
 
 

University of Birmingham

A Systematic Framework for Quantifying Production
System-Specific Challenges in Life Cycle Inventory
Data Collection
Glisic, Marija; Sarfraz, Shoaib; Veluri, Badrinath; Ramanujan, Devarajan

DOI:
10.1016/j.procir.2022.02.035

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Glisic, M, Sarfraz, S, Veluri, B & Ramanujan, D 2022, 'A Systematic Framework for Quantifying Production
System-Specific Challenges in Life Cycle Inventory Data Collection', Procedia CIRP, vol. 105, pp. 210-218.
https://doi.org/10.1016/j.procir.2022.02.035

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 04. Aug. 2024

https://doi.org/10.1016/j.procir.2022.02.035
https://doi.org/10.1016/j.procir.2022.02.035
https://birmingham.elsevierpure.com/en/publications/9b94dfea-bcaf-4751-b334-066730684569


ScienceDirect

Available online at www.sciencedirect.com

www.elsevier.com/locate/procedia 
Procedia CIRP 105 (2022) 210–218

2212-8271 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 29th CIRP Life Cycle Engineering Conference.
10.1016/j.procir.2022.02.035

© 2022 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 29th CIRP Life Cycle Engineering Conference.

Keywords: Sustainable Manufacturing; Life Cycle Assessment; Process modelling;

1. Introduction

Environmental sustainability in the industrial sector is an im-
portant concern as manufacturing processes can have a signif-
icant ecological footprint. Thus, developing accurate method-
ologies and tools for quantifying impact assessment is impera-
tive [10].

Metrics of the sustainability performance of manufacturing
processes, such as energy consumption, material loss, waste
and emissions, can only be detected and estimated if the data
is reliable and available [11]. Therefore, numerous previous re-
search addressed the issues with regards to data uncertainties
required to perform accurate life cycle assessment (LCA) [5].
A few frameworks have been developed to quantify these chal-
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lenges to analyze sustainability performance of manufacturing
processes accurately [8, 12].

The recently developed unit process life cycle inventory
(UPLCI) framework represents the data collection and analysis
methodology, thus providing the more detailed life cycle inven-
tory (LCI) of manufacturing processes. Thus, UPLCI models
can only be applied and reused if there is access to reliable data.
While UPLCI models have been developed for a wide range of
manufacturing processes [13], there is a lack of prior research
on applying (and adapting) them towards real-world production
setups. Data availability and reliability issues and the lack of
process knowledge common in production facilities pose a sig-
nificant challenge in identifying sustainability-focused process
improvements based on UPLCI models. To address the above
research gaps, this paper proposes a framework for quantify-
ing the difficulty- and variability-related challenges associated
with measuring critical process parameters. Here, critical pro-
cess parameters are defined as parameters that significantly in-
fluence the resulting energy and resource consumption of the
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Abstract

Understanding the environmental impacts of production setups and process parameters is a necessity for process optimization and new process
development within sustainable manufacturing. Previous research studies have focused on developing standard methodologies and frameworks
for parametrically modelling the life cycle inventories of unit manufacturing processes. However, these approaches do not fully account for the
challenges associated with implementing life cycle inventory models in real-world production setups. Therefore, the time- and cost-intensiveness
associated with constructing such models limit their use for identifying sustainability-focused process improvements in complex, real-world
production processes. To address the above challenges, this paper proposes a framework to identify process inventory data that have a significant
influence on process resource consumption, taking into consideration the difficulties and variabilities in measuring these data. The overarching
goal is to identify feasible process improvements from the perspective of process monitoring for sustainable manufacturing. The application of the
proposed framework is presented using a case study on a real-world through-feed centerless grinding production process for rotor manufacturing.
This study reveals grinding time is the most sensitive process parameter among the other time-related parameters. The manual nature of the
process, lack of a data acquisition system, non-standardized sequence of operation, and inability to capture in-process measurements without
disrupting real-time production significantly contributes to the difficulty and variability of measuring grinding time.
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process. The proposed framework is demonstrated using a case
study on characterizing the difficulty and variability of criti-
cal time-related process parameters for an existing through-feed
centerless grinding production setup for rotor production.

2. Background

Several researchers have applied the UPLCI methodology to
model different manufacturing processes to create reusable en-
ergy and mass loss estimation tools. A recent study by Overcash
et al. [13] identified 31 distinct UPLCI models that have been
developed for a range of conventional manufacturing processes,
while the number of such models for non-conventional man-
ufacturing processes [16, 18] is steadily increasing. However,
there are always some challenges and/or limitations associated
with the development of such models that have been discussed
in this section.

