. In: Scandinavian Workshop
on Algorithm Theory — SWAT 2014. Springer International Publish-
ing, 2014, pp. 134-145. DOI: 10.1007/978-3-319-08404-6_12.

Damiani, Ernesto, Sabrina De Capitani di Vimercati, Stefano Para-
boschi, and Pierangela Samarati. “An Open Digest-based Tech-
nique for Spam Detection”. In: International Conference on Parallel
and Distributed Computing Systems (PDCS). HANDLE: 2434/180377.
ISCA, 2004, pp. 559—564.

Danecek, Petr, Adam Auton, Goncalo Abecasis, Cornelis A. Al-
bers, Eric Banks, Mark A. DePristo, Robert E. Handsaker, Ger-
ton Lunter, Gabor T. Marth, Stephen T. Sherry, Gilean McVean,
Richard Durbin, and 1000 Genomes Project Analysis Group.

261

https://doi.org/10.1007/s12686-017-0814-1
https://doi.org/10.1093/bioinformatics/8.5.481
https://doi.org/10.5244/C.22.50
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1145/1281100.1281133
https://cseweb.ucsd.edu/~dakane/cuchkoohashing.pdf
https://cseweb.ucsd.edu/~dakane/cuchkoohashing.pdf
http://cyan4973.github.io/xxHash/
http://cyan4973.github.io/xxHash/
https://msekce.karlin.mff.cuni.cz/~nagy/NMSA202/dice1.pdf
https://msekce.karlin.mff.cuni.cz/~nagy/NMSA202/dice1.pdf
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1093/nar/13.9.3021
https://doi.org/10.1093/nar/13.9.3021
https://doi.org/10.1007/978-3-319-08404-6_12
https://hdl.handle.net/2434/180377

262 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

“The variant call format and VCFtools”. Bioinformatics 27.15
(2011), pp. 2156-2158. DOI: 10.1093/bioinformatics/btr330.

Davey, John W. and Mark L. Blaxter. “RADSeq: Next-Generation
Population Genetics”. Briefings in Functional Genomics 9.5-6
(2010), pp. 416—423. DOI: 10.1093/bfgp/elq031.

Davies, Heledd M., Stephanie D. Nofal, Emilia J. McLaughlin, and
Andrew R. Osborne. “Repetitive Sequences in Malaria Parasite
Proteins”. FEMS Microbiology Reviews 41.6 (2017), pp- 923—940.
DOI: 10.1093/femsre/fux046.

DePristo, Mark A., Eric Banks, Ryan Poplin, Kiran V. Garimella,
Jared R. Maguire, Christopher Hartl, Anthony A. Philippakis,
Guillermo Del Angel, Manuel A. Rivas, Matt Hanna, Aaron
McKenna, Tim J. Fennell, Andrew M. Kernytsky, Andrey Y.
Sivachenko, Kristian Cibulskis, Stacey B. Gabriel, David Alt-
shuler, and Mark J. Daly. “A Framework for Variation Discovery
and Genotyping Using Next-generation DNA Sequencing Data”.
Nature Genetics 43.5 (2011), pp. 491—498. DOI: 10.1038/ng.806.

Deza, Michel M. and Elena Deza. Encyclopedia of Distances. Springer,
2009, pp. 1-583. DOI: 10.1007/978-3-642-30958- 8.

Dietzfelbinger, Martin. “Universal Hashing and k-Wise Indepen-
dent Random Variables via Integer Arithmetic without Primes”.
In: Annual Symposium on Theoretical Aspects of Computer Science —
STACS 96. Springer. 1996, pp. 567-580. DOIL: 10 . 1007 /3 - 540 -
60922-9_46.

Dietzfelbinger, Martin, Torben Hagerup, Jyrki Katajainen, and
Martti Penttonen. “A Reliable Randomized Algorithm for the
Closest-Pair Problem”. Journal of Algorithms 25.1 (1997), pp- 19—
51. DOI: 10.1006/jagm.1997.0873.

Dietzfelbinger, Martin and Christoph Weidling. “Balanced Al-
location and Dictionaries with Tightly Packed Constant Size
Bins”. Theoretical Computer Science 380.1—2 (2007), pp. 47—68. DOIL:
10.1016/j.tcs.2007.02.054.

Drepper, Ulrich. “What Every Programmer Should Know About
Memory”. http://people.redhat.com/drepper/cpumemory.pdf.
Accessed on 16.08.2020. 2007.

Drmota, Michael and Reinhard Kutzelnigg. “A Precise Analysis of
Cuckoo Hashing”. ACM Transactions on Algorithms (TALG) 8.2
(2012), 11:1-11:36. DOT: 10.1145/2151171.2151174.

Eaton, Deren A. R. “PyRAD: Assembly of de novo RADseq Loci
for Phylogenetic Analyses”. Bioinformatics 30.13 (2014), pp- 1844~
1849. pOIL: 10.1093/bioinformatics/btul2l.

Eaton, Deren A. R. and Isaac Overcast. “ipyrad: Interactive Assem-
bly and Analysis of RADseq Datasets”. Bioinformatics 36.8 (2020),
PP- 2592—2594. DOI: 10.1093/bioinformatics/btz966.

Elbayoumi, Mahmoud A. M. S. “Strategies for Quality and Per-
formance Improvement of Hardware Verification and Synthesis
Algorithms”. HANDLE: 10919/51221. PhD thesis. Virginia Poly-
technic Institute and State University, 2014.

https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bfgp/elq031
https://doi.org/10.1093/femsre/fux046
https://doi.org/10.1038/ng.806
https://doi.org/10.1007/978-3-642-30958-8
https://doi.org/10.1007/3-540-60922-9_46
https://doi.org/10.1007/3-540-60922-9_46
https://doi.org/10.1006/jagm.1997.0873
https://doi.org/10.1016/j.tcs.2007.02.054
http://people.redhat.com/drepper/cpumemory.pdf
https://doi.org/10.1145/2151171.2151174
https://doi.org/10.1093/bioinformatics/btu121
https://doi.org/10.1093/bioinformatics/btz966
https://hdl.handle.net/10919/51221

BIBLIOGRAPHY

Ensemble Genomes. “M. xanthus DK 1622”. ftp://ftp.ensemblgenomes.
org/pub/bacteria/release-39/fasta/bacteria_0_collection/
myxococcus_xanthus_dk_1622/dna/. Accessed on 24.02.2020.
2018.

Erlingsson, Ulfar, Mark Manasse, and Frank McSherry. “A Cool
and Practical Alternative to Traditional Hash Tables”. In: Proc.
7th Workshop on Distributed Data and Structures (WDAS 06). 2006.

Ewing, Brent and Phil Green. “Base-Calling of Automated Se-
quencer Traces Using Phred. II. Error Probabilities”. Genome
Research 8.3 (1998), pp. 186-194. DOI: 10.1101/gr.8.3.186.

Fan, Li, Pei Cao, Jussara Almeida, and Andrei Z. Broder. “Sum-
mary Cache: A Scalable Wide-Area Web Cache Sharing Pro-
tocol”. IEEE/ACM Transactions on Networking (TON) 8.3 (2000),
pp- 281-293. DOI: 10.1109/960.851975.

Fennel, Tim and Nils Homer. “fgbio”. http://fulcrumgenomics.
github.io/fgbio/tools/latest/CallDuplexConsensusReads .
html. Accessed on 21.01.2020. 2017.

Flajolet, Philippe, Eric Fusy, Olivier Gandouet, and Frédéric Meu-
nier. “Hyperloglog: The Analysis of a Near-optimal Cardinality
Estimation Algorithm”. In: Discrete Mathematics and Theoretical
Computer Science. 2007, pp. 127-146.

Flajolet, Philippe and G. Nigel Martin. “Probabilistic Counting
Algorithms for Data Base Applications”. Journal of Computer and
System Sciences 31.2 (1985), pp. 182—209. DOI: 10 . 1016 /0022 -
0000(85)90041-8.

Fotakis, Dimitris, Rasmus Pagh, Peter Sanders, and Paul Spirakis.
“Space Efficient Hash Tables with Worst Case Constant Access
Time”. In: Annual Symposium on Theoretical Aspects of Computer
Science — STACS 2003. Springer. 2003, pp. 271-282. DOI: 10 .
1007/3-540-36494-3_25.

Fredman, Michael L., Janos Komlés, and Endre Szemerédi. “Storing
a Sparse Table with O(1) Worst Case Access Time”. Journal of the
ACM (JACM) 31.3 (1984), pp. 538-544. DOI: 10.1145/828.1884.

