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Abstract.

 

We present a correlative modelling tech-
nique that uses locality records (associated with
species presence) and a set of  predictor variables to
produce a statistically justifiable probability response
surface for a target species. The probability response
surface indicates the suitability of  each grid cell in
a map for the target species in terms of  the suite
of  predictor variables. The technique constructs a
hyperspace for the target species using principal
component axes derived from a principal com-
ponents analysis performed on a training dataset.
The training dataset comprises the values of  the
predictor variables associated with the localities
where the species has been recorded as present. The
origin of  this hyperspace is taken to characterize
the centre of  the niche of  the organism. All the
localities (grid-cells) in the map region are then
fitted into this hyperspace using the values of  the
predictor variables at these localities (the prediction
dataset). The Euclidean distance from any locality
to the origin of  the hyperspace gives a measure of
the ‘centrality’ of  that locality in the hyperspace.

These distances are used to derive probability
values for each grid cell in the map region. The
modelling technique was applied to bioclimatic
data to predict bioclimatic suitability for three
alien invasive plant species (

 

Lantana camara

 

 L.,

 

Ricinus communis

 

 L. and 

 

Solanum mauritianum

 

Scop.) in South Africa, Lesotho and Swaziland.
The models were tested against independent test
records by calculating area under the curve
(AUC) values of  receiver operator characteristic
(ROC) curves and kappa statistics. There was
good agreement between the models and the
independent test records. The pre-processing of
climatic variable data to reduce the deleterious
effects of  multicollinearity, and the use of  stop-
ping rules to prevent overfitting of  the models are
important aspects of  the modelling process.
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INTRODUCTION

 

In response to the needs of  environmental man-
agers, a wide variety of  recent biogeographical
distribution models have been applied to a selec-
tion of  biological problems. They have been used
to predict the potential distribution of  problem
organisms such as weeds (Panetta & Dodd, 1987;
Panetta & Mitchell, 1991; Sindel & Michael,

1992; Beerling 

 

et al.

 

, 1995), and disease vectors,
including Tsetse flies (Rogers & Williams, 1993;
Rogers 

 

et al.

 

, 1996; Robinson 

 

et al.

 

, 1997) and
ticks (Rogers & Randolph, 1993; Cumming, 2000).
They have been used to assess the potential
impacts of  climate change on species distributions
(Lindenmayer 

 

et al.

 

, 1991; Rogers & Randolph,
1993; Beerling 

 

et al.

 

, 1995; Schulze & Kunz, 1995),
and to determine where new populations of  a
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threatened species could be established (Pfab &
Witkowski, 1997) or where extinct populations
may have occurred (Bauer 

 

et al.

 

, 1994). These
models have found applications in conservation
(Lindenmayer 

 

et al.

 

, 1991; Osborne & Tigar, 1992;
Austin 

 

et al.

 

, 1996; Lloyd & Palmer, 1998) and
ecoclimatic site matching of  forestry species
(Richardson & McMahon, 1992).

The above models rely on strong, often indir-
ect, links between species’ locality records and
predictor variables and can thus be termed 

 

cor-
relative models

 

 (Beerling 

 

et al.

 

, 1995). Correlative
models use locality (distribution) records as sur-
rogates for explicit performance parameters. They
can be classified as either 

 

group discrimination
techniques

 

, which use both presence and absence
locality records, or 

 

profile techniques

 

, which use
only presence locality records (Caithness, 1995).

Examples of  group-discrimination techniques
include those models based on discriminant ana-
lysis (Rogers & Randolph, 1993; Rogers & Williams,
1993; Rogers 

 

et al.

 

, 1996), logistic regression (Osborne
& Tigar, 1992; Cumming, 1999; Higgins 

 

et al.

 

, 1999)
and decision-tree-based methods (Walker, 1990;
Lees, 1994; Michaelsen 

 

et al.

 

, 1994; Williams 

 

et al.

 

,
1994). Examples of  profile techniques include
the approaches used in the modelling packages
known as BIOCLIM (Nix, 1986; Busby, 1991)
and DOMAIN (Carpenter 

 

et al.

 

, 1993).
We describe a profile technique for predicting

suitability based on principal components analysis.
We then use the technique in combination with
climatic predictor variables to illustrate the predic-
tion of  bioclimatic suitability for three alien plant
species in South Africa, Lesotho and Swaziland.