Raoufi et al. [15] created a UPLCI model focused on the en-
ergy consumption evaluation for metal injection moulding pro-
cess. However, some of the assumptions have been indicated
during the calculation of basic energy, such as, basic power of
the moulding machine, ovens and furnaces, which may result
in the variation of energy values for different production se-
tups. Ramirez-Cedillo et al. [14] applied the UPLCI method-
ology to evaluate the energy consumption and material losses
for the laser powder bed fusion process. The authors stated that
the energy consumption of active actuators and the laser effi-
ciency were not considered due to the unavailability of special-
ized equipment, which could be helpful to determine the exact
amount of idle and active energy used during the process. Si-
mon et al. [16] developed a reusable model for stereolithogra-
phy 3D printing and examined material and energy flow during
the process. Experiments were performed to validate the devel-
oped model, and the empirical results were found in agreement
with the proposed model. However, the developed model did
not include post-processing stages (e.g., part cleaning and cur-
ing), resulting in underestimating environmental impacts. Buis
et al. [3] performed sequential hot forming processes (consisted
of heating, performing and extrusion) to estimate the energy
consumption. Waste generation and process emissions were not
considered in this study due to the inaccessibility of data.

Concerning the grinding process, a reusable UPLCI model
was created by Linke and Overcash [9]. Limitations found for
constructing the model include neglecting tool change time
and loss of cooling lubricant. Also, the model adopted spe-
cific grinding energy values from the previous research stud-
ies and used an estimation for idle time, which could impact
the applicability of the model in the real-time production sce-
nario. A sustainability study of the grinding process was per-
formed by Filleti et al. [4] based on the UPLCI methodology
and real-time operational data. Due to the unavailability of LCI
data related to the grinding wheel composition as well as cut-
ting fluid consumption and composition, these aspects could
not be integrated into the model. Kalla et al. [6] developed
a UPLCI model for milling processes. However, a significant
difference between theoretically estimated and experimentally

measured values for milling energy consumption was reported
by Krogshave et al. [17]. Overestimation of the machine tool’s
basic and idle power consumption was observed as the pri-
mary source for these errors. This work was further extended
by Boettjer et al. [2] who developed an adjusted UPLCI model
for estimating the machine tool-specific energy consumption in
milling operations while considering the uncertainties associ-
ated with specific cutting energy of workpiece material and the
machine tool specifications. The authors found that factors not
considered in the previous model, such as complex tool path,
machine tool life, wear of both cutting tool and machine tool,
led to underestimating milling time and overestimating power
consumption. The recent study by Bernstein et al. [1] addressed
the variabilities in the estimation of process LCIs that arose due
to a lack of process knowledge with regards to design and man-
ufacturing process parameters. They proposed a methodology
for comparing estimated LCIs, throughout the process-specific
UPLCI and UMP reference models and experimentally mea-
sured LCIs. The results showed significant deviation in LCIs
estimation.

Based on the above studies, it can be concluded that unavail-
ability of measurement equipment, data inaccessibility, and un-
certainties in the manufacturing process (machine tool specifi-
cations, cutting tool specifications, production setup conditions,
etc.) are significant challenges associated with the development
of UPLCI models. These challenges must be avoided to de-
pict more accurate values for the UPLCI models and to enable
sustainability-focused improvements in the process. This can
be possible by collecting detailed and real-time production data
for the defined manufacturing processes.

3. Methodology

The following sections describe the outline of the proposed
framework developed to identify the process inventory data that
have a significant impact on the sustainability performance of
manufacturing processes. Sec. 3.1 presents process for con-
structing the overall UMP model, Sec. 3.2 shows the steps for
decomposing the overall UMP model. Sec. 3.3 describes the de-
velopment of UPLCI model based on decomposed UMP model.
Lastly, Sec. 3.4 shows the approach used to develop criteria for
difficulty and variability assessment as well as criticality assess-
ment (via sensitivity analysis).

3.1. Overall UMP Model

Knowledge about the key metrics of sustainability perfor-
mance and process familiarity are important aspects for assess-
ing the environmental impacts of manufacturing processes. To
create an overview of any manufacturing process, the unit op-
eration model can be applied, thus providing information about
all the process’s inputs and outputs. Figure 1(a) presents the
overall material and energy inputs and outputs for general man-
ufacturing processes. However, this overview does not provide
information about system limitations. Further decomposition of
the UMP model characterizes the environmental aspects of the
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Fig. 1: (a) Overall UMP model for generic manufacturing processes; (b) Decomposition of a UMP model into subsequent components. Here, M# represents a
machine tool, and S# represents a sub-system within the corresponding machine tool.

manufacturing process in additional levels of detail. The num-
ber of levels that should be considered is based on the require-
ment of LCI data from a specific sub-system.

3.2. Overall UMP model decomposed into component level

To determine the boundaries and limitations of the UMP
model, a production system needs to be decomposed into a de-
tailed sub-system level model, shown in Figure 1(b). The high-
est level of hierarchy that is considered in the decomposed UMP
model is the factory-level. The next step is to decompose the
model into the production systems. Subsequently, the model is
further decomposed into machine-levels (M1,M2...). At the ma-
chine level, it is important to define all sub-systems (S-S1, S-
S2,...). Then, the sub-systems are checked to see if they can be
decomposed further. Decomposition of the process sub-systems
ends when all sub-systems whose process parameters affects
the resource consumption are considered. The same procedure
is repeated for all other machines within the defined produc-
tion system. The decomposed UMP model provides a detailed
overview of all the input resources related to the specific man-
ufacturing process and all the potential environmental impacts
and outputs. The decomposed UMP model is used as a frame-
work to build the analytical UPLCI model for estimating pro-
cess resource consumption. However, further development of
the UPLCI model can indicate potential limitations or deficien-
cies of the decomposed UMP model. To illustrate, the total en-
ergy consumption of a manufacturing process can be estimated
from the power and time relationships of individual production
modes. Thus, such a UMP model provides enough information
about LCI data needed to carry out this estimation. However,
energy consumption can also be estimated based on the pro-
cess parameters that are not considered in the UMP model (e.g.,
based on force and velocity measurements), requiring further
decomposition of the UMP model or showing its limitations.
Therefore, decomposing the UMP model and formulating the
corresponding UPLCI model can be an iterative process, and
refinements may be required at both ends to reach alignment.