Gallager, Robert. “Low-density Parity-check Codes”. IRE Transac-
tions on Information Theory 8.1 (1962), pp. 21—28. DOI: 10. 1109/
TIT.1962.1057683.

Gionis, Aristides, Piotr Indyk, and Rajeev Motwani. “Similarity
Search in High Dimensions via Hashing”. In: VLDB. Vol. 99. 6.
1999, pp- 518-529.

Goodwin, Sara, James Gurtowski, Scott Ethe-Sayers, Panchajanya
Deshpande, Michael C. Schatz, and W. Richard McCombie. “Ox-
ford Nanopore Sequencing, Hybrid Error Correction, and de
novo Assembly of a Eukaryotic Genome”. Genome Research 25.11
(2015), pp. 1750-1756. DOIL: 10.1101/gr.191395.115.

Goodwin, Sara, John D. McPherson, and W. Richard McCombie.
“Coming of Age: Ten Years of Next-Generation Sequencing Tech-
nologies”. Nature Reviews Genetics 17.6 (2016), pp. 333—351. DOL:
10.1038/nrg.2016.49.

263

ftp://ftp.ensemblgenomes.org/pub/bacteria/release-39/fasta/bacteria_0_collection/myxococcus_xanthus_dk_1622/dna/
ftp://ftp.ensemblgenomes.org/pub/bacteria/release-39/fasta/bacteria_0_collection/myxococcus_xanthus_dk_1622/dna/
ftp://ftp.ensemblgenomes.org/pub/bacteria/release-39/fasta/bacteria_0_collection/myxococcus_xanthus_dk_1622/dna/
https://doi.org/10.1101/gr.8.3.186
https://doi.org/10.1109/90.851975
http://fulcrumgenomics.github.io/fgbio/tools/latest/CallDuplexConsensusReads.html
http://fulcrumgenomics.github.io/fgbio/tools/latest/CallDuplexConsensusReads.html
http://fulcrumgenomics.github.io/fgbio/tools/latest/CallDuplexConsensusReads.html
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1007/3-540-36494-3_25
https://doi.org/10.1007/3-540-36494-3_25
https://doi.org/10.1145/828.1884
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1101/gr.191395.115
https://doi.org/10.1038/nrg.2016.49

264 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Griining, Bjorn, Ryan Dale, Andreas Sjodin, Brad A. Chapman,
Jillian Rowe, Christopher H. Tomkins-Tinch, Renan Valieris, Jo-
hannes Koster, and The Bioconda Team. “Bioconda: Sustainable
and Comprehensive Software Distribution for the Life Sciences”.
Nature Methods 15.7 (2018). Henning Timm is part of “The Bio-
conda Team”., pp. 475—476. DOI: 10.1038/541592-018-0046-7.

Gudbjartsson, Daniel F.,, Hannes Helgason, Sigurjon A. Gudjon-
sson, Florian Zink, Asmundur Oddson, Arnaldur Gylfason,
Soren Besenbacher, Gisli Magnusson, Bjarni V. Halldorsson,
Eirikur Hjartarson, Gunnar Th. Sigurdsson, Simon N. Stacey,
Michael L. Frigge, Hilma Holm, Jona Saemundsdottir, Hafdis Th.
Helgadottir, Hrefna Johannsdottir, Gunnlaugur Sigfusson, Gud-
mundur Thorgeirsson, Jon Th. Sverrisson, Solveig Gretarsdottir,
G. Bragi Walters, Thorunn Rafnar, Bjarni Thjodleifsson, Einar S.
Bjornsson, Sigurdur Olafsson, Hildur Thorarinsdottir, Thora Ste-
ingrimsdottir, Thora S. Gudmundsdottir, Asgeir Theodors, Jon G.
Jonasson, Asgeir Sigurdsson, Gyda Bjornsdottir, Jon]J. Jonsson,
Olafur Thorarensen, Petur Ludvigsson, Hakon Gudbjartsson,
Gudmundur I. Eyjolfsson, Olof Sigurdardottir, Isleifur Olafsson,
David O. Arnar, Olafur Th. Magnusson, Augustine Kong, Gisli
Masson, Unnur Thorsteinsdottir, Agnar Helgason, Patrick Sulem,
and Kari Stefansson. “Large-scale Whole-genome Sequencing of
the Icelandic Population”. Nature Genetics 47.5 (2015), pp- 435—
444. DOI: 10.1038/ng.3247.

Haas, Brian J., Dirk Gevers, Ashlee M. Earl, Mike Feldgarden, Doyle
V. Ward, Georgia Giannoukos, Dawn Ciulla, Diana Tabbaa, Sarah
K. Highlander, Erica Sodergren, Barbara Methé, Todd Z. DeSan-
tis, The Human Microbiome Consortium, Joseph F. Petrosino,
Bob Knight, and Bruce W. Birren. “Chimeric 165 rRNA Sequence
Formation and Detection in Sanger and 454-Pyrosequenced
PCR Amplicons”. Genome Research 21.3 (2011), pp. 494—504. DOIL:
10.1101/gr.112730.110.

Hamming, Richard W. “Error Detecting and Error Correcting
Codes”. The Bell System Technical Journal 29.2 (1950), pp- 147—

160. DOI: 10.1002/j.1538-7305.1950.tb00463. x.

Heather, James M and Benjamin Chain. “The Sequence of Se-
quencers: The History of Sequencing DNA”. Genomics 107.1
(2016), pp. 1-8. DOI: 10.1016/j.ygeno.2015.11.003.

Heileman, Gregory L. and Wenbin Luo. “How Caching Affects
Hashing”. In: Proceedings of the 7th Workshopon Algorithm Engi-
neering and Experiments. SIAM. 2005.

Henikoff, Steven and Jorja G. Henikoff. “Amino Acid Substitu-
tion Matrices From Protein Blocks”. Proceedings of the National
Academy of Sciences 89.22 (1992), pp. 10915-10919. DOI: 10.1073/
pnas.89.22.10915.

Herlihy, Maurice, Nir Shavit, and Moran Tzafrir. “Hopscotch
Hashing”. In: International Symposium on Distributed Computing.
Springer. 2008, pp. 350—-364. DOIL: 10.1007/978-3-540-87779-
0_24.

https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/ng.3247
https://doi.org/10.1101/gr.112730.110
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1016/j.ygeno.2015.11.003
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1007/978-3-540-87779-0_24

BIBLIOGRAPHY

Hunter, J. D. “Matplotlib: A 2D graphics environment”. Computing
in Science & Engineering 9.3 (2007), pp. 90-95. DOI: 10.1109/MCSE.
2007.55.

Indyk, Piotr and Rajeev Motwani. “Approximate Nearest Neigh-
bors: Towards Removing The Curse of Dimensionality”. In: Pro-
ceedings of the thirtieth annual ACM symposium on Theory of com-
puting — STOC 98. ACM. 1998, 604—613. DOI: 10.1145/276698.
276876.

Jaccard, Paul. “Lois de distribution florale dans la zone alpine”.
Bulletin de la Société Vaudoise des Sciences Naturelles 38.144 (1902),
pp. 69-130. DOI: 10.5169/seals-266762.

Jain, Chirag. “Long Read Mapping at Scale: Algorithms and Appli-
cations”. HANDLE: 1853/61258. PhD thesis. Georgia Institute of
Technology, 2019.

Jain, Chirag, Alexander Dilthey, Sergey Koren, Srinivas Aluru,
and Adam M. Phillippy. “A Fast Approximate Algorithm for
Mapping Long Reads to Large Reference Databases”. In: Inter-
national Conference on Research in Computational Molecular Biology.
Springer. 2017, pp. 66-81. DOI1: 10.1007/978-3-319-56970-3_5.

Jain, Chirag, Sergey Koren, Alexander Dilthey, Adam M. Phillippy,
and Srinivas Aluru. “A Fast Adaptive Algorithm for Computing
Whole-Genome Homology Maps”. Bioinformatics 34.17 (2018),
pp. i748-i756. DOI: 10.1093/bioinformatics/bty597.

Johnson, Norman L., Adrienne W. Kemp, and Samuel Kotz. Uni-
variate Discrete Distributions. 3rd Edition. Hoboken, NJ: John
Wiley & Sons, 2005.