 

THE PRINCIPLE COMPONENTS 
ANALYSIS (PCA) TECHNIQUE

 

Principal components analysis (PCA) is a multi-
variate technique that produces a set of  abstract
variables (called principal components) which are
weighted linear combinations of  the original vari-
ables (James & McCulloch, 1990). The components
are constructed so as to maximize the variance
explained by each component and in such a manner
that they are uncorrelated (orthogonal).

A map of  the area for which one wants to
predict an organism’s distribution is subdivided
into regular grid cells. This allows the map to be
represented as a matrix of  values. The values of

the predictor variables associated with grid-cells in
which the target organism has been recorded as
present are referred to as the ‘training dataset’.
The values of  the predictor variables associated
with all the grid-cells within the map region com-
prise the ‘prediction dataset’ (i.e. the training data-
set plus the values associated with the remaining
unsampled grid-cells).

The essence of  the method is as follows. A
PCA is performed on the training dataset to con-
struct a mathematical hyperspace in which each
orthogonal axis is defined by an orthogonal prin-
cipal component axis. The value of  the component
score on a principal component axis associated
with a particular observation defines the position
of  that observation on that axis. The 

 

n

 

 com-
ponent scores of  an observation thus define the
position of  that observation as a point in the 

 

n

 

-
dimensional hyperspace. The origin of  this hyper-
space is taken to characterize the centre of  the
niche of  the organism in terms of  the predictor
variables. The Euclidean distance from any point
to the origin gives a measure of  the ‘centrality’ of
the point in the hyperspace defined by the values
of  the observations in the training set.

If  all the values of  the predictor variables associ-
ated with the prediction set are mapped into the
hyperspace defined by the training set, then one
can calculate the distance from each unsampled
site to the multivariate origin of  the hyperspace.
The squared Euclidean distance between any two
points in a 

 

n

 

-dimensional space can be calculated
by taking the sum of  squares of  the Manhattan
distances (using Pythagoras’ theorem), where the
number of terms in the equation is equal to the num-
ber of  dimensions defining the space. The squared
distance between a point and the origin of  the 

 

n

 

-
dimensional hyperspace is thus calculated by taking
the sum of  squares of  the component scores.

This distance can be used to calculate a prob-
ability of  bioclimatic suitability for each locality
(grid-cell) as follows. Based on the assumption
that the fundamental niche of  an organism is
generally considered to follow a broad Gaussian
curve (Austin & Meyers, 1996), a normal distribu-
tion would be most appropriate for this pur-
pose. As the distance of  a point from the origin
of  the hyperspace is calculated from the sum of
its squared component scores, and as the sum of
squares of  

 

n

 

 standard normal random variates is
distributed as chi-square with 

 

n

 

 degrees of  freedom
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(Sokal & Rohlf, 1987), a chi-square distribution
can be used instead of  a normal distribution. This
assumes that the further a point is from the
origin of  the hyperspace, the less suitable it is for
the target species. The probability associated with
each chi-square value can thus be determined by
referring to a chi-square distribution (a chi-square
distribution is equivalent to a squared normal
distribution). These values can be mapped back to
the cells of  the original real-world map. An out-
put of  the model is therefore a map of  grid-cells,
with each grid-cell containing a probability value,
and these probability values can be interpreted as
an indication of  the suitability of  that grid-cell for
the target organism.

 

METHODS

The target species

 

The target species were selected due to a combina-
tion of: their weed status; their priority ranking
using a prioritization system (Robertson 

 

et al

 

. in
prep.) and data availability in existing databases.
In addition, these species were selected because
they could be identified easily and were unlikely to
be confused with other species of  similar appear-
ance. This is likely to have resulted in fewer false
positive and false negative errors as a result of
misidentification. Data obtained from existing
databases would be particularly prone to mis-
identification errors because the data housed in
these databases are supplied by large numbers of
volunteers.

 

The data

 

Data sources

 

Digital predictor variable maps (climatic vari-
ables and altitude) of  South Africa, Lesotho and
Swaziland developed by Schulze 

 

et al

 

. (1997)
were selected for the purpose of  illustrating this
method of  predictive modelling. Each of  the
climatic predictor variables was interpolated from
point data obtained from a network of  weather
recording stations distributed throughout South
Africa, to produce continuous digital maps at a
resolution of  60 pixels per degree (Schulze 

 

et al.