3.3. UPLCI model of manufacturing processes

This section describes the development of analytical UPLCI
models used to characterize the manufacturing processes and
estimate the resource consumption that depicts the environmen-
tal performance.

In this work, UPLCI models are developed based on the cor-
responding decomposed UMP model for a specific manufac-
turing process within a specific production setup. The UPLCI
model development is performed in three stages:

• Describing the manufacturing process energy charac-
teristics: This stage details the process characteristics
through the time analysis performed to identify differ-
ent production modes. Previous research has identified
six different production modes that can be modified de-
pending on the manufacturing process and operational
sequences [7]. Time analysis is performed from the ma-
chine start-up to the machine switch-off, differentiating
each production mode.
• Identifying parameters affecting the energy consumption

of manufacturing process: Energy consumption of pro-
duction modes is characterized as the product of power
consumed in the corresponding production mode and
time duration. The total energy consumption of the manu-
facturing process represents the sum of energy consump-
tion of individual production modes.
• Quantifying methods for material losses: Apart from the

time and power consumption, material consumption is
also measured during the production modes. Material
losses refer to waste generated from machine tool ele-
ments or workpiece material.
• Quantifying methods for consumable fluids: This stage

quantifies fluids consumed during different production
modes. Consumption is expressed per referenced flow
and estimated per unit operation or a specified batch
size [7].

While the developed UPLCI models indicate potential pro-
cess parameters that can influence the energy consumption as
well as material inputs and wastes, there is no indication as to,
(i) whether these parameters can be measured for a specific pro-
cess setup, (ii) there are potential uncertainties in the measure-
ment, and (iii) the significance of a specific process parameter
with regards to the aforementioned consumption and wastes. To
address these limitations, the following section presents a sys-
tematic framework for assessing the difficulty, variability, and
sensitivity (criticality) of a specific process measurement based
on the UPLCI model.
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Fig. 1: (a) Overall UMP model for generic manufacturing processes; (b) Decomposition of a UMP model into subsequent components. Here, M# represents a
machine tool, and S# represents a sub-system within the corresponding machine tool.

manufacturing process in additional levels of detail. The num-
ber of levels that should be considered is based on the require-
ment of LCI data from a specific sub-system.

3.2. Overall UMP model decomposed into component level

To determine the boundaries and limitations of the UMP
model, a production system needs to be decomposed into a de-
tailed sub-system level model, shown in Figure 1(b). The high-
est level of hierarchy that is considered in the decomposed UMP
model is the factory-level. The next step is to decompose the
model into the production systems. Subsequently, the model is
further decomposed into machine-levels (M1,M2...). At the ma-
chine level, it is important to define all sub-systems (S-S1, S-
S2,...). Then, the sub-systems are checked to see if they can be
decomposed further. Decomposition of the process sub-systems
ends when all sub-systems whose process parameters affects
the resource consumption are considered. The same procedure
is repeated for all other machines within the defined produc-
tion system. The decomposed UMP model provides a detailed
overview of all the input resources related to the specific man-
ufacturing process and all the potential environmental impacts
and outputs. The decomposed UMP model is used as a frame-
work to build the analytical UPLCI model for estimating pro-
cess resource consumption. However, further development of
the UPLCI model can indicate potential limitations or deficien-
cies of the decomposed UMP model. To illustrate, the total en-
ergy consumption of a manufacturing process can be estimated
from the power and time relationships of individual production
modes. Thus, such a UMP model provides enough information
about LCI data needed to carry out this estimation. However,
energy consumption can also be estimated based on the pro-
cess parameters that are not considered in the UMP model (e.g.,
based on force and velocity measurements), requiring further
decomposition of the UMP model or showing its limitations.
Therefore, decomposing the UMP model and formulating the
corresponding UPLCI model can be an iterative process, and
refinements may be required at both ends to reach alignment.

3.3. UPLCI model of manufacturing processes

This section describes the development of analytical UPLCI
models used to characterize the manufacturing processes and
estimate the resource consumption that depicts the environmen-
tal performance.