Kim, Euihyeok and Min-Soo Kim. “Enhanced Chained and Cuckoo
Hashing Methods for Multi-core CPUs”. Cluster Computing 17.3
(2014), pp. 665-680. DOI: 10.1007/510586-013-0343-y.

Kirsch, Adam, Michael Mitzenmacher, and Udi Wieder. “More
Robust Hashing: Cuckoo Hashing With a Stash”. SIAM Journal on
Computing 39.4 (2010), pp. 1543—-1561. DOIL: 10.1137/080728743.

Knuth, Donald E. The Art of Computer Programming: Sorting and
Searching. Vol. 3. Pearson Education, 1997.

Koren, Sergey, Brian P. Walenz, Konstantin Berlin, Jason R. Miller,
Nicholas H. Bergman, and Adam M. Phillippy. “Canu: Scal-
able and Accurate Long-Read Assembly via Adaptive k-Mer
Weighting and Repeat Separation”. Genome Research 27.5 (2017),
pp- 722-736. DOI: 10.1101/9r.215087.116.

Koslicki, David and Hooman Zabeti. “Improving MinHash via the
Containment Index with Applications to Metagenomic Analy-
sis”. Applied Mathematics and Computation 354 (2019), pp. 206—215.
DOI: 10.1016/j.amc.2019.02.018.

Kourtis, Kornilios, Nikolas Ioannou, and Ioannis Koltsidas. “Reap-
ing the Performance of Fast NVM Storage with uDepot”. In:
17th USENIX Conference on File and Storage Technologies (FAST 19).

2019, pp. 1-15.

265

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.5169/seals-266762
https://hdl.handle.net/1853/61258
https://doi.org/10.1007/978-3-319-56970-3_5
https://doi.org/10.1093/bioinformatics/bty597
https://doi.org/10.1007/s10586-013-0343-y
https://doi.org/10.1137/080728743
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1016/j.amc.2019.02.018

266 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Koster, Johannes and Sven Rahmann. “Snakemake — A Scalable
Bioinformatics Workflow Engine”. Bioinformatics 28.19 (2012),
pp- 2520-2522. DOI: 10.1093/bioinformatics/bts480.

Koster, Johannes and Henning Timm. “snakemake-workflows/rad-
seq-stacks”. Version v1.0.0. First released in 2018 on https :

// github . com/ koesterlab/ rad - seq- stacks. 2021. DOI:
10.5281/zenodo.4423333.

Lam, Siu Kwan, Antoine Pitrou, and Stanley Seibert. “Numba: A
llvm-based Python Jit Compiler”. In: Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC — LLVM
15. ACM. 2015, 7:1—7:6. DOT: 10.1145/2833157.2833162.

Lepais, Olivier and Jason T. Weir. “SimRAD: an R Package for
Simulation-Based Prediction of the Number of Loci Expected in
RADseq and Similar Genotyping by Sequencing Approaches”.
Molecular Ecology Resources 14.6 (2014), pp. 1314—1321. DOIL: 10.
1111/1755-0998.12273.

Levenshtein, Vladimir I. “Binary Codes Capable of Correcting Dele-
tions, Insertions, and Reversals”. In: Soviet Physics — Doklady.
Vol. 10. 8. 1966, pp. 707-710.

Levy-Lahad, E., A. Lahad, S. Eisenberg, E. Dagan, T. Paperna, L.
Kasinetz, R. Catane, B. Kaufman, U. Beller, P. Renbaum, and R.
Gershoni-Baruch. “A Single Nucleotide Polymorphism in the
Rads1 Gene Modifies Cancer Risk in BRCA2 but not BRCA1
Carriers”. Proceedings of the National Academy of Sciences 98.6
(2001), pp. 3232-3236. DOI: 10.1073/pnas.051624098.

Li, Heng. “Mathematical Notes on SAMtools Algorithms”. http:
//1h31h3.users.sourceforge.net/download/samtools . pdf.
Accessed: 2020-01-13. 2010.

— “Minimap and Miniasm: Fast Mapping and de novo Assembly
for Noisy Long Sequences”. Bioinformatics 32.14 (2016), pp. 2103—
2110. DOI: 10.1093/bioinformatics/btwl52.

— “Minimapa2: Pairwise Alignment for Nucleotide Sequences”.
Bioinformatics 34.18 (2018), pp. 3094-3100. DOI: 10.1093/bioinformatics/
bty191.

Limasset, Antoine, Guillaume Rizk, Rayan Chikhi, and Pierre Peter-
longo. “Fast and Scalable Minimal Perfect Hashing for Massive
Key Sets”. In: 16th International Symposium on Experimental Algo-
rithms (SEA 2017). Vol. 75. 25. Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik, 2017, 25:1-25:16. boI1: 10.4230/LIPIcs.SEA.2017.
25.

Louw, Tobias M., Christine S. Booth, Elsje Pienaar, Joel R. TerMaat,
Scott E. Whitney, and Hendrik J. Viljoen. “Experimental Vali-
dation of a Fundamental Model for PCR Efficiency”. Chemical
Engineering Science 66.8 (2011), pp. 1783—-1789. pDOI: 10.1016/] .
ces.2011.01.029.

Luo, Yunan, Yun W. Yu, Jianyang Zeng, Bonnie Berger, and Jian
Peng. “Metagenomic Binning Through Low Density Hash-
ing”. Bioinformatics 35.2 (2018), pp. 219-226. DOI: 10 . 1093/
bioinformatics/bty611.

https://doi.org/10.1093/bioinformatics/bts480
https://github.com/koesterlab/rad-seq-stacks
https://github.com/koesterlab/rad-seq-stacks
https://doi.org/10.5281/zenodo.4423333
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1111/1755-0998.12273
https://doi.org/10.1111/1755-0998.12273
https://doi.org/10.1073/pnas.051624098
http://lh3lh3.users.sourceforge.net/download/samtools.pdf
http://lh3lh3.users.sourceforge.net/download/samtools.pdf
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.4230/LIPIcs.SEA.2017.25
https://doi.org/10.4230/LIPIcs.SEA.2017.25
https://doi.org/10.1016/j.ces.2011.01.029
https://doi.org/10.1016/j.ces.2011.01.029
https://doi.org/10.1093/bioinformatics/bty611
https://doi.org/10.1093/bioinformatics/bty611

BIBLIOGRAPHY

Madigan, Michael T., John M. Martinko, David A. Stahl, and David
P. Clark. Brock Biology of Microorganisms. 13th Edition. San Fran-
cisco, USA: Pearson Education, 2012.

Marcotte, Edward M., Matteo Pellegrini, Todd O. Yeates, and David
Eisenberg. “A Census of Protein Repeats”. Journal of Molecular
Biology 293.1 (1999), pp. 151-160. DOI: 10.1006/jmbi.1999.3136.

Margulies, Marcel, Michael Egholm, William E. Altman, Said At-
tiya, Joel S. Bader, Lisa A. Bemben, Jan Berka, Michael S. Braver-
man, Yi-Ju Chen, Zhoutao Chen, et al. “Genome Sequencing
in Microfabricated High-Density Picolitre Reactors”. Nature
437.7057 (2005), pp. 376—380. DOI: 10.1038/nature®3959.

Margais, Guillaume, Dan DeBlasio, Prashant Pandey, and Carl
Kingsford. “Locality-sensitive Hashing for the Edit Distance”.
Bioinformatics 35.14 (2019), pp. i127-i135. DOIL: 10.1093/bioinformatics/
btz354.

Mastretta-Yanes, Alicia, Nils Arrigo, Nadir Alvarez, Tove H. Jor-
gensen, Daniel Pifiero, and Brent C. Emerson. “Restriction Site-
associated DNA Sequencing, Genotyping Error Estimation and
de novo Assembly Optimization for Population Genetic Infer-
ence”. Molecular Ecology Resources 15 (2015). DO1: 10.1111/1755-
0998.12291.

Meyerhans, Andreas, Jean-Pierre Vartanian, and Simon Wain-
Hobson. “DNA Recombination During PCR”. Nucleic Acids
Research 18.7 (1990), pp. 1687-1691. DOI: 10.1093/nar/18.7.1687.

Mills, Ryan E., Christopher T. Luttig, Christine E. Larkins, Adam
Beauchamp, Circe Tsui, W. Stephen Pittard, and Scott E. Devine.
“An Initial Map of Insertion and Deletion (INDEL) Variation
in the Human Genome”. Genome Research 16.9 (2006), pp. 1182—
1190. DOI: 10.1101/9r.4565806.

