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Abstract  
Understanding historical chemical usage is crucial for assessing current and past impacts on 
human health and the environment and informing future regulatory decisions. However, past 
monitoring data is often limited in scope and number of chemicals, while suitable sample 
types are not always available for remeasurement. Data-driven cheminformatics methods on 
patent and literature data offer several opportunities to fill this gap. The chemical stripes were 
developed as an interactive, open source tool for visualising patent and literature trends over 
time, inspired by the global warming and biodiversity stripes. This paper details the underlying 
code and datasets behind the visualisation, with a major focus on the patent data sourced 
from PubChem, including patent origins, uses, and countries. Overall trends and specific 
examples are investigated in greater detail to explore both the promise and caveats that such 
data offers in assessing the trends and patterns of chemical patents over time and across 
different geographic regions. Despite a number of potential artefacts associated with patent 
data extraction, the integration of cheminformatics, statistical analysis, and data visualisation 
tools can help generate valuable insights that can both illuminate the chemical past and 
potentially serve towards an early warning system for the future. 
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Synopsis: Patent data trends provide insights into chemical use, highlighting past, present and 
future threats to environmental ecosystems and human health. 

Introduction 

While studying historical and current chemical exposures can provide insights into their 
health and environmental impacts, the re-creation of historical exposures to investigate past, 
present or future health effects using analytical data is severely limited by several factors. 
These include the past focus on only a few dozen target chemicals (primarily legacy 
pollutants), in many cases a lack of suitable historical samples for remeasurement with 
modern analytical methods, as well as the sheer immensity of chemical space under 
consideration. Patent data, accessible through platforms like the World Intellectual Property 
Organization (WIPO) and linked to chemical structures in open databases such as PubChem1, 
offers an alternative data-mining approach for examining past and potential chemical 
exposures.  

PubChem is an open database of chemical structures, properties and associated information, 
providing tools for searching and analysing chemical information1. Approximately 40 million 
of the 118 million compounds in PubChem (June 2024) are linked to ~51 million patent files2. 
This Google Patents dataset covers 120 million patent publications from >100 patent offices 
including the European (EPO), Japanese (JPO), Korean (KIPO) and US patent offices (USPTO) 
plus WIPO. Each patent record provides details on the chemicals referenced in that patent, 
along with patent title, abstract, application and publication dates, applicant, inventor, and 
patent classification, but without context about why particular chemicals are mentioned. 
Individual PubChem compound pages contain information about each patent linked to that 
compound (chemical) in the Patent subsection. A single invention may be described across 
multiple patent documents (e.g., patent applications, grants, and re-examination certificates) 
identified with a unique patent identifier suffixed with a code (e.g., A1, A2, B1, B2). The same 
patent may also be filed in multiple national agencies, which can be grouped together into 
patent families. 

Patent data has been used to prioritize compounds in non-target environmental studies in a 
complementary manner to literature counts, aiding in the identification of potential 
contaminants with known commercial uses3. A recent viewpoint highlighted a concerning 
upward trend in chemical numbers across databases over time frames much shorter than the 
typical time for regulatory actions4. The chemical stripes visualisation included in that 
viewpoint4 sparked extensive debate, drawing significant attention, feedback and questions 
from various audiences. The subsequent sonification5 and accompanying video6 by J. Perera 
further intensified the discussion, leaving viewers in a state of shock or deep contemplation. 
Combining international legislation, patent filing dates and region information could 
potentially reveal various trends in patent numbers, as well as the effectiveness of regulatory 
measures and the necessity for timely interventions. However, beyond the general upward 
trend in chemical and patent numbers, deviating patterns in the stripes visualisation were 
observed for various chemicals, while several potential artefacts and limitations became 
apparent. This feedback motivated this article, which presents the data, code and methods 
behind the chemical stripes visualisation and corresponding chemicalStripes R package7 and 
performs a more detailed analysis of the patent data in PubChem for this particular context.  
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Materials and Methods 
Chemical Stripes Visualisation 
The open source chemicalStripes7 R package is available on GitLab and was developed to 
create the chemical stripes figure for one or more specific chemicals by PubChem Compound 
IDs (CIDs). CIDs can be obtained easily from multiple starting queries using PubChem search 
functionality. In addition to the input CID(s), users can specify a date range (default 1960-
2023), mode (patent or literature) and opt for a colourblind friendly version. The patent data 
is retrieved from the “Depositor Supplied Patent Identifiers” section8 of the respective CIDs, 
while the literature data is retrieved from the “Consolidated References” section9. The default 
colour range is green through yellow to red (Figure 1A, C, D), reproducing a traffic-light 
scheme distinctive from both the warming10 and biodiversity stripes11 already produced, 
whereas the colourblind friendly version is blue to red (Figure 1B), very similar to the warming 
stripes (and hence not the preferred default). The (chemical_stripes) function begins 
by checking package dependencies and loading necessary libraries. It then retrieves 
compound information, including the compound name, molecular formula, and number of 
patents filed. If patent data is available, this is then downloaded and processed, generating 
the stripe plot using the ggplot2 package12, both displaying and saving the output as PNG, see 
examples in Figure 1. For further details see the chemicalStripes repository7.  