 

,
1997). Localities representing species presence
were obtained from the Southern African Plant
Invader’s Atlas (Henderson, 1998) and the National

Herbarium’s Computerized Information System
(PRECIS). Additional records of presence or absence
were collected, using a GPS, on road transects
selected to sample major climatic gradients repres-
ented in the map region. If  a target species occurred
continuously along any part of  a transect then its
position was recorded approximately every 2–4 km
to represent that species’ presence. Absence
records were only recorded if  they were at least
more than 10 km from any presence localities.
The absence records were used only for model
assessment and not for model building. The pres-
ence data used to predict the distribution of  an
organism obviously represent records collected
from that organism’s realized niche.

 

Climatic variable preprocessing

 

To reduce the dimensionality of  available climatic
variable data, principal components analyses (PCAs)
were performed on each of  12 mean monthly
rainfall maps, 12 monthly potential evaporation
maps, 12 mean daily maximum temperature and
12 mean daily minimum temperature maps. PCA
has previously been employed as a pre-analytical
data reduction technique used in distribution
modelling (Osborne & Tigar, 1992; Buckland &
Elston, 1993; Robinson 

 

et al.

 

, 1997).
Those principal component axes whose eigen-

values were greater in magnitude than eigenvalues
obtained from datasets of  random numbers of
the same sample size were retained as predictor
variables. This follows the ‘broken stick’ stopping
rule for PCA (Jackson, 1993). Ten predictor vari-
ables were selected (Table 1).

 

Locality data

 

Localities where 

 

Lantana camara

 

 L., 

 

Ricinus
communis

 

 L. and 

 

Solanum mauritianum

 

 Scop.
were present were partitioned randomly into a
set of  training localities and a set of  testing local-
ities in a ratio of  3 : 1, based on Huberty’s (1994)
recommendations. For each species, the values of
the predictor variables (Table 1) corresponding
with the training localities comprised the training
dataset for the model.

 

Implementation

 

In the first step, the values of  the training set were
standardized by subtracting the mean and divid-
ing by the standard deviation for each variable.
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This is equivalent to performing the eigenanalysis
on the correlation matrix instead of  the covariance
matrix (Fig. 1), and removes the effects of  differing
measuring units. The matrix of  standardized
values (U) is arranged so that the 

 

n

 

 variables are
in columns and the 

 

x

 

 observations are in rows.
The means and standard deviations are kept for
the third step of  the analysis.

Next, one performs a PCA on the matrix U,
which gives a matrix (V), in which the 

 

n

 

 columns
(eigenvectors) are the component loadings for each
axis of  the model. Each eigenvector has a corres-
ponding eigenvalue (denoted by 

 

λ

 

) describing its
variance (Fig. 1).

In the third step, the observations of  the pre-
diction dataset were standardized by the means
and standard deviations calculated from the
training dataset in the first step of  this analysis
to produce matrix W (i.e. the mean and standard
deviation calculated for each variable from the
training set were used to standardize the corres-
ponding variables from the prediction set). The
effect of  standardizing the prediction set (using
means and standard deviations of  the training
set) is to centre it on the origin of  the hyperspace,
which allows the origin to be viewed as the niche
optimum for the target organism.

This matrix was then multiplied by the matrix
V (containing the 

 

n

 

 columns of  component load-
ings) to produce a matrix (Z) of  component
scores for all map localities in the model (Fig. 1).
Conceptually this step projects the prediction
set into the hyperspace defined by the training
set.

The principle components of  a PCA are
constructed so that most of  the variance in the
original variables is accounted for in the first few
components. Using too many components results
in overfitting of  the model which usually results
in loss of  generality. In the fourth step of  the
modelling process, a stopping rule was used to
determine the optimum number of  principal com-
ponents that should be included in the model so
that overfitting is avoided. In a review of  stop-
ping rules, Jackson (1993) found that the ‘broken
stick’ method was the most reliable of  a range
of  methods for deciding how many principal
components to include. This method estimates
the distribution of  eigenvalues obtained from
random data and admits only components with
eigenvalues that exceed these estimates. To make
our model more conservative, only those compon-
ents whose eigenvalues exceeded the mean plus
two standard deviations of  these estimates were
used in our models (Fig. 1), following Caithness
(1995).