Montgomery, Douglas C. and George C. Runger. Applied Statistics
and Probability for Engineers. 6th edition. Hoboken, NJ: John Wiley
& Sons, 2014.

Mora-Marquez, Fernando, Victor Garcia-Olivares, Brent C. Emer-
son, and Unai Lépez de Heredia. “ddRADseqTools: a Software
Package for in silico Simulation and Testing of Double Digest
RADseq Experiments”. Molecular Ecology Resources 17.2 (2017),
pp- 230-246. DOI: 10.1111/1755-0998.12550.

Motwani, Rajeev and Prabhakar Raghavan. Randomized Algo-
rithms. Cambridge University Press, 1995. bor: 10 . 1017 /
CB09780511814075.

Murphy, Lynne R., Anders Wallqvist, and Ronald M. Levy. “Simpli-
fied Amino Acid Alphabets for Protein Fold Recognition and Im-
plications for Folding”. Protein Engineering 13.3 (2000), pp- 149—
152. DOI: 10.1093/protein/13.3.149.

Myers, Gene. “A Fast Bit-Vector Algorithm for Approximate String
Matching Based on Dynamic Programming”. Journal of the ACM
(JACM) 46.3 (1999), 395—415. DOIL: 10.1145/316542.316550.

Natsume, Satoshi, Hiroki Takagi, Akira Shiraishi, Jun Murata, Hi-
romi Toyonaga, Josef Patzak, Motoshige Takagi, Hiroki Yaegashi,

267

https://doi.org/10.1006/jmbi.1999.3136
https://doi.org/10.1038/nature03959
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1111/1755-0998.12291
https://doi.org/10.1111/1755-0998.12291
https://doi.org/10.1093/nar/18.7.1687
https://doi.org/10.1101/gr.4565806
https://doi.org/10.1111/1755-0998.12550
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1093/protein/13.3.149
https://doi.org/10.1145/316542.316550

268 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Aiko Uemura, Chikako Mitsuoka, Kentaro Yoshida, Karel Krofta,
Honoo Satake, Ryohei Terauchi, and Eiichiro Ono. “The Draft
Genome of Hop (Humulus lupulus), an Essence for Brewing”.
Plant and Cell Physiology 56.3 (2015), pp. 428-441. DOI: 10.1093/
pcp/pcul69.

NCBI “Genome Reference Consortium Human Build 38”. https:
//www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39. Accessed
ON 24.02.2020. 2019.

Needleman, Saul B. and Christian D. Wunsch. “A General Method
Applicable to the Search for Similarities in the Amino Acid Se-
quence of Two Proteins”. Journal of Molecular Biology 48.3 (1970),
PP- 443—453. DOI: 10.1016/0022-2836(70)90057-4.

Ondov, Brian D., Gabriel J. Starrett, Anna Sappington, Aleksan-
dra Kostic, Sergey Koren, Christopher B. Buck, and Adam M.
Phillippy. “Mash Screen: High-throughput Sequence Contain-
ment Estimation for Genome Discovery”. Genome Biology 20.1
(2019), 232:1—232:13. DOT: 10.1186/513059-019-1841-x.

Ondov, Brian D., Todd J. Treangen, Pall Melsted, Adam B. Mal-
lonee, Nicholas H. Bergman, Sergey Koren, and Adam M.
Phillippy. “Mash: Fast Genome and Metagenome Distance Es-
timation using MinHash”. Genome Biology 17.1 (2016), 132:1—
132:14. DOI: 10.1186/513059-016-0997-x.

Orabi, Baraa, Emre Erhan, Brian McConeghy, Stanislav V. Volik,
Stephane Le Bihan, Robert Bell, Colin C. Collins, Cedric Chauve,
and Faraz Hach. “Alignment-free Clustering of UMI Tagged
DNA Molecules”. Bioinformatics 35.11 (2018), pp. 1829-1836. DOI:
10.1093/bioinformatics/bty888.

Ozsolak, Fatih and Patrice M. Milos. “RNA Sequencing: Advances,
Challenges and Opportunities”. Nature Reviews Genetics 12.2
(2011), pp. 87—98. DOI: 10.1038/nrg2934.

Pagh, Rasmus and Flemming F. Rodler. “Cuckoo Hashing”. Journal
of Algorithms 51.2 (2004), pp. 122-144. DOI: 10.1016/j . jalgor.
2003.12.002.

Paris, Josephine R., Jamie R. Stevens, and Julian M. Catchen. “Lost
in Parameter Space: A Road Map for STACKS”. Methods in Ecol-
ogy and Evolution 8.10 (2017), pp. 1360-1373. DOI: 10.1111/2041-
210X.12775.

Patrascu, Mihai and Mikkel Thorup. “On the k-Independence Re-
quired by Linear Probing and Minwise Independence”. In: In-
ternational Colloquium on Automata, Languages and Programming.
Berlin, Heidelberg: Springer, 2010, pp. 715—726. DOI: 10 . 1007/
978-3-642-14165-2_60.

Pédtrascu, Mihai and Mikkel Thorup. “The Power of Simple Tabu-
lation Hashing”. In: Proceedings of the Forty-Third Annual ACM
Symposium on Theory of Computing — STOC "11. ACM. 2011, 1-10.
DOI: 10.1145/1993636.1993638.

- "“Twisted Tabulation Hashing”. In: Proceedings of the 2013 An-
nual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2013,
pp- 209—228. DOI: 10.1137/1.9781611973105. 16.

https://doi.org/10.1093/pcp/pcu169
https://doi.org/10.1093/pcp/pcu169
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1186/s13059-019-1841-x
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1093/bioinformatics/bty888
https://doi.org/10.1038/nrg2934
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1111/2041-210X.12775
https://doi.org/10.1111/2041-210X.12775
https://doi.org/10.1007/978-3-642-14165-2_60
https://doi.org/10.1007/978-3-642-14165-2_60
https://doi.org/10.1145/1993636.1993638
https://doi.org/10.1137/1.9781611973105.16

BIBLIOGRAPHY

Pearson, William R. and David J. Lipman. “Improved Tools for
Biological Sequence Comparison”. Proceedings of the National
Academy of Sciences 85.8 (1988), pp. 2444—2448. DOI: 10 . 1073/
pnas.85.8.2444.

Penard, Wouter and Tim van Werkhoven. “On the Secure Hash
Algorithm Family”. Cryptography in Context (2008), pp. 1-18.

Peterson, Brant K., Jesse N. Weber, Emily H. Kay, Heidi S. Fisher,
and Hopi E. Hoekstra. “Double Digest RADseq: an Inexpensive
Method for de novo SNP Discovery and Genotyping in Model
and Non-Model Species”. PloS one 7.5 (2012), e37135:1-€37135:11.
DOI: 10.1371/journal.pone.0037135.

Pike, Geoff and Jyrki Alakuijala. “Introducing CityHash”. https:

/ / opensource . googleblog . com/2011/04 /introducing -
cityhash.html. Accessed on 26.06.2019. 2011.

Popic, Victoria and Serafim Batzoglou. “A Hybrid Cloud Read
Aligner Based on MinHash and Kmer Voting That Preserves
Privacy”. Nature Communications 8.1 (2017), 15311:1-15311:7. DOI:
10.1038/ncomms15311.

Quedenfeld, Jens and Sven Rahmann. “Analysis of Min-Hashing
for Variant Tolerant DNA Read Mapping”. In: 17th International
Workshop on Algorithms in Bioinformatics (WABI 2017). Vol. 88.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik. 2017, 21:1—-
21:13. DOI: 10.4230/LIPIcs.WABI.2017.21.

— “Variant Tolerant Read Mapping using Min-Hashing”. arXiv
preprint arXiv:1702.01703 (2017).

Rang, Franka J., Wigard P. Kloosterman, and Jeroen de Ridder.
“From Squiggle to Basepair: Computational Approaches for Im-
proving Nanopore Sequencing Read Accuracy”. Genome Biology
19.1 (2018), 90:1—90:11. DOT: 10.1186/513059-018-1462-9.

Rasheed, Zeehasham and Huzefa Rangwala. “A Map-Reduce
Framework for Clustering Metagenomes”. In: Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2013 IEEE 27th International. IEEE. 2013, pp. 549-558. DOI: 10.
1109/IPDPSW.2013.100.

- “MC-MinH: Metagenome Clustering using Minwise Based Hash-
ing”. In: Proceedings of the 2013 SIAM International Conference
on Data Mining. SIAM. 2013, pp. 677-685. DoI: 10 . 1137 /1.
9781611972832.75.