 
Figure 1: Several examples of Chemical Stripes from 1960-2020; structures generated in CDK Depict13 are overlaid. A: Patent 
stripes for caffeine, showing the typical pattern. B: Summarized patent stripes for 4 species related to tetrafluoroborate in 
“colour-blind friendly” mode. C: Patent stripes and D: Literature stripes for gallopamil, with atypical patterns.  

Statistical Analysis 
Since a general trend was obvious (Figure 1A, B) with clear outliers (C), the patent dataset was 
analysed in more detail. Time series clustering was performed to systematically identify 
outliers, inspired by examples such as the abrupt decrease in patents for gallopamil (Figure 
1C). Region-based analysis was performed by inventor region to identify chemicals exclusive 
to certain regions, or regions with similar patenting activities, while specific trends related to 
chemical classes such as pharmaceuticals, pesticides or persistent compounds like per-and 
polyfluorinated substances (PFAS) were also explored. Network analysis was used to find 
relationships and connectivity patterns between chemicals in the patent dataset. Further 
details are available as open source code in the ULPatentTrends14 repository.  
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Since the patent dataset in PubChem is huge (>4 TB of data), subsets were used to perform 
these analyses. Several chemical lists were selected from the NORMAN Suspect List Exchange 
(NORMAN-SLE)15–17, CompTox18–20, the PubChem PFAS Tree21,22 and the PubChem Compound 
Table of Contents (TOC) Tree2 in the PubChem Classification Browser. The lists were chosen 
by subject areas including agrochemicals (the “Agrochemical Information”, “EU Pesticides 
Data” and “USDA Pesticides Program” sections from the PubChem TOC Tree2 and S28 
EUBIOCIDES23 from the NORMAN-SLE), bisphenols (S20 BISPHENOLS24 and S97 UBABPAALT25 
from the NORMAN-SLE), polychlorinated biphenyls (PCBs) from CompTox26. For PFAS: S102 
PARCPFAS27 and S111 PMTPFAS28 from the NORMAN-SLE plus four Stockholm Convention 
lists from the regulatory section of the PubChem PFAS Tree: the initial and updated 
perfluorooctanoic acid (PFOA) listing29, the initial perfluorohexane sulfonic acid (PFHxS) list30 
and the proposed C9-C21 long chain perfluoroalkylcarboxylic acids (LC-PFCAs) listing31–33.  

Results and Discussion 
Overall and Regional Trends by Chemical Lists 
Information was available for 103 separate regions, with most data generally available for the 
US, Europe, Japan, China, Korea and WIPO; the first 5 were chosen for a more detailed 
regional analysis. One example plot showing the top 20 of the 103 regions is shown in Figure 
S1; additional plots are included in the ULPatentTrends repository14. The overall trends in 
patent numbers over the different lists broken down by the five largest regions (with all 
others, including world, in the “other” category) reveal varying trends, with six of the thirteen 
examples shown in Figure 2 and explained below. More examples are given in the Supporting 
Information (SI) Figures S2-S6, including some breakdowns per CID, and in ULPatentTrends14.  