Because the variance on each PCA axis is dif-
ferent, spherical probability contours, concentric
about the origin of  the hyperspace, can only be
assumed if  the variance on each component axis
is first standardized. In the fifth step (Fig. 1), the
variances of  each component axis were therefore
standardized by dividing the component scores of
each component (in Z) by their respective eigen-
values (

 

λ

 

) to produce a matrix of  standardized
component scores (Z). In step six, the probability
associated with each observation was obtained by
summing the squares of  the standardized com-
ponent scores and substituting this value into
the chi-square probability distribution function
(Fig. 1). In the final step, the probability values
for each grid cell were mapped back to their
associated original geographical coordinates of
each observation (Fig. 1). The calculations were
performed using MATLAB (a numerical com-
putation and visualization software package) and
the maps were produced using IDRISI32 (a raster-
based GIS software package).

Table 1 Predictor variables selected for building the
distribution models

No. Predictor variable

1 Digital elevation model
2 Number of  days with frost
3 Component axis 1 of  a PCA on 

12-monthly potential evaporation surfaces
4 Component axis 2 of  a PCA on 

12-monthly potential evaporation surfaces
5 Component axis 1 of  a PCA on 

12-monthly maximum temperature surfaces
6 Component axis 2 of  a PCA on 

12-monthly maximum temperature surfaces
7 Component axis 1 of  a PCA on 

12-monthly minimum temperature surfaces
8 Component axis 2 of  a PCA on 

12-monthly minimum temperature surfaces
9 Component axis 1 of  a PCA on 

12-monthly rainfall surfaces
10 Component axis 2 of  a PCA on 

12-monthly rainfall surfaces
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Model assessment

 

In order to have confidence in a predictive model
or in the approach used to build it, the model’s
predictions should be assessed by some objective
means. This is usually performed qualitatively by an
expert who is familiar with the species or quan-
titatively using a set of  independent testing locality
records and an accuracy assessment measure.
Fielding & Bell (1997) reviewed a number of  model
assessment measures for quantitatively assessing
a model’s prediction success. One of the most robust
measures described by them is derived from a
receiver operator characteristic (ROC) plot. For a
recent application of  ROC see Cumming (2000).

 

ROC plots

 

If  those testing localities where a target species

has been recorded as present are termed ‘posit-
ives’ and those localities where it has been
recorded as absent are termed ‘negatives’, then
sensitivity is defined as the probability that the
model produces a positive result in a positive
locality and specificity is the probability that the
model produces a negative result in a negative
locality (Table 2). A ROC plot is obtained by
plotting all sensitivity values on the 

 

y

 

-axis
against their equivalent (1-specificity) values for
all available decision thresholds on the 

 

x-

 

axis
(Fielding & Bell, 1997). The area under the ROC
function (AUC) provides a single measure of
overall accuracy that is not dependent on a par-
ticular decision threshold (Fielding & Bell, 1997).
The value of  the AUC ranges between 0.5 and 1,
where 0.5 indicates randomness and 1 indicates a
perfect fit.

Fig. 1 Implementation of  the PCA modelling technique. The numbers in round brackets correspond with the
steps described in the methods section.
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Area under the curve (AUC) values of  ROC
curves were calculated for each species using a
set of  testing localities. These calculations were
performed using Analyse-It Clinical Laboratory
software. The set of  testing localities used to cal-
culate AUC values comprised a set of  localities
representing species presence (obtained from the
partition described above) as well as a set of
localities where the species was recorded as
absent (Fig. 2). Although absence data are not
used to build the model they are required by the
ROC accuracy assessment measure for model
testing.

As the ROC accuracy measure is considered to
be relatively new to ecology (Packer 

 

et al.

 

, 1999)
and may not be well known, we also provide
kappa statistics for each of  the species (Fielding
& Bell, 1997). To calculate kappa values, we used

a probability threshold of  0.3 for assigning prob-
abilities to presence or absence categories (i.e.
probabilities greater than 0.3 were assign presence
and values less than or equal to 0.3 were assigned
absence) for calculating the parameters in the
confusion matrix (Table 2). Monserud & Leemans
(1992) suggested the following ranges of  agree-
ment for the kappa statistic (

 

K

 

): no agreement
< 0.05; very poor 0.05–0.20; poor 0.20–0.40; fair
0.40–0.55; good 0.55–0.70; very good 0.70–0.85;
excellent 0.85–0.99 and perfect 0.99–1.00.

 

RESULTS

 

Although most of  the standardized component
scores calculated from the training sets for the
three species differ significantly from a normal
distribution (Table 3) they do not appear to devi-
ate radically from normality (Fig. 3).