Rees, David C., Thomas N. Williams, and Mark T. Gladwin. “Sickle-
Cell Disease”. The Lancet 376.9757 (2010), pp. 2018-2031. DOIL:
10.1016/50140-6736(10)61029-X.

Richter, Stefan, Victor Alvarez, and Jens Dittrich. “A Seven-Dimensional
Analysis of Hashing Methods and Its Implications on Query Pro-
cessing”. Proceedings of the VLDB Endowment 9.3 (2015), 96—107.
DOI: 10.14778/2850583.2850585.

Rivera-Colén, Angel G., Nicolas C. Rochette, and Julian M. Catchen.
“Simulation with RADinitio Improves RADseq Experimental
Design and Sheds Light on Sources of Missing Data”. Molecular

269

https://doi.org/10.1073/pnas.85.8.2444
https://doi.org/10.1073/pnas.85.8.2444
https://doi.org/10.1371/journal.pone.0037135
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://doi.org/10.1038/ncomms15311
https://doi.org/10.4230/LIPIcs.WABI.2017.21
https://doi.org/10.1186/s13059-018-1462-9
https://doi.org/10.1109/IPDPSW.2013.100
https://doi.org/10.1109/IPDPSW.2013.100
https://doi.org/10.1137/1.9781611972832.75
https://doi.org/10.1137/1.9781611972832.75
https://doi.org/10.1016/S0140-6736(10)61029-X
https://doi.org/10.14778/2850583.2850585

270 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Ecology Resources (2020), pp. 1-16. DOI: 10. 1111/ 1755 - 0998 .
13163.

Rivest, Ronald. The MD5 Message-Digest Algorithm. Tech. rep. MIT
Laboratory for Computer Science and RSA Data Security, Inc.,
1992. DOI: 10.17487/RFC1321.

Roberts, Michael, Wayne Hayes, Brian R. Hunt, Stephen M. Mount,
and James A. Yorke. “Reducing Storage Requirements for Biolog-
ical Sequence Comparison”. Bioinformatics 20.18 (2004), pp- 3363~
3369. DOI: 10.1093/bioinformatics/bth408.

Rochette, Nicolas C., Angel G. Rivera-Colén, and Julian M. Catchen.
“Stacks 2: Analytical methods for paired-end sequencing im-
prove RADseq-based population genomics”. Molecular Ecology
28.21 (2019), pp. 4737-4754. DOI: 10.1111/mec.15253.

Rogaway, Phillip and Thomas Shrimpton. “Cryptographic Hash-
Function Basics: Definitions, Implications, and Separations for
Preimage Resistance, Second-Preimage Resistance, and Collision
Resistance”. In: International Workshop on Fast Software Encryption.
Berlin, Heidelberg: Springer, 2004, pp. 371—388. Do1: 10. 1007/
978-3-540-25937-4_24.

Ryynanen, Matti and Anssi Klapuri. “Query by Humming of Midi
and Audio Using Locality Sensitive Hashing”. In: 2008 IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE. 2008, pp. 2249—2252. DOI: 10.1109/ICASSP.2008.4518093.

Sadowski, Caitlin and Greg Levin. Simhash: Hash-Based Similarity
Detection. Tech. rep. Google, 2007.

Sanger, Frederick, Steven Nicklen, and Alan R. Coulson. “DNA
Sequencing with Chain-Terminating Inhibitors”. Proceedings of
the National Academy of Sciences 74.12 (1977), pp. 5463—5467. DOL:
10.1073/pnas.74.12.5463.

Sboner, Andrea, Xinmeng Jasmine Mu, Dov Greenbaum, Raymond
K. Auerbach, and Mark B. Gerstein. “The real cost of sequencing:
higher than you think!” Genome Biology 12.1 (2011), 125:1-125:10.
DOI: 10.1186/gb-2011-12-8-125.

Schleimer, Saul, Daniel S. Wilkerson, and Alex Aiken. “Winnowing:
Local Algorithms for Document Fingerprinting”. In: Proceedings
of the 2003 ACM SIGMOD International Conference on Management
of Data — SIGMOD “03. ACM. 2003, 76-85. boI: 10.1145/872757.
872770.

Schmitt, Armin O. and Hanspeter Herzel. “Estimating the Entropy
of DNA Sequences”. Journal of Theoretical Biology 188.3 (1997),
pp- 369—-377. DOI: 10.1006/jthi.1997.0493.

Schweyen, Hannah, Andrey Rozenberg, and Florian Leese. “De-
tection and Removal of PCR Duplicates in Population Genomic
ddRAD Studies by Addition of a Degenerate Base Region (DBR)
in Sequencing Adapters”. The Biological Bulletin 227.2 (2014),
pPp. 146—160. DOI: 10.1086/BBLv227n2p146.

Sena, Johnny A., Giulia Galotto, Nico P. Devitt, Melanie C. Connick,
Jennifer L. Jacobi, Pooja E. Umale, Luis Vidali, and Callum J.
Bell. “Unique Molecular Identifiers Reveal a Novel Sequencing

https://doi.org/10.1111/1755-0998.13163
https://doi.org/10.1111/1755-0998.13163
https://doi.org/10.17487/RFC1321
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1111/mec.15253
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1109/ICASSP.2008.4518093
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1186/gb-2011-12-8-125
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1006/jtbi.1997.0493
https://doi.org/10.1086/BBLv227n2p146

BIBLIOGRAPHY

Artefact with Implications for RNA-Seq Based Gene Expression
Analysis”. Scientific Reports 8.1 (2018), 13121:1-13121:13. DOI:
10.1038/s41598-018-31064-7.

Shendure, Jay, Shankar Balasubramanian, George M. Church, Wal-
ter Gilbert, Jane Rogers, Jeffery A. Schloss, and Robert H. Water-
ston. “DNA Sequencing at 40: Past, Present and Future”. Nature
550.7676 (2017), pp- 345—353. DOI: 10.1038/nature24286.

Sherry, Stephen T., M.-H. Ward, M. Kholodov, J. Baker, Lon Phan,
Elizabeth M. Smigielski, and Karl Sirotkin. “dbSNP: the NCBI
Database of Genetic Variation”. Nucleic Acids Research 29.1 (2001),
pp. 308-311. DOI: 10.1093/nar/29.1.308.

Siegel, Alan. “On Universal Classes of Extremely Random Constant-
Time Hash Functions”. SIAM Journal on Computing 33.3 (2004),
Pp- 505-543. DOI: 10.1137/50097539701386216.

Smith, Temple F. and Michael S. Waterman. “Identification of Com-
mon Molecular Subsequences”. Journal of Molecular Biology 147.1
(1981), pp. 195-197. DOI: 10.1016/0022-2836(81)90087-5.

Smith, Tom, Andreas Heger, and Ian Sudbery. “UMI-tools: Mod-
eling Sequencing Errors in Unique Molecular Identifiers to Im-
prove Quantification Accuracy”. Genome Research 27.3 (2017),

PpP- 491—499. DOI: 10.1101/9gr.209601.116.

Smyth, Redmond P., Timothy E. Schlub, Andrew J. Grimm, Vanessa
Venturi, Abha Chopra, Simon A. Mallal, Miles P. Davenport,
and Johnson Mak. “Reducing Chimera Formation During PCR
Amplification to Ensure Accurate Genotyping”. Gene 469.1-2
(2010), pp. 45-51. DOIL: 10.1016/j.gene.2010.08.009.

Stinson, Douglas R. “Universal Hashing and Authentication Codes”.
Designs, Codes and Cryptography 4.3 (1994), pp. 369—380. DOI:
10.1007/BF01388651.

Sudmant, Peter H., Tobias Rausch, Eugene J. Gardner, Robert E.
Handsaker, Alexej Abyzov, John Huddleston, Yan Zhang, Kai Ye,
Goo Jun, Markus Hsi-Yang Fritz, et al. “An Integrated Map of
Structural Variation in 2,504 Human Genomes”. Nature 526.7571
(2015), pp. 75-81. DOI: 10.1038/naturel5394.

Tettelin, Hervé, Vega Masignani, Michael J. Cieslewicz, Claudio
Donati, Duccio Medini, Naomi L. Ward, Samuel V. Angiuoli,
Jonathan Crabtree, Amanda L. Jones, A. Scott Durkin, et al.
“Genome Analysis of Multiple Pathogenic Isolates of Streptococ-
cus Agalactiae: Implications for the Microbial “Pan-Genome””.
Proceedings of the National Academy of Sciences 102.39 (2005),

Pp- 13950-13955. DOI: 10.1073/pnas.0506758102.