In this work, UPLCI models are developed based on the cor-
responding decomposed UMP model for a specific manufac-
turing process within a specific production setup. The UPLCI
model development is performed in three stages:

• Describing the manufacturing process energy charac-
teristics: This stage details the process characteristics
through the time analysis performed to identify differ-
ent production modes. Previous research has identified
six different production modes that can be modified de-
pending on the manufacturing process and operational
sequences [7]. Time analysis is performed from the ma-
chine start-up to the machine switch-off, differentiating
each production mode.
• Identifying parameters affecting the energy consumption

of manufacturing process: Energy consumption of pro-
duction modes is characterized as the product of power
consumed in the corresponding production mode and
time duration. The total energy consumption of the manu-
facturing process represents the sum of energy consump-
tion of individual production modes.
• Quantifying methods for material losses: Apart from the

time and power consumption, material consumption is
also measured during the production modes. Material
losses refer to waste generated from machine tool ele-
ments or workpiece material.
• Quantifying methods for consumable fluids: This stage

quantifies fluids consumed during different production
modes. Consumption is expressed per referenced flow
and estimated per unit operation or a specified batch
size [7].

While the developed UPLCI models indicate potential pro-
cess parameters that can influence the energy consumption as
well as material inputs and wastes, there is no indication as to,
(i) whether these parameters can be measured for a specific pro-
cess setup, (ii) there are potential uncertainties in the measure-
ment, and (iii) the significance of a specific process parameter
with regards to the aforementioned consumption and wastes. To
address these limitations, the following section presents a sys-
tematic framework for assessing the difficulty, variability, and
sensitivity (criticality) of a specific process measurement based
on the UPLCI model.

3.4. DVS framework for assessment of collected data

This section describes the assessment methodology devel-
oped to identify and quantify the proposed DVS (difficulty, vari-
ability, sensitivity) framework. In order to develop this frame-
work, we studied the challenges associated with building and
applying UPLCI models to a real-world centerless grinding
production setup. The framework was developed in an itera-
tive manner and abstracted so that it could be applied to other
processes. The validity of the framework was checked using
discussions with process engineers and technicians and expert
assessment of the applicability of the framework to two other
conventional and automated manufacturing processes (plunge
grinding and superfinishing) at the same facility. The studied
challenges indicate the existence of influencing factors that af-
fect the data measurement. Identifying these factors is impor-
tant since they can lead to discrepancies between the UPLCI
model and real-world data measurement. Consequently, we
asked three questions in order to identify the factors that in-
fluence data measurement:

•What are the production-system related factors influenc-
ing the measurement of the LCI data A production
system can be an independent unit, but in many cases,
it is also a part of a centralized system that is controlled
at the line- or factory-level. This can give rise to com-
plex production architectures with hard-to-define system
boundaries and sub-systems with poor data availability
and accuracy.

•What are the human related factors influencing the mea-
surement of the LCI data? Production systems can
consist of fully- and semi-automated as well as manual
manufacturing processes. Thus, human behaviour (e.g.,
adopted tool change practices) can significantly affect
process characteristics. Moreover, operators’ and tech-
nicians’ knowledge and experience can impact the dif-
ficulty and accuracy of process data measurements.

• What are the environmental conditions influencing the
accuracy of the measured LCI data? How does vari-
ability of the environmental conditions impact data mea-
surement and data accuracy?

Based on the above questions, we identified various factors
affecting the measurement of process parameters for construct-
ing process inventory models. These factors were further di-
vided into difficulty and variability criteria. Factors that influ-
ence the accessibility of the data and feasibility of the data mea-
surement were classified into the difficulty assessment criterion,
and factors that can lead to incomplete or erroneous data were
grouped into the variability assessment criterion. Subsequently,
each criterion was classified into five progressive levels based
on severity of the influence. Thus, a level signifies the fulfill-
ment of each criterion, going from the level one, where all the
requirements are met, to five, where none of the requirements
are met.

Secs. 3.4.1 and 3.4.2 provide a guideline for assessing the
degree of difficulty and variability of process data required to
build a production-specific UPLCI model. The detailed tables

explaining this assessment are provided in Tbls. B.3 and B.4 in
Appendix B. Sec. 3.4.3 explains the procedure for performing
the sensitivity analysis.

3.4.1. Difficulty assessment
Difficulty assessment is presented through five criteria that

systematically assess the various complex factors related to
technological limitations of the equipment and process archi-
tecture and the impact of process knowledge on data measure-
ment. The factors that have a significant impact are classified
into five criteria.

• Digitalization (C1D) - indicates the ease of access to the
data that can be used for data analysis and real-time pro-
cess control. This aspect refers to the implementation of
digital data monitoring and acquisition systems for the
concerned process parameters. This criterion is included
in the difficulty assessment as the level of process digital-
ization affects the time and cost of data collection.
• Data granularity (C2D) - indicates the availability of the

concerned process parameters on the different granular-
ity levels. Therefore, this criterion is included in the dif-
ficulty assessment as the data granularity can affect the
data availability. Some portion of data may be only avail-
able at the factory/production line level, which makes
data measurement on a component level difficult to per-
form.
• Complexity of the process architecture (C3D) - indicates

the complexity of the process architecture, which refers
to the design and implementation of the process that en-
ables direct data measurement of the concerned parame-
ters. Consequently, this criterion is included in the diffi-
culty assessment as the level of process architecture com-
plexity affects the time and cost of data collection.
• Impact of data measurement on the process (C4D) - indi-

cates the impact that data measurement has on real-world
production. Data measurement can create process disrup-
tions during real-time production, or it can require spe-
cialized experimental setups that can affect the produc-
tion output or time and cost of data collection
• Operator/technician knowledge (C5D) - indicates the im-

pact that operators’ experience and process knowledge
have on the process of data collection.