Regions of  high bioclimatic suitability for 

 

L.
camara

 

 include the coastal regions of  the Eastern
Cape, parts of  KwaZulu-Natal, Mpumalanga,
Gauteng, Northern Province and Swaziland (Figs 2
and 4). The Free State Province, Lesotho, North-
West, Northern Cape and Western Cape prov-
inces demonstrate low bioclimatic suitability. The
regions of  high suitability correspond approxim-
ately with the Savanna (excluding the Kalahari
Thornveld) and Forest biomes (Low & Rebelo,
1996). Those areas of  lower suitability appear to

Table 2 A confusion matrix used to define sens-
itivity and specificity (Fielding & Bell, 1997) where
+ indicates presence and – indicates absence, sensitivity =
a/(a + c) and specificity = d/(b + d)

Observed
+ –

Predicted + a b

– c d

Fig. 2 Map of South Africa (indicating the provinces), Lesotho and Swaziland. Black symbols indicate localities
from which the absence test data were drawn for model testing. In the inset, black indicates southern Africa
relative to Africa.
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be associated with the Grassland biome (Low &
Rebelo, 1996). 

 

L. camara

 

 is reported to invade
forests, plantation margins, savanna and water-
courses (Henderson, 1995), which would explain the
correspondence between the model’s predictions
and the Savanna and Forest biomes. An AUC
value of  0.991 was calculated for this species
(using 78 presence and 172 absence localities)
which indicates a good fit between the distribu-
tion predicted by the model and the independent
test localities. An AUC value of  0.991 indicates
that in 991 of  1000 cases, random selection of
a point from the group of  known occurrences
will be associated with a probability that is
greater than that of  a random selection from
the negative group (Fielding & Bell, 1997). A
kappa value of  0.909 was calculated, which can
be considered to indicate ‘excellent’ agreement
between the model and the test data (Monserud
& Leemans, 1992).

Regions of  high bioclimatic suitability for

 

R. communis

 

 include the coastal regions of the East-
ern Cape, parts of  KwaZulu-Natal, Mpumalanga,
Northern Province and Swaziland (Fig. 5). The
river valleys, particularly in the Eastern Cape
and KwaZulu-Natal, appear to be particularly
suitable for this species, and the high-altitude
central plateau appears to be less suitable. The
regions of  high suitability appear to correspond
approximately with the Savanna and Forest biomes
and those of  lower suitability with the Grassland
biome (Low & Rebelo, 1996). 

 

R. communis

 

 is
reported to invade riverbanks, riverbeds, road-

sides and wasteland (Henderson, 1995). This
would largely explain the high suitability pre-
dicted for the river valleys in the Eastern Cape
and KwaZulu-Natal (Fig. 5). An AUC value of
0.948 was calculated for this species (using 68
presence and 134 absence localities). This AUC
value (0.948) also indicates a good fit between
the model and the independent test localities,
although the 

 

L. camara

 

 model (AUC 0.991) per-
formed slightly better. A kappa value of  0.799
was calculated, which can be considered to indic-
ate ‘very good’ agreement between the model and
the test data (Monserud & Leemans, 1992).

Regions of  high bioclimatic suitability for

 

S. mauritianum

 

 include the higher altitude regions
of  Eastern Cape, KwaZulu-Natal, Mpumalanga
and Swaziland (Fig. 6). The coastal regions appear
to be less suitable for this species than the higher
altitude regions although the high-altitude regions
of  Lesotho and the Free State are unsuitable. The
highest suitability areas appear to be associated
with the Forest biome (Low & Rebelo, 1996).

 

S. mauritianum

 

 is reported to be associated with
forest margins, plantations and wooded valleys
(Henderson, 1995) which may explain the corres-
pondence between areas predicted as high suit-
ability for this species and the Forest biome. In
addition, this species is considered to be the
principal weed of  South Africa’s timber planta-
tions (Bromilow, 1995), which are situated within
the areas of  high predicted suitability. An AUC
value of  0.950 was calculated for this species
(using 97 presence and 149 absence localities)

Table 3 Shapiro–Wilks’ W statistics and Kolmogorov–Smirnov one-sample D statistics with Lilliefors prob-
abilities calculated from compontent scores (for components 1–3) of  the training sets of  each species. If  the
W statistic or D statistics are significant (indicated by *), then the hypothesis that the respective distribution
is normal should be rejected