The 1000 Genomes Project Consortium. “A Global Reference for
Human Genetic Variation”. Nature 526.7571 (2015), pp. 68-74.
DOI: 10.1038/naturel5393.

Thorup, Mikkel. “Bottom-k and Priority Sampling, Set Similarity
and Subset Sums with Minimal Independence”. In: Proceedings of
the Forty-Fifth Annual ACM Symposium on Theory of Computing —
STOC "13. ACM. 2013, 371-380. DOI: 10.1145/2488608.2488655.

271

https://doi.org/10.1038/s41598-018-31064-7
https://doi.org/10.1038/nature24286
https://doi.org/10.1093/nar/29.1.308
https://doi.org/10.1137/S0097539701386216
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1101/gr.209601.116
https://doi.org/10.1016/j.gene.2010.08.009
https://doi.org/10.1007/BF01388651
https://doi.org/10.1038/nature15394
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1038/nature15393
https://doi.org/10.1145/2488608.2488655

272 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

Thorup, Mikkel. “Fast and Powerful Hashing Using Tabulation”.
Communications of the ACM 60.7 (2017), 94-101. DOI: 10 . 1145/
3068772.

- “High Speed Hashing for Integers and Strings”. arXiv preprint
arXiv:1504.06804 (2015).

Timm, Henning. “BPHT Evaluation Workflow”. Zenodo. Ver-
sion 1.1.0. 2020. DOI: 10.5281/zenodo.4041213.

- “BPHT Source Code”. Zenodo. Version 1.0.0. 2020. DOI: 10.5281/
zenodo.4065163.

— “PCR Deduplication Analysis Workflow”. 2021. por1: 10.5281/
zenodo.4575278.

- “Rad-seqg-stacks Evaluation Workflow”. Version 1.0.0. 2021. DOTI:
10.5281/zenodo.4420213.

— “Rust-tab-hash Source Code”. Zenodo. Version 0.3.1. 2020. DOTI:
10.5281/zenodo.3936766.

- “Segment Length Analysis Workflow”. Version 1.0.0. 2021. DOI:
10.5281/zenodo.4448209.

Timm, Henning and Till Hartmann. “Dinopy — DNA input and
output for Python and Cython”. Zenodo. First released on
10.04.2015 on https://bitbucket.org/HenningTimm/dinopy.
2020. DOTI: 10.5281/zenodo.4389306.

Timm, Henning and Sven Rahmann. “ddRAGE — ddRAD Data
Generator (Source Code)”. Zenodo. First released on 28.02.2017
on https://bitbucket.org/genomeinformatics/rage. 2020. DOI:
10.5281/zenodo.4390215.

Timm, Henning, Hannah Weigand, Martina Weiss, Florian Leese,
and Sven Rahmann. “ddRAGE: A Data Set Generator to Evaluate
ddRADseq Analysis Software”. Molecular Ecology Resources 18.3
(2018), pp. 681-690. DOI: 10.1111/1755-0998.12743.

Tin, Mandy M.-Y,, Frank E. Rheindt, Emilie Cros, and Alexander S.
Mikheyev. “Degenerate Adaptor Sequences for Detecting PCR
Duplicates in Reduced Representation Sequencing Data Improve
Genotype Calling Accuracy”. Molecular Ecology Resources 15.2
(2015), pp. 329-336. DOI: 10.1111/1755-0998.12314.

Turcatti, Gerardo, Anthony Romieu, Milan Fedurco, and Ana-Paula
Tairi. “A New Class of Cleavable Fluorescent Nucleotides: Syn-
thesis and Optimization as Reversible Terminators for Dna Se-
quencing by Synthesis”. Nucleic Acids Research 36.4 (2008), e25:1—
e25:13. DOI: 10.1093/nar/gkn021.

Ukkonen, Esko. “Finding Approximate Patterns in Strings”. Jour-
nal of Algorithms 6.1 (1985), pp. 132-137. DOI: 10. 1016 /0196 -
6774(85)90023-9.

Wagner, Robert A. and Michael J. Fischer. “The String-to-String
Correction Problem”. Journal of the ACM (JACM) 21.1 (1974),
168-173. DOI: 10.1145/321796.321811.

Walzer, Stefan. “Load Thresholds for Cuckoo Hashing with Over-
lapping Blocks”. In: 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018). Vol. 107. Schloss

https://doi.org/10.1145/3068772
https://doi.org/10.1145/3068772
https://doi.org/10.5281/zenodo.4041213
https://doi.org/10.5281/zenodo.4065163
https://doi.org/10.5281/zenodo.4065163
https://doi.org/10.5281/zenodo.4575278
https://doi.org/10.5281/zenodo.4575278
https://doi.org/10.5281/zenodo.4420213
https://doi.org/10.5281/zenodo.3936766
https://doi.org/10.5281/zenodo.4448209
https://bitbucket.org/HenningTimm/dinopy
https://doi.org/10.5281/zenodo.4389306
https://bitbucket.org/genomeinformatics/rage
https://doi.org/10.5281/zenodo.4390215
https://doi.org/10.1111/1755-0998.12743
https://doi.org/10.1111/1755-0998.12314
https://doi.org/10.1093/nar/gkn021
https://doi.org/10.1016/0196-6774(85)90023-9
https://doi.org/10.1016/0196-6774(85)90023-9
https://doi.org/10.1145/321796.321811

BIBLIOGRAPHY

Dagstuhl-Leibniz-Zentrum fiir Informatik. 2018, 102:1-102:10.
DOI: 10.4230/LIPIcs.ICALP.2018.102.

Wang, Shi, Eli Meyer, John K. McKay, and Mikhail V. Matz. “2b-
RAD: a Simple and Flexible Method for Genome-Wide Genotyp-
ing”. Nature Methods 9.8 (2012), 808-810. DOI: 10 . 1038/ nmeth .
2023.

Waskom, Michael and the seaborn development team. “mwaskom/seaborn”.
2020. DOT: 10.5281/zenodo.592845.

Webster, Arthur F. and Stafford E. Tavares. “On the Design of S-
Boxes”. In: Advances in Cryptology — CRYPTO 85 Proceedings.
Berlin, Heidelberg: Springer, 1986, pp. 523-534. DOI: 10.1007/3-
540-39799-X_41.

Wegman, Mark N. and J. Lawrence Carter. “New Hash Functions
and Their Use in Authentication and Set Equality”. Journal of
Computer and System Sciences 22.3 (1981), pp. 265-279. DOI: 10.
1016/0022-0000(81)90033-7.

Wellcome Sanger Institute. “P. falciparum clone E5 Version 1”. ftp:
//ftp.sanger.ac.uk/pub/project/pathogens/Plasmodium/
falciparum/E5/Versionl/. Accessed on 24.02.2020. 2017.

Westbrook, Anthony, Jordan Ramsdell, Taruna Schuelke, Louisa
Normington, R. Daniel Bergeron, W. Kelley Thomas, and Matthew
D. MacManes. “PALADIN: Protein Alignment for Functional
Profiling Whole Metagenome Shotgun Data”. Bioinformatics 33.10
(2017), pp. 1473-1478. DOIL: 10.1093/bioinformatics/btx021.

Yang, Xiao, Jaroslaw Zola, and Srinivas Aluru. “Parallel Metage-
nomic Sequence Clustering via Sketching and Maximal Quasi-
Clique Enumeration on Map-Reduce Clouds”. In: Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE International.
IEEE. 2011, pp. 1223-1233. DOIL: 10.1109/IPDPS.2011.116.

Ye, Yuzhen, Jeong-Hyeon Choi, and Haixu Tang. “RAPSearch: A
Fast Protein Similarity Search Tool for Short Reads”. BMC Bioin-
formatics 12 (2011). DOI: 10.1186/1471-2105-12-159.

Zentgraf, Jens, Henning Timm, and Sven Rahmann. “Cost-optimal
Assignment of Elements in Genome-scale Multi-way Bucketed
Cuckoo Hash Tables”. In: 2020 Proceedings of the Twenty-Second
Workshop on Algorithm Engineering and Experiments (ALENEX).
SIAM. 2020, pp. 186—198. poI: 10.1137/1.9781611976007 . 15.