3.4.2. Variability assessment
Variability refers to all the factors that can affect the accuracy

of data measurement. In the proposed framework, variability
assessment is based on the following four criteria.

• Standard operating procedure (SOP) (C1V ) - a standard-
ized process assures that there are defined sequences of
operation performed with defined tools and devices in
a defined time duration. Consequently, processes with
well-defined SOPs have reduced cycle-to-cycle variation
of process parameters such as setup time, loading and un-
loading time.
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• Variability of the process setup (C2V ) - indicates changes
in the process parameters or a production process result-
ing from producing a different part within the same part
family. These changes can cause appreciable deviations
in data measurement.
• Variability of the environmental conditions (C3V ) - indi-

cates the internal and external factors that can impact the
data measurement. Internal factors refer to machine age,
tool state, and external factors include factors extrinsic to
the production process, such as room temperature).
• Reliability of the measurement (C4V ) - indicates the ac-

cessibility to high-accuracy & precise data measurements
or the availability of reliable empirical data.

The next section presents the sensitivity analysis performed
to detect the most critical (sensitive) process parameters that
affect the total resource consumption.

3.4.3. Sensitivity analysis
If the inventory data are not sensitive to a specific process

parameter, there is little reason for reducing the measurement
difficulty or variability for that parameter. Therefore, after the
UPLCI model for a specific manufacturing process has been
developed, a sensitivity analysis is performed by varying each
process parameter around its nominal value by a specified per-
centage. Please note that the nominal value for the process pa-
rameter is determined from empirical data for that specific pro-
duction setup.

4. Case Study

This section demonstrates the application of the DVS frame-
work on a real-world through-feed centerless grinding produc-
tion setup. Through-feed centerless grinding is a highly efficient
material reduction process used to machine cylindrical work-
pieces to the fine tolerances and surface roughness. The pro-
cess setup consists of three main grinding elements (i) grind-
ing wheel, (ii) regulating wheel and (iii) work rest blade. The
regulating wheel pushes the workpiece against the work rest
blade while the grinding wheel removes workpiece material.
In through-feed centerless grinding, a series of workpieces are
continuously fed between the grinding and regulating wheel. In
this case study, we applied the DVS framework for the through-
feed centerless grinding of a ceramic shaft on a Cincinnati Mi-
lacron Twin Grip 3-300 machine.

Following the steps discussed in Sec. 3, we developed a de-
composed UMP model as shown in Fig. 2. This UMP model
was used to develop a corresponding analytical UPLCI model
for the through-feed production setup. The process character-
istics used for developing the UPLCI model were as follows.

1. The process starts with unloading the workpieces remain-
ing from the previous batch and loading the feeder with
workpieces from a new batch. In this case study, the feed-
ing and conveying systems are connected and together
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Fig. 2: Decomposed UMP model for the through-feed centerless grinding pro-
cess.
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Fig. 3: Power consumption and process characteristics for the through-feed cen-
terless grinding process.

are referred to as the handling system. During unload-
ing and loading, peripheral systems such as the material
handling system, cooling system, hydraulic system, air-
suction system, and other electronics are in function. Ba-
sic time (tbasic) (see Fig. 3) is the time measured before the
grinding and regulating wheels are started. As the periph-
eral systems remain operational through the entire process,
it represents the basic power consumption (Pbasic) of the
centerless grinding process.

2. The grinding and regulating wheels are started after the
machine is loaded with a new batch (end of tload unload in
Fig. 3). Machine setup is a manual process and it is per-
formed once at the beginning of a new batch. Setup time
(tsetup) represents the time needed to adjust the process pa-
rameters in order to achieve defined diameter and surface
roughness. The idle time (tidle) corresponds to the time dur-
ing which the wheels are running without making contact
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with the workpiece. The idle power consumption (Pidle)
refers to the power consumption of the grinding and regu-
lating wheel spindle motors.

3. Grinding time (tgrinding) begins after machine setup (tsetup),
when the first workpiece contacts the regulating and grind-
ing wheels. Workpieces flow continuously throughout the
process.

4. After a batch of N workpieces are machined, the ma-
chine is turned off. Dressing of the regulating and grinding
wheels is not a part of the regular process and is performed
during a pre-planned maintenance time.

To estimate the total process energy consumption, basic, idle
and grinding energy are calculated as the product of corre-
sponding time and power consumption, as shown in Eq. 1.

Etotal = Egrinding + Eidle + Ebasic (1)
= Pgrinding × tgrinding + Pidle × tidle + Pbasic × tbasic

For the purpose of this case study, only time-related pa-
rameters have been considered to demonstrate the DVS frame-
work (see Sec. 3). These parameters are significant as they di-
rectly impact total energy consumption. Previous research also
emphasizes the challenges with accurately measuring time for
grinding processes [9]. Specifically, we focus on measuring idle
and basic time-related parameters shown in Eqs. 2 and 3 for as-
sessing total energy consumption.

tbasic =
tload unload

N
+ tidle (2)

tidle =
tsetup

N
+ tgrinding (3)

The three previously explained time-related parameters
(tload unload, tsetup, and tgrinding) were scored by an experienced
process engineer who used the difficulty and variability crite-
ria shown in the Tables B.3 and B.4 in Appendix B. Scores
are shown in Table 1. The nominal values for the process pa-

Table 1: Difficulty and variability assessment of time-related parameters based
on Tables B.3 and B.4 in Appendix B

.
Criteria

Parameter C1D C2D C3D C4D C5D

Difficulty
tload unload 3 2 2 2 2
tsetup 4 2 2 1 2
tgrinding 3 1 2 3 2
Parameter C1V C2V C3V C4V

Variability
tload unload 3 1 2 1
tsetup 3 3 3 1
tgrinding 4 3 3 1

rameters were determined experimentally and are shown in Ap-
pendix A.