 
Figure 2: Patent counts for topic-based subsets of chemicals, with regional information. (A) The PubChem Table of Contents 
(TOC) Agrochemicals category. (B) The NORMAN-SLE S28 EUBIODICES list. (C) The NORMAN-SLE S20 BISPHENOLS list. (D) 
The CompTox Polychlorinated biphenyls (PCBs) list. (E) and (F) The initial and updated perfluorooctanoic acid (PFOA) listing 
in the Stockholm Convention. Purple=US, Red=Korea, Green=Japan, Orange=EU, Blue=China and Grey=Other regions.  

The overall trends in the entire Agrochemicals category (Figure 2A) and the two EU and US 
subsets (SI Figure S2B&C) were quite similar, although the increase in patents from China was 
less pronounced for the US compared with the EU and overall agrochemical list. A slightly 
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different pattern was observed for EUBIOCIDES (Figure 2B). Figure S3, a breakdown by 
compound, shows that this is driven primarily by benzoic acid, propanol and isopropanol. 
Further breakdowns per CID are included in ULPatentTrends14. The pattern for S20 
BISPHENOLS (Figure 2C) and S97 UBABPAALT were almost identical, dominated by Bisphenol 
A (see Figure S4). The plot for CompTox PCBs (Figure 2D) reveals a markedly different pattern 
with a peak around 2001, potentially due to the impact of the Stockholm Convention signed 
in 2001 (effective 2004) – details by CID are given in Figure S5. This baseline is mainly 2-
chlorobiphenyl, with 3,3',4,4',5-pentachlorobiphenyl and 3,3',4,4'-tetrachlorobiphenyl 
forming the peak around 2000 (see Figure S5).  The difference in patent trends for the initial 
versus updated PFOA listings in the Stockholm Convention (Figure 2E vs. F), particularly in the 
last years (2009-2022), underscore the critical importance of updating regulatory lists, 
especially in light of the increasing proportion of Chinese patents. Regional plots for all six 
PFAS lists are included in Figure S6.  

Discovering Important Chemicals in Lists via Centrality Analysis 
Networks were constructed for CIDs from the chemical lists. Each (weighted) individual 
network consisted of the CIDs from a specific list as nodes. An edge connecting a pair of CIDs 
was established if both CIDs were mentioned by one patent. Each edge was further weighted 
by the number of co-appearances of the two CIDs in patents. These individual networks 
resulted in plots (see Figures S7-8 and ULPatentTrends14 for examples) that were quite 
difficult to interpret. More detailed network analysis, shown in Figure 3 (including the US in 
Figures S9) helped isolate chemicals of particular interest to certain regions.  

 
Figure 3: Network analysis on S111 PMTPFAS to find key structures of interest. (A) Degree centrality of nodes for China. (B) 
Degree centrality of nodes for Europe. (C) PageRank centrality of nodes for China. (D) PageRank centrality of nodes for 
Europe. (E) Key structures, the top four from (A)-(D), marked on each plot with respective symbols next to the CID.  

Figure 3 shows a patent network analysis of the S111 PMTPFAS list, with nodes represented 
by their degree centrality for China (A) and Europe (B), and their PageRank centrality for China 
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(C) and Europe (D), each featuring the top 25 nodes. This analysis highlights differences in 
regional patent activity related to key PFAS compounds. In plots A, B, and C, the top candidate 
is tetrafluoroborate (CID 26255, see Figure 3E, top left, “+” symbol), which is used for 
electroplating and as an electrolyte additive for batteries. In the EU PageRank Centrality plot, 
it ranks only 5th, indicating a relatively lower number of patent applications involving this 
compound or within this sector compared to other regions or compounds. In plot D, the top 
compound is trifluoroacetic anhydride (TFAA, CID 9845, “*” in Figure 3E), which is second 
highest in A and B, third in C. TFAA serves as a recommended desiccant for trifluoroacetic acid 
(CID 6422, “^”), which is fourth in A and second in C, but is less prominent in Europe (B) and 
absent in D. Trifluoroethanol (CID 6409, “°”), a solvent used in organic chemistry, ranks third 
in A and B, second in D, and seventh in C. Fluometuron (CID 16562, sideways “§”), a herbicide, 
is second in D, tenth in C, and lower in both A and B. Lactofen (CID 62276, “-“), another 
herbicide, appears consistently across A, C and D, but is missing in B. PFOA (CID 9554, “X”), a 
well-known PFAS compound restricted by the Stockholm Convention since 2019, is present in 
all four plots, highest in Figure 3C (4th place). The differences between the plots underscore 
how regulatory environments, industrial needs, and research priorities shape the patenting 
activities related to PFAS compounds in the EU and China (and US - see Figure S9). The 
presence of compounds like PFOA in both regions highlights ongoing attention to regulated 
substances, but the specific applications and frequency of patent filings reveal divergent 
technological focuses and market demands between the two regions. A similar analysis for 
agrochemicals is included in the SI, Figure S10. Both examples show how investigating the 
patent data on various lists of chemicals could help isolate “stand-out” trends in chemical 
activity and act as (or help support) a potential early warning system for up and coming action.  

