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Power laws are found in numerous natural, social, and 
artificial systems, phenomena [1–4] and are particularly 
prevalent in biology, ecology, and biogeography, demon-
strating that evolutionary, ecological, and physiological 
constraints apply consistently to genomes, cells, organ-
isms, communities, and ecosystems across vast orders of 
scale [1, 5–8]. One of the best-established ecological laws 
is the island species–area relationship (ISAR), wherein 
the number of species (‘species richness’) occurring per 
island increases per island area. This pattern has been 
substantiated by studies spanning diverse spatiotempo-
ral scales and taxa, including the microbiome [9, 10], and 
has been found to be best expressed as a power function 
which, when linearized via logarithmic transformation, is 
given by the equation logS = logc + zlogA, where S denotes 
species richness, A represents area, and c and z are fitted 
parameters. The slope of the ISAR, i.e. the z parameter, is 
often considered informative of the dominant processes 
of species addition [11, 12].

The seminal paper describing the Human Microbiome 
Project [13] references island biogeography as a driving 
force behind our ability to study and understand spa-
tiotemporal microbial dynamics, while a recent study 
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Abstract
It has recently been proposed that the study of microbial dynamics in humans may gain insights from island 
biogeographical theory. Here, we test whether the diversity of the intratumoral microbiota of colorectal cancer 
tumors (CRC) follows a power law with tumor size akin to the island species-area relationship. We confirm a direct 
correlation between the quantity of Amplicon Sequence Variants (ASVs) within CRC tumors and tumor sizes, 
following a (log)power model, explaining 47% of the variation. Understanding the processes involved, potentially 
through the analogy of tumors and islands, may ultimately contribute to future clinical and therapeutic strategies.
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proposes a positive scaling relationship between human 
height and gut microbiome alpha-diversity across two 
large, independent cohorts, controlling for a wide range 
of relevant covariates [14]. Notwithstanding that cancer 
tumor dynamics may depend on a variety of variables 
spanning cell proliferation inclination and genomics 
[15] to microbial interactions and metagenomics [16], 
recent research has proposed that tumors can usefully 

be considered as island-like systems [17, 18]. Here, we 
explore this analogy by testing for an ISAR-like relation-
ship between the microbiota, residing inside the tumor as 
a first step in applying island biogeography principles and 
theories to understanding and predicting tumor dynam-
ics. These intratumoral microbiota may contribute to 
shaping the tumor microenvironment by influencing the 
immune environment, inflammation, and metabolic pat-
terns of the tumor [19], hence they may provide novel 
ways to study cancer prognosis, development, and ther-
apy [20].

Using a novel cohort of tumors from colorectal cancer 
(CRC) patients (n = 27), a cancer type highly connected to 
microbial dysbiosis [21], we test for a potential relation-
ship between the size of a tumor (measured as its diam-
eter) and the composition of bacteria residing within the 
tumor. These bacteria are identified by analyzing their 
unique DNA sequences, called Amplicon Sequence 
Variants (ASVs), which act as the “species units” for this 
study. We hypothesize that the intratumor microbiota 
populations across patients will mirror the ISAR, by 
increasing in diversity as the tumor’s size increases, fol-
lowing a power law model. The power model is the most 
frequently preferred, both in describing ISARS and as a 
basis for the development of species diversity theories 
[11, 12].

Using a linearized power model with a logarithmic 
transformation of the variables (the log-log model), we 
identified a significant positive species–area relation-
ship (Fig. 1A, Table S2): tumor size explaining 47% of the 
number of ASVs identified within CRC tumors. Rarefac-
tion curves indicated that all tumors were sufficiently 
sequenced to capture total ASV within-sample richness 
(reached an asymptote, Figure S1). We are therefore con-
fident that the aforementioned results are robust. How-
ever, as a sensitivity test, the analysis was rerun using 
rarefied species richness and the ISAR remained sig-
nificant (Fig. 1B, Table S2). For all regression models, no 
specific deviations from residual normality and homosce-
dasticity and no outliers were detected (Table S2). Fur-
ther sensitivity tests were run to evaluate the model’s 
predictive power using a k-fold cross-validation proce-
dure. This analysis revealed a correlation between the 
observed and the predicted log10 ASVs (Pearson’s Cor-
relation Coefficient = 0.65) with a 95% confidence inter-
val of [0.51; 0.79] calculated across 1000 simulations (see 
Fig. 1C). Using rarefied richness, a mean Pearson’s Cor-
relation Coefficient of 0.55 was obtained with a 95% con-
fidence interval of [0.36; 0.70]. These analyses support the 
robustness of our findings and indicate that the relation-
ships described here have predictive power, i.e. they may 
extend to other tumors.

While we caution that (i) using diameter alone to mea-
sure tumor size is a potential limitation, and (ii) varied 

Fig. 1 (A) Relationship between the log10-species richness (Number of 
Amplicon Sequence Variants, ASVs) and log10-tumor size, determined 
using Ordinary Least Square regression; the parameter z and LogC of 
the model as well as the associated R2 and the P-values of the F-statistic 
are given. More details on the OLS are given in Table S2. (B) Relationship 
between the log10 of rarefied species richness (Number of Amplicon Se-
quence Variants, ASVs) and the log10-tumor size (R2 and P-values of the F-
statistic are given). Rarefaction was implemented with 1000 iterations. See 
Table S2 for details of the OLS. (C) The predictive power of the relationship 
in (A) and (B) evaluated using repeated k-fold cross-validation approach 
with 1000 simulations. The distribution of Pearson’s correlation between 
observed and predicted species richness values obtained for the 1000 
simulations is given for both rarefied (yellow) and non-rarefied species 
richness (grey). Dashed lines indicate the mean correlation
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individual ages and cancer stages are potential confound-
ing factors that we did not analytically account for, the 
strength of the observed pattern across diverse tumors 
suggests further exploration of the analogy with island 
dynamics to hold potential.