Fig. 4: Sensitivity of time-related process parameters with regards to total pro-
cess energy consumption.

Fig. 4 shows the results from the sensitivity analysis of the
time-related parameters with regards to total process energy
consumption. As shown, a ±10% variation of tgrinding around
nominal value affects the total energy consumption by ±24%.
The impact of the tsetup and tload unload is insignificant.

5. Results & Discussions

The difficulty assessment for time-related parameters indi-
cates one criterion (C1D) that is scored as level 3 or 4 (see
Tbl. 1) due to the manual nature of the process and lack of a data
acquisition system. Estimation of tgrinding was possible only in
a specialized experimental production setup. Thus (C4D) con-
tributes to the difficulty of measuring these process parameters.
The non-standardized sequence of operation (C1V ) has a signif-
icant impact on variability assessment on all three time-related
parameters, as it affects the variation of parameters from cycle
to cycle. C2V and C3V for tsetup and tgrinding have a significant
contribution to the variability, as the changes of other process
parameters (e.g. rotational speed of grinding wheel) and inter-
nal environmental conditions affect the measurement of these
parameters. With regards to the sensitivity analysis, the impact
of tload unload and tsetup on total energy consumption is insignif-
icant (see Fig. 4) as these parameters are divided by a signifi-
cantly large batch size (see Appendix A). However, sensitivity
analysis performed for tgrinding showed that the variation of the
process parameter value for ±10% around the nominal value
affected the total energy consumption for ±24%. Difficulty and
variability assessment, along with sensitivity analysis, indicate
tgrinding as a critical parameter.

The measurement and control of this parameter should be
improved to facilitate sustainability quantification and further
enhancement of the studied centerless grinding process.

6. Conclusions & Future Work

This paper discussed the DVS framework that enables sys-
tematic estimation of the difficulties, variablities, and sensitiv-
ity associated with measurement of process inventory data from
real-world production systems. The DVS framework enables
process engineers and technicians to understand areas of im-
provement required to increase the ease and accuracy of quan-
tifying energy and resource consumption for specific produc-
tion processes. The framework was demonstrated using a real-
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world case study involving characterizing time-related process
parameters for a through-feed centerless grinding setup. Results
showed that grinding time (tgrinding) was the most critical (sen-
sitive parameter) in terms of process energy consumption when
compared to the setup and loading/unloading time. However, in
the current process setup, the difficulty of measuring grinding
time was significant due to its non-digitalized nature. Measur-
ing tgrinding required additional equipment and also caused pro-
cess disruption. Furthermore, there was considerable variability
due to non-standardized nature of the processes and due to the
impact that changes in process parameters and internal envi-
ronmental conditions had on the tgrinding. These results provide
a basis for focusing process improvements (e.g., process digi-
talization, standardization, etc.) from the perspective of sustain-
able manufacturing.

As part of our future work, we will expand this study to thor-
oughly characterize the through-feed centerless grinding pro-
cess and include the assessment of material losses and consum-
able fluids and their impact on total resource consumption. Our
future work will also focus on applying the developed frame-
work to other manufacturing processes, and consider the diffi-
culties and variabilities in measuring process and inventory data
across a range of process setups (automated, semi-automated,
etc.). Finally, we will expand the methodology to also include
identification and selection of feasible process improvements
from the perspective of sustainable manufacturing.
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Appendix A.

Table A.2: Input parameters for the estimation of total energy consumption for
the through-feed centerless grinding process detailed in the case study.

Power
consumption

Pspindle
g =4103 W, Pspindle

r =594 W,
Pcooling=590 W, Phandling=284 W,
Phydraulic=1497 W, Pelectronic=49 W,
Pgrinding=78 W.

Time
measurement

tload unload=180 s, tsetup=300 s,
tgrinding=0.76 s.

Size of the batch N 10800 pcs

For the corresponding production setup of through-feed cen-
terless grinding process detailed in the case study, equations for
estimation of Pbasic and Pidle are shown in Eqs. A.1 and A.2.

Pbasic = Pelectronic + Phandling + Pcooling + Phydraulic (A.1)

Pidle = Pspindle
r + Pspindle

g (A.2)

These equations were used to estimate basic and idle energy
consumption.

Appendix B.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.



Marija Glišić  et al. / Procedia CIRP 105 (2022) 210–218 217
Ta

bl
e

B
.3

:A
ss

es
sm

en
tm

et
ho

do
lo

gy
fo

r‘
di
ffi

cu
lty

’i
n

th
e

D
V

S
fr

am
ew

or
k.