Comp. W statistic P D statistic P

Lantana camara 1 0.851 0.000* 0.186 P < 0.01*
2 0.963 0.000* 0.089 P < 0.01*
3 0.740 0.000* 0.158 P < 0.01*

Ricinus communis 1 0.857 0.000* 0.112 P < 0.01*
2 0.854 0.000* 0.202 P < 0.01*
3 0.973 0.000* 0.056 P < 0.10

Solanum mauritianum 1 0.988 0.015 0.050 P < 0.10
2 0.689 0.000* 0.206 P < 0.01*
3 0.916 0.000* 0.107 P < 0.01*
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Fig. 3 Plots of  component scores and histograms (with normal distribution curves), calculated from the
training sets for each species. Plots are given for components 1 vs. 2 and components 1 vs. 3 for L. camara;
R. communis and S. mauritianum. Only the first three components were included as the remaining components
were excluded by the stopping rule. The percentage variance explained by each component is given for each
species.
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which indicates a good fit between the model
and the independent test localities. This model
(AUC = 0.950) performed slightly better than the

 

R. communis

 

 model (AUC = 0.948) but not as
well as the 

 

L. camara

 

 model (AUC = 0.991). A
kappa value of  0.726 was calculated, which can
be considered to indicate ‘very good’ agreement
between the model and the test data (Monserud
& Leemans, 1992).

 

DISCUSSION

 

The modelling process described here can be
summarized in a set of  steps: climatic variable
pre-processing; partitioning of  locality records
into training and testing sets; building the PCA
model using the training set; and model assess-
ment using independent testing locality records.

 

Climatic variable pre-processing

 

In addition to data reduction, pre-processing of
the original variables is intended to remove or
considerably reduces multi-collinearity in the pre-
dictor variables eventually used to build the
models. When one or more linear relationships
exist among the original variables they are said to
be linearly dependent or multicollinear (Bernstein

 

et al.

 

, 1988). Multi-collinearity produces highly
unstable results, especially in factor analysis and
multiple regression, with the result that slight
differences in sampling error or rounding may
lead to substantially different results (Bernstein
et al., 1988). While this may not be considered to
be a serious problem when PCA is used for data
reduction, it becomes particularly important
when it is used as a predictive tool and when one
intends to analyse the resulting principal compo-
nents further, as we have done.

Data that are multi-collinear have ill-conditioned
covariance or correlation matrices (matrices that

Fig. 4 Bioclimatic suitability map for L. camara in
South Africa, Lesotho and Swaziland produced
from 232 localities (see inset) where the species was
recorded present (condition number = 10). Darker
shades indicate higher probabilities.

Fig. 5 Bioclimatic suitability map for R. communis
in South Africa, Lesotho and Swaziland produced
from 205 localities (see inset) where the species was
recorded present (condition number = 5). Darker
shades indicate higher probabilities.

Fig. 6 Bioclimatic suitability map for S. mauritianum
in South Africa, Lesotho and Swaziland produced
from 292 localities (see inset) where the species was
recorded present (condition number = 11). Darker
shades indicate higher probabilities.
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are singular or nearly singular; Bernstein et al.,
1988). Multi-collinearity can be detected by means
of  the condition number (cn) that is calculated by
dividing the square root of  the largest eigenvalue
by the square root of  the smallest eigenvalue
(Johnston, 1984). Condition numbers in the
range of  20–30 indicate serious multi-collinearity
(Johnston, 1984). The condition numbers calcu-
lated for the models produced for each species
were below this (L. camara cn = 10; R. communis
cn = 5; S. mauritianum cn = 11).

The PCA model

The predictive technique presented here has the
advantage that it does not require absence local-
ity data for the purposes of  prediction, in con-
trast to group discrimination techniques. While
group discrimination techniques should not be
dismissed, there are a number of  data quality
issues associated with absence data that make it
less desirable than presence data for the purposes
of  model training. Absence data are often not
available (Margules & Austin, 1994) and may be
considered to be less reliable than presence data
(Fielding & Bell, 1997). Absence records are likely
to be unreliable due to survey errors (particularly
false absence errors) arising from local extinc-
tion, seasonal migration, hibernation, taxonomic
errors or because insufficient time has elapsed for
the species to colonize the area, e.g. alien invasive
organisms. In the case of  alien plants the chance
of  recording false absence records is high in cases
where the plant is recorded absent at a site
because insufficient time has elapsed for the plant
to invade that area rather than because the area is
climatically unsuitable. The technique described
here is suited to cases where absence data are not
available, are of  low quality, or are difficult to
acquire (for example, alien organisms).