Zhao, Yongan, Haixu Tang, and Yuzhen Ye. “RAPSearch2: A Fast
and Memory-efficient Protein Similarity Search Tool for Next-
generation Sequencing Data”. Bioinformatics 28.1 (2011), pp. 125—
126. DOI: 10.1093/bioinformatics/btr595.

Zilversmit, Martine M., Sarah K. Volkman, Mark A. DePristo,
Dyann F. Wirth, Philip Awadalla, and Daniel L. Hartl. “Low-
complexity Regions in Plasmodium falciparum: Missing Links in
the Evolution of an Extreme Genome”. Molecular Biology and Evo-
lution 27.9 (2010), pp. 2198—2209. DOI: 10.1093/molbev/msql08.

Zobrist, Albert L. A New Hashing Method With Application for Game
Playing. Tech. rep. The DOI points to a 1990 reprint of this report

273

https://doi.org/10.4230/LIPIcs.ICALP.2018.102
https://doi.org/10.1038/nmeth.2023
https://doi.org/10.1038/nmeth.2023
https://doi.org/10.5281/zenodo.592845
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7
ftp://ftp.sanger.ac.uk/pub/project/pathogens/Plasmodium/falciparum/E5/Version1/
ftp://ftp.sanger.ac.uk/pub/project/pathogens/Plasmodium/falciparum/E5/Version1/
ftp://ftp.sanger.ac.uk/pub/project/pathogens/Plasmodium/falciparum/E5/Version1/
https://doi.org/10.1093/bioinformatics/btx021
https://doi.org/10.1109/IPDPS.2011.116
https://doi.org/10.1186/1471-2105-12-159
https://doi.org/10.1137/1.9781611976007.15
https://doi.org/10.1093/bioinformatics/btr595
https://doi.org/10.1093/molbev/msq108

274 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

by IOS Press. University of Wisconsin-Madison Department of
Computer Sciences, 1970. DOIL: 10.3233/ICG-1990-13203.

Zorita, Eduard, Pol Cusco, and Guillaume J. Filion. “Starcode: Se-
quence Clustering Based on All-pairs Search”. Bioinformatics
31.12 (2015), pp. 1913-1919. DOI: 10 . 16093 /bioinformatics/
btve53.

https://doi.org/10.3233/ICG-1990-13203
https://doi.org/10.1093/bioinformatics/btv053
https://doi.org/10.1093/bioinformatics/btv053

List of Figures

2.1 Central dogma of molecular genetics. 10
2.2 Structure of DNA and RNA backbones. 10
2.3 DNA double helix and complementary base pairs. 10

2.4 (Reverse) complement of a DNA sequence. 11
2.5 Transcription of DNA into mRNA. 11
2.6 Amino acid code wheel. 12

2.7 Effects of different kinds of SNVs. 15

2.8 Effects of different types of indel mutations. 15

2.9 Example for allele frequencies. 17

2.10 Single-end and paired-end reads. 19

2.11 Propagation of PCR errors through multiple cycles. 20

2.12 [llustration of the Illumina CRT sequencing workflow. 22

2.13 Structure of the M15 and M10 protein alphabets. 30

2.14 Six frame translation of a read. 31

2.15 Solid g-gram set and sequence of a string. 32

2.16 Gapped g-gram set and sequence of a string. 33

2.17 Visualization of a cache line in a computer’s main memory. 36
2.18 Illustration of hardware prefetching for linear accesses. 37
2.19 Illustration of hardware prefetching for spaced linear accesses. 37

3.1 Illustration of a hash function. 39

3.2 Illustration of a collision for a hash function. 40

3.3 Illustration of the difference between true and e-almost universal-
ity. 41

3.4 Illustration of the difference between k-independence and (e, k)-
independence. 42

3.5 Illustration of the difference between exact and e-min-wise inde-
pendence. 43

3.6 Illustration of the H}ilrér family of hash functions. 45

3.7 Visualization of simple and twisted tabulation hashing. 47

3.8 Illustration of a basic (value store type) hash table. 49

3.9 Illustration of a key value store. 52

3.10 [llustration of a value store. 53

3.11 Illustration of quotienting using the identity hash function and 6-
bit values. 53

3.12 Illustration of an inverse quotienting function. 54

3.13 Two possible packings of 32-bit integers. 54

3.14 Illustration of a bloom filter with three hash functions. 55

276 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

3.15 llustration of the BBHAsH algorithm. 57

3.16 Illustration of a hash table resolving collisions by chaining. 58

3.17 lllustration of collision resolution by linear probing. 60

3.18 Illustration of collision resolution by quadratic probing. 61

3.19 Illustration of collision resolution by double hashing. 61

3.20 Illustration of two possible paths to insert a new item using (k, p)-
cuckoo hashing. 64

3.21 Illustration of a hopscotch hash table. 65

3.22 Example for failure to insert with hopscotch hashing due to skewed
hash values. 67

4.1 Bit-packing layout of 64-bit entries of a BPHT. 71

4.2 Example of a BPHT with three inserted elements. 71

4.3 Example of a resized BPHT array. 74

4.4 Fill rates achievable by a BPHT. 78

4.5 Insert time required to fill a BPHT with all g-grams of a reference
genome. 80

4.6 Insert time required by BPHT per g-gram. 81

4.7 Speedup of BPHTs with respect to PLHTs. 84

4.8 Comparison of access times of BPHTs and PLHTs. 85

4.9 Mean speedup of BPHTs over PLHTs in counting mode and nor-
mal mode for different hash table sizes and hopscotch neighbor-
hood sizes. 86