The similarity in the value of the slope of the diversity–
tumor size relationship with patterns found in oceanic 
islands/archipelagos [11, 12] is intriguing. While we can-
not assert that tumor ontogeny resembles that of oceanic 
islands, our findings serve as a starting point for further 
investigations into the commonalities between tumor 
growth and the colonization and diversification dynamics 
observed in island ecosystems. Studies have shown that 
the origins of intratumoral microbiota may stem from 
various pathways like proximity to the mucosal barrier, 
colonization from neighboring normal tissues enabled 
by the immunosuppressive and hypoxic conditions, or 
hematogenous dissemination where microorganisms 
from other sites invade the tumor via compromised 
blood vessels [20, 22]. Parallels can also be drawn to the 
island theory in terms of the effects environmental het-
erogeneity has on species richness, with the more diverse 
islands, usually the larger ones, hosting higher richness 
[11, 12]. Similarly, recent studies have found that intra-
tumoral microbiota are not randomly distributed but 
rather highly organized into micro-niches, with functions 
related to immune and epithelial cells, thereby contribut-
ing to the progression of cancer [22], since larger tumors, 
often characterized by irregular morphology, potentially 
harbor more of these niches [23]. Thus, tumors’ mor-
phology can be a potential explanation for the pattern 
reported herein.

In conclusion, our findings not only contribute to our 
understanding of tumor biology but also concur with the 
plea for interdisciplinary exploration by drawing paral-
lels between tumor growth patterns and well-established 
ecological principles [24]. The study of the intratumoral 
microbiota and their dynamics holds potential to signifi-
cantly impact future clinical and therapeutic endeavors 
[25]. Further research is warranted to unravel the mecha-
nistic underpinnings of the observed similarities and 
explore the potential implications for both oncology and 
ecology.

Methods
Patient samples & DNA extraction
In this study, resected tumor samples from 27 CRC 
patients treated in the Colorectal Unit of the First Pro-
paedeutic Department of Surgery, Hippocration Gen-
eral Hospital, Athens, Greece were analyzed. Samples 
were subsequently frozen in liquid nitrogen for one hour 
and kept at -80℃ before processing. All tumors selected 
ranged from 1.2 cm to 8.5 cm in diameter and were histo-
logically inspected to validate the diagnosis. The longest 

length of the tumor in the tissue removed during sur-
gery is reported as the tumor size. DNA extraction was 
performed using Macherey Nucleospin Tissue (MNT, 
MACHEREY-NAGEL) according to the manufactur-
er’s instructions. Sample metadata includes tumor size, 
patient age and sex as well as histological tumor grades, 
and can be found in Supplementary file S3.

Sequencing and read processing
Sequencing was carried out by Eurofins Genomics 
Europe Sequencing GmbH (Jakob-Stadler-Platz 7, 78,467, 
Constance, GERMANY) on an Illumina MiSeq platform 
producing paired-read samples of 300  bp read length 
based on the V3-V4 amplicons. Raw sequences were 
quality controlled using CUTADAPT v2.7 [26] and used 
as input to QIIME2 v.2023.5 [27] on which they were 
denoised and clustered into ASVs (Amplicon Sequence 
Variants) using DADA2 [28]. ASV counts, sample meta-
data and taxonomy assignment tables are provided in 
Supplementary file S3.

Statistical analyses
All of the analyses were undertaken in R [29, 30]. Several 
different mathematical models with different forms for 
describing ISARs have been proposed but recent papers 
have underlined that the power model provides the best 
fit to the ISAR in most cases [11, 12]. Traditionally, the 
power model is linearized by logarithmic transforma-
tions of species richness S and area A using the equation 
logS = logC + zlogA, with z the slope of the resulting log–
log relationship, and logC the intercept [11, 12]. Here, we 
employed the log–log linear modeling approach (using 
log10) to investigate the relationship between the num-
ber of Amplicon Sequence Variants (ASVs) detected 
per sample and tumor size. Prior to analysis, the com-
pleteness of each of the 27 samples was assessed using 
a rarefaction curve. As all rarefaction curves reach an 
asymptote, completeness was considered maximum for 
all samples and, consequently, with the number of ASVs 
directly comparable between tumors. However, as a sen-
sitivity test, we refitted the ISAR log-log model using 
rarefied ASV richness using as sample size, the smallest 
library size encountered in our data i.e. 4231 sequences. 
Rarefaction was implemented using the R package metag-
Misc [31] with the function phyloseq_mult_raref_div and 
the number of iterations set to 1000. For each model, 
three regression diagnostics were implemented, namely 
the Shapiro-Wilk test for the normality of the residuals, 
the Pearson’s correlation between the fitted values and 
squared residuals for the homogeneity of the residuals, 
and the outlier t-test based on the Studentized residu-
als implemented with the function outlierTest in the car 
[32] R package. To assess the generality of our results, 
we adopted a repeated k-fold cross-validation approach 
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whereby we randomly partitioned the datasets into three 
equal components (k = 3). For each partitioning, we put 
aside one component as the test data (9 samples) and fit-
ted the log–log model to the remaining two components 
(the training data, 18 samples), and used the resultant 
model to predict the values of log10–species richness 
in the test data. The process was repeated for the three 
distinct combinations of training and test data. The pre-
dictive power of the log–log model was then assessed 
based on the Pearson’s correlation calculated between 
the predicted and observed values of the test data and 
subsequently averaged across the three combinations. 
This 3-fold cross-validation process was then repeated 
1000 times. This procedure was also implemented for the 
model fitted with rarefied species richness.
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