Pl
ea

se
no

te
th

e
ea

ch
pr

oc
es

s
pa

ra
m

et
er

is
sc

or
ed

in
di

vi
du

al
ly

ac
ro

ss
th

e
fiv

e
as

se
ss

m
en

tc
ri

te
ri

a
(C

1 D
−
−C

5 D
).

C
ri

te
ri

a
D

iffi
cu

lty
L

ev
el

1
L

ev
el

2
L

ev
el

3
L

ev
el

4
L

ev
el

5
C

1 D
:

D
ig

ita
liz

at
io

n
Pr

oc
es

s
ha

s
a

da
ta

ac
-

qu
is

iti
on

sy
st

em
w

ith
di

re
ct

ac
ce

ss
to

th
e

ev
al

ua
te

d
pa

ra
m

et
er

.

Pr
oc

es
s

ha
s

a
da

ta
ac

-
qu

is
iti

on
sy

st
em

;e
va

l-
ua

te
d

pa
ra

m
et

er
ca

n
be

es
tim

at
ed

bu
t

no
t

di
re

ct
ly

ac
ce

ss
ed

fr
om

th
e

sy
st

em
.

Pr
oc

es
s

do
es

no
t

ha
ve

a
da

ta
ac

qu
is

iti
on

sy
s-

te
m

.
D

ig
ita

l
m

ea
su

re
-

m
en

t
eq

ui
pm

en
t

ca
n

be
in

st
al

le
d

to
en

ab
le

di
re

ct
ac

ce
ss

to
th

e
ev

al
ua

te
d

pa
ra

m
et

er
.

Pr
oc

es
s

do
es

no
t

ha
ve

a
da

ta
ac

qu
is

iti
on

sy
s-

te
m

.
D

ig
ita

l
m

ea
su

re
-

m
en

t
eq

ui
pm

en
t

ca
n

be
in

st
al

le
d;

ev
al

ua
te

d
pa

ra
m

et
er

ca
n

be
es

-
tim

at
ed

bu
t

no
t

di
-

re
ct

ly
ac

ce
ss

ed
fr

om
th

e
eq

ui
pm

en
t.

Pr
oc

es
s

do
es

no
t

ha
ve

a
da

ta
ac

qu
is

iti
on

sy
s-

te
m

an
d

it
is

no
t

po
s-

si
bl

e
to

in
st

al
la

ny
ad

-
di

tio
na

l
eq

ui
pm

en
t

to
es

tim
at

e
th

e
ev

al
ua

te
d

pa
ra

m
et

er
.

C
2 D

:
D

at
a

gr
an

u-
la

ri
ty

Po
ss

ib
le

to
m

ea
su

re
th

e
ev

al
ua

te
d

pa
ra

m
-

et
er

at
th

e
hi

gh
es

t
gr

an
ul

ar
ity

le
ve

l,
e.

g.
,

co
m

po
ne

nt
/

su
b-

sy
st

em
le

ve
l.

O
nl

y
po

ss
ib

le
to

m
ea

-
su

re
th

e
ev

al
ua

te
d

pa
-

ra
m

et
er

at
in

te
rm

ed
i-

at
e

gr
an

ul
ar

ity
,

e.
g.

,
m

ac
hi

ne
le

ve
l.

O
nl

y
po

ss
ib

le
to

m
ea

-
su

re
th

e
ev

al
ua

te
d

pa
-

ra
m

et
er

at
lo

w
gr

an
u-

la
ri

ty
,

e.
g,

pr
od

uc
tio

n
sy

st
em

le
ve

l.

O
nl

y
po

ss
ib

le
to

m
ea

-
su

re
th

e
ev

al
ua

te
d

pa
-

ra
m

et
er

at
ve

ry
po

or
gr

an
ul

ar
ity

e.
g.

,
fa

c-
to

ry
le

ve
l.

N
ot

po
ss

ib
le

to
m

ea
-

su
re

no
th

e
ev

al
ua

te
d

pa
ra

m
et

er
at

an
y

le
ve

l
of

gr
an

ul
ar

ity
.

C
3 D

:
C

om
pl

ex
ity

of
th

e
pr

oc
es

s
ar

ch
ite

ct
ur

e

T
he

pr
oc

es
s

ar
ch

ite
c-

tu
re

is
de

si
gn

ed
&

im
-

pl
em

en
te

d
to

en
ab

le
di

re
ct

m
ea

su
re

m
en

to
f

th
e

ev
al

ua
te

d
pa

ra
m

-
et

er
;

m
ea

su
re

m
en

t
is

si
m

pl
e

&
tim

e/
co

st
ef

-
fic

ie
nt

.

T
he

pr
oc

es
s

ar
ch

ite
c-

tu
re

ne
ed

s
m

in
or

m
od

-
ifi

ca
tio

ns
in

or
de

r
to

en
ab

le
di

re
ct

m
ea

su
re

-
m

en
t

of
th

e
ev

al
u-

at
ed

pa
ra

m
et

er
;

m
od

-
ifi

ca
tio

n
is

si
m

pl
e

&
tim

e/
co

st
effi

ci
en

t.