5.1 Different types of similarity: resemblance and containment. 9o

5.2 Hamming distance and similarity of two DNA strings. 91

5.3 Hamming distance with padding for two strings of unequal lengths. 92

5.4 Visualization of a MinHash sketch for two sets. 99

5.5 Illustration of a k-mins sketch. 101

5.6 Illustration of a bottom-k sketch. 102

5.7 Example of uniquified g-grams used by Order Min Hash. 105

5.8 Comparison of a classic bottom sketch and a text-ordered bottom
sketch. 105

5.9 Illustration of an OMH sketch. 106

5.10 Sketch comparison between documents with different sizes. 107

5.11 [llustration of the containment index. 108

5.12 [llustration of the mash screen workflow. 109

5.13 Two decompositions of a sequence using static window sizes. 110

5.14 Illustration of a winnowed sketch. 111

6.1 Example for a segmentation of a g-gram sequence. 126

6.2 Decomposition of a sequence into segments. 126

6.3 Different levels of description for a document: text, g-grams, win-
dows, segments. 127

6.4 Illustration of a metagenomic analysis using a winnowed segment
index. 129

6.5 Comparison of the behavior of three winnowing variants (simple,
robust, compressed) on an equiminimal region. 132

6.6 Different possible alignment positions of reads overlapping a repet-
itive region. 133

BIBLIOGRAPHY 277

6.7 Segments obtained from a compressed winnowed sketch and from
a robust winnowed sketch for a repetitive region. 133

6.8 Inversion of a hash function codomain to transfer minima into max-
ima. 136

6.9 Expected distributions ‘YS}’K for small hash function codomains. 140

6.10 Probability development of four selected segment lengths for in-
creasing codomain sizes. 141

6.11 Development of sums of squared differences for increasing codomain

sizes. 143

6.12 Comparison of expected and empirically computed segment length
distributions. 144

6.13 Illustration of swap mixing. 145

6.14 Segment length distribution on random sequences with g = 31
and w = 50. 148

6.15 Segment length distribution on random sequences with g = 11
and w = 50. 150

6.16 Segment length distribution on random sequences with varying
GC-content for g = 31 and w = 30. 152

6.17 Segment length distribution on reference genomes with non-canonical
17-grams and w = 50. 154

6.18 Segment length distribution on reference genomes with min-canonical
17-grams and w = 50. 155

6.19 Segment length distribution on reference genomes with max-canonical
17-grams and w = 50. 156

7.1 Illustration of anthropogenic stress on two populations of fish. 161

7.2 Illustration of a ddRAD analysis. 162

7.3 Two examples of restriction enzyme cut sites. 163

7.4 Difference in fragment lengths between basic and double digest RAD-
seq. 163

7.5 Structure of PE ddRAD reads obtained from Illumina sequencers. 164

7.6 Effects of null alleles on generated fragments. 167

7.7 Examples for the influence of biological and technological factors
on ddRAD reads. 168

7.8 Structure of datasets generated by bDRAGE. 173

7.9 Decision tree for event types simulated by bDRAGE. 175

7.10 Structure of datasets simulated by pbDRAGE using standard pa-
rameters. 176

7.11 Mutation tree with five alleles, including the common allele. 177

7.12 Distribution of quality values learned from the in-house ddRAD
dataset L126-Q7o. 182

7.13 Simplified coverage distribution of ddRAD data for one individ-
ual. 183

7.14 Coverage profiles per locus derived from two ddRAD datasets an-
alyzed with Stacks. 184

7.15 SNAKEMAKE rule graph for our ddRAD analysis workflow. 194

7.16 Distribution of locus sizes for different parameter sets with and with-
out PCR deduplication. 197

278 ANALYSIS AND APPLICATION OF HASH-BASED SIMILARITY ESTIMATION TECHNIQUES FOR
BIOLOGICAL SEQUENCE ANALYSIS

7.17 Comparison of the number of loci detected with and without PCR
deduplication. 198

7.18 Mean number of blocklisted loci and initial mean locus size with
and without deduplication. 199

7.19 Expected coverage distribution of valid loci for one individual in
the low coverage dataset. 200

7.20 Comparison of the distribution of detected locus sizes for the low
coverage dataset using different parameter sets with and without
PCR deduplication. 201

7.21 Number of loci detected for the low coverage dataset for different
parameter sets with and without PCR deduplication. 202

7.22 Number of loci detected for the high diversity dataset for differ-
ent parameter sets with and without PCR deduplication. 203

7.23 Comparison of the distribution of detected locus sizes for the high
diversity dataset using different parameter sets with and without
PCR deduplication. 204

7.24 Metrics for SNP detection analysis of a dataset with different pa-
rameter sets with and without PCR deduplication. 206

7.25 lllustration of possible misclassification due to reduced read count
per locus. 207

7.26 Detected number of loci in the G. fossarum dataset with and with-
out PCR deduplication for different parameter sets. 208

7.27 Distribution of locus sizes in the G. fossarum dataset for different
parameter sets with and without PCR deduplication. 210

7.28 Example for the PCR deduplication workflow of CALL-CONSENSUS-
READS. 215

7.29 Example of likelihood computation for one position of a second
order cluster. 217

7.30 Size distribution of loci simulated by bbRAGE with and without
PCR duplicates and after PCR deduplication. 220

7.31 Comparison of simulated coverage and coverage after deduplica-

tion. 222

8.1 Structure of conjoined reads caused by PCR chimeras. 228

8.2 Structure of conjoined reads caused by an alternative sequence py
null allele. 228

8.3 Structure of 18S rRNA reads. 228

8.4 Clustering of chimeric reads. 230

8.5 Illustration of a conjoined read cluster. 231

8.6 Structure of conjoined reads caused by an alternative sequence py
null allele. 231
8.7 Exemplary weight functions for head and tail sketch. 232

B.1 Differences between predicted and computed segment length dis-
tribution on random sequences with g = 31 and w = 50. 239

B.2 Segment length distribution on random sequences with g = 31
and w = 30. 240

B.3 Segment length distribution on random sequences with g = 31
and w = 100. 240

B.g

B.5

B.6

B.7

B.8

D.2

D3

BIBLIOGRAPHY 279

Segment length distribution on random sequences with varying
GC-content for g = 17 and w = 30. 241

Segment length distribution on random sequences with varying
GC-content for g = 11 and w = 30. 242

Segment length distribution on reference genomes with non-canonical
31-grams and w = 50. 243

Segment length distribution on reference genomes with min-canonical
31-grams and w = 50. 243

Segment length distribution on reference genomes with max-canonical
31-grams and w = 50. 244

SNAKEMAKE filegraph for the preprocessing phase of our ddRAD-
seq analysis workflow. 246

SNAKEMAKE filegraph for the Stacks workflow and Evaluation
phases of our ddRADseq analysis workflow. 247

Untruncated distribution of locus sizes for different parameter sets
with and without PCR deduplication. 250

Number of loci detected for the G. fossarum dataset for different pa-
rameter sets with and without PCR deduplication. 251
Distribution of locus sizes in the G. fossarum dataset for different
parameter sets with and without PCR deduplication. 252

List of Tables

2.1 Read length and number for different sequencing technologies. 19
2.2 IUPAC code table for DNA sequences. 30
2.3 Alphabets for (biological) sequences. 31

3.1 Runtimes for closed addressing collision resolution. 59
3.2 Runtimes for open addressing collision resolution. 66

4.1 Reference genomes used to evaluate BPHTs, sorted by length. 79

5.1 Runtimes for MinHashing strategies. 116
5.2 Symbols used for different sketches. 123

6.1 Notation used in the chapter Distribution of Minimizer Segment
Lengths. 135

6.2 Reference and draft genomes used to analyze segment length dis-
tribution, sorted by GC-content. 145

6.3 Combinations of hash functions and canonization strategies used
to analyze simulated genomes with varying GC-content. 151

7.1 List of selected restriction enzymes. 163

7.2 Runtimes and memory usage of several runs of PDRAGE using
different parameter combinations. 18y

7.3 Analysis results of STacks and PYRAD on a dataset simulated us-
ing pDRAGE. 188

7.4 DDRAGE parameters used for PCR deduplication analysis. 196

7.5 Analysis parameters evaluated for PCR deduplication analysis. 196

7.6 Comparison of the number of loci detected with and without PCR
deduplication. 198

7.7 DDRAGE parameters used for the low coverage dataset. 200

7.8 Analysis parameters evaluated for the low coverage dataset. 200

7.9 DDRAGE parameters used for the high diversity dataset. 202

7.10 Analysis parameter sets evaluated the high diversity dataset. 202

7.11 Comparison of the number of loci detected for the high diversity
dataset with different parameter sets. 203

7.12 DDRAGE parameters used for the SNP detection dataset. 205

7.13 Analysis parameters evaluated for the G. fossarum dataset. 208

7.14 Number of SNPs identified by our workflow in the G. fossarum dataset
for different parameter sets. 209

8.1 Different links for chimeric reads that can be derived from simi-
larity patterns in split sketches of two reads. 230

Eidesstattliche Versicherung

Hiermit versichere ich, Henning Timm, dass die Dissertation von
mir selbststindig angefertigt wurde und alle von mir genutzten
Hilfsmittel angegeben wurden. Ich versichere, dass alle in Anspruch
genommenen Quellen und Hilfen in der Dissertation vermerkt wur-
den.

Ort, Datum Unterschrift

	Introduction
	Contributing and Collaborative Work

	Biological and Mathematical Basics
	Biological Sequences
	Genomic Mutations
	Ploidy and Zygosity
	Acquisition of Biological Sequences
	Bioinformatic Basics
	Probability Distributions
	Caching

	Hashing in Bioinformatics
	Hash Functions
	Hash Tables
	Collision Resolution

	Reducing Cache Misses in Hopscotch Hash Tables
	Hash Table Architecture
	Hash Table Operations
	Cache Efficiency
	Hash Functions
	Evaluation
	Conclusion and Discussion

	Computing and Approximating Resemblance and Containment
	Resemblance and Containment
	Similarities and Distances
	Containment
	Estimation of Similarity and Containment
	Locality Sensitive Hashes as Estimators for Resemblance
	MinHash
	Locality Sensitive Hashing for Edit Distance
	Locality Sensitive Hashes as Estimators for Containment
	Winnowing and Minimizers
	Overview of LSH in Bioinformatics
	Conclusion

	Distribution of Minimizer Segment Lengths
	Segmentation of a Sequence
	Application: A Segment Reference for Protein Similarity
	Compressed Winnowing
	Expected Segment Length Distribution
	Empirical Analysis of Segment Length Distribution
	Distribution of MinHash Values
	Segment Number Estimation
	Discussion and Conclusion

	Analysis of ddRAD Data
	Acquisition and Structure of ddRAD Data
	Simulation of ddRAD Data
	A Workflow for ddRAD Data Analysis
	PCR Duplicate Removal

	Conclusion and Outlook
	Conclusions
	Outlook: Split Sketches for Chimera and Null Allele Detection

	Appendices
	Hash Function Code Samples
	Additional Figures for Segment Length Distribution
	File Graph for our ddRAD Analysis Workflow
	Additional Plots for ddRAD Analysis Workflow Evaluation
	Abbreviations
	Bibliography
	List of Figures
	List of Tables
	Affidavid