The fundamental niche of  an organism was
defined by Hutchinson (cited in Schoener, 1990)
as a n-dimensional hypervolume defined by n envir-
onmental dimensions within which the organism
can survive and reproduce. The organism may be
excluded from parts of  its fundamental niche due
to competition or other biotic interactions. The
reduced hypervolume in which the organism can
survive is its realized niche. The organism’s
occurrence along each axis of  the fundamental
niche is generally considered to follow a broad

Gaussian curve (Austin & Meyers, 1996). In con-
trast, occurrence in the realized niche has been
shown to exhibit various skewed shapes (Austin
et al., 1990), which is often attributed to competi-
tion. In a correlative model such as the one pre-
sented here, the locality records used to build the
model are drawn from the realized niche of  the
organism and as a result are likely to demon-
strate skewed responses which will differ among
predictor variables as well as among species
(Austin et al., 1990). In the modelling technique
described here, we use a normal distribution to
describe the shape of  the response on each compo-
nent axis as a compromise among several possible
responses. [The chi-squared distribution (which
is equivalent to a squared normal distribution)
can be used instead of  the normal distribution
because the component scores have to be squared
in order to calculate the distance of  a point from
the origin of  the hyperspace.] This technique is
based on a fundamental niche concept because it
uses a normal distribution to describe environ-
mental responses and because it does not explicitly
take biotic factors such as competition into account.
As the technique is based conceptually on the
fundamental niche, the predictions produced using
this approach could be said to describe the funda-
mental niche of  the target organism. However, as
the prediction is based on locality records that
are drawn from the realized niche, the resulting
prediction would not entirely describe the funda-
mental niche of  the target organism. Although
the responses of  the species modelled here are not
normal, they do not appear to deviate radically
from normality (Fig. 3). For this reason and the one
outlined above, the use of  a normal distribution
is justifiable. In addition, the models have per-
formed well against independent test records and
also correspond with known habitat associations,
indicating that the departures of the data from the
modelling assumptions may not be serious. The data
certainly seem to occupy a central cluster in the hyper-
space, and do thin out away from the origin (Fig. 3).

Model assessment

Model assessment is an important component of
the modelling process as it allows the user to
objectively assess the quality of  the model’s pre-
dictions. The best means of  objectively assessing
model performance is to use an independent set
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of  locality records and a quantitative accuracy
measure (Fielding & Bell, 1997). While model
assessment using only presence data would be
preferable, as the model is built using only pres-
ence data, accuracy assessment measures that use
only presence data tend to be less rigorous and
less objective than accuracy measures that rely
on both presence and absence locality data
(Fielding & Bell, 1997). As we are evaluating a
new modelling technique we have used rigorous
accuracy measures that use both presence and
absence data (Fielding & Bell, 1997). The presence-
only measures described in the literature are
threshold measures based on a confusion matrix
(Table 2). When absence data are not available,
then parameters b and d in the confusion matrix
cannot be calculated, thus limiting the measures
to those containing parameters a and c only. These
measures include Sensitivity [equation: a/ (a + c) ]
and False Negative Rate [equation: c / (a + c) ]
(Fielding & Bell, 1997). These measures can only
test for false negative errors but not for false posit-
ive errors, and for this reason are less rigorous.

Quantitatively, the high AUC values indicate a
good fit between the models and the independent
test localities, which in turn suggests that the model-
ling technique performs well. Kappa values indicate
that the model performance could be classified as
‘very good’ (R. communis and S. mauritianum)
to ‘excellent’ (L. camara) according to ranges defined
by Monserud & Leemans (1992). In addition, the
models have successfully identified areas cor-
responding to known habitat preferences, e.g. the
correspondence between areas predicted as highly
suitable for S. mauritianum and the Forest biome.

The major advantage of  this technique is that
it produces a statistically justifiable probability
response surface using presence data instead of
presence and absence data, as required by most
other multivariate techniques. The technique is,
however, unlikely to perform well when small
samples (< 40) of  locality records are used.
Future research should compare the performance
of  profile and group discrimination models to
investigate problems associated with the use of
absence data for predictive modelling.
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