T
he

pr
oc

es
s

ar
ch

ite
c-

tu
re

en
ab

le
s

in
di

re
ct

es
tim

at
io

n
of

th
e

ev
al

-
ua

te
d

pa
ra

m
et

er
.

Si
g-

ni
fic

an
t

m
od

ifi
ca

tio
ns

ar
e

ne
ed

to
en

ab
le

di
-

re
ct

m
ea

su
re

m
en

ts
.

T
he

pr
oc

es
s

ar
ch

ite
c-

tu
re

en
ab

le
s

in
di

re
ct

es
tim

at
io

n
of

th
e

ev
al

ua
te

d
pa

ra
m

et
er

.
T

he
pr

oc
es

s
ca

n-
no

t
be

m
od

ifi
ed

to
en

ab
le

di
re

ct
da

ta
m

ea
su

re
m

en
t.

T
he

pr
oc

es
s

ar
ch

ite
c-

tu
re

do
es

no
ta

llo
w

di
-

re
ct

m
ea

su
re

m
en

t
or

in
di

re
ct

es
tim

at
io

n
of

th
e

ev
al

ua
te

d
pa

ra
m

e-
te

r;
no

pr
oc

es
s

m
od

ifi
-

ca
tio

n
is

po
ss

ib
le

.

C
4 D

:
Im

pa
ct

of
da

ta
m

ea
-

su
re

m
en

t
on

th
e

pr
oc

es
s

M
ea

su
re

m
en

t
pr

oc
es

s
fo

r
th

e
ev

al
ua

te
d

pa
-

ra
m

et
er

ca
n

be
pe

r-
fo

rm
ed

du
ri

ng
pr

od
uc

-
tio

n,
w

ith
ou

t
cr

ea
tin

g
an

y
pr

oc
es

s
di

sr
up

-
tio

ns
.

M
ea

su
re

m
en

t
pr

oc
es

s
fo

r
th

e
ev

al
ua

te
d

pa
ra

m
et

er
di

sr
up

ts
pr

od
uc

tio
n;

di
sr

up
-

tio
ns

ar
e

m
in

or
an

d
ca

n
be

ig
no

re
d.

M
ea

su
re

m
en

t
pr

oc
es

s
fo

r
th

e
ev

al
ua

te
d

pa
ra

m
et

er
di

sr
up

ts
pr

od
uc

tio
n;

m
an

ag
-

in
g

th
e

di
sr

up
tio

ns
re

qu
ir

e
so

m
e

pr
oc

es
s

al
te

ra
tio

ns
.

M
ea

su
re

m
en

t
pr

oc
es

s
fo

r
th

e
ev

al
ua

te
d

pa
-

ra
m

et
er

re
qu

ir
es

sp
e-

ci
al

iz
ed

ex
pe

ri
m

en
ta

l
se

tu
ps

ou
ts

id
e

re
gu

la
r

pr
od

uc
tio

n.

M
ea

su
re

m
en

t
pr

oc
es

s
fo

r
th

e
ev

al
ua

te
d

pa
-

ra
m

et
er

is
no

t
po

ss
i-

bl
e

on
th

e
pr

od
uc

tio
n

se
tu

p.

C
5 D

:
O

pe
ra

to
r/

te
ch

ni
ci

an
kn

ow
le

dg
e

O
pe

ra
to

rs
ha

ve
in

-
de

pt
h

kn
ow

le
dg

e
of

th
e

pr
od

uc
tio

n
se

tu
p

an
d

ex
pe

ri
en

ce
w

ith
m

ea
su

re
m

en
t

of
th

e
ev

al
ua

te
d

pa
ra

m
et

er
.

O
pe

ra
to

rs
ha

ve
go

od
kn

ow
le

dg
e

of
th

e
pr

od
uc

tio
n

se
tu

p
an

d
so

m
e

ex
pe

ri
en

ce
w

ith
m

ea
su

re
m

en
t

of
th

e
ev

al
ua

te
d

pa
ra

m
et

er
.

O
pe

ra
to

rs
ar

e
fa

m
ili

ar
w

ith
a

si
m

ila
r

pr
od

uc
-

tio
n

se
tu

p
in

an
ot

he
r

lin
e/

fa
ct

or
y.

T
he

y
ha

ve
so

m
e

ex
pe

ri
en

ce
w

ith
m

ea
su

re
m

en
t

of
th

e
ev

al
ua

te
d

pa
ra

m
et

er
.

O
pe

ra
to

rs
ha

ve
lim

-
ite

d
fa

m
ili

ar
ity

ab
ou

t
th

e
sp

ec
ifi

c
pr

od
uc

tio
n

se
tu

p
an

d
si

m
ila

r
se

-
tu

ps
.

T
he

y
ha

ve
no

ex
pe

ri
en

ce
w

ith
m

ea
-

su
re

m
en

to
f

th
e

ev
al

u-
at

ed
pa

ra
m

et
er

.

O
pe

ra
to

r
kn

ow
le

dg
e

is
in

ac
ce

ss
ib

le
du

e
to

la
ck

of
ac

ce
ss

to
th

e
op

er
at

or
or

pr
od

uc
tio

n
lin

e.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.
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