The regional analysis of the patent dataset (see Figures S9&10) included CIDs that are unique 
to specific regions, such as agrochemicals present only in China, Europe or the US, or those 
unique to only two regions, such as China and Europe but not US. The analysis covering all 
possible regional subsets and can be found in ULPatentTrends14; custom queries can be 
formed from the CID lists.  Examples for the agrochemical list are given in the TOC graphic. 

Potential and Limitations of Patent Data 
There are several challenges and limitations associated with analysing the chemical stripes 
visualizations and patent dataset. The patent dataset, while comprehensive, may not always 
be current or complete and seems to contain historical depositions that have been 
discontinued (potentially partially explaining some “blips” seen around 2007 and 2016), 
posing significant hurdles for accurate data (and trend) analysis. Extracting chemical 
information via image recognition or text mining from patents is challenging, since older 
patent documents are lower quality and are thus quite noisy and error prone34,35. Often, 
chemicals mentioned in the introduction of patents are not actually used in the application, 
leading to potential misinterpretation of their relevance, while any chemicals that happen to 
appear in Markush structures defined for drug discovery purposes may be overrepresented. 
Chemicals can be mistakenly identified due to their appearance in unrelated contexts, such 
as being part of an inventor's name. Such an error, reported for the 1913 patent linked to 
PFOS (US-1257524-A), based on a figure in the earlier viewpoint, led to a suggestion to use a 
higher threshold in the cut-off applied to the scoring of name recognition in future 
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applications. The two earliest PFOS patents currently in PubChem (as of 29 June 2024) are 
due to misrecognised names: US-1257524-A was invented by Adolf Pfoser, while US-2290705-
A was invented by Wilhelm Pfost – the first genuine PFOS patent is 1953 (see Figure S11). The 
tabular view of the patent data in PubChem allows a quick check of the linked patents, 
assisting with rapid verification (see Figure S12); this can also be downloaded for offline use.  

The timeliness of patent data is a major issue. Patent records from recent years, particularly 
post-2020, are often incomplete, which can skew analysis and trends; it can take 1-2 years for 
the data to filter through more completely. This gap highlights the need for rapid updates of 
data sources to ensure that recent innovations and filings are accurately represented. The 
accuracy of the dataset is heavily reliant on the efficiency and precision of literature mining 
and image recognition algorithms, which is an area of active research34,36–39. Adjustments to 
the extraction workflows can result in the exclusion of several patents from the dataset or 
the omission of information such as priority dates (which, if absent, cannot be included in the 
chemical stripes).  

Future research directions could include exploring different patent sources, such as using AI 
applications such as DeepSearch by IBM to collect and curate documents, which may offer 
more reliable and comprehensive data. Refining the data mining tools would also help in 
managing and interpreting the patent dataset more effectively.  

The chemical stripes package (ChemicalStripes7) and Jupyter notebooks (ULPatentTrends14) 
provided as part of this work are designed to help environmental researchers explore the 
possibilities of using patent data to address their environmental questions. This will help 
facilitate a deeper understanding of regional trends, regulatory impacts, and innovation 
landscapes in the chemical sector, as well as limitations in this data. Users are encouraged to 
report any artefacts, since such feedback is crucial for refining the dataset and approaches.40 
Incorporating more sophisticated classification methods in data extraction may help further 
enhance the accuracy and usability of this data in the future. 
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